TWI733183B - Fluorescent nitrogen-vacancy diamond (fnvd) sensing sheet, manufacturing method and uses thereof, sensor, and lithography apparatus - Google Patents
Fluorescent nitrogen-vacancy diamond (fnvd) sensing sheet, manufacturing method and uses thereof, sensor, and lithography apparatus Download PDFInfo
- Publication number
- TWI733183B TWI733183B TW108131410A TW108131410A TWI733183B TW I733183 B TWI733183 B TW I733183B TW 108131410 A TW108131410 A TW 108131410A TW 108131410 A TW108131410 A TW 108131410A TW I733183 B TWI733183 B TW I733183B
- Authority
- TW
- Taiwan
- Prior art keywords
- fnvd
- radiation
- sensor
- powder
- sensing sheet
- Prior art date
Links
Images
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
本發明大致上係涉及光的感測元件、其製法、及其使用方法;具體而言,本發明係關於FNVD感測片、其之製造方法與使用方法、感應器、及微影設備。The present invention generally relates to a light sensing element, its manufacturing method, and its use method; specifically, the present invention relates to an FNVD sensing sheet, its manufacturing method and its use method, sensors, and lithography equipment.
真空紫外光(vacuum-ultraviolet radiation,VUV)的波長範圍介於約30 至約200 nm之間,相當於能量6.2 eV至41.3 eV;極紫外光(extreme ultraviolet radiation,EUV)則將波長下探至約10 nm;而除了這些波長區間,還有波長更短於12 nm的高能輻射之X射線。市面上偵測此些波長範圍的感應器,最靈敏的當屬光電倍增管(photomultiplier,PMT)。然而,光電倍增管由於光窗的使用,而限制偵測範圍。例如陽盲光電倍增管(solar blind PMT),因為使用MgF2 的光窗,能直接偵測到的VUV的最短波長只約至115 nm,波長短於115 nm的VUV/EUV/X射線則無法用陽盲光電倍增管偵測。The wavelength range of vacuum-ultraviolet radiation (VUV) is between about 30 to about 200 nm, which is equivalent to an energy of 6.2 eV to 41.3 eV; extreme ultraviolet radiation (EUV) probes the wavelength down to About 10 nm; In addition to these wavelength ranges, there are high-energy X-rays with wavelengths shorter than 12 nm. The most sensitive sensor on the market that detects these wavelength ranges is photomultiplier (PMT). However, the photomultiplier tube limits the detection range due to the use of the light window. For example, a solar blind PMT (solar blind PMT), because the MgF 2 light window is used, the shortest wavelength of VUV that can be directly detected is only about 115 nm, while VUV/EUV/X-rays with a wavelength shorter than 115 nm cannot Detect with a positive-blind photomultiplier tube.
為克服光窗的限制,可使用螢光物質作為VUV/EUV/X射線感應器。操作原理為以VUV/EUV/X射線激發螢光物質,使其發射螢光,再以光電倍增管或相當之偵測器量測螢光,藉以感應VUV/EUV/X射線。傳統上,作為VUV/EUV/X射線感應器的螢光物質多為有機物,例如,最被廣為使用的螢光物質水楊酸鈉(sodium salicylate)即是。VUV/EUV/X射線的能量高,足以光解斷任何化學鍵,因此,使用這類有機螢光物質作為VUV/EUV/X射線感應用途的最大問題,便是螢光物質快速的老化現象。To overcome the limitation of the light window, fluorescent materials can be used as VUV/EUV/X-ray sensors. The principle of operation is to excite the fluorescent substance with VUV/EUV/X-rays to make it emit fluorescence, and then measure the fluorescence with a photomultiplier tube or equivalent detector to sense VUV/EUV/X-rays. Traditionally, the fluorescent substances used as VUV/EUV/X-ray sensors are mostly organic substances. For example, the most widely used fluorescent substance is sodium salicylate. The energy of VUV/EUV/X-rays is high enough to break any chemical bonds. Therefore, the biggest problem in using such organic fluorescent materials as VUV/EUV/X-ray sensing applications is the rapid aging of fluorescent materials.
本發明使用具有空缺中心之鑽石作為VUV/EUV/X射線感應物質,不但可將傳統光電倍增管之感測光譜範圍延伸至VUV/EUV/X射線區段,還解決了傳統有機螢光物質易快速老化的問題。The present invention uses diamond with a vacant center as the VUV/EUV/X-ray sensing material, which can not only extend the sensing spectral range of the traditional photomultiplier tube to the VUV/EUV/X-ray section, but also solve the problem of traditional organic fluorescent materials. The problem of rapid aging.
為了解決先前技術中存在的問題,本案發明人提出了妥適的發明構思,並由下述諸多不同的實施例加以體現。In order to solve the problems in the prior art, the inventor of this case proposed a proper inventive concept, which is embodied by the following many different embodiments.
本發明的一個實施例是一種螢光氮空缺鑽石(Fluorescent Nitrogen-Vacancy Diamond,FNVD)感測片,具有濃度約為1-10000ppm的複數氮空缺中心。One embodiment of the present invention is a Fluorescent Nitrogen-Vacancy Diamond (FNVD) sensor chip, which has a complex nitrogen vacancy center with a concentration of about 1-10000 ppm.
在一個實施例中,當吸收第一輻射時,該FNVD感測片會發射第二輻射;該第一幅射具有一波長範圍短於250nm;該第二輻射具有一波長範圍介於540-850nm。In one embodiment, when the first radiation is absorbed, the FNVD sensor sheet emits second radiation; the first radiation has a wavelength range shorter than 250nm; the second radiation has a wavelength range between 540-850nm .
在一個實施例中,該第二輻射之光譜具有一峰值波長位於約573-578nm nm之處。In one embodiment, the spectrum of the second radiation has a peak wavelength at about 573-578 nm nm.
在一個實施例中,該FNVD感測片以約0.1至約17的一量子轉換效率將該第一幅射轉換為一螢光。In one embodiment, the FNVD sensor chip converts the first radiation into a fluorescent light with a quantum conversion efficiency of about 0.1 to about 17.
本發明的另一個實施例是一種如請求項1之FNVD感測片之製造方法,包括製備FNVD粉末;並使該FNVD粉末成型。Another embodiment of the present invention is a manufacturing method of the FNVD sensing sheet according to
在一個實施例中,製備FNVD粉末更包括在Ib型鑽石粉末中產生晶格空位(vacancy defect),並將該晶格空位擴散至該FNVD粉末中的氮原子周圍。In one embodiment, preparing the FNVD powder further includes generating vacancy defects in the type Ib diamond powder, and diffusing the vacancy defects around the nitrogen atoms in the FNVD powder.
在一個實施例中,更包括將該FNVD粉末以大約600℃至1000℃的溫度退火。In one embodiment, it further includes annealing the FNVD powder at a temperature of about 600°C to 1000°C.
在一個實施例中,更包括在FNVD粉末中混合以由下列群組中的至少一種元素或其化合物所組成的填充物: 鉬(Mo)、鎢(W)、鈮(Nb)、鉭(Ta)、錸(Re)、鈦(Ti)、釩(V)、鐵(Fe)、鈷(Co)、鎳(Ni)、鋁(Al)、鋯(Zr)、鎂(Mg)、鈣(Ca)、銫(Cs)、矽(Si)、硼(B)。In one embodiment, it further includes a filler mixed in FNVD powder to be composed of at least one element or its compound from the following group: molybdenum (Mo), tungsten (W), niobium (Nb), tantalum (Ta ), rhenium (Re), titanium (Ti), vanadium (V), iron (Fe), cobalt (Co), nickel (Ni), aluminum (Al), zirconium (Zr), magnesium (Mg), calcium (Ca) ), cesium (Cs), silicon (Si), boron (B).
在一個實施例中,更包括將該FNVD粉末以壓製、噴塗、或加熱的方式成型。In one embodiment, it further comprises molding the FNVD powder by pressing, spraying, or heating.
在一個實施例中,更包括將該FNVD粉末在缺氧環境或真空中加熱至200℃至1500℃之間。In one embodiment, it further comprises heating the FNVD powder to a temperature between 200°C and 1500°C in an oxygen-deficient environment or in a vacuum.
在一個實施例中,更包括移除該FNVD粉末的表面的石墨碳。In one embodiment, it further includes removing graphitic carbon from the surface of the FNVD powder.
本發明的另一個實施例是一種感應器,包括第一感測器,具有濃度約為1-10000ppm的複數氮空缺中心鑽石,配置以吸收第一輻射,並發射第二輻射;及第二感測器,配置以偵測該第二輻射。Another embodiment of the present invention is a sensor including a first sensor having a complex nitrogen vacancy center diamond with a concentration of about 1-10000 ppm, configured to absorb first radiation and emit second radiation; and The detector is configured to detect the second radiation.
在一個實施例中,該第一幅射具有一波長範圍短於250nm;且該第二輻射具有一波長範圍介於540-850nm。In one embodiment, the first radiation has a wavelength range shorter than 250 nm; and the second radiation has a wavelength range between 540-850 nm.
在一個實施例中,該第二感測器包括光電倍增管、光電池、光電二極體、或太陽能電池。In one embodiment, the second sensor includes a photomultiplier tube, a photocell, a photodiode, or a solar cell.
在一個實施例中,當該第一輻射通過該第一感測器而被吸收時,該第一感測器以至少0.1的一量子轉換效率將該第一輻射轉換為一螢光。In one embodiment, when the first radiation is absorbed by the first sensor, the first sensor converts the first radiation into a fluorescent light with a quantum conversion efficiency of at least 0.1.
本發明的另一個實施例是一種微影設備,包括如前述之感應器。Another embodiment of the present invention is a lithography device including the aforementioned sensor.
在一個實施例中,更包括一輻射光源,配置以發射該第一輻射。In one embodiment, it further includes a radiation source configured to emit the first radiation.
在一個實施例中,更包括一處理器,配置以產生該第二輻射之發射光譜。In one embodiment, it further includes a processor configured to generate the emission spectrum of the second radiation.
本發明的另一個實施例是一種感測輻射的方法,包括提供一種如請求項1之FNVD感測片,其具有濃度約為1-10000ppm的複數氮空缺中心鑽石;將該FNVD感測片暴露至第一輻射,其中該FNVD感測片暴露至該第一輻射後發射與該第一幅射相對應的第二輻射;並產生該第二輻射之一光譜。Another embodiment of the present invention is a method for sensing radiation, including providing a FNVD sensor sheet as claimed in
在一個實施例中,該第一幅射具有一波長範圍短於250nm;且該第二輻射具有一波長範圍介於540-850nm。In one embodiment, the first radiation has a wavelength range shorter than 250 nm; and the second radiation has a wavelength range between 540-850 nm.
參照圖1,圖1為螢光氮空缺鑽石(Fluorescent Nitrogen-Vacancy Diamond,FNVD)的結構示意圖。氮空缺中心(nitrogen-vacancy center,NV center)為鑽石的一種點缺陷(point defects),其由在鑽石最近的晶格點位置相鄰的一氮原子及一晶格空位(vacancy defect)所組成,而包括此種點缺陷的鑽石稱為氮空缺鑽石。在本揭露中,應用氮空缺鑽石會發射螢光的特性來偵測輻射,故又稱為螢光氮空缺鑽石。 除了一氮原子及一晶格空位所組成的空缺中心,在另一實施例中,鑽石之空缺中心也可為兩個氮原子與一個晶格空位所結合而成,可另稱為H3空缺中心(H3 center),此仍為含氮缺陷結構。本發明以下使用一氮原子及一晶格空位所構成的空缺中心為例進行實施說明。Refer to Figure 1, which is a schematic diagram of the structure of a Fluorescent Nitrogen-Vacancy Diamond (FNVD). Nitrogen-vacancy center (NV center) is a kind of point defects of diamond, which consists of a nitrogen atom and a vacancy defect adjacent to the nearest lattice point of the diamond. , And diamonds that include such point defects are called nitrogen-vacant diamonds. In this disclosure, nitrogen-vacant diamonds are used to emit fluorescence to detect radiation, so they are also called fluorescent nitrogen-vacant diamonds. In addition to the vacancy center formed by a nitrogen atom and a lattice vacancy, in another embodiment, the vacancy center of a diamond can also be formed by the combination of two nitrogen atoms and a lattice vacancy, which can be also called H3 vacancy center (H3 center), this is still a nitrogen-containing defect structure. The present invention is described below using a vacancy center formed by a nitrogen atom and a lattice vacancy as an example.
圖2為FNVD在溫度約300K下以波長250nm-525nm之輻射照射的光致發光(photoluminescence,PL)光譜。FNVD粉末的氮空缺中心包括中性((N-V)0 )及負電((N-V)− )兩種價態。從圖2之PL光譜可觀察到在575.0nm及638.0nm的兩條零聲子線(zero-phonon lines),575.0nm的零聲子線是源自中性價態氮空缺中心的電子轉移,而638.0nm的零聲子線是源自負電價態氮空缺中心的電子轉移(3 A→3 E)。Figure 2 shows the photoluminescence (PL) spectrum of FNVD irradiated with 250nm-525nm radiation at a temperature of about 300K. The nitrogen vacancy center of FNVD powder includes two valence states : neutral ((NV) 0 ) and negative ((NV) − ). From the PL spectrum in Figure 2, two zero-phonon lines at 575.0nm and 638.0nm can be observed. The zero-phonon line at 575.0nm is derived from the electron transfer at the neutral valence nitrogen vacancy center. The 638.0nm zero phonon line is derived from the electron transfer ( 3 A→ 3 E) from the center of the nitrogen vacancy in the negative valence state.
圖3、圖4以及圖5為FNVD在溫度約300K下以波長1.03nm-200nm(1200-6.20 eV)之VUV/EUV/X射線照射的PL光譜,並經所示倍數進行坐標軸尺度整理。FNVD的顆粒直徑約為100 nm,大於VUV/EUV/X射線光穿過FNVD的顆粒的深度(<30nm)。與圖2相比,圖3中的光譜線的輪廓均相似,都具有576 nm的零聲子線伴隨峰值約620nm的聲子伴帶(phonon sideband),均為中性價態氮空缺中心的特徵。然而,卻沒有發現負電價態氮空缺中心的特徵:638.0nm的零聲子線。此現象可解釋為,電子電洞因鬆弛而重新結合,其中所釋放出的能量約5.49eV(相當於波長226nm),是足以將負電價態空缺中心離子化,進而形成電子激發的中性中心,因為這個過程僅需要4.8eV(250nm)的能量。此結果顯示,FNVD的光離子化(photoionization)為一相當高效率的過程,類似於在進行陰極光(cathodoluminescence)測量時以電子輻射照射FNVD。Figure 3, Figure 4, and Figure 5 show the PL spectra of FNVD irradiated with VUV/EUV/X-rays with wavelengths of 1.03nm-200nm (1200-6.20 eV) at a temperature of about 300K, and the coordinate axis scales are organized by the indicated multiples. The particle diameter of FNVD is about 100 nm, which is greater than the depth (<30nm) of the particles through which VUV/EUV/X-ray light passes through FNVD. Compared with Figure 2, the contours of the spectral lines in Figure 3 are similar, with a 576 nm zero phonon line accompanied by a phonon sideband with a peak of about 620 nm, all of which are at the center of the neutral valence nitrogen vacancy center. feature. However, the feature of the vacancy center of negatively charged nitrogen nitrogen was not found: the zero phonon line of 638.0 nm. This phenomenon can be explained as the electron hole recombines due to relaxation, and the released energy is about 5.49eV (equivalent to a wavelength of 226nm), which is enough to ionize the vacancy center of the negative valence state, and then form a neutral center excited by the electron. , Because this process only requires 4.8eV (250nm) of energy. This result shows that the photoionization of FNVD is a fairly high-efficiency process, which is similar to irradiating FNVD with electron radiation during cathodoluminescence measurement.
圖4為FNVD在溫度約300K下以能量50-206.6 eV(相當於波長6nm-24.8nm)之EUV照射的PL光譜。圖5為FNVD在溫度約300K下以能量283.07-1200 eV(相當於波長1.03nm-4.38nm)之X射線照射的PL光譜。圖4及圖5都具有與圖3相同或相近的光譜特徵。另外,若將所使用的VUV/EUV/X射線能量再為提高或設定為大於約4.8eV,即波長短於約250nm的光波亦可得相似的光譜線輪廓。Figure 4 shows the PL spectrum of FNVD irradiated with EUV with energy 50-206.6 eV (equivalent to wavelength 6nm-24.8nm) at a temperature of about 300K. Figure 5 shows the PL spectrum of FNVD irradiated by X-rays with energy of 283.07-1200 eV (equivalent to wavelength 1.03nm-4.38nm) at a temperature of about 300K. Both Fig. 4 and Fig. 5 have the same or similar spectral characteristics as Fig. 3. In addition, if the used VUV/EUV/X-ray energy is further increased or set to be greater than about 4.8 eV, that is, light waves with a wavelength shorter than about 250 nm can also obtain similar spectral line profiles.
參照圖6,圖6為FNVD在溫度約300K下放射螢光波長為620nm時,激發能量至1450eV的量子轉換效率。在溫度約300K下以0.86nm-300nm之激發光照射FNVD,量測FNVD的620nm螢光時的激發光譜。將PL激發光譜標準化可得到如圖6所示之量子轉換效率。所屬技術領域中具有通常知識者應知悉,此處量子轉換效率是指激發態電子藉由發射螢光而回到基態的數量與激發光光子數的比值。Referring to FIG. 6, FIG. 6 shows the quantum conversion efficiency of the excitation energy to 1450 eV when the FNVD emits a fluorescence wavelength of 620 nm at a temperature of about 300 K. The FNVD was irradiated with excitation light of 0.86nm-300nm at a temperature of about 300K, and the excitation spectrum of the FNVD at 620nm fluorescence was measured. Standardizing the PL excitation spectrum can obtain the quantum conversion efficiency as shown in FIG. 6. Those skilled in the art should know that the quantum conversion efficiency here refers to the ratio of the number of excited electrons returning to the ground state by emitting fluorescence to the number of excited photons.
在一實施例中, PL激發光譜始於大約5.49eV(226nm)的位置,量子轉換效率在約7.0eV(177 nm)的位置出現峰值。顯然地,226nm的起始位置與純鑽石的吸收邊限(absorption edge)吻合,這表示PL訊號與鑽石的間帶吸收(interband absorption)有直接的關聯性。在吸收邊限之後,對於放射螢光波長為620nm而言,最低的量子產率約為在12.0 eV(100 nm)處的0.19,而超過該值之後,隨著激發能量的增加,量子產率也增加,如圖6所示,例如在750eV(1.65nm)達到17的峰值。如此大的量子產率(>>1)表示在諸如VUV/EUV/X射線之高能量範圍內激發時可產生多個電子電洞對,這個結果與用光電探測器測量鑽石基材的光電流之結果是一致的。In one embodiment, the PL excitation spectrum starts at about 5.49 eV (226 nm), and the quantum conversion efficiency peaks at about 7.0 eV (177 nm). Obviously, the starting position of 226nm coincides with the absorption edge of pure diamond, which means that the PL signal is directly related to the interband absorption of diamond. After the absorption margin, for the emission fluorescence wavelength of 620nm, the lowest quantum yield is about 0.19 at 12.0 eV (100 nm), and after this value, as the excitation energy increases, the quantum yield It also increases, as shown in Figure 6, for example, reaching a peak of 17 at 750eV (1.65nm). Such a large quantum yield (>>1) means that multiple electron hole pairs can be generated when excited in a high energy range such as VUV/EUV/X-ray. This result is similar to the photocurrent measurement of the diamond substrate with a photodetector. The result is consistent.
值得注意的是,FNVD的PL激發光譜在本發明揭露之VUV/EUV/X射線波段是連續的。另外,較大的量子產率也意味著FNVD非常適合做為有效的VUV/EUV/X射線感測器。It is worth noting that the PL excitation spectrum of FNVD is continuous in the VUV/EUV/X-ray band disclosed in the present invention. In addition, the larger quantum yield also means that FNVD is very suitable as an effective VUV/EUV/X-ray sensor.
參照圖7,圖7繪示FNVD在溫度約300K 之環境以各種波長的輻射照射下,所產生的620nm放射光的強度與入射光狹縫寬度的關係。對於同步輻射光源(synchrotron light source)的偏轉磁鐵(bending magnet)光束而言,在入射縫(entrance slit)全開的情況下,光子通量(photon flux)與出射縫(exit slit)的相關為線性。從圖7可知,在不同波長之下,PL放射光強度與出射光狹縫寬度都呈線性關係。此結果顯示,FNVD的PL放射光強度與光子通量皆為線性相依,展示使用FNVD做為VUV感測器的適用性。Referring to FIG. 7, FIG. 7 shows the relationship between the intensity of the 620 nm radiation generated by the FNVD and the width of the incident light slit under the irradiation of various wavelengths of radiation in an environment with a temperature of about 300K. For the synchrotron light source (synchrotron light source) deflection magnet (bending magnet) beam, when the entrance slit (entrance slit) is fully opened, the correlation between photon flux and exit slit (exit slit) is linear . It can be seen from FIG. 7 that under different wavelengths, the intensity of PL emitted light has a linear relationship with the width of the exit light slit. This result shows that the PL emission intensity of FNVD and the photon flux are linearly dependent, demonstrating the applicability of using FNVD as a VUV sensor.
圖7的詳細數據記載如下:(a)30nm;(b)60nm(坐標軸尺度(ordinate scale)放大3倍);(c)90nm(坐標軸尺度放大6倍);(d)110nm(坐標軸尺度放大5倍);(e)140nm(坐標軸尺度放大2.5倍);(f)170nm;及(g)200nm(坐標軸尺度縮小1倍)。The detailed data of Figure 7 is recorded as follows: (a) 30nm; (b) 60nm (ordinate scale (ordinate scale) magnified 3 times); (c) 90nm (coordinate axis scale magnified 6 times); (d) 110nm (coordinate axis) The scale is enlarged by 5 times); (e) 140nm (the scale of the coordinate axis is enlarged by 2.5 times); (f) 170nm; and (g) 200nm (the scale of the coordinate axis is reduced by 1 times).
為測試FNVD感測器之實際操作性,可將FNVD粉末以聚乙烯(polyethylene)膠帶黏貼於一石英光窗(quartz viewport)。參照圖8,圖8為(a)光窗(viewport)、(b)光窗上的聚乙烯(polyethylene)膠帶、及(c)FNVD粉末透過聚乙烯膠帶黏貼於光窗上的穿透光譜(transmission spectrum)。FNVD感測器的穿透率(曲線(c))在約300nm約為4%,並單調性地增加(monotonically increasing),至約600nm時增至約10%,而至約900nm約為15%,此4%至15%的穿透率已足以用於測量。To test the actual operability of the FNVD sensor, the FNVD powder can be pasted on a quartz viewport with polyethylene tape. Refer to Figure 8. Figure 8 shows (a) the light window (viewport), (b) the polyethylene tape on the light window, and (c) the transmission spectrum of the FNVD powder pasted on the light window through the polyethylene tape ( transmission spectrum). The penetration rate of the FNVD sensor (curve (c)) is about 4% at about 300nm, and monotonically increasing, increasing to about 10% at about 600nm, and about 15% at about 900nm The penetration rate of 4% to 15% is sufficient for measurement.
參照圖9,氣態分子的吸收光譜亦可應用前述FNVD感測器來測量。在VUV光源及FNVD感測器之間設置待測樣品的試樣管(sample cell)。VUV通過試樣管的過程中部分波長區段會被待測樣品吸收,通過試樣管的VUV嗣後照射在FNVD感測器上,並利用光電倍增管(photomultiplier,PMT)偵測FNVD感測器發出的螢光訊號。由此方法可得知試樣管中某氣態分子的吸收截面。在一實施例中,使用(a)FNVD感測器及(b)水楊酸鈉(sodium salicylate)感測器,在溫度約300K下以上述方式量測氣態氧分子於波長範圍115-200nm的吸收截面(absorption cross section),之量測結果繪製如圖9。Referring to FIG. 9, the absorption spectrum of gaseous molecules can also be measured using the aforementioned FNVD sensor. A sample cell for the sample to be tested is set between the VUV light source and the FNVD sensor. When the VUV passes through the sample tube, part of the wavelength range will be absorbed by the sample to be tested. The VUV passing through the sample tube is then irradiated on the FNVD sensor, and a photomultiplier (PMT) is used to detect the FNVD sensor. The fluorescent signal emitted. By this method, the absorption cross section of a gaseous molecule in the sample tube can be known. In one embodiment, (a) a FNVD sensor and (b) a sodium salicylate (sodium salicylate) sensor are used to measure gaseous oxygen molecules in the wavelength range of 115-200 nm at a temperature of about 300K in the above-mentioned manner. The measurement results of the absorption cross section are shown in Figure 9.
考慮FNVD感測器可能出現的系統性誤差,吸收截面的實驗不確定性(experimental uncertainty)約在15%以內。氧分子在波長範圍130-175nm的吸收為舒曼隆吉連續帶(Schumann–Runge continuum)。在舒曼隆吉連續帶中,(a)FNVD感測器及(b)水楊酸鈉感測器的比較值符合實驗不確定性。例如,(a)FNVD感測器在143nm測量的吸收截面為15.8Mb,近似於(b)水楊酸鈉感測器在143nm測量的吸收截面15.1 Mb。又例如,(a)FNVD感測器在124.4 nm測量的吸收截面為56.7 Mb(能態(state) E3 Σu- ),近似於(b)水楊酸鈉感測器在124.4nm測量的吸收截面57.6 Mb。(a)FNVD感測器在120.5 nm測量的吸收截面為18.9 Mb(能態1 Δg )。近似於(b)水楊酸鈉感測器在120.5 nm測量的吸收截面18.4 Mb。圖9中的(a)FNVD感測器及(b)水楊酸鈉感測器測量的差異值在5%以內,此結果可說明FNVD感測器與習知水楊酸鈉感測器在氣態分子的吸收截面測量應用上效果相當。Considering the possible systematic errors of the FNVD sensor, the experimental uncertainty of the absorption cross section is within 15%. The absorption of oxygen molecules in the wavelength range of 130-175nm is the Schumann-Runge continuum (Schumann–Runge continuum). In the Schumann Lungi continuous belt, the comparison value of (a) the FNVD sensor and (b) the sodium salicylate sensor meets the experimental uncertainty. For example, (a) the absorption cross-section measured by the FNVD sensor at 143nm is 15.8Mb, which is similar to (b) the absorption cross-section measured by the sodium salicylate sensor at 143nm of 15.1 Mb. Also for example, (a) FNVD absorption cross section of the sensor at 124.4 nm was measured 56.7 Mb (energy state (state) E 3 Σu -) , similar to (b) in the absorption of sodium salicylate sensor measurement 124.4nm The cross-section is 57.6 Mb. (A) The absorption cross section measured by the FNVD sensor at 120.5 nm is 18.9 Mb (energy state 1 Δ g ). Approximate to (b) the absorption cross section of the sodium salicylate sensor measured at 120.5 nm, 18.4 Mb. The difference measured by (a) the FNVD sensor and (b) the sodium salicylate sensor in Figure 9 is within 5%. This result shows that the FNVD sensor and the conventional sodium salicylate sensor are in The measurement of the absorption cross section of gaseous molecules has the same effect in application.
參照圖10,圖10為(a)FNVD感測器及(b)水楊酸鈉感測器以波長60nm的輻射照射的放射螢光強度的時間衰變曲線。如圖10所示,FNVD感測器在大約300K的溫度下,以波長60nm的輻射連續照射一小時後,螢光強度衰變程度小於2%。而水楊酸鈉感測器在相同的操作條件下衰變約42%。此外,FNVD感測器的放射螢光波動在0.6%以內,接近同步輻射光源的穩定性。然而,水楊酸鈉感測器的放射螢光波動則約為5%。上述結果可以佐證FNVD感測器的穩定性優於水楊酸鈉感測器。Referring to Figure 10, Figure 10 is a time decay curve of the fluorescence intensity of the (a) FNVD sensor and (b) the sodium salicylate sensor irradiated with radiation with a wavelength of 60 nm. As shown in Fig. 10, after the FNVD sensor is continuously irradiated with radiation with a wavelength of 60nm at a temperature of about 300K for one hour, the intensity of the fluorescence decays less than 2%. The sodium salicylate sensor decays by about 42% under the same operating conditions. In addition, the fluctuating fluorescence of the FNVD sensor is within 0.6%, which is close to the stability of the synchrotron radiation source. However, the emission fluorescence of the sodium salicylate sensor fluctuates by about 5%. The above results can prove that the stability of the FNVD sensor is better than that of the sodium salicylate sensor.
考慮FNVD感測器偵測的重現性(repeatability)表現,圖11顯示FNVD感測器在溫度約300K下以波長60nm的輻射照射時,開關感測器與放射螢光強度的關係圖。由圖11可知,FNVD感測器的螢光強度幾乎可在每一開關週期中完全恢復,此結果可佐證FNVD感測器具有令人滿意的重現性。Considering the repeatability performance of the FNVD sensor detection, Figure 11 shows the relationship between the switch sensor and the emission fluorescence intensity when the FNVD sensor is irradiated with radiation with a wavelength of 60nm at a temperature of about 300K. It can be seen from Fig. 11 that the fluorescence intensity of the FNVD sensor can be recovered almost completely in each switching cycle. This result can prove that the FNVD sensor has satisfactory reproducibility.
參照圖12,圖12為根據本發明之一實施例的FNVD感測片之製造流程步驟100。製造流程步驟100包括製備FNVD粉末(步驟102);混以其他填充物(步驟104);及壓製、噴塗、或加熱成型(步驟106)。以下將針對各步驟分別描述。Referring to FIG. 12, FIG. 12 is a
參照圖13,圖13為根據本發明之一實施例的FNVD粉末之製造流程。FNVD粉末可從Ib型鑽石粉末(type-Ib diamond powder)來製備。所屬技術領域中具有通常知識者應知悉,Ib型鑽石粉末具有微量的氮元素(例如0.05%或500 ppm),以孤立氮原子的形式存在。在一些實施例中,該Ib型鑽石粉末具有奈米尺度的直徑,例如直徑約為1nm、10nm、或100nm。Referring to FIG. 13, FIG. 13 is a manufacturing process of FNVD powder according to an embodiment of the present invention. FNVD powder can be prepared from type-Ib diamond powder. Those with ordinary knowledge in the technical field should know that type Ib diamond powder has a trace amount of nitrogen (for example, 0.05% or 500 ppm), which exists in the form of isolated nitrogen atoms. In some embodiments, the type Ib diamond powder has a nanometer-scale diameter, for example, a diameter of about 1 nm, 10 nm, or 100 nm.
在一些實施例中,可對Ib型鑽石粉末進行前置處理。例如,以濃縮混酸進行純化處理。在一些實施例中,在製造FNVD粉末的各步驟之間可使用去離子水潤濕粉末。In some embodiments, type Ib diamond powder may be pre-treated. For example, use concentrated mixed acid for purification. In some embodiments, deionized water may be used to wet the powder between the steps of making the FNVD powder.
在一些實施例中,FNVD粉末之製造方法可包括使用離子束照射該Ib型鑽石粉末,解斷碳原子鍵結,而產生晶格空位(vacancy defect)。在一些實施例中,可使用電子束或質子束照射。在一些實施例中,可調整所使用射束的通量,以產生適當數量的晶格空位。在一些實施例中,可使用通量約1019 /cm2 的電子束。在一些實施例中,可使用Rhodotron電子束加速器(Rhodotron E-beam Accelerator)、同步輻射光源、離子佈植機(ion implanter)、或其他可產生上述能量的儀器。In some embodiments, the manufacturing method of FNVD powder may include irradiating the Ib type diamond powder with an ion beam to break the bonds of carbon atoms, thereby generating vacancy defects. In some embodiments, electron beam or proton beam irradiation may be used. In some embodiments, the flux of the beam used can be adjusted to produce an appropriate number of lattice vacancies. In some embodiments, an electron beam with a flux of about 10 19 /cm 2 may be used. In some embodiments, a Rhodotron E-beam Accelerator, a synchrotron radiation source, an ion implanter, or other instruments that can generate the aforementioned energy may be used.
在一些實施例中,FNVD粉末之製造方法可更包括將粉末高溫退火,使晶格空位擴散至粉末中的氮原子周圍,以產生氮空缺中心(N-V)- 。在一些實施例中,可控制退火的溫度與時間,來調整氮空缺中心之濃度。在一些實施例中,退火溫度可在大約600℃至1000℃之間。在一些實施例中,可將粉末以800℃退火2小時。在一些實施例中,退火可在缺氧環境下進行。在一些實施例中,退火可在真空環境下進行。In some embodiments, the manufacturing method of the FNVD powder may further include annealing the powder at a high temperature to diffuse the lattice vacancies around the nitrogen atoms in the powder to generate nitrogen vacancy centers (NV) − . In some embodiments, the annealing temperature and time can be controlled to adjust the concentration of nitrogen vacancy centers. In some embodiments, the annealing temperature may be between about 600°C and 1000°C. In some embodiments, the powder may be annealed at 800°C for 2 hours. In some embodiments, annealing can be performed in an oxygen-deficient environment. In some embodiments, annealing may be performed in a vacuum environment.
在一些實施例中,FNVD粉末之製造方法可更包括移除表面的石墨碳(graphitic carbon)。在一些實施例中,石墨碳可透過使用濃縮混酸清潔粉末而移除,例如使用硫酸及硝酸的混合溶液。在一些實施例中,石墨碳可透過將粉末加熱而移除。在一些實施例中,將粉末在空氣中以450℃進行氧化1小時以移除石墨碳。In some embodiments, the manufacturing method of FNVD powder may further include removing graphitic carbon on the surface. In some embodiments, graphitic carbon can be removed by using a concentrated mixed acid cleaning powder, such as a mixed solution of sulfuric acid and nitric acid. In some embodiments, graphitic carbon can be removed by heating the powder. In some embodiments, the powder is oxidized in air at 450° C. for 1 hour to remove graphitic carbon.
在一些實施例中,FNVD粉末之製造方法可更包括分析氮空缺中心之濃度。在一些實施例中,可利用傅里葉轉換紅外光譜(Fourier-transform infrared spectroscopy,FTIR)及/或紫外-可見分光光譜法(Ultraviolet-visible spectroscopy,UV-VIS),利用FNVD粉末的光學性質來計算氮空缺中心之濃度。例如,在一些實施例中,可使用FTIR量測FNVD粉末對於某一輻射強度的吸收係數,進而分析FNVD粉末中的氮空缺中心濃度。在一些實施例中,UV-VIS光譜可用以分析零聲子線的吸收強度,進而分析氮空缺中心之濃度。In some embodiments, the manufacturing method of FNVD powder may further include analyzing the concentration of nitrogen vacancy centers. In some embodiments, Fourier-transform infrared spectroscopy (FTIR) and/or ultraviolet-visible spectroscopy (UV-VIS) can be used to utilize the optical properties of FNVD powder Calculate the concentration of the nitrogen vacancy center. For example, in some embodiments, FTIR can be used to measure the absorption coefficient of the FNVD powder for a certain radiation intensity, and then the concentration of the nitrogen vacancy center in the FNVD powder can be analyzed. In some embodiments, UV-VIS spectroscopy can be used to analyze the absorption intensity of the zero phonon line, and then analyze the concentration of the nitrogen vacancy center.
在一些實施例中,所製得的FNVD粉末中的氮空缺中心之濃度大於1ppm,少於5ppm。在一些實施例中,所製得的FNVD粉末中的氮空缺中心之濃度約為1ppm-1000ppm。在一些實施例中,所製得的FNVD粉末中的氮空缺中心之濃度不少於1000ppm。在一些實施例中,所製得的FNVD粉末中的氮空缺中心之濃度約為1000-10000ppm。在一些實施例中,所製得的FNVD粉末中的氮空缺中心之濃度約為1-10000ppm。In some embodiments, the concentration of nitrogen vacancy centers in the prepared FNVD powder is greater than 1 ppm and less than 5 ppm. In some embodiments, the concentration of nitrogen vacancy centers in the prepared FNVD powder is about 1 ppm to 1000 ppm. In some embodiments, the concentration of nitrogen vacancy centers in the prepared FNVD powder is not less than 1000 ppm. In some embodiments, the concentration of nitrogen vacancy centers in the prepared FNVD powder is about 1000-10000 ppm. In some embodiments, the concentration of nitrogen vacancy centers in the prepared FNVD powder is about 1-10000 ppm.
返回參照圖12,在一些實施例中,FNVD粉末製造為感測片型式之製造流程100更包括將所製得的FNVD粉末混以其他填充物(additives)(步驟104)。在一些實施例中,填充物可包括難熔金屬(refractory metals),例如鉬(Mo)、鎢(W)、鈮(Nb)、鉭(Ta)、錸(Re)、及其合金。在一些實施例中,填充物可包括過渡金屬(transition metals),例如鈦(Ti)、釩(V)、鐵(Fe)、鈷(Co)鎳(Ni)等。在一些實施例中,填充物可包括非金屬材料,例如矽(Si)、硼(B)、及其化合物。在一些實施例中,填充物可包括氧化鋁、氧化鋯、氧化鎂、氧化鈣、氧化銫等金屬氧化物。在一些實施例中,填充物可包括溴化鈣(calcium bromide)、勃姆石粉(Boehmite,(AlO(OH)))。在一些實施例中,填充物可包括高分子,如聚乙烯、聚丙烯等。在一些實施例中,可根據成型方式的不同,適當地選擇所加入的填充物。在一些實施例中,在FNVD粉末中混以其他填充物可進一步改變FNVD粉末的性質。在一些實施例中,在FNVD粉末中加入的填充物不會實質上改變FNVD粉末的光學性質。Referring back to FIG. 12, in some embodiments, the
繼續參照圖12,在一些實施例中,FNVD粉末製造為感測片型式之製造流程100更包括將所製得的FNVD粉末以壓製、噴塗、或加熱的方式成型(步驟106)。壓製、噴塗、或加熱成型的方式可包括習知的陶瓷成型方法、玻璃成型方法、或鑽石成型方法。然而本發明並不限於上述例示性的成型方式,例如FNVD感測片亦可透過3D列印(3-Dimentional Printing)的方式成型。在一 些實施例中,步驟106更包括將FNVD粉末高溫燒結(sintering)。在一 些實施例中,步驟106更包括將FNVD粉末在缺氧環境或真空中加熱至200℃至1500℃之間。Continuing to refer to FIG. 12, in some embodiments, the
參照圖14,圖14為根據本發明之一實施例的感應器200,此感應器為數個感測器所組成之感測系統或裝置。在一些實施例中,感應器200包括第一感測器202及第二感測器204。Referring to FIG. 14, FIG. 14 shows a
在一些實施例中,第一感測器202為例如參照圖12及13說明如前文的FNVD感測片,其具有複數氮空缺中心。在一些實施例中,第一感測器202塗覆於一光窗或位於一光電倍增管管壁,具有例如參照圖13說明如前文的FNVD粉末位於其上方受光處。在一些實施例中,FNVD粉末是透過塗佈的方式在光窗或光電倍增管管壁上形成一FNVD塗層。在一些實施例中,FNVD粉末是透過膠帶或其他工具黏貼於光窗或光電倍增管管壁上。在另一些實施例中,FNVD粉末經與氧化矽粉末高溫燒結(sintering)後形成具有FNVD成分的玻璃,該具有FNVD成分的玻璃用以製成光窗或光電倍增管管壁。In some embodiments, the
在一些實施例中,第二感測器204包括偵測第二輻射之光電倍增管感測部分、光電池(光伏)、光電二極體、太陽能電池。In some embodiments, the
在一些實施例中,第一感測器202吸收第一輻射206,並發射第二輻射208。在一些實施例中,第二感測器204偵測第二輻射208。在一些實施例中,第一輻射206具有一波長範圍短於250nm。在一些實施例中,第一輻射206具有一波長範圍短於226nm。在一些實施例中,第一輻射206具有一波長範圍介於30-200nm。在一些實施例中,第一輻射206具有一波長範圍介於6-24.8nm。在一些實施例中,第一輻射206具有一波長範圍介於1.03-4.38nm。在一些實施例中,第一輻射206具有一波長範圍短於10nm。在一些實施例中,第二輻射208具有一波長範圍介於540-850nm。In some embodiments, the
在一些實施例中,當第一輻射206通過第一感測器202而被吸收時,第一感測器202以高的量子轉換效率將第一輻射206(短於250nm)轉換為螢光。在一些實施例中,前述量子轉換效率至少為0.1。在一實施例中,量子產率的範圍為約0.1至約17。在一些實施例中,第二輻射208之光譜藉由第二感測器204顯示具有一峰值位於波長573-578nm處。In some embodiments, when the
參照圖15A-15C,圖15A-15C為根據本發明之實施例的感應器300、400、及450。感應器300、400、及450,與圖14的感應器200具有類似的結構,相同的元件以相同的標號表示,在此不再贅述。在一些實施例中,感應器300更包括第一光窗302,設置於第一感測器202上。在一些實施例中,感應器400更包括第二光窗402,設置於第一感測器202及第二感測器204之間。在一些實施例中,感應器450更同時包括第一光窗302及第二光窗402。Referring to FIGS. 15A-15C, FIGS. 15A-15C are
參照圖16,圖16為根據本發明之一實施例的感測輻射的方法500。在一些實施例中,方法500包括提供FNVD感測片(步驟502);將FNVD感測片暴露至第一輻射(步驟504);產生第二輻射之光譜(步驟506)。FNVD感測片吸收第一輻射後產生與該第一幅射相對應的第二輻射,例如,FNVD感測片吸收一VUV後放出特定波長的螢光。關於被FNVD感測片吸收的第一輻射、及FNVD感測片發射第二輻射的詳細描述,請見前文中關於圖14及圖15A至15C的實施例。在一些實施例中,步驟506中產生的第二輻射之光譜可為例如圖3至5的PL光譜。Referring to FIG. 16, FIG. 16 is a
參照圖17,圖17為根據本發明一實施例的微影設備600。在一些實施例中,微影設備600包括感應器608,配置以輸出信號。在一些實施例中,感應器608可如前文中參照圖14及圖15A至15C描述的感應器,可透過感測器吸收第一輻射206,並發射第二輻射208。Referring to FIG. 17, FIG. 17 is a
在一些實施例中,微影設備600還包括輻射光源602,該輻射光源602對置放於微影設備600中的晶圓發射輻射601。晶圓可置放於腔室612的晶圓台606之上。在一些實施例中,輻射光源602所發射之第一輻射206由感應器608吸收。在一些實施例中,輻射光源602所發出的輻射601可為紫外光(UV)、深紫外光(DUV)、極紫外光(EUV)、真空紫外光(VUV)、真空極紫外光或X射線。在一些實施例中,輻射光源602可為水銀燈(輻射波長為436nm(G-line)或365nm(I-line))、氟化氪(KrF)準分子雷射(輻射波長為248nm)、氟化氬(ArF)準分子雷射(輻射波長為193nm)、氟分子(F2
)準分子雷射(輻射波長為157nm)、輻射波長13.5nm的紫外線光源。在一些實施例中,微影設備600還包括晶圓台606,配置以固持晶圓。在一些實施例中,晶圓具有一光敏層,該光敏層可經由輻射光源602所發出的輻射601,配合適當的曝光顯影過程而被圖案化。In some embodiments, the
在一些實施例中,感應器608安裝於晶圓台606周邊,當晶圓接受輻射601照射時,感應器608可同時暴露於並吸收輻射601,並激發出與輻射601相對應的另一輻射光,例如一螢光。在一些實施例中,感應器608可與晶圓台606積體組合。在一些實施例中,感應器608可與照明系統604積體組合。在一些實施例中,微影設備600包括複數感應器608,分別安裝在晶圓台606周邊、腔室612內部,配置以在不同方位接收輻射601,而產生相應的輻射光,可作為量化輻射601的依據。In some embodiments, the
在一些實施例中,微影設備600還包括處理器610,自感應器608接收輸出信號,並加以分析處理。在一些實施例中,感應器608接收輻射光源602之輻射601,並激發出與輻射601相對應的另一輻射光,感應器608內部並配置一感應模組偵測該相對應的另一輻射光,並將之轉換為一機器可讀取信號傳送至處理器610進行分析處理。在一些實施例中,處理器610根據感應器608傳出之信號產生一光譜資訊。在一些實施例中,處理器610還包括一顯示器(未繪示),用以顯示處理器610所產生的光譜資訊。在一些實施例中,腔室612將晶圓維持在真空環境下,以利用VUV進行微影製程。In some embodiments, the
在一些實施例中,微影設備600還包括照明系統604,配置以調節輻射光源602所發出的輻射。在一些實施例中,微影設備600還包括支撐結構(未繪示),配置以支撐圖案化器件,例如光罩。圖案化器件可為透射型或反射型,且應被廣泛地解讀為可包括任何可用以賦予輻射光圖案,以在晶圓的目標位置上產生圖案的器件。在一些實施例中,還包括透鏡系統(未繪示),配置以將輻射投影到晶圓上。在一些實施例中,透鏡系統包括折射式、反射式、反射折射式(catadioptric)、磁性、電磁性、靜電性光學系統。In some embodiments, the
本說明書及其摘要部分只是闡述發明人所預期的本發明之一或多個實施例,並非窮舉所有的實施例。本說明書及其摘要部分不應用以限制申請人所申請的專利範圍。This specification and its abstract part only illustrate one or more embodiments of the present invention contemplated by the inventor, and not exhaustively list all the embodiments. This specification and its abstract part shall not be used to limit the scope of patents applied by the applicant.
上文有使用區塊的方式來描述本發明的不同實施例之不同功能。各區塊之間的邊界劃定只是為了便於描述。只要能適當的實現所述指定功能及其相對關係,便毋須死板地遵守上文或圖式中所劃定的邊界。In the above, there is a way of using blocks to describe the different functions of the different embodiments of the present invention. The boundary delineation between the blocks is only for ease of description. As long as the specified functions and their relative relationships can be properly implemented, there is no need to rigidly abide by the boundaries defined above or in the diagrams.
本說明書中針對特定實施例之描述可以充分地揭露本發明之一般性質,使得技藝人士在不脫離本發明之一般精神的情況下可以針對特定應用情況而對任何實施例做出相應、適當、不過度的修改,這些修改仍然不脫離本發明的範圍及其均等範圍。The description of specific embodiments in this specification can fully expose the general nature of the present invention, so that those skilled in the art can make corresponding, appropriate, and non-conformance to any embodiment for specific application situations without departing from the general spirit of the present invention. Excessive modifications, these modifications still do not depart from the scope of the present invention and its equivalent scope.
本發明所申請的專利範圍是以後附申請專利範圍及其均等範圍所界定,而非由說明書、摘要及圖式所限制。The scope of patents applied for in the present invention is defined by the scope of patents applied for later and its equivalent scope, rather than limited by the description, abstract and drawings.
100:製造流程步驟 102:步驟 104:步驟 106:步驟 200:感應器 202:第一感測器 204:第二感測器 206:第一輻射 208:第二輻射 300:感應器 302:第一光窗 400:感應器 402:第二光窗 450:感應器 500:方法 502:步驟 504:步驟 506:步驟 600:微影設備 601:輻射 602:輻射光源 604:照明系統 606:晶圓台 608:感應器 610:處理器 612:腔室100: manufacturing process steps 102: Step 104: Step 106: step 200: Sensor 202: The first sensor 204: second sensor 206: The First Radiation 208: Second Radiation 300: Sensor 302: first light window 400: Sensor 402: second light window 450: Sensor 500: method 502: Step 504: Step 506: step 600: Lithography equipment 601: Radiation 602: Radiant light source 604: Lighting System 606: Wafer table 608: Sensor 610: processor 612: Chamber
圖1為螢光氮空缺鑽石(Fluorescent Nitrogen-Vacancy Diamond,FNVD)的結構示意圖; 圖2為FNVD在溫度約300K下以波長250nm-525nm之輻射照射的光致發光(photoluminescence,PL)光譜; 圖3為FNVD在溫度約300K下以波長30nm-200nm (6.20eV-41.33eV)之VUV照射的PL光譜; 圖4為FNVD在溫度約300K下以波長6nm-24.8nm (50eV-206.8eV)之EUV照射的PL光譜; 圖5為FNVD在溫度約300K下以波長1.03nm-4.38nm (283.07eV-1200eV)之X射線照射的PL光譜; 圖6為FNVD在溫度約300K下放射螢光波長為620nm時,激發能量至1450eV的量子轉換效率; 圖7繪示FNVD在各種波長的輻射照射下之620nm放射光的強度與入射光狹縫寬度的關係; 圖8為(a)光窗(viewport)、(b)光窗上的聚乙烯(polyethylene)膠帶、及(c)FNVD粉末透過聚乙烯膠帶黏貼於光窗上的穿透光譜(transmission spectrum); 圖9為使用(a)FNVD感測器及(b)水楊酸鈉感測器,在溫度約300K下於波長範圍115-200nm量測的氣態氧分子的吸收截面(absorption cross section); 圖10為(a)FNVD感測器及(b)水楊酸鈉感測器以波長60nm輻射照射時放射螢光強度的時間衰變曲線; 圖11為FNVD感測器在溫度約300K下以波長60nm輻射照射時,開關感測器與放射螢光強度的關係圖; 圖12為根據本發明之一實施例的FNVD感測片之製造流程步驟; 圖13為根據本發明之一實施例的FNVD粉末之製造流程; 圖14為根據本發明之一實施例的感應器; 圖15A-15C為根據本發明之實施例的感應器; 圖16為根據本發明之一實施例,一種感測輻射的方法之步驟;以及 圖17為根據本發明之一實施例的微影設備。 注意各個圖式都只是用以示意,並非用以限定尺寸、數目、比例或連接關係。Figure 1 is a schematic diagram of the structure of Fluorescent Nitrogen-Vacancy Diamond (FNVD); Figure 2 shows the photoluminescence (PL) spectrum of FNVD irradiated with 250nm-525nm radiation at a temperature of about 300K; Figure 3 shows the PL spectrum of FNVD irradiated by VUV with a wavelength of 30nm-200nm (6.20eV-41.33eV) at a temperature of about 300K; Figure 4 shows the PL spectrum of FNVD irradiated by EUV with a wavelength of 6nm-24.8nm (50eV-206.8eV) at a temperature of about 300K; Figure 5 shows the PL spectrum of FNVD irradiated by X-rays with wavelengths of 1.03nm-4.38nm (283.07eV-1200eV) at a temperature of about 300K; Figure 6 shows the quantum conversion efficiency of the excitation energy to 1450eV when the FNVD emits fluorescence at a wavelength of 620nm at a temperature of about 300K; Fig. 7 shows the relationship between the intensity of 620nm radiation light and the width of the incident light slit under the irradiation of various wavelengths of radiation of the FNVD; Figure 8 shows (a) the light window (viewport), (b) the polyethylene tape on the light window, and (c) the transmission spectrum of the FNVD powder pasted on the light window through the polyethylene tape; Figure 9 shows the absorption cross section of gaseous oxygen molecules measured at a temperature of about 300K in the wavelength range of 115-200nm using (a) FNVD sensor and (b) sodium salicylate sensor; Figure 10 shows the time decay curve of the fluorescence intensity emitted by the (a) FNVD sensor and (b) the sodium salicylate sensor when irradiated with a wavelength of 60nm radiation; Figure 11 is a diagram showing the relationship between the switch sensor and the fluorescence intensity when the FNVD sensor is irradiated with a wavelength of 60nm radiation at a temperature of about 300K; FIG. 12 shows the steps of the manufacturing process of the FNVD sensor chip according to an embodiment of the present invention; Fig. 13 is a manufacturing process of FNVD powder according to an embodiment of the present invention; Fig. 14 is an inductor according to an embodiment of the present invention; 15A-15C are sensors according to an embodiment of the present invention; FIG. 16 shows the steps of a method for sensing radiation according to an embodiment of the present invention; and Fig. 17 is a lithography apparatus according to an embodiment of the present invention. Note that each drawing is for illustration only, and not for limiting the size, number, ratio, or connection relationship.
200:感應器 200: Sensor
202:第一感測器 202: The first sensor
204:第二感測器 204: second sensor
206:第一輻射 206: The First Radiation
208:第二輻射 208: Second Radiation
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108131410A TWI733183B (en) | 2019-08-30 | 2019-08-30 | Fluorescent nitrogen-vacancy diamond (fnvd) sensing sheet, manufacturing method and uses thereof, sensor, and lithography apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108131410A TWI733183B (en) | 2019-08-30 | 2019-08-30 | Fluorescent nitrogen-vacancy diamond (fnvd) sensing sheet, manufacturing method and uses thereof, sensor, and lithography apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202108503A TW202108503A (en) | 2021-03-01 |
TWI733183B true TWI733183B (en) | 2021-07-11 |
Family
ID=76035268
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108131410A TWI733183B (en) | 2019-08-30 | 2019-08-30 | Fluorescent nitrogen-vacancy diamond (fnvd) sensing sheet, manufacturing method and uses thereof, sensor, and lithography apparatus |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI733183B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8168413B2 (en) * | 2006-11-22 | 2012-05-01 | Academia Sinica | Luminescent diamond particles |
US20170184451A1 (en) * | 2014-05-07 | 2017-06-29 | Asml Netherlands B.V. | Diamond-based monitoring apparatus for lithographic apparatus, and a lithographic apparatus comprising diamond-based monitoring apparatus |
-
2019
- 2019-08-30 TW TW108131410A patent/TWI733183B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8168413B2 (en) * | 2006-11-22 | 2012-05-01 | Academia Sinica | Luminescent diamond particles |
US20170184451A1 (en) * | 2014-05-07 | 2017-06-29 | Asml Netherlands B.V. | Diamond-based monitoring apparatus for lithographic apparatus, and a lithographic apparatus comprising diamond-based monitoring apparatus |
Also Published As
Publication number | Publication date |
---|---|
TW202108503A (en) | 2021-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6236000B2 (en) | Lithographic patterning process and resist used in the process | |
US7342235B1 (en) | Contamination monitoring and control techniques for use with an optical metrology instrument | |
US20120182538A1 (en) | Methods and Apparatus for Inspection Of Articles, EUV Lithography Reticles, Lithography Apparatus and Method of Manufacturing Devices | |
KR20120044376A (en) | Object inspection systems and methods | |
US20080073560A1 (en) | Contamination monitoring and control techniques for use with an optical metrology instrument | |
KR20220163446A (en) | Soft X-ray optics with improved filtering | |
JP4303224B2 (en) | Calibration apparatus and method for calibrating a radiation sensor of a lithographic apparatus | |
Cefalas et al. | Absorbance and outgasing of photoresist polymeric materials for UV lithography below 193 nm including 157 nm lithography | |
TWI733183B (en) | Fluorescent nitrogen-vacancy diamond (fnvd) sensing sheet, manufacturing method and uses thereof, sensor, and lithography apparatus | |
US11029421B2 (en) | Fluorescent nitrogen-vacancy diamond sensing sheet, manufacturing method and uses thereof, sensor, and lithography apparatus | |
CN1497351A (en) | Photoetching projector and device manufacturing method | |
Hamamoto et al. | Cleaning of extreme ultraviolet lithography optics and masks using 13.5 nm and 172nm radiation | |
CN1646440A (en) | Synthetic quartz glass for optical member, projection exposure device, and projection exposure method | |
Baur et al. | Aluminum impurities in silicon: Investigation of x-ray Raman scattering in total reflection x-ray fluorescence spectroscopy | |
TWI572844B (en) | Diamond-based monitoring apparatus for lithographic apparatus, and a lithographic apparatus comprising diamond-based monitoring apparatus | |
JPH09230098A (en) | Multilayer film x-ray reflecting mirror | |
Hill et al. | Accelerated lifetime metrology of EUV multilayer mirrors in hydrocarbon environments | |
WO2011136317A1 (en) | Standard sample for calibration of electron beam-excited vacuum ultraviolet emission spectrometer | |
CN107064002B (en) | Standard light source for fluorescence analysis | |
NL1018139C2 (en) | Multi-layer mirror for radiation in the XUV wavelength region and method for the manufacture thereof. | |
Liberman et al. | Prospects for photolithography at 121 nm | |
KR20200035406A (en) | Method for operating optical device, and optical device | |
JP2005322754A (en) | Inspection method of reflection type mask | |
Bayer et al. | Applications of Compact Laser‐Driven EUV/XUV Plasma Sources | |
JP2001033379A (en) | Fluorite having excellent ultraviolet durability and method for evaluating ultraviolet durability of fluorite |