TWI736048B - 計算預測旅行時間的電子裝置和方法 - Google Patents
計算預測旅行時間的電子裝置和方法 Download PDFInfo
- Publication number
- TWI736048B TWI736048B TW108144472A TW108144472A TWI736048B TW I736048 B TWI736048 B TW I736048B TW 108144472 A TW108144472 A TW 108144472A TW 108144472 A TW108144472 A TW 108144472A TW I736048 B TWI736048 B TW I736048B
- Authority
- TW
- Taiwan
- Prior art keywords
- road section
- density
- travel time
- positioning data
- electronic device
- Prior art date
Links
Images
Landscapes
- Traffic Control Systems (AREA)
Abstract
提出一種計算預測旅行時間的電子裝置和方法。方法包含:接收對應於第一路段的行動信令定位資料;響應於行動信令定位資料的密度大於或等於密度閾值而根據密度計算對應於第一路段的預測旅行時間;以及響應於密度小於密度閾值而根據順暢旅行時間計算預測旅行時間,其中順暢旅行時間關聯於第一路段的路長以及速限。
Description
本發明是有關於一種電子裝置和方法,且特別是有關於一種基於行動信令定位(cellular-based positioning,CP)資料的計算預測旅行時間的電子裝置和方法。
現今基於行動信令定位資料所計算的預測旅行時間,其準確度相對其他資料源如全球定位系統(global positioning system,GPS)等差了不少。尤其是在行動信令訊號數不夠多的區域,用以計算預測旅行時間的樣本往往不具代表性,因此導致計算結果的不穩定性和誤差偏高。基於上述,如何提出基於行動信令定位資料產出一種能更為準確地和穩定地計算出預測旅行時間的方法,是本領域人員致力的目標之一。
本發明提供一種基於行動信令定位資料的計算預測旅行時間的電子裝置和方法,能改善傳統的方法以計算出更準確的預測旅行時間(estimated travel time)。
本發明的一種基於行動信令定位資料的計算預測旅行時間的電子裝置,包括處理器、儲存媒體以及收發器。儲存媒體儲存多個模組。處理器耦接儲存媒體和收發器,並且存取和執行多個模組,其中多個模組包括資料收集模組以及運算模組。資料收集模組通過收發器接收對應於第一路段的行動信令定位資料。運算模組響應於行動信令定位資料的密度大於或等於密度閾值而根據密度計算對應於第一路段的預測旅行時間,並且響應於密度小於密度閾值而根據順暢旅行時間計算預測旅行時間,其中順暢旅行時間關聯於第一路段的路長以及速限。
在本發明的一實施例中,目標路段包括第一路段和第二路段,其中運算模組根據目標路段的多個起訖點而基於主成分分析計算對應於第一路段的主成分和對應於主成分的垂直方向變異數,並且響應於起訖點與起訖點在主成分上的投影之間的平方距離小於垂直方向變異數而將起訖點納入第一路段。
在本發明的一實施例中,上述的運算模組響應於平方距離大於或等於垂直方向變異數而將起訖點納入第二路段。
在本發明的一實施例中,上述的運算模組根據主成分決定第一範圍,並且根據第一範圍內的行動信令定位資料計算密度。
在本發明的一實施例中,上述的第一範圍關聯於與第一路段相對應的路寬以及電信信令定位誤差。
在本發明的一實施例中,上述的運算模組根據主成分決定第二範圍,根據對應於主成分與水平軸之間的角度的旋轉矩陣旋轉第二範圍以產生經旋轉第二範圍,並且根據主成分、路寬以及電信信令定位誤差從經旋轉第二範圍中選出第一範圍。
在本發明的一實施例中,上述的資料收集模組通過收發器接收來自全球定位系統的定位資料,並且運算模組根據定位資料決定密度閾值。
在本發明的一實施例中,上述的運算模組根據密度和基於定位資料所計算的旅行時間以建立停止分枝條件為旅行時間小於順暢旅行時間的回歸樹,其中運算模組從符合停止分枝條件的多個節點中選出對應於最大密度的節點以將最大密度配置為密度閾值。
在本發明的一實施例中,上述的運算模組根據對應於第一路段的基地台密度決定對應於第一路段的密度閾值,其中基地台密度與密度閾值成反比。
本發明的一種基於行動信令定位資料的計算預測旅行時間的方法,包括:接收對應於第一路段的行動信令定位資料;響應於行動信令定位資料的密度大於或等於密度閾值而根據密度計算對應於第一路段的預測旅行時間;以及響應於密度小於密度閾值而根據順暢旅行時間計算預測旅行時間,其中順暢旅行時間關聯於第一路段的路長以及速限。
基於上述,本發明的基於行動信令定位資料的計算預測旅行時間的電子裝置和方法可根據一路段的行動信令定位資料的密度來判斷以基於行動信令定位資料或基於路長和速限的方式來計算預測旅行時間。
圖1根據本發明的實施例繪示一種基於行動信令定位資料的計算預測旅行時間的電子裝置100的示意圖。電子裝置100可包括處理器110、儲存媒體120以及收發器130。
處理器110例如是中央處理單元(central processing unit,CPU),或是其他可程式化之一般用途或特殊用途的微控制單元(micro control unit,MCU)、微處理器(microprocessor)、數位信號處理器(digital signal processor,DSP)、可程式化控制器、特殊應用積體電路(application specific integrated circuit,ASIC)、圖形處理器(graphics processing unit,GPU)、算數邏輯單元(arithmetic logic unit,ALU)、複雜可程式邏輯裝置(complex programmable logic device,CPLD)、現場可程式化邏輯閘陣列(field programmable gate array,FPGA)或其他類似元件或上述元件的組合。處理器110可耦接至儲存媒體120以及收發器130,並且存取和執行儲存於儲存媒體120中的多個模組和各種應用程式。
儲存媒體120例如是任何型態的固定式或可移動式的隨機存取記憶體(random access memory,RAM)、唯讀記憶體(read-only memory,ROM)、快閃記憶體(flash memory)、硬碟(hard disk drive,HDD)、固態硬碟(solid state drive,SSD)或類似元件或上述元件的組合,而用於儲存可由處理器110執行的多個模組或各種應用程式。在本實施例中,儲存媒體120可儲存包括資料收集模組121和運算模組122等多個模組,其功能將於後續說明。
收發器130以無線或有線的方式傳送及接收訊號。收發器130還可以執行例如低噪聲放大、阻抗匹配、混頻、向上或向下頻率轉換、濾波、放大以及類似的操作。
電子裝置100可取得一目標路段的相關資訊,並且計算出對應於該目標路段的預測旅行時間,以供使用者作為行程規劃的參考。圖2A根據本發明的實施例繪示一目標路段200的示意圖。目標路段200是由多個起訖點(origin-destination,OD)所構成的,其中該些起訖點包括起訖點210、220、230、240、250、260、270以及280。電子裝置100可進而根據該些起訖點將目標路段分割為數個路段,以便計算出各個路段對應的預測旅行時間。在本實施例中,電子裝置100的運算模組122可將目標路段200分割為由起訖點210、220、230以及240所組成的第一路段21以及由起訖點250、260、270以及280所組成的第二路段22,如圖2A所示。
圖2B根據本發明的實施例繪示從目標路段200中分割出第一路段21的方法的流程圖,其中所述方法可由如圖1所示的電子裝置100實施。
在步驟S201中,運算模組122可根據目標路段200的多個起訖點而基於主成分分析(principal component analysis,PCA)計算出第一路段21的主成分(principal component)。舉例來說,運算模組122可根據如圖2A所示的起訖點210、220和230而基於主成分分析計算出第一路段21的主成分以及對應於主成分的垂直方向變異數。
在步驟S202中,運算模組122可判斷是否仍有對應於目標路段200的起訖點尚未被納入第一路段21。若仍有起訖點尚未被納入第一路段21,在進入步驟S203。若沒有起訖點尚未被納入第一路段21,則進入步驟S206。
在步驟S203中,運算模組122判斷是否將尚未被納入第一路段21的起訖點納入第一路段21。具體來說,運算模組122可取得當前的第一路段21的主成分的垂直方向變異數。接著,運算模組122可計算尚未被納入第一路段21之起訖點與目標起訖點在主成分上的投影之間的平方距離。若該平方距離小於垂直方向變異數,則進入步驟S204。若該平方距離大於或等於垂直方向變異數,則進入步驟S205。
以圖2C為例,圖2C根據本發明的實施例繪示基於主成分分析將起訖點240納入第一路段21的示意圖。假設運算模組122已經根據起訖點210、220和230計算出的第一路段21的主成分310。在運算模組122於步驟S202中判斷起訖點240尚未被納入第一路段21後,運算模組122可在步驟S203中取得由起訖點210、220和230所組成之第一路段21的主成分310的垂直方向變異數。接著,運算模組122可計算出起訖點240與起訖點240在主成分310上的投影241,並且計算出起訖點240與投影241之間的距離24的平方。若距離24的平方小於主成分310的垂直方向變異數,代表起訖點240應被納入第一路段21之中。因此,在後續的步驟S204中,運算模組122可將起訖點240納入第一路段21以產生更新的第一路段21。
另一方面,以圖2D為例,圖2D根據本發明的實施例繪示基於主成分分析將起訖點250納入第二路段22的示意圖。假設運算模組122已經根據起訖點210、220、230和240計算出的第一路段21的主成分320。在運算模組122於步驟S202中判斷起訖點250尚未被納入第一路段21後,運算模組122可在步驟S203中取得由起訖點210、220、230和240所組成之第一路段21的主成分320的垂直方向變異數。接著,運算模組122可計算出起訖點250與起訖點250在主成分320上的投影251,並且計算出起訖點250與投影251之間的距離25的平方。若距離25的平方小於主成分320的垂直方向變異數,代表起訖點250不應被納入第一路段21之中。因此,在後續的步驟S205中,運算模組122可將起訖點250納入下一路段,亦即,如圖2A所示的第二路段22。
在步驟S206中,運算模組122完成分割出第一路段21的流程。在完成第一路段21的分割後,運算模組122可根據與圖2B相同的流程來從目標路段200中分割出第二路段22,故不再贅述。
在將目標路段200分割為包括第一路段21和第二路段22的多個路段後,運算模組122可根據各個路段的主成分決定用於統計行動信令定位資料的密度的範圍。
圖3根據本發明的實施例繪示決定第一範圍510的示意圖。首先,運算模組122可取得由起訖點210、220、230和240所構成之第一路段21的主成分310。接著,運算模組122可根據主成分310決定一第二範圍410。第二範圍410的決定方式可包括多種態樣,本發明並不加以限制。舉例來說,運算模組122可根據主成分310的兩個端點的座標來產生可完全涵蓋主成分310的矩形,並且將該矩形決定為第二範圍410。在後續的步驟中,運算模組122僅需針對第二範圍410內的資料進行運算,而第二範圍410將可被忽略。如此,可顯著地降低運算模組122所需花費的運算資源。
在決定完第二範圍410後,運算模組122可根據主成分310與水平軸40之間的角度θ旋轉第二範圍410以產生經旋轉第二範圍411,如方程式(1)所示,其中f(x,y)為經旋轉第二範圍411內的點的座標並且[x y]為第二範圍410內的點的座標。
…(1)
在決定經旋轉第二範圍411後,運算模組122可根據經旋轉主成分311(即:旋轉了角度θ的主成分310)、第一路段21的路寬及/或電信信令定位誤差(Uncertainty,UNC)等參數來從經旋轉第二範圍411中選出用於統計行動信令定位資料的密度的第一範圍510。一般來說,第一路段21的電信信令定位誤差與第一路段21鄰近的基地台密度成反比的關係。若基地台密度越小,則電信信令定位誤差越大。
具體來說,運算模組122可根據第一路段21的路寬及/或電信信令定位誤差決定一線段51。在一實施例中,第一路段21的路寬越寬,則線段51的長度越長。在一實施例中,電信信令定位誤差越低,則路線51的長度越長。
接著,運算模組122可計算出作為第一範圍510的矩型的長度和寬度,如方程式(2)所示,其中X為第一範圍510的長度、Y為第一範圍510的寬度、i為線段51的長度並且j為經旋轉主成分311的長度。
…(2)
在計算完長度X和寬度Y後,運算模組122可以經旋轉主成分311的中心為第一範圍510的中心點而根據長度X和寬度Y從經旋轉第二範圍411選出作為第一範圍510的矩型,如圖3所示。
在將目標路段200分割為多個路段,並且決定出對應於每一個路段的範圍後,電子裝置100可開始統計各個路段的行動信令定位資料。以第一路段21為例,資料收集模組121可通過收發器130接收對應於第一路段21的行動信令定位資料。更具體來說,資料收集模組121可通過收發器130接收第一範圍510之內的行動信令定位資料。
接著,運算模組122可根據接收的行動信令定位資料計算行動信令定位資料的密度。運算模組122可響應於行動信令定位資料的密度大於或等於密度閾值而根據密度來計算對應於第一路段21的預測旅行時間。此外,運算模組122可響應於行動信令定位資料的密度小於密度閾值而根據順暢旅行時間來計算對應於第一路段21的預測旅行時間。具體來說,運算模組122可根據第一路段21的路長以及速限計算出順暢旅行時間,並將順暢旅行時間作為預測旅行時間。預測旅行時間的計算方式如方程式(3)所示,其中ET為預測旅行時間、RSD為行動信令定位資料的密度、T為密度閾值、TT為根據行動信令定位資料所計算出的旅行時間、STT為順暢旅行時間、L為路段(例如:第一路段21)的路長並且SD為路段(例如:第一路段21)的速限,其中旅行時間TT例如是根據任意一種現有之基於行動信令定位資料的旅行時間預估演算法所計算出的,本發明並不加以限制。
…(3)
在一實施例中,運算模組122可根據對應於第一路段21的基地台密度來決定密度閾值T,其中基地台密度與密度閾值T成反比。若第一路段21所在之處的基地台密度越高,代表該地點的行動信令定位資料越可信賴。因此,運算模組122可將密度閾值T調低,使運算模組122可更常使用旅行時間TT計算預測旅行時間ET。反之,若第一路段21所在之處的基地台密度越低,代表該地點的行動信令定位資料越不可信賴。因此,運算模組122可將密度閾值T調高,降低運算模組122使用旅行時間TT來計算預測旅行時間ET的機會。
在一實施例中,運算模組122可根據對應於第一路段21的定位資料來來決定密度閾值T。資料收集模組121可通過收發器130自全球定位系統(global positioning system,GPS)接收定位資料,並且根據定位資料來決定密度閾值T。具體來說,運算模組122可根據行動信令定位資料的密度以及基於定位資料所計算的旅行時間以建立停止分枝條件為旅行時間(例如:方程式(3)所示的TT)小於順暢旅行時間(例如:方程式(3)所示的STT)的回歸樹(regression tree)。運算模組122可從符合停止分枝條件的多個節點(即:回歸樹的葉節點)中選出對應於最大密度的節點以將該最大密度配置為密度閾值T。
圖4根據本發明的實施例繪示預測旅行時間的示意圖,其中曲線610為根據本發明實施例所計算出的預測旅行時間、曲線620為依據行動信令定位資料所計算出的預測旅行時間。在時間段710和730之中,行動信令定位資料的密度小於密度閾值。換句話說,根據時間段710和730期間的行動信令定位資料所計算出的預測旅行時間較不可信賴。因此,運算模組122在時間段710和730之中以基於路長和速限所計算出的順暢旅行時間來取代原先基於行動信令定位資料所計算出的預測旅行時間。另一方面,在時間段720之中,行動信令定位資料的密度大於或等於密度閾值。換句話說,根據時間段720期間的行動信令定位資料所計算出的預測旅行時間較可信賴。因此,運算模組122在時間段720之中可根據行動信令定位資料計算預測旅行時間。
圖5根據本發明的實施例繪示一種基於行動信令定位資料的計算預測旅行時間的方法的流程圖,其中該方法可由如圖1所示的電子裝置100實施。在步驟S501中,接收對應於第一路段的行動信令定位資料。在步驟S502中,響應於行動信令定位資料的密度大於或等於密度閾值而根據密度計算對應於第一路段的預測旅行時間。在步驟S503中,響應於密度小於密度閾值而根據順暢旅行時間計算預測旅行時間,其中順暢旅行時間關聯於第一路段的路長以及速限。
綜上所述,本發明的基於行動信令定位資料的計算預測旅行時間的電子裝置和方法可根據一路段的行動信令定位資料的密度來判斷以基於行動信令定位資料或基於路長和速限的方式來計算預測旅行時間。在取得一目標路段後,本發明可根據對該路段的主成分分析結果將其切分為數個路段以作為計算預測旅行時間的最小單位的參考。本發明還可根據路寬或電信信令定位誤差來調整用以計算行動信令定位資料之密度的範圍,並以回歸樹演算法或基於基地台密度決定密度閾值。如此,根據本發明所計算出的預測旅行時間將不會因行動信令定位資料不足或車道堵塞的原因而喪失準確度。
100:電子裝置
110:處理器
120:儲存媒體
121:資料收集模組
122:運算模組
130:收發器
200:目標路段
21:第一路段
22:第二路段
24、25:距離
210、220、230、240、250、260、270、280:起訖點
241、251:投影
310、320:主成分
311:經旋轉主成分
40:水平軸
410:第二範圍
411:經旋轉第二範圍
51:線段
510:第一範圍
610、620:曲線
710、720、730:時間段
S201、S202、S203、S204、S205、S206、S501、S502、S503:步驟
θ:角度
圖1根據本發明的實施例繪示一種基於行動信令定位資料的計算預測旅行時間的電子裝置的示意圖。
圖2A根據本發明的實施例繪示一目標路段的示意圖。
圖2B根據本發明的實施例繪示從目標路段中分割出第一路段的方法的流程圖。
圖2C根據本發明的實施例繪示基於主成分分析將起訖點納入第一路段的示意圖。
圖2D根據本發明的實施例繪示基於主成分分析將起訖點納入第二路段的示意圖。
圖3根據本發明的實施例繪示決定第一範圍的示意圖。
圖4根據本發明的實施例繪示預測旅行時間的示意圖。
圖5根據本發明的實施例繪示一種基於行動信令定位資料的計算預測旅行時間的方法的流程圖。
S501、S502、S503:步驟
Claims (10)
- 一種基於行動信令定位資料的計算預測旅行時間的電子裝置,包括:收發器;儲存媒體,儲存多個模組;以及處理器,耦接所述儲存媒體和所述收發器,並且存取和執行所述多個模組,其中所述多個模組包括:資料收集模組,通過所述收發器接收對應於第一路段的所述行動信令定位資料;以及運算模組,響應於所述行動信令定位資料的密度大於或等於密度閾值而根據所述密度計算對應於所述第一路段的所述預測旅行時間,並且響應於所述密度小於所述密度閾值而根據順暢旅行時間計算所述預測旅行時間,其中所述順暢旅行時間關聯於所述第一路段的路長以及速限,其中所述運算模組根據對應於所述第一路段的基地台密度決定對應於所述第一路段的所述密度閾值。
- 如申請專利範圍第1項所述的電子裝置,其中目標路段包括所述第一路段和第二路段,其中所述運算模組根據所述目標路段的多個起訖點而基於主成分分析計算對應於所述第一路段的主成分和對應於所述主成分的垂直方向變異數,並且響應於起訖點與所述起訖點在所述主成分上的投影之間的平方距離小於所述垂直方向變異數而將所述起訖點納入所述第一路段。
- 如申請專利範圍第2項所述的電子裝置,其中所述運算模組響應於所述平方距離大於或等於所述垂直方向變異數而將所述起訖點納入所述第二路段。
- 如申請專利範圍第2項所述的電子裝置,其中所述運算模組根據所述主成分決定第一範圍,並且根據所述第一範圍內的所述行動信令定位資料計算所述密度。
- 如申請專利範圍第4項所述的電子裝置,其中所述第一範圍關聯於與所述第一路段相對應的路寬以及電信信令定位誤差。
- 如申請專利範圍第5項所述的電子裝置,其中所述運算模組根據所述主成分決定第二範圍,根據對應於所述主成分與水平軸之間的角度的旋轉矩陣旋轉所述第二範圍以產生經旋轉第二範圍,並且根據所述主成分、所述路寬以及所述電信信令定位誤差從所述經旋轉第二範圍中選出所述第一範圍。
- 如申請專利範圍第1項所述的電子裝置,其中所述資料收集模組通過所述收發器接收來自全球定位系統的定位資料,並且所述運算模組根據所述定位資料決定所述密度閾值。
- 如申請專利範圍第7項所述的電子裝置,其中所述運算模組根據所述密度和基於所述定位資料所計算的旅行時間以建立停止分枝條件為所述旅行時間小於所述順暢旅行時間的回歸樹,其中所述運算模組從符合所述停止分枝條件的多個節點中選出對應於最大密度的節點以將所述最大密度配置為所述密度閾值。
- 如申請專利範圍第1項所述的電子裝置,其中所述基地台密度與所述密度閾值成反比。
- 一種基於行動信令定位資料的計算預測旅行時間的方法,包括:接收對應於第一路段的所述行動信令定位資料;根據對應於所述第一路段的基地台密度決定對應於所述第一路段的密度閾值;響應於所述行動信令定位資料的密度大於或等於所述密度閾值而根據所述密度計算對應於所述第一路段的所述預測旅行時間;以及響應於所述密度小於所述密度閾值而根據順暢旅行時間計算所述預測旅行時間,其中所述順暢旅行時間關聯於所述第一路段的路長以及速限。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108144472A TWI736048B (zh) | 2019-12-05 | 2019-12-05 | 計算預測旅行時間的電子裝置和方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108144472A TWI736048B (zh) | 2019-12-05 | 2019-12-05 | 計算預測旅行時間的電子裝置和方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202122754A TW202122754A (zh) | 2021-06-16 |
TWI736048B true TWI736048B (zh) | 2021-08-11 |
Family
ID=77516546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108144472A TWI736048B (zh) | 2019-12-05 | 2019-12-05 | 計算預測旅行時間的電子裝置和方法 |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI736048B (zh) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3984897B2 (ja) * | 2002-09-18 | 2007-10-03 | トヨタ自動車株式会社 | 車両用障害物検知装置 |
WO2010072260A1 (en) * | 2008-12-23 | 2010-07-01 | Tomtom International B.V. | Navigation devices and methods for calculating an alternate route based on a response time |
TW201027038A (en) * | 2009-01-05 | 2010-07-16 | Tomtom Int Bv | Navigation devices and methods for calculating an alternate route based on a response time |
TW201211508A (en) * | 2010-09-15 | 2012-03-16 | Tomtom Int Bv | Navigation devices and methods carried out thereon |
TW201221990A (en) * | 2010-11-19 | 2012-06-01 | Tele Atlas Bv | Improvements in or relating to navigation devices |
TW201231922A (en) * | 2011-01-31 | 2012-08-01 | Tomtom Belgium Nv | Navigation methods and systems |
TW201403028A (zh) * | 2012-06-05 | 2014-01-16 | Apple Inc | 導航過程中之語音指令 |
TW201829982A (zh) * | 2017-01-10 | 2018-08-16 | 大陸商北京嘀嘀無限科技發展有限公司 | 用於預估到達時間之方法及系統 |
TW201908764A (zh) * | 2017-05-17 | 2019-03-01 | 香港商騰科實驗有限公司 | 藉由計算裝置之當前狀態和藉由及/或自其他計算裝置接收的信號判斷計算裝置之位置的系統、裝置、及方法 |
-
2019
- 2019-12-05 TW TW108144472A patent/TWI736048B/zh active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3984897B2 (ja) * | 2002-09-18 | 2007-10-03 | トヨタ自動車株式会社 | 車両用障害物検知装置 |
WO2010072260A1 (en) * | 2008-12-23 | 2010-07-01 | Tomtom International B.V. | Navigation devices and methods for calculating an alternate route based on a response time |
TW201027038A (en) * | 2009-01-05 | 2010-07-16 | Tomtom Int Bv | Navigation devices and methods for calculating an alternate route based on a response time |
TW201211508A (en) * | 2010-09-15 | 2012-03-16 | Tomtom Int Bv | Navigation devices and methods carried out thereon |
TW201221990A (en) * | 2010-11-19 | 2012-06-01 | Tele Atlas Bv | Improvements in or relating to navigation devices |
TW201231922A (en) * | 2011-01-31 | 2012-08-01 | Tomtom Belgium Nv | Navigation methods and systems |
TW201403028A (zh) * | 2012-06-05 | 2014-01-16 | Apple Inc | 導航過程中之語音指令 |
TW201829982A (zh) * | 2017-01-10 | 2018-08-16 | 大陸商北京嘀嘀無限科技發展有限公司 | 用於預估到達時間之方法及系統 |
TW201908764A (zh) * | 2017-05-17 | 2019-03-01 | 香港商騰科實驗有限公司 | 藉由計算裝置之當前狀態和藉由及/或自其他計算裝置接收的信號判斷計算裝置之位置的系統、裝置、及方法 |
Also Published As
Publication number | Publication date |
---|---|
TW202122754A (zh) | 2021-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7344389B2 (ja) | 協調測位方法、装置、機器及び記憶媒体 | |
US10319232B2 (en) | Traffic flow rates | |
CN106912018B (zh) | 基于信令轨迹的地图匹配方法及系统 | |
CN110060493B (zh) | 车道定位方法、装置及电子设备 | |
WO2017162036A1 (zh) | 偏航识别方法、终端和存储介质 | |
CN109612474B (zh) | 一种地图道路匹配方法、装置、服务器及存储介质 | |
US9482539B2 (en) | Probabilistic map matching from a plurality of observational and contextual factors | |
US9244152B1 (en) | Determining device locations using movement, signal strength | |
JP2019184583A (ja) | 車線群識別を用いる動的な車線レベルの車両ナビゲーション | |
JP6787430B2 (ja) | 道路合流点の影響を考慮したナビゲーション方法 | |
CN108052101B (zh) | 机器人的重定位方法及装置 | |
WO2013182032A1 (zh) | 一种公交线路与道路网络的匹配方法和装置 | |
CN107580294B (zh) | 一种室内混合定位方法 | |
US11704897B2 (en) | Lane count estimation | |
CN111341103A (zh) | 车道信息提取方法、装置、设备及存储介质 | |
CN115752503B (zh) | 园区导航路径规划方法和装置 | |
CN107688189B (zh) | 一种gps经纬度坐标的校准方法、装置和移动运动设备 | |
US20190187296A1 (en) | Method and system for processing trajectory data | |
CN115265555A (zh) | 基于隐马尔科夫的多噪声感知的地图匹配校正方法及系统 | |
TWI736048B (zh) | 計算預測旅行時間的電子裝置和方法 | |
CN112179368B (zh) | 一种路径数据的处理方法、装置、车辆、可读介质 | |
JP6861916B1 (ja) | 中央装置、地図生成システム、地図生成方法 | |
JP6272592B1 (ja) | 位置推定装置、位置推定方法及び位置推定プログラム | |
CN109613577B (zh) | 一种位置确定方法、装置、终端设备和存储介质 | |
CN116698070A (zh) | 一种数据处理方法和装置,电子设备和存储介质 |