TWI733540B - Communication device and model building system for adaptively modifying communication frequency - Google Patents

Communication device and model building system for adaptively modifying communication frequency Download PDF

Info

Publication number
TWI733540B
TWI733540B TW109125884A TW109125884A TWI733540B TW I733540 B TWI733540 B TW I733540B TW 109125884 A TW109125884 A TW 109125884A TW 109125884 A TW109125884 A TW 109125884A TW I733540 B TWI733540 B TW I733540B
Authority
TW
Taiwan
Prior art keywords
frequency
temperature
relationship
communication
module
Prior art date
Application number
TW109125884A
Other languages
Chinese (zh)
Other versions
TW202205831A (en
Inventor
張俊元
高世璋
陳健全
李宗武
Original Assignee
中興保全科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中興保全科技股份有限公司 filed Critical 中興保全科技股份有限公司
Priority to TW109125884A priority Critical patent/TWI733540B/en
Application granted granted Critical
Publication of TWI733540B publication Critical patent/TWI733540B/en
Publication of TW202205831A publication Critical patent/TW202205831A/en

Links

Images

Landscapes

  • Transmitters (AREA)
  • Transceivers (AREA)

Abstract

A communication device for adaptively modifying communication frequency includes a wireless module, a storage module, a temperature module, and a processor. The wireless module operates at a working frequency in response to a frequency setting parameter. The storage module stores a temperature-frequency relationship. The temperature-frequency relationship is the correspondence between an actual frequency of the wireless module and a frequency calibration value at different temperatures. The temperature module detects the temperature of the communication device to obtain a temperature signal. The processor is coupled to the wireless module, the storage module, and the temperature module. The processor obtains a device temperature according to the temperature signal, obtains a frequency correction parameter corresponding to a target frequency at the device temperature according to the temperature-frequency relationship, generates the frequency setting parameter according to the frequency correction parameter, and sends the frequency setting parameter to the wireless module, so that the working frequency of the wireless module accord with the target frequency.

Description

自適應修正通訊頻率之通訊裝置及其模型建立系統Communication device for adaptively correcting communication frequency and its model building system

本發明是有關於一種通訊技術,尤其是一種自適應修正通訊頻率之通訊裝置及其模型建立系統。The present invention relates to a communication technology, in particular to a communication device for adaptively correcting the communication frequency and its model building system.

現今全球已邁入互聯網的時代,而在此之中通訊傳輸扮演了極為重要的角色。因此,各種無線通訊設備大量的出現,而在無線通訊的技術中,無線頻率為此技術的基礎。然而無線頻率非常容易因為一些因素而造成訊號的失真(例如溫度的變化、裝置元件所造成的干擾等),導致通訊傳輸的結果不甚理想(例如無法正確地傳遞訊號及訊息、傳輸過程穩定度低等)。Now the world has entered the era of the Internet, and communication transmission plays an extremely important role in this. Therefore, a large number of various wireless communication devices have appeared, and in the wireless communication technology, the wireless frequency is the basis of the technology. However, the wireless frequency is very prone to signal distortion due to some factors (such as temperature changes, interference caused by device components, etc.), resulting in unsatisfactory communication transmission results (such as inability to correctly transmit signals and messages, and the stability of the transmission process Low).

鑒於上述,本案提供一種自適應修正通訊頻率之通訊裝置及其模型建立系統,以使通訊裝置可以自適應修正通訊頻率,避免因溫度的變化或裝置元件所造成的干擾而導致通訊頻率失真。In view of the above, this project provides a communication device that adaptively corrects the communication frequency and its model building system, so that the communication device can adaptively correct the communication frequency to avoid distortion of the communication frequency caused by temperature changes or interference caused by device components.

在一些實施例中,自適應修正通訊頻率之通訊裝置包含無線模組、儲存模組、溫度模組以及處理器。無線模組響應頻率設定參數而操作於工作頻率。儲存模組儲存溫度頻率關係。溫度頻率關係為不同溫度下無線模組的實際頻率與頻率標定值之間的對應關係。溫度模組偵測通訊裝置的溫度,以獲得溫度訊號。處理器耦接無線模組、儲存模組及溫度模組。處理器根據溫度訊號取得裝置溫度,並根據溫度頻率關係獲得在裝置溫度下與目標頻率相對應的頻率校正參數,以及根據頻率校正參數產生頻率設定參數,而將頻率設定參數發送至無線模組,俾使無線模組的工作頻率符合目標頻率。In some embodiments, the communication device for adaptively correcting the communication frequency includes a wireless module, a storage module, a temperature module, and a processor. The wireless module responds to the frequency setting parameter to operate at the operating frequency. The relationship between the storage temperature and frequency of the storage module. The temperature-frequency relationship is the corresponding relationship between the actual frequency of the wireless module and the frequency calibration value at different temperatures. The temperature module detects the temperature of the communication device to obtain a temperature signal. The processor is coupled to the wireless module, the storage module, and the temperature module. The processor obtains the device temperature according to the temperature signal, and obtains the frequency correction parameter corresponding to the target frequency at the device temperature according to the temperature-frequency relationship, and generates the frequency setting parameter according to the frequency correction parameter, and sends the frequency setting parameter to the wireless module, To make the working frequency of the wireless module match the target frequency.

在一些實施例中,儲存模組還儲存裝置誤差修正值。處理器進一步結合頻率校正參數及裝置誤差修正值而獲得頻率設定參數。In some embodiments, the storage module also stores the device error correction value. The processor further combines the frequency correction parameter and the device error correction value to obtain the frequency setting parameter.

在一些實施例中,處理器將對應於溫度訊號的量測值執行溫度校正後取得裝置溫度。In some embodiments, the processor performs temperature calibration on the measured value corresponding to the temperature signal to obtain the device temperature.

在一些實施例中,儲存模組還儲存有溫度校正關係,以供處理器根據溫度校正關係將量測值校正為裝置溫度。溫度校正關係為量測值與裝置溫度之間的對應關係。In some embodiments, the storage module also stores a temperature correction relationship for the processor to correct the measured value to the device temperature according to the temperature correction relationship. The temperature correction relationship is the corresponding relationship between the measured value and the device temperature.

在一些實施例中,溫度頻率關係為一線性演算式。線性演算式呈現裝置溫度與頻率校正參數之間的線性關係。In some embodiments, the temperature-frequency relationship is a linear calculation formula. The linear calculation formula presents the linear relationship between the device temperature and the frequency correction parameters.

在一些實施例中,溫度頻率關係為補償對照表。補償對照表呈現裝置溫度與頻率校正參數之間的非線性關係。In some embodiments, the temperature-frequency relationship is a compensation comparison table. The compensation comparison table presents the non-linear relationship between the device temperature and the frequency correction parameters.

在一些實施例中,在一溫度區間之內,溫度頻率關係為線性演算式;在溫度區間之外,溫度頻率關係為補償對照表。In some embodiments, within a temperature interval, the temperature-frequency relationship is a linear calculation formula; outside the temperature interval, the temperature-frequency relationship is a compensation comparison table.

在一些實施例中,自適應修正通訊頻率之模型建立系統包含溫控裝置、通訊裝置以及通訊頻率分析裝置。溫控裝置提供溫控環境。通訊裝置位於溫控環境中。通訊裝置包含儲存模組、無線模組、溫度模組以及處理器。無線模組響應頻率設定參數而操作於工作頻率。溫度模組偵測通訊裝置的溫度,以獲得溫度訊號。處理器耦接無線模組、儲存模組及溫度模組。處理器根據溫度訊號取得裝置溫度,並依據頻率標定值產生頻率設定參數,而將頻率設定參數發送至無線模組。通訊頻率分析裝置分別於溫控環境處於不同溫度的情形下,量測無線模組所操作的實際頻率。其中,通訊裝置耦接溫控裝置及通訊頻率分析裝置,使得通訊裝置的處理器根據對應於不同溫度的溫控環境取得的裝置溫度及對應的實際頻率和頻率標定值,建立溫度頻率關係,並將溫度頻率關係儲存於儲存模組。In some embodiments, the model building system for adaptively correcting the communication frequency includes a temperature control device, a communication device, and a communication frequency analysis device. The temperature control device provides a temperature control environment. The communication device is located in a temperature-controlled environment. The communication device includes a storage module, a wireless module, a temperature module, and a processor. The wireless module responds to the frequency setting parameter to operate at the operating frequency. The temperature module detects the temperature of the communication device to obtain a temperature signal. The processor is coupled to the wireless module, the storage module, and the temperature module. The processor obtains the device temperature according to the temperature signal, generates frequency setting parameters according to the frequency calibration value, and sends the frequency setting parameters to the wireless module. The communication frequency analysis device measures the actual frequency operated by the wireless module when the temperature control environment is at different temperatures. The communication device is coupled to the temperature control device and the communication frequency analysis device, so that the processor of the communication device establishes the temperature-frequency relationship based on the device temperature obtained by the temperature control environment corresponding to different temperatures and the corresponding actual frequency and frequency calibration value, and Store the temperature-frequency relationship in the storage module.

在一些實施例中,通訊頻率分析裝置於溫控環境處於固定溫度的情形下,量測無線模組所操作的實際頻率,通訊裝置的處理器根據對應於固定溫度的溫控環境取得的實際頻率和頻率標定值,產生裝置誤差修正值,並將裝置誤差修正值儲存於儲存模組。In some embodiments, the communication frequency analysis device measures the actual frequency operated by the wireless module when the temperature control environment is at a fixed temperature, and the processor of the communication device obtains the actual frequency according to the temperature control environment corresponding to the fixed temperature. And the frequency calibration value to generate the device error correction value, and store the device error correction value in the storage module.

在一些實施例中,處理器根據不同溫度的溫控環境及對應的溫度訊號的一量測值,建立一溫度校正關係,並將溫度校正關係儲存於儲存模組。其中裝置溫度相應於溫控環境之不同的溫度。In some embodiments, the processor establishes a temperature correction relationship according to a temperature control environment of different temperatures and a measurement value of the corresponding temperature signal, and stores the temperature correction relationship in the storage module. The device temperature corresponds to the different temperature of the temperature control environment.

因此,依據一些實施例,通訊裝置藉由偵測自身的溫度來判斷此時應給予無線模組的頻率設定參數,以使無線模組所操作的頻率不會失真。因此,確保通訊裝置的無線模組所操作的頻率可以符合目標頻率而不會因為溫度的變化而造成影響。在一些實施例中,更透過結合裝置誤差修正值(裝置元件對無線模組操作的頻率造成的影響)來獲得頻率設定參數,來大幅降低頻率失真的可能性,避免了裝置元件對頻率所產生的干擾。在一些實施例中,更透過溫度校正關係來提升通訊裝置偵測溫度的精準度,進而降低頻率失真的機會。Therefore, according to some embodiments, the communication device determines the frequency setting parameters that should be given to the wireless module at this time by detecting its own temperature, so that the operating frequency of the wireless module will not be distorted. Therefore, it is ensured that the operating frequency of the wireless module of the communication device can meet the target frequency without being affected by temperature changes. In some embodiments, the frequency setting parameters are obtained by combining the device error correction value (the influence of the device component on the operating frequency of the wireless module), which greatly reduces the possibility of frequency distortion and avoids the device component’s influence on the frequency. Interference. In some embodiments, the temperature correction relationship is used to improve the accuracy of the communication device to detect the temperature, thereby reducing the chance of frequency distortion.

請參照圖1,圖1係為本發明一實施例之自適應修正通訊頻率之通訊裝置100之方塊示意圖。通訊裝置100包含無線模組110、儲存模組120、溫度模組130以及處理器140。儲存模組120用以儲存處理器140、無線模組110以及溫度模組130運行時所涉及的各項資料,例如溫度頻率關係。在一些實施例中,處理器140可為中央處理器、微處理器、特定應用積體電路(ASIC,Application-specific Integrated Circuit)、或系統單晶片(SOC,System on a Chip)等運算積體電路。在一些實施例中,儲存模組120可為揮發性記憶體、非揮發性記憶體或其組合。在一些示範例中,揮發性記憶體可為隨機存取記憶體等。在一些示範例中,非揮發性記憶體可為快閃記憶體、唯讀記憶體、硬碟或固態硬碟等。Please refer to FIG. 1. FIG. 1 is a block diagram of a communication device 100 for adaptively correcting a communication frequency according to an embodiment of the present invention. The communication device 100 includes a wireless module 110, a storage module 120, a temperature module 130 and a processor 140. The storage module 120 is used to store various data related to the operation of the processor 140, the wireless module 110, and the temperature module 130, such as the temperature-frequency relationship. In some embodiments, the processor 140 may be a central processing unit, a microprocessor, an application-specific integrated circuit (ASIC, Application-specific Integrated Circuit), or a system on a chip (SOC, System on a Chip), etc. Circuit. In some embodiments, the storage module 120 can be a volatile memory, a non-volatile memory, or a combination thereof. In some examples, the volatile memory may be random access memory or the like. In some examples, the non-volatile memory can be flash memory, read-only memory, hard disk, or solid-state drive.

在一些實施例中,溫度頻率關係可為不同溫度的情形下,無線模組110的實際頻率及頻率標定值之間的對應關係。所述實際頻率為無線模組110尚未進行自適應修正的實際操作的頻率。所述頻率標定值為標定應操作的頻率。在一些實施例中,溫度頻率關係是不同溫度與頻率偏移值之間的對應關係。其中頻率偏移值可為對應的溫度下,無線模組110的實際頻率與頻率標定值之間的差值。In some embodiments, the temperature-frequency relationship may be the corresponding relationship between the actual frequency of the wireless module 110 and the frequency calibration value under different temperatures. The actual frequency is the actual operating frequency of the wireless module 110 that has not been adaptively corrected. The frequency calibration value is the frequency at which the calibration should be performed. In some embodiments, the temperature-frequency relationship is a corresponding relationship between different temperatures and frequency offset values. The frequency offset value may be the difference between the actual frequency of the wireless module 110 and the frequency calibration value under the corresponding temperature.

溫度模組130用以偵測通訊裝置100的溫度,以獲得溫度訊號。在一些示範例中,溫度模組130可為電阻溫度計、紅外線溫度計、液晶溫度計、熱敏溫度計、熱電耦溫度計等。The temperature module 130 is used to detect the temperature of the communication device 100 to obtain a temperature signal. In some exemplary embodiments, the temperature module 130 may be a resistance thermometer, an infrared thermometer, a liquid crystal thermometer, a thermal thermometer, a thermocouple thermometer, etc.

無線模組110響應頻率設定參數而操作於一頻率(後稱「工作頻率」)。在一些實施例中,所述頻率設定參數可為無線模組110內部元件的參數設定。其中,參數設定例如晶體震盪器負載電容調諧(The Crystal Oscillator Load Capacitor Tuning,CTNUE)之值的設定,以調諧電容值來改變工作頻率、或是高頻率晶體震盪器的值之設定(High Frequency Crystal Oscillator,HFXO),以變化工作頻率等。在一些實施例中,無線模組110用以提供通訊裝置100網路通訊或近距離通訊其他裝置(例如:如圖2及圖3所示之通訊頻率分析裝置220),即透過網路或近距離通訊技術以與其他裝置進行資料通訊傳輸。在一些示範例中,無線模組110例如但不限於無線相容認證(Wi-Fi)、無線廣域網路(WWAN)、長期演進技術(LTE)、行動通訊技術(如,3G、4G、4.5G、5G等)、無線寬頻(Wibro)、全球互通微波存取(Wimax)、近距離無線通訊(NFC)、無線射頻辨識(RFID)、紅外通訊技術(IrDA)、超寬頻(UWB)、ZigBee、藍芽感應器、藍芽收發器、物聯網射頻技術(Sub-1GHz)等無線通訊介面電路。在一些實施例中,通訊裝置100可包含一或多個無線模組110,此些無線模組110可是支援相同或不同通訊協定,或者此些無線模組110可操作在不同的工作頻率。在一些實施例中,多個無線模組110可以整合在一起。例如支援藍牙協定與無線相容認證協定的兩無線模組110可整合在同一通訊晶片當中。The wireless module 110 operates at a frequency (hereinafter referred to as "operating frequency") in response to the frequency setting parameter. In some embodiments, the frequency setting parameter may be a parameter setting of internal components of the wireless module 110. Among them, the parameter setting, such as the setting of the crystal oscillator load capacitance tuning (The Crystal Oscillator Load Capacitor Tuning, CTNUE) value, the tuning capacitor value to change the operating frequency, or the setting of the value of the high frequency crystal oscillator (High Frequency Crystal Oscillator) Oscillator, HFXO) to change the operating frequency and so on. In some embodiments, the wireless module 110 is used to provide the communication device 100 for network communication or short-range communication with other devices (for example: the communication frequency analysis device 220 shown in FIG. 2 and FIG. 3), that is, through the network or near Distance communication technology is used for data communication and transmission with other devices. In some exemplary embodiments, the wireless module 110 such as but not limited to wireless compatible authentication (Wi-Fi), wireless wide area network (WWAN), long-term evolution technology (LTE), mobile communication technology (eg, 3G, 4G, 4.5G , 5G, etc.), Wireless Broadband (Wibro), Global Interoperability Microwave Access (Wimax), Near Field Communication (NFC), Radio Frequency Identification (RFID), Infrared Communication Technology (IrDA), Ultra Wideband (UWB), ZigBee, Bluetooth sensor, Bluetooth transceiver, Internet of Things radio frequency technology (Sub-1GHz) and other wireless communication interface circuits. In some embodiments, the communication device 100 may include one or more wireless modules 110. The wireless modules 110 may support the same or different communication protocols, or the wireless modules 110 may operate at different operating frequencies. In some embodiments, multiple wireless modules 110 may be integrated together. For example, two wireless modules 110 supporting the Bluetooth protocol and the wireless compatible authentication protocol can be integrated into the same communication chip.

處理器140耦接無線模組110、儲存模組120以及溫度模組130。處理器140用以控制無線模組110、儲存模組120以及溫度模組130的運作,並進行資料與訊號的處理。處理器140從溫度模組130接收溫度訊號,並解析溫度訊號而取得通訊裝置100內部溫度(後稱「裝置溫度」)。由於無線模組110與溫度模組130均設置在通訊裝置100的內部,因此可藉由裝置溫度得知無線模組110所在環境的溫度。在一些實施例中,無線模組110與溫度模組130可整合在一起。在一些實施例中,無線模組110與溫度模組130分開獨立而設置在鄰近位置。The processor 140 is coupled to the wireless module 110, the storage module 120 and the temperature module 130. The processor 140 is used to control the operation of the wireless module 110, the storage module 120, and the temperature module 130, and perform data and signal processing. The processor 140 receives the temperature signal from the temperature module 130, and analyzes the temperature signal to obtain the internal temperature of the communication device 100 (hereinafter referred to as “device temperature”). Since the wireless module 110 and the temperature module 130 are both disposed inside the communication device 100, the temperature of the environment where the wireless module 110 is located can be known by the device temperature. In some embodiments, the wireless module 110 and the temperature module 130 may be integrated together. In some embodiments, the wireless module 110 and the temperature module 130 are separated and independently arranged in adjacent positions.

在一些實施例中,處理器140解析溫度訊號而獲得量測值,並對量測值執行溫度校正後取得裝置溫度。其中,量測值為溫度模組130量測通訊裝置100內部溫度所獲得的原始資料。在一些實施例中,儲存模組120儲存有溫度校正關係,處理器140根據溫度校正關係執行溫度校正,並將量測值校正為裝置溫度。在一些實施例中,溫度校正關係為量測值與裝置溫度之間的對應關係。具體來說,在一些實施例中,溫度校正關係可以是以對照表來實現,例如以溫度校正對照表來實現。在一些實施例中,溫度校正關係可以是以線性演算式來實現,透過量測值與實際溫度的線性關係來演算對應當下量測值的裝置溫度。其中,實際溫度為無線模組110所在的實際之環境的溫度。在一些實施例中,若溫度模組130足夠精準,則溫度模組130之量測值和裝置溫度之間幾乎無誤差,亦即裝置溫度可視為實際溫度。In some embodiments, the processor 140 parses the temperature signal to obtain a measurement value, and performs temperature correction on the measurement value to obtain the device temperature. The measured value is the original data obtained by the temperature module 130 measuring the internal temperature of the communication device 100. In some embodiments, the storage module 120 stores a temperature correction relationship, and the processor 140 performs temperature correction according to the temperature correction relationship, and corrects the measured value to the device temperature. In some embodiments, the temperature correction relationship is a corresponding relationship between the measured value and the device temperature. Specifically, in some embodiments, the temperature correction relationship may be realized by a comparison table, for example, by a temperature correction comparison table. In some embodiments, the temperature correction relationship can be realized by a linear calculation formula, and the device temperature corresponding to the measured value is calculated through the linear relationship between the measured value and the actual temperature. Wherein, the actual temperature is the temperature of the actual environment where the wireless module 110 is located. In some embodiments, if the temperature module 130 is sufficiently accurate, there is almost no error between the measured value of the temperature module 130 and the device temperature, that is, the device temperature can be regarded as the actual temperature.

根據當下的裝置溫度,處理器140可透過溫度頻率關係獲得對應於欲操作的頻率(後稱「目標頻率」)的頻率校正參數。在一些實施例中,頻率校正參數可為根據溫度頻率關係獲得的當下裝置溫度所對應的頻率偏移值(亦即因溫度變化所造成的頻率偏移值)。According to the current device temperature, the processor 140 can obtain the frequency correction parameter corresponding to the frequency to be operated (hereinafter referred to as the “target frequency”) through the temperature-frequency relationship. In some embodiments, the frequency correction parameter may be a frequency offset value corresponding to the current device temperature obtained according to the temperature-frequency relationship (that is, the frequency offset value caused by temperature changes).

在一些實施例中,溫度頻率關係可以是以對照表形式實現,例如溫度頻率關係為一補償對照表。處理器140透過儲存模組120中儲存的補償對照表取得對應目標頻率及當下裝置溫度的頻率校正參數。In some embodiments, the temperature-frequency relationship may be realized in the form of a comparison table, for example, the temperature-frequency relationship is a compensation comparison table. The processor 140 obtains the frequency correction parameters corresponding to the target frequency and the current device temperature through the compensation comparison table stored in the storage module 120.

在一些實施例中,溫度頻率關係可以是以線性演算式來實現,透過溫度與頻率變化間的線性關係來演算對應目標頻率及當下裝置溫度的頻率校正參數,例如線性演算式呈現裝置溫度與頻率校正參數之間的線性關係。In some embodiments, the temperature-frequency relationship can be realized by a linear calculation formula. The frequency correction parameters corresponding to the target frequency and the current device temperature are calculated through the linear relationship between temperature and frequency changes. For example, the linear calculation formula presents the device temperature and frequency. Correct the linear relationship between the parameters.

在一些實施例中,若溫度與頻率變化間為非線性關係時,以對照表(例如補償對照表)形式來實現溫度頻率關係(亦即,補償對照表呈現裝置溫度與頻率校正參數之間的非線性關係);若溫度與頻率變化間為線性關係時,以線性演算式來實現溫度頻率關係。In some embodiments, if there is a non-linear relationship between temperature and frequency change, the temperature-frequency relationship is realized in the form of a comparison table (for example, a compensation comparison table) (that is, the compensation comparison table presents the relationship between the device temperature and the frequency correction parameter). Non-linear relationship); if there is a linear relationship between temperature and frequency change, the linear calculation formula is used to realize the temperature-frequency relationship.

在一些實施例中,在一溫度區間之內(即一第一溫度區間內),溫度與頻率變化間為線性關係,並以線性演算式實現溫度頻率關係;在該溫度區間之外(例如和第一溫度區間不重疊的一第二溫度區間內),溫度與頻率變化間為非線性關係,以對照表(例如補償對照表)形式來實現溫度頻率關係。在一些實施例中,溫度區間可為符合通訊協議之頻率容許差度規範的範圍。例如,溫度區間可為-20℃至50℃,但並不以此為限。In some embodiments, within a temperature interval (that is, within a first temperature interval), there is a linear relationship between temperature and frequency changes, and the temperature-frequency relationship is realized by a linear calculation formula; outside the temperature interval (for example, and In a second temperature interval where the first temperature interval does not overlap), the temperature and frequency change have a non-linear relationship, and the temperature-frequency relationship is realized in the form of a comparison table (for example, a compensation comparison table). In some embodiments, the temperature range may be a range that complies with the frequency tolerance specification of the communication protocol. For example, the temperature range can be from -20°C to 50°C, but is not limited to this.

處理器140根據頻率校正參數產生頻率設定參數。舉例來說,儲存模組120儲存有頻率校正參數與頻率設定參數之間的對應關係(例如以一對照表(如參數對照表)來實現),處理器140根據參數對照表取得當下頻率校正參數所對應的頻率設定參數。在一些實施例中,頻率設定參數為相同於頻率校正參數(即,當下裝置溫度所對應的頻率偏移值)。在一些實施例中,頻率設定參數可以為與頻率校正參數具有對應關係,但分別具有不同作用的參數。例如頻率校正參數為頻率偏移值,而頻率設定參數是為了消除頻率偏移值而對應產生的晶體震盪器負載電容調諧值。The processor 140 generates a frequency setting parameter according to the frequency correction parameter. For example, the storage module 120 stores the corresponding relationship between the frequency calibration parameters and the frequency setting parameters (for example, realized by a comparison table (such as a parameter comparison table)), and the processor 140 obtains the current frequency calibration parameters according to the parameter comparison table. The corresponding frequency setting parameter. In some embodiments, the frequency setting parameter is the same as the frequency correction parameter (ie, the frequency offset value corresponding to the current device temperature). In some embodiments, the frequency setting parameter may be a parameter that has a corresponding relationship with the frequency correction parameter, but has different functions. For example, the frequency correction parameter is the frequency offset value, and the frequency setting parameter is the tuning value of the load capacitance of the crystal oscillator corresponding to the generated frequency offset value.

在一些實施例中,儲存模組120儲存有裝置誤差修正值。處理器140除了考量頻率校正參數之外,還進一步考量裝置誤差修正值,以獲得頻率設定參數。在一些實施例中,裝置誤差修正值為因個體元件差異所造成的頻率偏移值,例如無線模組110處於某一固定溫度時,個體元件差異所造成的頻率偏移值(如無線模組110處於固定溫度時,實際頻率及頻率標定值之間的對應關係,或是實際頻率與頻率標定值之間的差值)。在一些實施例中,處理器140根據參數對照表查詢當下頻率校正參數及裝置誤差修正值所對應的頻率設定參數。藉由一併考量頻率校正參數及裝置誤差修正值所獲得的頻率設定參數,可以消除因溫度變化以及個體元件差異所造成的頻率失真,進而提升通訊裝置100的精準性及穩定性,使工作頻率更精確的符合目標頻率。In some embodiments, the storage module 120 stores a device error correction value. In addition to considering the frequency correction parameter, the processor 140 further considers the device error correction value to obtain the frequency setting parameter. In some embodiments, the device error correction value is a frequency offset value caused by individual component differences. For example, when the wireless module 110 is at a fixed temperature, the frequency offset value caused by individual component differences (such as wireless module When 110 is at a fixed temperature, the corresponding relationship between the actual frequency and the frequency calibration value, or the difference between the actual frequency and the frequency calibration value). In some embodiments, the processor 140 queries the current frequency correction parameter and the frequency setting parameter corresponding to the device error correction value according to the parameter comparison table. The frequency setting parameters obtained by considering the frequency correction parameters and the device error correction values together can eliminate the frequency distortion caused by temperature changes and individual component differences, thereby improving the accuracy and stability of the communication device 100 and making the operating frequency Meet the target frequency more accurately.

處理器140將頻率設定參數發送至無線模組110,以使無線模組110響應頻率設定參數而操作的工作頻率能符合目標頻率。也就是說,透過頻率設定參數能校正原先因溫度變化或個體元件差異所造成的頻率失真(例如藉由調諧晶體震盪器負載電容的值來使工作頻率符合目標頻率;或是施加頻率補償值以抵消因溫度變化或個體元件所造成的頻率失真)。所述頻率補償值為實際頻率與目標頻率的反相差值。反相差值為施加一反向的頻率偏移值至實際頻率,以抵銷實際頻率與目標頻率之間的頻率差值,例如若目標頻率大於實際頻率,則頻率補償值為一增強實際頻率大小的頻率偏移值;若目標頻率小於實際頻率,則頻率補償值為一衰弱實際頻率大小的頻率偏移值。The processor 140 sends the frequency setting parameter to the wireless module 110 so that the operating frequency of the wireless module 110 in response to the frequency setting parameter can meet the target frequency. In other words, through the frequency setting parameters, the frequency distortion caused by temperature changes or individual component differences can be corrected (for example, by tuning the value of the load capacitance of the crystal oscillator to make the operating frequency match the target frequency; or applying a frequency compensation value to To offset the frequency distortion caused by temperature changes or individual components). The frequency compensation value is the inverse difference between the actual frequency and the target frequency. The reverse difference value is to apply a reverse frequency offset value to the actual frequency to offset the frequency difference between the actual frequency and the target frequency. For example, if the target frequency is greater than the actual frequency, the frequency compensation value is an enhanced actual frequency If the target frequency is less than the actual frequency, the frequency compensation value is a frequency offset value that weakens the actual frequency.

請同時參照圖1、圖2及圖3。圖2係為本發明一實施例之自適應修正通訊頻率之模型建立系統200之架構示意圖。圖3係為本發明一實施例之自適應修正通訊頻率之模型建立系統200之方塊示意圖。自適應修正通訊頻率之模型建立系統200包含溫控裝置210、通訊裝置100及通訊頻率分析裝置220。通訊裝置100耦接溫控裝置210及通訊頻率分析裝置220。溫控裝置210用以提供溫控環境。通訊裝置100位於溫控環境中。自適應修正通訊頻率之模型建立系統200用以執行建立自適應模型的溫度頻率關係及頻率校正參數所對應的頻率設定參數之方法以及建立自適應模型的裝置誤差值及裝置誤差值所對應的頻率設定參數之方法。Please refer to Figure 1, Figure 2 and Figure 3 at the same time. FIG. 2 is a schematic structural diagram of a model building system 200 for adaptively correcting communication frequencies according to an embodiment of the present invention. FIG. 3 is a block diagram of a model building system 200 for adaptively correcting communication frequencies according to an embodiment of the present invention. The model building system 200 for adaptively correcting the communication frequency includes a temperature control device 210, a communication device 100, and a communication frequency analysis device 220. The communication device 100 is coupled to the temperature control device 210 and the communication frequency analysis device 220. The temperature control device 210 is used to provide a temperature control environment. The communication device 100 is located in a temperature-controlled environment. The model building system 200 for adaptively correcting the communication frequency is used to implement the method of establishing the temperature-frequency relationship of the adaptive model and the frequency setting parameter corresponding to the frequency correction parameter, and the device error value of the adaptive model and the frequency corresponding to the device error value Method of setting parameters.

參照圖4,係為本發明一實施例之建立修正通訊頻率之自適應模型的溫度頻率關係及頻率校正參數所對應的頻率設定參數之流程示意圖。首先,通訊裝置100發送一控制訊號至溫控裝置210,以使溫控裝置210根據控制訊號提供對應一溫度的溫控環境(步驟S400)。在一些實施例中,溫控裝置210包含處理電路及儲存電路,處理電路根據控制訊號產生溫控設定,並根據溫控設定而使溫控裝置210產生對應溫控設定的溫控環境,例如溫控設定為25℃時,處理電路控制溫控裝置210提供溫度為25℃的溫控環境,但本發明實施例並不以此為限。在一些示範例中,溫控設定可為室溫設定、高溫設定或低溫設定,處理電路讀取儲存電路中室溫設定、高溫設定或低溫設定所對應之溫度(例如室溫設定為對應25℃、高溫設定為對應60℃、低溫設定為對應10℃),而使溫控裝置210提供對應室溫設定、高溫設定或低溫設定的溫度的溫控環境。在一些實施例中,室溫設定、高溫設定或低溫設定可為溫度區間,例如室溫設定為20℃至30℃、高溫設定為大於30℃及低溫設定為小於20℃,但本發明實施例並不限於此。在步驟S400的一些實施例中,溫控裝置210還包含使用者介面,溫控裝置210響應使用者介面的操作而產生溫控設定,並根據溫控設定提供對應一溫度的溫控環境。Referring to FIG. 4, it is a flow diagram of establishing the temperature-frequency relationship of the adaptive model for correcting the communication frequency and the frequency setting parameters corresponding to the frequency correction parameters according to an embodiment of the present invention. First, the communication device 100 sends a control signal to the temperature control device 210, so that the temperature control device 210 provides a temperature control environment corresponding to a temperature according to the control signal (step S400). In some embodiments, the temperature control device 210 includes a processing circuit and a storage circuit. The processing circuit generates a temperature control setting according to the control signal, and according to the temperature control setting, causes the temperature control device 210 to generate a temperature control environment corresponding to the temperature control setting, such as temperature control. When the control setting is 25°C, the processing circuit controls the temperature control device 210 to provide a temperature control environment with a temperature of 25°C, but the embodiment of the present invention is not limited to this. In some examples, the temperature control setting can be a room temperature setting, a high temperature setting, or a low temperature setting. The processing circuit reads the temperature corresponding to the room temperature setting, high temperature setting or low temperature setting in the storage circuit (for example, the room temperature setting corresponds to 25°C). , The high temperature setting corresponds to 60°C and the low temperature setting corresponds to 10°C), and the temperature control device 210 provides a temperature control environment corresponding to the room temperature setting, the high temperature setting or the low temperature setting. In some embodiments, the room temperature setting, the high temperature setting, or the low temperature setting can be a temperature range, for example, the room temperature is set to 20°C to 30°C, the high temperature setting is greater than 30°C, and the low temperature setting is less than 20°C, but the embodiment of the present invention It is not limited to this. In some embodiments of step S400, the temperature control device 210 further includes a user interface. The temperature control device 210 generates a temperature control setting in response to an operation of the user interface, and provides a temperature control environment corresponding to a temperature according to the temperature control setting.

通訊裝置100的處理器140依據頻率標定值產生頻率設定參數,並將頻率設定參數發送至無線模組110(步驟S402)。例如,處理器140依據標定應操作的頻率產生頻率設定參數。在一些實施例中,儲存模組120儲存有頻率標定值。通訊裝置100的無線模組110響應頻率設定參數而操作於工作頻率(步驟S404)。The processor 140 of the communication device 100 generates frequency setting parameters according to the frequency calibration value, and sends the frequency setting parameters to the wireless module 110 (step S402). For example, the processor 140 generates a frequency setting parameter according to the frequency at which the calibration should be operated. In some embodiments, the storage module 120 stores the frequency calibration value. The wireless module 110 of the communication device 100 operates at the operating frequency in response to the frequency setting parameter (step S404).

在步驟S404之後,通訊頻率分析裝置220量測無線模組110所操作的工作頻率(步驟S406),於此工作頻率為在建立自適應模型時無線模組110所操作的頻率(亦即尚未進行自適應修正的實際操作的頻率,即實際頻率)。After step S404, the communication frequency analysis device 220 measures the operating frequency of the wireless module 110 (step S406), where the operating frequency is the operating frequency of the wireless module 110 when the adaptive model is established (that is, the operating frequency has not been performed yet). The actual operating frequency of the adaptive correction, that is, the actual frequency).

在步驟S406之後,通訊裝置100的處理器140自通訊頻率分析裝置220接收其所量測的實際頻率,並判斷實際頻率是否實質相同於頻率標定值(步驟S408)。例如,處理器140判斷實際頻率是否在符合式1的區間中。在一些實施例中,所述區間可為通訊協議所訂定之誤差區間。在步驟S408的一示範例中,處理器140判斷實際頻率是否相同於頻率標定值。在一些實施例中,處理器140分別將於在不同溫度的溫控環境下第一次獲得的實際頻率作為原始頻率,並將原始頻率儲存於儲存模組120中。After step S406, the processor 140 of the communication device 100 receives the actual frequency measured from the communication frequency analysis device 220, and determines whether the actual frequency is substantially the same as the frequency calibration value (step S408). For example, the processor 140 determines whether the actual frequency is in the interval conforming to Equation 1. In some embodiments, the interval may be an error interval specified by a communication protocol. In an example of step S408, the processor 140 determines whether the actual frequency is the same as the frequency calibration value. In some embodiments, the processor 140 respectively uses the actual frequency obtained for the first time in a temperature-controlled environment with different temperatures as the original frequency, and stores the original frequency in the storage module 120.

Figure 02_image001
…………………………(式1)
Figure 02_image001
…………………………(Formula 1)

其中,

Figure 02_image003
為頻率標定值,
Figure 02_image005
為實際頻率。 in,
Figure 02_image003
Is the frequency calibration value,
Figure 02_image005
Is the actual frequency.

若實際頻率實質相同於頻率標定值,則處理器140收集當前的頻率設定參數、裝置溫度、原始頻率及頻率標定值,將當前的頻率設定參數、裝置溫度、原始頻率及頻率標定值關聯在一起,並記錄於儲存模組120(步驟S410)。舉例來說,溫度模組130偵測通訊裝置100的溫度,而獲得溫度訊號,處理器140解析溫度訊號獲得對應當前溫控環境的溫度之裝置溫度,從儲存模組120中獲取當前的原始頻率及頻率標定值,並將裝置溫度、原始頻率、頻率標定值及當前的頻率參數關聯在一起,而後記錄於儲存模組120。在一些實施例中,原始頻率與頻率標定值之間的差值為頻率校正參數。If the actual frequency is substantially the same as the frequency calibration value, the processor 140 collects the current frequency setting parameter, device temperature, original frequency, and frequency calibration value, and associates the current frequency setting parameter, device temperature, original frequency, and frequency calibration value together , And recorded in the storage module 120 (step S410). For example, the temperature module 130 detects the temperature of the communication device 100 to obtain a temperature signal, the processor 140 parses the temperature signal to obtain the device temperature corresponding to the temperature of the current temperature control environment, and obtains the current original frequency from the storage module 120 And the frequency calibration value, and associate the device temperature, the original frequency, the frequency calibration value and the current frequency parameter together, and then record it in the storage module 120. In some embodiments, the difference between the original frequency and the frequency calibration value is a frequency correction parameter.

若實際頻率不實質相同於頻率標定值,則處理器140判斷實際頻率是否大於頻率標定值(步驟S414),若實際頻率小於頻率標定值,則處理器140降低頻率設定參數(步驟S416),並將頻率設定參數傳送至無線模組110,使無線模組110響應頻率設定參數而操作於工作頻率(步驟S404),及重複後續步驟;若實際頻率大於頻率標定值(例如實際頻率符合式2的條件),則處理器140增加頻率設定參數(步驟S418),並將頻率設定參數傳送至無線模組110,使無線模組110響應頻率設定參數而操作於工作頻率(步驟S404),及重複後續步驟。If the actual frequency is not substantially the same as the frequency calibration value, the processor 140 determines whether the actual frequency is greater than the frequency calibration value (step S414). If the actual frequency is less than the frequency calibration value, the processor 140 reduces the frequency setting parameter (step S416), and The frequency setting parameter is transmitted to the wireless module 110, so that the wireless module 110 operates at the operating frequency in response to the frequency setting parameter (step S404), and repeats the subsequent steps; if the actual frequency is greater than the frequency calibration value (for example, the actual frequency conforms to the formula 2 Condition), the processor 140 adds the frequency setting parameter (step S418), and transmits the frequency setting parameter to the wireless module 110, so that the wireless module 110 operates at the operating frequency in response to the frequency setting parameter (step S404), and repeats the following step.

Figure 02_image007
…………………………(式2)
Figure 02_image007
…………………………(Formula 2)

其中,

Figure 02_image003
為頻率標定值,
Figure 02_image005
為實際頻率。 in,
Figure 02_image003
Is the frequency calibration value,
Figure 02_image005
Is the actual frequency.

在一示範例中,頻率設定參數越小,則無線模組110響應頻率設定參數而操作的工作頻率越大,此時,若實際頻率小於頻率標定值,則處理器140降低頻率設定參數(步驟S416),若實際頻率大於頻率標定值,則處理器140增加頻率設定參數(步驟S418)。在另一示範例中,頻率設定參數越大,則無線模組110響應頻率設定參數而操作的工作頻率越大,此時,若實際頻率小於頻率標定值,則處理器140增加頻率設定參數(步驟S418),若實際頻率大於頻率標定值,則處理器140降低頻率設定參數(步驟S416)。In an exemplary example, the smaller the frequency setting parameter, the greater the operating frequency of the wireless module 110 operating in response to the frequency setting parameter. At this time, if the actual frequency is less than the frequency calibration value, the processor 140 reduces the frequency setting parameter (step S416). If the actual frequency is greater than the frequency calibration value, the processor 140 increases the frequency setting parameter (step S418). In another example, the larger the frequency setting parameter is, the higher the operating frequency the wireless module 110 operates in response to the frequency setting parameter. At this time, if the actual frequency is less than the frequency calibration value, the processor 140 increases the frequency setting parameter ( Step S418), if the actual frequency is greater than the frequency calibration value, the processor 140 reduces the frequency setting parameter (step S416).

在一些實施例中,在步驟S416中,若實際頻率小於頻率標定值,處理器140將當前的實際頻率作為第一實際頻率,降低頻率設定參數(例如將頻率設定參數之值減一),並將降低後的頻率設定參數作為第一頻率設定參數,以使無線模組110響應第一頻率設定參數而操作於對應的工作頻率。通訊頻率分析裝置220量測無線模組110的實際頻率(響應第一頻率設定參數的工作頻率),通訊裝置100的處理器140從通訊頻率分析裝置220接收其所量測的實際頻率(響應第一頻率設定參數的工作頻率)並將此實際頻率做為第二實際頻率,及自儲存模組120中獲得頻率標定值。處理器140根據頻率標定值、第一實際頻率及第二實際頻率獲得第二頻率設定參數(如式3所示)。處理器140進一步降低第一頻率設定參數,例如根據第一頻率設定參數減去第二頻率設定參數,獲得第三頻率設定參數,並傳送第三頻率設定參數至無線模組110,以使無線模組110響應第三頻率設定參數而操作於工作頻率(步驟S404),並繼續後續步驟(步驟406至步驟S418),直至實際頻率實質相同於頻率標定值時,處理器140收集當前的頻率設定參數、裝置溫度、原始頻率及頻率標定值,並關聯在一起,以記錄於儲存模組120(步驟S410)。In some embodiments, in step S416, if the actual frequency is less than the frequency calibration value, the processor 140 uses the current actual frequency as the first actual frequency, reduces the frequency setting parameter (for example, reduces the value of the frequency setting parameter by one), and The reduced frequency setting parameter is used as the first frequency setting parameter, so that the wireless module 110 operates at the corresponding operating frequency in response to the first frequency setting parameter. The communication frequency analysis device 220 measures the actual frequency of the wireless module 110 (in response to the operating frequency of the first frequency setting parameter), and the processor 140 of the communication device 100 receives the actual frequency measured by the communication frequency analysis device 220 (in response to the first frequency). The operating frequency of a frequency setting parameter) and the actual frequency as the second actual frequency, and the frequency calibration value is obtained from the storage module 120. The processor 140 obtains the second frequency setting parameter (as shown in Equation 3) according to the frequency calibration value, the first actual frequency, and the second actual frequency. The processor 140 further reduces the first frequency setting parameter, for example, subtracts the second frequency setting parameter from the first frequency setting parameter to obtain the third frequency setting parameter, and transmits the third frequency setting parameter to the wireless module 110 to make the wireless mode The group 110 operates at the operating frequency in response to the third frequency setting parameter (step S404), and continues the subsequent steps (steps 406 to S418), until the actual frequency is substantially the same as the frequency calibration value, the processor 140 collects the current frequency setting parameter , The device temperature, the original frequency, and the frequency calibration value are associated with each other to be recorded in the storage module 120 (step S410).

Figure 02_image009
……………………(式3)
Figure 02_image009
…………………… (Equation 3)

Figure 02_image011
為第二頻率設定參數,
Figure 02_image003
為頻率標定值,
Figure 02_image013
為第二實際頻率,
Figure 02_image005
為第一實際頻率。
Figure 02_image011
Set parameters for the second frequency,
Figure 02_image003
Is the frequency calibration value,
Figure 02_image013
Is the second actual frequency,
Figure 02_image005
Is the first actual frequency.

在一些實施例中,在步驟S418中,若實際頻率小於頻率標定值,處理器140將當前的實際頻率作為第一實際頻率,增加頻率設定參數(例如將頻率設定參數之值加一),並將增加後的頻率設定參數作為第一頻率設定參數,以使無線模組110響應第一頻率設定參數而操作於工作頻率。通訊頻率分析裝置220量測無線模組110的實際頻率(響應第一頻率設定參數的工作頻率),通訊裝置100的處理器140從通訊頻率分析裝置220接收其所量測的實際頻率(響應第一頻率設定參數的工作頻率)並將此實際頻率作為第二實際頻率,及自儲存模組120中獲得頻率標定值。處理器140根據頻率標定值、第一實際頻率及第二實際頻率獲得第二頻率設定參數(如式4所示)。處理器140進一步增加第一頻率設定參數,例如根據第一頻率設定參數加上第二頻率設定參數,獲得第三頻率設定參數,並傳送第三頻率設定參數至無線模組110,以使無線模組110響應第三頻率設定參數而操作於工作頻率(步驟S404),並繼續後續步驟(步驟406至步驟S418),直至實際頻率實質相同於頻率標定值時,處理器140收集當前的頻率設定參數、裝置溫度、原始頻率及頻率標定值,並關聯在一起,以記錄於儲存模組120(步驟S410)。In some embodiments, in step S418, if the actual frequency is less than the frequency calibration value, the processor 140 uses the current actual frequency as the first actual frequency, increases the frequency setting parameter (for example, adds one to the value of the frequency setting parameter), and The increased frequency setting parameter is used as the first frequency setting parameter, so that the wireless module 110 operates at the operating frequency in response to the first frequency setting parameter. The communication frequency analysis device 220 measures the actual frequency of the wireless module 110 (in response to the operating frequency of the first frequency setting parameter), and the processor 140 of the communication device 100 receives the actual frequency measured by the communication frequency analysis device 220 (in response to the first frequency). The operating frequency of a frequency setting parameter) and the actual frequency as the second actual frequency, and the frequency calibration value is obtained from the storage module 120. The processor 140 obtains the second frequency setting parameter (as shown in Equation 4) according to the frequency calibration value, the first actual frequency, and the second actual frequency. The processor 140 further adds the first frequency setting parameter, for example, according to the first frequency setting parameter plus the second frequency setting parameter to obtain the third frequency setting parameter, and transmits the third frequency setting parameter to the wireless module 110 to enable the wireless mode The group 110 operates at the operating frequency in response to the third frequency setting parameter (step S404), and continues the subsequent steps (steps 406 to S418), until the actual frequency is substantially the same as the frequency calibration value, the processor 140 collects the current frequency setting parameter , The device temperature, the original frequency, and the frequency calibration value are associated with each other to be recorded in the storage module 120 (step S410).

Figure 02_image015
……………………(式4)
Figure 02_image015
…………………… (Equation 4)

Figure 02_image011
為第二頻率設定參數,
Figure 02_image003
為頻率標定值,
Figure 02_image017
為第二實際頻率,
Figure 02_image005
為第一實際頻率。
Figure 02_image011
Set parameters for the second frequency,
Figure 02_image003
Is the frequency calibration value,
Figure 02_image017
Is the second actual frequency,
Figure 02_image005
Is the first actual frequency.

在步驟S410之後,通訊裝置100發送另一控制訊號至溫控裝置210。溫控裝置210根據另一控制訊號提供對應新的溫度(即不同於先前的溫控環境之溫度)之溫控環境(步驟S412)。舉例來說,先前之溫控設定為25℃,溫控裝置210提供溫度為25℃的溫控環境,此時溫控裝置210根據另一控制訊號產生新的溫控設定(如35℃之溫控設定),以使溫控裝置210提供溫度為35℃的溫控環境。或是先前之溫控設定為室溫設定,此時溫控裝置210根據另一控制訊號產生高溫設定的溫控設定。溫控裝置210提供對應新的溫度之溫控環境(步驟S412)後,通訊裝置100繼續依據頻率標定值產生頻率設定參數(步驟S402)及重複後續步驟,亦即通訊頻率分析裝置220分別於溫控環境處於不同溫度的情形下,量測無線模組110所操作的實際頻率,且通訊裝置100透過在不同溫度的溫控環境下重複獲取裝置溫度、實際頻率以及頻率標定值,來建立溫度頻率關係。After step S410, the communication device 100 sends another control signal to the temperature control device 210. The temperature control device 210 provides a temperature control environment corresponding to the new temperature (that is, a temperature different from the previous temperature control environment) according to another control signal (step S412). For example, the previous temperature control setting is 25°C, and the temperature control device 210 provides a temperature control environment with a temperature of 25°C. At this time, the temperature control device 210 generates a new temperature control setting (such as a temperature of 35°C) according to another control signal. Control setting) so that the temperature control device 210 provides a temperature control environment with a temperature of 35°C. Or the previous temperature control setting is the room temperature setting, at this time the temperature control device 210 generates the temperature control setting of the high temperature setting according to another control signal. After the temperature control device 210 provides a temperature control environment corresponding to the new temperature (step S412), the communication device 100 continues to generate frequency setting parameters according to the frequency calibration value (step S402) and repeats the subsequent steps, that is, the communication frequency analysis device 220 operates on the temperature When the control environment is at different temperatures, the actual frequency operated by the wireless module 110 is measured, and the communication device 100 repeatedly obtains the device temperature, the actual frequency, and the frequency calibration value under different temperature control environments to establish the temperature frequency relation.

當儲存模組120具有多組對應不同溫度之溫控環境所取得的裝置溫度、原始頻率及頻率標定值時,處理器140根據這些值(對應於不同溫度的溫控環境取得的裝置溫度及對應的實際頻率和頻率標定值)建立溫度頻率關係,並將溫度頻率關係儲存於儲存模組120。舉例來說,處理器140根據多組對應不同溫度之溫控環境所取得的裝置溫度、原始頻率及頻率標定值(或是裝置溫度及原始頻率與頻率標定值之間的差值),建立裝置溫度、原始頻率及頻率標定值之間的對應關係或是建立裝置溫度與頻率偏移值(原始實際溫度與頻率標定值之間的差值)之間的對應關係。因此,溫度頻率關係具有在多種不同的裝置溫度時,實際頻率與頻率標定值之間的對應關係。在一些實施例中,處理器根據多組對應不同溫度之溫控環境所取得的裝置溫度、原始頻率及頻率標定值判斷不同組的值之間是否有線性關係,若有線性關係,則建立線性演算式,若無線性關係,則建立補償對照表。When the storage module 120 has multiple sets of device temperature, original frequency and frequency calibration values obtained in a temperature-controlled environment corresponding to different temperatures, the processor 140 obtains the device temperature and corresponding values according to these values (corresponding to the temperature-controlled environment of different temperatures). The actual frequency and the frequency calibration value) establish a temperature-frequency relationship, and store the temperature-frequency relationship in the storage module 120. For example, the processor 140 creates the device based on the device temperature, the original frequency, and the frequency calibration value (or the difference between the device temperature and the original frequency and the frequency calibration value) obtained by multiple sets of temperature-controlled environments corresponding to different temperatures. Correspondence between temperature, original frequency and frequency calibration value or establish the corresponding relation between device temperature and frequency offset value (the difference between the original actual temperature and the frequency calibration value). Therefore, the temperature-frequency relationship has a corresponding relationship between the actual frequency and the frequency calibration value at a variety of different device temperatures. In some embodiments, the processor determines whether there is a linear relationship between different sets of values based on the device temperature, the original frequency, and the frequency calibration values obtained by multiple sets of temperature control environments corresponding to different temperatures. If there is a linear relationship, a linear relationship is established. In the calculation formula, if there is no relationship, a compensation comparison table is established.

參照圖5,係為本發明一實施例之建立修正通訊頻率之自適應模型的裝置誤差修正值及裝置誤差修正值所對應的頻率設定參數之流程示意圖。首先,通訊裝置100發送一控制訊號至溫控裝置210,以使溫控裝置210根據控制訊號提供對應一溫度的溫控環境(步驟S500),並接續步驟S502,如同前述說明,進一步量測實際頻率及調整頻率設定參數以使實際頻率實質相同於頻率標定值。步驟S500至S510及步驟S514至步驟S518與前述步驟S400至S410及步驟S414至步驟S418相同,不再重複說明。相較於圖4,建立裝置誤差修正值及其所對應之頻率設定參數是為了校正因個體元件造成的頻率失真,且為藉由固定溫度(固定的溫控環境下),來取得裝置誤差修正值(例如,原始頻率與頻率標定值之間的差值),而不需於不同溫度的溫控環境下重複執行步驟S500至S518。在一些實施例中,在步驟S510中,因裝置誤差修正值(例如,原始頻率與頻率標定值之間的差值)為藉由固定溫度(固定的溫控環境下)的情形下來取得,因此處理器140可不需將裝置誤差修正值所對應之裝置溫度記錄於儲存模組120。Referring to FIG. 5, it is a flow diagram of the device error correction value and the frequency setting parameter corresponding to the device error correction value for establishing an adaptive model for correcting the communication frequency according to an embodiment of the present invention. First, the communication device 100 sends a control signal to the temperature control device 210, so that the temperature control device 210 provides a temperature control environment corresponding to a temperature according to the control signal (step S500), and continues with step S502, as described above, to further measure the actual temperature. Frequency and adjust the frequency setting parameters so that the actual frequency is substantially the same as the frequency calibration value. Steps S500 to S510 and steps S514 to S518 are the same as the aforementioned steps S400 to S410 and steps S414 to S418, and the description will not be repeated. Compared with Figure 4, the establishment of the device error correction value and its corresponding frequency setting parameters is to correct the frequency distortion caused by individual components, and to obtain device error correction by means of a fixed temperature (under a fixed temperature control environment) Value (for example, the difference between the original frequency and the frequency calibration value), without repeating steps S500 to S518 in a temperature-controlled environment with different temperatures. In some embodiments, in step S510, because the device error correction value (for example, the difference between the original frequency and the frequency calibration value) is obtained at a fixed temperature (under a fixed temperature control environment), The processor 140 does not need to record the device temperature corresponding to the device error correction value in the storage module 120.

在一些實施例中,處理器140根據不同溫度的溫控環境及對應的溫度訊號的一量測值,建立一溫度校正關係,並將溫度校正關係儲存於儲存模組120,其中裝置溫度相應於溫控環境之不同的溫度。在一些實施例中,處理器140將溫控環境的溫度作為裝置溫度,並將在不同溫度的溫控環境時溫度模組130所量測的量測值關聯於對應的裝置溫度來建立溫度校正關係,而後處理器140將溫度校正關係儲存於儲存模組120。在一些實施例中,處理電路根據溫控設定而產生對應溫控設定的溫控環境,並將溫控設定儲存於儲存電路或是處理電路偵測及記錄當前所提供之溫控環境的溫度於儲存電路,處理器140讀取儲存電路,將儲存電路中儲存的溫控設定或溫控環境的溫度作為裝置溫度。In some embodiments, the processor 140 establishes a temperature correction relationship according to the temperature control environment of different temperatures and a measurement value of the corresponding temperature signal, and stores the temperature correction relationship in the storage module 120, wherein the device temperature corresponds to Different temperature of the temperature control environment. In some embodiments, the processor 140 uses the temperature of the temperature-controlled environment as the device temperature, and associates the measurement values measured by the temperature module 130 in the temperature-controlled environment of different temperatures with the corresponding device temperature to establish a temperature correction. The post-processor 140 stores the temperature correction relationship in the storage module 120. In some embodiments, the processing circuit generates a temperature control environment corresponding to the temperature control setting according to the temperature control setting, and stores the temperature control setting in a storage circuit or the processing circuit detects and records the temperature of the currently provided temperature control environment. In the storage circuit, the processor 140 reads the storage circuit, and uses the temperature control setting or the temperature of the temperature control environment stored in the storage circuit as the device temperature.

在一些實施例中,通訊裝置100經由序列資料通訊介面(例如RS232)、或是通用序列匯流排(Universal Serial Bus,USB)來耦接溫控裝置210及通訊頻率分析裝置220。In some embodiments, the communication device 100 is coupled to the temperature control device 210 and the communication frequency analysis device 220 via a serial data communication interface (such as RS232) or a universal serial bus (USB).

因此,依據任一實施例,通訊裝置藉由偵測自身的溫度來判斷此時應給予無線模組的頻率設定參數,以使無線模組所操作的頻率不會失真。因此,確保通訊裝置的無線模組所操作的頻率可以符合目標頻率而不會因為溫度的變化而造成影響。在一些實施例中,更透過結合裝置誤差修正值(裝置元件對無線模組操作的頻率造成的影響)來獲得頻率設定參數,來大幅降低頻率失真的可能性,避免了裝置元件對頻率所產生的干擾。在一些實施例中,更透過溫度校正關係來提升通訊裝置偵測溫度的精準度,進而降低頻率失真的機會。Therefore, according to any embodiment, the communication device detects its own temperature to determine the frequency setting parameters that should be given to the wireless module at this time, so that the operating frequency of the wireless module will not be distorted. Therefore, it is ensured that the operating frequency of the wireless module of the communication device can meet the target frequency without being affected by temperature changes. In some embodiments, the frequency setting parameters are obtained by combining the device error correction value (the influence of the device component on the operating frequency of the wireless module), which greatly reduces the possibility of frequency distortion and avoids the device component’s influence on the frequency. Interference. In some embodiments, the temperature correction relationship is used to improve the accuracy of the communication device to detect the temperature, thereby reducing the chance of frequency distortion.

100:通訊裝置 110:無線模組 120:儲存模組 130:溫度模組 140:處理器 200:模型建立系統 210:溫控裝置 220:通訊頻率分析裝置 S400~S418:步驟 S500~S518:步驟 100: Communication device 110: wireless module 120: storage module 130: Temperature module 140: processor 200: model building system 210: Temperature control device 220: Communication frequency analysis device S400~S418: Step S500~S518: steps

[圖1]係為本發明一實施例之自適應修正通訊頻率之通訊裝置之方塊示意圖。 [圖2]係為本發明一實施例之自適應修正通訊頻率之模型建立系統之架構示意圖。 [圖3]係為本發明一實施例之自適應修正通訊頻率之模型建立系統之方塊示意圖。 [圖4]係為本發明一實施例之建立修正通訊頻率之自適應模型的溫度頻率關係及頻率校正參數所對應的頻率設定參數之流程示意圖。 [圖5]係為本發明一實施例之建立修正通訊頻率之自適應模型的裝置誤差修正值及裝置誤差修正值所對應的頻率設定參數之流程示意圖。 [Figure 1] is a block diagram of a communication device for adaptively correcting a communication frequency according to an embodiment of the invention. [Figure 2] is a schematic diagram of the architecture of a model building system for adaptively correcting communication frequencies according to an embodiment of the present invention. [Fig. 3] is a block diagram of a model building system for adaptively correcting communication frequency according to an embodiment of the present invention. [Fig. 4] is a schematic diagram of the flow of establishing the temperature-frequency relationship of the adaptive model for correcting the communication frequency and the frequency setting parameters corresponding to the frequency correction parameters according to an embodiment of the present invention. [Fig. 5] is a schematic diagram of the flow of establishing the device error correction value and the frequency setting parameter corresponding to the device error correction value of the adaptive model for correcting the communication frequency according to an embodiment of the present invention.

100:通訊裝置 100: Communication device

110:無線模組 110: wireless module

120:儲存模組 120: storage module

130:溫度模組 130: Temperature module

140:處理器 140: processor

Claims (10)

一種自適應修正通訊頻率之通訊裝置,包含:一無線模組,響應一頻率設定參數而操作於一工作頻率;一儲存模組,儲存一溫度頻率關係,該溫度頻率關係為不同溫度下該無線模組的一實際頻率與一頻率標定值之間的對應關係;一溫度模組,偵測該通訊裝置的溫度,以獲得一溫度訊號;以及一處理器,耦接該無線模組、該儲存模組及該溫度模組,根據該溫度訊號取得一裝置溫度,並根據該溫度頻率關係獲得在該裝置溫度下與一目標頻率相對應的一頻率校正參數,以及根據該頻率校正參數產生該頻率設定參數,而將該頻率設定參數發送至該無線模組,俾使該無線模組的該工作頻率符合該目標頻率;其中,在尚未建立該溫度頻率關係時,該處理器儲存一通訊頻率分析裝置在不同溫度的溫控環境下所初始量測到的該實際頻率以作為一原始頻率;其中,在對應於一溫度的溫度環境下,該通訊頻率分析裝置持續量測該實際頻率,當該量測的實際頻率與該頻率標定值實質相同時,該處理器將對應該溫度的溫控環境取得的該裝置溫度、該原始頻率、對應的該頻率設定參數及該頻率標定值關聯在一起,以建立該溫度頻率關係;當該量測的實際頻率與該頻率標定值不相同時,該處理器降低或增加先前的該頻率設定參數,直至該量測的實際頻率與該頻率標定值實質相同。 A communication device for adaptively correcting the communication frequency includes: a wireless module, which operates at a working frequency in response to a frequency setting parameter; and a storage module, which stores a temperature-frequency relationship, the temperature-frequency relationship being the wireless at different temperatures The corresponding relationship between an actual frequency of the module and a frequency calibration value; a temperature module that detects the temperature of the communication device to obtain a temperature signal; and a processor coupled to the wireless module and the storage The module and the temperature module obtain a device temperature according to the temperature signal, obtain a frequency correction parameter corresponding to a target frequency at the device temperature according to the temperature-frequency relationship, and generate the frequency according to the frequency correction parameter Set parameters, and send the frequency setting parameters to the wireless module so that the working frequency of the wireless module meets the target frequency; wherein, when the temperature-frequency relationship has not been established, the processor stores a communication frequency analysis The actual frequency initially measured by the device in a temperature-controlled environment of different temperatures is used as an original frequency; wherein, in a temperature environment corresponding to a temperature, the communication frequency analysis device continuously measures the actual frequency, when the When the actual frequency measured is substantially the same as the frequency calibration value, the processor associates the device temperature obtained by the temperature-controlled environment corresponding to the temperature, the original frequency, the corresponding frequency setting parameter, and the frequency calibration value together, To establish the temperature-frequency relationship; when the actual frequency of the measurement is different from the frequency calibration value, the processor reduces or increases the previous frequency setting parameter until the actual frequency of the measurement is substantially the same as the frequency calibration value . 如請求項1所述之通訊裝置,其中該儲存模組還儲存一裝置誤差修正值,該處理器進一步結合該頻率校正參數及該裝置誤差修正值而獲得該頻率設定參數。 The communication device according to claim 1, wherein the storage module further stores a device error correction value, and the processor further combines the frequency correction parameter and the device error correction value to obtain the frequency setting parameter. 如請求項1所述之通訊裝置,其中該處理器將對應於該溫度訊號的一量測值執行溫度校正後取得該裝置溫度。 The communication device according to claim 1, wherein the processor performs temperature calibration on a measurement value corresponding to the temperature signal to obtain the device temperature. 如請求項3所述之通訊裝置,其中該儲存模組還儲存有一溫度校正關係,以供該處理器根據該溫度校正關係將該量測值校正為該裝置溫度,該溫度校正關係為該量測值與該裝置溫度之間的對應關係。 The communication device according to claim 3, wherein the storage module further stores a temperature correction relationship for the processor to correct the measurement value to the device temperature according to the temperature correction relationship, and the temperature correction relationship is the quantity Correspondence between the measured value and the temperature of the device. 如請求項1所述之通訊裝置,其中該溫度頻率關係為一線性演算式,該線性演算式呈現該裝置溫度與該頻率校正參數之間的線性關係。 The communication device according to claim 1, wherein the temperature-frequency relationship is a linear calculation formula, and the linear calculation formula presents a linear relationship between the device temperature and the frequency correction parameter. 如請求項1所述之通訊裝置,其中該溫度頻率關係為一補償對照表,該補償對照表呈現該裝置溫度與該頻率校正參數之間的非線性關係。 The communication device according to claim 1, wherein the temperature-frequency relationship is a compensation comparison table, and the compensation comparison table presents a non-linear relationship between the device temperature and the frequency correction parameter. 如請求項1所述之通訊裝置,其中在一溫度區間之內,該溫度頻率關係為一線性演算式;在該溫度區間之外,該溫度頻率關係為一補償對照表。 The communication device according to claim 1, wherein within a temperature interval, the temperature-frequency relationship is a linear calculation formula; outside the temperature interval, the temperature-frequency relationship is a compensation comparison table. 一種自適應修正通訊頻率之模型建立系統,包含:一溫控裝置,提供一溫控環境;一通訊裝置,位於該溫控環境中,該通訊裝置包含:一儲存模組;一無線模組,響應一頻率設定參數而操作於一工作頻率;一溫度模組,偵測該通訊裝置的溫度,以獲得一溫度訊號;及 一處理器,耦接該無線模組、該儲存模組及該溫度模組,根據該溫度訊號取得一裝置溫度,並依據一頻率標定值產生該頻率設定參數,而將該頻率設定參數發送至該無線模組;及一通訊頻率分析裝置,分別於該溫控環境處於不同溫度的情形下,量測該無線模組所操作的一實際頻率,其中該通訊裝置耦接該溫控裝置及該通訊頻率分析裝置,使得該通訊裝置的該處理器儲存該通訊頻率分析裝置在不同溫度的該溫控環境下初始量測到的該實際頻率作為一原始頻率,在對應於一溫度的該溫度環境下,當該量測的實際頻率與該頻率標定值實質相同時,該處理器將對應於該溫度的該溫控環境取得的該裝置溫度、該原始頻率、對應的該頻率設定參數及該頻率標定值關聯在一起,以建立一溫度頻率關係,並將該溫度頻率關係儲存於該儲存模組;當該量測的實際頻率與該頻率標定值不相同時,該處理器降低或增加先前的該頻率設定參數,直至該量測的實際頻率與該頻率標定值實質相同。 A model building system for adaptively correcting communication frequencies includes: a temperature control device that provides a temperature control environment; a communication device located in the temperature control environment; the communication device includes: a storage module; a wireless module, Operate at a working frequency in response to a frequency setting parameter; a temperature module to detect the temperature of the communication device to obtain a temperature signal; and A processor, coupled to the wireless module, the storage module, and the temperature module, obtains a device temperature according to the temperature signal, generates the frequency setting parameter according to a frequency calibration value, and sends the frequency setting parameter to The wireless module; and a communication frequency analysis device, which measure an actual frequency operated by the wireless module when the temperature control environment is at different temperatures, wherein the communication device is coupled to the temperature control device and the temperature control device The communication frequency analysis device enables the processor of the communication device to store the actual frequency initially measured by the communication frequency analysis device in the temperature-controlled environment of different temperatures as an original frequency, and in the temperature environment corresponding to a temperature Next, when the measured actual frequency is substantially the same as the frequency calibration value, the processor will obtain the device temperature, the original frequency, the corresponding frequency setting parameter, and the frequency obtained by the temperature-controlled environment corresponding to the temperature. The calibration values are linked together to establish a temperature-frequency relationship, and store the temperature-frequency relationship in the storage module; when the measured actual frequency is not the same as the frequency calibration value, the processor reduces or increases the previous The frequency parameter is set until the actual frequency measured is substantially the same as the frequency calibration value. 如請求項8所述之模型建立系統,其中該通訊頻率分析裝置於該溫控環境處於固定溫度的情形下,量測該無線模組所操作的該實際頻率,該通訊裝置的該處理器根據對應於固定溫度的該溫控環境取得的該實際頻率和該頻率標定值,產生一裝置誤差修正值,並將該裝置誤差修正值儲存於該儲存模組。 The model building system according to claim 8, wherein the communication frequency analysis device measures the actual frequency operated by the wireless module when the temperature-controlled environment is at a fixed temperature, and the processor of the communication device is based on The actual frequency and the frequency calibration value obtained by the temperature control environment corresponding to the fixed temperature are generated to generate a device error correction value, and the device error correction value is stored in the storage module. 如請求項8所述之模型建立系統,其中該處理器根據不同溫度的該溫控環境及對應的該溫度訊號的一量測值,建立一溫度校正關係,並將該溫度校正關係儲存於該儲存模組,其中該裝置溫度相應於該溫控環境之不同的溫度。 The model creation system according to claim 8, wherein the processor establishes a temperature correction relationship according to the temperature control environment of different temperatures and a corresponding measurement value of the temperature signal, and stores the temperature correction relationship in the The storage module, wherein the temperature of the device corresponds to different temperatures of the temperature control environment.
TW109125884A 2020-07-30 2020-07-30 Communication device and model building system for adaptively modifying communication frequency TWI733540B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109125884A TWI733540B (en) 2020-07-30 2020-07-30 Communication device and model building system for adaptively modifying communication frequency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109125884A TWI733540B (en) 2020-07-30 2020-07-30 Communication device and model building system for adaptively modifying communication frequency

Publications (2)

Publication Number Publication Date
TWI733540B true TWI733540B (en) 2021-07-11
TW202205831A TW202205831A (en) 2022-02-01

Family

ID=77911412

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109125884A TWI733540B (en) 2020-07-30 2020-07-30 Communication device and model building system for adaptively modifying communication frequency

Country Status (1)

Country Link
TW (1) TWI733540B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI814423B (en) * 2022-05-27 2023-09-01 新加坡商鴻運科股份有限公司 Wireless communication module and server with it

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7855608B2 (en) * 2007-01-05 2010-12-21 Sirf Technology System and method for providing temperature correction in a crystal oscillator
US8041294B2 (en) * 1999-10-21 2011-10-18 Broadcom Corporation Adaptive radio transceiver

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8041294B2 (en) * 1999-10-21 2011-10-18 Broadcom Corporation Adaptive radio transceiver
US7855608B2 (en) * 2007-01-05 2010-12-21 Sirf Technology System and method for providing temperature correction in a crystal oscillator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI814423B (en) * 2022-05-27 2023-09-01 新加坡商鴻運科股份有限公司 Wireless communication module and server with it

Also Published As

Publication number Publication date
TW202205831A (en) 2022-02-01

Similar Documents

Publication Publication Date Title
JP6409247B2 (en) Frequency offset compensation for WiFi ranging
US9712169B2 (en) Transmit power measurement apparatus having programmable filter device that is set at least based on frequency response of transmit power detection path and related transmit power measurement method thereof
US7564894B2 (en) Tables for determining the signal strength of a received signal in a fibre optics transceiver
US9024698B2 (en) Temperature compensation method and crystal oscillator
EP3109665B1 (en) Error compensation apparatus and method for measuring distance in wireless communication system
JP4849955B2 (en) In situ gain calibration of radio frequency equipment using thermal noise
JP2020523834A (en) Subsampled linearization system
JP2016507193A5 (en)
US9179343B2 (en) Techniques for cross-device radio signal strength calibration
US20150029945A1 (en) Communications between a Mobile Device and an Access Point Device
TWI733540B (en) Communication device and model building system for adaptively modifying communication frequency
WO2012111261A1 (en) Wireless communication device
JP2007013969A (en) System for reducing calibration time of power amplifier
JP2006211657A (en) Transmission power control apparatus of mobile communication terminal and control method
US7619465B2 (en) filter circuit and semiconductor device
KR20130092773A (en) Apparatus and method for supporting calibration for radio frequency circuit in communication device
US9838023B2 (en) Slow-clock calibration method and unit, clock circuit, and mobile communication terminal
CN109470939B (en) Line loss point inspection system and method
CN111045317B (en) Calibration method, device and system of equipment clock, self-calibration method and equipment
KR102013838B1 (en) apparatus for measuring voltage standing wave ratio and the control method thereby
CN109450564B (en) A kind of PA sends the calibration of power and compensation method
US9924480B2 (en) Apparatus and method for calibrating delay between signal paths
JP2018179818A (en) Measurement device, measurement data processing device and measurement system
JP2006270917A (en) Microcomputer
CN103970184A (en) Method and device for adjusting real time clock system