TWI735471B - Method and system for identifying localized crystallographic defects in a monocrystalline silicon in a wafer - Google Patents

Method and system for identifying localized crystallographic defects in a monocrystalline silicon in a wafer Download PDF

Info

Publication number
TWI735471B
TWI735471B TW105131546A TW105131546A TWI735471B TW I735471 B TWI735471 B TW I735471B TW 105131546 A TW105131546 A TW 105131546A TW 105131546 A TW105131546 A TW 105131546A TW I735471 B TWI735471 B TW I735471B
Authority
TW
Taiwan
Prior art keywords
wafer
mentioned
photoluminescence
method described
item
Prior art date
Application number
TW105131546A
Other languages
Chinese (zh)
Other versions
TW201727215A (en
Inventor
索坦 塔馬斯 基斯
拉斯佐羅 杜達斯
吉爾奇 那杜瓦利
尼可拉斯 羅倫
盧邦墨L 亞斯琴布斯基
Original Assignee
美商勝米磊Sdi有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/879,522 external-priority patent/US10018565B2/en
Application filed by 美商勝米磊Sdi有限責任公司 filed Critical 美商勝米磊Sdi有限責任公司
Publication of TW201727215A publication Critical patent/TW201727215A/en
Application granted granted Critical
Publication of TWI735471B publication Critical patent/TWI735471B/en

Links

Images

Abstract

A method that includes: illuminating a wafer with excitation light having a wavelength and intensity sufficient to induce photoluminescence in the wafer; filtering photoluminescence emitted from a portion of the wafer in response to the illumination; directing the filtered photoluminescence onto a detector to image the portion of the wafer on the detector with a spatial resolution of 1 μm x 1 μm or smaller; and identifying one or more crystallographic defects in the wafer based on the detected filtered photoluminescence.

Description

用於識別在晶圓之單晶矽中的局部結晶缺陷之系統及方法 System and method for identifying local crystal defects in single crystal silicon of wafer

本發明係有關於辨識積體電路裝置(例如互補金氧半導體影像感測器)中之缺陷。 The present invention relates to identifying defects in integrated circuit devices (such as complementary metal oxide semiconductor image sensors).

半導體材料係廣泛應用於電子以及光電子領域。結晶半導體材料容易產生結晶缺陷,這對使用該材料之裝置之性能可能是有害的。結晶缺陷可能會引起可用以辨識缺陷之相關的光致發光。 Semiconductor materials are widely used in the fields of electronics and optoelectronics. Crystalline semiconductor materials are prone to crystal defects, which may be detrimental to the performance of devices using the material. Crystal defects may cause related photoluminescence that can be used to identify defects.

積體電路裝置中之互補金氧半導體(CMOS)影像感測器(CIS)為使用結晶半導體材料之光電子裝置之範例。CMOS影像感測器用以將光強度圖案轉換為電子數位信號。於一些實施例中,CMOS影像感測器為具有用於信號處理之附隨互補金氧半導體邏輯之二維光二極體陣列。具有處理互補金氧半導體邏輯之每個獨立光二極體係被稱為像素。於一些實施例中,CMOS影像感測器具有1,000,000或者更多之像素。 Complementary metal oxide semiconductor (CMOS) image sensors (CIS) in integrated circuit devices are an example of optoelectronic devices using crystalline semiconductor materials. The CMOS image sensor is used to convert the light intensity pattern into an electronic digital signal. In some embodiments, the CMOS image sensor is a two-dimensional photodiode array with complementary metal oxide semiconductor logic for signal processing. Each independent photodiode system with processing complementary metal oxide semiconductor logic is called a pixel. In some embodiments, the CMOS image sensor has 1,000,000 or more pixels.

CMOS影像感測器通常於n/n++或者p/p++之晶圓上製造。於一範例中,於一些實施例中,薄的輕摻雜n型或者 p型外延層(epitaxial layer)(例如各自具有1×1014至1×1015cm-3之摻雜濃度且厚度為3~5μm之層位)係生長於高摻雜n++或者p++之基板上(例如具有1×1018至1×1020cm-3之摻雜濃度之基板)。CMOS影像感測器係形成於外延層上,該外延層通常被稱為裝置主動區。CMOS影像感測器之性能至少部份地受到該主動區之性質之影響。 CMOS image sensors are usually manufactured on n/n++ or p/p++ wafers. In an example, in some embodiments, thin lightly doped n-type or p-type epitaxial layers (e.g., each having a doping concentration of 1×10 14 to 1×10 15 cm -3 and a thickness of The layer of 3~5μm) is grown on a highly doped n++ or p++ substrate (for example, a substrate with a doping concentration of 1×10 18 to 1×10 20 cm -3). The CMOS image sensor is formed on the epitaxial layer, which is usually called the device active area. The performance of the CMOS image sensor is at least partially affected by the nature of the active region.

高摻雜之基板(通常稱為處置(handle))於CMOS影像感測器製造期間係提供主動區機械支撐(mechanical support)。於一些實施例中,基板亦減少CMOS影像感測器中串擾(cross-talk)之發生。舉例來說,基板可減少響應於紅光到達CMOS影像感測器之相鄰像素使一像素下面產生少數載流子(carrier)所導致之串擾。 Highly doped substrates (usually referred to as handles) provide mechanical support for the active area during CMOS image sensor manufacturing. In some embodiments, the substrate also reduces the occurrence of cross-talk in the CMOS image sensor. For example, the substrate can reduce the crosstalk caused by the generation of minority carriers under a pixel in response to the red light reaching the adjacent pixels of the CMOS image sensor.

可根據各種不同之配置來配置CMOS影像感測器。舉例來說,可將CMOS影像感測器配置為前側照射(front side illuminated,FSI)CMOS影像感測器,或者配置為背側照射(back side illuminated,BSI)CMOS影像感測器。於此,”前”側係指有IC像素結構製造於其上之晶圓之一側。於一些實施例中,為了製作背側照射CMOS影像感測器,CMOS影像感測器晶圓首先於其前側進行CMOS影像感測器處理。接著,將CMOS影像感測器晶圓沿著其前側粘合至晶圓載體,並將其削薄其背側(例如減少幾μm)直到除去其所有之n++或者p++基板為止。接著鈍化(passivate)CMOS影像感測器晶圓之表面,以及覆蓋抗反射塗層,並於其背側上製造彩色濾光器(color filter)。於使用期間,光圖像係投影於CMOS影像感測器晶圓之背側上,而CMOS影 像感測器則將光圖像轉換為電子數位信號。 The CMOS image sensor can be configured according to various configurations. For example, the CMOS image sensor can be configured as a front side illuminated (FSI) CMOS image sensor, or as a back side illuminated (BSI) CMOS image sensor. Here, the "front" side refers to the side of the wafer on which the IC pixel structure is fabricated. In some embodiments, in order to fabricate a backside-illuminated CMOS image sensor, the CMOS image sensor wafer first undergoes CMOS image sensor processing on its front side. Then, the CMOS image sensor wafer is bonded to the wafer carrier along its front side, and its back side is thinned (for example, reduced by a few μm) until all the n++ or p++ substrates are removed. Then passivate the surface of the CMOS image sensor wafer and cover it with an anti-reflection coating, and fabricate a color filter on its back side. During use, the optical image is projected on the back side of the CMOS image sensor wafer, and the CMOS image The image sensor converts the light image into an electronic digital signal.

來自投影於具有大於矽帶隙之光子能量之CMOS影像感測器上之圖像的光線主要係於CMOS影像感測器之主動區中被吸收。此吸收係產生造成光電流之電子電洞對。這些光產生之少數載流子接著由位於該位置之p-n接面進行收集。光產生之少數載流子之數量與於CMOS影像感測器之主動區中所吸收之光子之數量成正比,且隨著光強度改變。因此,可根據所產生之光電流之大小推算入射於CMOS影像感測器之主動區上光的強度。實際上,通常期望CMOS影像感測器之每個像素可響應於均勻、低位準照明而產生相同或者基本上相似之光電流。否則具有較低或者較高光電流之像素(例如”缺陷”像素)可能會造成所產生之圖像中之亮點或者暗點(即高於無缺陷區域之圖像強度)。 The light from the image projected on the CMOS image sensor with photon energy larger than the silicon band gap is mainly absorbed in the active area of the CMOS image sensor. This absorption produces electron-hole pairs that cause photocurrent. These light-generated minority carriers are then collected by the p-n junction at that location. The number of minority carriers generated by light is proportional to the number of photons absorbed in the active region of the CMOS image sensor, and changes with the light intensity. Therefore, the intensity of the light incident on the active area of the CMOS image sensor can be calculated according to the magnitude of the generated photocurrent. In fact, it is generally expected that each pixel of a CMOS image sensor can generate the same or substantially similar photocurrent in response to uniform, low-level illumination. Otherwise, pixels with lower or higher photocurrent (such as "defective" pixels) may cause bright or dark spots in the resulting image (that is, higher than the image intensity of the defect-free area).

於一些實施例中,局部結晶缺陷以及重金屬污染可增加或者減少來自給定像素之光電流,造成於低照度位準下具有亮點或者暗點之圖像。當存在於p-n接面之空間電荷區(space charge region)中時,這些缺陷用以作為少數載流子之產生中心。這將造成這些像素暗電流之增加,且若缺陷夠嚴重,將成為所產生之圖像中之白點或者亮點。當存在於p-n接面之空間電荷區外時,這些缺陷用以作為少數載流子之複合中心(recombination centers)。這將造成由接面所收集之光電流量減少,且若缺陷夠嚴重,將成為於低照度位準下所產生之圖像中之暗點。 In some embodiments, local crystal defects and heavy metal contamination can increase or decrease the photocurrent from a given pixel, resulting in an image with bright or dark spots under low illumination levels. When present in the space charge region of the p-n junction, these defects are used as minority carrier generation centers. This will cause an increase in the dark current of these pixels, and if the defect is severe enough, it will become a white spot or bright spot in the generated image. When existing outside the space charge region of the p-n junction, these defects serve as the minority carrier recombination centers (recombination centers). This will result in a decrease in the photoelectric flux collected by the junction, and if the defect is severe enough, it will become a dark spot in the image generated at a low illumination level.

局部結晶缺陷或者重金屬污染物可能會被引入CMOS影像感測器之製造過程期間之任何步驟中。因此,為了 改善以及控制CMOS影像感測器之製造過程,重要的是如何快速地辨識引入這些缺陷之處理步驟。 Local crystal defects or heavy metal contaminants may be introduced into any step during the manufacturing process of the CMOS image sensor. Therefore, in order to To improve and control the manufacturing process of CMOS image sensors, it is important to quickly identify the processing steps that introduce these defects.

本發明係描述用以辨識半導體材料中之缺陷(包括積體電路裝置中所發現之缺陷)之系統以及技術。更具體地,所述系統以及技術可用於辨識發出光致發光之半導體材料中之局部獨立結晶缺陷,特別是與帶間(band-to-band)光致發光位於不同能量之缺陷光致發光。這種結晶缺陷可於材料或者製造裝置(例如CMOS影像感測器之製造)之各個階段被引入半導體材料中。 The present invention describes systems and techniques for identifying defects in semiconductor materials (including defects found in integrated circuit devices). More specifically, the system and technology can be used to identify locally independent crystalline defects in semiconductor materials that emit photoluminescence, especially defect photoluminescence that is located at a different energy from band-to-band photoluminescence. Such crystal defects can be introduced into semiconductor materials at various stages of materials or manufacturing devices (such as the manufacturing of CMOS image sensors).

一般而言,於第一方面,本發明之特徵在於一種方法,其包括:用具有足以於晶圓中誘發光致發光之波長以及強度之激發光照射晶圓;過濾自晶圓之一部份所發射之光致發光以響應上述照射;將經過濾之光致發光導向至偵測器上,以1μm×1μm或者更小的空間解析度(spatial resolution)將晶圓之部份成像於偵測器上;以及根據偵測到之過濾光致發光辨識晶圓中之一個或者多個結晶缺陷。 Generally speaking, in the first aspect, the present invention is characterized by a method comprising: irradiating a wafer with excitation light having a wavelength and intensity sufficient to induce photoluminescence in the wafer; and filtering a part of the wafer The emitted photoluminescence is in response to the above illumination; the filtered photoluminescence is directed to the detector, and the part of the wafer is imaged for detection with a spatial resolution of 1μm×1μm or less On the device; and according to the detected filtered photoluminescence to identify one or more crystal defects in the wafer.

本發明之方法之實現可包括一個或者多個以下特徵和/或其它方面之特徵。舉例來說,偵測到之過濾光致發光可對應至來自晶圓中之結晶缺陷之光致發光。濾波可基本上可自過濾之光致發光移除晶圓中之帶間躍遷之光致發光。 The implementation of the method of the present invention may include one or more of the following features and/or features in other aspects. For example, the detected filtered photoluminescence can correspond to photoluminescence from crystal defects in the wafer. Filtering can basically remove the photoluminescence of the inter-band transition in the wafer from the filtered photoluminescence.

偵測到之過濾光致發光可包括具有位於約0.7eV至約0.9eV之範圍內之能量的光。晶圓可為矽晶圓。濾波基本上可阻擋偵測到之具有大於約1.0eV之能量的光。 The detected filtered photoluminescence may include light having an energy in the range of about 0.7 eV to about 0.9 eV. The wafer may be a silicon wafer. Filtering can basically block the detected light with energy greater than about 1.0 eV.

於一些實施例中,濾波更可包括過濾從晶圓之該部份反射之激發光。 In some embodiments, filtering may further include filtering the excitation light reflected from the portion of the wafer.

一些實施例更可包括偵測自晶圓之部份反射之激發光。本發明之方法亦可包括比較偵測到之光致發光與偵測到之激發光,以及根據比較結果辨識晶圓中之一個或者多個缺陷。 Some embodiments may further include detecting the excitation light reflected from a portion of the wafer. The method of the present invention may also include comparing the detected photoluminescence with the detected excitation light, and identifying one or more defects in the wafer based on the comparison result.

晶圓可用於互補金氧半導體(CMOS)影像感測器(CMOS影像感測器)。晶圓之該部份可對應至CMOS影像感測器之一個或者多個像素。辨識晶圓中之一個或者多個缺陷之步驟可包括辨識CMOS影像感測器之一個或者多個缺陷像素。於一些實施例中,辨識晶圓中之一個或者多個缺陷之步驟包括辨識具有1μm或者更小之尺寸之一個或者多個缺陷。亦可辨識更大之缺陷。 The wafer can be used for complementary metal oxide semiconductor (CMOS) image sensors (CMOS image sensors). This part of the wafer can correspond to one or more pixels of the CMOS image sensor. The step of identifying one or more defects in the wafer may include identifying one or more defective pixels of the CMOS image sensor. In some embodiments, the step of identifying one or more defects in the wafer includes identifying one or more defects having a size of 1 μm or less. It can also identify larger defects.

晶圓可用於電源管理IC(power management integrated circuit,PMIC)裝置。晶圓可用於光電子裝置。晶圓可用於光伏元件(photovoltaic device)。 The wafer can be used in power management IC (power management integrated circuit, PMIC) devices. Wafers can be used in optoelectronic devices. Wafers can be used for photovoltaic devices (photovoltaic devices).

本發明之方法可於晶圓處理之任何階段(包括於完成晶圓處理後)辨識缺陷。 The method of the present invention can identify defects at any stage of wafer processing (including after wafer processing is completed).

本發明之方法更可包括:根據自晶圓之該部份發射之光致發光形成晶圓之該部份之光致發光強度圖;以及根據自晶圓之該部份反射之激發光形成晶圓之該部份之反射強度圖。比較來自晶圓之部份之偵測到之光致發光與來自晶圓之區域之偵測到之反射激發光之步驟可包括:判斷光致發光強度圖是否包括位於晶圓之第一位置之第一強度變化;於判斷光致發光強度圖包括位於晶圓之第一位置之第一強度變化時,判斷反 射強度圖是否包括位於晶圓之第一位置之第二強度變化;以及於判斷反射強度圖不包括位於晶圓之第一位置之第二強度變化時,判斷晶圓之第一位置是否存在缺陷。比較來自晶圓之部份之偵測到之光致發光與來自晶圓之區域之偵測到之反射激發光之步驟更可包括:於判斷反射強度圖包括位於晶圓之第一位置之第二強度變化時,判斷晶圓之第一位置並不存在缺陷。 The method of the present invention may further include: forming a photoluminescence intensity map of the part of the wafer based on the photoluminescence emitted from the part of the wafer; and forming a crystal according to the excitation light reflected from the part of the wafer The reflection intensity graph of that part of the circle. The step of comparing the detected photoluminescence from the part of the wafer with the detected reflected excitation light from the area of the wafer may include: determining whether the photoluminescence intensity map includes the first position of the wafer The first intensity change; when judging that the photoluminescence intensity map includes the first intensity change at the first position of the wafer, the judgment is reversed Whether the radiation intensity map includes the second intensity change at the first position of the wafer; and when it is determined that the reflection intensity map does not include the second intensity change at the first position of the wafer, determine whether the first position of the wafer is defective . The step of comparing the detected photoluminescence from the part of the wafer with the detected reflected excitation light from the area of the wafer may further include: judging that the reflection intensity map includes the first position at the first position of the wafer 2. When the intensity changes, it is judged that there is no defect in the first position of the wafer.

於一些實施例中,本發明之方法更包括調整激發光之特性。調整激發光之特性之步驟可以包括調整激發光之波長。可透過調整激發光之波長以增加自晶圓之第二部份發射之光致發光。晶圓之第二部份可與第一部份位於晶圓中之不同深度。 In some embodiments, the method of the present invention further includes adjusting the characteristics of the excitation light. The step of adjusting the characteristics of the excitation light may include adjusting the wavelength of the excitation light. The photoluminescence emitted from the second part of the wafer can be increased by adjusting the wavelength of the excitation light. The second part of the wafer can be located at a different depth in the wafer from the first part.

激發光可具有自200nm至1,100nm之範圍內之波長。 The excitation light may have a wavelength in the range from 200 nm to 1,100 nm.

晶圓可為矽晶圓或者複合半導體晶圓。 The wafer can be a silicon wafer or a compound semiconductor wafer.

本發明之方法更可包括於晶圓上執行處理步驟。處理步驟可選自離子植入步驟、退火步驟、層沉積步驟、氧化步驟以及拋光步驟。處理步驟可於辨識結晶缺陷後執行。本發明之方法可包括以激發光照射處理過之晶圓,並根據來自處理過之晶圓之光致發光辨識處理過之晶圓中之一個或者多個額外缺陷。本發明之方法可包括比較晶圓中所辨識之結晶缺陷與額外缺陷。 The method of the present invention may further include performing processing steps on the wafer. The treatment step can be selected from an ion implantation step, an annealing step, a layer deposition step, an oxidation step, and a polishing step. The processing steps can be performed after the crystal defects are identified. The method of the present invention may include irradiating the processed wafer with excitation light, and identifying one or more additional defects in the processed wafer based on photoluminescence from the processed wafer. The method of the present invention may include comparing the identified crystal defects with additional defects in the wafer.

結晶缺陷對應至晶圓之一部份之圖像中之亮部。 Crystal defects correspond to bright parts in the image of a part of the wafer.

一般而言,於另一方面,包含本發明之特徵之系統包括:一照明模組,以具有足以於晶圓中誘發光致發光之波長以及強度之激發光照射晶圓;一偵測模組,用以偵測自晶圓之一部份發射之光致發光以響應上述照射;一成像透鏡(imaging optic),用以以1μm×1μm或者更小的空間解析度 將晶圓之部份成像至偵測模組上;一光學濾光器,用以於偵測模組執行偵測之前過濾自晶圓之部份發射之光致發光;以及處理模組,用以根據偵測到之過濾光致發光來辨識晶圓中之一個或者多個結晶缺陷。 Generally speaking, in another aspect, a system including the features of the present invention includes: an illumination module for illuminating the wafer with excitation light having a wavelength and intensity sufficient to induce photoluminescence in the wafer; and a detection module , Used to detect the photoluminescence emitted from a part of the wafer in response to the above illumination; an imaging lens (imaging optic) used to 1μm×1μm or less spatial resolution Image a part of the wafer onto the detection module; an optical filter for filtering the photoluminescence emitted from the part of the wafer before the detection module performs detection; and the processing module, with Identify one or more crystal defects in the wafer based on the detected filtered photoluminescence.

系統之實施例可包括一個或者多個下列特徵和/或其它方面之特徵。舉例來說,濾光器可將對應於光致發光的光自晶圓中之結晶缺陷發射至偵測模組。光學濾光器可基本上阻擋來自偵測模組之晶圓中之帶間躍遷之光致發光。 Embodiments of the system may include one or more of the following features and/or other aspects of features. For example, the filter can emit light corresponding to photoluminescence from crystal defects in the wafer to the detection module. The optical filter can basically block the photoluminescence from the inter-band transition in the wafer of the detection module.

濾光器可將具有介於約0.7eV至約1.0eV範圍內之能量的光發射至偵測模組。光學濾光器可基本上阻擋來自偵測模組之具有大於約1.0eV之能量的光。 The filter can emit light with energy in the range of about 0.7 eV to about 1.0 eV to the detection module. The optical filter can basically block light with energy greater than about 1.0 eV from the detection module.

於一些實施例中,濾光片自偵測模組阻擋自晶圓反射至偵測模組之至少一些激發光。 In some embodiments, the filter self-detection module blocks at least some of the excitation light reflected from the wafer to the detection module.

激發光可具有介於200nm至1,100nm之範圍內之波長。 The excitation light may have a wavelength in the range of 200 nm to 1,100 nm.

照明元件(assembly)可被佈置為沿著不垂直於晶圓之照射表面之光軸將激發光照射至晶圓。照明鏡片可具有名義上垂直於晶圓之照射表面之光軸。 The lighting assembly may be arranged to irradiate excitation light to the wafer along an optical axis that is not perpendicular to the irradiation surface of the wafer. The illumination lens may have an optical axis that is nominally perpendicular to the illuminated surface of the wafer.

於其它優點中,本發明之實施例可用以於製造過程中(例如COS影像感測器之製造過程之期間或者中間過程之間)和/或於完成製造過程後辨識COS影像感測器中之局部缺陷(例如,為製造過程後檢測之一部分)。於一些情況下,本發明之實施例可用以辨識與CMOS影像感測器裝置之單個像素相關之缺陷,使得一個或者多個單獨的缺陷像素可於CMOS影 像感測器裝置中被辨識。於一些情況下,本發明之實施例可用以減少因CMOS影像感測器裝置上之微粒物質(particulate matter)之存在而於缺陷偵測過程期間可能另外導致之正值(positive)之數量。於某些實施例中,自CMOS影像感測器裝置中之結晶缺陷所產生之光致發光可與光致發光之其它來源分開。舉例來說,光學濾波可用以區分位於不同能量之光致發光。當來自不同來源之光致發光(例如來自結晶缺陷相對於來自能帶間之光致發光),光學過濾可用以從結晶缺陷中隔離光致發光,並藉此定位裝置中單個結晶缺陷。 Among other advantages, the embodiments of the present invention can be used in the manufacturing process (for example, during or between the manufacturing process of the COS image sensor) and/or after the completion of the manufacturing process to identify the COS image sensor. Local defects (for example, part of the inspection after the manufacturing process). In some cases, the embodiments of the present invention can be used to identify defects related to a single pixel of a CMOS image sensor device, so that one or more individual defective pixels can be used for CMOS imaging. The image sensor device is recognized. In some cases, the embodiments of the present invention can be used to reduce the amount of positive values that may be additionally caused during the defect detection process due to the presence of particulate matter on the CMOS image sensor device. In some embodiments, the photoluminescence generated from crystal defects in the CMOS image sensor device can be separated from other sources of photoluminescence. For example, optical filtering can be used to distinguish photoluminescence at different energies. When photoluminescence from different sources (for example, from crystal defects versus photoluminescence from between energy bands), optical filtering can be used to isolate the photoluminescence from the crystal defects and thereby locate individual crystal defects in the device.

一般而言,可使用明場(bright field)或者暗場(dark field)成像。 Generally speaking, bright field or dark field imaging can be used.

以下將配合附圖以及描述說明一個或者多個實施例之細節。根據說明書、圖式以及申請專利範圍之內容,其它特徵以及優點將是顯而易見的。 The details of one or more embodiments will be described below in conjunction with the drawings and description. According to the description, drawings and the content of the patent application, other features and advantages will be obvious.

100:系統 100: system

110:平台組件 110: platform components

132a-b:光源 132a-b: light source

134a-b:校正透鏡 134a-b: Correction lens

136a、136b:濾光器 136a, 136b: filter

136a-b:濾光器 136a-b: filter

138、152、156:二向色分光器 138, 152, 156: dichroic beam splitter

140:聚焦透鏡 140: Focusing lens

150:光學組件 150: optical components

154:接物透鏡 154: contact lens

158:濾光器 158: filter

160a、160b:場透鏡 160a, 160b: field lens

170:成像組件 170: Imaging Kit

172a、172b:偵測器 172a, 172b: detector

174:處理模組 174: Processing Module

190:CMOS影像感測器樣本 190: CMOS image sensor sample

200:光致發光圖譜 200: photoluminescence spectrum

210:光致發光強度 210: photoluminescence intensity

300:系統 300: System

310:照明光軸 310: Illumination optical axis

320:成像光軸 320: imaging optical axis

330:照明組件 330: lighting components

340、342:聚焦透鏡 340, 342: Focusing lens

第1圖係顯示偵測CMOS影像感測器樣品中之缺陷之示範系統。 Figure 1 shows an exemplary system for detecting defects in CMOS image sensor samples.

第2圖係顯示於矽基板中之缺陷之光致發光強度特徵上產生改變之光致發光強度圖。 Figure 2 is a photoluminescence intensity diagram showing changes in the photoluminescence intensity characteristics of defects in the silicon substrate.

第3圖係顯是偵測樣品中之缺陷之另一示範系統。 Figure 3 shows another exemplary system for detecting defects in samples.

於各個圖式中相同之標號表示相同之元件。 The same reference numerals in the various drawings indicate the same elements.

裝置(例如CMOS影像感測器裝置)中由半導體 材料所形成之缺陷可透過於裝置之主動區中誘發光致發光以及檢查光致發光之局部強度變化進行辨識。 The device (such as CMOS image sensor device) consists of semiconductor Defects formed by the material can be identified by inducing photoluminescence in the active area of the device and checking the local intensity changes of photoluminescence.

舉例來說,可使用光子能量(photo energy)大於矽之能隙(例如大於1.1eV)的光於矽晶圓中誘發光致發光。當該光於矽中被吸收時,係於矽中產生電子-電洞對。一些光生(photo-generated)載流子中將透過輻射複合(radiative recombination)進行重組並釋放光子,這種現象被稱為光致發光。 For example, light with photo energy greater than the energy gap of silicon (for example, greater than 1.1 eV) can be used to induce photoluminescence in a silicon wafer. When the light is absorbed in silicon, electron-hole pairs are generated in the silicon. Some photo-generated carriers will recombine through radiative recombination and release photons. This phenomenon is called photoluminescence.

由於光致發光之強度係根據晶圓之組成而改變,晶圓之組成中之局部變化(例如因材料缺陷或者污染所導致)將導致誘發之光致發光中之局部變化。因此,舉例來說,可至少部份地透過以足以誘發光致發光之激發光照射CMOS影像感測器以及檢查光致發光之強度之局部變化以辨識CMOS影像感測器中之缺陷。儘管以下描述係涉及CMOS影像感測器之缺陷評估,但可以理解的是,本發明之技術可更廣泛地應用至其它使用顯現出缺陷光致發光之結晶半導體材料之裝置。 Since the intensity of photoluminescence changes according to the composition of the wafer, local changes in the composition of the wafer (for example, due to material defects or contamination) will result in local changes in the induced photoluminescence. Therefore, for example, it is possible to identify defects in the CMOS image sensor by irradiating the CMOS image sensor with excitation light sufficient to induce photoluminescence and checking the local change in the intensity of the photoluminescence, for example. Although the following description relates to defect assessment of CMOS image sensors, it is understood that the technology of the present invention can be more widely applied to other devices that use crystalline semiconductor materials that exhibit defect photoluminescence.

第1圖中係顯示用以辨識CMOS影像感測器中之缺陷之示例系統100。系統100包括平台組件(stage assembly)110、照明組件130、光學組件150以及成像組件170。於系統100之示例性應用中,CMOS影像感測器樣本190係放置於平台組件110上,且被定位以進行檢查。照明組件130產生適用於誘發CMOS影像感測器樣品190中之光致發光之激發光。光學組件150將由照明組件130所產生之激發光導向至CMOS影像感測器樣品190上,從而誘發CMOS影像感測器樣品190中之光致發光和/或使激發光被CMOS影像感測器樣本190反 射。光學組件將由CMOS影像感測器樣本190所產生之光致發光和/或由CMOS影像感測器樣本190所反射之光導向成像組件170。成像組件170偵測光致發光以及反射之激發光,並根據偵測到的光辨識CMOS影像感測器樣本190中之缺陷。 Figure 1 shows an example system 100 for identifying defects in CMOS image sensors. The system 100 includes a stage assembly 110, an illumination assembly 130, an optical assembly 150 and an imaging assembly 170. In an exemplary application of the system 100, a CMOS image sensor sample 190 is placed on the platform assembly 110 and positioned for inspection. The lighting component 130 generates excitation light suitable for inducing photoluminescence in the CMOS image sensor sample 190. The optical component 150 directs the excitation light generated by the illumination component 130 to the CMOS image sensor sample 190, thereby inducing photoluminescence in the CMOS image sensor sample 190 and/or causing the excitation light to be absorbed by the CMOS image sensor sample 190 reverse shoot. The optical component guides the photoluminescence generated by the CMOS image sensor sample 190 and/or the light reflected by the CMOS image sensor sample 190 to the imaging component 170. The imaging component 170 detects photoluminescence and reflected excitation light, and recognizes defects in the CMOS image sensor sample 190 based on the detected light.

於透過系統100之檢查期間,平台組件110係支援CMOS影像感測器樣本190。於一些情況下,平台組件110可沿著一個或者多個軸移動,使得CMOS影像感測器樣本190可相對於照明組件130、光學組件150和/或成像組件170移動。舉例來說,於一些情況下,CMOS影像感測器可以沿笛卡爾坐標系之x、y和z軸移動,以將CMOS影像感測器樣本190沿著相對於系統100之其他元件之任何三維移動。 During the inspection through the system 100, the platform assembly 110 supports the CMOS image sensor sample 190. In some cases, the platform assembly 110 can move along one or more axes so that the CMOS image sensor sample 190 can move relative to the illumination assembly 130, the optical assembly 150, and/or the imaging assembly 170. For example, in some cases, the CMOS image sensor can move along the x, y, and z axes of the Cartesian coordinate system to move the CMOS image sensor sample 190 along any three-dimensional relative to other components of the system 100 move.

照明組件130係於入射至CMOS影像感測器樣本190上時,產生誘發CMOS影像感測器樣本190中之光致發光之激發光。照明組件130包括光源132a-b、校正透鏡(collimating lenses)134a-b、濾光器136a-b、二向色分光器(dichroic beam splitter)138以及聚焦透鏡140。 When the illumination element 130 is incident on the CMOS image sensor sample 190, it generates excitation light that induces photoluminescence in the CMOS image sensor sample 190. The lighting assembly 130 includes light sources 132a-b, collimating lenses 134a-b, filters 136a-b, dichroic beam splitter 138, and focusing lens 140.

光源132a-b係產生具有適用於於CMOS影像感測器樣本190中誘發光致發光之特定性質的光。於一些情況下,光源102a-b係為產生具有特定波長以及強度的光之雷射光源。於一些情況下,每個光源132a-b各自產生具有不同波長的光,使得照明組件130可提供不同類型的光。舉例來說,光源132a可產生具有第一波長(例如532nm)的光,以及光源132b可產生具有第二波長(例如880nm)的光。 The light sources 132a-b generate light with specific properties suitable for inducing photoluminescence in the CMOS image sensor sample 190. In some cases, the light sources 102a-b are laser light sources that generate light with a specific wavelength and intensity. In some cases, each light source 132a-b generates light having a different wavelength, so that the lighting assembly 130 can provide different types of light. For example, the light source 132a may generate light having a first wavelength (for example, 532 nm), and the light source 132b may generate light having a second wavelength (for example, 880 nm).

於另一實施例中,光源132a-b中之任一個或者兩 者可產生具有波長小於532nm(例如300nm、350nm、400nm、450nm、500nm或者其它介於中間之任何波長)的光。於另一實施例中,光源132a-b中之任一個或者兩者可產生具有波長介於200nm以及1100nm之間(例如200nm、300nm、400nm、500nm、600nm、700nm、800nm、900nm、1000nm、1100nm或者其它介於中間之任何波長)的光。儘管以上描述了示例波長,但僅做為說明之目的。於實施時,光源132a-b可各自根據不同之實施方式產生具有任何其它波長的光。 In another embodiment, any one or both of the light sources 132a-b It can generate light with a wavelength less than 532nm (for example, 300nm, 350nm, 400nm, 450nm, 500nm or any other wavelength in between). In another embodiment, either or both of the light sources 132a-b can generate wavelengths between 200nm and 1100nm (e.g., 200nm, 300nm, 400nm, 500nm, 600nm, 700nm, 800nm, 900nm, 1000nm, 1100nm). Or other light of any wavelength in between). Although example wavelengths are described above, they are for illustrative purposes only. During implementation, the light sources 132a-b can each generate light with any other wavelength according to different implementations.

光源132a-b可彼此獨立地操作,使得每個具有不同波長的光可單獨地或者同時地產生。光源132a-b包括能夠產生特定波長的光之任何元件。舉例來說,於一些情況下,光源132a-b可包括一個或者多個雷射光或者發光二極體(LED)。 The light sources 132a-b can operate independently of each other, so that each light having a different wavelength can be generated individually or simultaneously. The light sources 132a-b include any element capable of generating light of a specific wavelength. For example, in some cases, the light sources 132a-b may include one or more laser lights or light emitting diodes (LEDs).

由光源132a-b所產生的光亦可根據實施方式於強度上產生變化。於一實施例中,於一些情況下,光源132a-b可各自產生具有介於0.02W以及20W之間之功率的光。於一些情況下,由光源132a-b所產生的光之強度也可於系統100之使用期間進行調整。舉例來說,於一些情況下,由光源132a-b所產生的光可於系統100之操作期間於0.02W以及20W之間進行調節。於另一實施例中,於一些情況下,由光源132a-b所產生的光可於系統100之操作期間進行調節使其產生功率小於0.02W(例如0.015W、0.010W或者0.005W)的光。儘管以上描述了示例強度,但僅做為說明之目的。於實施時,光源132a-b可各自根據不同之實施方式產生具有其它強度的光。 The light generated by the light sources 132a-b may also vary in intensity according to the implementation. In one embodiment, in some cases, the light sources 132a-b can each generate light with a power between 0.02W and 20W. In some cases, the intensity of the light generated by the light sources 132a-b can also be adjusted during the use of the system 100. For example, in some cases, the light generated by the light sources 132a-b can be adjusted between 0.02W and 20W during the operation of the system 100. In another embodiment, in some cases, the light generated by the light sources 132a-b can be adjusted during the operation of the system 100 to generate light with a power of less than 0.02W (for example, 0.015W, 0.010W, or 0.005W). . Although the strength of the example is described above, it is for illustrative purposes only. During implementation, the light sources 132a-b can each generate light with other intensities according to different implementations.

由光源132a-b所產生之激發光係分別被導向校正 透鏡134a-b。校正透鏡134a-b使通過之光束變窄,使得從校正透鏡134a-b射出的光分別對準沿校正透鏡134a-b的光軸。 The excitation light system generated by the light source 132a-b is respectively directed and corrected Lens 134a-b. The correcting lenses 134a-b narrow the passing light beams so that the light emitted from the correcting lenses 134a-b is aligned along the optical axis of the correcting lenses 134a-b, respectively.

來自校正透鏡134a-b之校正激發光係分別被導向至濾光器136a-b中。濾光器136a-b對經過的光進行濾波,使得僅具有特定波長(或者對應能量)或者波長範圍的光可分別基本上透射通過濾光器136a-b。濾光器136a-b可用以“除去(clean)”由光源132a-b所產生的光。舉例來說,若光源132a產生具有第一波長(例如532nm)的光,則濾光器136a可為透射具有包括第一波長(例如522nm至542nm)的光之帶通濾光器,而具有位於該範圍外之波長的光基本上不會被透射。於另一實施例中,若光源132b產生具有第一波長(例如880nm)的光,則濾光器136b可為透射具有包括第二波長(例如870nm至890nm)的光之帶通濾光器,而具有位於該範圍外之波長的光基本上不會被透射。於一些情況下,例如於光源132a-b包括一個或者多個雷射光之實施方式中,濾光器136a-b亦可包括散斑減弱(speckle-reducing)元件(例如移動漫射器(diffuser)元件),以減少雷射光束中干涉效應(interference effect)之影響。 The corrected excitation light system from the correction lenses 134a-b is directed to the filters 136a-b, respectively. The filters 136a-b filter the passing light so that only light having a specific wavelength (or corresponding energy) or wavelength range can be substantially transmitted through the filters 136a-b, respectively. The filters 136a-b can be used to "clean" the light generated by the light sources 132a-b. For example, if the light source 132a generates light with a first wavelength (for example, 532nm), the filter 136a may be a bandpass filter that transmits light with the first wavelength (for example, 522nm to 542nm), and has a Light with wavelengths outside this range is basically not transmitted. In another embodiment, if the light source 132b generates light having a first wavelength (for example, 880 nm), the filter 136b may be a band pass filter that transmits light having a second wavelength (for example, 870 nm to 890 nm). However, light having a wavelength outside this range is basically not transmitted. In some cases, for example, in an embodiment where the light sources 132a-b include one or more laser lights, the filters 136a-b may also include speckle-reducing elements (such as moving diffusers). Components) to reduce the influence of interference effects in the laser beam.

來自濾光器136a-b之經過濾之激發光係導向至二向色分光器138。二向色分光器138根據入射到其上的光之波長反射光和/或透射光。舉例來說,若光源132a產生具有第一波長(例如532nm)的光,以及光源132b產生具有第二波長(例如880nm)的光,則二向色分光器138可透射具有第一波長的光以及反射具有第二波長的光。其結果為儘管由每個光源132a-b所產生的光起初導向至不同之方向,但二向色分光器 138係將光重新導向基本上相似之方向。 The filtered excitation light from the filters 136a-b is directed to the dichroic beam splitter 138. The dichroic beam splitter 138 reflects light and/or transmits light according to the wavelength of the light incident thereon. For example, if the light source 132a generates light with a first wavelength (for example, 532 nm) and the light source 132b generates light with a second wavelength (for example, 880 nm), the dichroic beam splitter 138 may transmit light with the first wavelength and Reflects light having the second wavelength. The result is that although the light generated by each light source 132a-b is initially directed to a different direction, the dichroic beam splitter 138 redirects the light in a substantially similar direction.

來自二向色分光器138之激發光係導向至聚焦透鏡140。聚焦透鏡140係將光朝向光學組件150聚焦。 The excitation light from the dichroic beam splitter 138 is guided to the focusing lens 140. The focusing lens 140 focuses the light toward the optical assembly 150.

光學組件150將由照明組件130所產生之激發光導向CMOS影像感測器樣品190,並將由CMOS影像感測器樣品190所產生之光致發光和/或由CMOS影像感測器樣品190所反射的光導向成像組件170。光學組件150包括二向色分光器152以及156、接物透鏡(objective lens)154、濾光器158以及場透鏡(field lenses)160a-b。 The optical component 150 guides the excitation light generated by the illumination component 130 to the CMOS image sensor sample 190, and combines the photoluminescence generated by the CMOS image sensor sample 190 and/or the photoluminescence generated by the CMOS image sensor sample 190 The light guides the imaging assembly 170. The optical assembly 150 includes dichroic beam splitters 152 and 156, an objective lens 154, a filter 158, and field lenses 160a-b.

來自聚焦透鏡140之激發光係導向至二向色分光器152。二向色分光器152根據入射到其上的光之波長反射光和/或透射光。舉例來說,若光源130a產生具有第一波長(例如532nm)之激發光,光源130b產生具有第二波長(例如880nm)之激發光,以及CMOS影像感測器樣本190中所誘發之光致發光具有第三波長(例如1100nm),二向色分光器152可部份地反射且部份透射具有這些波長的每一種光。因此,二向色分光器152係將自照明組件130所接收之至少一些激發光重新導向至接物透鏡154,CMOS影像感測器樣本190中所誘發之至少一些光致發光係透過二向色分光器152透射至成像組件170,以及透過CMOS影像感測器樣本190所反射之至少一些激發光亦朝向成像組件170透射。 The excitation light from the focusing lens 140 is guided to the dichroic beam splitter 152. The dichroic beam splitter 152 reflects light and/or transmits light according to the wavelength of the light incident thereon. For example, if the light source 130a generates excitation light with a first wavelength (for example, 532 nm), the light source 130b generates excitation light with a second wavelength (for example, 880 nm), and the photoluminescence induced in the CMOS image sensor sample 190 With a third wavelength (for example, 1100 nm), the dichroic beam splitter 152 can partially reflect and partially transmit each light having these wavelengths. Therefore, the dichroic beam splitter 152 redirects at least some of the excitation light received from the illumination assembly 130 to the objective lens 154, and at least some of the photoluminescence induced in the CMOS image sensor sample 190 is transmitted through the dichroic The beam splitter 152 transmits to the imaging device 170, and at least some of the excitation light reflected by the CMOS image sensor sample 190 is also transmitted toward the imaging device 170.

來自二向色分光器152之激發光係導向至接物透鏡組件154。接物透鏡組件154將激發光導向至CMOS影像感測器樣品190上。於一些實施例中,接物透鏡組件154可將激 發光導向至CMOS影像感測器樣品190特定區域(例如正被檢查之CMOS影像感測器樣本190之區域),使得入射於CMOS影像感測器樣本190之該區域上之激發光之強度為均勻的或者基本上均勻的。此區域可為,例如CMOS影像感測器樣本190之整體或者CMOS影像感測器樣本190之一部份。 The excitation light from the dichroic beam splitter 152 is guided to the objective lens assembly 154. The objective lens assembly 154 directs the excitation light to the CMOS image sensor sample 190. In some embodiments, the objective lens assembly 154 can stimulate The light is directed to a specific area of the CMOS image sensor sample 190 (for example, the area of the CMOS image sensor sample 190 being inspected), so that the intensity of the excitation light incident on the area of the CMOS image sensor sample 190 is uniform Or basically uniform. This area can be, for example, the whole of the CMOS image sensor sample 190 or a part of the CMOS image sensor sample 190.

入射於CMOS影像感測器樣品190上之激發光可於CMOS影像感測器樣品190中誘發光致發光。於一些實施例中,CMOS影像感測器樣品190中之光致發光可具有介於950nm以及1800nm之間(例如介於1100nm以及1550nm之間)之波長。 The excitation light incident on the CMOS image sensor sample 190 can induce photoluminescence in the CMOS image sensor sample 190. In some embodiments, the photoluminescence in the CMOS image sensor sample 190 may have a wavelength between 950 nm and 1800 nm (for example, between 1100 nm and 1550 nm).

接物透鏡組件154可聚焦於CMOS影像感測器樣本190之特定區域上,以自這些區域取得光致發光。於一些實施例中,接物透鏡組件154可聚焦於包括CMOS影像感測器樣本190之一個或者多個像素之CMOS影像感測器樣本190之一區域上,以及接物透鏡組件154可包括具有廣角以及淺景深之透鏡元件,使得其可分析來自該區域內之每個像素之光致發光。於一些實施例中,接物透鏡組件具有介於0.5mm以及550mm之間之焦距以及景深介於1μm以及400μm之間之透鏡元件。於一些實施例中,接物透鏡組件154可以足夠之分析度分析光以區分來自每個像素之光致發光。舉例來說,若CMOS影像感測器樣本190包括具有沿著表面大小為1μm×1μm之像素,則接物透鏡組件154可以1μm×1μm或者更精細之空間解析度分析光致發光。 The objective lens assembly 154 can focus on specific areas of the CMOS image sensor sample 190 to obtain photoluminescence from these areas. In some embodiments, the objective lens assembly 154 may focus on a region of the CMOS image sensor sample 190 including one or more pixels of the CMOS image sensor sample 190, and the objective lens assembly 154 may include The wide-angle and shallow depth-of-field lens elements make it possible to analyze the photoluminescence from each pixel in the area. In some embodiments, the objective lens assembly has a focal length between 0.5 mm and 550 mm and a lens element with a depth of field between 1 μm and 400 μm. In some embodiments, the objective lens assembly 154 can analyze the light with sufficient analysis to distinguish the photoluminescence from each pixel. For example, if the CMOS image sensor sample 190 includes pixels having a size along the surface of 1 μm×1 μm, the objective lens assembly 154 can analyze the photoluminescence with a spatial resolution of 1 μm×1 μm or more.

入射於CMOS影像感測器樣品190上之激發光亦可造成來自CMOS影像感測器樣品190之激發光之反射。接物透鏡組件154亦可聚焦於CMOS影像感測器樣品190之特定區 域上,以取得從上述區域反射之激發光。透過前述之方式,於一些實施例中,接物透鏡組件154可聚焦於包括CMOS影像感測器樣本190之一個或者多個像素之CMOS影像感測器樣本190之區域上,以及接物透鏡組件154可包括具有廣角以及淺景深之透鏡元件,使其可分析自該區域中每個像素所反射之激發光。透過與前述類似之方式,於一些實施例中,接物透鏡組件154可以分析具有足夠解析度的光以區分自每個像素所反射之激發光。舉例來說,若CMOS影像感測器樣本190具有沿著表面大小為1μm×1μm之像素,則接物透鏡組件154可以1μm×1μm或者更精細之空間解析度分析反射光。 The excitation light incident on the CMOS image sensor sample 190 can also cause reflection of the excitation light from the CMOS image sensor sample 190. The objective lens component 154 can also focus on a specific area of the CMOS image sensor sample 190 to obtain the excitation light reflected from the aforementioned area. Through the aforementioned method, in some embodiments, the objective lens assembly 154 can focus on the area of the CMOS image sensor sample 190 including one or more pixels of the CMOS image sensor sample 190, and the objective lens assembly The 154 may include a lens element with a wide angle and a shallow depth of field, so that it can analyze the excitation light reflected from each pixel in the area. In a manner similar to the foregoing, in some embodiments, the objective lens assembly 154 can analyze light with sufficient resolution to distinguish the excitation light reflected from each pixel. For example, if the CMOS image sensor sample 190 has pixels with a size of 1 μm ×1 μm along the surface, the objective lens assembly 154 can be analyzed with a spatial resolution of 1 μm ×1 μm or more. reflected light.

於一些實施例中,可將接物透鏡組件154重新聚焦以分析來自CMOS影像感測器樣品190中不同區域的光。舉例來說,於一些實施例中,可改變接物透鏡組件154之焦深以檢查來自從CMOS影像感測器樣品190之表面之光致發光之深度變化(例如自CMOS影像感測器樣品190之後表面至CMOS影像感測器樣品190之前表面)。 In some embodiments, the objective lens assembly 154 can be refocused to analyze the light from different areas in the CMOS image sensor sample 190. For example, in some embodiments, the focal depth of the objective lens element 154 can be changed to check the depth change of the photoluminescence from the surface of the CMOS image sensor sample 190 (for example, from the CMOS image sensor sample 190). The back surface to the front surface of the CMOS image sensor sample 190).

於一些實施例中,亦可改變接物透鏡組件154之倍率以用更大或者更小之細節檢查CMOS影像感測器樣本190之特定區域。於一些實施例中,可透過移動接物透鏡組件154之透鏡元件以及相對之另一者(例如“變焦”透鏡)或者透過以其它方式修改通過透鏡組件154的光之光學路徑來改變接物透鏡組件154之倍率。 In some embodiments, the magnification of the objective lens element 154 can also be changed to inspect a specific area of the CMOS image sensor sample 190 with larger or smaller details. In some embodiments, the objective lens can be changed by moving the lens element of the objective lens assembly 154 and the opposite one (such as a "zoom" lens) or by modifying the optical path of the light passing through the lens assembly 154 in other ways. The magnification of component 154.

光致發光以及反射之激發光係透過接物透鏡組件154導向二向色分光器152。如前所述,二向色分光器152根 據入射至其上的光之波長以反射光和/或透射光。舉例來說,若光源130a產生具有第一波長(例如532nm)之激發光、光源130b產生具有第二波長(例如880nm)之激發光、以及CMOS影像感測器樣本190中所誘發之光致發光具有第三波長(例如1100nm),二向色分光器152可部份地反射且部份地透射上述波長中之每一道光。因此,至少一些光致發光以及反射之激發光中可透過二向色分光器152朝成像組件170透射。 The photoluminescence and reflected excitation light is guided through the objective lens assembly 154 to the dichroic beam splitter 152. As mentioned earlier, there are 152 dichroic beamsplitters According to the wavelength of the light incident on it to reflect light and/or transmit light. For example, if the light source 130a generates excitation light with a first wavelength (for example, 532 nm), the light source 130b generates excitation light with a second wavelength (for example, 880 nm), and the photoluminescence induced in the CMOS image sensor sample 190 With a third wavelength (for example, 1100 nm), the dichroic beam splitter 152 can partially reflect and partially transmit each light of the aforementioned wavelengths. Therefore, at least some of the photoluminescence and the reflected excitation light can pass through the dichroic beam splitter 152 and transmit toward the imaging component 170.

至少一部份之光致發光和反射的激發光係透過二向色分光器152導向至二向色分光器156。二向色分光器156更根據入射到其上的光之波長以反射光和/或透射光。舉例來說,若光源130a產生具有第一波長(例如532nm)之激發光、光源130b產生具有第二波長(例如880nm)之激發光、以及CMOS影像感測器樣本190中所誘發之光致發光具有第三波長(例如1100nm),二向色分光器156可反射具有第一以及第二波長之激發光,並透射具有第三波長之光致發光。其結果為光致發光以及反射之激發光係沿著不同之光學路徑重新定向。 At least a part of the photoluminescence and reflected excitation light is guided to the dichroic beam splitter 156 through the dichroic beam splitter 152. The dichroic beam splitter 156 further reflects light and/or transmits light according to the wavelength of the light incident thereon. For example, if the light source 130a generates excitation light with a first wavelength (for example, 532 nm), the light source 130b generates excitation light with a second wavelength (for example, 880 nm), and the photoluminescence induced in the CMOS image sensor sample 190 With a third wavelength (for example, 1100 nm), the dichroic beam splitter 156 can reflect the excitation light having the first and second wavelengths, and transmit the photoluminescence having the third wavelength. The result is that the photoluminescence and the reflected excitation light are redirected along different optical paths.

由二向色分光器152所透射之光致發光係導向通過濾光器158。濾光器158過濾經過的光,使得僅具有特定波長的光或者特定波長範圍的光可基本上透射通過濾光器158。於一些實施例中,濾光器158可以用於”除去”二向色分光器152之輸出。舉例來說,若來自CMOS影像感測器樣品190之光致發光預期具有特定波長(例如1100nm),則濾光器158可為透射具有包括光致發光波長(例如1000nm至1200nm)之波長範圍的光之帶通濾光器,而具有位於上述範圍外之波長的 光基本上無法透射。作為另一示例,於一些實施例中,濾光器158可為衰減具有相對較短之波長的光,同時透射具有相對較長之波長的光之高通濾光器。舉例來說,過濾出在許多實施例中具有比來自CMOS影像感測器樣品190之光致發光更短之波長之反射激發光是有幫助的。接著將光致發光以及反射之激發光分別導向場透鏡160a-b。場透鏡160a-b將光致發光以及反射之激發光分別聚焦至光學組件170之偵測器172a-b。 The photoluminescence transmitted by the dichroic beam splitter 152 is guided through the filter 158. The filter 158 filters the passing light so that only light having a specific wavelength or light of a specific wavelength range can be substantially transmitted through the filter 158. In some embodiments, the filter 158 can be used to "remove" the output of the dichroic beam splitter 152. For example, if the photoluminescence from the CMOS image sensor sample 190 is expected to have a specific wavelength (e.g., 1100 nm), the filter 158 can be configured to transmit a wavelength range including the photoluminescence wavelength (e.g., 1000 nm to 1200 nm). Bandpass filter of light, and having a wavelength outside the above range Basically, light cannot be transmitted. As another example, in some embodiments, the filter 158 may be a high-pass filter that attenuates light having a relatively short wavelength while transmitting light having a relatively long wavelength. For example, it is helpful to filter out the reflected excitation light that has a shorter wavelength than the photoluminescence from the CMOS image sensor sample 190 in many embodiments. Then, the photoluminescence and the reflected excitation light are directed to the field lenses 160a-b, respectively. The field lenses 160a-b focus the photoluminescence and the reflected excitation light to the detectors 172a-b of the optical assembly 170, respectively.

成像組件170偵測光致發光以及反射之激發光,並根據偵測到的光辨識CMOS影像感測器樣本190中之缺陷。成像組件170包括偵測器172a-b以及處理模組174。 The imaging component 170 detects photoluminescence and reflected excitation light, and recognizes defects in the CMOS image sensor sample 190 based on the detected light. The imaging component 170 includes detectors 172a-b and a processing module 174.

偵測器172a-b分別測量來自二向色分光器152之光致發光以及反射之激發光。於一些實施例中,偵測器172a-b以足夠高之空間解析度測量光之強度以分析CMOS影像感測器樣本190之單個像素之光致發光以及反射之激發光。舉例來說,若CMOS影像感測器樣本190包括沿著表面大小為1μm×1μm之像素,則偵測器172a-b可分別以1μm×1μm或者更精細之空間解析度分析光致發光。於一些實施例中,偵測器172a-b可包括用以測量入射至其上之光強度之單個偵測元件或者一些類似之偵測元件。舉例來說,於一些實施例中,偵測器172a-b可包括一行偵測元件(例如”線”偵測器(”line”detector))或者二維陣列之偵測元件。於一些實施例中,偵測器172a-b可以包括一個或者多個InGasAs-線相機或者陣列,或者Si-線相機或者陣列。 The detectors 172a-b respectively measure the photoluminescence from the dichroic beam splitter 152 and the reflected excitation light. In some embodiments, the detectors 172a-b measure the intensity of light with a sufficiently high spatial resolution to analyze the photoluminescence of a single pixel of the CMOS image sensor sample 190 and the reflected excitation light. For example, if the CMOS image sensor sample 190 includes pixels with a size of 1 μm×1 μm along the surface, the detectors 172a-b can analyze the photoluminescence with a spatial resolution of 1 μm×1 μm or finer, respectively. In some embodiments, the detectors 172a-b may include a single detecting element or some similar detecting elements for measuring the intensity of light incident thereon. For example, in some embodiments, the detectors 172a-b may include a line of detection elements (such as a "line" detector) or a two-dimensional array of detection elements. In some embodiments, the detectors 172a-b may include one or more InGasAs-line cameras or arrays, or Si-line cameras or arrays.

於一些實施例中,偵測器172a-b透過積分於一段時 間內所接收的光之強度以分別測量光致發光以及反射之激發光。積分時間可至少部份地根據投射至CMOS影像感測器樣品190的光強度。舉例來說,於一些實施例中,將入射於CMOS影像感測器樣品190上的光之強度減小兩倍可使得積分時間增加為兩倍。來自偵測器之測量雜訊(noise)係隨著積分時間增加,於一些實施例中,可透過調整投射至CMOS影像感測器樣本190之光強度以將偵測器172a-b所得測量雜訊限制至適當之位準。於一些實施例中,可冷卻偵測器172a-b以進一步地減少測量雜訊。舉例來說,於一些實施例中,可將偵測器172a-b中之任一個或者兩者冷卻(例如透過珀爾帖致冷器(Peltier Cooler))至特定溫度(例如100K)以減少所得測量中之雜訊量。 In some embodiments, the detectors 172a-b integrate over a period of time The intensity of the light received in the chamber is used to measure the photoluminescence and reflected excitation light respectively. The integration time can be based at least in part on the intensity of light projected to the CMOS image sensor sample 190. For example, in some embodiments, reducing the intensity of the light incident on the CMOS image sensor sample 190 by a factor of two can increase the integration time by a factor of two. The measured noise from the detector increases with the integration time. In some embodiments, the intensity of the light projected onto the CMOS image sensor sample 190 can be adjusted to reduce the noise measured by the detectors 172a-b. Information is limited to an appropriate level. In some embodiments, the detectors 172a-b can be cooled to further reduce measurement noise. For example, in some embodiments, either or both of the detectors 172a-b may be cooled (for example, through a Peltier Cooler) to a specific temperature (for example, 100K) to reduce the gain The amount of noise in the measurement.

來自偵測器172a-b之測量結果係傳送至處理模組174以進行解釋。於一些實施例中,處理模組174可產生表示CMOS影像感測器樣本190之特定部份之光致發光以及反射之激發光之強度之一個或者多個增量維度圖(multiply dimensional map)。舉例來說,於一些實施例中,偵測器172a-b可包括偵測元件之二維陣列,每個偵測元件可測量入射至該偵測元件上之光強度。透過利用這些資訊,處理模組174可產生表示CMOS影像感測器樣本190上之特定位置之光致發光以及反射之激發光之強度之空間圖。 The measurement results from the detectors 172a-b are sent to the processing module 174 for interpretation. In some embodiments, the processing module 174 can generate one or more multiply dimensional maps representing the photoluminescence of a specific part of the CMOS image sensor sample 190 and the intensity of the reflected excitation light. For example, in some embodiments, the detectors 172a-b can include a two-dimensional array of detection elements, each of which can measure the intensity of light incident on the detection element. By using this information, the processing module 174 can generate a spatial map representing the photoluminescence of a specific location on the CMOS image sensor sample 190 and the intensity of the reflected excitation light.

處理模組174亦可根據來自偵測器172a-b之測量結果辨識CMOS影像感測器樣本190中之缺陷。舉例來說,處理模組174可根據光致發光之局部變化辨識CMOS影像感測器樣本190之區域(例如光斑(spot)、斑點(blotch)、線、 曲線或者具有比周圍區域更強或者更弱之光致發光之其它區域)。處理模組174可將CMOS影像感測器樣本190之上述區域辨識為具有缺陷的。於一些實施例中,處理模組174可將CMOS影像感測器樣本190之一個或者多個特定像素辨識為有缺陷的(例如與光致發光之局部變化相關之像素)。 The processing module 174 can also identify defects in the CMOS image sensor sample 190 based on the measurement results from the detectors 172a-b. For example, the processing module 174 can identify the area (such as spot, blot, line, Curves or other areas with stronger or weaker photoluminescence than surrounding areas). The processing module 174 can identify the above-mentioned area of the CMOS image sensor sample 190 as defective. In some embodiments, the processing module 174 can identify one or more specific pixels of the CMOS image sensor sample 190 as defective (for example, pixels related to local changes in photoluminescence).

於一些實施例中,光致發光之局部變化可能不是CMOS影像感測器樣品中之缺陷,而可能為CMOS影像感測器樣品表面上之顆粒物質。由於顆粒物質可阻擋或者以其它方式衰減光,這些顆粒之存在可局部地影響入射至CMOS影像感測器樣品上之激發光之強度,並且可造成光致發光之局部變化。為了區分CMOS影像感測器樣品中光致發光之局部變化之缺陷與顆粒物質,處理模組174可判斷被辨識為具有光致發光之局部變化之CMOS影像感測器樣品190之區域是否於反射之激發光中也具有對應之局部變化。 In some embodiments, the local change in photoluminescence may not be a defect in the CMOS image sensor sample, but may be particulate matter on the surface of the CMOS image sensor sample. Since particulate matter can block or otherwise attenuate light, the presence of these particles can locally affect the intensity of the excitation light incident on the CMOS image sensor sample, and can cause local changes in photoluminescence. In order to distinguish between the defects of the local variation of photoluminescence and the particulate matter in the CMOS image sensor sample, the processing module 174 can determine whether the area of the CMOS image sensor sample 190 identified as having the local variation of photoluminescence is reflective The excitation light also has corresponding local changes.

於一實施例中,若區域具有光致發光之局部變化以及反射光中對應之局部變化,則處理模組174判斷光致發光之變化為CMOS影像感測器樣品表面上之顆粒物質所造成,而非CMOS影像感測器樣品中之缺陷或者污染。因此,處理模組174可判斷該區域中並不存在缺陷。 In one embodiment, if the area has a local change in photoluminescence and a corresponding local change in reflected light, the processing module 174 determines that the change in photoluminescence is caused by the particulate matter on the surface of the CMOS image sensor sample. It is not a defect or contamination in the CMOS image sensor sample. Therefore, the processing module 174 can determine that there is no defect in the area.

於另一實施例中,若區域具有光致發光之局部變化,但於反射光中並不具有對應之局部變化,則處理模組174判斷光致發光之變化非為CMOS影像感測器樣本表面上之顆粒物質所造成。因此,處理模組174可判斷於該區域中存在缺陷。 In another embodiment, if the area has a local change in photoluminescence but does not have a corresponding local change in the reflected light, the processing module 174 determines that the change in photoluminescence is not the CMOS image sensor sample surface Caused by particulate matter on the surface. Therefore, the processing module 174 can determine that there is a defect in the area.

於一些實施例中,處理模組174可透過使用數位 電子電路、或者電腦軟體、韌體、或者硬體、或者前述之一個或者多個之組合實現。舉例來說,於一些實施例中,處理模組174可至少部份地實現為一個或者多個計算機程序(例如編碼於計算機儲存介質上透過資料處理設備執行或者控制其操作之計算機程序指令之一個或者多個模組)。計算機儲存介質可為或者可包括於計算機可讀取儲存裝置、計算機可讀取儲存基板、隨機或者串行存取記憶體陣列或者裝置或者前述之一個或者多個之組合中。術語”處理設備”包括用於處理資料之所有種類之設備、裝置以及機器,包括例如可編程處理器、計算機、系統單晶片、或者前述之多個或者其組合。該設備可包括專用邏輯電路,例如FPGA(現場可程式化閘陣列)或者ASIC(特殊應用積體電路)。除了硬體外,設備更可包括建立用於所討論之計算機程序之執行環境之編碼,例如構成處理器韌體之編碼、協定堆疊(protocol stack)、資料庫管理系統、作業系統、跨平台運行環境、虛擬機器或者前述之一個或者多個之組合。設備以及執行環境可實現各種不同之計算模型基礎架構,例如web服務、分散式運算以及網格式計算基礎架構。 In some embodiments, the processing module 174 can use digital Implementation of electronic circuits, or computer software, firmware, or hardware, or a combination of one or more of the foregoing. For example, in some embodiments, the processing module 174 may be at least partially implemented as one or more computer programs (for example, one of the computer program instructions coded on a computer storage medium to execute or control its operation through a data processing device) Or multiple modules). The computer storage medium may be or may be included in a computer readable storage device, a computer readable storage substrate, a random or serial access memory array or device, or a combination of one or more of the foregoing. The term "processing equipment" includes all types of equipment, devices, and machines for processing data, including, for example, programmable processors, computers, system-on-chips, or multiple or combinations of the foregoing. The device may include dedicated logic circuits, such as FPGA (field programmable gate array) or ASIC (application-specific integrated circuit). In addition to the hardware, the device can also include codes for establishing the execution environment of the computer program in question, such as codes that constitute processor firmware, protocol stack, database management system, operating system, and cross-platform runtime environment , Virtual machine, or a combination of one or more of the foregoing. The equipment and execution environment can implement various computing model infrastructures, such as web services, distributed computing, and grid computing infrastructures.

儘管已顯示以及描述示例系統100,但僅用以作為說明之目的。於實施時,系統100可根據實施方式具有其它之配置。 Although the example system 100 has been shown and described, it is for illustrative purposes only. During implementation, the system 100 may have other configurations according to the implementation.

系統100的實現可用以於CMOS影像感測器裝置之製造過程期間(例如於製造過程期間之任何步驟之前、期間或者之後)和/或於製造完成之後(例如於晶圓上形成積體電路之後)辨識CMOS影像感測器裝置中之局部缺陷。舉例來 說,於一些實施例中,系統100之實現可用以監視一個或者多個CMOS影像感測器設備之製造過程中之一個或者多個中間步驟,和/或檢查一個或者多個完成之CMOS影像感測器裝置。 The implementation of the system 100 can be used during the manufacturing process of the CMOS image sensor device (for example, before, during, or after any step during the manufacturing process) and/or after the manufacturing is completed (for example, after forming an integrated circuit on a wafer) ) Identify local defects in the CMOS image sensor device. For example That is, in some embodiments, the implementation of the system 100 can be used to monitor one or more intermediate steps in the manufacturing process of one or more CMOS image sensor devices, and/or to check one or more completed CMOS image sensors. Detector device.

於一些實施例中,當偵測到CMOS影像感測器裝置中之缺陷時,關於缺陷之位置以及性質之資訊可以用以修改製造過程,以減少未來引入CMOS影像感測器裝置中之嚴重缺陷。舉例來說,關於缺陷偵測之資訊可用以辨識部份或者全部造成缺陷之特定製造設備或者過程。接著,該資訊可用以修復和/或更換該設備,或者修改過程以改善製造過程。於一些實施例中,關於缺陷之位置以及性質之資訊信息亦可用以辨識有缺陷之晶圓或者晶圓之部份,使這些晶圓或者晶圓之部份可被丟棄或者不使用於將來之過程中。 In some embodiments, when a defect in a CMOS image sensor device is detected, information about the location and nature of the defect can be used to modify the manufacturing process to reduce serious defects introduced into the CMOS image sensor device in the future . For example, information about defect detection can be used to identify the specific manufacturing equipment or process that partially or completely caused the defect. This information can then be used to repair and/or replace the equipment, or modify the process to improve the manufacturing process. In some embodiments, information about the location and nature of defects can also be used to identify defective wafers or parts of wafers, so that these wafers or parts of wafers can be discarded or not used in the future In the process.

系統100的實現可用以以辨識具有CMOS影像感測器裝置之至少單個像素之空間解析度之CMOS影像感測器裝置中之局部缺陷。舉例來說,於一些實施例中,以32nm技術所構建之CMOS影像感測器裝置具有大約0.9×0.9μm之像素;系統100的實現可用以以0.9×0.9μm或者更精細之空間解析度辨識該CMOS影像感測器裝置中之局部缺陷。 The implementation of the system 100 can be used to identify local defects in a CMOS image sensor device with a spatial resolution of at least a single pixel of the CMOS image sensor device. For example, in some embodiments, a CMOS image sensor device constructed with 32nm technology has pixels of approximately 0.9×0.9μm; the implementation of the system 100 can be used to identify with a spatial resolution of 0.9×0.9μm or finer Local defects in the CMOS image sensor device.

一般而言,系統100可根據應用產生各種不同類型之激發光。舉例來說,於一些實施例中,系統100可改變由照明模組130所產生之激發光之波長,以探測CMOS影像感測器樣本190之表面下之不同深度。作為一示例,於一些實施例中,照明模組130可產生綠光(例如具有大約532或者540nm之波長),以產生靠近CMOS影像感測器樣品190之表面(例如1/(吸收 係數)=1.5μm)之少數載流子以及光致發光。於另一方面,於一些實施例中,照明模組130可產生近紅外線照明(例如具有大約880nm之波長),以產生離矽表面更遠之少數載流子以及光致發光。如上所述,照明模組130可包括多個光源,且每個光源可被選擇性地激活以產生具有不同波長的光。舉例來說,於第1圖所示之示例系統100中,照明模組130可包括兩個光源132a-b,每一者係用以產生具有不同波長的光。因此,光源132a-b可選擇性地打開或者關閉以探測CMOS影像感測器樣本190之表面下方之不同深度。儘管圖中係顯示兩個光源132a-b,但實際上,系統100可根據實施方式包括任何數量之光源。 Generally speaking, the system 100 can generate various types of excitation light according to the application. For example, in some embodiments, the system 100 can change the wavelength of the excitation light generated by the illumination module 130 to detect different depths under the surface of the CMOS image sensor sample 190. As an example, in some embodiments, the lighting module 130 can generate green light (for example, with a wavelength of about 532 or 540 nm) to generate a surface close to the CMOS image sensor sample 190 (for example, 1/(absorption) Coefficient) = 1.5μm) minority carriers and photoluminescence. On the other hand, in some embodiments, the illumination module 130 can generate near-infrared illumination (for example, having a wavelength of about 880 nm) to generate minority carriers farther from the silicon surface and photoluminescence. As described above, the lighting module 130 may include multiple light sources, and each light source may be selectively activated to generate light with different wavelengths. For example, in the example system 100 shown in FIG. 1, the lighting module 130 may include two light sources 132a-b, each of which is used to generate light with different wavelengths. Therefore, the light sources 132a-b can be selectively turned on or off to detect different depths under the surface of the CMOS image sensor sample 190. Although two light sources 132a-b are shown in the figure, in reality, the system 100 may include any number of light sources according to the implementation.

於一些實施例中,系統100可改變由照明模組130所產生之激發光之強度。於一些實施例中,由照明模組130所產生之激發光可具有夠高以誘發CMOS影像感測器樣本190中之光致發光之強度,且亦夠低使CMOS影像感測器樣品190之被照射之部份中基本上不會發生歐傑複合(Auger recombination)。 In some embodiments, the system 100 can change the intensity of the excitation light generated by the illumination module 130. In some embodiments, the excitation light generated by the illumination module 130 may have a high enough intensity to induce the photoluminescence in the CMOS image sensor sample 190, and also low enough to make the CMOS image sensor sample 190 There is basically no Auger recombination in the irradiated part.

一般而言,對於低射入位準(injection level)(例如當少數載流子濃度小於多數載流子濃度時),帶間光致發光之強度係與特定位置之少數載流子濃度以及多數載流子濃度之乘積成比例。舉例來說,可表示為:PL=A * C minority carrier * C majority carrier ,其中PL為特定位置所誘發之光致發光之強度(表示為光子數),C minority carrier 為上述位置之少數載流子濃度, C majority carrier 為上述位置之多數載流子濃度,以及A為常數。 Generally speaking, for low injection levels (for example, when the minority carrier concentration is less than the majority carrier concentration), the intensity of interband photoluminescence is related to the minority carrier concentration at a specific position and the majority carrier concentration. The product of the carrier concentration is proportional. For example, it can be expressed as: PL = A * C minority carrier * C majority carrier , where PL is the intensity of photoluminescence induced by a specific location (expressed as the number of photons), and C minority carrier is the minority carrier at the above location The carrier concentration, C majority carrier is the majority carrier concentration at the above position, and A is a constant.

少數載流子濃度C minority carrier (稱為射入位準)與少數載流子之有效壽命以及生成速率(即當少數載體存在時,矽中所吸附之光子數量標準化至(normalized to)矽之體積)成比例。舉例來說,可表示為:C minority carrier =R generation * t life,effective ,其中R generation 為上述位置之生成速率,t life,effective 為上述位置之少數載流子之有效壽命。 The minority carrier concentration C minority carrier (called the injection level) and the effective lifetime and generation rate of the minority carrier (that is, when a minority carrier exists, the number of photons adsorbed in silicon is normalized to that of silicon). Volume) is proportional. For example, it can be expressed as: C minority carrier = R generation * t life,effective , where R generation is the generation rate at the above position, and t life,effective is the effective life of the minority carrier at the above position.

於特定位置PL所誘發之光致發光之強度係與上述位置於矽中所吸收之光致發光-誘發光之強度(表示為光子數)、上述位置之少數載流子之有效壽命以及上述位置之矽中之摻雜濃度成正比。舉例來說,可表示為:PL=A * I absorbed * t life,effective * C majority carrier ,其中I absorbed 為上述位置之矽中所吸收之光致發光-誘發光之強度(表示為光子數量)。 The intensity of the photoluminescence induced by the PL at the specific position is the same as the photoluminescence absorbed in the silicon at the above position-the intensity of the induced light (expressed as the number of photons), the effective lifetime of the minority carrier at the above position, and the above position The doping concentration in silicon is directly proportional. For example, it can be expressed as: PL = A * I absorbed * t life, effective * C majority carrier , where I absorbed is the photoluminescence absorbed in the silicon at the above position-the intensity of the induced light (expressed as the number of photons) .

有效壽命t life,effective 具有來自各種重組通道之貢獻(contribution),特別為大量複合(bulk recombination)、位於介面之重組以及歐傑複合。舉例來說,可表示為:1/t life,effective =1/t recombination,bulk +1/t recombination,interfaces +1/tr ecombination,Auger ,其中t recombination,bulk 為大量複合之壽命,t recombination,interfaces 為介面之複合壽命,t recombination,Auger 為歐傑 複合之壽命。 Effective life t life, effective has contributions from various recombination channels, especially bulk recombination, recombination at the interface, and Ojie recombination. For example, it can be expressed as: 1/ t life,effective =1/ t recombination,bulk +1/ t recombination,interfaces +1/ tr ecombination,Auger , where t recombination,bulk is the life of a large number of composites, t recombination, Interfaces is the composite life of the interface, t recombination, Auger is the life of Aujie composite.

像素之介面之缺陷(例如位於深溝槽絕緣(DTI)之前表面、背表面或者壁處)減少給定像素中之有效壽命t life,effective ,且將造成來自該像素之光致發光強度減少。舉例來說,可表示為:1/t life,interfaces =1/t recombination,front +1/t recombination,back +1/t recombination,DTI ,其中t recombination,front 為正面複合之壽命,t recombination,back 為背面複合之壽命,t recombination,DTI 為深溝槽絕緣(DTI)壁處之壽命。 Defects in the pixel interface (for example, on the front surface, back surface, or wall of deep trench insulation (DTI)) reduce the effective lifetime t life,effective in a given pixel and will cause the photoluminescence intensity from the pixel to decrease. For example, it can be expressed as: 1/ t life,interfaces =1/ t recombination,front +1/ t recombination,back +1/ t recombination,DTI , where t recombination,front is the life of the front composite, t recombination, back is the life of the back composite, t recombination, DTI is the life of the deep trench insulation (DTI) wall.

介面複合之壽命t life,interfaces 與位於該介面之表面(即介面)複合速度以及介於上述介面之間之距離成反比。舉例來說,可表示為:

Figure 105131546-A0305-02-0026-2
其中d interfaces 為介於介面之間之距離,vrecombination,interface為位於介面之重組速度。 The life t life, interfaces of the interface recombination is inversely proportional to the recombination speed of the surface (that is, the interface) located on the interface and the distance between the aforementioned interfaces. For example, it can be expressed as:
Figure 105131546-A0305-02-0026-2
Where d interfaces is the distance between interfaces, and v recombination, interface is the recombination speed at the interfaces.

於一些實施例中,對於深溝槽絕緣介面而言,介於介面之間之距離d interfaces 可為大約1μm(即對於具有1μm之大小之像素)。良好之鈍化介面之介面複合速率為位於1~10cm/sec之範圍內。假設介面重組速率為10cm/sec,可預期深溝槽絕緣介面複合壽命t recombination,DTI 約為5×10-6秒。若沒有大量缺陷且表面被良好鈍化,這將控制像素中之有效壽命 t life,effective In some embodiments, for deep trench insulation interfaces, the distance d interfaces between the interfaces may be about 1 μm (that is, for a pixel having a size of 1 μm). The interface recombination rate of a good passivation interface is in the range of 1~10cm/sec. Assuming that the interface recombination rate is 10cm/sec, the recombination life t recombination of the deep trench insulation interface can be expected, and the DTI is about 5×10 -6 seconds. If there are no large number of defects and the surface is well passivated, this will control the effective life t life,effective in the pixel.

有效壽命t life,effective 係取決於射入位準(例如入射於CMOS影像感測器之主動區上的光之強度)。因此,可至少部份地透過調整射入位準(例如透過調整照射CMOS影像感測器樣本之激發光之強度)控制有效壽命t life,effective 。可根據一個或者多個標準調整射入位準。 The effective life t life,effective depends on the incident level (for example, the intensity of the light incident on the active area of the CMOS image sensor). Therefore, the effective life t life,effective can be controlled at least in part by adjusting the injection level (for example, by adjusting the intensity of the excitation light that illuminates the CMOS image sensor sample). The injection level can be adjusted according to one or more standards.

舉例來說,於一些實施例中,可調整射入位準以減少歐傑複合對CMOS影像感測器之主動區中之有效壽命之貢獻。於高射入位準下,有效壽命可透過歐傑複合控制。舉例來說,於一些實施例中,對於1×1017cm-3之射入位準而言,歐傑複合將p型矽中之有效壽命限制為1×10-4秒。於另一示例中,於一些實施例中,對於1×1018cm-3之射入位準而言,歐傑複合將p型矽中之有效壽命限制為1×10-6秒。由於歐傑複合對缺陷並不敏感,因此可透過調整射入位準使CMOS影像感測器之主動區中之歐傑複合不控制複合程序。 For example, in some embodiments, the injection level can be adjusted to reduce the contribution of Ojie composite to the effective life of the CMOS image sensor in the active area. Under high injection level, the effective life can be controlled by Ojie compound. For example, in some embodiments, for an injection level of 1×10 17 cm −3 , Oge Composite limits the effective life in p-type silicon to 1×10 −4 seconds. In another example, in some embodiments, for an injection level of 1×10 18 cm −3 , OJ composite limits the effective life in p-type silicon to 1×10 −6 seconds. Since the Ojie compound is not sensitive to defects, the Ojie compound in the active area of the CMOS image sensor can not control the compound process by adjusting the injection level.

此外,歐傑複合更控制高摻雜基板中之有效壽命。舉例來說,對於p++和n++之基板而言,歐傑複合可限制所有射入位準之有效壽命。舉例來說,於一些實施例中,於具有1×1020cm-3之載流子濃度之p++基板中,有效壽命係限制為1×10-9秒。歐傑複合壽命係隨著摻雜濃度劇烈地改變。舉例來說,摻雜濃度(例如自1×1020至1×1019之摻雜濃度)減少10倍將使有效壽命增加一百倍(例如增加至1×10-7秒)。 In addition, OJ Composite controls the effective life of highly doped substrates. For example, for p++ and n++ substrates, Ojie composite can limit the effective life of all injection levels. For example, in some embodiments, in a p++ substrate with a carrier concentration of 1×10 20 cm −3 , the effective lifetime is limited to 1×10 −9 seconds. The Ojie composite lifetime changes drastically with the doping concentration. For example, a 10-fold reduction of the doping concentration (e.g., from 1×10 20 to 1×10 19 doping concentration) will increase the effective lifetime by a hundred times (e.g., increase to 1×10 −7 seconds).

CMOS影像感測器主動區中之有效壽命係根據於低射入位準狀態之射入位準(例如當不考慮歐傑複合之貢獻 時)。因此,監測作為照明位準(即射入位準)之函數之光致發光強度為重要的,因為對各種缺陷而言,對應於射入位準之壽命可能為不同的。舉例來說,對p型矽而言,如間隙Fe之缺陷將隨著射入位準增加而造成有效壽命之增加。然而,如Fe-B對之缺陷將隨著射入位準的增加而造成有效壽命之減少。對於增加位於介面之複合之缺陷而言(例如SiO2介面或者深溝槽絕緣之側壁),改變射入位準對介面複合壽命之影響將取決於位於該介面之空間電荷區之狀態。對於位於低射入位準之反相中之介面而言,介面複合壽命並不會隨著射入位準之增加而改變。當射入位準變高(例如大於多數載流子濃度)時,則壽命係隨著射入位準之增加而減小。對於於低射入位準之消耗中之介面而言,介面複合壽命隨著射入位準之增加而增加。但是,對於高射入位準而言,介面複合壽命並不會隨射入位準之增加而改變。因此,對於已給定之缺陷像素而言,光致發光強度對射入位準之依賴性可提供該缺陷之性質之重要線索。 The effective lifetime in the active area of the CMOS image sensor is based on the injection level in the low-injection level state (for example, when the contribution of Ogee recombination is not considered). Therefore, it is important to monitor the photoluminescence intensity as a function of the illumination level (ie, the incident level), because the lifetime corresponding to the incident level may be different for various defects. For example, for p-type silicon, defects such as interstitial Fe will increase the effective life as the injection level increases. However, defects such as Fe-B pairs will decrease the effective life as the injection level increases. For the increase of composite defects at the interface (such as SiO 2 interface or the sidewall of deep trench insulation), the effect of changing the injection level on the composite life of the interface will depend on the state of the space charge region at the interface. For the interface located in the reverse phase of the low injection level, the interface compound life will not change with the increase of the injection level. When the injection level becomes higher (for example, greater than the majority carrier concentration), the lifetime decreases as the injection level increases. For the interface in the consumption of low injection level, the composite life of the interface increases as the injection level increases. However, for high injection levels, the composite life of the interface does not change with the increase in injection levels. Therefore, for a given defective pixel, the dependence of the photoluminescence intensity on the incident level can provide important clues to the nature of the defect.

如前所述,於一些實施例中,CMOS影像感測器主動區中包含光致發光並適當地使用低射入位準為重要的。除此之外,最小化或者以其它方式適當地減少高摻雜基板中所吸收的光量為重要的。光致發光強度與多數載流子濃度成比例。因此,對於基板中以及外延層(例如CMOS影像感測器主動區)所吸收之相同量之光子而言,來自基板之光致發光可能比來自CMOS影像感測器主動區之光致發光更強。舉例來說,於示例CMOS影像感測器裝置中,CMOS影像感測器主動區於開始處理時係具有1×1016cm-3之平均摻雜濃度,並具有5×10-6秒之 有效壽命。該實施例中之基板係具有1×1019cm-3之平均摻雜濃度,並具有1×10-7之有效壽命(由歐傑複合控制),於一些實施例中,其可造成約20μm之擴散長度(例如少數載流子將會擴散之距離)。於CMOS影像感測器主動區以及高摻雜基板中給予相似量之吸收光子,來自基板之光致發光將比CMOS影像感測器主動區之光致發光強五倍。為了將來自基板之背景光致發光減少至小於來自CMOS影像感測器主動區之光致發光之5%,可將基板中所吸收之光子量限制為小於CMOS影像感測器主動區中所吸收之光子之1%。因此,可適當地選擇光致發光產生光(例如吸收係數)之波長。 As mentioned above, in some embodiments, it is important to include photoluminescence in the active region of the CMOS image sensor and to appropriately use low-injection levels. In addition, it is important to minimize or otherwise appropriately reduce the amount of light absorbed in the highly doped substrate. The photoluminescence intensity is proportional to the majority carrier concentration. Therefore, for the same amount of photons absorbed in the substrate and the epitaxial layer (such as the active area of the CMOS image sensor), the photoluminescence from the substrate may be stronger than the photoluminescence from the active area of the CMOS image sensor . For example, in the example CMOS image sensor device, the active area of the CMOS image sensor has an average doping concentration of 1×10 16 cm -3 at the beginning of processing, and has an effective of 5×10 -6 seconds life. The substrate in this embodiment has an average doping concentration of 1×10 19 cm -3 and an effective life of 1×10 -7 (controlled by Oujie). In some embodiments, it can cause about 20 μm The diffusion length (for example, the distance that minority carriers will diffuse). Given a similar amount of absorbed photons in the active area of the CMOS image sensor and the highly doped substrate, the photoluminescence from the substrate will be five times stronger than the photoluminescence of the active area of the CMOS image sensor. In order to reduce the background photoluminescence from the substrate to less than 5% of the photoluminescence from the active area of the CMOS image sensor, the amount of photons absorbed in the substrate can be limited to be less than the amount of photons absorbed in the active area of the CMOS image sensor 1% of the photon. Therefore, the wavelength of the light (for example, absorption coefficient) generated by photoluminescence can be appropriately selected.

如前所述,於一些實施例中,利用歐傑複合並不控制CMOS影像感測器樣品之主動區中之壽命之射入位準誘發光致發光亦為重要的(例如當CMOS影像感測器中之歐傑複合之貢獻可忽略不計時)。如前所述,對於1×1017cm-3之射入位準而言,歐傑之壽命為1×10-4秒。但是,對於1x1018cm-3之射入位準而言,歐傑之壽命為1x10-6。作為一示例,於一些實施例中,對於具有位於5×10-6之範圍內之有效(即體相(bulk)以及介面複合)壽命之CMOS影像感測器主動區而言,可避免1×1018cm-3之射入位準,因為於此射入位準中將失去對於體相以及介面複合之靈敏度,且對測量之有效壽命之貢獻將小於20%。 As mentioned above, in some embodiments, it is also important to use the injection level to induce photoluminescence that does not control the lifetime in the active area of the CMOS image sensor sample (for example, when CMOS image sensor The contribution of Ou Jie compound in the device can be ignored.) As mentioned above, for the injection level of 1×10 17 cm -3 , Ojie’s life span is 1×10 -4 seconds. However, for the injection level of 1x10 18 cm -3 , Ojie's life span is 1x10 -6 . As an example, in some embodiments, for a CMOS image sensor active area with an effective (i.e., bulk and interface composite) lifetime in the range of 5×10 -6, 1× The injection level of 10 18 cm -3 , because at this injection level, the sensitivity to body phase and interface recombination will be lost, and the contribution to the effective life of the measurement will be less than 20%.

於一些實施例中,利用可防止少數載流子自CMOS影像感測器之主動區向外擴散至高摻雜基板之射入位準以誘發光致發光亦為重要的。關於射入位準(例如於CMOS影像感測器之主動區中所產生的少數載流子濃度)之重要關注係與於 CMOS影像感測器之主動區中所產生之少數載流子向外擴散至高摻雜基板有關。由於介於CMOS影像感測器之主動區中之高摻雜p++基板以及輕摻雜p型材料之間之摻雜濃度差,低射入位準之存在於p/p++介面之電場將阻止少數載流子自CMOS影像感測器之主動區擴散進入基板。然而,CMOS影像感測器之主動區以及基板中之少數載流子濃度之差將產生推動力將少數載流子自CMOS影像感測器之主動區擴散至基板中之擴散場(diffusion field)。隨著射入位準增加,該擴散之推動力亦將增加。只要擴散力小於電推斥(electronic repulsion),少數載流子將包含於外延層中。對於高射入位準而言,該擴散梯度可克服電推斥以及一些少數載流子可進入基板中。其結果為將自基板產生強的背景光致發光。這將降低偵測自CMOS影像感測器之主動區變化之光致發光之靈敏度。 In some embodiments, it is also important to use an injection level that can prevent out-diffusion of minority carriers from the active region of the CMOS image sensor to the highly doped substrate to induce photoluminescence. Important concerns about the injection level (for example, the concentration of minority carriers generated in the active region of a CMOS image sensor) are related to The minority carriers generated in the active region of the CMOS image sensor are related to the out-diffusion to the highly doped substrate. Due to the difference in doping concentration between the highly doped p++ substrate and the lightly doped p-type material in the active region of the CMOS image sensor, the electric field existing at the p/p++ interface at the low incidence level will prevent a few Carriers diffuse into the substrate from the active area of the CMOS image sensor. However, the difference between the active area of the CMOS image sensor and the minority carrier concentration in the substrate will generate a driving force to diffuse the minority carriers from the active area of the CMOS image sensor to the diffusion field in the substrate. . As the injection level increases, the driving force for this diffusion will also increase. As long as the diffusion force is less than electronic repulsion, minority carriers will be contained in the epitaxial layer. For high incidence levels, the diffusion gradient can overcome electrical repulsion and some minority carriers can enter the substrate. As a result, strong background photoluminescence will be generated from the substrate. This will reduce the sensitivity of the photoluminescence that detects changes in the active area of the CMOS image sensor.

因此,為了增強系統100之偵測靈敏度並最小化CMOS影像感測器樣品之高摻雜基板中之光致發光之產生,為施加至CMOS影像感測器樣品之激發光選擇適當之波長以及強度為重要的。 Therefore, in order to enhance the detection sensitivity of the system 100 and minimize the generation of photoluminescence in the highly doped substrate of the CMOS image sensor sample, an appropriate wavelength and intensity are selected for the excitation light applied to the CMOS image sensor sample Is important.

於一些實施例中,激發光之波長以及強度可針對每個應用進行實驗評估。舉例來說,可進行有關激發光之波長以及強度是否會造成主要來自CMOS影像感測器樣品之主動區之光致發光或者所得到之光致發光是否對CMOS影像感測器樣品之基板具有大貢獻之實驗判斷。 In some embodiments, the wavelength and intensity of the excitation light can be experimentally evaluated for each application. For example, whether the wavelength and intensity of the excitation light will cause photoluminescence mainly from the active area of the CMOS image sensor sample or whether the resulting photoluminescence has a large effect on the substrate of the CMOS image sensor sample. Experimental judgment of contribution.

於示例性評估處理中,利用具有特定波長以及強度之激發光照射CMOS影像感測器樣本,並於CMOS影像感 測器樣本之相對大部份(例如”巨”區域(macro region))上偵測所得到之光致發光。於一些實施例中,透過這種方式所檢查之CMOS影像感測器樣本之部份可大於如前所述之透過偵測器172a-b所測量之CMOS影像感測器樣本之部份。於一些實施例中,該”巨”區域可具有約1cm2或者更大(例如1cm2、2cm2、3cm2、4cm2或者更大)之面積。於一些實施例中,該”巨”區域可包括整個CMOS影像感測器樣本。 In an exemplary evaluation process, a CMOS image sensor sample is irradiated with excitation light having a specific wavelength and intensity, and the CMOS image sensor sample is detected on a relatively large portion (such as a "macro region"). Measure the photoluminescence obtained. In some embodiments, the portion of the CMOS image sensor sample inspected in this way may be larger than the portion of the CMOS image sensor sample measured by the detectors 172a-b as described above. In some embodiments, the "macro" area may have an area of about 1 cm 2 or greater (for example, 1 cm 2 , 2 cm 2 , 3 cm 2 , 4 cm 2 or greater). In some embodiments, the "macro" area may include the entire CMOS image sensor sample.

於一些實施例中,該”巨”區域之光致發光可使用與偵測器172a-b分離之偵測器進行判斷。舉例來說,分離之偵測器可指向CMOS影像感測器樣品190以取得沿著偵測器172a-b之”巨”區域之光致發光測量。於一些實施例中,該”巨”區域之光致發光可透過偵測器172a-b之一者進行判斷。舉例來說,於一些實施例中,當對”巨”區域進行成像,可改變CMOS影像感測器樣本190以及偵測器172a-b之間之光徑,例如對”巨”區域成像時,透過利用不同之接物透鏡154或者調整接物透鏡154之光學屬性。 In some embodiments, the photoluminescence of the "macro" area can be determined using a detector separate from the detectors 172a-b. For example, a separate detector can be pointed at the CMOS image sensor sample 190 to obtain photoluminescence measurements along the "large" area of the detectors 172a-b. In some embodiments, the photoluminescence of the "macro" area can be determined by one of the detectors 172a-b. For example, in some embodiments, when imaging a "giant" area, the optical path between the CMOS image sensor sample 190 and the detectors 172a-b can be changed. For example, when imaging the "giant" area, By using a different objective lens 154 or adjusting the optical properties of the objective lens 154.

檢查所得到之光致發光圖譜以取得通常與CMOS影像感測器裝置之矽基板有關之缺陷之強度變化。舉例來說,透過柴氏法(Czochralski process)所製造之矽晶圓(即”CZ晶圓”)於被激發光照射時,通常包括光致發光之曲線變化。作為一示例,第2圖係顯示CMOS影像感測器裝置之示例性光致發光圖譜200。於該示例中,光致發光圖譜200包括光致發光強度210之複數變化,以強度變化之圓形或者曲線帶表示。於一些實施例中,類似於第2圖中所示之變化係為透過柴氏法 所製造之矽晶圓之特徵,以及該特徵圖案不存在於裝置之外延層中(例如CMOS影像感測器之主動區中)。 Inspect the obtained photoluminescence spectrum to obtain the intensity variation of defects usually related to the silicon substrate of the CMOS image sensor device. For example, silicon wafers (ie, "CZ wafers") manufactured by the Czochralski process usually include photoluminescence curves when irradiated by excitation light. As an example, Figure 2 shows an exemplary photoluminescence spectrum 200 of a CMOS image sensor device. In this example, the photoluminescence spectrum 200 includes a complex change of the photoluminescence intensity 210, which is represented by a circular or curved band of intensity change. In some embodiments, the change similar to that shown in Figure 2 is through the Czochralski method The feature of the manufactured silicon wafer and the feature pattern do not exist in the epitaxial layer of the device (for example, in the active area of the CMOS image sensor).

可透過以長波長照射(例如具有大於約1.1eV之能量之近紅外照射,Si的能量間隙)照射CMOS影像感測器樣品以定量地計算來自基板之光致發光對於所有偵測到之光致發光之貢獻,使大部份之載流子(例如基本上大部份或者基本上所有之載流子)係產生於基板中。由於特徵基板缺陷,該光致發光強度之變化對短波長而言,可作為計算基板光致發光對於所有偵測到的光致發光之貢獻之參考。 The CMOS image sensor sample can be irradiated with long-wavelength radiation (such as near-infrared radiation with energy greater than about 1.1eV, energy gap of Si) to quantitatively calculate the photoluminescence from the substrate for all detected photoluminescence The contribution of luminescence causes most of the carriers (for example, substantially most or substantially all of the carriers) to be generated in the substrate. Due to the characteristic substrate defect, the change in photoluminescence intensity for short wavelengths can be used as a reference for calculating the contribution of substrate photoluminescence to all detected photoluminescence.

作為一示例,當利用具有相對長波長之激發光(例如具有使基本上大部份或者基本上所有載流子產生於CMOS影像感測器樣品之基板中之波長之激發光)照射CMOS影像感測器樣品時,缺陷對比度為50%(例如光致發光強度圖譜包括使周圍強度相差50%之強度之局部變化)。然而,當利用具有相對較短之波長之激發光照射CMOS影像感測器樣品時,缺陷對比度為5%(例如光致發光強度圖包括使周圍強度相差5%之強度之局部變化)。因此,於該實施例中,可估計對於相對較短之波長而言,基板對所有光致發光之貢獻約為10%(例如5%除上50%)。 As an example, when the excitation light having a relatively long wavelength (for example, excitation light having a wavelength that causes substantially most or substantially all of the carriers to be generated in the substrate of the CMOS image sensor sample) is used to illuminate the CMOS image sensor When measuring the sample, the defect contrast is 50% (for example, the photoluminescence intensity map includes local changes in intensity that make the surrounding intensity differ by 50%). However, when the CMOS image sensor sample is irradiated with excitation light having a relatively short wavelength, the defect contrast is 5% (for example, the photoluminescence intensity map includes a local change in intensity that makes the surrounding intensity differ by 5%). Therefore, in this embodiment, it can be estimated that for a relatively short wavelength, the contribution of the substrate to all photoluminescence is about 10% (for example, 5% divided by 50%).

若基板對於光致發光之貢獻太大,則可調整測量條件(例如透過減小施加至CMOS影像感測器樣品之激發光之波長或者光強度),直到缺陷圖案減少或者消除為止。 If the substrate contributes too much to the photoluminescence, the measurement conditions can be adjusted (for example, by reducing the wavelength or light intensity of the excitation light applied to the CMOS image sensor sample) until the defect pattern is reduced or eliminated.

於一些實施例中,可用以偵測CMOS影像感測器樣品中之缺陷之最高射入限制可至少部份地根據隨著因射入 位準增加而降低之歐傑複合壽命決定。作為一示例,對於1×1017cm-3之射入位準而言,示例裝置中之歐傑壽命為100×10-6秒。對於來自體相以及介面複合、具有5×10-6秒之有效複合壽命之CMOS影像感測器主動區而言,該歐傑複合將貢獻約5%之有效壽命。 In some embodiments, the maximum injection limit that can be used to detect defects in a CMOS image sensor sample can be determined, at least in part, based on the Ogee composite lifetime that decreases as the injection level increases. As an example, for an injection level of 1×10 17 cm -3 , the life of Oge in the example device is 100×10 -6 seconds. For the active area of the CMOS image sensor with an effective complex life of 5×10 -6 seconds from the body and interface complex, the OJ complex will contribute about 5% of the effective life.

系統100對於CMOS影像感測器樣品中之缺陷之靈敏度至少部份地取決於比歐傑複合壽命短之體相以及介面複合壽命。於一些實施例中,可改變激發光之波長以及強度以取得歐傑複合對於有效壽命之特定百分比之貢獻。舉例來說,於一些實施例中,可改變激發光之波長以及強度使CMOS影像感測器主動區之歐傑壽命小於或者等於來自CMOS影像感測器主動區之體相以及介面複合之有效複合壽命之5%。於一些實施例中,該閥值係對應於約1×1017cm-3或者更小之射入位準。對約5μm厚度之CMOS影像感測器主動區而言,於一些實施例中,這將對應於CMOS影像感測器主動區中約1×1019光子/cm2 sec之吸收(例如對應於100mW/cm2之功率)。儘管前面係描述一示例性閥值,但僅作為說明之目的。於一些實施例中,可改變激發光之波長以及強度使CMOS影像感測器主動區之歐傑壽命小於或者等於來自CMOS影像感測器主動區之體相以及介面複合之有效複合壽命之一些其它百分比(例如1%、5%、10%、15%或者任何其它百分比)。 The sensitivity of the system 100 to defects in the CMOS image sensor sample depends at least in part on the bulk phase and the interface recombination lifetime that are shorter than the Ogee recombination lifetime. In some embodiments, the wavelength and intensity of the excitation light can be changed to obtain a specific percentage of the contribution of Ogee recombination to the effective lifetime. For example, in some embodiments, the wavelength and intensity of the excitation light can be changed so that the Oge life of the active area of the CMOS image sensor is less than or equal to the effective recombination of the bulk phase and interface recombination from the active area of the CMOS image sensor 5% of life. In some embodiments, the threshold corresponds to an injection level of about 1×10 17 cm -3 or less. For a CMOS image sensor active area with a thickness of about 5 μm, in some embodiments, this corresponds to an absorption of approximately 1×10 19 photons/cm 2 sec in the CMOS image sensor active area (for example, corresponding to 100 mW /cm 2 power). Although an exemplary threshold is described above, it is for illustrative purposes only. In some embodiments, the wavelength and intensity of the excitation light can be changed so that the Oge life of the active area of the CMOS image sensor is less than or equal to the effective recombination life of the bulk phase and interface recombination from the active area of the CMOS image sensor. Percentage (e.g. 1%, 5%, 10%, 15% or any other percentage).

於系統100中(第1圖),係以名義上垂直於樣品表面之光照射樣品。因此,於此一幾何形狀中,自樣品表面反射的光係由系統之接物透鏡聚集並傳送至偵測器。然而,更 一般地,亦可透過其它之配置實現。舉例來說,如第3圖所示,於一些實施例中,可使用傾斜(而非垂直)照明。在此,系統300包括照明組件330,照明組件330用以以沿著與樣本表面成非垂直角度之光軸310入射之激發光照射CMOS影像感測器樣本190。舉例來說,光軸310可相對於表面法線呈45°或者更大(例如60°或者更大、70°或者更大)之角度。一般而言,入射角應夠大使自樣品表面反射之很少光或者無任何光被接物透鏡154所收集。 In the system 100 (Figure 1), the sample is irradiated with light that is nominally perpendicular to the surface of the sample. Therefore, in this geometric shape, the light reflected from the sample surface is collected by the objective lens of the system and transmitted to the detector. However, more Generally, it can also be realized through other configurations. For example, as shown in Figure 3, in some embodiments, oblique (rather than vertical) illumination may be used. Here, the system 300 includes an illumination assembly 330 for illuminating the CMOS image sensor sample 190 with excitation light incident along the optical axis 310 at a non-perpendicular angle to the surface of the sample. For example, the optical axis 310 may have an angle of 45° or greater (for example, 60° or greater, 70° or greater) with respect to the surface normal. Generally speaking, the incident angle should be such that little or no light reflected from the sample surface is collected by the objective lens 154.

照明組件330包括光源132a和132b、濾光器136a和136b、以及二向色分光器138。除此之外,照明組件330包括聚焦透鏡340和342,用以將來自由光束分離器所聚集之光源的光聚焦至樣品190上。 The lighting assembly 330 includes light sources 132a and 132b, filters 136a and 136b, and a dichroic beam splitter 138. In addition, the lighting assembly 330 includes focusing lenses 340 and 342 for focusing the light from the light source collected by the beam splitter onto the sample 190.

系統300亦包括接物透鏡154、濾光器158以及場透鏡160a。接物透鏡154以及場透鏡160a將樣品190之表面成像至偵測器172a上。偵測器係與處理模組174進行通信。 The system 300 also includes an objective lens 154, a filter 158, and a field lens 160a. The objective lens 154 and the field lens 160a image the surface of the sample 190 onto the detector 172a. The detector communicates with the processing module 174.

類似於第1圖所示之系統100,接物透鏡154具有名義上垂直對齊於樣品190之表面之光軸。 Similar to the system 100 shown in Figure 1, the objective lens 154 has an optical axis that is nominally aligned perpendicular to the surface of the sample 190.

由於介於照明光軸310以及成像光軸320之間之相對定向,自樣品190之表面所反射之激發光並不會被接物透鏡154聚集,並且不會被傳送至偵測器172a。僅來自樣品190之光致發光、散射光以及雜散光被傳送至偵測器172a。因此,在偵測器172a處形成的圖像是暗場圖像。因此,即使於不使用濾光器158之情況下,晶圓中之光致發光源於圖像中係顯現為亮區。 Due to the relative orientation between the illumination optical axis 310 and the imaging optical axis 320, the excitation light reflected from the surface of the sample 190 will not be collected by the objective lens 154 and will not be transmitted to the detector 172a. Only the photoluminescence, scattered light, and stray light from the sample 190 are transmitted to the detector 172a. Therefore, the image formed at the detector 172a is a dark field image. Therefore, even when the filter 158 is not used, the photoluminescence in the wafer originates from the bright area in the image.

一般而言,儘管第3圖中顯示系統300之一些組 件,但亦可包括圖中未顯示之其它元件。舉例來說,系統亦可包括用以將光傳送至或者成像來自樣品190的光之偵測器172b和/或其它光學元件(例如透鏡、濾光器、光闌(stop))。 Generally speaking, although some groups of the system 300 are shown in Figure 3 Components, but can also include other components not shown in the figure. For example, the system may also include a detector 172b and/or other optical elements (such as lenses, filters, and stops) for transmitting or imaging light from the sample 190.

於一些實施例中,可區分晶圓中來自不同處理之光致發光,其中不同之處理將造成不同波長之光致發光。舉例來說,光學濾波可以用以區分來自結晶缺陷之光致發光以及來自其它源(例如來自矽中之帶間躍遷)之光致發光。來自矽晶圓中之結晶缺陷之光致發光(例如晶粒或者次晶界(sub-grain boundary)、排差群(dislocation cluster)、排差環或者沉澱物和/或疊置缺陷)通常發生於約0.7eV至約0.9eV之能量範圍內。反之,矽中帶間躍遷之光致發光通常發生於大於約1eV之波長處。因此,可透過阻擋來自偵測器之波長範圍之一者的光以區分來自這兩個不同源之光致發光。舉例來說,阻擋具有超過約1eV之能量的光之光學濾光器可用以偵測僅來自結晶缺陷之光致發光,因為來自矽中之帶間躍遷之光致發光於室溫下具有約1.1eV或者更高之能量,並且會被上述之光學濾光器所阻擋。更一般地,光學濾光器可設計為阻擋對應於除了矽之外之各種材料中之帶間躍遷之光子能量,以允許類似地研究其它材料。透過上述方式,可使用上述技術來辨識晶圓(例如矽晶圓)中之各個結晶缺陷之存在以及位置。上述位置於利用濾光器阻擋來自帶間躍遷之光致發光所取得之圖像中係顯示為亮點。 In some embodiments, photoluminescence from different processes in the wafer can be distinguished, where different processes will cause photoluminescence of different wavelengths. For example, optical filtering can be used to distinguish between photoluminescence from crystal defects and photoluminescence from other sources (such as from inter-band transitions in silicon). Photoluminescence from crystal defects in silicon wafers (such as crystal grains or sub-grain boundaries, dislocation clusters, dislocation rings or deposits and/or overlap defects) usually occurs In the energy range of about 0.7eV to about 0.9eV. Conversely, photoluminescence of inter-band transitions in silicon usually occurs at wavelengths greater than about 1 eV. Therefore, the photoluminescence from these two different sources can be distinguished by blocking the light from one of the wavelength ranges of the detector. For example, an optical filter that blocks light with energy exceeding about 1 eV can be used to detect photoluminescence from crystal defects only, because photoluminescence from interband transitions in silicon has a value of about 1.1 at room temperature. eV or higher energy, and will be blocked by the above-mentioned optical filter. More generally, optical filters can be designed to block photon energy corresponding to inter-band transitions in various materials other than silicon, allowing other materials to be studied similarly. Through the above method, the above technology can be used to identify the existence and location of each crystal defect in a wafer (such as a silicon wafer). The above-mentioned position is displayed as a bright spot in the image obtained by blocking the photoluminescence from the inter-band transition by using the filter.

作為一示例,濾光器158可包括基本上透射具有約0.7eV至約1eV之能量的光但阻擋(例如反射或者吸收)波長低於約0.7eV和/或高於約1.0eV的光之帶通濾光器。可使用 二向色濾光器以達成上述之目的。因此,僅具有約0.7eV至約1eV之光子能量的光到達偵測器並有助於偵測到之圖像。 As an example, the filter 158 may include a band that substantially transmits light having an energy of about 0.7 eV to about 1 eV but blocks (for example, reflects or absorbs) light with a wavelength lower than about 0.7 eV and/or higher than about 1.0 eV. Pass filter. be usable The dichroic filter achieves the above-mentioned purpose. Therefore, only light with photon energy of about 0.7 eV to about 1 eV reaches the detector and contributes to the detected image.

於實施例中,濾光器158為反射濾光器,濾光器可以對應於光徑之一角度定向,使反射光不會被導向回晶圓。濾光器158可自光徑中移除,舉例來說,可手動移除或者透過致動組件自動地移除。 In the embodiment, the optical filter 158 is a reflective optical filter, and the optical filter can be oriented at an angle corresponding to an angle of the optical path, so that the reflected light will not be directed back to the wafer. The filter 158 can be removed from the light path, for example, can be removed manually or automatically through an actuation component.

根據實施例之內容,濾光器158之通帶可被改變。舉例來說,通帶具有一半高寬(full-width half maximum)約為0.3μm(例如自約0.7μm至約1.0μm),或者更小(例如約0.25μm、約0.2μm、約0.15μm、約0.1μm、約0.05μm)。可選擇通帶以於自一個光源傳輸光致發光時,選擇性地阻擋來自另一個光源之光致發光。舉例來說,較窄之通帶可允許區分不同類型之結晶缺陷。 According to the content of the embodiment, the pass band of the filter 158 can be changed. For example, the passband has a full-width half maximum of about 0.3 μm (for example, from about 0.7 μm to about 1.0 μm), or smaller (for example, about 0.25 μm, about 0.2 μm, about 0.15 μm, About 0.1 μm, about 0.05 μm). The passband can be selected to selectively block the photoluminescence from another light source when the photoluminescence is transmitted from one light source. For example, a narrower pass band may allow different types of crystal defects to be distinguished.

儘管濾光器158為一種實現方式,但亦可透過其它方式實施。舉例來說,濾光器之位置不限於本發明所述之位置上。一般而言,濾光器可位於自晶圓至偵測器之光徑中之任何地方。於一些實施例中,濾光器可位於偵測器(例如與偵測器結合)。於某些實施例中,濾光器可位於成像系統之光瞳平面。 Although the filter 158 is one implementation, it can also be implemented in other ways. For example, the position of the filter is not limited to the position described in the present invention. Generally speaking, the filter can be located anywhere in the light path from the wafer to the detector. In some embodiments, the filter may be located at the detector (for example, in combination with the detector). In some embodiments, the filter may be located in the pupil plane of the imaging system.

於晶圓處理中之不同步驟期間監測晶圓之晶體缺陷可辨識由處理所引起之晶體缺陷(例如單個疊置缺陷(stacking fault)、差排環(dislocation loop)或者沉澱物(precipitate))。上述缺陷可以微米解析度辨識。可監測之處理步驟包括離子植入步驟、退火步驟、層沉積步驟(例如外延生長、原子層沉積(atomic layer deposition,ALD)、選擇 性外延(例如Si1-xGex)、氧化步驟、蝕刻步驟(電漿蝕刻)、和/或拋光步驟(例如化學機械拋光))。一般而言,缺陷之描述可於上述處理步驟中之任一者之前和/或之後進行。 Monitoring the crystal defects of the wafer during different steps in the wafer processing can identify crystal defects (such as stacking faults, dislocation loops, or precipitates) caused by the processing. The above-mentioned defects can be identified with micron resolution. The processing steps that can be monitored include ion implantation steps, annealing steps, layer deposition steps (e.g. epitaxial growth, atomic layer deposition (ALD)), selective epitaxy (e.g. Si 1-x Ge x ), oxidation steps, etching Step (plasma etching), and/or polishing step (e.g. chemical mechanical polishing)). Generally speaking, the description of the defect can be performed before and/or after any of the above processing steps.

儘管本發明中係描述用以偵測CMOS影像感測器裝置中之缺陷之實施方式,但僅作為說明之目的。於實施時,實施方案可用以偵測所產生之少數載流子以及光致發光基本上係限制於裝置之主動區之其它裝置或者電路中之缺陷。舉例來說,於一些實施例中,實施方式可用以偵測使用完全耗盡絕緣層上覆矽(silicon on insulator,SOI)技術所構建之CMOS電路中之缺陷。於一些實施例中,可使用除了由純矽所形成之晶圓以外之晶圓,例如SiGe層(例如Si1-xGex,其中0<x<1)。亦可使用複合半導體晶圓。舉例來說,由III-V族或者II-VI族化合物所形成之晶圓可以使用本發明之技術來表示其特色。更一般地,上述之技術可應用於具有結晶缺陷光致發光之各種材料,特別是結晶缺陷光致發光以及帶間光致發光發生於不同波長之半導體材料。 Although the present invention describes an implementation for detecting defects in a CMOS image sensor device, it is for illustrative purposes only. When implemented, the implementation can be used to detect the minority carriers generated and the photoluminescence is basically limited to other devices or defects in the circuit in the active region of the device. For example, in some embodiments, the implementation can be used to detect defects in CMOS circuits constructed using fully depleted silicon on insulator (SOI) technology. In some embodiments, a wafer other than a wafer formed of pure silicon, such as a SiGe layer (such as Si 1-x Ge x , where 0<x<1) may be used. Compound semiconductor wafers can also be used. For example, wafers formed from III-V or II-VI compounds can be characterized by using the technology of the present invention. More generally, the above-mentioned technology can be applied to various materials with crystal defect photoluminescence, especially semiconductor materials with crystal defect photoluminescence and interband photoluminescence occurring at different wavelengths.

儘管說明書中包含許多細節,但並非用以限制本發明所要求保護之範圍,而僅可解釋為對特定實施例之特定特徵之描述。亦可結合說明書中分開實現之上下文中所描述之某些特徵。相反地,於分開實現之上下文中所描述之各種特徵亦可分開地或者以任何合適之子組合實現於多個實施例中。 Although the description contains many details, it is not intended to limit the scope of protection of the present invention, but can only be interpreted as a description of specific features of specific embodiments. It may also be combined with certain features described in the context of separate implementations in the specification. Conversely, various features described in the context of separate implementation can also be implemented in multiple embodiments separately or in any suitable sub-combination.

儘管以上已揭露本發明數個實施例,但在不脫離本發明之精神以及範圍內,當可作些許之更動以及潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although several embodiments of the present invention have been disclosed above, some changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention should be defined as the scope of the appended patent application. allow.

100:系統 100: System

110:平台組件 110: platform components

130:照明組件 130: lighting components

132a、132b:光源 132a, 132b: light source

134a、134b:校正透鏡 134a, 134b: correction lens

136a、136b:濾光器 136a, 136b: filter

138、152、156:二向色分光器 138, 152, 156: dichroic beam splitter

140:聚焦透鏡 140: Focusing lens

150:光學組件 150: optical components

154:接物透鏡 154: contact lens

158:濾光器 158: filter

160a、160b:場透鏡 160a, 160b: field lens

170:成像組件 170: Imaging Kit

172a、172b:偵測器 172a, 172b: detector

174:處理模組 174: Processing Module

190:CMOS影像感測器樣本 190: CMOS image sensor sample

Claims (52)

一種用於識別在一晶圓之一單晶矽中的局部結晶缺陷之方法,該方法包括:以具有足以於上述晶圓中誘發來自在上述晶圓之上述單晶矽之帶間躍遷之光致發光以及來自在上述晶圓之上述單晶矽中之一個或者多個局部結晶缺陷之光致發光之一波長以及一強度之激發光照射在上述晶圓之上述單晶矽;過濾於上述晶圓的一部分反射的激發光且對應於自上述晶圓之一部份照射之光致發光以響應上述照明步驟,以提供過濾之光致發光,其中上述過濾步驟基本上自來自上述過濾之光致發光的上述單晶矽的帶間躍遷移除光致發光;導向上述過濾之光致發光至一多元件偵測器上,並以1μm×1μm或者更小的一空間解析度於上述多元件偵測器上成像上述晶圓之上述部份,其中,上述偵測到之過濾光致發光係對應來自在上述晶圓之上述單晶矽中之上述一個或者多個局部結晶缺陷的光致發光;以及根據上述偵測到之過濾光致發光,以1μm×1μm或者更小的一空間解析度辨識在上述晶圓之上述單晶矽中之上述一個或者多個局部結晶缺陷的存在以及位置,其中上述一個或多個局部結晶缺陷對應至上述晶圓的上述部分的一圖像中的亮區。 A method for identifying local crystalline defects in a single crystal silicon of a wafer, the method comprising: having sufficient light in the wafer to induce transitions from the bands of the single crystal silicon on the wafer The photoluminescence and the photoluminescence from one or more local crystal defects in the single crystal silicon on the wafer irradiate the single crystal silicon on the wafer with one wavelength and one intensity of excitation light; The excitation light reflected by a part of the circle corresponds to the photoluminescence irradiated from a part of the wafer in response to the illumination step to provide filtered photoluminescence, wherein the filtering step is basically derived from the photoluminescence from the filtering The band-to-band transition of the luminescent single crystal silicon removes the photoluminescence; directs the filtered photoluminescence to a multi-element detector with a spatial resolution of 1μm×1μm or less in the multi-element The above part of the wafer is imaged on the detector, wherein the detected filtered photoluminescence corresponds to the photoluminescence from the one or more local crystal defects in the single crystal silicon of the wafer And according to the detected filtered photoluminescence, the presence and location of the one or more local crystalline defects in the single crystal silicon of the wafer are identified with a spatial resolution of 1μm×1μm or less, The above-mentioned one or more local crystal defects correspond to bright areas in an image of the above-mentioned part of the above-mentioned wafer. 如申請專利範圍第1項所述之方法,其中上述偵測到之過濾光致發光包括具有介於約0.7eV至約0.9eV之一範圍內之能量的光線。 The method according to claim 1, wherein the detected filtered photoluminescence includes light having an energy in a range of about 0.7 eV to about 0.9 eV. 如申請專利範圍第2項所述之方法,其中上述晶圓包括一矽鍺層。 The method described in item 2 of the scope of patent application, wherein the wafer includes a silicon germanium layer. 如申請專利範圍第3項所述之方法,其中上述矽鍺層包括Si1-xGex,其中0<x<1。 The method described in item 3 of the scope of patent application, wherein the silicon germanium layer includes Si 1-x Ge x , where 0<x<1. 如申請專利範圍第3項所述之方法,其中於上述晶圓上執行一個或者多個處理程序後,辨識上述晶圓之上述一個或者多個局部結晶缺陷。 According to the method described in item 3 of the scope of patent application, after executing one or more processing procedures on the above-mentioned wafer, the above-mentioned one or more local crystalline defects of the above-mentioned wafer are identified. 如申請專利範圍第5項所述之方法,其中於上述晶圓上完成積體電路之形成後,辨識上述晶圓之上述一個或者多個局部結晶缺陷。 According to the method described in item 5 of the scope of patent application, after the formation of the integrated circuit on the above-mentioned wafer is completed, the above-mentioned one or more local crystal defects of the above-mentioned wafer are identified. 如申請專利範圍第2項所述之方法,其中上述過濾步驟基本上阻擋偵測到之具有大於約1.0eV之能量的光線。 According to the method described in claim 2, wherein the filtering step basically blocks the detected light with energy greater than about 1.0 eV. 如申請專利範圍第1項所述之方法,其中上述過濾步驟更包括過濾自上述晶圓之上述部份反射之激發光。 According to the method described in claim 1, wherein the filtering step further includes filtering the excitation light reflected from the part of the wafer. 如申請專利範圍第1項所述之方法,更包括偵測自上述晶圓之上述部份反射之激發光。 The method described in item 1 of the scope of the patent application further includes detecting the excitation light reflected from the above-mentioned part of the above-mentioned wafer. 如申請專利範圍第9項所述之方法,更包括比較上述偵測到之光致發光以及上述偵測到之激發光,並根據上述比較結果辨識上述晶圓中之上述一個或者多個局部結晶缺陷。 The method described in item 9 of the scope of patent application further includes comparing the detected photoluminescence and the detected excitation light, and identifying the one or more local crystals in the wafer based on the comparison result defect. 如申請專利範圍第1項所述之方法,其中上述晶圓係為用於一CMOS影像感測器之一晶圓。 In the method described in claim 1, wherein the above-mentioned wafer is a wafer used in a CMOS image sensor. 如申請專利範圍第11項所述之方法,其中於上述晶圓上完成積體電路之形成後,辨識上述晶圓之上述一個或者多個局部結晶缺陷。 According to the method described in item 11 of the scope of patent application, after the formation of the integrated circuit on the above-mentioned wafer is completed, the above-mentioned one or more local crystal defects of the above-mentioned wafer are identified. 如申請專利範圍第12項所述之方法,其中形成於上述晶圓上之上述積體電路包括互補金氧半導體電路。 The method described in claim 12, wherein the integrated circuit formed on the wafer includes a complementary metal oxide semiconductor circuit. 如申請專利範圍第11項所述之方法,其中上述晶圓之上述部份係對應至上述CMOS影像感測器之一個或者多個像素。 The method described in item 11 of the scope of patent application, wherein the above-mentioned part of the above-mentioned wafer corresponds to one or more pixels of the above-mentioned CMOS image sensor. 如申請專利範圍第12項所述之方法,其中辨識上述晶圓之上述單晶矽中之上述一個或者多個局部結晶缺陷的存在以及位置之步驟包括辨識上述CMOS影像感測器之一個或者多個缺陷像素。 The method described in claim 12, wherein the step of identifying the presence and location of the one or more local crystal defects in the single crystal silicon of the wafer includes identifying one or more of the CMOS image sensors Defective pixels. 如申請專利範圍第12項所述之方法,其中辨識上述晶圓之上述單晶矽中之上述一個或者多個局部結晶缺陷的存在以及位置之步驟包括辨識具有大小為1μm或者更小之一個或者多個缺陷。 The method described in item 12 of the scope of patent application, wherein the step of identifying the presence and location of the one or more local crystalline defects in the single crystal silicon of the wafer includes identifying one with a size of 1 μm or less or Multiple defects. 如申請專利範圍第8項所述之方法,其中辨識上述晶圓之上述單晶矽中之上述一個或者多個局部結晶缺陷的存在以及位置之步驟包括辨識具有大小為大於1μm之一個或者多個缺陷。 The method described in item 8 of the scope of patent application, wherein the step of identifying the presence and location of the one or more local crystal defects in the single crystal silicon of the wafer includes identifying one or more with a size greater than 1 μm defect. 如申請專利範圍第1項所述之方法,其中上述晶圓為用於電源管理積體電路裝置之一晶圓。 According to the method described in item 1 of the scope of patent application, the above-mentioned wafer is a wafer used for power management integrated circuit devices. 如申請專利範圍第1項所述之方法,更包括:根據自上述晶圓之上述部份照射之上述光致發光形成上述晶圓之上述部份之一光致發光強度圖;以及根據自上述晶圓之上述部份反射之上述激發光形成上述晶圓之上述部份之一反射強度圖。 The method described in item 1 of the scope of the patent application further includes: forming a photoluminescence intensity map of the above-mentioned part of the wafer based on the above-mentioned photoluminescence irradiated from the above-mentioned part of the wafer; The above-mentioned excitation light reflected by the above-mentioned part of the wafer forms a reflection intensity map of the above-mentioned part of the wafer. 如申請專利範圍第19項所述之方法,其中比較來自上述晶 圓之上述部份的上述偵測到之光致發光與來自上述晶圓之上述區域的上述偵測到之反射激發光之步驟包括:判斷上述光致發光強度圖是否於上述晶圓之一第一位置包括一第一強度變化;於判斷上述光致發光強度圖是否於上述晶圓之上述第一位置包括上述第一強度變化時,判斷上述反射強度圖是否於上述晶圓之上述第一位置包括一第二強度變化;於判斷上述反射強度圖並未於上述晶圓之上述第一位置包括上述第二強度變化時,判斷於上述晶圓之上述第一位置存在一缺陷。 The method described in item 19 of the scope of patent application, wherein the comparison comes from the above crystal The step of the detected photoluminescence of the above-mentioned part of the circle and the detected reflected excitation light from the above-mentioned area of the wafer includes: determining whether the photoluminescence intensity map is on a first stage of the wafer A position includes a first intensity change; when determining whether the photoluminescence intensity map includes the first intensity change at the first position of the wafer, it is determined whether the reflection intensity map is at the first position of the wafer Including a second intensity change; when it is determined that the reflection intensity map does not include the second intensity change at the first position of the wafer, it is determined that there is a defect in the first position of the wafer. 如申請專利範圍第20項所述之方法,其中比較來自上述晶圓之上述部份的上述偵測到之光致發光與來自上述晶圓之上述區域的上述偵測到之反射激發光之步驟更包括:於判斷上述反射強度圖於上述晶圓之上述第一位置包括上述第二強度變化時,判斷於上述晶圓之上述第一位置並不存在一缺陷。 The method described in claim 20, wherein the step of comparing the above-mentioned detected photoluminescence from the above-mentioned part of the above-mentioned wafer with the above-mentioned detected reflected excitation light from the above-mentioned area of the above-mentioned wafer It further includes: when determining that the reflection intensity map includes the second intensity change at the first position of the wafer, determining that there is no defect at the first position of the wafer. 如申請專利範圍第1項所述之方法,更包括調整上述激發光之一特性。 The method described in item 1 of the scope of the patent application further includes adjusting one of the characteristics of the above-mentioned excitation light. 如申請專利範圍第22項所述之方法,其中調整上述激發光之上述特性之步驟包括調整上述激發光之一波長。 The method according to item 22 of the scope of patent application, wherein the step of adjusting the above-mentioned characteristics of the above-mentioned excitation light includes adjusting a wavelength of the above-mentioned excitation light. 如申請專利範圍第23項所述之方法,其中調整上述激發光之上述波長以增加自上述晶圓之一不同的部份照射之上述光致發光。 The method described in claim 23, wherein the wavelength of the excitation light is adjusted to increase the photoluminescence irradiated from a different part of the wafer. 如申請專利範圍第24項所述之方法,其中上述晶圓之上述 不同的部份與上述晶圓之反射上述激發光的上述部份具有不同之深度。 The method described in item 24 of the scope of patent application, wherein the above-mentioned wafer of the above-mentioned The different parts have different depths from the part of the wafer that reflects the excitation light. 如申請專利範圍第1項所述之法,其中上述激發光具有介於200nm至1100nm之一範圍內之一波長。 The method described in item 1 of the scope of patent application, wherein the above-mentioned excitation light has a wavelength in a range of 200 nm to 1100 nm. 如申請專利範圍第1項所述之方法,更包括於上述晶圓上執行一處理步驟。 The method described in item 1 of the scope of patent application further includes performing a processing step on the above-mentioned wafer. 如申請專利範圍第27項所述之方法,其中自一離子植入步驟、一退火步驟、一層沉積步驟、一氧化步驟、一電漿蝕刻步驟以及一拋光步驟選擇上述處理步驟。 The method according to the claim 27, wherein the above processing steps are selected from an ion implantation step, an annealing step, a layer deposition step, an oxidation step, a plasma etching step, and a polishing step. 如申請專利範圍第28項所述之方法,其中上述層沉積步驟係為一原子層沉積步驟。 The method described in item 28 of the scope of patent application, wherein the above-mentioned layer deposition step is an atomic layer deposition step. 如申請專利範圍第29項所述之方法,其中上述層沉積步驟係為一磊晶層沉積步驟。 According to the method described in claim 29, wherein the above-mentioned layer deposition step is an epitaxial layer deposition step. 如申請專利範圍第30項所述之方法,其中上述磊晶層沉積步驟係用以形成具有矽或者Si1-xGex之層,其中0<x<1。 The method described in item 30 of the scope of patent application, wherein the above-mentioned epitaxial layer deposition step is used to form a layer with silicon or Si 1-x Ge x , where 0<x<1. 如申請專利範圍第29項所述之方法,其中上述層沉積步驟係為選擇性外延步驟。 The method described in item 29 of the scope of patent application, wherein the above-mentioned layer deposition step is a selective epitaxy step. 如申請專利範圍第32項所述之方法,其中上述選擇性外延為用於一互補金氧半導體裝置之通道或者源極/汲極區域之Si1-xGexThe method described in item 32 of the scope of patent application, wherein the above-mentioned selective epitaxy is Si 1-x Ge x used in a channel or source/drain region of a complementary metal oxide semiconductor device. 如申請專利範圍第29項所述之方法,其中上述蝕刻步驟為一電漿蝕刻步驟。 The method described in claim 29, wherein the above-mentioned etching step is a plasma etching step. 如申請專利範圍第27項所述之方法,其中於辨識上述結晶缺陷後,執行上述處理步驟。 The method described in item 27 of the scope of patent application, wherein the above-mentioned processing steps are performed after the above-mentioned crystal defects are identified. 如申請專利範圍第35項所述之方法,更包括:以激發光照射上述處理過之晶圓;以及根據來自上述處理過之晶圓之光致發光辨識上述處理過之晶圓中之一個或者多個額外之缺陷。 The method described in item 35 of the scope of patent application further includes: irradiating the above-mentioned processed wafer with excitation light; and identifying one of the above-mentioned processed wafers based on the photoluminescence from the above-mentioned processed wafer or Multiple additional defects. 如申請專利範圍第36項所述之方法,更包括比較上述晶圓中所辨識之上述結晶缺陷以及上述額外之缺陷。 The method described in item 36 of the scope of patent application further includes comparing the above-mentioned crystal defects identified in the above-mentioned wafer with the above-mentioned additional defects. 如申請專利範圍第1項所述之方法,其中上述一個或多個局部結晶缺陷係對應於上述晶圓之一部份之一圖像中之亮部。 The method according to the first item of the scope of patent application, wherein the one or more local crystal defects correspond to the bright part in an image of a part of the wafer. 如申請專利範圍第1項所述之方法,其中於上述晶圓上執行一個或者多個處理步驟後,辨識上述晶圓之上述一個或者多個局部結晶缺陷。 The method described in item 1 of the scope of patent application, wherein after one or more processing steps are performed on the wafer, the one or more local crystal defects of the wafer are identified. 如申請專利範圍第39項所述之方法,其中於上述完成晶圓處理後,辨識上述晶圓之上述一個或者多個局部結晶缺陷。 The method according to item 39 of the scope of patent application, wherein after the above-mentioned wafer processing is completed, the above-mentioned one or more local crystalline defects of the above-mentioned wafer are identified. 如申請專利範圍第1項所述之方法,其中上述激發光之強度足夠高以誘發來自該單晶矽之各個結晶缺陷的可偵測的光致發光,且亦足夠低使上述晶圓的被照射部份中不會發生歐傑複合(Auger recombination)。 In the method described in item 1 of the scope of the patent application, the intensity of the excitation light is high enough to induce detectable photoluminescence from each crystal defect of the single crystal silicon, and it is also low enough to cause the damage of the wafer Auger recombination does not occur in the irradiated part. 如申請專利範圍第1項所述之方法,其中辨識上述一個或者多個局部結晶缺陷的位置之步驟包括產生上述晶片的一空間圖,並基於該空間圖辨識該晶圓中之上述一個或者多個局部結晶缺陷的位置。 According to the method described in claim 1, wherein the step of identifying the location of the one or more local crystal defects includes generating a space map of the wafer, and identifying the one or more of the wafers based on the space map The location of a local crystal defect. 如申請專利範圍第1項所述之方法,更包括使用上述晶圓形成一影像感測器,其中辨識上述一個或者多個局部結晶 缺陷的位置包括辨識與該影像感測器之一單一像素相關的缺陷。 The method described in item 1 of the scope of patent application further includes forming an image sensor using the above-mentioned wafer, wherein the above-mentioned one or more local crystals are identified The location of the defect includes identifying a defect related to a single pixel of the image sensor. 如申請專利範圍第1項所述之方法,更包括根據上述一個或者多個局部結晶缺陷的位置辨識上述晶圓有缺陷的一個或多個部分。 The method described in item 1 of the scope of patent application further includes identifying one or more defective parts of the wafer according to the location of the one or more local crystal defects. 如申請專利範圍第1項所述之方法,其中上述一個或多個局部結晶缺陷包括單個疊置缺陷(stacking fault)、單個差排(dislocation),或者單個沉澱物(precipitate)。 The method described in item 1 of the scope of the patent application, wherein the one or more local crystal defects include a single stacking fault, a single dislocation, or a single precipitate. 一種用於識別在一晶圓之一單晶矽中的局部結晶缺陷之系統,包括:一照明模組,用以以具有足以於上述晶圓中誘發來自在上述晶圓之上述單晶矽之帶間躍遷之光致發光以及來自在上述晶圓之上述單晶矽中之一個或多個局部結晶缺陷之光致發光之一波長以及一強度之激發光照射在上述晶圓之上述單晶矽;一偵測模組,包括一多元件偵測器,上述多元件偵測器用以偵測自上述晶圓之一部份照射之光致發光以響應上述照射;成像透鏡,用以將上述晶圓之上述部份以1μm×1μm或者更小的一空間解析度成像於上述多元件偵測器上;一光學濾光器,用以阻擋來自上述偵測模組之自上述晶圓反射至上述偵測模組的激發光且於上述偵測模組進行偵測之前過濾自上述晶圓之上述部份照射之光致發光,以提供過濾光致發光至上述偵測模組,其中上述過濾步驟基本上 自來自上述過濾之光致發光的上述單晶矽的帶間躍遷移除光致發光,其中,上述偵測到之過濾光致發光係對應來自在上述晶圓之上述單晶矽中之上述一個或者多個局部結晶缺陷的光致發光;以及一處理模組,用以根據上述偵測到之過濾光致發光,以1μm×1μm或者更小的一空間解析度辨識在上述晶圓之上述單晶矽中之上述一個或者多個局部結晶缺陷的存在以及位置,其中上述一個或多個局部結晶缺陷對應至上述晶圓的上述部分的上述圖像中的亮區。 A system for identifying local crystalline defects in a single crystal silicon of a wafer, comprising: an illumination module for having sufficient energy to induce in the wafer from the single crystal silicon on the wafer The photoluminescence of the inter-band transition and the photoluminescence from one or more local crystal defects in the above-mentioned single-crystal silicon of the above-mentioned wafer have a wavelength and an intensity of excitation light irradiating the above-mentioned single-crystal silicon of the wafer ; A detection module, including a multi-element detector, the multi-element detector is used to detect the photoluminescence irradiated from a part of the wafer in response to the irradiation; imaging lens, used to The above-mentioned part of the wafer is imaged on the above-mentioned multi-element detector with a spatial resolution of 1μm×1μm or less; an optical filter is used to block the reflection from the above-mentioned wafer from the above-mentioned detection module to The excitation light of the detection module filters the photoluminescence irradiated from the part of the wafer before the detection module performs the detection to provide filtered photoluminescence to the detection module, wherein the filter Steps basically The interband transition of the single crystal silicon from the filtered photoluminescence removes the photoluminescence, wherein the detected filtered photoluminescence corresponds to the one from the single crystal silicon on the wafer Or photoluminescence with multiple local crystal defects; and a processing module for identifying the single crystal on the wafer with a spatial resolution of 1μm×1μm or less based on the detected filtered photoluminescence. The presence and location of the one or more local crystalline defects in the crystalline silicon, wherein the one or more local crystalline defects correspond to the bright areas in the image of the portion of the wafer. 如申請專利範圍第46項所述之系統,上述光學濾光器將對應於來自上述晶圓中之上述一個或多個局部結晶缺陷之上述光致發光的光線透射至上述偵測模組。 As in the system described in item 46 of the scope of patent application, the optical filter transmits the photoluminescence light corresponding to the one or more local crystal defects in the wafer to the detection module. 如申請專利範圍第46項所述之缺陷辨識系統,其中上述光學濾光器透射具有介於約0.7eV至約1.0eV之一範圍內的能量的光線至上述偵測模組。 According to the defect identification system described in claim 46, wherein the optical filter transmits light having an energy in a range of about 0.7 eV to about 1.0 eV to the detection module. 如申請專利範圍第48項所述之系統,其中上述光學濾光器基本上阻擋來自上述偵測模組且具有大於約1.0eV的能量的光線。 The system described in the 48th patent application, wherein the optical filter basically blocks light from the detection module and having an energy greater than about 1.0 eV. 如申請專利範圍第46項所述之系統,其中上述激發光具有介於200nm至1100nm之一範圍內之一波長。 The system described in item 46 of the scope of patent application, wherein the excitation light has a wavelength in a range of 200 nm to 1100 nm. 如申請專利範圍第46項所述之系統,其中上述照明組成係配置為沿著不垂直於上述晶圓之一照射表面之光軸將上述激發光照射至上述晶圓。 According to the system described in claim 46, the illumination composition is configured to irradiate the excitation light to the wafer along an optical axis that is not perpendicular to an irradiated surface of the wafer. 如申請專利範圍第51項所述之系統,其中上述照明鏡片具 有垂直於上述晶圓之上述照射表面之一光軸。 The system described in item 51 of the scope of patent application, wherein the above-mentioned lighting lens has There is an optical axis perpendicular to the above-mentioned illuminated surface of the above-mentioned wafer.
TW105131546A 2015-10-09 2016-09-30 Method and system for identifying localized crystallographic defects in a monocrystalline silicon in a wafer TWI735471B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/879,522 US10018565B2 (en) 2015-05-04 2015-10-09 Micro photoluminescence imaging with optical filtering
US14/879,522 2015-10-09

Publications (2)

Publication Number Publication Date
TW201727215A TW201727215A (en) 2017-08-01
TWI735471B true TWI735471B (en) 2021-08-11

Family

ID=60186774

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105131546A TWI735471B (en) 2015-10-09 2016-09-30 Method and system for identifying localized crystallographic defects in a monocrystalline silicon in a wafer

Country Status (1)

Country Link
TW (1) TWI735471B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10018565B2 (en) 2015-05-04 2018-07-10 Semilab Semiconductor Physics Laboratory Co., Ltd. Micro photoluminescence imaging with optical filtering
US10012593B2 (en) 2015-05-04 2018-07-03 Semilab Semiconductor Physics Laboratory Co., Ltd. Micro photoluminescence imaging
US11138722B2 (en) * 2018-12-21 2021-10-05 Kla-Tencor Corporation Differential imaging for single-path optical wafer inspection

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020030753A1 (en) * 1997-11-05 2002-03-14 Alan H. Kramer Circuit for detecting leaky access switches in cmos imager pixels
US20070008518A1 (en) * 2005-07-06 2007-01-11 Hummel Steven G Photoluminescence imaging with preferential detection of photoluminescence signals emitted from a specified material layer of a wafer or other workpiece
US20130016346A1 (en) * 2011-07-12 2013-01-17 Kla-Tencor Corporation Wafer Inspection
TW201416660A (en) * 2012-08-02 2014-05-01 Electricite De France Method for analyzing the crystalline structure of a poly-crystalline semi-conductor material
US20150146193A1 (en) * 2013-11-26 2015-05-28 Nanometrics Incorporated Optical metrology system for spectral imaging of a sample

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020030753A1 (en) * 1997-11-05 2002-03-14 Alan H. Kramer Circuit for detecting leaky access switches in cmos imager pixels
US20070008518A1 (en) * 2005-07-06 2007-01-11 Hummel Steven G Photoluminescence imaging with preferential detection of photoluminescence signals emitted from a specified material layer of a wafer or other workpiece
US20130016346A1 (en) * 2011-07-12 2013-01-17 Kla-Tencor Corporation Wafer Inspection
TW201416660A (en) * 2012-08-02 2014-05-01 Electricite De France Method for analyzing the crystalline structure of a poly-crystalline semi-conductor material
US20150146193A1 (en) * 2013-11-26 2015-05-28 Nanometrics Incorporated Optical metrology system for spectral imaging of a sample

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Steve Johnston, Fei Yan, Jian Li, Katherine Zaunbrecher, Manuel J. Romero, Mowafak Al-Jassim, Omar Sidelkheir, and Alain Blosse, "Temperature-dependent Photoluminescence imaging and characterization of a multi-crystalline silicon solar cell defect area," 2011 37th IEEE Photovoltaic Specialists Conference, 12710950, 2012/04/19. https://ieeexplore.ieee.org/document/6185848 *

Also Published As

Publication number Publication date
TW201727215A (en) 2017-08-01

Similar Documents

Publication Publication Date Title
US10209190B2 (en) Micro photoluminescence imaging with optical filtering
US8077305B2 (en) Imaging semiconductor structures using solid state illumination
CN1233030C (en) Method to detect surface metal contamination
TWI522609B (en) Methods and systems for analysing semiconductors and an article of manufacture for conducting the methods and operating the systems
US7554656B2 (en) Methods and systems for inspection of a wafer
US10012593B2 (en) Micro photoluminescence imaging
TW201315990A (en) Solar metrology methods and apparatus
US20150070487A1 (en) Method and a device for the purpose of elctroluminescence inspection and/or photoluminescence inspection
WO2012176106A2 (en) Method and apparatus for inspection of light emitting semiconductor devices using photoluminescence imaging
US20120142125A1 (en) Photoluminescence imaging systems for silicon photovoltaic cell manufacturing
TWI735471B (en) Method and system for identifying localized crystallographic defects in a monocrystalline silicon in a wafer
EP2609418A2 (en) Defect inspection and photoluminescence measurement system
WO2022267401A1 (en) Material haze detection method and apparatus
KR20160089391A (en) Method for the optical characterization of an optoelectronic semiconductor material and device for carrying out the method
US10883941B2 (en) Micro photoluminescence imaging
US20230042102A1 (en) Silicon wafer defect inspection method and silicon wafer defect inspection system
KR20150073512A (en) Apparatus for inspecting dies
KR20230001007A (en) Method and setup for detecting surface haze of materials