TWI734564B - Perovskite solar cells and method for producing the same - Google Patents

Perovskite solar cells and method for producing the same Download PDF

Info

Publication number
TWI734564B
TWI734564B TW109124638A TW109124638A TWI734564B TW I734564 B TWI734564 B TW I734564B TW 109124638 A TW109124638 A TW 109124638A TW 109124638 A TW109124638 A TW 109124638A TW I734564 B TWI734564 B TW I734564B
Authority
TW
Taiwan
Prior art keywords
layer
electron transport
solar cell
perovskite solar
continuous phase
Prior art date
Application number
TW109124638A
Other languages
Chinese (zh)
Other versions
TW202204538A (en
Inventor
李榮和
劉冠志
Original Assignee
國立中興大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立中興大學 filed Critical 國立中興大學
Priority to TW109124638A priority Critical patent/TWI734564B/en
Application granted granted Critical
Publication of TWI734564B publication Critical patent/TWI734564B/en
Publication of TW202204538A publication Critical patent/TW202204538A/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a perovskite solar cells and a method for producing the same. The perovskite solar cells comprises a transparent electrode, a hole transporting layer, a photo-conversion layer, an electron transporting composite layer and a metal electrode. An electron transporting material and a polymer material in the electron transporting composite layer can enhance electron transporting ability of the perovskite solar cells and restrain moisture from permeating into the cells. Therefore, photo-conversion efficiency and stability of the perovskite solar cells can be efficiently improved.

Description

鈣鈦礦太陽能電池及其製作方法Perovskite solar cell and manufacturing method thereof

本發明係有關一種太陽能電池,特別是提供一種鈣鈦礦太陽能電池及其製作方法。The invention relates to a solar cell, in particular to a perovskite solar cell and a manufacturing method thereof.

隨著科技之進步,能源需求係日益增長。然而,環保意識之抬頭,以及地球資源之有限,綠色能源之發展日益被重視。由於綠色能源之生成不產生污染,故其不對環境產生額外負擔。再者,綠色能源技術係藉由轉化可再生資源來產生能源,故其可供使用者永續利用,而避免資源耗盡之困境。其中,由於有機太陽能電池能將日常所見之太陽能轉換為電能,故太陽能電池係目前綠色能源中最被重視之技術。With the advancement of science and technology, the demand for energy is increasing day by day. However, with the rising awareness of environmental protection and the limited resources of the earth, the development of green energy has been paid more and more attention. Since the generation of green energy does not cause pollution, it does not cause additional burden on the environment. Furthermore, green energy technology generates energy by transforming renewable resources, so it can be used by users for a long time without the predicament of resource exhaustion. Among them, since organic solar cells can convert daily solar energy into electrical energy, solar cells are currently the most valued technology in green energy.

隨著技術之發展,有機太陽能電池已由早期之染料敏化太陽能電池演進至鈣鈦礦太陽能電池。藉由作為光電轉換層之鈣鈦礦材料,鈣鈦礦太陽能電池具有更佳之光電轉換效率,惟鈣鈦礦材料具有較差之水氣穩定性,故鈣鈦礦太陽能電池易受環境水氣之影響,而降低其光電轉換效率。With the development of technology, organic solar cells have evolved from early dye-sensitized solar cells to perovskite solar cells. Perovskite solar cells have better photoelectric conversion efficiency by using perovskite materials as the photoelectric conversion layer, but perovskite materials have poor moisture stability, so perovskite solar cells are susceptible to environmental moisture , And reduce its photoelectric conversion efficiency.

有鑑於此,亟須提供一種鈣鈦礦太陽能電池及其製作方法,以改進習知鈣鈦礦太陽能電池的缺陷。In view of this, it is urgent to provide a perovskite solar cell and a manufacturing method thereof to improve the defects of the conventional perovskite solar cell.

因此,本發明之一態樣是在提供一種鈣鈦礦太陽能電池,其中此鈣鈦礦太陽能電池含有電子傳遞複合層,而具有較佳之元件穩定性與光電轉換效率。Therefore, one aspect of the present invention is to provide a perovskite solar cell, wherein the perovskite solar cell contains an electron transport composite layer and has better device stability and photoelectric conversion efficiency.

本發明之另一態樣是在提供一種鈣鈦礦太陽能電池的製作方法,其係藉由滲入高分子材料至電子傳遞層中,以改善太陽能電池之元件穩定性和光電轉換效率。Another aspect of the present invention is to provide a method for manufacturing a perovskite solar cell, which improves the element stability and photoelectric conversion efficiency of the solar cell by infiltrating a polymer material into the electron transport layer.

根據本發明之一態樣,提出一種鈣鈦礦太陽能電池。此鈣鈦礦太陽能電池包含透明電極、電洞傳遞層、光電轉換層、電子傳遞複合層及金屬電極層。電洞傳遞層係設置於透明電極上。光電轉換層係設置於電洞傳遞層上。電子傳遞複合層係設置於光電轉換層上,且此電子傳遞複合層包含作為第一連續相之第一電子傳遞材料及作為第二連續相之混合材料。其中,第一連續相與第二連續相結合為複合相,且此混合材料包含第二電子傳遞材料及高分子材料。金屬電極層係設置於電子傳遞複合層上。According to one aspect of the present invention, a perovskite solar cell is provided. The perovskite solar cell includes a transparent electrode, a hole transport layer, a photoelectric conversion layer, an electron transport composite layer, and a metal electrode layer. The hole transfer layer is arranged on the transparent electrode. The photoelectric conversion layer is arranged on the hole transfer layer. The electron transport composite layer is arranged on the photoelectric conversion layer, and the electron transport composite layer includes a first electron transport material as a first continuous phase and a mixed material as a second continuous phase. Wherein, the first continuous phase and the second continuous phase are combined to form a composite phase, and the mixed material includes a second electron transfer material and a polymer material. The metal electrode layer is arranged on the electron transfer composite layer.

依據本發明之一些實施例,前述之鈣鈦礦太陽能電池可選擇性地包含電洞阻擋材料。此電洞阻擋材料係位於電子傳遞複合層及金屬電極層之間,且電洞阻擋材料包含第二電子傳遞材料及高分子材料。According to some embodiments of the present invention, the aforementioned perovskite solar cell may optionally include a hole blocking material. The hole blocking material is located between the electron transfer composite layer and the metal electrode layer, and the hole blocking material includes a second electron transfer material and a polymer material.

依據本發明之一些實施例,前述之電洞阻擋材料與第二連續相相結合。According to some embodiments of the present invention, the aforementioned hole blocking material is combined with the second continuous phase.

依據本發明之一些實施例,前述高分子材料之總重量與第二電子傳遞材料之總重量的比值為0.01至0.4。According to some embodiments of the present invention, the ratio of the total weight of the aforementioned polymer material to the total weight of the second electron transport material is 0.01 to 0.4.

依據本發明之一些實施例,前述之第一電子傳遞材料包含碳球衍生物,且第二電子傳遞材料包含2,9-二甲基-4,7-二苯基鄰菲羅啉。According to some embodiments of the present invention, the aforementioned first electron transport material includes a carbon ball derivative, and the second electron transport material includes 2,9-dimethyl-4,7-diphenylphenanthroline.

依據本發明之一些實施例,前述之高分子材料包含聚甲基丙烯酸甲酯及/或聚乙烯吡咯烷酮。According to some embodiments of the present invention, the aforementioned polymer material includes polymethylmethacrylate and/or polyvinylpyrrolidone.

根據本發明之另一態樣,提出一種鈣鈦礦太陽能電池的製作方法。此製作方法係先形成電洞傳遞層於透明電極上,並形成光電轉換層於電洞傳遞層上。然後,形成電子傳遞層於光電轉換層上,其中電子傳遞層包含第一電子傳遞材料,且電子傳遞層為第一連續相。接著,藉由混合材料形成第二連續相於電子傳遞層中,其中第一連續相與第二連續相結合為複合相,且混合材料包含第二電子傳遞材料及高分子材料。於形成第二連續相後,形成金屬電極層於電子傳遞層上。According to another aspect of the present invention, a manufacturing method of a perovskite solar cell is provided. In this manufacturing method, a hole transfer layer is first formed on the transparent electrode, and a photoelectric conversion layer is formed on the hole transfer layer. Then, an electron transport layer is formed on the photoelectric conversion layer, wherein the electron transport layer includes the first electron transport material, and the electron transport layer is the first continuous phase. Then, a second continuous phase is formed in the electron transport layer by a mixed material, wherein the first continuous phase and the second continuous phase are combined to form a composite phase, and the mixed material includes a second electron transport material and a polymer material. After forming the second continuous phase, a metal electrode layer is formed on the electron transport layer.

依據本發明之一些實施例,前述之混合材料係形成電洞阻擋層,且電洞阻擋層之頂表面覆蓋電子傳遞層之頂表面。According to some embodiments of the present invention, the aforementioned mixed material forms a hole blocking layer, and the top surface of the hole blocking layer covers the top surface of the electron transport layer.

依據本發明之一些實施例,前述形成第二連續相於電子傳遞層中的操作包含塗佈溶液於電子傳遞層上,且此溶液包含第二電子傳遞材料及高分子材料。According to some embodiments of the present invention, the foregoing operation of forming the second continuous phase in the electron transport layer includes coating a solution on the electron transport layer, and the solution includes the second electron transport material and the polymer material.

依據本發明之一些實施例,前述之溶液不破壞電子傳遞層之表面形貌。According to some embodiments of the present invention, the aforementioned solution does not damage the surface morphology of the electron transport layer.

應用本發明之鈣鈦礦太陽能電池及其製作方法,其藉由滲入含有高分子材料之介面修飾材料至電子傳遞層中,以形成電子傳遞複合層,而可抑制滲入元件之水氣,並提升元件之電子傳遞效率,因此可改善元件穩定性且提升光電轉換效率。The perovskite solar cell and the manufacturing method thereof of the present invention can form an electron transport composite layer by infiltrating the interface modification material containing a polymer material into the electron transport layer, which can inhibit the water vapor penetrating into the element and improve The electron transfer efficiency of the device can improve the stability of the device and enhance the photoelectric conversion efficiency.

以下仔細討論本發明實施例之製造和使用。然而,可以理解的是,實施例提供許多可應用的發明概念,其可實施於各式各樣的特定內容中。所討論之特定實施例僅供說明,並非用以限定本發明之範圍。The manufacture and use of the embodiments of the present invention are discussed in detail below. However, it can be understood that the embodiments provide many applicable inventive concepts, which can be implemented in various specific contents. The specific embodiments discussed are for illustration only, and are not intended to limit the scope of the present invention.

請同時參照圖1與圖2A,其中圖1係繪示依照本發明之一些實施例之鈣鈦礦太陽能電池的製作方法100之流程示意圖,而圖2A係繪示依照本發明之一些實施例之鈣鈦礦太陽能電池200a的元件示意圖。方法100係先形成電洞傳遞層230於透明電極220上,如操作110所示。透明電極220可藉由濺鍍或其他適當之成膜方法來設置於基材210上。在一些具體例中,透明電極220可為銦錫氧化物(ITO)、其他適當之導電材料,或上述材料之任意混合。較佳地,為確保陽光可穿過基材210,並照射至太陽能電池200a中,基材210可利用透光材料製成。在一些具體例中,此透光材料可為玻璃、高分子材料、其他適當之透光材料,或上述材料之任意組合。Please refer to FIG. 1 and FIG. 2A at the same time, in which FIG. 1 is a schematic flowchart of a manufacturing method 100 of a perovskite solar cell according to some embodiments of the present invention, and FIG. 2A is a schematic view of some embodiments according to the present invention. The schematic diagram of the components of the perovskite solar cell 200a. In the method 100, a hole transport layer 230 is first formed on the transparent electrode 220, as shown in operation 110. The transparent electrode 220 can be disposed on the substrate 210 by sputtering or other suitable film forming methods. In some embodiments, the transparent electrode 220 may be indium tin oxide (ITO), other suitable conductive materials, or any mixture of the above materials. Preferably, in order to ensure that sunlight can pass through the substrate 210 and irradiate the solar cell 200a, the substrate 210 can be made of a light-transmitting material. In some specific examples, the light-transmitting material may be glass, polymer materials, other suitable light-transmitting materials, or any combination of the foregoing materials.

電洞傳遞層230可藉由旋轉塗佈或其他適當之方法來形成於透明電極220上。舉例而言,電洞傳遞層230可包含PEDOT:PSS,其他適當之電洞傳遞材料,或上述材料之任意混合。可理解的,雖然圖2A之太陽能電池200a僅具有單層電洞傳遞層230,但本發明不以此為限。在一些實施例中,太陽能電池200a可包含複數層電洞傳遞層,且此些電洞傳遞層之材料可根據相鄰層之電位能階來選擇,以提升元件之電洞傳遞能力。The hole transfer layer 230 can be formed on the transparent electrode 220 by spin coating or other appropriate methods. For example, the hole transport layer 230 may include PEDOT:PSS, other suitable hole transport materials, or any mixture of the above materials. It is understandable that although the solar cell 200a of FIG. 2A only has a single hole transport layer 230, the present invention is not limited thereto. In some embodiments, the solar cell 200a may include a plurality of hole transport layers, and the material of the hole transport layers can be selected according to the potential energy levels of adjacent layers to improve the hole transport capability of the device.

然後,形成光電轉換層240於電洞傳遞層230上,如操作120所示。光電轉換層240係由鈣鈦礦材料所製成。須說明的是,本發明不限於鈣鈦礦太陽能電池,在其他應用例中,本發明之光電轉換層240亦可為其他光電轉換材料。Then, a photoelectric conversion layer 240 is formed on the hole transfer layer 230, as shown in operation 120. The photoelectric conversion layer 240 is made of perovskite material. It should be noted that the present invention is not limited to perovskite solar cells. In other application examples, the photoelectric conversion layer 240 of the present invention can also be other photoelectric conversion materials.

於進行操作120後,進行步驟130。其中,步驟130係先形成電子傳遞層於光電轉換層240上,再滲入混合材料於電子傳遞層中,以形成電子傳遞複合層250a,如操作131與操作133所示。電子傳遞層可藉由旋轉塗佈或其他適當之方法來形成於光電轉換層240上。在一些實施例中,電子傳遞層可包含由第一電子傳遞材料形成之連續相。較佳地,電子傳遞層中之第一電子傳遞材料的堆疊分子間具有間隙,惟本案所指之間隙為堆疊之分子間,因分子結構所導致的間隙,而非指不良之薄膜成膜性所導致之空隙。在一些具體例中,第一電子傳遞材料可包含碳球衍生物、其他適當之電子傳遞材料,或上述材料之任意混合。舉例而言,碳球衍生物可例如為富勒烯衍生物(碳60衍生物(PCBM))。After operation 120 is performed, step 130 is performed. Wherein, in step 130, an electron transport layer is first formed on the photoelectric conversion layer 240, and then the mixed material is infiltrated into the electron transport layer to form an electron transport composite layer 250a, as shown in operations 131 and 133. The electron transport layer can be formed on the photoelectric conversion layer 240 by spin coating or other appropriate methods. In some embodiments, the electron transport layer may include a continuous phase formed of the first electron transport material. Preferably, there is a gap between the stacked molecules of the first electron transport material in the electron transport layer, but the gap referred to in this case refers to the gap between the stacked molecules, which is caused by the molecular structure, and does not refer to poor film forming properties The resulting gap. In some embodiments, the first electron transport material may include carbon ball derivatives, other suitable electron transport materials, or any mixture of the foregoing materials. For example, the carbon ball derivative may be, for example, a fullerene derivative (carbon 60 derivative (PCBM)).

前述之混合材料可包含第二電子傳遞材料與高分子材料。其中,第二電子傳遞材料係相異於前述之第一電子傳遞材料。較佳地,第二電子傳遞材料可為有機小分子材料。舉例而言,第二電子傳遞材料可包含2,9-二甲基-4,7-二苯基鄰菲羅啉(BCP)、其他適當之電子傳遞材料,或上述材料之任意混合。高分子材料可包含聚甲基丙烯酸甲酯(PMMA)、聚乙烯吡咯烷酮(PVP)、其他適當之高分子材料,或上述材料之任意混合。混合材料中之第二電子傳遞材料有助於進一步提升太陽能電池200a的電子傳遞能力,且高分子材料可額外改善元件穩定性及/或提升電性傳遞效率。The aforementioned hybrid material may include a second electron transport material and a polymer material. Among them, the second electron transport material is different from the aforementioned first electron transport material. Preferably, the second electron transport material may be an organic small molecule material. For example, the second electron transport material may include 2,9-dimethyl-4,7-diphenylphenanthroline (BCP), other appropriate electron transport materials, or any mixture of the foregoing materials. The polymer material may include polymethylmethacrylate (PMMA), polyvinylpyrrolidone (PVP), other suitable polymer materials, or any mixture of the above materials. The second electron transfer material in the hybrid material helps to further improve the electron transfer capability of the solar cell 200a, and the polymer material can additionally improve the stability of the device and/or increase the electrical transfer efficiency.

在一些實施例中,高分子材料與第二電子傳遞材料之重量比值可為0.01至0.4,較佳可為0.1至0.4,且更佳可為0.1至0.3。當高分子材料與第二電子傳遞材料之重量比為前述之範圍時,適當用量之第二傳遞材料與高分子材料可有效地提升元件之穩定性及/或光電轉換效率,而增進太陽能電池200a的效能。In some embodiments, the weight ratio of the polymer material to the second electron transport material may be 0.01 to 0.4, preferably 0.1 to 0.4, and more preferably 0.1 to 0.3. When the weight ratio of the polymer material to the second electron transfer material is in the aforementioned range, an appropriate amount of the second transfer material and the polymer material can effectively improve the stability of the device and/or the photoelectric conversion efficiency, thereby enhancing the solar cell 200a The effectiveness of.

於進行操作133時,混合材料可先溶解於有機溶劑中,以形成介面修飾溶液。然後,滴加此介面修飾溶液於電子傳遞層上,並以適當之成膜方式(例如:旋轉塗佈或其他方法)與烘烤條件來去除多餘之溶劑。當介面修飾溶液滴加於電子傳遞層時,混合材料中之第二電子傳遞材料與高分子材料可藉由溶劑滲入前述第一電子傳遞材料的堆疊分子間之間隙,而於去除溶劑後,形成另一連續相,其中混合材料形成之另一連續相係與第一電子傳遞材料所形成之連續相相結合為電子傳遞複合層250a。如圖2A所示,混合材料所形成之介面修飾層係與電子傳遞層相結合,而形成兩相複合之電子傳遞複合層250a。換言之,介面修飾層之頂表面係不高於(即低於或共平面於)電子傳遞層的頂表面。前述有機溶劑之選用沒有特別之限制,其僅須可溶解混合材料,且於進行操作133時不會破壞電子傳遞層的表面形貌即可。舉例而言,此有機溶劑可為異丙醇、其他適當之有機溶劑,或上述之任意混合。During operation 133, the mixed material may be first dissolved in an organic solvent to form an interface modification solution. Then, drop this interface modification solution on the electron transport layer, and use an appropriate film forming method (such as spin coating or other methods) and baking conditions to remove excess solvent. When the interface modification solution is dropped on the electron transport layer, the second electron transport material and the polymer material in the mixed material can penetrate into the gap between the stacked molecules of the first electron transport material through the solvent, and form after removing the solvent Another continuous phase, in which another continuous phase formed by the mixed material is combined with the continuous phase formed by the first electron transport material to form the electron transport composite layer 250a. As shown in FIG. 2A, the interface modification layer formed by the mixed material is combined with the electron transport layer to form a two-phase composite electron transport composite layer 250a. In other words, the top surface of the interface modification layer is not higher than (that is, lower than or coplanar with) the top surface of the electron transport layer. The selection of the aforementioned organic solvent is not particularly limited, as long as it can dissolve the mixed material and does not damage the surface morphology of the electron transport layer during operation 133. For example, the organic solvent can be isopropanol, other suitable organic solvents, or any combination of the above.

於進行步驟130後,形成金屬電極層260於電子傳遞複合層250a上,以製得本發明之鈣鈦礦太陽能電池200a,如操作140與操作150所示。雖然圖2A所繪示之金屬電極層260僅為一層,但在其他實施例中,金屬電極層260可由多層金屬所構成。在一些實施例中,單層之金屬電極層260可由單一種金屬材料所製成,亦可由多種金屬材料複合構成。金屬電極層260可採用蒸鍍、其他適當之方法,或上述方法之任意組合來形成。After step 130 is performed, a metal electrode layer 260 is formed on the electron transport composite layer 250a to prepare the perovskite solar cell 200a of the present invention, as shown in operation 140 and operation 150. Although the metal electrode layer 260 shown in FIG. 2A is only one layer, in other embodiments, the metal electrode layer 260 may be composed of multiple layers of metal. In some embodiments, the single-layer metal electrode layer 260 may be made of a single metal material, or may be composed of multiple metal materials. The metal electrode layer 260 can be formed by evaporation, other appropriate methods, or any combination of the above methods.

須說明的,圖2A所繪示之太陽能電池200a中的各層厚度與各層間之厚度比例均僅係例示說明,其並非用以限定本發明,為獲得較佳之光電轉換效率,本發明所屬技術領域具有通常知識者可根據設計調整各層厚度。It should be noted that the thickness of each layer and the thickness ratio between the layers in the solar cell 200a shown in FIG. 2A are merely illustrative and not intended to limit the present invention. In order to obtain better photoelectric conversion efficiency, the technical field of the present invention belongs to Those with general knowledge can adjust the thickness of each layer according to the design.

請參照圖2B,其係繪示依照本發明之一些實施例之鈣鈦礦太陽能電池的元件示意圖。太陽能電池200b之製作方法與元件結構和太陽能電池200a之製作方法與元件結構大致上相同,兩者之差異在於太陽能電池200b之電子傳遞複合層250b包含複合介面層252b與電洞阻擋層251b。其中,複合介面層252b係藉由如前所述滴加含有混合材料之介面修飾溶液於電子傳遞層上的方法來形成,故複合介面層252b包含連續相之電子傳遞層,以及混合材料所形成且與電子傳遞層相分離的介面修飾層,故複合介面層252b係由呈連續相之電子傳遞層與呈另一連續相之介面修飾層複合形成。於太陽能電池200b中,藉由調整介面修飾層之厚度,介面修飾溶液所形成之介面修飾層的頂表面可高於電子傳遞層的頂表面,而額外形成介面修飾層於複合介面層252b上。由於形成介面修飾層之混合材料包含第二電子傳遞材料,故介面修飾層亦可用以阻擋電洞。據此,於複合介面層252b上呈連續相之介面修飾層亦稱之為電洞阻擋層251b。Please refer to FIG. 2B, which is a schematic diagram of elements of a perovskite solar cell according to some embodiments of the present invention. The manufacturing method and device structure of the solar cell 200b are substantially the same as the manufacturing method and device structure of the solar cell 200a. The difference between the two is that the electron transport composite layer 250b of the solar cell 200b includes a composite interface layer 252b and a hole blocking layer 251b. Wherein, the composite interface layer 252b is formed by dropping an interface modification solution containing a mixed material on the electron transport layer as described above, so the composite interface layer 252b includes a continuous phase electron transport layer and a mixed material. In addition, the interface modification layer is separated from the electron transport layer, so the composite interface layer 252b is formed by combining the electron transport layer in a continuous phase and the interface modification layer in another continuous phase. In the solar cell 200b, by adjusting the thickness of the interface modification layer, the top surface of the interface modification layer formed by the interface modification solution can be higher than the top surface of the electron transport layer, and an interface modification layer is additionally formed on the composite interface layer 252b. Since the mixed material forming the interface modification layer includes the second electron transport material, the interface modification layer can also be used to block electric holes. Accordingly, the interface modification layer in the continuous phase on the composite interface layer 252b is also referred to as the hole blocking layer 251b.

請參照圖2C,其係繪示依照本發明之一些實施例之鈣鈦礦太陽能電池的元件示意圖。太陽能電池200c之製作方法與元件結構和太陽能電池200b之製作方法與元件結構大致上相同,兩者之差異在於太陽能電池200c之電子傳遞複合層250c包含電洞阻擋層251c、電子傳遞層253c與設置於電洞阻擋層251c和電子傳遞層253c間的複合介面層252c。藉由如前所述滴加介面修飾溶液於電子傳遞層上的方法,介面修飾溶液中之混合材料可於電子傳遞層中形成另一連續相,而與呈連續相之電子傳遞層以相分離的方式複合形成複合介面層252c,並於電子傳遞層上形成連續相的介面修飾層,而形成電洞阻擋層251c於複合介面層252c上。相同地,藉由厚度之調整,太陽能電池200c之介面修飾溶液中的混合材料並未滲入至電子傳遞層的底表面(即複合介面層252c之底表面係高於電子傳遞層的底表面),而於複合介面層252c下仍保有第一電子傳遞材料所形成之電子傳遞層253c。Please refer to FIG. 2C, which is a schematic diagram of elements of a perovskite solar cell according to some embodiments of the present invention. The manufacturing method and device structure of the solar cell 200c and the device structure of the solar cell 200b are roughly the same. The difference between the two is that the electron transport composite layer 250c of the solar cell 200c includes a hole blocking layer 251c, an electron transport layer 253c, and a configuration The composite interface layer 252c between the hole blocking layer 251c and the electron transport layer 253c. By dripping the interface modification solution on the electron transport layer as described above, the mixed material in the interface modification solution can form another continuous phase in the electron transport layer, which is separated from the continuous phase of the electron transport layer. The composite interface layer 252c is formed by the method, and a continuous-phase interface modification layer is formed on the electron transport layer, and a hole blocking layer 251c is formed on the composite interface layer 252c. Similarly, by adjusting the thickness, the mixed material in the interface modification solution of the solar cell 200c does not penetrate to the bottom surface of the electron transport layer (that is, the bottom surface of the composite interface layer 252c is higher than the bottom surface of the electron transport layer). The electron transport layer 253c formed of the first electron transport material still remains under the composite interface layer 252c.

在一些應用例中,本發明之電子傳遞複合層可有效地提升太陽能電池的電子傳遞效率,而提高電池之光電轉換效率。其中,所使用的第二電子傳遞材料與高分子材料可形成為另一連續相,並滲入至呈連續相的電子傳遞層中,而以相分離的方式與電子傳遞層相結合為複合層,而可進一步地提升太陽能電池之穩定性及/或光電轉換效率。In some application examples, the electron transport composite layer of the present invention can effectively improve the electron transport efficiency of solar cells and improve the photoelectric conversion efficiency of the cells. Wherein, the second electron transport material and the polymer material used can be formed into another continuous phase and penetrate into the electron transport layer in the continuous phase, and combine with the electron transport layer in a phase separation manner to form a composite layer. The stability and/or photoelectric conversion efficiency of the solar cell can be further improved.

以下利用實施例以說明本發明之應用,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。The following examples are used to illustrate the application of the present invention, but they are not intended to limit the present invention. Anyone who is familiar with the art can make various changes and modifications without departing from the spirit and scope of the present invention.

製備鈣鈦礦太陽能電池Preparation of perovskite solar cells

實施例1-1Example 1-1

首先,將PEDOT:PSS滴加於氧化銦錫玻璃上,並以旋轉塗佈之方式形成電洞傳遞層。然後,將甲基碘化胺(Methylammonium Iodide;MAI)與碘化鉛(PbI 2)溶解於二甲基亞碸(DMSO)中,以形成鈣鈦礦前驅液。滴加鈣鈦礦前驅液於電洞傳遞層上,並以旋轉塗佈之方式形成光電轉換層。接著,將PCBM溶於氯苯中,並旋轉塗佈為電子傳遞層。之後,將2,9-二甲基-4,7-二苯基鄰菲羅啉與聚甲基丙烯酸甲酯(重量比為1:0.1)溶解於異丙醇中,並滴加此混合溶液於電子傳遞層上,並經旋轉塗佈,以形成電子傳遞複合層。經蒸鍍金屬電極於電子傳遞複合層後,即可製得實施例1-1之鈣鈦礦太陽能電池。實施例1-1之光伏特性如第1表所示,在此不另贅述。 First, drop PEDOT:PSS on indium tin oxide glass, and spin-coating to form a hole transfer layer. Then, methylammonium iodide (MAI) and lead iodide (PbI 2 ) are dissolved in dimethyl sulfite (DMSO) to form a perovskite precursor solution. Drop the perovskite precursor liquid on the hole transfer layer, and spin coating to form the photoelectric conversion layer. Next, PCBM was dissolved in chlorobenzene and spin-coated as an electron transport layer. Then, 2,9-dimethyl-4,7-diphenyl o-phenanthroline and polymethyl methacrylate (weight ratio 1:0.1) were dissolved in isopropanol, and the mixed solution was added dropwise On the electron transport layer, and spin-coated to form an electron transport composite layer. After vapor-depositing the metal electrode on the electron transport composite layer, the perovskite solar cell of Example 1-1 can be prepared. The photovoltaic characteristics of Example 1-1 are as shown in Table 1, which will not be repeated here.

實施例1-2與1-3和實施例2-1至2-3Examples 1-2 and 1-3 and Examples 2-1 to 2-3

實施例1-2與1-3係使用與實施例1-1之鈣鈦礦太陽能電池之製作方法相同的製備方法,不同之處在於實施例1-2與1-3分別係滴加不同混合比例之混合溶液於電子傳遞層上。其中,實施例1-2之2,9-二甲基-4,7-二苯基鄰菲羅啉與聚甲基丙烯酸甲酯的重量比為1:0.2,而實施例1-3之2,9-二甲基-4,7-二苯基鄰菲羅啉與聚甲基丙烯酸甲酯的重量比為1:0.4。Examples 1-2 and 1-3 use the same preparation method as the production method of the perovskite solar cell of Example 1-1, the difference is that Examples 1-2 and 1-3 are dripped and mixed separately. The proportion of the mixed solution is on the electron transport layer. Among them, the weight ratio of 2,9-dimethyl-4,7-diphenyl o-phenanthroline and polymethyl methacrylate of Example 1-2 is 1:0.2, and Example 1-3 of 2 The weight ratio of 9-dimethyl-4,7-diphenyl-phenanthroline to polymethyl methacrylate is 1:0.4.

實施例2-1係使用與實施例1-1之鈣鈦礦太陽能電池之製作方法相同的製備方法,不同之處在於實施例2-1之混合溶液含有2,9-二甲基-4,7-二苯基鄰菲羅啉與聚乙烯吡咯烷酮,且其重量比為1:0.1。Example 2-1 uses the same manufacturing method as the manufacturing method of the perovskite solar cell of Example 1-1, except that the mixed solution of Example 2-1 contains 2,9-dimethyl-4, The weight ratio of 7-diphenylphenanthroline to polyvinylpyrrolidone is 1:0.1.

實施例2-2與2-3係使用與實施例2-1之鈣鈦礦太陽能電池之製作方法相同的製備方法,不同之處在於實施例2-2與2-3分別係滴加不同混合比例之混合溶液於電子傳遞層上。其中,實施例2-2之2,9-二甲基-4,7-二苯基鄰菲羅啉與聚乙烯吡咯烷酮的重量比為1:0.2,而實施例2-3之2,9-二甲基-4,7-二苯基鄰菲羅啉與聚乙烯吡咯烷酮的重量比為1:0.4。Examples 2-2 and 2-3 use the same preparation method as the production method of the perovskite solar cell of Example 2-1, the difference is that Examples 2-2 and 2-3 are dripped and mixed separately. The proportion of the mixed solution is on the electron transport layer. Among them, the weight ratio of 2,9-dimethyl-4,7-diphenylphenanthroline to polyvinylpyrrolidone in Example 2-2 is 1:0.2, and that in Example 2-3, 2,9- The weight ratio of dimethyl-4,7-diphenyl-phenanthroline to polyvinylpyrrolidone is 1:0.4.

前述實施例1-2與1-3和實施例2-1至2-3之光伏特性分別如第1表所示,在此不另贅述。The photovoltaic characteristics of the foregoing Examples 1-2 and 1-3 and Examples 2-1 to 2-3 are as shown in Table 1, respectively, and will not be repeated here.

比較例1Comparative example 1

比較例1係使用與實施例1-1之鈣鈦礦太陽能電池之製作方法相同的製備方法,不同之處在於比較例1僅滴加2,9-二甲基-4,7-二苯基鄰菲羅啉於電子傳遞層上。其光伏特性如第1表所示。Comparative Example 1 uses the same manufacturing method as the manufacturing method of the perovskite solar cell of Example 1-1, except that Comparative Example 1 only drops 2,9-dimethyl-4,7-diphenyl Phenanthroline is on the electron transport layer. Its photovoltaic characteristics are shown in Table 1.

Figure 02_image001
Figure 02_image001

請參照圖3A與圖3B,其係分別顯示依照本發明之實施例1-1與2-1之鈣鈦礦太陽能電池的掃描式電子顯微鏡照片。含有混合材料之電子傳遞複合層係位於鈣鈦礦材料之光電轉換層上,且其厚度分別約為52.5 nm與69.4 nm。顯然,介面修飾溶液中之混合材料可滲入電子傳遞層中,而進一步提升太陽能電池之穩定性及/或光電轉換效率。Please refer to FIGS. 3A and 3B, which respectively show scanning electron micrographs of perovskite solar cells according to Examples 1-1 and 2-1 of the present invention. The electron transport composite layer containing the mixed material is located on the photoelectric conversion layer of the perovskite material, and its thickness is about 52.5 nm and 69.4 nm, respectively. Obviously, the mixed material in the interface modification solution can penetrate into the electron transport layer to further improve the stability and/or photoelectric conversion efficiency of the solar cell.

於實施例1-1至1-3中,由於聚甲基丙烯酸甲酯具有疏水性,故其可有效阻絕水氣滲入太陽能電池中,而避免光電轉換層之鈣鈦礦材料被水氣破壞,進而可提升電池之穩定性。當實施例1-1之太陽能電池放置於相對濕度為40%之環境,且經1000小時後,其光電轉換效率之衰退幅度僅20%。若將其放置於相對濕度為50%至70%之大氣,且經200小時後,光電轉換效率之衰退幅度僅10%。其中,當2,9-二甲基-4,7-二苯基鄰菲羅啉與聚甲基丙烯酸甲酯的重量比為1:0.2時,所製得之太陽能電池具有較佳之穩定性。In Examples 1-1 to 1-3, because polymethyl methacrylate is hydrophobic, it can effectively prevent water vapor from penetrating into the solar cell, and prevent the perovskite material of the photoelectric conversion layer from being damaged by water vapor. In turn, the stability of the battery can be improved. When the solar cell of Example 1-1 is placed in an environment with a relative humidity of 40%, and after 1000 hours, the decline in its photoelectric conversion efficiency is only 20%. If it is placed in an atmosphere with a relative humidity of 50% to 70%, and after 200 hours, the degradation of the photoelectric conversion efficiency is only 10%. Among them, when the weight ratio of 2,9-dimethyl-4,7-diphenylphenanthroline to polymethyl methacrylate is 1:0.2, the solar cell produced has better stability.

若將比較例1之太陽能電池放置於相對濕度為40%,且經300小時後,光電轉換效率之衰退幅度至少50%。若將其放置於相對濕度為50%至70%之大氣,且經200小時後,其光電轉換效率之衰退幅度為50%。If the solar cell of Comparative Example 1 is placed at a relative humidity of 40%, and after 300 hours, the photoelectric conversion efficiency will decline by at least 50%. If it is placed in an atmosphere with a relative humidity of 50% to 70%, and after 200 hours, its photoelectric conversion efficiency will decline by 50%.

於實施例2-1至2-3中,由於聚乙烯吡咯烷酮具有良好之電子傳遞能力,故相較於比較例1,實施例2-1至2-3之太陽能電池具有較佳之光電轉換效率。In Examples 2-1 to 2-3, since polyvinylpyrrolidone has good electron transfer ability, compared with Comparative Example 1, the solar cells of Examples 2-1 to 2-3 have better photoelectric conversion efficiency.

依據前述之說明可知,本發明之鈣鈦礦太陽能電池藉由滲入混合材料之高分子材料至電子傳遞層中,以形成電子傳遞複合層,而可進一步改善元件穩定性與光電轉換效率。According to the foregoing description, the perovskite solar cell of the present invention can further improve the stability of the device and the photoelectric conversion efficiency by infiltrating the polymer material of the mixed material into the electron transport layer to form an electron transport composite layer.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,在本發明所屬技術領域中任何具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field of the present invention can make various changes and modifications without departing from the spirit and scope of the present invention. Retouching, therefore, the scope of protection of the present invention shall be subject to the scope of the attached patent application.

100:方法100: method

110,120,131,133,140,150:操作110, 120, 131, 133, 140, 150: Operation

130:步驟130: steps

200a,200b,200c:太陽能電池200a, 200b, 200c: solar cell

210:基材210: Substrate

220:透明電極220: Transparent electrode

230:電洞傳遞層230: hole transfer layer

240:光電轉換層240: photoelectric conversion layer

250a,250b,250c:電子傳遞複合層250a, 250b, 250c: electron transport composite layer

251b,251c:電洞阻擋層251b, 251c: hole blocking layer

252b,252c:複合介面層252b, 252c: composite interface layer

253c:電子傳遞層253c: electron transport layer

260:金屬電極層260: Metal electrode layer

為了對本發明之實施例及其優點有更完整之理解,現請參照以下之說明並配合相應之圖式。必須強調的是,各種特徵並非依比例描繪且僅係為了圖解目的。相關圖式內容說明如下: 圖1係繪示依照本發明之一些實施例之鈣鈦礦太陽能電池的製作方法之流程示意圖。 圖2A、圖2B與圖2C分別係繪示依照本發明之一些實施例之鈣鈦礦太陽能電池的元件示意圖。 圖3A與圖3B係分別顯示依照本發明之實施例1-1與2-1之鈣鈦礦太陽能電池的掃描式電子顯微鏡照片。 In order to have a more complete understanding of the embodiments of the present invention and its advantages, please refer to the following description and the corresponding drawings. It must be emphasized that the various features are not drawn to scale and are for illustration purposes only. The contents of the relevant diagrams are described as follows: FIG. 1 is a schematic flowchart of a manufacturing method of a perovskite solar cell according to some embodiments of the present invention. 2A, 2B, and 2C are respectively schematic diagrams of elements of a perovskite solar cell according to some embodiments of the present invention. 3A and 3B respectively show scanning electron micrographs of perovskite solar cells according to Examples 1-1 and 2-1 of the present invention.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic deposit information (please note in the order of deposit institution, date and number) none Foreign hosting information (please note in the order of hosting country, institution, date, and number) none

100:方法 100: method

110,120,131,133,140,150:操作 110, 120, 131, 133, 140, 150: Operation

130:步驟 130: steps

Claims (9)

一種鈣鈦礦太陽能電池,包含:一透明電極;一電洞傳遞層,設置於該透明電極上;一光電轉換層,設置於該電洞傳遞層上;一電子傳遞複合層,設置於該光電轉換層上,且該電子傳遞複合層包含作為一第一連續相之一第一電子傳遞材料及作為一第二連續相之一混合材料,其中該第一連續相與該第二連續相結合為一複合相,該混合材料包含一第二電子傳遞材料及一高分子材料,且該高分子材料包含聚甲基丙烯酸甲酯及/或聚乙烯吡咯烷酮;以及一金屬電極層,設置於該電子傳遞複合層上。 A perovskite solar cell, comprising: a transparent electrode; a hole transfer layer arranged on the transparent electrode; a photoelectric conversion layer arranged on the hole transfer layer; an electron transfer composite layer arranged on the photoelectric On the conversion layer, and the electron transport composite layer includes a first electron transport material as a first continuous phase and a mixed material as a second continuous phase, wherein the first continuous phase and the second continuous phase are combined to form A composite phase, the mixed material includes a second electron transfer material and a polymer material, and the polymer material includes polymethylmethacrylate and/or polyvinylpyrrolidone; and a metal electrode layer disposed on the electron transfer material On the composite layer. 如請求項1所述之鈣鈦礦太陽能電池,更包含一電洞阻擋材料,其中該電洞阻擋材料係位於該電子傳遞複合層及該金屬電極層之間,且該電洞阻擋材料包含該第二電子傳遞材料及該高分子材料。 The perovskite solar cell according to claim 1, further comprising a hole blocking material, wherein the hole blocking material is located between the electron transport composite layer and the metal electrode layer, and the hole blocking material includes the hole blocking material The second electron transfer material and the polymer material. 如請求項2所述之鈣鈦礦太陽能電池,其中該電洞阻擋材料與該第二連續相相結合。 The perovskite solar cell according to claim 2, wherein the hole blocking material is combined with the second continuous phase. 如請求項1或2所述之鈣鈦礦太陽能電池,其中該高分子材料之一總重量與該第二電子傳遞材料之一總重量的比值為0.01至0.4。 The perovskite solar cell according to claim 1 or 2, wherein the ratio of the total weight of the polymer material to the total weight of the second electron transport material is 0.01 to 0.4. 如請求項1或2所述之鈣鈦礦太陽能電池,其中該第一電子傳遞材料包含碳球衍生物,且該第二電子傳遞材料包含2,9-二甲基-4,7-二苯基鄰菲羅啉。 The perovskite solar cell according to claim 1 or 2, wherein the first electron transport material includes a carbon ball derivative, and the second electron transport material includes 2,9-dimethyl-4,7-diphenyl Phenanthroline. 一種鈣鈦礦太陽能電池的製作方法,包含:形成一電洞傳遞層於一透明電極上;形成一光電轉換層於該電洞傳遞層上;形成一電子傳遞層於該光電轉換層上,其中該電子傳遞層包含一第一電子傳遞材料,且該電子傳遞層為一第一連續相;藉由一混合材料形成一第二連續相於該電子傳遞層中,其中該第一連續相與該第二連續相結合為一複合相,該混合材料包含一第二電子傳遞材料及一高分子材料,且該高分子材料包含聚甲基丙烯酸甲酯及/或聚乙烯吡咯烷酮;以及於形成該第二連續相後,形成一金屬電極層於該電子傳遞層上。 A manufacturing method of a perovskite solar cell includes: forming a hole transfer layer on a transparent electrode; forming a photoelectric conversion layer on the hole transfer layer; forming an electron transfer layer on the photoelectric conversion layer, wherein The electron transport layer includes a first electron transport material, and the electron transport layer is a first continuous phase; a second continuous phase is formed in the electron transport layer by a mixed material, wherein the first continuous phase and the The second continuous phase is combined into a composite phase, the mixed material includes a second electron transport material and a polymer material, and the polymer material includes polymethylmethacrylate and/or polyvinylpyrrolidone; and forming the second electron transport material After the two continuous phases, a metal electrode layer is formed on the electron transport layer. 如請求項6所述之鈣鈦礦太陽能電池的製作方法,其中該混合材料形成一電洞阻擋層,且該電洞阻擋層之一頂表面覆蓋該電子傳遞層之一頂表面。 The method for manufacturing a perovskite solar cell according to claim 6, wherein the mixed material forms a hole blocking layer, and a top surface of the hole blocking layer covers a top surface of the electron transport layer. 如請求項6所述之鈣鈦礦太陽能電池的製作 方法,其中該形成該第二連續相於該電子傳遞層中的操作包含塗佈一溶液於該電子傳遞層上,且該溶液包含該第二電子傳遞材料及該高分子材料。 Production of perovskite solar cells as described in claim 6 The method, wherein the operation of forming the second continuous phase in the electron transport layer includes coating a solution on the electron transport layer, and the solution includes the second electron transport material and the polymer material. 如請求項8所述之鈣鈦礦太陽能電池的製作方法,其中該溶液不破壞該電子傳遞層之一表面形貌。The manufacturing method of the perovskite solar cell according to claim 8, wherein the solution does not damage a surface morphology of the electron transport layer.
TW109124638A 2020-07-21 2020-07-21 Perovskite solar cells and method for producing the same TWI734564B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109124638A TWI734564B (en) 2020-07-21 2020-07-21 Perovskite solar cells and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109124638A TWI734564B (en) 2020-07-21 2020-07-21 Perovskite solar cells and method for producing the same

Publications (2)

Publication Number Publication Date
TWI734564B true TWI734564B (en) 2021-07-21
TW202204538A TW202204538A (en) 2022-02-01

Family

ID=77911194

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109124638A TWI734564B (en) 2020-07-21 2020-07-21 Perovskite solar cells and method for producing the same

Country Status (1)

Country Link
TW (1) TWI734564B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI847569B (en) * 2023-02-23 2024-07-01 國立中興大學 Perovskite solar cell and method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201602156A (en) * 2014-03-21 2016-01-16 Lg化學股份有限公司 Polymer and organic solar cell comprising the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201602156A (en) * 2014-03-21 2016-01-16 Lg化學股份有限公司 Polymer and organic solar cell comprising the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
張雁茹,〈浴銅靈摻雜入富勒烯應用於鈣鈦礦太陽能電池電子傳輸層之研究〉,國立交通大學材料科學與工程學系碩士論文,106年8月 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI847569B (en) * 2023-02-23 2024-07-01 國立中興大學 Perovskite solar cell and method for producing the same

Also Published As

Publication number Publication date
TW202204538A (en) 2022-02-01

Similar Documents

Publication Publication Date Title
Guchhait et al. Over 20% efficient CIGS–perovskite tandem solar cells
Sengupta et al. Effects of doping, morphology and film-thickness of photo-anode materials for dye sensitized solar cell application–A review
Ye et al. Recent advancements in perovskite solar cells: flexibility, stability and large scale
Bai et al. High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering
Guo et al. High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes
Li et al. Graphene oxide modified hole transport layer for CH3NH3PbI3 planar heterojunction solar cells
TWI485154B (en) Hybrid organic solar cell with perovskite structure as absorption material and manufacturing method thereof
Luo et al. Recent advances in carbon nanotube utilizations in perovskite solar cells
CN110335948B (en) Mixed single crystal perovskite solar cell and preparation method thereof
Xiao et al. Hierarchical Dual‐Scaffolds Enhance Charge Separation and Collection for High Efficiency Semitransparent Perovskite Solar Cells
CN111180587B (en) Special doped perovskite solar cell and preparation method thereof
Behrouznejad et al. Effective Carbon Composite Electrode for Low‐Cost Perovskite Solar Cell with Inorganic CuIn0. 75Ga0. 25S2 Hole Transport Material
Dharmadasa et al. Perovskite solar cells: a deep analysis using current–voltage and capacitance–voltage techniques
US9099652B2 (en) Organic electronic devices with multiple solution-processed layers
Wang et al. Energy level and thickness control on PEDOT: PSS layer for efficient planar heterojunction perovskite cells
Peng et al. Hybrid organic‐inorganic perovskites open a new era for low‐cost, high efficiency solar cells
Shahiduzzaman et al. Enhanced photovoltaic performance of perovskite solar cells via modification of surface characteristics using a fullerene interlayer
CN111244295B (en) Quantum dot light-emitting diode and preparation method thereof
TW201121114A (en) Inverted organic solar cell and method for manufacturing the same
CN106098944A (en) A kind of solaode based on nano-onions carbon composite anode cushion
Karuppuchamy et al. Inorganic based hole transport materials for perovskite solar cells
CN113193121A (en) Interface dipolar molecule modification-based perovskite solar cell and preparation method thereof
KR20160004220A (en) Perovskite solar cell and preparing method thereof
Sakaguchi et al. Non-doped and unsorted single-walled carbon nanotubes as carrier-selective, transparent, and conductive electrode for perovskite solar cells
WO2023169068A1 (en) Organic photoelectric device based on metal-induced organic interface layer, and preparation method