TWI739214B - Battery parallel control method for electric vehicle - Google Patents

Battery parallel control method for electric vehicle Download PDF

Info

Publication number
TWI739214B
TWI739214B TW108142094A TW108142094A TWI739214B TW I739214 B TWI739214 B TW I739214B TW 108142094 A TW108142094 A TW 108142094A TW 108142094 A TW108142094 A TW 108142094A TW I739214 B TWI739214 B TW I739214B
Authority
TW
Taiwan
Prior art keywords
battery module
battery
switch
electric vehicle
output voltage
Prior art date
Application number
TW108142094A
Other languages
Chinese (zh)
Other versions
TW202121794A (en
Inventor
蕭逸偉
Original Assignee
光陽工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光陽工業股份有限公司 filed Critical 光陽工業股份有限公司
Priority to TW108142094A priority Critical patent/TWI739214B/en
Publication of TW202121794A publication Critical patent/TW202121794A/en
Application granted granted Critical
Publication of TWI739214B publication Critical patent/TWI739214B/en

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本發明為一種電動車輛的電池並聯控制方法,該電動車輛包含一馬達、一第一電池模組及一第二電池模組,各電池模組中設置有相串聯的一電池、一充電開關及一放電開關,該方法包含:比較該第一電池模組的輸出電壓值及該第二電池模組的輸出電壓值;當該第一電池模組的輸出電壓值大於該第二電池模組的輸出電壓值,導通該第一電池模組的充電開關、放電開關,並導通該第二電池模組的放電開關;當判斷該第二電池模組的放電電流值大於一預設電流值時,再導通該第二電池模組的該充電開關,令該第二電池模組平穩地搭接該第一電池模組而共同供電給該馬達,減少電池搭接過程中對電動車輛產生運轉不順的問題。The present invention is a battery parallel control method for an electric vehicle. The electric vehicle includes a motor, a first battery module, and a second battery module. Each battery module is provided with a battery, a charging switch, and a battery connected in series. A discharge switch, the method includes: comparing the output voltage value of the first battery module with the output voltage value of the second battery module; when the output voltage value of the first battery module is greater than that of the second battery module Output voltage value, turn on the charge switch and discharge switch of the first battery module, and turn on the discharge switch of the second battery module; when it is determined that the discharge current value of the second battery module is greater than a preset current value, Then turn on the charging switch of the second battery module, so that the second battery module smoothly overlaps the first battery module to supply power to the motor together, reducing the unsmooth operation of the electric vehicle during the battery overlap process problem.

Description

電動車輛的電池並聯控制方法Battery parallel control method for electric vehicle

本發明關於一種應用於電動車輛的電池控制方法,特別是指控制電池安全並聯供電的方法。The present invention relates to a battery control method applied to electric vehicles, in particular to a method for controlling batteries to supply power in parallel safely.

電動車輛以電池電力提供整車的動力來源,根據車款設計,可在電動車輛內部設置多個相互並聯的電池組,可透過專屬充電纜線直接對該電動車輛內部的電池組充電,或是由使用者從電動車輛內取出並重複充電。因為電動車輛的供電系統是以多個電池組並聯後共同供電,但因為不同電池組之間的電壓不必然完全相等,可能有部分電池組的電壓較高,其餘電池組的電壓較低,因此需要對電池組提供安全管理機制,以避免在供電過程中高壓電池組的大電流灌入至低壓電池組內部而燒毀該低壓電池組。Electric vehicles use battery power to provide the power source of the entire vehicle. According to the design of the vehicle, multiple battery packs connected in parallel can be installed inside the electric vehicle, and the battery pack inside the electric vehicle can be directly charged through a dedicated charging cable, or The user takes it out of the electric vehicle and recharges it. Because the power supply system of electric vehicles is powered by multiple battery packs in parallel, but because the voltages between different battery packs are not necessarily completely equal, there may be some battery packs that have higher voltages, and the other battery packs have lower voltages. It is necessary to provide a safety management mechanism for the battery pack to prevent the high current of the high-voltage battery pack from being poured into the low-voltage battery pack during the power supply process to burn the low-voltage battery pack.

發明專利I634722號揭示一種電池並聯搭接的控制方法,以熱插拔的方式將一電池與另一電池並接而共同供電。該專利比較兩個電池之間的電量差距,當電量差距小到一定程度時,必須先降低至“低負載狀態”以繼續抽取原供電電池的電力(抽載),才能判斷是否可將其它電池搭接上原供電電池。在判斷過程中,該技術可能存在以下問題:Invention Patent No. I634722 discloses a method for controlling the parallel connection of batteries. One battery and another battery are connected in parallel to supply power in a hot-swappable manner. This patent compares the power gap between the two batteries. When the power gap is small to a certain extent, it must be reduced to a "low load state" to continue to extract the power of the original power supply battery (with pumping load) before it can be judged whether other batteries can be used. Connect the original power supply battery. In the process of judgment, the technology may have the following problems:

1.因為刻意降低對原供電電池的抽載,勢必會對負載造成影響,例如當電池應用於電動車輛時,若突然地降低對電池的抽載程度,容易使得電動車輛產生頓挫、突然降速或是無法加速等問題,不僅影響騎乘者的騎車感受,也有可能導致行車安全問題。1. Because deliberately reducing the load on the original power supply battery, it will inevitably affect the load. For example, when the battery is used in electric vehicles, if the degree of pumping on the battery is suddenly reduced, it is easy to cause the electric vehicle to frustrate and slow down suddenly. Or problems such as the inability to accelerate, not only affect the rider's riding experience, but also may cause driving safety problems.

2.當兩個電池之間的電量差距較大時,無法進行搭接作業。因此,當系統估算電池的電量產生較誤差時,即無法順利進行。2. When the power gap between the two batteries is large, the overlap operation cannot be performed. Therefore, when the system estimates the battery capacity with a relatively error, it cannot proceed smoothly.

[發明所欲解決之問題][The problem to be solved by the invention]

為克服電動車輛不同電壓之電池在以熱插拔方式搭接時所產生的車輛頓挫或無法順利搭接的問題,本發明提供一種電動車輛的電池並聯控制方法,使電池可以平穩並聯供電。In order to overcome the problem of vehicle frustration or failure to smoothly overlap when batteries of different voltages of electric vehicles are overlapped in a hot-swappable manner, the present invention provides a battery parallel control method for electric vehicles, so that the batteries can be connected in parallel for power supply smoothly.

[解決問題之技術手段][Technical means to solve the problem]

依據本發明申請專利範圍第1項之較佳技術手段,本發明提供一種電動車輛的電池並聯控制方法,該電動車輛包含一馬達、一第一電池模組及一第二電池模組;該第一電池模組包含串聯的一電池、一第一充電開關與一第一放電開關;該第二電池模組包含串聯的一電池、一第二充電開關與一第二放電開關;該電動車輛的電池並聯控制方法包含:According to the preferred technical means of item 1 of the patent application of the present invention, the present invention provides a battery parallel control method for an electric vehicle, the electric vehicle including a motor, a first battery module, and a second battery module; A battery module includes a battery, a first charging switch, and a first discharging switch connected in series; the second battery module includes a battery, a second charging switch, and a second discharging switch connected in series; the electric vehicle Battery parallel control methods include:

(a) 該第一電池模組及該第二電池模組相互通訊以比較該第一電池模組的輸出電壓值及該第二電池模組的輸出電壓值;(a) The first battery module and the second battery module communicate with each other to compare the output voltage value of the first battery module and the output voltage value of the second battery module;

(b) 當該第一電池模組的輸出電壓值大於該第二電池模組的輸出電壓值,導通該第一電池模組的該第一充電開關、該第一放電開關與該第二電池模組的該第二放電開關,令該第一電池模組供電給該馬達;(b) When the output voltage value of the first battery module is greater than the output voltage value of the second battery module, the first charging switch, the first discharging switch and the second battery of the first battery module are turned on The second discharge switch of the module enables the first battery module to supply power to the motor;

(c) 判斷該第二電池模組的放電電流值是否大於一預設電流值;(c) Determine whether the discharge current value of the second battery module is greater than a preset current value;

(d) 當該第二電池模組的放電電流大於該預設電流值時,導通該第二電池模組的該第二充電開關,令該第二電池模組搭接該第一電池模組,共同供電給該馬達。(d) When the discharge current of the second battery module is greater than the preset current value, turn on the second charging switch of the second battery module to make the second battery module overlap the first battery module , To supply power to the motor together.

依據本發明申請專利範圍第2項之較佳技術手段,本發明提供一種電動車輛的電池並聯控制方法,該電動車輛包含一馬達、一車輛控制單元、一第一電池模組及一第二電池模組;該第一電池模組包含串聯連接的一電池、一第一充電開關與一第一放電開關;該第二電池模組包含串聯的一電池、一第二充電開關與一第二放電開關;該車輛控制單元電連接該第一電池模組及該第二電池模組,接收該第一電池模組的電池資訊及該第二電池模組的電池資訊;該電動車輛的電池並聯控制方法包含:According to the preferred technical means of item 2 of the patent application of the present invention, the present invention provides a battery parallel control method for an electric vehicle, the electric vehicle including a motor, a vehicle control unit, a first battery module, and a second battery Module; the first battery module includes a battery, a first charge switch and a first discharge switch connected in series; the second battery module includes a battery, a second charge switch and a second discharge switch connected in series Switch; the vehicle control unit is electrically connected to the first battery module and the second battery module, and receives battery information of the first battery module and battery information of the second battery module; parallel control of the battery of the electric vehicle Methods include:

(a) 該車輛控制單元比較該第一電池模組的輸出電壓值及該第二電池模組的輸出電壓值;(a) The vehicle control unit compares the output voltage value of the first battery module with the output voltage value of the second battery module;

(b) 當該第一電池模組的輸出電壓值大於該第二電池模組的輸出電壓值,該車輛控制單元導通該第一電池模組的該第一充電開關、該第一放電開關與該第二電池模組的該第二放電開關,令該第一電池模組供電至該馬達;(b) When the output voltage value of the first battery module is greater than the output voltage value of the second battery module, the vehicle control unit turns on the first charging switch, the first discharging switch, and the first battery module of the first battery module The second discharge switch of the second battery module enables the first battery module to supply power to the motor;

(c) 該車輛控制單元判斷該第二電池模組的放電電流值是否大於一預設電流值;(c) The vehicle control unit determines whether the discharge current value of the second battery module is greater than a preset current value;

(d) 當該第二電池模組的放電電流大於該預設電流值時,該車輛控制單元導通該第二電池模組的該第二充電開關,令該第二電池模組搭接該第一電池模組,共同供電給該馬達。(d) When the discharge current of the second battery module is greater than the preset current value, the vehicle control unit turns on the second charging switch of the second battery module to make the second battery module overlap the first battery module A battery module to supply power to the motor together.

[發明之功效][Effects of Invention]

本發明之功效在於:該具有較高輸出電壓之第一電池模組係優先供電予馬達,而輸出電壓值較低之第二電池模組僅先開啟其放電開關,以避免過大之電流灌入該第二電池模組而燒毀該第二電池模組。當該第一電池模組、第二電池模組的電壓漸漸一致時,該第二電池模組的放電電流將漸漸升高至一預設電流值,即可開啟該第二電池模組之充電開關,令該第二電池模組平穩地搭接至該第一電池模組,對負載共同提供電力。因為不需刻意降低對電池模組的抽載幅度,所以能夠避免電動車輛在騎乘過程中發生顯著的頓挫感;且只需要量測該第二電池模組之放電電流是否滿足預設條件,而不需預先估算各電池的電量差異,可避量電量估測錯誤導致電池無法搭接的問題。The effect of the present invention is that the first battery module with a higher output voltage is given priority to supply power to the motor, and the second battery module with a lower output voltage value only turns on its discharge switch first, so as to avoid excessive current sinking The second battery module burns the second battery module. When the voltages of the first battery module and the second battery module are gradually the same, the discharge current of the second battery module will gradually rise to a preset current value, and the charging of the second battery module can be started The switch enables the second battery module to be smoothly connected to the first battery module to provide power to the load together. Because there is no need to deliberately reduce the pumping range of the battery module, it can prevent the electric vehicle from having a significant sense of frustration during the riding process; and only need to measure whether the discharge current of the second battery module meets the preset conditions, There is no need to estimate the power difference of each battery in advance, which can avoid the problem that the battery cannot be connected due to the error of the power estimation.

請參考圖1所示,本發明為一種電動車輛的電池並聯控制方法,可利用圖1所示的電池供電系統執行。該電池供電系統包含並聯的複數個電池模組10、20,該複數個電池模組10、20透過供電排線共同提供電力給電動車輛的馬達200。該複數個電池模組10、20與電動車輛內的一車輛控制單元(VCU)300連接通訊,將該電池模組10、20本身的電池資訊傳送給該車輛控制單元300,或接收該車輛控制單元300的控制。在以下實施例中,以一第一電池模組10及一第二電池模組20舉例說明本發明的方法。Please refer to FIG. 1, the present invention is a battery parallel control method for electric vehicles, which can be implemented by the battery power supply system shown in FIG. 1. The battery power supply system includes a plurality of battery modules 10 and 20 connected in parallel, and the plurality of battery modules 10 and 20 jointly provide electric power to a motor 200 of an electric vehicle through a power supply cable. The plurality of battery modules 10, 20 communicate with a vehicle control unit (VCU) 300 in the electric vehicle, and transmit the battery information of the battery modules 10, 20 to the vehicle control unit 300, or receive the vehicle control Control of unit 300. In the following embodiments, a first battery module 10 and a second battery module 20 are used as examples to illustrate the method of the present invention.

該第一電池模組10包含有一第一電池(cell)11、一第一充電開關12、一第一放電開關13、一第一電壓感測器14、一第一電流感測器15、一第一控制器(MCU)16及一第一通訊介面17。The first battery module 10 includes a first cell 11, a first charging switch 12, a first discharging switch 13, a first voltage sensor 14, a first current sensor 15, a The first controller (MCU) 16 and a first communication interface 17.

該第一充電開關12、第一放電開關13與該第一電池11相串聯。該第一充電開關12及第一放電開關13可由金氧半場效電晶體(MOSFET)構成,在該MOSFET的源極(source)和汲極(drain)之間存在有一寄生二極體,其中,該第一充電開關12及該第一放電開關13為反向連接,令兩個寄生二極體的正極相連接。該第一電壓感測器14連接該第一電池11的兩端,以測得該第一電池模組10的輸出電壓值。該第一電流感測器15串聯該第一電池11,以測得該第一電池模組10的電流值,該電流值可以是一充電電流值或是一放電電流值。The first charging switch 12 and the first discharging switch 13 are connected in series with the first battery 11. The first charging switch 12 and the first discharging switch 13 may be composed of a metal oxide half field effect transistor (MOSFET), and there is a parasitic diode between the source and drain of the MOSFET. Among them, The first charging switch 12 and the first discharging switch 13 are reversely connected, so that the anodes of the two parasitic diodes are connected. The first voltage sensor 14 is connected to both ends of the first battery 11 to measure the output voltage value of the first battery module 10. The first current sensor 15 is connected in series with the first battery 11 to measure the current value of the first battery module 10. The current value may be a charging current value or a discharging current value.

該第一控制器16可控制該第一充電開關12、該第一放電開關13切換為導通(on)或中斷(off),並接收該第一電壓感測器14測得的該輸出電壓值以及該第一電流感測器15測得的電流值。該第一控制器16透過該第一通訊介面17連接到一通訊匯流排400,經由該通訊匯流排400連接至該車輛控制單元300,使車輛控制單元300能夠獲得該第一電池模組10的電池資訊,電池資訊可包含但不限於該輸出電壓值、該電流值。該第一控制器16也可透過該第一通訊介面17接收來自車輛控制單元300發出的控制指令。其中,該第一通訊介面17可以是支援控制器區域網路(Controller Area Network,簡稱CAN或者CAN bus)的協定,或是其它標準的有線/無線通訊介面。The first controller 16 can control the first charging switch 12 and the first discharging switch 13 to be switched on or off, and receive the output voltage value measured by the first voltage sensor 14 And the current value measured by the first current sensor 15. The first controller 16 is connected to a communication bus 400 through the first communication interface 17, and is connected to the vehicle control unit 300 via the communication bus 400, so that the vehicle control unit 300 can obtain the information of the first battery module 10 Battery information, battery information may include, but is not limited to, the output voltage value and the current value. The first controller 16 can also receive control commands from the vehicle control unit 300 through the first communication interface 17. Wherein, the first communication interface 17 may be a protocol supporting a Controller Area Network (CAN or CAN bus for short), or a wired/wireless communication interface of other standards.

該第二電池模組20同樣包含有一第二電池(cell)21、一第二充電開關22、一第二放電開關23、一第二電壓感測器24、一第二電流感測器25、一第二控制器(MCU)26及一第二通訊介面27;因為該第二電池模組20的電路架構與該第一電池模組10的電路架構相同,故不再重述。The second battery module 20 also includes a second cell 21, a second charging switch 22, a second discharging switch 23, a second voltage sensor 24, a second current sensor 25, A second controller (MCU) 26 and a second communication interface 27; because the circuit structure of the second battery module 20 is the same as the circuit structure of the first battery module 10, the description will not be repeated.

本發明電動車輛的電池並聯控制方法,可藉由上述的電池供電系統執行。如圖2所示,該控制方法包含有下述步驟:The battery parallel control method of the electric vehicle of the present invention can be implemented by the above-mentioned battery power supply system. As shown in Figure 2, the control method includes the following steps:

S201:比較該第一電池模組10及該第二電池模組20的輸出電壓值。S201: Compare the output voltage values of the first battery module 10 and the second battery module 20.

S202:當該第一電池模組10的輸出電壓值大於該第二電池模組20的輸出電壓值時,如圖3所示,導通該第一電池模組10的第一充電開關12及第一放電開關13,並導通該第二電池模組20的第二放電開關23。令該第一電池模組10的電力透過該第一充電開關12及該第一放電開關13傳送給馬達200,由該馬達200對具有較高電壓的該第一電池模組10持續抽載;因為該第二電池模組20只有導通該第二放電開關23,因此該第二電池模組20僅輸出一微小的放電電流,透過該第二充電開關22的寄生二極體對外輸出。由於該第二充電開關22維持為中斷狀態,可以避免較高電壓的該第一電池模組10將高電流灌入到較低電壓的該第二電池模組20,防止該第二電池模組20損壞。S202: When the output voltage value of the first battery module 10 is greater than the output voltage value of the second battery module 20, as shown in FIG. 3, the first charging switch 12 and the second battery module 10 are turned on. A discharging switch 13 turns on the second discharging switch 23 of the second battery module 20. Enabling the power of the first battery module 10 to be transmitted to the motor 200 through the first charging switch 12 and the first discharging switch 13, and the motor 200 continues to pump the first battery module 10 with a higher voltage; Because the second battery module 20 only turns on the second discharging switch 23, the second battery module 20 only outputs a small discharge current, which is output to the outside through the parasitic diode of the second charging switch 22. Since the second charging switch 22 is maintained in an interrupted state, it can prevent the first battery module 10 with a higher voltage from sinking high current into the second battery module 20 with a lower voltage, preventing the second battery module 20 damaged.

S203:判斷該第二電池模組20的放電電流值是否大於一預設電流值。隨著該第一電池模組10逐漸放電,該第一電池模組10的電力會漸漸下降,而第二電池模組20的放電電流值會漸漸增大,即第二電池模組20漸漸輸出電力,利用該第二電池模組20中的第二電流感測器25可感測出該放電電流值的變化。該預設電流值可根據該第二充電開關22的寄生二極體所能承受的最大電流值而制定。S203: Determine whether the discharge current value of the second battery module 20 is greater than a preset current value. As the first battery module 10 gradually discharges, the power of the first battery module 10 will gradually decrease, and the discharge current value of the second battery module 20 will gradually increase, that is, the second battery module 20 gradually outputs With electric power, the second current sensor 25 in the second battery module 20 can sense the change in the discharge current value. The preset current value can be determined according to the maximum current value that the parasitic diode of the second charging switch 22 can withstand.

S204:當該第二電池模組20的放電電流值大於該預設電流值,如圖4所示,導通該第二電池模組20的該第二充電開關22。當第二電池模組20的該第二充電開關22導通後,該第二電池模組20即順利搭接該第一電池模組10完成並聯,此時即由該第二電池模組20、該第一電池模組10共同提供電力該電動車輛,馬達200可同時對該第二電池模組20、該第一電池模組10進行抽載。S204: When the discharge current value of the second battery module 20 is greater than the preset current value, as shown in FIG. 4, the second charging switch 22 of the second battery module 20 is turned on. When the second charging switch 22 of the second battery module 20 is turned on, the second battery module 20 smoothly overlaps the first battery module 10 to complete the parallel connection. At this time, the second battery module 20, The first battery module 10 jointly provides power to the electric vehicle, and the motor 200 can simultaneously load the second battery module 20 and the first battery module 10.

本發明的電池並聯控制方法為提高整體電池系統的使用安全,還可進一步包含以下步驟:In order to improve the use safety of the overall battery system, the battery parallel control method of the present invention may further include the following steps:

判斷該第二電池模組20的充電電流是否大於一預設安全電流值,當該第二電池模組20的充電電流高於該預設安全電流值時,中斷該第二電池模組20的第二充電開關22,避免過大的充電電流燒毀該第二電池模組20。It is determined whether the charging current of the second battery module 20 is greater than a preset safe current value, and when the charging current of the second battery module 20 is higher than the preset safe current value, the second battery module 20 is interrupted. The second charging switch 22 prevents excessive charging current from burning the second battery module 20.

本發明的判斷、控制作業可利用電動車輛中的該車輛控制單元300執行,即第一電池模組10、第二電池模組20將本身的電池資訊分別傳輸給該車輛控制單元300,由該車輛控制單元300集中判斷第一電池模組10、第二電池模組20的狀態,並輸出控制指令給該第一控制器16、第二控制器26,透過該第一控制器16、第二控制器26執行對各充電開關或放電開關的切換操作。The judgment and control operations of the present invention can be performed by the vehicle control unit 300 in the electric vehicle, that is, the first battery module 10 and the second battery module 20 respectively transmit their own battery information to the vehicle control unit 300, and the The vehicle control unit 300 centrally judges the status of the first battery module 10 and the second battery module 20, and outputs control commands to the first controller 16, the second controller 26, through the first controller 16, the second controller The controller 26 performs the switching operation of each charging switch or discharging switch.

除了利用該車輛控制單元300可執行本發明的判斷、控制作業,因為該第一電池模組10、第二電池模組20相互之間可透過該通訊匯流排400傳遞資訊,該第一控制器16與第二電控制器26可直接相互通訊以獲得彼此的電池資訊,因此本發明的另一實施例亦可以設定該第一電池模組10中的第一控制器16或第二電池模組20中的第二控制器26作為主控制器,執行電量判斷、控制開關進行切換動作等相關作業。In addition to using the vehicle control unit 300 to perform the judgment and control operations of the present invention, because the first battery module 10 and the second battery module 20 can transmit information to each other through the communication bus 400, the first controller 16 and the second electrical controller 26 can directly communicate with each other to obtain each other’s battery information, so another embodiment of the present invention can also set the first controller 16 or the second battery module in the first battery module 10 The second controller 26 in 20 acts as the main controller, and performs related tasks such as power determination and controlling switches for switching actions.

綜上所述,本發明針對電動車輛中多個電壓不同的電池模組欲以熱插拔的方式共同搭接於負載時(如馬達),係以輸出電壓值最大之第一電池模組為優先出電,導通其充電開關及放電開關,輸出電壓值較低之第二電池模組僅先開啟其放電開關,以限制過大之電流進入該第二電池模組,避免大電流燒毀該第二電池模組。當第二電池模組之放電電流漸漸升高至一預設電流值時,即可開啟該第二電池模組之充電開關,令該第二電池模組平穩搭接至該第一電池模組,而負載可對已經順利並聯的第一電池模組、第二電池模組進一步提高抽載。本發明因為不需刻意降低對電池模組的抽載幅度,所以能夠避免電動車輛在騎乘過程中發生顯著的頓挫感。In summary, when multiple battery modules with different voltages in an electric vehicle are to be connected to a load (such as a motor) in a hot-swappable manner, the first battery module with the largest output voltage value is used as the first battery module in the present invention. Give priority to electricity, turn on its charge switch and discharge switch. The second battery module with a lower output voltage will only turn on its discharge switch first to limit excessive current from entering the second battery module and avoid high current from burning the second battery module. Battery module. When the discharge current of the second battery module gradually rises to a preset current value, the charging switch of the second battery module can be turned on, so that the second battery module is smoothly connected to the first battery module , And the load can further increase the extraction load of the first battery module and the second battery module that have been smoothly connected in parallel. Since the present invention does not need to deliberately reduce the extraction range of the battery module, it can avoid a significant sense of frustration during the riding of the electric vehicle.

10 第一電池模組                             11 第一電池 12 第一充電開關                             13 第一放電開關 14 第一電壓感測器                         15 第一電流感測器 16 第一控制器                                 17 第一通訊介面 20 第二電池模組                             21 第二電池 22 第二充電開關                             23 第二放電開關 24 第二電壓感測器                         25 第二電流感測器 26 第二控制器                                 27 第二通訊介面 200 馬達                                           300 車輛控制單元 400 通訊匯流排 10 First battery module 11 First battery 12 First charging switch 13 First discharging switch 14 First voltage sensor 15 First current sensor 16 First controller 17 First communication interface 20 Second battery module 21 Second battery 22 Second charging switch 23 Second discharging switch 24 Second voltage sensor 25 Second current sensor 26 Second controller 27 Second communication interface 200 motors 300 vehicle control units 400 communication bus

圖1:用於實施本發明控制方法的電池系統電路方塊圖。 圖2:本發明的流程圖。 圖3:第一電池模組的第一充電開關、第一放電開關以及第二電池模組的第一放電開關導通後的示意圖。 圖4:第二電池模組中的第二充電開關、第二放電關導通後的示意圖。 Figure 1: A block diagram of a battery system circuit used to implement the control method of the present invention. Figure 2: Flow chart of the present invention. Figure 3: A schematic diagram of the first charging switch, the first discharging switch of the first battery module, and the first discharging switch of the second battery module being turned on. Figure 4: A schematic diagram of the second charging switch and the second discharging switch in the second battery module after being turned on.

10 第一電池模組                             11 第一電池 12 第一充電開關                             13 第一放電開關 14 第一電壓感測器                         15 第一電流感測器 16 第一控制器                                 17 第一通訊介面 20 第二電池模組                             21 第二電池 22 第二充電開關                             23 第二放電開關 24 第二電壓感測器                         25 第二電流感測器 26 第二控制器                                 27 第二通訊介面 200 馬達                                           300 車輛控制單元 400 通訊匯流排 10 First battery module 11 First battery 12 First charging switch 13 First discharging switch 14 First voltage sensor 15 First current sensor 16 First controller 17 First communication interface 20 Second battery module 21 Second battery 22 Second charging switch 23 Second discharging switch 24 Second voltage sensor 25 Second current sensor 26 Second controller 27 Second communication interface 200 motors 300 vehicle control units 400 communication bus

Claims (10)

一種電動車輛的電池並聯控制方法,該電動車輛包含一馬達、一第一電池模組及一第二電池模組;該第一電池模組包含串聯的一電池、一第一充電開關與一第一放電開關;該第二電池模組包含串聯的一電池、一第二充電開關與一第二放電開關;該電動車輛的電池並聯控制方法包含: (a) 該第一電池模組及該第二電池模組相互通訊以比較該第一電池模組的輸出電壓值及該第二電池模組的輸出電壓值; (b) 當該第一電池模組的輸出電壓值大於該第二電池模組的輸出電壓值,導通該第一電池模組的該第一充電開關、該第一放電開關與該第二電池模組的該第二放電開關,令該第一電池模組供電給該馬達; (c) 判斷該第二電池模組的放電電流值是否大於一預設電流值; (d) 當該第二電池模組的放電電流大於該預設電流值時,導通該第二電池模組的該第二充電開關,令該第二電池模組搭接該第一電池模組,共同供電給該馬達。 A battery parallel control method for an electric vehicle. The electric vehicle includes a motor, a first battery module and a second battery module; the first battery module includes a battery, a first charging switch, and a second battery connected in series. A discharging switch; the second battery module includes a battery, a second charging switch, and a second discharging switch connected in series; the battery parallel control method of the electric vehicle includes: (a) The first battery module and the second battery module communicate with each other to compare the output voltage value of the first battery module and the output voltage value of the second battery module; (b) When the output voltage value of the first battery module is greater than the output voltage value of the second battery module, the first charging switch, the first discharging switch and the second battery of the first battery module are turned on The second discharge switch of the module enables the first battery module to supply power to the motor; (c) Determine whether the discharge current value of the second battery module is greater than a preset current value; (d) When the discharge current of the second battery module is greater than the preset current value, turn on the second charging switch of the second battery module to make the second battery module overlap the first battery module , To supply power to the motor together. 一種電動車輛的電池並聯控制方法,該電動車輛包含一馬達、一車輛控制單元、一第一電池模組及一第二電池模組;該第一電池模組包含串聯連接的一電池、一第一充電開關與一第一放電開關;該第二電池模組包含串聯的一電池、一第二充電開關與一第二放電開關;該車輛控制單元電連接該第一電池模組及該第二電池模組,接收該第一電池模組的電池資訊及該第二電池模組的電池資訊;該電動車輛的電池並聯控制方法包含: (a) 該車輛控制單元比較該第一電池模組的輸出電壓值及該第二電池模組的輸出電壓值; (b) 當該第一電池模組的輸出電壓值大於該第二電池模組的輸出電壓值,該車輛控制單元導通該第一電池模組的該第一充電開關、該第一放電開關與該第二電池模組的該第二放電開關,令該第一電池模組供電至該馬達; (c) 該車輛控制單元判斷該第二電池模組的放電電流值是否大於一預設電流值; (d) 當該第二電池模組的放電電流大於該預設電流值時,該車輛控制單元導通該第二電池模組的該第二充電開關,令該第二電池模組搭接該第一電池模組,共同供電給該馬達。 A battery parallel control method for an electric vehicle. The electric vehicle includes a motor, a vehicle control unit, a first battery module, and a second battery module; the first battery module includes a battery and a second battery module connected in series. A charging switch and a first discharging switch; the second battery module includes a battery, a second charging switch and a second discharging switch connected in series; the vehicle control unit is electrically connected to the first battery module and the second battery module The battery module receives the battery information of the first battery module and the battery information of the second battery module; the parallel control method of the battery of the electric vehicle includes: (a) The vehicle control unit compares the output voltage value of the first battery module with the output voltage value of the second battery module; (b) When the output voltage value of the first battery module is greater than the output voltage value of the second battery module, the vehicle control unit turns on the first charging switch, the first discharging switch, and the first battery module of the first battery module The second discharge switch of the second battery module enables the first battery module to supply power to the motor; (c) The vehicle control unit determines whether the discharge current value of the second battery module is greater than a preset current value; (d) When the discharge current of the second battery module is greater than the preset current value, the vehicle control unit turns on the second charging switch of the second battery module to make the second battery module overlap the first battery module A battery module to supply power to the motor together. 如請求項1或2所述電動車輛的電池並聯控制方法,進一步包含: 判斷該第二電池模組的充電電流是否大於一預設安全電流值,當該第二電池模組的充電電流高於該預設安全電流值時,中斷該第二電池模組的該第二充電開關。 The battery parallel control method of an electric vehicle according to claim 1 or 2, further comprising: It is determined whether the charging current of the second battery module is greater than a preset safe current value, and when the charging current of the second battery module is higher than the preset safe current value, the second battery module is interrupted. Charging switch. 如請求項1或2所述電動車輛的電池並聯控制方法,其中: 該第一電池模組包含一第一控制器,該第一控制器連接該第一充電開關及該第一放電開關; 該第二電池模組包含一第二控制器,該第二控制器連接該第二充電開關及該第二放電開關; 該第一控制器與該第二控制器透過一通訊匯流排相互連接。 The battery parallel control method of an electric vehicle according to claim 1 or 2, wherein: The first battery module includes a first controller connected to the first charging switch and the first discharging switch; The second battery module includes a second controller connected to the second charging switch and the second discharging switch; The first controller and the second controller are connected to each other through a communication bus. 如請求項4所述電動車輛的電池並聯控制方法,該第一充電開關、該第一放電開關、該第二充電開關與該第二放電開關為金氧半場效電晶體(MOSFET)。According to the battery parallel control method for an electric vehicle according to claim 4, the first charging switch, the first discharging switch, the second charging switch, and the second discharging switch are MOSFETs. 如請求項5所述電動車輛的電池並聯控制方法,其中,該預設電流值根據該第二充電開關的寄生二極體所能承受的最大電流值而制定。The battery parallel control method for an electric vehicle according to claim 5, wherein the preset current value is determined according to the maximum current value that the parasitic diode of the second charging switch can withstand. 如請求項1或2所述電動車輛的電池並聯控制方法,其中,在步驟(a)中,該第一電池模組的輸出電壓值由設在該第一電池模組內的一第一電壓感測器測得;該第二電池模組的輸出電壓值由設在該第二電池模組內的一第二電壓感測器測得。The battery parallel control method of an electric vehicle according to claim 1 or 2, wherein, in step (a), the output voltage value of the first battery module is determined by a first voltage set in the first battery module The output voltage value of the second battery module is measured by a second voltage sensor provided in the second battery module. 如請求項1或2所述電動車輛的電池並聯控制方法,其中,在步驟(c)中,該第二電池模組的放電電流值由設在該第二電池模組內的一第二電流感測器測得。The battery parallel control method of an electric vehicle according to claim 1 or 2, wherein, in step (c), the discharge current value of the second battery module is determined by a second current set in the second battery module Measured by the sensor. 如請求項1所述電動車輛的電池並聯控制方法,其中,在步驟(a)中,該第一電池模組及該第二電池模組通過一控制器區域網路(Controller Area Network)協定相互通訊。According to claim 1, the battery parallel control method of an electric vehicle, wherein, in step (a), the first battery module and the second battery module communicate with each other through a controller area network (Controller Area Network) agreement communication. 如請求項2所述電動車輛的電池並聯控制方法,其中,在步驟(a)中,該車輛控制單元通過一控制器區域網路(Controller Area Network)協定取得該第一電池模組的輸出電壓值及該第二電池模組的輸出電壓值。The battery parallel control method of an electric vehicle according to claim 2, wherein, in step (a), the vehicle control unit obtains the output voltage of the first battery module through a Controller Area Network protocol Value and the output voltage value of the second battery module.
TW108142094A 2019-11-20 2019-11-20 Battery parallel control method for electric vehicle TWI739214B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108142094A TWI739214B (en) 2019-11-20 2019-11-20 Battery parallel control method for electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108142094A TWI739214B (en) 2019-11-20 2019-11-20 Battery parallel control method for electric vehicle

Publications (2)

Publication Number Publication Date
TW202121794A TW202121794A (en) 2021-06-01
TWI739214B true TWI739214B (en) 2021-09-11

Family

ID=77516518

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108142094A TWI739214B (en) 2019-11-20 2019-11-20 Battery parallel control method for electric vehicle

Country Status (1)

Country Link
TW (1) TWI739214B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201402369A (en) * 2012-07-11 2014-01-16 Kwang Yang Motor Co Parallel-connection battery control system for electric vehicle
CN107128187A (en) * 2017-04-12 2017-09-05 宁德时代新能源科技股份有限公司 Power supply system, electric drive device, pure electric vehicle and working method thereof
CN107662563A (en) * 2016-07-29 2018-02-06 福特环球技术公司 The vehicle-mounted electrical system for including converter and high capacity consumer of motor vehicles
CN110014880A (en) * 2017-12-31 2019-07-16 张朝辉 A kind of quick charged batteries of electric automobile group electrical architecture
WO2019145777A1 (en) * 2018-01-25 2019-08-01 H55 Sa Electrical powering or drive system for a motor in an electrically driven aircraft

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201402369A (en) * 2012-07-11 2014-01-16 Kwang Yang Motor Co Parallel-connection battery control system for electric vehicle
CN107662563A (en) * 2016-07-29 2018-02-06 福特环球技术公司 The vehicle-mounted electrical system for including converter and high capacity consumer of motor vehicles
CN107128187A (en) * 2017-04-12 2017-09-05 宁德时代新能源科技股份有限公司 Power supply system, electric drive device, pure electric vehicle and working method thereof
CN110014880A (en) * 2017-12-31 2019-07-16 张朝辉 A kind of quick charged batteries of electric automobile group electrical architecture
WO2019145777A1 (en) * 2018-01-25 2019-08-01 H55 Sa Electrical powering or drive system for a motor in an electrically driven aircraft

Also Published As

Publication number Publication date
TW202121794A (en) 2021-06-01

Similar Documents

Publication Publication Date Title
JP6647912B2 (en) Vehicle power control method and system for jump start
JP5993450B2 (en) Battery module
TWI594540B (en) Power storage system and power source system
US11958409B2 (en) Vehicle and method of notifying charging information of vehicle
EP3922503B1 (en) Load access detection method, switch circuit and battery management system
KR102478091B1 (en) Battery charge controlling system and method for vehicle
CN110843530B (en) Multi-module intelligent driving system of large and medium power electric vehicle and large and medium power electric vehicle thereof
KR20090042356A (en) Sequence control method of fuel cell-super capacitor hybrid electric vehicle
KR20120005747A (en) System and method of recharge for hybrid vehicle
WO2013129231A1 (en) Power supply apparatus
CN110816302A (en) Charging control method for multi-module intelligent driving system of large and medium power electric vehicle
TW201403994A (en) Multi-stage battery module charging method and device thereof
JP2012213290A (en) Auxiliary machinery battery charger
CN106059002A (en) Electric vehicle, power supply system and charge and discharge method
KR20150121639A (en) Controlling circuit for Hybrid Electric Vehicle and Controlling method thereof
WO2015017896A1 (en) Battery balancing system and method
TWI739214B (en) Battery parallel control method for electric vehicle
CN105706323A (en) Voltage supply system and method for deactivating operation of dc-dc voltage converter
JP6668210B2 (en) Power supply control device and power supply system
CN112848969A (en) Battery parallel control method for electric vehicle
JP6430100B2 (en) Excavator
CN112271915B (en) Pre-charging and discharging method of electric drive controller and electric vehicle
KR102561515B1 (en) Charging apparatus and method based on battery-charging start-current control
KR20190080522A (en) Power relay assembly driving apparatus and method for electric vehicle
JP7155056B2 (en) vehicle charging system