TWI739714B - Evaluation method for surface cleanliness of solar modules - Google Patents

Evaluation method for surface cleanliness of solar modules Download PDF

Info

Publication number
TWI739714B
TWI739714B TW110106333A TW110106333A TWI739714B TW I739714 B TWI739714 B TW I739714B TW 110106333 A TW110106333 A TW 110106333A TW 110106333 A TW110106333 A TW 110106333A TW I739714 B TWI739714 B TW I739714B
Authority
TW
Taiwan
Prior art keywords
solar module
value
gloss
cleanliness
difference value
Prior art date
Application number
TW110106333A
Other languages
Chinese (zh)
Other versions
TW202234816A (en
Inventor
謝政廷
王俊修
楊順化
陳俊達
歐信宏
Original Assignee
中國鋼鐵股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中國鋼鐵股份有限公司 filed Critical 中國鋼鐵股份有限公司
Priority to TW110106333A priority Critical patent/TWI739714B/en
Application granted granted Critical
Publication of TWI739714B publication Critical patent/TWI739714B/en
Publication of TW202234816A publication Critical patent/TW202234816A/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一種太陽能模組表面清潔度的評估方法,包含下列步驟:在一準備步驟中,準備一光澤度計、一未經使用的第一太陽能模組,及一已使用的第二太陽能模組。在一第一測量步驟中,以該光澤度計測量該第一太陽能模組的表面光澤度,取得一標準值。在一第二測量步驟中,以該光澤度計測量該第二太陽能模組的表面光澤度,取得一量測值。在一計算步驟中,利用下列算式計算而得一差異值:

Figure 01_image001
。在一判斷步驟中,將該差異值與一門檻值進行比對,當該差異值小於該門檻值時,判定該第二太陽能模組已被確實清潔。 A method for evaluating the surface cleanliness of a solar module includes the following steps: in a preparation step, a gloss meter, an unused first solar module, and a used second solar module are prepared. In a first measurement step, the gloss meter is used to measure the surface gloss of the first solar module to obtain a standard value. In a second measurement step, the gloss meter is used to measure the surface gloss of the second solar module to obtain a measurement value. In a calculation step, use the following formula to calculate a difference value:
Figure 01_image001
. In a judging step, the difference value is compared with a threshold value, and when the difference value is less than the threshold value, it is determined that the second solar module has been indeed cleaned.

Description

太陽能模組表面清潔度的評估方法Evaluation method for surface cleanliness of solar modules

本發明是有關於一種清潔程度的評估方法,特別是指一種太陽能模組表面清潔度的評估方法。The present invention relates to a method for evaluating cleanliness, in particular to a method for evaluating the cleanliness of the surface of a solar module.

為兼顧能源安全及環境永續等需求,我國目前正積極推動太陽能模組的設置,藉以利用太陽光生產綠電。然而,隨著使用時間的增加,設置在戶外的太陽能模組將受到落塵或髒污的附著,進而降低發電量,須定期清潔太陽能模組的表面,以維持其發電效率。由於目前是直接以肉眼觀察太陽能模組的表面,藉由附著物的殘留狀況判斷太陽能模組的清潔程度,此方式將容易受到人員的主觀感受及人眼的生理機能限制,而影響其評估結果。因此,需要一種能以客觀角度評估太陽能模組表面清潔度的方法,以確認太陽能模組是否被確實清潔。In order to take into account the needs of energy security and environmental sustainability, my country is currently actively promoting the installation of solar modules to use sunlight to produce green electricity. However, as the use time increases, the solar modules installed outdoors will be attached to dust or dirt, which will reduce the power generation. The surface of the solar modules must be cleaned regularly to maintain their power generation efficiency. At present, the surface of the solar module is directly observed with the naked eye, and the cleanliness of the solar module is judged by the residual condition of the attachment. This method will be susceptible to the subjective feelings of the person and the physiological function of the human eye, which will affect the evaluation result. . Therefore, a method for evaluating the surface cleanliness of the solar module from an objective angle is needed to confirm whether the solar module is indeed cleaned.

因此,本發明之目的,即在提供一種能以量化數據客觀評估清潔度的太陽能模組表面清潔度的評估方法。Therefore, the purpose of the present invention is to provide a method for evaluating the cleanliness of the surface of solar modules that can objectively evaluate cleanliness with quantitative data.

於是,本發明太陽能模組表面清潔度的評估方法,包含一準備步驟、一個第一測量步驟、一個第二測量步驟、一計算步驟,及一判斷步驟。在該準備步驟中,準備一光澤度計、一未經使用的第一太陽能模組,及一已使用的第二太陽能模組。在該第一測量步驟中,以該光澤度計測量該第一太陽能模組的表面光澤度,取得一標準值。在該第二測量步驟中,以該光澤度計測量該第二太陽能模組的表面光澤度,取得一量測值。在該計算步驟中,利用下列算式計算而得一差異值:

Figure 02_image003
。在該判斷步驟中,將該差異值與一門檻值進行比對,當該差異值小於該門檻值時,判定該第二太陽能模組已被確實清潔。 Therefore, the method for evaluating the surface cleanliness of a solar module of the present invention includes a preparation step, a first measurement step, a second measurement step, a calculation step, and a judgment step. In this preparation step, a gloss meter, an unused first solar module, and a used second solar module are prepared. In the first measurement step, the surface gloss of the first solar module is measured with the gloss meter to obtain a standard value. In the second measurement step, the gloss meter is used to measure the surface gloss of the second solar module to obtain a measurement value. In this calculation step, use the following formula to calculate a difference value:
Figure 02_image003
. In the judging step, the difference value is compared with a threshold value, and when the difference value is less than the threshold value, it is determined that the second solar module has been indeed cleaned.

本發明之功效在於:以該第一測量步驟及該第二測量步驟分別測量該第一太陽能模組及該第二太陽能模組的表面光澤度,再以該計算步驟計算出該差異值,當該差異值小於該門檻值時,即視為該第一太陽能模組與該第二太陽能模組的表面光澤度無差異,該第二太陽能模組已被確實清潔,除了有助於協助人員藉由數值化的資訊更快速地評估該第二太陽能模組的清潔程度,並使人員能以客觀的角度進行評估,有效降低主觀感受所造成的評估差異。The effect of the present invention is: use the first measurement step and the second measurement step to measure the surface glossiness of the first solar module and the second solar module respectively, and then use the calculation step to calculate the difference value, when When the difference value is less than the threshold value, it is deemed that there is no difference in surface gloss between the first solar module and the second solar module, and the second solar module has been cleaned. The digitized information can quickly evaluate the cleanliness of the second solar module, and enable personnel to evaluate from an objective perspective, effectively reducing the evaluation difference caused by subjective feelings.

參閱圖1,本發明太陽能模組表面清潔度的評估方法之一實施例,包含一準備步驟1、一個第一測量步驟2、一個第二測量步驟3、一計算步驟4,及一判斷步驟5。Referring to Figure 1, an embodiment of the method for evaluating the surface cleanliness of a solar module of the present invention includes a preparation step 1, a first measurement step 2, a second measurement step 3, a calculation step 4, and a judgment step 5. .

在該準備步驟1中,準備一光澤度計、一未經使用的第一太陽能模組,及一已使用的第二太陽能模組。其中,該光澤度計為可用以測量物體表面光澤度的儀器,本文中所指的「光澤度」為一種光學特性,可呈現物體表面反射光線的能力,是將一標準黑片的反射值1567定義為100 GU(Gloss Unit,光澤單位),並透過下列公式換算出的相對數值:

Figure 02_image005
。當光澤度越大時,物體表面反射光線的能力越佳,物體的表面也就越光滑。 In the preparation step 1, prepare a gloss meter, an unused first solar module, and a used second solar module. Among them, the gloss meter is an instrument that can be used to measure the gloss of the surface of an object. The "gloss" referred to in this article is an optical characteristic that can show the ability of the surface of an object to reflect light, which is the reflection value of a standard black plate of 1567 The relative value defined as 100 GU (Gloss Unit) and converted through the following formula:
Figure 02_image005
. When the gloss is greater, the ability of the surface of the object to reflect light is better, and the surface of the object is smoother.

另外,在本實施例中,該第一太陽能模組及該第二太陽能模組為相同規格的二片太陽能板,且該第一太陽能模組為全新而未經使用,並將該第一太陽能模組存放在無塵環境中,以作為對照的基準,而該第二太陽能模組則已裝設在戶外環境中一段時間,並已用於發電,也就是說,該第二太陽能模組的表面已受髒污附著。In addition, in this embodiment, the first solar module and the second solar module are two solar panels of the same specification, and the first solar module is brand new and has not been used. The module is stored in a dust-free environment as a reference for comparison, while the second solar module has been installed in an outdoor environment for a period of time and has been used for power generation, that is, the second solar module’s The surface has become dirty.

在該第一測量步驟2中,是以該光澤度計測量該第一太陽能模組的表面光澤度,而取得一標準值。也就是說,該標準值代表未經使用的該第一太陽能模組之表面光澤度,可作為該判斷步驟5的對照標準。In the first measurement step 2, the gloss meter is used to measure the surface gloss of the first solar module to obtain a standard value. In other words, the standard value represents the surface gloss of the unused first solar module, which can be used as a comparison standard for the judgment step 5.

在該第二測量步驟3中,是以該光澤度計測量該第二太陽能模組的表面光澤度,而取得一量測值。亦即,該量測值代表經使用的該第二太陽能模組之表面光澤度,當該量測值越大時,即表示該第二太陽能模組受髒污附著的程度越小。In the second measurement step 3, the gloss meter is used to measure the surface gloss of the second solar module to obtain a measurement value. That is, the measured value represents the surface glossiness of the second solar module used, and the larger the measured value, the smaller the degree of dirt adhesion to the second solar module.

在該計算步驟4中,是利用下列算式(1)計算,而得一差異值。

Figure 02_image007
‧‧‧‧(1) In the calculation step 4, the following formula (1) is used to calculate a difference value.
Figure 02_image007
‧‧‧‧(1)

在本實施例中,該計算步驟4是以例如為Excel的電腦運算軟體來執行,人員可先將前述的算式(1)先行建立在電腦運算軟體內,在測得該標準值及該量測值後,再將該標準值及該量測值輸入到電腦運算軟體內,藉此,經過算式(1)的計算即能求得該差異值。當該差異值越小時,即代表該第二太陽能模組的表面光澤度與該第一太陽能模組的表面光澤度差異越小,也就是說,附著於該第二太陽能模組表面的髒污越少,或是被清除得越徹底,該第二太陽能模組的發電效率也越接近全新未經使用之該第一太陽能模組的發電效率。In this embodiment, the calculation step 4 is performed by a computer calculation software such as Excel. The personnel can first create the aforementioned calculation formula (1) in the computer calculation software, and then measure the standard value and the measurement After the value, input the standard value and the measured value into the computer arithmetic software, by which the difference value can be obtained through the calculation of formula (1). When the difference value is smaller, it means that the difference between the surface glossiness of the second solar module and the surface glossiness of the first solar module is smaller, that is, the dirt attached to the surface of the second solar module The less, or the more thoroughly removed, the power generation efficiency of the second solar module is closer to the power generation efficiency of the new unused first solar module.

在該判斷步驟5中,是將該差異值與一門檻值進行比對,當該差異值小於該門檻值時,判定該第二太陽能模組已被確實清潔。也就是說,當該差異值小於該門檻值時,可將該第二太陽能模組的表面光澤度視為與該第一太陽能模組的表面光澤度無差異,即該第二太陽能模組與該第一太陽能模組的清潔程度相當,且該第二太陽能模組的發電效率已恢復到與該第一太陽能模組相近的程度。In the judgment step 5, the difference value is compared with a threshold value, and when the difference value is less than the threshold value, it is determined that the second solar module has been cleaned. That is, when the difference value is less than the threshold value, the surface glossiness of the second solar module can be regarded as the same as the surface glossiness of the first solar module, that is, the second solar module and the The cleanliness of the first solar module is comparable, and the power generation efficiency of the second solar module has been restored to a level similar to that of the first solar module.

該判斷步驟5包括一門檻設定子步驟51,在該門檻設定子步驟51中,是先以該光澤度計測量該第一太陽能模組的表面光澤度,而取得多個檢測值,接著計算該等檢測值的平均而得一平均值,再利用下列算式(2)計算,而得多個誤差值,並將該門檻值設定為略大於該等誤差值的其中最大者。The judgment step 5 includes a threshold setting sub-step 51. In the threshold setting sub-step 51, the surface glossiness of the first solar module is measured with the gloss meter to obtain a plurality of detection values, and then the threshold setting sub-step 51 is calculated. Wait for the average of the detection values to obtain an average value, and then use the following formula (2) to calculate to obtain multiple error values, and set the threshold value to be slightly larger than the largest of these error values.

Figure 02_image009
‧‧‧‧(2)
Figure 02_image009
‧‧‧‧(2)

而該第一太陽能模組的該等檢測值、該平均值,及該等誤差值如表1所示。The detection values, the average value, and the error values of the first solar module are shown in Table 1.

表1 編號 檢測值(GU) 誤差值(%) 1 27.9 0.36 2 28.0 0.00 3 28.2 0.71 4 29.8 6.43 5 29.8 6.43 6 29.9 6.79 7 29.0 3.57 8 29.2 4.29 9 25.4 9.29 10 25.5 8.93 11 26.7 4.64 12 26.7 4.64 13 26.7 4.64 14 26.8 4.29 平均值 28.0 0.00 Table 1 serial number Detection value (GU) difference(%) 1 27.9 0.36 2 28.0 0.00 3 28.2 0.71 4 29.8 6.43 5 29.8 6.43 6 29.9 6.79 7 29.0 3.57 8 29.2 4.29 9 25.4 9.29 10 25.5 8.93 11 26.7 4.64 12 26.7 4.64 13 26.7 4.64 14 26.8 4.29 average value 28.0 0.00

由表1可得知,由於該等誤差值最大達9.29%,考量到不同的該第一太陽能模組的表面光澤度應有所差異,因此在本實施例中,是將該門檻值設定為10%。It can be seen from Table 1 that since the maximum error value is 9.29%, considering that the surface glossiness of the first solar module should be different, in this embodiment, the threshold value is set as 10%.

為了更好地理解本發明,以下由實驗例1至2來進一步說明,但本發明並不侷限於下述實驗例:In order to better understand the present invention, the following is further illustrated by experimental examples 1 to 2, but the present invention is not limited to the following experimental examples:

[實驗例1][Experimental example 1]

在本實驗例中,是先以該光澤度計測量的該第一太陽能模組,測得該標準值為69.3 GU,再以該光澤度計測量未經清洗的該第二太陽能模組,測得該量測值為0.5 GU。接著,將該標準值及該量測值代入算式(1),求得該差異值約等於99.3%,再將該差異值與該門檻值進行比對。由於該差異值遠大於該門檻值(99.3%>10%),因此,可得知未經清洗的該第二太陽能模組上仍附著有許多髒污,將導致其發電效率遠低於該第一太陽能模組。In this experimental example, the first solar module is measured with the gloss meter, and the standard value is 69.3 GU, and then the uncleaned second solar module is measured with the gloss meter. The measured value is 0.5 GU. Then, the standard value and the measured value are substituted into equation (1), and the difference value is calculated to be approximately equal to 99.3%, and then the difference value is compared with the threshold value. Since the difference value is much larger than the threshold value (99.3%>10%), it can be known that the uncleaned second solar module still has a lot of dirt attached to it, which will cause its power generation efficiency to be much lower than that of the first solar module. A solar module.

[實驗例2][Experimental example 2]

在本實驗例中,是先以該光澤度計測量的該第一太陽能模組,測得該標準值的光澤度為69.3 GU,再以該光澤度計測量以酸性清潔劑清洗的該第二太陽能模組,測得該量測值為62.7 GU。接著,將該標準值及該量測值代入算式(1),求得該差異值約等於9.5%,再將該差異值與該門檻值進行比對。由於該差異值已小於該門檻值(9.5%<10%),因此,可將該第二太陽能模組的表面光澤度視為與該第一太陽能模組的表面光澤度無差異,即表示該第二太陽能模組在經清洗過後已被確實清潔,且該第二太陽能模組的發電效率已恢復到與該第一太陽能模組相近的程度。In this experimental example, the first solar module was first measured with the gloss meter, and the standard value of the measured gloss was 69.3 GU, and then the second solar module cleaned with an acidic cleaner was measured with the gloss meter. For solar modules, the measured value is 62.7 GU. Then, the standard value and the measured value are substituted into the formula (1) to obtain the difference value approximately equal to 9.5%, and then the difference value is compared with the threshold value. Since the difference value is less than the threshold value (9.5%<10%), the surface glossiness of the second solar module can be regarded as the same as the surface glossiness of the first solar module, which means that the The second solar module has been cleaned after being cleaned, and the power generation efficiency of the second solar module has been restored to a level similar to that of the first solar module.

藉由本實施例的實施,能將清潔程度進行量化,使得人員能直接將該差異值與該門檻值進行比對,而能以客觀的角度評估該第二太陽能模組的清潔程度。另外,還能以本實施例比較不同清洗方式的清潔效果,以因應所附著的髒污種類選擇較佳的清洗方式,進而降低維護成本,並維持發電效率。Through the implementation of this embodiment, the degree of cleanliness can be quantified, so that personnel can directly compare the difference value with the threshold value, and can evaluate the degree of cleanliness of the second solar module from an objective perspective. In addition, this embodiment can also be used to compare the cleaning effects of different cleaning methods to select a better cleaning method according to the type of dirt attached, thereby reducing maintenance costs and maintaining power generation efficiency.

綜上所述,本發明太陽能模組表面清潔度的評估方法,以該第一測量步驟2及該第二測量步驟3分別測量該第一太陽能模組及該第二太陽能模組的表面光澤度,再以該計算步驟4計算出該差異值,當該差異值小於10%時,即視為該第一太陽能模組與該第二太陽能模組的表面光澤度無差異,該第二太陽能模組已被確實清潔。除了有助於協助人員藉由數值化的資訊更快速地評估該第二太陽能模組的清潔程度,並使人員能以客觀的角度進行評估,有效降低主觀感受所造成的評估差異,故確實能達成本發明之目的。In summary, the method for evaluating the surface cleanliness of a solar module of the present invention uses the first measurement step 2 and the second measurement step 3 to measure the surface glossiness of the first solar module and the second solar module, respectively , And then calculate the difference value by the calculation step 4, when the difference value is less than 10%, it is deemed that there is no difference in the surface gloss of the first solar module and the second solar module, and the second solar module The group has been indeed cleaned. In addition to helping personnel to more quickly evaluate the cleanliness of the second solar module with numerical information, and enabling personnel to evaluate from an objective perspective, it can effectively reduce the evaluation difference caused by subjective feelings, so it can indeed To achieve the purpose of the invention.

惟以上所述者,僅為本發明之實施例而已,當不能以此限定本發明實施之範圍,凡是依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。However, the above are only examples of the present invention. When the scope of implementation of the present invention cannot be limited by this, all simple equivalent changes and modifications made in accordance with the scope of the patent application of the present invention and the content of the patent specification still belong to This invention patent covers the scope.

1:準備步驟 2:第一測量步驟 3:第二測量步驟 4:計算步驟 5:判斷步驟 51:門檻設定子步驟1: Preparation steps 2: The first measurement step 3: The second measurement step 4: Calculation steps 5: Judgment steps 51: Threshold setting sub-steps

本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一方法流程圖,說明本發明太陽能模組表面清潔度的評估方法的一實施例。 Other features and effects of the present invention will be clearly presented in the embodiments with reference to the drawings, in which: FIG. 1 is a method flow chart illustrating an embodiment of the method for evaluating the surface cleanliness of a solar module according to the present invention.

1:準備步驟 1: Preparation steps

2:第一測量步驟 2: The first measurement step

3:第二測量步驟 3: The second measurement step

4:計算步驟 4: Calculation steps

5:判斷步驟 5: Judgment steps

51:門檻設定子步驟 51: Threshold setting sub-steps

Claims (3)

一種太陽能模組表面清潔度的評估方法,包含: 一準備步驟,準備一光澤度計、一未經使用的第一太陽能模組,及一已使用的第二太陽能模組; 一個第一測量步驟,以該光澤度計測量該第一太陽能模組的表面光澤度,取得一標準值; 一個第二測量步驟,以該光澤度計測量該第二太陽能模組的表面光澤度,取得一量測值; 一計算步驟,利用下列算式計算而得一差異值:
Figure 03_image001
;及 一判斷步驟,將該差異值與一門檻值進行比對,當該差異值小於該門檻值時,判定該第二太陽能模組已被確實清潔。
A method for evaluating the cleanliness of the surface of a solar module, comprising: a preparation step of preparing a gloss meter, an unused first solar module, and a used second solar module; a first measurement step , Use the gloss meter to measure the surface gloss of the first solar module to obtain a standard value; a second measurement step, use the gloss meter to measure the surface gloss of the second solar module to obtain a measurement Value; A calculation step, using the following formula to calculate a difference value:
Figure 03_image001
And a judgment step, comparing the difference value with a threshold value, and when the difference value is less than the threshold value, it is determined that the second solar module has been cleaned indeed.
如請求項1所述的太陽能模組表面清潔度的評估方法,其中,該判斷步驟包括一門檻設定子步驟,在該門檻設定子步驟中,是以該光澤度計測量該第一太陽能模組的表面光澤度,取得多個檢測值,接著計算該等檢測值的平均而得一平均值,再利用下列算式計算而得多個誤差值:
Figure 03_image011
,並將該門檻值設定為略大於該等誤差值的其中最大者。
The method for evaluating the surface cleanliness of a solar module according to claim 1, wherein the determining step includes a threshold setting sub-step, and in the threshold setting sub-step, the gloss meter is used to measure the first solar module Obtain multiple test values for the surface gloss of, and then calculate the average of these test values to get an average value, and then use the following formula to calculate multiple error values:
Figure 03_image011
, And set the threshold value to be slightly larger than the largest of these error values.
如請求項1所述的太陽能模組表面清潔度的評估方法,其中,在該判斷步驟中,該門檻值為10%。The method for evaluating the surface cleanliness of a solar module according to claim 1, wherein, in the judgment step, the threshold value is 10%.
TW110106333A 2021-02-23 2021-02-23 Evaluation method for surface cleanliness of solar modules TWI739714B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110106333A TWI739714B (en) 2021-02-23 2021-02-23 Evaluation method for surface cleanliness of solar modules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110106333A TWI739714B (en) 2021-02-23 2021-02-23 Evaluation method for surface cleanliness of solar modules

Publications (2)

Publication Number Publication Date
TWI739714B true TWI739714B (en) 2021-09-11
TW202234816A TW202234816A (en) 2022-09-01

Family

ID=78778188

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110106333A TWI739714B (en) 2021-02-23 2021-02-23 Evaluation method for surface cleanliness of solar modules

Country Status (1)

Country Link
TW (1) TWI739714B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI767853B (en) * 2021-10-14 2022-06-11 中國鋼鐵股份有限公司 A maintenance method of solar module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM502290U (en) * 2014-12-30 2015-06-01 Gen Energy Solutions Inc Solar energy equipment capable of automatically evaluating cleaning needs and automatic cleaning evaluation system
CN104722511A (en) * 2015-03-24 2015-06-24 福建师范大学 Quantity monitoring and cleaning method for dust on surface of solar cell panel
CN105515510A (en) * 2015-11-10 2016-04-20 宁波市柯玛士太阳能科技有限公司 Solar module cleaning method
US20180145189A1 (en) * 2015-05-04 2018-05-24 Rioglass Solar, S.A. Coated glass for solar reflectors
TW201828586A (en) * 2017-01-25 2018-08-01 優信電子(香港)有限公司 Error correction method for cleaning solar module and solar module system using the same for determining an optimal cleaning time point according to the total cost of power generation loss
CN109546954A (en) * 2018-11-19 2019-03-29 扬州工业职业技术学院 A kind of solar energy photovoltaic panel cleaning intelligence control system and its control method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM502290U (en) * 2014-12-30 2015-06-01 Gen Energy Solutions Inc Solar energy equipment capable of automatically evaluating cleaning needs and automatic cleaning evaluation system
CN104722511A (en) * 2015-03-24 2015-06-24 福建师范大学 Quantity monitoring and cleaning method for dust on surface of solar cell panel
US20180145189A1 (en) * 2015-05-04 2018-05-24 Rioglass Solar, S.A. Coated glass for solar reflectors
CN105515510A (en) * 2015-11-10 2016-04-20 宁波市柯玛士太阳能科技有限公司 Solar module cleaning method
TW201828586A (en) * 2017-01-25 2018-08-01 優信電子(香港)有限公司 Error correction method for cleaning solar module and solar module system using the same for determining an optimal cleaning time point according to the total cost of power generation loss
CN109546954A (en) * 2018-11-19 2019-03-29 扬州工业职业技术学院 A kind of solar energy photovoltaic panel cleaning intelligence control system and its control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI767853B (en) * 2021-10-14 2022-06-11 中國鋼鐵股份有限公司 A maintenance method of solar module

Also Published As

Publication number Publication date
TW202234816A (en) 2022-09-01

Similar Documents

Publication Publication Date Title
TWI739714B (en) Evaluation method for surface cleanliness of solar modules
CN106548357B (en) Client satisfaction evaluation method and system
TWI669904B (en) Computer device and method for determining whether a solar energy panel array is abnormal
Mohamed et al. An epidemiological comparison of Dean's index and the Developmental Defects of Enamel (DDE) index
CN109636110A (en) A kind of method and device obtaining protective relaying device operating status
WO2018201996A9 (en) Air conditioner power consumption estimation method and device
KR102137723B1 (en) Performance evaluation system and method of heat exchanger
CN110210060A (en) The prediction technique of solar energy photovoltaic panel superficial dust degree
Laicāne et al. Determinants of household electricity consumption savings: A Latvian case study
CN110400001B (en) High-voltage cable inspection cycle optimization method based on risk assessment
CN110162836B (en) Dust deposition evaluation method based on photovoltaic panel power generation capacity, dust deposition cleaning control method, dust deposition evaluation system and readable storage medium
TWI491801B (en) Wind power fault prediction system and method thereof
CN110231503B (en) High-loss platform area electricity stealing user identification and positioning method based on Glandum causal test
CN116067671B (en) Method, system and medium for testing vehicle paint quality
CN114662809A (en) Method and system for evaluating electric energy quality of power supply in comprehensive energy park
Alvero et al. Measuring safety performance: A comparison of whole, partial, and momentary time-sampling recording methods
US20150256421A1 (en) Information processing method and information processing apparatus
CN113537820B (en) Comprehensive evaluation method and system for two-network balance of heating system
CN105488302A (en) Energy saving amount measuring method for energy saving reconstruction of public building
Qu et al. Smart temperature monitoring for data center energy efficiency
Jin et al. Research on the definition and model of software testing quality
TWI379093B (en) Method and portable device for fault diagnosis of photovoltaic power generating system
CN105043953A (en) Method for estimating dust exposure concentration for operating personnel of thermal power enterprise
CN110135555B (en) Forward neural network prediction model for water resource bearing capacity
CN206908570U (en) The experimental provision that dust fall influences on generating efficiency