TWI738358B - Method for preparing xylo-oligosaccharide - Google Patents

Method for preparing xylo-oligosaccharide Download PDF

Info

Publication number
TWI738358B
TWI738358B TW109117386A TW109117386A TWI738358B TW I738358 B TWI738358 B TW I738358B TW 109117386 A TW109117386 A TW 109117386A TW 109117386 A TW109117386 A TW 109117386A TW I738358 B TWI738358 B TW I738358B
Authority
TW
Taiwan
Prior art keywords
pineapple peel
peel residue
xylo
reaction
oligosaccharides
Prior art date
Application number
TW109117386A
Other languages
Chinese (zh)
Other versions
TW202144582A (en
Inventor
李文乾
陳明正
Original Assignee
國立中正大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立中正大學 filed Critical 國立中正大學
Priority to TW109117386A priority Critical patent/TWI738358B/en
Application granted granted Critical
Publication of TWI738358B publication Critical patent/TWI738358B/en
Publication of TW202144582A publication Critical patent/TW202144582A/en

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本發明木寡糖的製備方法,包含:(a)將溶劑加至鳳梨皮渣以獲得 鳳梨皮渣液體混合物並進行水熱反應,得到水熱反應後的鳳梨皮渣液體混合物;(b)將所述水熱反應後的鳳梨皮渣液體混合物於酸性環境下進行去支鏈反應,得到去支鏈反應後的鳳梨皮渣液體混合物;(c)將內切型聚木糖酶添加至所述去支鏈反應後的鳳梨皮渣液體混合物,並進行酵素反應,得到木寡糖。本發明另外提供包含SEQ ID NO:5或SEQ ID NO:7所示的胺基酸序列之蛋白質的組成物,其具有內切型聚木糖酶活性。本發明的木寡糖製備方法可獲得高產率木寡糖、降低鳳梨皮農業廢棄物,進而降低環境污染。 The preparation method of xylo-oligosaccharides of the present invention comprises: (a) adding a solvent to pineapple peel residue to obtain The pineapple peel residue liquid mixture is subjected to a hydrothermal reaction to obtain a hydrothermally reacted pineapple peel residue liquid mixture; (b) the pineapple peel residue liquid mixture after the hydrothermal reaction is subjected to a debranching reaction in an acidic environment to obtain The liquid mixture of pineapple peel residue after debranching reaction; (c) adding endo-xylanase to the liquid mixture of pineapple peel residue after debranching reaction, and performing an enzyme reaction to obtain xylo-oligosaccharides. The present invention also provides a protein composition comprising the amino acid sequence shown in SEQ ID NO: 5 or SEQ ID NO: 7, which has endo-xylanase activity. The preparation method of xylo-oligosaccharides of the present invention can obtain high-yield xylo-oligosaccharides, reduce pineapple peel agricultural waste, and further reduce environmental pollution.

Description

製備木寡糖的方法 Method for preparing xylo-oligosaccharide

本發明涉及一種寡糖的製備方法,特別是木寡糖的製備方法。另涉及一種蛋白質組成物,特別是具有內切型聚木糖酶酵素活性的蛋白質組成物。 The invention relates to a method for preparing oligosaccharides, in particular to a method for preparing xylo-oligosaccharides. It also relates to a protein composition, especially a protein composition with endo-xylanase enzyme activity.

木寡糖(xylooligosaccharide,XOS)又稱為木聚寡糖、低聚木糖,是指由2至7個木糖(xylose)以糖苷鍵連接而成之寡糖的總稱。木寡糖與果寡糖、半乳糖寡糖、異麥芽寡糖等同屬於低消化性寡糖,人體雖無法代謝,卻具有多種機能特性,能促進腸內比菲德氏菌(Bifidus,又稱雙歧桿菌或雙叉桿菌)增生、不易引起齲齒。由於能促進比菲德氏菌、乳酸桿菌的增生而屬於益菌生(prebiotics)。木寡糖對於人體除了改善腸胃道功能外,還能減少大腸癌的風險、顯著改善第II型糖尿病、抑制腫瘤生長。 Xylooligosaccharide (XOS), also known as xylo-oligosaccharides and xylo-oligosaccharides, refers to the general term for oligosaccharides composed of 2 to 7 xyloses connected by glycosidic bonds. Xylooligosaccharides are equivalent to low-digestible oligosaccharides with fructo-oligosaccharides, galactose-oligosaccharides, and isomalto-oligosaccharides. Although human Called bifidobacteria or bifidobacteria) hyperplasia, not easy to cause dental caries. Because it can promote the proliferation of Bifidella and Lactobacillus, it belongs to prebiotics. In addition to improving the function of the gastrointestinal tract, xylo-oligosaccharides can also reduce the risk of colorectal cancer, significantly improve type II diabetes, and inhibit tumor growth.

木寡糖因具有耐酸鹼、耐溫的特性,而常被添加至食品中幫助腸胃道益生菌活化及生長。因此,市場對於木寡糖的市場需求與日俱增,木寡糖的市場價格大約一公斤22-50美金,其價格與純度相關。一般對於食品相關應用,木寡糖最佳的聚合度範圍是2-4。木寡糖除了對人體的健康有幫助外,對於動物也有類似的功能,而能作為飼料添加劑。 Xylooligosaccharides are often added to foods to help activate and grow gastrointestinal probiotics due to their acid and alkali resistance and temperature resistance. Therefore, the market demand for xylo-oligosaccharides is increasing day by day. The market price of xylo-oligosaccharides is about 22-50 US dollars per kilogram, and its price is related to purity. Generally, for food-related applications, the optimal polymerization degree range for xylo-oligosaccharides is 2-4. In addition to being helpful to human health, xylo-oligosaccharides also have similar functions to animals and can be used as feed additives.

木寡糖是與β1-4鏈連接的木糖分子鏈,可以通過酵素法、化學方法或兩者的組合水解聚木糖來生產。聚木糖也稱木聚糖,是一種雜聚物,主要由D-木糖通過連接β-1,4-木吡喃糖殘基組成。聚木糖的木糖主鏈上常有阿拉 伯呋喃糖基和葡糖醛酸的支鏈,而脫除大部分的阿拉伯糖單元後的聚木糖酵素水解產物一般稱木寡糖。商業上的聚木糖植物來源一般常以農業廢棄物如玉米穗軸(也稱玉米芯)為主。 Xylooligosaccharides are molecular chains of xylose linked to β1-4 chains, which can be produced by hydrolyzing polyxylose by enzyme methods, chemical methods, or a combination of both. Xylose, also known as xylan, is a kind of heteropolymer, mainly composed of D-xylose connected by β-1,4-xylopyranose residues. There is always Allah on the xylose main chain of Xylose The branched chain of primary furanosyl and glucuronic acid, and the xylanase hydrolysate after most of the arabinose units are removed is generally called xylo-oligosaccharide. Commercial plant sources of xylose are generally based on agricultural wastes such as corn cobs (also called corn cobs).

而鳳梨皮為台灣大宗農業廢棄物,隨著近年鳳梨酥盛行,鳳梨皮廢棄物逐年增加,導致環境汙染問題日益嚴重。因此若能自鳳梨皮農業廢棄物中製造木寡糖,將能降低環境污染問題,提升鳳梨附加價值。 Pineapple peel is a large agricultural waste in Taiwan. With the popularity of pineapple cakes in recent years, pineapple peel waste has been increasing year by year, resulting in an increasingly serious environmental pollution problem. Therefore, if xylo-oligosaccharides can be produced from pineapple peel agricultural waste, it will reduce environmental pollution and increase the added value of pineapple.

現有以鳳梨皮為原料製造木寡糖的研究文獻非常少,僅有的文獻皆用鹼處理搭配酵素反應作為生產木寡糖的方法。其中,張博堯的碩士論文(2018)研究顯示,1g的鳳梨皮渣粉末含有35.55%的半纖維素,經鹼處理及酒精沉澱法可得到0.2996g的半纖維素,也就是說鳳梨皮渣經由鹼處理和酒精沉澱法可以萃取原料半纖維素中的84.3%,但其中聚木糖含量比例低。此半纖維素中不純物佔50.87%,因其含有抑制內切聚木糖酶水解的成分,導致木寡糖生成量不理想,每20g半纖維素只能得到1.02g的木寡糖(木二糖和木三糖),換算單位乾重原料鳳梨皮渣只能得到0.018g木寡糖(木二糖和木三糖)(1.8重量%)。若計算聚合度為2至10的木寡糖,單位乾重原料鳳梨皮渣最多能得到0.067g木寡糖(6.7重量%)(張博堯,2018)。可見現有技術之自鳳梨皮生產木寡糖的方法其產量均偏低,且須使用高濃度鹼,對環境不友善。因此提升自鳳梨皮製備木寡糖的產率、降低高濃度鹼的使用為一待解決之重要課題。 There are very few research literatures on the production of xylo-oligosaccharides using pineapple peel as a raw material. The only literature uses alkali treatment and enzyme reaction as a method to produce xylo-oligosaccharides. Among them, Zhang Boyao’s master's thesis (2018) showed that 1g of pineapple peel powder contains 35.55% of hemicellulose. After alkali treatment and alcohol precipitation, 0.2996g of hemicellulose can be obtained, which means that pineapple peel Treatment and alcohol precipitation can extract 84.3% of the raw material hemicellulose, but the content of xylose is low. Impurities in this hemicellulose accounted for 50.87%. Because it contains components that inhibit endoxylase hydrolysis, the production of xylo-oligosaccharides is not ideal. Only 1.02g of xylo-oligosaccharides can be obtained per 20g of hemicellulose. Sugar and xylotriose), the raw material pineapple peel residue can only get 0.018g of xylo-oligosaccharides (xylobiose and xylotriose) (1.8% by weight) in terms of unit dry weight. If the xylo-oligosaccharides with a degree of polymerization of 2 to 10 are calculated, the raw material pineapple peel residue per dry weight can obtain 0.067g xylo-oligosaccharides (6.7% by weight) at most (Zhang Boyao, 2018). It can be seen that the prior art methods for producing xylo-oligosaccharides from pineapple peel have low yields and require the use of high-concentration alkali, which is not friendly to the environment. Therefore, improving the yield of xylo-oligosaccharides prepared from pineapple peel and reducing the use of high-concentration alkali are important issues to be solved.

有鑑於現有技術自鳳梨皮中製備木寡糖之產率偏低、需使用高濃度鹼,本發明的目的在於有效提升木寡糖之產量、且降低高濃度鹼的使用。 In view of the low yield of xylo-oligosaccharides prepared from pineapple peel in the prior art and the need to use high-concentration alkali, the purpose of the present invention is to effectively increase the yield of xylo-oligosaccharides and reduce the use of high-concentration alkali.

為達上述發明目的,本發明提供一種木寡糖之製備方法,其包含: (a)將溶劑加至鳳梨皮渣以獲得鳳梨皮渣液體混合物,其中所述鳳梨皮渣與溶劑之固液比為1:1至1:30(w:v),並於115℃至160℃下進行水熱反應,得到水熱反應後的鳳梨皮渣液體混合物;(b)將所述水熱反應後的鳳梨皮渣液體混合物於30℃至80℃、酸性環境下進行去支鏈反應,得到去支鏈反應後的鳳梨皮渣液體混合物;(c)將內切型聚木糖酶添加至所述去支鏈反應後的鳳梨皮渣液體混合物,進行酵素反應,得到木寡糖。 In order to achieve the above-mentioned purpose of the invention, the present invention provides a method for preparing xylo-oligosaccharides, which comprises: (a) Add a solvent to the pineapple peel residue to obtain a liquid mixture of pineapple peel residue, wherein the solid-liquid ratio of the pineapple peel residue to the solvent is 1:1 to 1:30 (w:v), and the temperature is between 115°C and 160°C. Perform a hydrothermal reaction at ℃ to obtain a liquid mixture of pineapple peel residue after hydrothermal reaction; (b) Debranching reaction of the pineapple peel residue liquid mixture after the hydrothermal reaction is carried out at 30°C to 80°C in an acid environment To obtain a liquid mixture of pineapple peel residues after debranching reaction; (c) adding endo-xylanase to the liquid mixture of pineapple peel residues after debranching reaction, and perform an enzyme reaction to obtain xylo-oligosaccharides.

本發明藉由控制特定之水熱反應、去支鏈反應、酵素反應之參數以提高木寡糖產率。因此本發明提供一種相較於現有技術可得到較高產量的自鳳梨皮製備木寡糖的方法,且本發明的木寡糖製備方法可降低高濃度鹼的使用,對環境較為友善。 The invention improves the yield of xylo-oligosaccharides by controlling the parameters of specific hydrothermal reaction, debranching reaction, and enzyme reaction. Therefore, the present invention provides a method for preparing xylo-oligosaccharides from pineapple peel which can obtain a higher yield than the prior art, and the method for preparing xylo-oligosaccharides of the present invention can reduce the use of high-concentration alkali and is more environmentally friendly.

本發明所稱之木寡糖包括木二糖、木三糖、聚合度四以上之木寡糖等,而利用本發明之方法所獲得的木寡糖溶液中尚可包含少量木糖及其他單糖。 The xylo-oligosaccharides referred to in the present invention include xylobiose, xylotriose, xylo-oligosaccharides with a degree of polymerization of four or more, and the xylo-oligosaccharide solution obtained by the method of the present invention may still contain a small amount of xylose and other monomers. sugar.

較佳地,進一步對所述木寡糖進行純化步驟,以獲得純化後的木寡糖。所述純化步驟包括但不限於利用活性碳、陰離子交換樹脂及/或陽離子交換樹脂進行吸附與純化。 Preferably, a purification step is further performed on the xylo-oligosaccharides to obtain purified xylo-oligosaccharides. The purification step includes, but is not limited to, adsorption and purification using activated carbon, anion exchange resin and/or cation exchange resin.

較佳地,所述步驟(a)包括:將溶劑加至鳳梨皮渣以獲得鳳梨皮渣液體混合物,其中所述鳳梨皮渣與溶劑之固液比為1:1至1:30(w:v),並於115℃至160℃下進行水熱反應,再分離以去除鳳梨皮渣,得到水熱反應後的鳳梨皮渣液體混合物。 Preferably, the step (a) includes: adding a solvent to the pineapple peel residue to obtain a liquid mixture of the pineapple peel residue, wherein the solid-liquid ratio of the pineapple peel residue to the solvent is 1:1 to 1:30 (w: v), and conduct a hydrothermal reaction at 115°C to 160°C, and then separate to remove the pineapple peel residue to obtain a liquid mixture of pineapple peel residue after the hydrothermal reaction.

較佳地,所述步驟(b)包括:將所述水熱反應後的鳳梨皮渣液體混合物於30℃至80℃、酸性環境下進行去支鏈反應,再分離以去除鳳梨皮渣,得到去支鏈反應後的鳳梨皮渣液體混合物。 Preferably, the step (b) includes: debranching the pineapple peel residue liquid mixture after the hydrothermal reaction at 30°C to 80°C in an acidic environment, and then separating to remove the pineapple peel residue to obtain Liquid mixture of pineapple peel residue after debranching reaction.

較佳地,所述步驟(c)包括:將內切型聚木糖酶添加至所述去支鏈反應後的鳳梨皮渣液體混合物,進行酵素反應,再分離以去除鳳梨皮渣,得到木寡糖。 Preferably, the step (c) includes: adding endo-xylanase to the liquid mixture of pineapple peel residue after the debranching reaction, performing an enzyme reaction, and then separating to remove the pineapple peel residue to obtain wood Oligosaccharides.

較佳地,所述分離步驟包括但不限於濾紙過濾分離、離心分離。 Preferably, the separation step includes, but is not limited to, filter paper filtration separation and centrifugal separation.

較佳地,步驟(a)中進行水熱反應之鳳梨皮渣與溶劑之固液比為1:5至1:20(w:v),更佳地,步驟(a)中進行水熱反應之鳳梨皮渣與溶劑之固液比為1:7至1:15(w:v),再更佳地,步驟(a)中進行水熱反應之鳳梨皮渣與溶劑之固液比為1:10(w:v)。在此固液比下,水熱處理法有較佳之反應效率,而能得到較高的木寡糖產量。較佳地,所述溶劑為水。 Preferably, the solid-liquid ratio of the pineapple peel residue to the solvent for the hydrothermal reaction in step (a) is 1:5 to 1:20 (w:v), more preferably, the hydrothermal reaction is performed in step (a) The solid-liquid ratio of the pineapple peel residue to the solvent is 1:7 to 1:15 (w:v). More preferably, the solid-liquid ratio of the pineapple peel residue and the solvent for the hydrothermal reaction in step (a) is 1 : 10 (w: v). Under this solid-liquid ratio, the hydrothermal treatment has better reaction efficiency and can obtain higher yield of xylo-oligosaccharides. Preferably, the solvent is water.

較佳地,所述水熱反應是於120℃至140℃下進行,更佳地,所述水熱反應是於125℃下進行。 Preferably, the hydrothermal reaction is carried out at 120°C to 140°C, and more preferably, the hydrothermal reaction is carried out at 125°C.

較佳地,所述水熱反應之時間為0.5至6小時,更佳地,所述水熱反應之反應時間為1至4小時,更佳地,所述水熱反應之反應時間為1.5至3小時。 Preferably, the hydrothermal reaction time is 0.5 to 6 hours, more preferably, the hydrothermal reaction reaction time is 1 to 4 hours, and more preferably, the hydrothermal reaction reaction time is 1.5 to 6 hours. 3 hours.

較佳地,所述水熱反應之壓力為0.2MPa至10MPa,更佳地,所述水熱反應之壓力為0.45MPa。 Preferably, the pressure of the hydrothermal reaction is 0.2 MPa to 10 MPa, and more preferably, the pressure of the hydrothermal reaction is 0.45 MPa.

較佳地,其中步驟(a)中所述鳳梨皮渣液體混合物進一步添加鳳梨皮渣的0.1重量%的至3重量%的酸以促進水熱反應之進行,較佳地,是添加鳳梨皮渣的0.5重量%的至2重量%的酸,更佳地,是添加鳳梨皮渣的1重量%的至1.7重量%的酸。所述酸包括但不限於醋酸、鹽酸、磷酸、草酸等。在一些實施例中可添加鳳梨皮渣的1.5重量%的醋酸,以促進反應之進行。 Preferably, the liquid mixture of pineapple peel residue in step (a) further adds 0.1% to 3% by weight of the acid of the pineapple peel residue to promote the progress of the hydrothermal reaction. Preferably, the pineapple peel residue is added 0.5% by weight to 2% by weight of the acid, more preferably 1% by weight to 1.7% by weight of the pineapple peel. The acid includes but is not limited to acetic acid, hydrochloric acid, phosphoric acid, oxalic acid and the like. In some embodiments, 1.5% by weight of acetic acid of the pineapple peel residue can be added to promote the reaction.

較佳地,其中步驟(b)中所述酸性環境是pH 0.5至pH 5.0,更佳地,所述酸性環境是pH 1.0至pH 3.0。 Preferably, the acidic environment in step (b) is pH 0.5 to pH 5.0, and more preferably, the acidic environment is pH 1.0 to pH 3.0.

較佳地,所述步驟(b)之去支鏈反應是於55℃至80℃下進行,更佳地,所述去支鏈反應是於50℃至75℃下進行,再更佳地,所述去支鏈反應是於70℃下進行。 Preferably, the debranching reaction in step (b) is carried out at 55°C to 80°C, more preferably, the debranching reaction is carried out at 50°C to 75°C, and even more preferably, The debranching reaction is carried out at 70°C.

較佳地,所述去支鏈反應步驟之時間為1至5小時,更佳地,所述去支鏈反應之時間為1.5至3.5小時,再更佳地,所述去支鏈反應時間為2小時。 Preferably, the time for the debranching reaction step is 1 to 5 hours, more preferably, the time for the debranching reaction is 1.5 to 3.5 hours, and even more preferably, the debranching reaction time is 2 hours.

較佳地,所述酵素反應是在內切型聚木糖酶之濃度為50U/L至50000U/L下進行。 Preferably, the enzyme reaction is carried out at a concentration of endo-xylanase from 50 U/L to 50,000 U/L.

較佳地,所述酵素反應是於pH 4.0至pH 11.0下進行,更佳地,所述酵素反應是於pH 8.0下進行。 Preferably, the enzyme reaction is carried out at pH 4.0 to pH 11.0, and more preferably, the enzyme reaction is carried out at pH 8.0.

較佳地,所述酵素反應是於30℃至80℃下進行,更佳地,所述酵素反應是於55℃至65℃下進行。 Preferably, the enzyme reaction is carried out at 30°C to 80°C, and more preferably, the enzyme reaction is carried out at 55°C to 65°C.

較佳地,所述酵素反應之時間為20小時至30小時,更佳地,所述酵素反應之時間為22小時至26小時。 Preferably, the reaction time of the enzyme is 20 hours to 30 hours, and more preferably, the reaction time of the enzyme is 22 hours to 26 hours.

較佳地,所述內切型聚木糖酶是Bacillus halodurans BCRC 910501的內切型聚木糖酶Xyn45及Xyn23的其中之一,或兩者組合的基因融合蛋白質。在一實施例中是使用來自重組表現系統之包涵體的蛋白質組成物,其包含Bacillus halodurans BCRC 910501的內切型聚木糖酶Xyn45與Xyn23的融合蛋白質,如SEQ ID NO:1所示的胺基酸序列。較佳地,所述內切型聚木糖酶係由SEQ ID NO:1所示的胺基酸序列組成。 Preferably, the endo-xylanase is one of the endo-xylanases Xyn45 and Xyn23 of Bacillus halodurans BCRC 910501, or a gene fusion protein of a combination of the two. In one embodiment, a protein composition of inclusion bodies from a recombinant expression system is used, which includes the fusion protein of the endo-xylanase Xyn45 and Xyn23 of Bacillus halodurans BCRC 910501, such as the amine shown in SEQ ID NO:1 Base acid sequence. Preferably, the endo-xylanase system is composed of the amino acid sequence shown in SEQ ID NO:1.

較佳地,所述內切型聚木糖酶為Bacillus halodurans BCRC 910501的內切型聚木糖酶Xyn45與Xyn23的融合蛋白質,其是由SEQ ID NO:2所示的核苷酸序列編碼,經大腸桿菌表現後留在胞內。較佳地,所述內切型聚 木糖酶為大腸桿菌表現後在包涵體的蛋白質。較佳地,所述大腸桿菌為E.coli BL21(DE3)。 Preferably, the endo- xylanase is a fusion protein of the endo-xylanase Xyn45 and Xyn23 of Bacillus halodurans BCRC 910501, which is encoded by the nucleotide sequence shown in SEQ ID NO: 2, After being expressed by E. coli, it stays inside the cell. Preferably, the endo-xylanase is a protein expressed by E. coli in the inclusion body. Preferably, the E. coli is E. coli BL21 (DE3).

較佳地,所述內切型聚木糖酶來源是Bacillus halodurans BCRC 910501、Bacillus halodurans C-125或Bacillus halodurans其他菌株的內切型聚木糖酶基因經基因重組或DNA混合(DNA shuffling)方式在大腸桿菌表現後,分泌到胞外或留在胞內具有內切型聚木糖酶活性的蛋白質。在一實施例中是使用來自重組表現系統之胞外蛋白質溶液,其包含Bacillus halodurans BCRC 910501與Bacillus halodurans C-125的內切型聚木糖酶Xyn45的融合蛋白質,如SEQ ID NO:5所示的胺基酸序列。 Preferably, the source of the endo-xylanase is Bacillus halodurans BCRC 910501, Bacillus halodurans C-125 or other strains of Bacillus halodurans . The endo-xylanase gene is genetically recombined or DNA shuffling. After the expression of E. coli, it is secreted to the outside of the cell or remains inside the cell with endo-xylanase activity protein. In one embodiment, an extracellular protein solution from a recombinant expression system is used, which contains a fusion protein of Bacillus halodurans BCRC 910501 and Bacillus halodurans C-125 endo-xylanase Xyn45, as shown in SEQ ID NO: 5 The amino acid sequence.

本發明之木寡糖的製備方法相較於現有技術有較佳之木寡糖產率,並能減少高濃度酸的使用、降低農業廢棄物-鳳梨皮造成之環境汙染。 Compared with the prior art, the xylo-oligosaccharide preparation method of the present invention has a better yield of xylo-oligosaccharides, and can reduce the use of high-concentration acids and reduce environmental pollution caused by agricultural waste-pineapple peel.

為了增進木寡糖之產量,本發明的另一目的在於提供一種內切型聚木糖酶酵素活性較高的蛋白質組成物,其包含具有如SEQ ID NO:5所示的胺基酸序列的蛋白質,且所述蛋白質是來自重組表現系統之胞外蛋白質溶液。較佳地,所述蛋白質組成物之每毫克蛋白質的內切型聚木糖酶酵素活性為80U至200U。更佳地,每毫克蛋白質的內切型聚木糖酶酵素活性為100U至190U。 In order to increase the production of xylo-oligosaccharides, another object of the present invention is to provide a protein composition with higher endo-xylanase enzyme activity, which comprises an amino acid sequence as shown in SEQ ID NO: 5 Protein, and the protein is an extracellular protein solution from a recombinant expression system. Preferably, the endo-xylanase enzyme activity per milligram of protein of the protein composition is 80 U to 200 U. More preferably, the endo-xylanase enzyme activity per milligram of protein is 100 U to 190 U.

較佳地,所述蛋白質組成物,其包含由SEQ ID NO:5的胺基酸序列所組成的蛋白質。 Preferably, the protein composition comprises a protein composed of the amino acid sequence of SEQ ID NO:5.

較佳地,所述蛋白質組成物包含由SEQ ID NO:6所示的核苷酸序列編碼、經大腸桿菌表現後分泌至胞外的蛋白質。較佳地,所述大腸桿菌為E.coli BL21(DE3)。 Preferably, the protein composition comprises a protein encoded by the nucleotide sequence shown in SEQ ID NO: 6 and secreted to the outside of the cell after being expressed by E. coli. Preferably, the E. coli is E. coli BL21 (DE3).

為了增進木寡糖之產量,本發明的另一目的在於提供一種內切型聚木糖酶酵素活性較高的蛋白質組成物,其包含具有如SEQ ID NO:7所示的胺基酸序列的蛋白質,且所述蛋白質是來自重組表現系統之胞外蛋白質溶液。 較佳地,所述蛋白質組成物之每毫克蛋白質的內切型聚木糖酶酵素活性為80U至250U。更佳地,每毫克蛋白質的內切型聚木糖酶酵素活性為100U/mg至230U/mg。 In order to increase the production of xylo-oligosaccharides, another object of the present invention is to provide a protein composition with higher endo-xylanase enzyme activity, which comprises an amino acid sequence as shown in SEQ ID NO: 7 Protein, and the protein is an extracellular protein solution from a recombinant expression system. Preferably, the endo-xylanase enzyme activity per milligram of protein of the protein composition is 80 U to 250 U. More preferably, the endo-xylanase enzyme activity per milligram of protein is 100 U/mg to 230 U/mg.

較佳地,所述蛋白質組成物,其包含由SEQ ID NO:7的胺基酸序列所組成的蛋白質。 Preferably, the protein composition comprises a protein composed of the amino acid sequence of SEQ ID NO:7.

較佳地,所述蛋白質組成物包含由SEQ ID NO:8所示的核苷酸序列編碼、經大腸桿菌表現後分泌至胞外的蛋白質。較佳地,所述大腸桿菌為E.coli BL21(DE3)。 Preferably, the protein composition comprises a protein encoded by the nucleotide sequence shown in SEQ ID NO: 8 and secreted to the outside of the cell after being expressed by E. coli. Preferably, the E. coli is E. coli BL21 (DE3).

本發明提供之蛋白質組成物具有優良的內切型聚木糖酶酵素活性,較已知的Bacillus halodurans BCRC 910501的內切型聚木糖酶Xyn45胞外蛋白質組成物具有更高的內切型聚木糖酶酵素活性,適合用於生產木寡糖。 The protein composition provided by the present invention has excellent endo-xylanase enzyme activity, and has higher endo-xylanase Xyn45 extracellular protein composition than the known Bacillus halodurans BCRC 910501. Xylase enzyme activity, suitable for the production of xylo-oligosaccharides.

S1:步驟 S1: Step

S2:步驟 S2: Step

S3:步驟 S3: steps

圖1為本發明之木寡糖製備方法之流程圖。 Figure 1 is a flow chart of the method for preparing xylo-oligosaccharides of the present invention.

以下,將藉由數種實施例說明本發明之木寡糖製備方法的具體實施方式,熟習此技藝者可經由本說明書之內容輕易地了解本創作所能達成之優點與功效,並且於不悖離本創作之精神下進行各種修飾與變更,以施行或應用本發明之內容。 Hereinafter, several examples will be used to illustrate the specific implementation of the xylo-oligosaccharide preparation method of the present invention. Those who are familiar with this technique can easily understand the advantages and effects that can be achieved by this creation through the content of this manual. Various modifications and changes are made to implement or apply the content of the present invention under the spirit of this creation.

實施例1 Example 1

首先,將鳳梨皮渣加水於熱壓釜(autoclave)進行如圖1所示S1步驟之水熱處理。具體而言,取50g鳳梨皮渣加溶劑-水500毫升(mL),亦即鳳梨皮渣與水的比例(固液比w/v)為1:10混合,再添加0.714毫升的醋酸(密度約1.05 g/mL),其添加量約為鳳梨皮渣的1.5重量%,於熱壓釜中以0.45MPa的壓力下、溫度設定在125℃下(實際溫度在118℃~143℃間變化)浸泡反應二小時,得到水熱反應(liquid hot water pretreatment)後的鳳梨皮渣液體混合物。 First, add water to the pineapple peel residue in an autoclave to perform the hydrothermal treatment in step S1 as shown in FIG. 1. Specifically, take 50g of pineapple peel and 500 milliliters (mL) of solvent-water, that is, the ratio of pineapple peel to water (solid-liquid ratio w/v) is 1:10 and mix, and then add 0.714 ml of acetic acid (density About 1.05 g/mL), the added amount is about 1.5% by weight of the pineapple peel slag, soaked in the autoclave at a pressure of 0.45MPa and the temperature is set at 125°C (the actual temperature varies between 118°C and 143°C) After two hours, a liquid mixture of pineapple peel residue after liquid hot water pretreatment was obtained.

前述之鳳梨皮渣呈粉末形式,具體而言,是自嘉義縣民雄鄉正興鳳梨批發場收集金鑽鳳梨皮,將鳳梨皮經榨汁機分離鳳梨汁與鳳梨皮渣,再以自來水洗滌鳳梨皮渣,直至洗滌液澄清。接著,將洗滌後的鳳梨皮渣放至50℃烤箱烘乾至恆重。最後將烘乾後的鳳梨皮渣經由粉碎機碎成粉末,並以40目(mesh 40)篩網進行過篩得到粉末形式的鳳梨皮渣,亦即鳳梨皮渣的尺寸為380微米以下。 The aforementioned pineapple skin residue is in powder form. Specifically, the golden diamond pineapple skin is collected from the Zhengxing Pineapple Wholesale Market in Minxiong Township, Chiayi County. The pineapple skin is separated from the pineapple juice and pineapple skin residue by a juicer, and then the pineapple skin is washed with tap water. Slag until the washing liquid is clear. Then, put the washed pineapple peel residue in an oven at 50°C and dry it to a constant weight. Finally, the dried pineapple skin residue is crushed into powder by a pulverizer, and sieved with a 40 mesh (mesh 40) screen to obtain the pineapple skin residue in powder form, that is, the size of the pineapple skin residue is less than 380 microns.

接著,將水熱反應後的鳳梨皮渣液體混合物進行如圖1所示S2步驟之去支鏈反應。詳細來說是將水熱反應後的鳳梨皮渣液體混合物以12N的鹽酸調整pH值至1.0,並於70℃水浴槽、120rpm震盪下反應6小時,以除去支鏈之阿拉伯糖,得到去支鏈反應後的鳳梨皮渣液體混合物。 Then, the liquid mixture of pineapple peel residue after the hydrothermal reaction is subjected to the debranching reaction in step S2 as shown in FIG. 1. In detail, the liquid mixture of pineapple peel residue after hydrothermal reaction was adjusted to pH 1.0 with 12N hydrochloric acid, and reacted for 6 hours in a water bath at 70°C and shaking at 120 rpm to remove the branched arabinose to obtain debranching. Liquid mixture of pineapple peel residue after chain reaction.

再來,將去支鏈反應後的鳳梨皮渣液體混合物進行如圖1所示S3步驟之酵素反應。具體而言,是將去支鏈反應後的鳳梨皮渣液體混合物以5N氫氧化鈉調整pH值至8.0,並加入179mL的內切型聚木糖酶溶液(總活性5000U),使液體混合物的酵素濃度為7800U/L,接著在pH 8.0、60℃、120rpm震盪下進行酵素反應。並另經濾紙過濾分離,詳細來說,是使用TOYO NO.5A濾紙過濾後,再以TOYO NO.5C濾紙過濾,得到木寡糖溶液640mL。 Next, the liquid mixture of pineapple peel residue after debranching reaction is subjected to the enzyme reaction in step S3 as shown in FIG. 1. Specifically, the pineapple peel liquid mixture after debranching reaction was adjusted to pH 8.0 with 5N sodium hydroxide, and 179 mL of endo-xylanase solution (total activity 5000 U) was added to make the liquid mixture The enzyme concentration was 7800U/L, and then the enzyme reaction was carried out at pH 8.0, 60°C, and shaking at 120 rpm. It is separated by filter paper. In detail, it is filtered with TOYO NO.5A filter paper and then filtered with TOYO NO.5C filter paper to obtain 640 mL of xylo-oligosaccharide solution.

前述的內切型聚木酶溶液是利用大腸桿菌大量表現Bacillus halodurans BCRC 910501的內切型聚木糖酶Xyn45的基因。根據中華民國發明專利第I418634號,前述Xyn45酵素由396個胺基酸組成,將其對應的DNA片段插入質體pET-29a(+)(量子生物科技),再放入大腸桿菌BL21(DE3),將構築的基因重組菌接種於PM液態培養基(20g/L甘油、3g/L磷酸氫二銨、7g/L磷酸二 氫鉀、0.8g/L檸檬酸、1g/L七水硫酸鎂、2g/L酵母萃取物、3mL/L微量金屬溶液、pH調至6.8)中、在37℃培養至OD600nm達到0.8至1.0時,加入0.1mM IPTG(異丙基硫代半乳糖苷,Isopropyl β-d-1-thiogalactopyranoside)在25℃下進行誘導培養18小時,使基因重組大腸桿菌表現重組蛋白質。之後將菌液在4℃下以10,000×g離心20分鐘,所得上清液即為胞外蛋白質溶液,內含基因重組之蛋白質Xyn45,為酵素反應所需之內切型聚木糖酶溶液。而酵素活性的定義為每分鐘釋放出1μmole之還原醣為1U。此胞外蛋白質溶液的比活性是75.8U/mg,亦即每毫克蛋白質具有75.8U的內切型聚木糖酶活性。由於聚木糖酶可將聚木糖水解成木寡糖,而部分寡糖及單醣均屬於還原醣,會與3,5-二硝基水楊酸(3,5-Dinitrosalicylic acid,DNS)產生反應,因此使用DNS法來測定還原醣含量。以1%(w/v)beechwood聚木糖(溶解於100mM pH 8.0的磷酸緩衝液)為基質,與胞外蛋白質溶液混合後於60℃反應5分鐘,反應後的產物與DNS試劑混合、於100℃水浴反應7分鐘,以分光光度計測OD540nm的吸光值,代入木糖標準檢量線以定量樣品中之還原醣量,並利用還原醣的增加量換算酵素活性。其中DNS試劑配方如下表1所示:

Figure 109117386-A0305-02-0010-1
The aforementioned endo-xylanase solution uses Escherichia coli to express a large amount of the gene of the endo-xylanase Xyn45 of Bacillus halodurans BCRC 910501. According to the Republic of China Invention Patent No. I418634, the aforementioned Xyn45 enzyme is composed of 396 amino acids. The corresponding DNA fragment is inserted into the plastid pET-29a(+) (Quantum Biotechnology), and then E. coli BL21(DE3) is inserted. , Inoculate the constructed genetically recombinant bacteria in PM liquid medium (20g/L glycerol, 3g/L diammonium hydrogen phosphate, 7g/L potassium dihydrogen phosphate, 0.8g/L citric acid, 1g/L magnesium sulfate heptahydrate, 2g /L yeast extract, 3mL/L trace metal solution, pH adjusted to 6.8), incubate at 37°C until OD 600nm reaches 0.8 to 1.0, add 0.1mM IPTG (isopropyl thiogalactoside, Isopropyl β- d-1-thiogalactopyranoside) was induced and cultured at 25°C for 18 hours to allow the genetically recombinant E. coli to express the recombinant protein. Afterwards, the bacterial solution was centrifuged at 10,000×g for 20 minutes at 4°C, and the supernatant obtained was the extracellular protein solution containing the genetically recombined protein Xyn45, which was the endo-xylanase solution required for the enzyme reaction. The enzyme activity is defined as 1 U of reducing sugar released by 1 μmole per minute. The specific activity of this extracellular protein solution is 75.8 U/mg, that is, 75.8 U endo-xylanase activity per milligram of protein. Since Xylanases can hydrolyze polyxylose into xylo-oligosaccharides, and some oligosaccharides and monosaccharides are reducing sugars, and will interact with 3,5-Dinitrosalicylic acid (DNS) A reaction occurs, so the DNS method is used to determine the reducing sugar content. Take 1% (w/v) beechwood polyxylose (dissolved in 100mM pH 8.0 phosphate buffer) as the matrix, mix with the extracellular protein solution and react at 60°C for 5 minutes. The reacted product is mixed with DNS reagent, React in a water bath at 100°C for 7 minutes, measure the absorbance at OD 540nm with a spectrophotometer, and substitute it into the xylose standard calibration line to quantify the amount of reducing sugar in the sample, and use the increased amount of reducing sugar to convert the enzyme activity. The DNS reagent formula is shown in Table 1 below:
Figure 109117386-A0305-02-0010-1

利用高效能液相層析儀(High Performance Liquid Chromatography,HPLC)進一步分析木寡糖溶液中的木二糖、木三糖及葡萄糖、木糖、阿拉伯糖等其他成分的濃度,使用Aminex HPX-87H管柱(BioRad)300mm×7.8mm、65℃管柱溫度,流動相為流速為0.6mL/min之5mM硫酸,以RI偵測器(Refractive Index Detector)進行檢測。 Use High Performance Liquid Chromatography (HPLC) to further analyze the concentration of xylobiose, xylotriose, glucose, xylose, arabinose and other components in the xylo-oligosaccharide solution, using Aminex HPX-87H The column (BioRad) 300mm×7.8mm, 65°C column temperature, the mobile phase is 5mM sulfuric acid with a flow rate of 0.6mL/min, and the detection is performed with an RI detector (Refractive Index Detector).

S3步驟所得之640mL木寡糖溶液中的木二糖與木三糖總和濃度為12.13g/L。單位鳳梨皮渣乾重的木寡糖(木二糖與木三糖)產率為15.53重量%(其計算方式為酵素水解液中木二糖和木三糖總重/鳳梨皮渣乾重×100%)。 The total concentration of xylobiose and xylotriose in the 640 mL xylo-oligosaccharide solution obtained in step S3 is 12.13 g/L. The yield of xylo-oligosaccharides (xylobiose and xylotriose) per unit dry weight of pineapple peel residue was 15.53% by weight (the calculation method is the total weight of xylobiose and xylotriose in the enzyme hydrolysate/dry weight of pineapple peel residue × 100%).

在一些實施例中,可進一步將所得的木寡糖溶液經由活性碳、陰離子交換樹脂、陽離子交換樹脂進行吸附、純化,得到純化後的木寡糖糖漿。 In some embodiments, the obtained xylo-oligosaccharide solution can be further adsorbed and purified through activated carbon, anion exchange resin, and cation exchange resin to obtain purified xylo-oligosaccharide syrup.

實施例2 Example 2

實施例2之製備方法與實施例1之方法的步驟相似,其差異僅在於步驟S1的水熱處理,溫度設定雖同為125℃,然實際溫度在116℃~150℃間變化;另一差異是S2步驟所得的去支鏈反應後的鳳梨皮渣液體混合物先以濾紙過濾分離,詳細來說,是使用TOYO NO.1濾紙過濾後,再以TOYO NO.5C濾紙過濾,取濾液,接著以130mL的內切型聚木糖酶液體混合物(總活性1602U)對前述濾液進行S3步驟的酵素反應即獲得木寡糖液體混合物,實施例2因已在S2步驟後進行過濾,因此S3步驟之酵素反應後不再進行過濾,實施例2之製備方法製得之木寡糖溶液為630mL。經由如同實施例1所述的HPLC檢測方法檢測後,木二糖與木三糖總和濃度為10.14g/L、單位鳳梨皮渣乾重的木寡糖(木二糖與木三糖)產率為12.78重量%。 The preparation method of Example 2 is similar to the method of Example 1. The difference is only in the hydrothermal treatment of step S1. Although the temperature setting is the same at 125°C, the actual temperature varies between 116°C and 150°C; the other difference is The liquid mixture of pineapple peel residues after the debranching reaction obtained in step S2 is filtered and separated with filter paper. Specifically, it is filtered with TOYO NO.1 filter paper and then filtered with TOYO NO.5C filter paper. Take the filtrate, and then use 130mL The endo-xylanase liquid mixture (total activity 1602U) is subjected to the enzyme reaction of step S3 on the aforementioned filtrate to obtain the liquid mixture of xylo-oligosaccharides. Example 2 has been filtered after step S2, so the enzyme reaction of step S3 After that, no filtration was performed, and the xylo-oligosaccharide solution prepared by the preparation method of Example 2 was 630 mL. After detection by the HPLC detection method as described in Example 1, the total concentration of xylobiose and xylotriose was 10.14g/L, and the yield of xylo-oligosaccharides (xylobiose and xylotriose) per unit dry weight of pineapple peel residue It is 12.78% by weight.

實施例2與實施例1相比僅需添加不到1/3總活性的內切型聚木糖酶即可達到相近的單位鳳梨皮渣乾重的木寡糖產率。 Compared with Example 1, Example 2 only needs to add less than 1/3 of the total activity of endo-xylanase to achieve a similar yield of xylo-oligosaccharide per dry weight of pineapple peel residue.

實施例3 水熱反應之最適條件 Example 3 Optimal conditions for hydrothermal reaction

實施例3分為實施例3-1至3-7,其製備方法與實施例2之方法的步驟相似,然而調整了步驟S1的水熱反應使用之鳳梨皮渣僅為2g,並分別調整水熱反應之固液比、浸泡時間及醋酸添加量三種參數的條件,如下表2所示,而水熱反應之溫度仍同於實施例2之125℃。 Example 3 is divided into Examples 3-1 to 3-7. The preparation method is similar to that of Example 2. However, the pineapple peel residue used in the hydrothermal reaction of step S1 is adjusted to only 2g, and the water is adjusted separately. The conditions of the three parameters of the thermal reaction, the solid-liquid ratio, the immersion time, and the amount of acetic acid added, are shown in Table 2 below, and the temperature of the hydrothermal reaction is still the same as that of Example 2 at 125°C.

Figure 109117386-A0305-02-0012-2
Figure 109117386-A0305-02-0012-2

另外與實施例2不同之處在於S1步驟的水熱反應後即用濾紙進行過濾、分離,取濾液,接著將前述濾液進行S2步驟的去支鏈反應、S3步驟的酵素反應。實施例3-1至3-7之去支鏈反應不同於實施例2在於將反應溫度調整為60℃下進行;實施例3-1至3-7之酵素反應不同於實施例2是將反應溫度及震盪頻率分別調整為在60℃、100rpm震盪下進行,且添加之酵素雖為同於實施例1、2之內切型聚木糖酶,但調整添加後之液體混合物的酵素濃度至500U/L,且活性分析使用的基質溶液為1%(w/v)的birchwood聚木糖(溶解於100mM pH 8.0的 磷酸緩衝液),實施例3-1至3-7因已於S1水熱反應步驟後進行過濾分離,因此未再如實施例2於S2步驟去支鏈反應後進行之過濾分離步驟。而實施例3-1至3-7的木寡糖產量及產率如下表3所示:

Figure 109117386-A0305-02-0013-3
In addition, the difference from Example 2 is that after the hydrothermal reaction in step S1, filter paper is used for filtration and separation, the filtrate is taken, and then the filtrate is subjected to the debranching reaction in step S2 and the enzyme reaction in step S3. The debranching reaction of Examples 3-1 to 3-7 is different from that of Example 2 in that the reaction temperature is adjusted to 60°C; the enzyme reaction of Examples 3-1 to 3-7 is different from that of Example 2 in that the reaction The temperature and the vibration frequency were adjusted to 60℃, 100rpm vibration, and the added enzyme was the same as the endo-xylanase of Examples 1 and 2, but the enzyme concentration of the added liquid mixture was adjusted to 500U /L, and the matrix solution used in the activity analysis is 1% (w/v) birchwood polyxylose (dissolved in 100mM pH 8.0 phosphate buffer). Examples 3-1 to 3-7 have been heated in S1 The reaction step is followed by filtration separation, so the filtration separation step after the debranching reaction in step S2 as in Example 2 is not performed. The yields and yields of xylo-oligosaccharides in Examples 3-1 to 3-7 are shown in Table 3 below:
Figure 109117386-A0305-02-0013-3

由上表結果可知實施例3-3的木寡糖產率最佳,為6.3%,其水熱反應的條件為固液比1:20、2小時浸泡時間及於1.5%的醋酸環境下進行。然而若考慮固液比,實施例3-2的木寡糖產量為6.1%,與實施例3-3的6.3%相近,然水熱反應所需液體量僅為1/2,因此效率相對較實施例3-3高出許多,且能降低能量耗費。故將實施例3-2作為較佳的水熱法條件,即固液比1:10、醋酸1.5%下浸泡2小時以進行後續測試較佳去支鏈反應條件的實施例4-1至4-4。且實施例3-2、3-3、3-5相較於現有技術的木寡糖(木二糖及木三糖)產量均高於現有技術的木寡糖產量(木二糖與木三糖之總和)1.8%。 From the results in the above table, it can be seen that the yield of xylo-oligosaccharides in Example 3-3 is the best, which is 6.3%. The conditions of the hydrothermal reaction are solid-liquid ratio 1:20, 2 hours immersion time and 1.5% acetic acid environment. . However, considering the solid-liquid ratio, the yield of xylo-oligosaccharides in Example 3-2 is 6.1%, which is close to the 6.3% in Example 3-3. However, the amount of liquid required for the hydrothermal reaction is only 1/2, so the efficiency is relatively higher. Example 3-3 is much higher and can reduce energy consumption. Therefore, Example 3-2 is taken as the preferred hydrothermal conditions, that is, the solid-to-liquid ratio is 1:10, and the acetic acid is soaked for 2 hours at 1.5% for subsequent testing. Examples 4-1 to 4 of the preferred debranching reaction conditions -4. In addition, the yields of xylo-oligosaccharides (xylobiose and xylotriose) in Examples 3-2, 3-3, and 3-5 are higher than those of the prior art (xylobiose and xylotriose). The sum of sugar) 1.8%.

實施例4 去支鏈反應的最佳條件 Example 4 Optimal conditions for debranching reaction

實施例4分為實施例4-1至實施例4-4。實施例4-1至實施例4-4進行同於實施例3-2的製備木寡糖的方法直至S1步驟的水熱反應結束後,接著比較先過濾分離且以濾液進行S2步驟的去支鏈反應或先進行S2步驟的去支鏈反應再過濾及比較S2步驟的去支鏈反應溫度(60℃或70℃),如下表4所示,其餘S3步驟則同於實施例3-2之方法步驟。 Example 4 is divided into Example 4-1 to Example 4-4. In Example 4-1 to Example 4-4, the same method of preparing xylo-oligosaccharides as in Example 3-2 was carried out until the hydrothermal reaction in step S1 was completed, and then the filtrate was used to carry out the debranching of step S2. Chain reaction or perform the debranching reaction of step S2 first, then filter and compare the debranching reaction temperature of step S2 (60°C or 70°C), as shown in Table 4 below, and the remaining steps of S3 are the same as in Example 3-2 Method steps.

Figure 109117386-A0305-02-0014-4
Figure 109117386-A0305-02-0014-4

如上表4結果顯示,以實施例4-4的木寡糖產率最高,因此可知S2步驟的去支鏈反應在70℃下進行較佳,且在S2步驟的去支鏈反應後再進行過 濾分離所得的木寡糖產率較佳。亦即與實施例2相同的方法可得到最高的木寡糖產率。且相較於現有技術的木寡糖(木二糖及木三糖)產量,實施例4-2及4-3均高於現有技術的木寡糖產量(木二糖與木三糖之總和)1.8%。 As shown in Table 4 above, the yield of xylo-oligosaccharides in Example 4-4 is the highest. Therefore, it can be seen that the debranching reaction of step S2 is better performed at 70°C, and it is carried out after the debranching reaction of step S2. The yield of xylo-oligosaccharides obtained by filtration is better. That is, the same method as in Example 2 can obtain the highest yield of xylo-oligosaccharides. And compared with the yield of xylo-oligosaccharides (xylobiose and xylotriose) in the prior art, Examples 4-2 and 4-3 are higher than the yield of xylo-oligosaccharides in the prior art (the sum of xylobiose and xylotriose). ) 1.8%.

實施例5 內切型聚木糖酶溶液的製備方式(一) Example 5 Preparation method of endo-xylanase solution (1)

內切型聚木糖酶溶液之製備方式除了實施例1的方法之外,亦可利用內含表現Xyn45-Xyn23融合蛋白質的質體之基因重組菌。首先是從Bacillus halodurans BCRC 910501的兩個內切型聚木糖酶Xyn45與Xyn23(分別為含396與210個胺基酸的蛋白質),根據其胺基酸序列(如中華民國發明專利第I418634號所示),設計一融合蛋白(含597個胺基酸),其胺基酸序列如SEQ ID NO:1。針對此融合蛋白的胺基酸序列,另設計適合在大腸桿菌表現的DNA序列(SEQ ID NO:2),以化學合成方式製造xyn45-xyn23的融合基因,接著將含此融合基因的質體16ACBZOP-xyn45-xyn23(使用委託量子生物科技有限公司向Thermo ScientificTM定製合成之質體),藉由熱休克法(Heat Shock method)送入E.coli DH5α宿主菌株中,再抽取該菌之質體作為模板,設計正向引子(forward primer)如SEQ ID NO:3所示及反向引子(reverse primer)SEQ ID NO:4所示進行PCR反應,將PCR放大之目標DNA片段嵌入pET-29a(+)質體中,接著將其轉型至E.coli DH5α,保存質體。抽取該菌之質體藉由熱休克法送入E.coli BL21(DE3)表現宿主菌株中,並以Colony PCR確認轉型結果。將轉型成功的E.coli BL21(DE3)-pET29a(+)-xyn45-xyn23培養於37℃、1mM IPTG誘導、4小時即可大量表現具有內切型聚木糖酶活性的融合蛋白Xyn45-(G4S)2-Xyn23如SEQ ID NO:1所示。將菌液在8000rpm、4℃下離心20分鐘,將上清液及菌塊分開。上清液包含分泌至胞外的蛋白質,菌塊則以去離子水回溶,於法式高壓破菌機中,壓力20kpsi之下進行高壓破菌,之後以4℃、12000rpm離心20分鐘,上清液包含胞內可溶蛋白質。固體部分清洗之後再以去離子水懸浮,所得懸浮溶液 包含來自包涵體(inclusion body)的胞內不可溶蛋白質。量測重組大腸桿菌所產生的蛋白質之內切型聚木糖酶酵素的總活性,有25%在胞內可溶蛋白質,60%是胞內不可溶蛋白質所貢獻的。胞內不可溶蛋白質的酵素比活性是79.1U/mg,亦即每毫克蛋白質具有79.1U的內切型聚木糖酶活性,遠比胞內可溶蛋白質(3.9U/mg)或胞外的蛋白質(32.0U/mg)的內切型聚木糖酶活性要來的高。此不可溶蛋白質懸浮於水溶液可作為分解鳳梨皮渣之聚木糖生產木寡糖的內切型聚木糖酶溶液。本實施例之Xyn45-Xyn23融合蛋白質表現時主要酵素活性在包涵體,雖比活性與實施例1之蛋白質相當,但因以包涵體形式存在,而具有回收容易且應用上方便的較佳效果。 In addition to the method of Example 1, the preparation method of the endo-xylanase solution can also use genetically recombinant bacteria containing plastids expressing the Xyn45-Xyn23 fusion protein. The first is the two endo-xylanases Xyn45 and Xyn23 (proteins containing 396 and 210 amino acids, respectively) from Bacillus halodurans BCRC 910501, according to their amino acid sequence (for example, the Republic of China Invention Patent No. 1418634 (Shown), design a fusion protein (containing 597 amino acids) whose amino acid sequence is as SEQ ID NO:1. Aiming at the amino acid sequence of the fusion protein, a DNA sequence suitable for expression in E. coli (SEQ ID NO: 2) was designed to produce the xyn45-xyn23 fusion gene by chemical synthesis, and then the plastid 16ACBZOP containing this fusion gene -xyn45-xyn23 (using the plastids custom-synthesized from Thermo Scientific TM entrusted by Quantum Biotechnology Co., Ltd. ), sent into the E.coli DH5α host strain by the Heat Shock method, and then extracted the bacteria's substance As a template, design a forward primer as shown in SEQ ID NO: 3 and a reverse primer as shown in SEQ ID NO: 4 to perform a PCR reaction, and insert the target DNA fragment amplified by PCR into pET-29a (+) In the plastid, then transform it to E.coli DH5α to save the plastid. The plastids of the bacteria were extracted into E.coli BL21(DE3) expressing host strains by heat shock method, and the transformation results were confirmed by Colony PCR. The transformed E. coli BL21(DE3)-pET29a(+)-xyn45-xyn23 was cultured at 37°C, induced by 1mM IPTG, and 4 hours later, a large amount of the fusion protein Xyn45-( with endo-xylanase activity could be expressed G 4 S) 2 -Xyn23 is shown in SEQ ID NO:1. Centrifuge the bacterial solution at 8000 rpm and 4°C for 20 minutes, and separate the supernatant and bacterial clumps. The supernatant contains the proteins secreted to the outside of the cell, and the bacterial clumps are re-dissolved in deionized water, and are subjected to high-pressure sterilization in a French high-pressure sterilizer under a pressure of 20 kpsi, and then centrifuged at 4°C and 12000 rpm for 20 minutes. The supernatant The fluid contains intracellular soluble proteins. The solid part is washed and then suspended in deionized water, and the resulting suspension solution contains intracellular insoluble proteins from inclusion bodies. Measure the total activity of the endo-xylanase enzyme in the protein produced by recombinant E. coli. 25% of the protein is soluble in the cell, and 60% is contributed by the insoluble protein in the cell. The enzyme specific activity of intracellular insoluble protein is 79.1U/mg, that is, 79.1U endo-xylanase activity per milligram of protein, which is much higher than that of intracellular soluble protein (3.9U/mg) or extracellular The endo-xylanase activity of protein (32.0U/mg) is expected to be high. This insoluble protein suspended in an aqueous solution can be used as an endo-xylanase solution for decomposing the xylose of pineapple peel residue to produce xylo-oligosaccharides. When the Xyn45-Xyn23 fusion protein of this example is expressed, the main enzyme activity is in the inclusion bodies. Although the specific activity is equivalent to that of the protein of Example 1, because it exists in the form of inclusion bodies, it has the better effect of easy recovery and convenient application.

實施例6 內切型聚木糖酶溶液的製備方式(二) Example 6 Preparation method of endo-xylanase solution (2)

內切型聚木糖酶溶液其製備方式除了實施例1的方法之外,亦可利用基因重組菌,其中內含的Xyn45之胺基酸序列是參考Bacillus halodurans BCRC 910501與Bacillus halodurans C-125兩株菌的Xyn45之序列特徵來決定。此蛋白質之胺基酸序列如SEQ ID NO:5所示。胺基酸總數如Bacillus halodurans BCRC 910501的Xyn45維持396個,且與該蛋白質的胺基酸序列幾乎相同,但364D改為G,393G改為R,以與Bacillus halodurans C-125的Xyn45序列對應。將對應此蛋白質的胺基酸序列之DNA序列如SEQ ID NO:6所示插入質體pET-29a(+),並轉型至E.coli BL21(DE3),得到基因重組菌。將前述構築的基因重組菌於PM液態培養基培養,至OD600nm達到0.8-1.0區間時,加入0.1mM的IPTG在25℃下進行誘導培養18小時,離心收集上清液,即為胞外蛋白質溶液,且其每毫克蛋白質的酵素活性是171U,比實施例1之內切型聚木酶溶液的酵素比活性(75.8U/mg)高。與實施例5不同,本實施例的胞內可溶蛋白質的內切酶聚木糖酶酵素比活性為13.5U/mg,佔基因重組菌所產生的蛋白質之內切型聚木糖酶酵素的總活性之13.8%,而胞內不可溶蛋白質的內切酶聚木糖酶酵素 比活性為11.4U/mg,佔基因重組菌所產生的蛋白質之內切型聚木糖酶酵素的總活性之0.6%。兩者內切型聚木糖酶酵素活性總和遠少於胞外蛋白質溶液內切型聚木糖酶酵素活性,胞外蛋白質溶液佔基因重組菌所生產蛋白質之總酵素活性的85.6%,此胞外蛋白質溶液可作為分解鳳梨皮渣之聚木糖生產木寡糖的內切型聚木糖酶溶液。 In addition to the method in Example 1, the preparation method of the endo-xylanase solution can also use genetic recombination bacteria. The amino acid sequence of Xyn45 contained therein is referenced to Bacillus halodurans BCRC 910501 and Bacillus halodurans C-125. The sequence characteristics of Xyn45 of the strain are determined. The amino acid sequence of this protein is shown in SEQ ID NO:5. The total number of amino acids such as Xyn45 of Bacillus halodurans BCRC 910501 maintains 396, and is almost the same as the amino acid sequence of the protein, but 364D is changed to G and 393G is changed to R to correspond to the Xyn45 sequence of Bacillus halodurans C-125. The DNA sequence corresponding to the amino acid sequence of the protein is inserted into the plastid pET-29a(+) as shown in SEQ ID NO: 6, and transformed into E. coli BL21 (DE3) to obtain genetically recombinant bacteria. Culture the previously constructed genetically recombinant bacteria in PM liquid medium until the OD 600nm reaches 0.8-1.0, add 0.1 mM IPTG for induction culture at 25°C for 18 hours, centrifuge to collect the supernatant, which is the extracellular protein solution And its enzyme activity per milligram of protein is 171U, which is higher than the specific enzyme activity (75.8U/mg) of the endomeric polymerase solution in Example 1. Different from Example 5, the specific activity of the endonuclease polyxylanase enzyme of the intracellular soluble protein in this example is 13.5 U/mg, which accounts for the percentage of the endonuclease polyxylanase enzyme produced by the genetically recombined bacteria. 13.8% of the total activity, and the specific activity of the endonuclease poly-xylanase enzyme of the insoluble intracellular protein is 11.4 U/mg, which accounts for the total activity of the endo-xylanase enzyme of the protein produced by the genetically recombined bacteria 0.6%. The total enzyme activity of the two endo-xylanase enzymes is far less than that of the extracellular protein solution endo-xylanase enzyme activity. The extracellular protein solution accounts for 85.6% of the total enzyme activity of the protein produced by the genetically recombined bacteria. This cell The exoprotein solution can be used as an endo-xylanase solution for decomposing xylo-oligosaccharides from pineapple peel residues.

實施例7 內切型聚木糖酶溶液的製備方式(三) Example 7 Preparation method of endo-xylanase solution (3)

本實施例製作基因重組菌的方式類似於實施例6,然本實施例中所表現的蛋白質之胺基酸序列如SEQ ID NO:7所示,其胺基酸總數如Bacillus halodurans BCRC 910501的Xyn45維持396個,且與該蛋白質的胺基酸序列幾乎相同,僅393G改為R,以與Bacillus halodurans C-125的Xyn45序列對應。將對應此蛋白質的胺基酸序列之DNA序列如SEQ ID NO:8所示插入質體pET-29a(+),並轉型至E.coli BL21(DE3),得到基因重組菌。以實施例6中所載的條件進行誘導培養,所得到的胞外蛋白質溶液,每毫克蛋白質的酵素活性是217U,比實施例1之內切型聚木酶溶液的酵素比活性(75.8U/mg)高。且胞外蛋白質溶液佔基因重組菌所生產之總酵素活性的90%,此胞外蛋白質溶液可作為分解鳳梨皮渣之聚木糖生產木寡糖的內切型聚木糖酶溶液。 The method of making genetically recombinant bacteria in this example is similar to that in Example 6, but the amino acid sequence of the protein shown in this example is shown in SEQ ID NO: 7, and the total number of amino acids is Xyn45 of Bacillus halodurans BCRC 910501. It maintains 396 and is almost the same as the amino acid sequence of the protein. Only 393G is changed to R to correspond to the Xyn45 sequence of Bacillus halodurans C-125. The DNA sequence corresponding to the amino acid sequence of this protein is inserted into the plastid pET-29a(+) as shown in SEQ ID NO: 8, and transformed into E. coli BL21 (DE3) to obtain genetically recombinant bacteria. The induction culture was carried out under the conditions set out in Example 6, and the resulting extracellular protein solution had an enzyme activity of 217 U per milligram of protein, which was higher than the specific enzyme activity of the endomeric polymerase solution in Example 1 (75.8 U/ mg) high. In addition, the extracellular protein solution accounts for 90% of the total enzyme activity produced by the genetically recombined bacteria. This extracellular protein solution can be used as an endo-xylanase solution for decomposing the xylose of pineapple peel residue to produce xylo-oligosaccharides.

綜合上述實施例1至7之結果可知,本發明的製備方法相較於先前技術之木寡糖製備方法能有效提升木寡糖之產量,為一優異之木寡糖製備方法。 Based on the results of the foregoing Examples 1 to 7, it can be seen that the preparation method of the present invention can effectively increase the yield of xylo-oligosaccharides compared with the prior art method for preparing xylo-oligosaccharides, and is an excellent method for preparing xylo-oligosaccharides.

上述實施例僅係為說明本創作之例示,並非於任何方面限制本創作所主張之權利範圍。本創作所主張之權利範圍自應以申請專利範圍所述為準,而非僅限於上述具體實施例。 The above-mentioned embodiments are only examples to illustrate the creation, and do not limit the scope of rights claimed by the creation in any respect. The scope of rights claimed in this creation should be subject to the scope of the patent application, rather than limited to the specific embodiments described above.

                                  序列表
          <![CDATA[<110>  國立中正大學]]>
          <![CDATA[<120>  製備木寡糖的方法及用於其的蛋白質組成物]]>
          <![CDATA[<160>  8     ]]>
          <![CDATA[<170>  PatentIn 版本 3.5]]>
          <![CDATA[<210>  1]]>
          <![CDATA[<211>  597]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<400>  1]]>
          Met Met Ile Thr Leu Phe Lys Lys Pro Phe Val Ala Gly Leu Ala Ile 
          1               5                   10                  15      
          Ser Leu Leu Val Gly Gly Gly Leu Gly Asn Val Ala Ala Ala Gln Gly 
                      20                  25                  30          
          Gly Pro Pro Lys Ser Gly Val Phe Gly Glu Asn Gln Lys Arg Asn Asp 
                  35                  40                  45              
          Gln Pro Phe Ala Trp Gln Val Ala Ser Leu Ser Glu Arg Tyr Gln Glu 
              50                  55                  60                  
          Gln Phe Asp Ile Gly Ala Ala Val Glu Pro Tyr Gln Leu Glu Gly Arg 
          65                  70                  75                  80  
          Gln Ala Gln Ile Leu Lys His His Tyr Asn Ser Leu Val Ala Glu Asn 
                          85                  90                  95      
          Ala Met Lys Pro Val Ser Leu Gln Pro Arg Glu Gly Glu Trp Asn Trp 
                      100                 105                 110         
          Glu Gly Ala Asp Lys Ile Val Glu Phe Ala Arg Lys His Asn Met Glu 
                  115                 120                 125             
          Leu Arg Phe His Thr Leu Val Trp His Ser Gln Val Pro Glu Trp Phe 
              130                 135                 140                 
          Phe Ile Asp Glu Asn Gly Asn Arg Met Val Asp Glu Thr Asp Pro Glu 
          145                 150                 155                 160 
          Lys Arg Lys Ala Asn Lys Gln Leu Leu Leu Glu Arg Met Glu Asn His 
                          165                 170                 175     
          Ile Lys Thr Val Val Glu Arg Tyr Lys Asp Asp Val Thr Ser Trp Asp 
                      180                 185                 190         
          Val Val Asn Glu Val Ile Asp Asp Gly Gly Gly Leu Arg Glu Ser Glu 
                  195                 200                 205             
          Trp Tyr Gln Ile Thr Gly Thr Asp Tyr Ile Lys Val Ala Phe Glu Thr 
              210                 215                 220                 
          Ala Arg Lys Tyr Gly Gly Glu Glu Ala Lys Leu Tyr Ile Asn Asp Tyr 
          225                 230                 235                 240 
          Asn Thr Glu Val Pro Ser Lys Arg Asp Asp Leu Tyr Asn Leu Val Lys 
                          245                 250                 255     
          Asp Leu Leu Glu Gln Gly Val Pro Ile Asp Gly Val Gly His Gln Ser 
                      260                 265                 270         
          His Ile Gln Ile Gly Trp Pro Ser Ile Glu Asp Thr Arg Ala Ser Phe 
                  275                 280                 285             
          Glu Lys Phe Thr Ser Leu Gly Leu Asp Asn Gln Val Thr Glu Leu Asp 
              290                 295                 300                 
          Met Ser Leu Tyr Gly Trp Pro Pro Thr Gly Ala Tyr Thr Ser Tyr Asp 
          305                 310                 315                 320 
          Asp Ile Pro Glu Glu Leu Phe Gln Ala Gln Ala Asp Arg Tyr Asp Gln 
                          325                 330                 335     
          Leu Phe Glu Leu Tyr Glu Glu Leu Ser Ala Thr Ile Ser Ser Val Thr 
                      340                 345                 350         
          Phe Trp Gly Ile Ala Asp Asn His Thr Trp Leu Asp Asp Arg Ala Arg 
                  355                 360                 365             
          Glu Tyr Asn Asn Gly Val Gly Val Asp Ala Pro Phe Val Phe Asp His 
              370                 375                 380                 
          Asn Tyr Arg Val Lys Pro Ala Tyr Trp Gly Ile Ile Asp Gly Gly Gly 
          385                 390                 395                 400 
          Gly Ser Gly Gly Gly Gly Ser Asn Thr Tyr Trp Gln Tyr Trp Thr Asp 
                          405                 410                 415     
          Gly Gly Gly Thr Val Asn Ala Thr Asn Gly Pro Gly Gly Asn Tyr Ser 
                      420                 425                 430         
          Val Thr Trp Arg Asp Thr Gly Asn Phe Val Val Gly Lys Gly Trp Glu 
                  435                 440                 445             
          Ile Gly Ser Pro Asn Arg Thr Ile His Tyr Asn Ala Gly Val Trp Glu 
              450                 455                 460                 
          Pro Ser Gly Asn Gly Tyr Leu Thr Leu Tyr Gly Trp Thr Arg Asn Gln 
          465                 470                 475                 480 
          Leu Ile Glu Tyr Tyr Val Val Asp Asn Trp Gly Thr Tyr Arg Pro Thr 
                          485                 490                 495     
          Gly Thr His Arg Gly Thr Val Val Ser Asp Gly Gly Thr Tyr Asp Ile 
                      500                 505                 510         
          Tyr Thr Thr Met Arg Tyr Asn Ala Pro Ser Ile Asp Gly Thr Gln Thr 
                  515                 520                 525             
          Phe Gln Gln Phe Trp Ser Val Arg Gln Ser Lys Arg Pro Thr Gly Asn 
              530                 535                 540                 
          Asn Val Ser Val Thr Phe Ser Asn His Val Asn Ala Trp Arg Asn Ala 
          545                 550                 555                 560 
          Gly Met Asn Leu Gly Ser Ser Trp Ser Tyr Gln Val Leu Ala Thr Glu 
                          565                 570                 575     
          Gly Tyr Gln Ser Ser Gly Arg Ser Asn Val Thr Val Trp Leu Glu His 
                      580                 585                 590         
          His His His His His 
                  595         
          <![CDATA[<210>  2]]>
          <![CDATA[<211>  1794]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<400>  2]]>
          atgatgatta ccctgttcaa aaaaccgttt gttgcaggtc tggcaattag cctgctggtt       60
          ggtggtggtc tgggtaatgt tgcagcagca cagggtggtc cgcctaaaag cggtgttttt      120
          ggtgaaaatc agaaacgtaa tgatcagccg tttgcatggc aggttgcaag cctgagcgaa      180
          cgttatcaag aacagtttga tattggtgca gcagttgaac cgtatcagct ggaaggtcgt      240
          caggcacaga ttctgaaaca tcattataac agcctggttg ccgaaaatgc aatgaaaccg      300
          gttagcctgc agcctcgtga aggtgaatgg aattgggaag gtgcagataa aattgttgag      360
          tttgcccgta aacacaatat ggaactgcgt tttcataccc tggtttggca tagccaggtt      420
          ccggaatggt tttttatcga tgaaaatggt aatcgcatgg tggatgaaac cgatccggaa      480
          aaacgtaaag caaataaaca gctgctgctg gaacgtatgg aaaaccatat caaaaccgtt      540
          gtggaacgct ataaagatga tgttaccagc tgggatgttg tgaacgaagt tattgatgat      600
          ggtggtggcc tgcgtgaaag cgaatggtat cagattaccg gcaccgatta tatcaaagtt      660
          gcatttgaaa ccgcacgcaa atatggtggt gaagaagcaa aactgtatat caacgattat      720
          aacaccgaag tgccgagcaa acgtgatgat ctgtataatc tggttaaaga cctgctggaa      780
          cagggtgttc cgattgatgg tgttggtcat cagagccata ttcagattgg ttggccgagc      840
          attgaagata cccgtgcaag ctttgaaaaa ttcaccagcc tgggtctgga taatcaggtt      900
          accgaactgg atatgagcct gtatggttgg cctccgaccg gtgcatatac cagctatgat      960
          gatattccgg aagaactgtt tcaggcccag gcagatcgtt atgatcagct gttcgaactg     1020
          tatgaagaac tgagcgcaac cattagcagc gttacctttt ggggtattgc agataatcat     1080
          acctggctgg atgatcgtgc acgtgaatat aacaatggtg tgggtgttga tgcaccgttt     1140
          gtgtttgatc ataattatcg tgtgaaaccg gcatattggg gcattattga tggcggtggc     1200
          ggtagcggtg gtggcggttc aaatacctat tggcagtatt ggaccgatgg tggcggaacc     1260
          gttaatgcaa ccaatggtcc gggtggtaat tatagcgtga cctggcgtga taccggcaat     1320
          tttgttgttg gtaaaggttg ggaaattggt agcccgaatc gtaccattca ctataatgcc     1380
          ggtgtttggg aaccgagcgg taatggttat ctgaccctgt atggctggac ccgcaaccag     1440
          ctgattgaat attatgttgt tgataactgg ggcacctatc gtccgaccgg cacccatcgt     1500
          ggcaccgttg ttagtgatgg tggcacctat gatatctata ccacgatgcg ttataatgca     1560
          ccgtcaattg atggcaccca gacctttcag cagttttgga gcgttcgtca gagtaaacgt     1620
          ccgacaggta ataatgttag tgtgaccttt agcaatcatg tgaatgcatg gcgtaatgca     1680
          ggtatgaatc tgggtagcag ctggtcatat caggttctgg caaccgaagg ttatcagagc     1740
          agcggtcgta gcaatgttac cgtttggctc gagcaccacc accaccacca ctga           1794
          <![CDATA[<210>  3]]>
          <![CDATA[<211>  57]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<400>  3]]>
          ggaattccat atgatgatta ccctgttcaa aaaaccgttt gttgcaggtc tggcaat          57
          <![CDATA[<210>  4]]>
          <![CDATA[<211>  33]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<400>  4]]>
          cgcctcgagc caaacggtaa cattgctacg acc                                    33
          <![CDATA[<210>  5]]>
          <![CDATA[<211>  396]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<400>  5]]>
          Met Val Thr Leu Phe Lys Lys Pro Phe Val Ala Gly Leu Ala Ile Ser 
          1               5                   10                  15      
          Leu Leu Val Gly Gly Gly Leu Gly Asn Val Ala Ala Ala Gln Gly Gly 
                      20                  25                  30          
          Pro Pro Lys Ser Gly Val Phe Gly Glu Asn Gln Lys Arg Asn Asp Gln 
                  35                  40                  45              
          Pro Phe Ala Trp Gln Val Ala Ser Leu Ser Glu Arg Tyr Gln Glu Gln 
              50                  55                  60                  
          Phe Asp Ile Gly Ala Ala Val Glu Pro Tyr Gln Leu Glu Gly Arg Gln 
          65                  70                  75                  80  
          Ala Gln Ile Leu Lys His His Tyr Asn Ser Leu Val Ala Glu Asn Ala 
                          85                  90                  95      
          Met Lys Pro Val Ser Leu Gln Pro Arg Glu Gly Glu Trp Asn Trp Glu 
                      100                 105                 110         
          Gly Ala Asp Lys Ile Val Glu Phe Ala Arg Lys His Asn Met Glu Leu 
                  115                 120                 125             
          Arg Phe His Thr Leu Val Trp His Ser Gln Val Pro Glu Trp Phe Phe 
              130                 135                 140                 
          Ile Asp Glu Asn Gly Asn Arg Met Val Asp Glu Thr Asp Pro Glu Lys 
          145                 150                 155                 160 
          Arg Lys Ala Asn Lys Gln Leu Leu Leu Glu Arg Met Glu Asn His Ile 
                          165                 170                 175     
          Lys Thr Val Val Glu Arg Tyr Lys Asp Asp Val Thr Ser Trp Asp Val 
                      180                 185                 190         
          Val Asn Glu Val Ile Asp Asp Gly Gly Gly Leu Arg Glu Ser Glu Trp 
                  195                 200                 205             
          Tyr Gln Ile Thr Gly Thr Asp Tyr Ile Lys Val Ala Phe Glu Thr Ala 
              210                 215                 220                 
          Arg Lys Tyr Gly Gly Glu Glu Ala Lys Leu Tyr Ile Asn Asp Tyr Asn 
          225                 230                 235                 240 
          Thr Glu Val Pro Ser Lys Arg Asp Asp Leu Tyr Asn Leu Val Lys Asp 
                          245                 250                 255     
          Leu Leu Glu Gln Gly Val Pro Ile Asp Gly Val Gly His Gln Ser His 
                      260                 265                 270         
          Ile Gln Ile Gly Trp Pro Ser Ile Glu Asp Thr Arg Ala Ser Phe Glu 
                  275                 280                 285             
          Lys Phe Thr Ser Leu Gly Leu Asp Asn Gln Val Thr Glu Leu Asp Met 
              290                 295                 300                 
          Ser Leu Tyr Gly Trp Pro Pro Thr Gly Ala Tyr Thr Ser Tyr Asp Asp 
          305                 310                 315                 320 
          Ile Pro Glu Glu Leu Phe Gln Ala Gln Ala Asp Arg Tyr Asp Gln Leu 
                          325                 330                 335     
          Phe Glu Leu Tyr Glu Glu Leu Ser Ala Thr Ile Ser Ser Val Thr Phe 
                      340                 345                 350         
          Trp Gly Ile Ala Asp Asn His Thr Trp Leu Asp Gly Arg Ala Arg Glu 
                  355                 360                 365             
          Tyr Asn Asn Gly Val Gly Val Asp Ala Pro Phe Val Phe Asp His Asn 
              370                 375                 380                 
          Tyr Arg Val Lys Pro Ala Tyr Trp Arg Ile Ile Asp 
          385                 390                 395     
          <![CDATA[<210>  6]]>
          <![CDATA[<211>  1191]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<400>  6]]>
          atggttacac tttttaaaaa gccttttgtt gctggactag cgatctcttt attagttgga       60
          ggggggctag gcaatgtagc tgctgctcaa ggaggaccac caaaatctgg agtctttgga      120
          gaaaatcaaa aaagaaatga tcagcctttt gcatggcaag ttgcttctct ttctgagcga      180
          tatcaagagc agtttgatat tggagctgcg gttgagccct atcaattaga aggaagacaa      240
          gcccaaattt taaagcatca ttataacagc cttgtggcgg aaaatgcaat gaaacctgta      300
          tcactccagc caagagaagg tgagtggaac tgggaaggcg ctgacaaaat tgtggagttt      360
          gcccgcaaac ataacatgga gcttcgcttc cacacactcg tttggcatag ccaagtacca      420
          gaatggtttt tcatcgatga aaatggcaat cggatggttg atgaaaccga tccagaaaaa      480
          cgtaaagcga ataaacaatt gttattggag cgaatggaaa accatattaa aacggttgtt      540
          gaacgttata aagatgatgt gacttcatgg gatgtggtga atgaagttat tgatgatggc      600
          gggggcctcc gtgaatcaga atggtatcaa ataacaggca ctgactacat taaggtagct      660
          tttgaaactg caagaaaata tggtggtgaa gaggcaaagc tgtacattaa tgattacaac      720
          accgaagtac cttctaaaag agatgacctt tacaacctgg tgaaagactt attagagcaa      780
          ggagtaccaa ttgacggggt aggacatcag tctcatatcc aaatcggctg gccttccatt      840
          gaagatacaa gagcttcttt tgaaaagttt acgagtttag gattagacaa ccaagtaact      900
          gaactagaca tgagtcttta tggctggcca ccgacagggg cctatacctc ttatgacgac      960
          attccagaag agctttttca agctcaagca gaccgttatg atcagctatt tgagttatat     1020
          gaagaattaa gcgctactat cagtagtgta accttctggg gaattgctga taaccataca     1080
          tggcttgatg gccgcgctag agagtacaat aatggagtag gggtcgatgc accatttgtt     1140
          tttgatcaca actatcgagt gaagcctgct tactggagaa ttattgatta a              1191
          <![CDATA[<210>  7]]>
          <![CDATA[<211>  396]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<400>  7]]>
          Met Val Thr Leu Phe Lys Lys Pro Phe Val Ala Gly Leu Ala Ile Ser 
          1               5                   10                  15      
          Leu Leu Val Gly Gly Gly Leu Gly Asn Val Ala Ala Ala Gln Gly Gly 
                      20                  25                  30          
          Pro Pro Lys Ser Gly Val Phe Gly Glu Asn Gln Lys Arg Asn Asp Gln 
                  35                  40                  45              
          Pro Phe Ala Trp Gln Val Ala Ser Leu Ser Glu Arg Tyr Gln Glu Gln 
              50                  55                  60                  
          Phe Asp Ile Gly Ala Ala Val Glu Pro Tyr Gln Leu Glu Gly Arg Gln 
          65                  70                  75                  80  
          Ala Gln Ile Leu Lys His His Tyr Asn Ser Leu Val Ala Glu Asn Ala 
                          85                  90                  95      
          Met Lys Pro Val Ser Leu Gln Pro Arg Glu Gly Glu Trp Asn Trp Glu 
                      100                 105                 110         
          Gly Ala Asp Lys Ile Val Glu Phe Ala Arg Lys His Asn Met Glu Leu 
                  115                 120                 125             
          Arg Phe His Thr Leu Val Trp His Ser Gln Val Pro Glu Trp Phe Phe 
              130                 135                 140                 
          Ile Asp Glu Asn Gly Asn Arg Met Val Asp Glu Thr Asp Pro Glu Lys 
          145                 150                 155                 160 
          Arg Lys Ala Asn Lys Gln Leu Leu Leu Glu Arg Met Glu Asn His Ile 
                          165                 170                 175     
          Lys Thr Val Val Glu Arg Tyr Lys Asp Asp Val Thr Ser Trp Asp Val 
                      180                 185                 190         
          Val Asn Glu Val Ile Asp Asp Gly Gly Gly Leu Arg Glu Ser Glu Trp 
                  195                 200                 205             
          Tyr Gln Ile Thr Gly Thr Asp Tyr Ile Lys Val Ala Phe Glu Thr Ala 
              210                 215                 220                 
          Arg Lys Tyr Gly Gly Glu Glu Ala Lys Leu Tyr Ile Asn Asp Tyr Asn 
          225                 230                 235                 240 
          Thr Glu Val Pro Ser Lys Arg Asp Asp Leu Tyr Asn Leu Val Lys Asp 
                          245                 250                 255     
          Leu Leu Glu Gln Gly Val Pro Ile Asp Gly Val Gly His Gln Ser His 
                      260                 265                 270         
          Ile Gln Ile Gly Trp Pro Ser Ile Glu Asp Thr Arg Ala Ser Phe Glu 
                  275                 280                 285             
          Lys Phe Thr Ser Leu Gly Leu Asp Asn Gln Val Thr Glu Leu Asp Met 
              290                 295                 300                 
          Ser Leu Tyr Gly Trp Pro Pro Thr Gly Ala Tyr Thr Ser Tyr Asp Asp 
          305                 310                 315                 320 
          Ile Pro Glu Glu Leu Phe Gln Ala Gln Ala Asp Arg Tyr Asp Gln Leu 
                          325                 330                 335     
          Phe Glu Leu Tyr Glu Glu Leu Ser Ala Thr Ile Ser Ser Val Thr Phe 
                      340                 345                 350         
          Trp Gly Ile Ala Asp Asn His Thr Trp Leu Asp Asp Arg Ala Arg Glu 
                  355                 360                 365             
          Tyr Asn Asn Gly Val Gly Val Asp Ala Pro Phe Val Phe Asp His Asn 
              370                 375                 380                 
          Tyr Arg Val Lys Pro Ala Tyr Trp Arg Ile Ile Asp 
          385                 390                 395     
          <![CDATA[<210>  8]]>
          <![CDATA[<211>  1191]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<400>  8]]>
          atggttacac tttttaaaaa gccttttgtt gctggactag cgatctcttt attagttgga       60
          ggggggctag gcaatgtagc tgctgctcaa ggaggaccac caaaatctgg agtctttgga      120
          gaaaatcaaa aaagaaatga tcagcctttt gcatggcaag ttgcttctct ttctgagcga      180
          tatcaagagc agtttgatat tggagctgcg gttgagccct atcaattaga aggaagacaa      240
          gcccaaattt taaagcatca ttataacagc cttgtggcgg aaaatgcaat gaaacctgta      300
          tcactccagc caagagaagg tgagtggaac tgggaaggcg ctgacaaaat tgtggagttt      360
          gcccgcaaac ataacatgga gcttcgcttc cacacactcg tttggcatag ccaagtacca      420
          gaatggtttt tcatcgatga aaatggcaat cggatggttg atgaaaccga tccagaaaaa      480
          cgtaaagcga ataaacaatt gttattggag cgaatggaaa accatattaa aacggttgtt      540
          gaacgttata aagatgatgt gacttcatgg gatgtggtga atgaagttat tgatgatggc      600
          gggggcctcc gtgaatcaga atggtatcaa ataacaggca ctgactacat taaggtagct      660
          tttgaaactg caagaaaata tggtggtgaa gaggcaaagc tgtacattaa tgattacaac      720
          accgaagtac cttctaaaag agatgacctt tacaacctgg tgaaagactt attagagcaa      780
          ggagtaccaa ttgacggggt aggacatcag tctcatatcc aaatcggctg gccttccatt      840
          gaagatacaa gagcttcttt tgaaaagttt acgagtttag gattagacaa ccaagtaact      900
          gaactagaca tgagtcttta tggctggcca ccgacagggg cctatacctc ttatgacgac      960
          attccagaag agctttttca agctcaagca gaccgttatg atcagctatt tgagttatat     1020
          gaagaattaa gcgctactat cagtagtgta accttctggg gaattgctga taaccataca     1080
          tggcttgatg accgcgctag agagtacaat aatggagtag gggtcgatgc accatttgtt     1140
          tttgatcaca actatcgagt gaagcctgct tactggagaa ttattgatta a              1191
                                   Sequence Listing
          <![CDATA[<110> National Chung Cheng University]]>
          <![CDATA[<120> Method for preparing xylo-oligosaccharide and protein composition used in it]]>
          <![CDATA[<160> 8 ]]>
          <![CDATA[<170> PatentIn Version 3.5]]>
          <![CDATA[<210> 1]]>
          <![CDATA[<211> 597]]>
          <![CDATA[<212> PRT]]>
          <![CDATA[<213> Manual Sequence]]>
          <![CDATA[<400> 1]]>
          Met Met Ile Thr Leu Phe Lys Lys Pro Phe Val Ala Gly Leu Ala Ile
          1 5 10 15
          Ser Leu Leu Val Gly Gly Gly Leu Gly Asn Val Ala Ala Ala Gln Gly
                      20 25 30
          Gly Pro Pro Lys Ser Gly Val Phe Gly Glu Asn Gln Lys Arg Asn Asp
                  35 40 45
          Gln Pro Phe Ala Trp Gln Val Ala Ser Leu Ser Glu Arg Tyr Gln Glu
              50 55 60
          Gln Phe Asp Ile Gly Ala Ala Val Glu Pro Tyr Gln Leu Glu Gly Arg
          65 70 75 80
          Gln Ala Gln Ile Leu Lys His His Tyr Asn Ser Leu Val Ala Glu Asn
                          85 90 95
          Ala Met Lys Pro Val Ser Leu Gln Pro Arg Glu Gly Glu Trp Asn Trp
                      100 105 110
          Glu Gly Ala Asp Lys Ile Val Glu Phe Ala Arg Lys His Asn Met Glu
                  115 120 125
          Leu Arg Phe His Thr Leu Val Trp His Ser Gln Val Pro Glu Trp Phe
              130 135 140
          Phe Ile Asp Glu Asn Gly Asn Arg Met Val Asp Glu Thr Asp Pro Glu
          145 150 155 160
          Lys Arg Lys Ala Asn Lys Gln Leu Leu Leu Glu Arg Met Glu Asn His
                          165 170 175
          Ile Lys Thr Val Val Glu Arg Tyr Lys Asp Asp Val Thr Ser Trp Asp
                      180 185 190
          Val Val Asn Glu Val Ile Asp Asp Gly Gly Gly Leu Arg Glu Ser Glu
                  195 200 205
          Trp Tyr Gln Ile Thr Gly Thr Asp Tyr Ile Lys Val Ala Phe Glu Thr
              210 215 220
          Ala Arg Lys Tyr Gly Gly Glu Glu Ala Lys Leu Tyr Ile Asn Asp Tyr
          225 230 235 240
          Asn Thr Glu Val Pro Ser Lys Arg Asp Asp Leu Tyr Asn Leu Val Lys
                          245 250 255
          Asp Leu Leu Glu Gln Gly Val Pro Ile Asp Gly Val Gly His Gln Ser
                      260 265 270
          His Ile Gln Ile Gly Trp Pro Ser Ile Glu Asp Thr Arg Ala Ser Phe
                  275 280 285
          Glu Lys Phe Thr Ser Leu Gly Leu Asp Asn Gln Val Thr Glu Leu Asp
              290 295 300
          Met Ser Leu Tyr Gly Trp Pro Pro Thr Gly Ala Tyr Thr Ser Tyr Asp
          305 310 315 320
          Asp Ile Pro Glu Glu Leu Phe Gln Ala Gln Ala Asp Arg Tyr Asp Gln
                          325 330 335
          Leu Phe Glu Leu Tyr Glu Glu Leu Ser Ala Thr Ile Ser Ser Val Thr
                      340 345 350
          Phe Trp Gly Ile Ala Asp Asn His Thr Trp Leu Asp Asp Arg Ala Arg
                  355 360 365
          Glu Tyr Asn Asn Gly Val Gly Val Asp Ala Pro Phe Val Phe Asp His
              370 375 380
          Asn Tyr Arg Val Lys Pro Ala Tyr Trp Gly Ile Ile Asp Gly Gly Gly
          385 390 395 400
          Gly Ser Gly Gly Gly Gly Ser Asn Thr Tyr Trp Gln Tyr Trp Thr Asp
                          405 410 415
          Gly Gly Gly Thr Val Asn Ala Thr Asn Gly Pro Gly Gly Asn Tyr Ser
                      420 425 430
          Val Thr Trp Arg Asp Thr Gly Asn Phe Val Val Gly Lys Gly Trp Glu
                  435 440 445
          Ile Gly Ser Pro Asn Arg Thr Ile His Tyr Asn Ala Gly Val Trp Glu
              450 455 460
          Pro Ser Gly Asn Gly Tyr Leu Thr Leu Tyr Gly Trp Thr Arg Asn Gln
          465 470 475 480
          Leu Ile Glu Tyr Tyr Val Val Asp Asn Trp Gly Thr Tyr Arg Pro Thr
                          485 490 495
          Gly Thr His Arg Gly Thr Val Val Ser Asp Gly Gly Thr Tyr Asp Ile
                      500 505 510
          Tyr Thr Thr Met Arg Tyr Asn Ala Pro Ser Ile Asp Gly Thr Gln Thr
                  515 520 525
          Phe Gln Gln Phe Trp Ser Val Arg Gln Ser Lys Arg Pro Thr Gly Asn
              530 535 540
          Asn Val Ser Val Thr Phe Ser Asn His Val Asn Ala Trp Arg Asn Ala
          545 550 555 560
          Gly Met Asn Leu Gly Ser Ser Trp Ser Tyr Gln Val Leu Ala Thr Glu
                          565 570 575
          Gly Tyr Gln Ser Ser Gly Arg Ser Asn Val Thr Val Trp Leu Glu His
                      580 585 590
          His His His His His
                  595
          <![CDATA[<210> 2]]>
          <![CDATA[<211> 1794]]>
          <![CDATA[<212> DNA]]>
          <![CDATA[<213> Manual Sequence]]>
          <![CDATA[<400> 2]]>
          atgatgatta ccctgttcaa aaaaccgttt gttgcaggtc tggcaattag cctgctggtt 60
          ggtggtggtc tgggtaatgt tgcagcagca cagggtggtc cgcctaaaag cggtgttttt 120
          ggtgaaaatc agaaacgtaa tgatcagccg tttgcatggc aggttgcaag cctgagcgaa 180
          cgttatcaag aacagtttga tattggtgca gcagttgaac cgtatcagct ggaaggtcgt 240
          caggcacaga ttctgaaaca tcattataac agcctggttg ccgaaaatgc aatgaaaccg 300
          gttagcctgc agcctcgtga aggtgaatgg aattgggaag gtgcagataa aattgttgag 360
          tttgcccgta aacacaatat ggaactgcgt tttcataccc tggtttggca tagccaggtt 420
          ccggaatggt tttttatcga tgaaaatggt aatcgcatgg tggatgaaac cgatccggaa 480
          aaacgtaaag caaataaaca gctgctgctg gaacgtatgg aaaaccatat caaaaccgtt 540
          gtggaacgct ataaagatga tgttaccagc tgggatgttg tgaacgaagt tattgatgat 600
          ggtggtggcc tgcgtgaaag cgaatggtat cagattaccg gcaccgatta tatcaaagtt 660
          gcatttgaaa ccgcacgcaa atatggtggt gaagaagcaa aactgtatat caacgattat 720
          aacaccgaag tgccgagcaa acgtgatgat ctgtataatc tggttaaaga cctgctggaa 780
          cagggtgttc cgattgatgg tgttggtcat cagagccata ttcagattgg ttggccgagc 840
          attgaagata cccgtgcaag ctttgaaaaa ttcaccagcc tgggtctgga taatcaggtt 900
          accgaactgg atatgagcct gtatggttgg cctccgaccg gtgcatatac cagctatgat 960
          gatattccgg aagaactgtt tcaggcccag gcagatcgtt atgatcagct gttcgaactg 1020
          tatgaagaac tgagcgcaac cattagcagc gttacctttt ggggtattgc agataatcat 1080
          acctggctgg atgatcgtgc acgtgaatat aacaatggtg tgggtgttga tgcaccgttt 1140
          gtgtttgatc ataattatcg tgtgaaaccg gcatattggg gcattattga tggcggtggc 1200
          ggtagcggtg gtggcggttc aaatacctat tggcagtatt ggaccgatgg tggcggaacc 1260
          gttaatgcaa ccaatggtcc gggtggtaat tatagcgtga cctggcgtga taccggcaat 1320
          tttgttgttg gtaaaggttg ggaaattggt agcccgaatc gtaccattca ctataatgcc 1380
          ggtgtttggg aaccgagcgg taatggttat ctgaccctgt atggctggac ccgcaaccag 1440
          ctgattgaat attatgttgt tgataactgg ggcacctatc gtccgaccgg cacccatcgt 1500
          ggcaccgttg ttagtgatgg tggcacctat gatatctata ccacgatgcg ttataatgca 1560
          ccgtcaattg atggcaccca gacctttcag cagttttgga gcgttcgtca gagtaaacgt 1620
          ccgacaggta ataatgttag tgtgaccttt agcaatcatg tgaatgcatg gcgtaatgca 1680
          ggtatgaatc tgggtagcag ctggtcatat caggttctgg caaccgaagg ttatcagagc 1740
          agcggtcgta gcaatgttac cgtttggctc gagcaccacc accaccacca ctga 1794
          <![CDATA[<210> 3]]>
          <![CDATA[<211> 57]]>
          <![CDATA[<212> DNA]]>
          <![CDATA[<213> Manual Sequence]]>
          <![CDATA[<400> 3]]>
          ggaattccat atgatgatta ccctgttcaa aaaaccgttt gttgcaggtc tggcaat 57
          <![CDATA[<210> 4]]>
          <![CDATA[<211> 33]]>
          <![CDATA[<212> DNA]]>
          <![CDATA[<213> Manual Sequence]]>
          <![CDATA[<400> 4]]>
          cgcctcgagc caaacggtaa cattgctacg acc 33
          <![CDATA[<210> 5]]>
          <![CDATA[<211> 396]]>
          <![CDATA[<212> PRT]]>
          <![CDATA[<213> Manual Sequence]]>
          <![CDATA[<400> 5]]>
          Met Val Thr Leu Phe Lys Lys Pro Phe Val Ala Gly Leu Ala Ile Ser
          1 5 10 15
          Leu Leu Val Gly Gly Gly Leu Gly Asn Val Ala Ala Ala Gln Gly Gly
                      20 25 30
          Pro Pro Lys Ser Gly Val Phe Gly Glu Asn Gln Lys Arg Asn Asp Gln
                  35 40 45
          Pro Phe Ala Trp Gln Val Ala Ser Leu Ser Glu Arg Tyr Gln Glu Gln
              50 55 60
          Phe Asp Ile Gly Ala Ala Val Glu Pro Tyr Gln Leu Glu Gly Arg Gln
          65 70 75 80
          Ala Gln Ile Leu Lys His His Tyr Asn Ser Leu Val Ala Glu Asn Ala
                          85 90 95
          Met Lys Pro Val Ser Leu Gln Pro Arg Glu Gly Glu Trp Asn Trp Glu
                      100 105 110
          Gly Ala Asp Lys Ile Val Glu Phe Ala Arg Lys His Asn Met Glu Leu
                  115 120 125
          Arg Phe His Thr Leu Val Trp His Ser Gln Val Pro Glu Trp Phe Phe
              130 135 140
          Ile Asp Glu Asn Gly Asn Arg Met Val Asp Glu Thr Asp Pro Glu Lys
          145 150 155 160
          Arg Lys Ala Asn Lys Gln Leu Leu Leu Glu Arg Met Glu Asn His Ile
                          165 170 175
          Lys Thr Val Val Glu Arg Tyr Lys Asp Asp Val Thr Ser Trp Asp Val
                      180 185 190
          Val Asn Glu Val Ile Asp Asp Gly Gly Gly Leu Arg Glu Ser Glu Trp
                  195 200 205
          Tyr Gln Ile Thr Gly Thr Asp Tyr Ile Lys Val Ala Phe Glu Thr Ala
              210 215 220
          Arg Lys Tyr Gly Gly Glu Glu Ala Lys Leu Tyr Ile Asn Asp Tyr Asn
          225 230 235 240
          Thr Glu Val Pro Ser Lys Arg Asp Asp Leu Tyr Asn Leu Val Lys Asp
                          245 250 255
          Leu Leu Glu Gln Gly Val Pro Ile Asp Gly Val Gly His Gln Ser His
                      260 265 270
          Ile Gln Ile Gly Trp Pro Ser Ile Glu Asp Thr Arg Ala Ser Phe Glu
                  275 280 285
          Lys Phe Thr Ser Leu Gly Leu Asp Asn Gln Val Thr Glu Leu Asp Met
              290 295 300
          Ser Leu Tyr Gly Trp Pro Pro Thr Gly Ala Tyr Thr Ser Tyr Asp Asp
          305 310 315 320
          Ile Pro Glu Glu Leu Phe Gln Ala Gln Ala Asp Arg Tyr Asp Gln Leu
                          325 330 335
          Phe Glu Leu Tyr Glu Glu Leu Ser Ala Thr Ile Ser Ser Val Thr Phe
                      340 345 350
          Trp Gly Ile Ala Asp Asn His Thr Trp Leu Asp Gly Arg Ala Arg Glu
                  355 360 365
          Tyr Asn Asn Gly Val Gly Val Asp Ala Pro Phe Val Phe Asp His Asn
              370 375 380
          Tyr Arg Val Lys Pro Ala Tyr Trp Arg Ile Ile Asp
          385 390 395
          <![CDATA[<210> 6]]>
          <![CDATA[<211> 1191]]>
          <![CDATA[<212> DNA]]>
          <![CDATA[<213> Manual Sequence]]>
          <![CDATA[<400> 6]]>
          atggttacac tttttaaaaa gccttttgtt gctggactag cgatctcttt attagttgga 60
          ggggggctag gcaatgtagc tgctgctcaa ggaggaccac caaaatctgg agtctttgga 120
          gaaaatcaaa aaagaaatga tcagcctttt gcatggcaag ttgcttctct ttctgagcga 180
          tatcaagagc agtttgatat tggagctgcg gttgagccct atcaattaga aggaagacaa 240
          gcccaaattt taaagcatca ttataacagc cttgtggcgg aaaatgcaat gaaacctgta 300
          tcactccagc caagagaagg tgagtggaac tgggaaggcg ctgacaaaat tgtggagttt 360
          gcccgcaaac ataacatgga gcttcgcttc cacacactcg tttggcatag ccaagtacca 420
          gaatggtttt tcatcgatga aaatggcaat cggatggttg atgaaaccga tccagaaaaa 480
          cgtaaagcga ataaacaatt gttattggag cgaatggaaa accatattaa aacggttgtt 540
          gaacgttata aagatgatgt gacttcatgg gatgtggtga atgaagttat tgatgatggc 600
          gggggcctcc gtgaatcaga atggtatcaa ataacaggca ctgactacat taaggtagct 660
          tttgaaactg caagaaaata tggtggtgaa gaggcaaagc tgtacattaa tgattacaac 720
          accgaagtac cttctaaaag agatgacctt tacaacctgg tgaaagactt attagagcaa 780
          ggagtaccaa ttgacggggt aggacatcag tctcatatcc aaatcggctg gccttccatt 840
          gaagatacaa gagcttcttt tgaaaagttt acgagtttag gattagacaa ccaagtaact 900
          gaactagaca tgagtcttta tggctggcca ccgacagggg cctatacctc ttatgacgac 960
          attccagaag agctttttca agctcaagca gaccgttatg atcagctatt tgagttatat 1020
          gaagaattaa gcgctactat cagtagtgta accttctggg gaattgctga taaccataca 1080
          tggcttgatg gccgcgctag agagtacaat aatggagtag gggtcgatgc accatttgtt 1140
          tttgatcaca actatcgagt gaagcctgct tactggagaa ttattgatta a 1191
          <![CDATA[<210> 7]]>
          <![CDATA[<211> 396]]>
          <![CDATA[<212> PRT]]>
          <![CDATA[<213> Manual Sequence]]>
          <![CDATA[<400> 7]]>
          Met Val Thr Leu Phe Lys Lys Pro Phe Val Ala Gly Leu Ala Ile Ser
          1 5 10 15
          Leu Leu Val Gly Gly Gly Leu Gly Asn Val Ala Ala Ala Gln Gly Gly
                      20 25 30
          Pro Pro Lys Ser Gly Val Phe Gly Glu Asn Gln Lys Arg Asn Asp Gln
                  35 40 45
          Pro Phe Ala Trp Gln Val Ala Ser Leu Ser Glu Arg Tyr Gln Glu Gln
              50 55 60
          Phe Asp Ile Gly Ala Ala Val Glu Pro Tyr Gln Leu Glu Gly Arg Gln
          65 70 75 80
          Ala Gln Ile Leu Lys His His Tyr Asn Ser Leu Val Ala Glu Asn Ala
                          85 90 95
          Met Lys Pro Val Ser Leu Gln Pro Arg Glu Gly Glu Trp Asn Trp Glu
                      100 105 110
          Gly Ala Asp Lys Ile Val Glu Phe Ala Arg Lys His Asn Met Glu Leu
                  115 120 125
          Arg Phe His Thr Leu Val Trp His Ser Gln Val Pro Glu Trp Phe Phe
              130 135 140
          Ile Asp Glu Asn Gly Asn Arg Met Val Asp Glu Thr Asp Pro Glu Lys
          145 150 155 160
          Arg Lys Ala Asn Lys Gln Leu Leu Leu Glu Arg Met Glu Asn His Ile
                          165 170 175
          Lys Thr Val Val Glu Arg Tyr Lys Asp Asp Val Thr Ser Trp Asp Val
                      180 185 190
          Val Asn Glu Val Ile Asp Asp Gly Gly Gly Leu Arg Glu Ser Glu Trp
                  195 200 205
          Tyr Gln Ile Thr Gly Thr Asp Tyr Ile Lys Val Ala Phe Glu Thr Ala
              210 215 220
          Arg Lys Tyr Gly Gly Glu Glu Ala Lys Leu Tyr Ile Asn Asp Tyr Asn
          225 230 235 240
          Thr Glu Val Pro Ser Lys Arg Asp Asp Leu Tyr Asn Leu Val Lys Asp
                          245 250 255
          Leu Leu Glu Gln Gly Val Pro Ile Asp Gly Val Gly His Gln Ser His
                      260 265 270
          Ile Gln Ile Gly Trp Pro Ser Ile Glu Asp Thr Arg Ala Ser Phe Glu
                  275 280 285
          Lys Phe Thr Ser Leu Gly Leu Asp Asn Gln Val Thr Glu Leu Asp Met
              290 295 300
          Ser Leu Tyr Gly Trp Pro Pro Thr Gly Ala Tyr Thr Ser Tyr Asp Asp
          305 310 315 320
          Ile Pro Glu Glu Leu Phe Gln Ala Gln Ala Asp Arg Tyr Asp Gln Leu
                          325 330 335
          Phe Glu Leu Tyr Glu Glu Leu Ser Ala Thr Ile Ser Ser Val Thr Phe
                      340 345 350
          Trp Gly Ile Ala Asp Asn His Thr Trp Leu Asp Asp Arg Ala Arg Glu
                  355 360 365
          Tyr Asn Asn Gly Val Gly Val Asp Ala Pro Phe Val Phe Asp His Asn
              370 375 380
          Tyr Arg Val Lys Pro Ala Tyr Trp Arg Ile Ile Asp
          385 390 395
          <![CDATA[<210> 8]]>
          <![CDATA[<211> 1191]]>
          <![CDATA[<212> DNA]]>
          <![CDATA[<213> Manual Sequence]]>
          <![CDATA[<400> 8]]>
          atggttacac tttttaaaaa gccttttgtt gctggactag cgatctcttt attagttgga 60
          ggggggctag gcaatgtagc tgctgctcaa ggaggaccac caaaatctgg agtctttgga 120
          gaaaatcaaa aaagaaatga tcagcctttt gcatggcaag ttgcttctct ttctgagcga 180
          tatcaagagc agtttgatat tggagctgcg gttgagccct atcaattaga aggaagacaa 240
          gcccaaattt taaagcatca ttataacagc cttgtggcgg aaaatgcaat gaaacctgta 300
          tcactccagc caagagaagg tgagtggaac tgggaaggcg ctgacaaaat tgtggagttt 360
          gcccgcaaac ataacatgga gcttcgcttc cacacactcg tttggcatag ccaagtacca 420
          gaatggtttt tcatcgatga aaatggcaat cggatggttg atgaaaccga tccagaaaaa 480
          cgtaaagcga ataaacaatt gttattggag cgaatggaaa accatattaa aacggttgtt 540
          gaacgttata aagatgatgt gacttcatgg gatgtggtga atgaagttat tgatgatggc 600
          gggggcctcc gtgaatcaga atggtatcaa ataacaggca ctgactacat taaggtagct 660
          tttgaaactg caagaaaata tggtggtgaa gaggcaaagc tgtacattaa tgattacaac 720
          accgaagtac cttctaaaag agatgacctt tacaacctgg tgaaagactt attagagcaa 780
          ggagtaccaa ttgacggggt aggacatcag tctcatatcc aaatcggctg gccttccatt 840
          gaagatacaa gagcttcttt tgaaaagttt acgagtttag gattagacaa ccaagtaact 900
          gaactagaca tgagtcttta tggctggcca ccgacagggg cctatacctc ttatgacgac 960
          attccagaag agctttttca agctcaagca gaccgttatg atcagctatt tgagttatat 1020
          gaagaattaa gcgctactat cagtagtgta accttctggg gaattgctga taaccataca 1080
          tggcttgatg accgcgctag agagtacaat aatggagtag gggtcgatgc accatttgtt 1140
          tttgatcaca actatcgagt gaagcctgct tactggagaa ttattgatta a 1191
          
      

S1:步驟 S1: Step

S2:步驟 S2: Step

S3:步驟 S3: steps

Claims (6)

一種木寡糖的製備方法,其由以下步驟所組成:(a)將溶劑加至鳳梨皮渣以獲得鳳梨皮渣液體混合物,其中所述鳳梨皮渣與溶劑之固液比為1:1至1:30(w:v),並於115℃至160℃下進行水熱反應,得到水熱反應後的鳳梨皮渣液體混合物,所述溶劑為水,且所述鳳梨皮渣液體混合物進一步添加鳳梨皮渣的0.1重量%至3重量%的酸;(b)將所述水熱反應後的鳳梨皮渣液體混合物於30℃至80℃、酸性環境下進行去支鏈反應,得到去支鏈反應後的鳳梨皮渣液體混合物;及(c)將內切型聚木糖酶添加至所述去支鏈反應後的鳳梨皮渣液體混合物,進行酵素反應,得到木寡糖。 A preparation method of xylo-oligosaccharides, which consists of the following steps: (a) adding a solvent to pineapple peel residue to obtain a liquid mixture of pineapple peel residue, wherein the solid-liquid ratio of the pineapple peel residue to the solvent is 1:1 to 1:30 (w: v), and conduct a hydrothermal reaction at 115°C to 160°C to obtain a liquid mixture of pineapple peel residue after hydrothermal reaction, the solvent is water, and the pineapple peel residue liquid mixture is further added 0.1% to 3% by weight of the acid of the pineapple peel residue; (b) debranching the liquid mixture of the pineapple peel residue after the hydrothermal reaction at 30°C to 80°C in an acidic environment to obtain debranching The reacted pineapple peel residue liquid mixture; and (c) adding endo-xylanase to the pineapple peel residue liquid mixture after the debranching reaction to perform an enzyme reaction to obtain xylo-oligosaccharides. 如請求項1之木寡糖的製備方法,其中步驟(a)中進行水熱反應之鳳梨皮渣與溶劑之固液比為1:7至1:15(w:v)。 Such as the preparation method of xylo-oligosaccharide of claim 1, wherein the solid-liquid ratio of the pineapple peel residue to the solvent for the hydrothermal reaction in step (a) is 1:7 to 1:15 (w:v). 如請求項2之木寡糖的製備方法,其中所述水熱反應之時間為1.5至3小時。 The method for preparing xylo-oligosaccharides according to claim 2, wherein the hydrothermal reaction time is 1.5 to 3 hours. 如請求項1之木寡糖的製備方法,其中所述步驟(b)之去支鏈反應是於70℃下進行。 The method for preparing xylo-oligosaccharides according to claim 1, wherein the debranching reaction in step (b) is carried out at 70°C. 一種木寡糖的製備方法,其由以下步驟所組成:(a)將溶劑加至鳳梨皮渣以獲得鳳梨皮渣液體混合物,其中所述鳳梨皮渣與溶劑之固液比為1:1至1:30(w:v),並於115℃至160℃下進行水熱反應,得到水熱反應後的鳳梨皮渣液體混合物,所述溶劑為水,且所述鳳梨皮渣液體混合物進一步添加鳳梨皮渣的0.1重量%至3重量%的酸;(b)將所述水熱反應後的鳳梨皮渣液體混合物於30℃至80℃、酸性環境下進行去支鏈反應,再分離以去除鳳梨皮渣,得到去支鏈反應後的鳳梨皮渣液體混合物;及 (c)將內切型聚木糖酶添加至所述去支鏈反應後的鳳梨皮渣液體混合物,進行酵素反應,得到木寡糖。 A preparation method of xylo-oligosaccharides, which consists of the following steps: (a) adding a solvent to pineapple peel residue to obtain a liquid mixture of pineapple peel residue, wherein the solid-liquid ratio of the pineapple peel residue to the solvent is 1:1 to 1:30 (w: v), and conduct a hydrothermal reaction at 115°C to 160°C to obtain a liquid mixture of pineapple peel residue after hydrothermal reaction, the solvent is water, and the pineapple peel residue liquid mixture is further added 0.1% to 3% by weight of the acid of the pineapple peel residue; (b) Debranching reaction of the pineapple peel residue liquid mixture after the hydrothermal reaction is carried out at 30°C to 80°C in an acidic environment, and then separated to remove Pineapple peel residue to obtain a liquid mixture of pineapple peel residue after debranching reaction; and (c) adding endo-xylanase to the liquid mixture of pineapple peel residue after the debranching reaction, and performing an enzyme reaction to obtain xylo-oligosaccharides. 一種木寡糖的製備方法,其由以下步驟所組成:(a)將溶劑加至鳳梨皮渣以獲得鳳梨皮渣液體混合物,其中所述鳳梨皮渣與溶劑之固液比為1:1至1:30(w:v),並於115℃至160℃下進行水熱反應,得到水熱反應後的鳳梨皮渣液體混合物,所述溶劑為水,且所述鳳梨皮渣液體混合物進一步添加鳳梨皮渣的0.1重量%至3重量%的酸;(b)將所述水熱反應後的鳳梨皮渣液體混合物於30℃至80℃、酸性環境下進行去支鏈反應,得到去支鏈反應後的鳳梨皮渣液體混合物;及(c)將內切型聚木糖酶添加至所述去支鏈反應後的鳳梨皮渣液體混合物,進行酵素反應,再分離以去除鳳梨皮渣,得到木寡糖。 A preparation method of xylo-oligosaccharides, which consists of the following steps: (a) adding a solvent to pineapple peel residue to obtain a liquid mixture of pineapple peel residue, wherein the solid-liquid ratio of the pineapple peel residue to the solvent is 1:1 to 1:30 (w: v), and conduct a hydrothermal reaction at 115°C to 160°C to obtain a liquid mixture of pineapple peel residue after hydrothermal reaction, the solvent is water, and the pineapple peel residue liquid mixture is further added 0.1% to 3% by weight of the acid of the pineapple peel residue; (b) debranching the liquid mixture of the pineapple peel residue after the hydrothermal reaction at 30°C to 80°C in an acidic environment to obtain debranching The reacted pineapple peel residue liquid mixture; and (c) adding endo-xylanase to the pineapple peel residue liquid mixture after the debranching reaction, perform an enzyme reaction, and then separate to remove the pineapple peel residue to obtain Xylooligosaccharides.
TW109117386A 2020-05-25 2020-05-25 Method for preparing xylo-oligosaccharide TWI738358B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109117386A TWI738358B (en) 2020-05-25 2020-05-25 Method for preparing xylo-oligosaccharide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109117386A TWI738358B (en) 2020-05-25 2020-05-25 Method for preparing xylo-oligosaccharide

Publications (2)

Publication Number Publication Date
TWI738358B true TWI738358B (en) 2021-09-01
TW202144582A TW202144582A (en) 2021-12-01

Family

ID=78778255

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109117386A TWI738358B (en) 2020-05-25 2020-05-25 Method for preparing xylo-oligosaccharide

Country Status (1)

Country Link
TW (1) TWI738358B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201231665A (en) * 2011-01-28 2012-08-01 Nat Univ Chung Cheng Method for production of xylooligosaccharide with controllable composition by Bacillus halodurans

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201231665A (en) * 2011-01-28 2012-08-01 Nat Univ Chung Cheng Method for production of xylooligosaccharide with controllable composition by Bacillus halodurans

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Gleb Dotsenko et al., "Enzymatic production of wheat and ryegrass derived xylooligosaccharides and evaluation of their in vitro effect on pig gut microbiota." Biomass Conversion and Biorefinery 8.3 (2018), p.497-507.
Shivali Banerjee et al., "Hemicellulose based biorefinery from pineapple peel waste: Xylan extraction and its conversion into xylooligosaccharides." Food and Bioproducts Processing 117 (2019), p.38-50.
Shivali Banerjee et al., "Hemicellulose based biorefinery from pineapple peel waste: Xylan extraction and its conversion into xylooligosaccharides." Food and Bioproducts Processing 117 (2019), p.38-50. Gleb Dotsenko et al., "Enzymatic production of wheat and ryegrass derived xylooligosaccharides and evaluation of their in vitro effect on pig gut microbiota." Biomass Conversion and Biorefinery 8.3 (2018), p.497-507. *

Also Published As

Publication number Publication date
TW202144582A (en) 2021-12-01

Similar Documents

Publication Publication Date Title
CN111424047B (en) 4, 6-alpha-glucosyltransferase and application thereof in production of resistant dextrin
KR102117175B1 (en) Soluble dietary fiber and method for its preparation
CN111004827B (en) Preparation method of xylo-oligosaccharide
CN107043796B (en) A method of preparing malt syrup
CN106318991A (en) Resistant dextrin and preparation method thereof
CN108410839A (en) A kind of beta-glucuronidase enzyme mutant that thermal stability improves
WO2020057561A1 (en) Method for preparing d-psicose from starch
CN112553183B (en) Glycoside hydrolase CmChi3 and application thereof in degradation of hydrocolloid chitin
TWI738358B (en) Method for preparing xylo-oligosaccharide
CN106636254A (en) Process for preparing high-purity xylooligosaccharide
CN113403245A (en) Recombinant escherichia coli immobilized cell and application thereof
CN108570107B (en) Expansin and xylanase fusion protein, and coding gene and application thereof
CN112831489B (en) Psicose 3-epimerase immobilized enzyme, and immobilization method and application thereof
CN115975989B (en) Type III pullulan hydrolase mutant for preparing corn resistant starch, and preparation method and application thereof
WO2022156402A1 (en) 1,3/1,4-xylanase mlx1034, gene encoding same, and application thereof
CN112592911B (en) Application of heat-resistant alpha-glucuronidase polypeptide fusion in preparation of glucuronic acid
CN107236772A (en) A kind of method for preparing brown alga oligose
CN110317251B (en) Hypoglycemic polypeptide and preparation method and application thereof
CN113832128A (en) Novel glycosidase and preparation method and application thereof
WO2019128258A1 (en) Method for preparing slowly-digested sugar
CN104846048A (en) Extraction method of animal polypeptide
CN106222216B (en) A kind of DP4 oligoisomaltose and preparation method thereof
CN102061321B (en) Method for preparing glucose raw material for injection from broken rice and preparations
US20200002695A1 (en) Xylanase variant and enzyme composition for decomposing biomass
CN109439607A (en) A kind of application of maltogenic amylase production bacterial strain