TWI732683B - 太陽能發電模組缺陷智慧診斷系統與方法 - Google Patents

太陽能發電模組缺陷智慧診斷系統與方法 Download PDF

Info

Publication number
TWI732683B
TWI732683B TW109132157A TW109132157A TWI732683B TW I732683 B TWI732683 B TW I732683B TW 109132157 A TW109132157 A TW 109132157A TW 109132157 A TW109132157 A TW 109132157A TW I732683 B TWI732683 B TW I732683B
Authority
TW
Taiwan
Prior art keywords
image
training
solar power
module
period
Prior art date
Application number
TW109132157A
Other languages
English (en)
Other versions
TW202213939A (zh
Inventor
翁敏航
Original Assignee
翁敏航
美林能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 翁敏航, 美林能源科技股份有限公司 filed Critical 翁敏航
Priority to TW109132157A priority Critical patent/TWI732683B/zh
Application granted granted Critical
Publication of TWI732683B publication Critical patent/TWI732683B/zh
Publication of TW202213939A publication Critical patent/TW202213939A/zh

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Image Analysis (AREA)

Abstract

本發明揭示一種太陽能發電模組缺陷智慧診斷系統,其包含:一第一影像擷取模組;一第二影像擷取模組;一影像處理模組;一深度學習模組;以及一資訊判斷模組。本發明更揭示一種太陽能發電模組缺陷智慧診斷方法。本發明藉由兩階段的影像深度訓練,能夠快速且精確地鑑別出太陽能發電模組缺陷的位置與種類。

Description

太陽能發電模組缺陷智慧診斷系統與方法
本發明係有關於太陽能發電模組的診斷有關,更特別是有關於應用深度學習訓練太陽能發電模組缺陷智慧診斷系統與方法。
太陽能發電具有:系統使用方便長久、受環境與地理限制小,應用廣泛、可與建築物結合,易普及化、發電時段隨日光強度而變、對抑制尖峰用電有助益,且安全、無污染、無噪音‥等優點,目前全球多國已經廣泛設置。太陽能發電效益與裝置規模有關,為了有效提升太陽能廠整體發電量,用戶通常會大規模鋪設面板。然而,太陽能模組會因為天氣、溫度變化、空氣污染和紫外線而受損。目前太陽能模組壽命至少25年,在運轉期間,維護保養是模組壽命是否能達到設計值的關鍵。若系統可以使用越久,發的電量越多,則平均起來,每瓦的成本可以降低。
目前所有的太陽能光電系統設計安裝廠商,都是從評估、設計規劃、補助與貸款、送件申請到安裝施工。模組保養維護與遠端監控多半需要另外再找其他清洗公司與專業監控公司。電站安裝和電站運維是兩個非常重要的服務型環節,這兩個部分的良好運行保證了電站的品質,也幫助安裝業主獲取最大的收益。
目前系統從業廠商對太陽能發電模組缺陷分析技術的瞭解 不是很多,導致了電站運行後大量的故障發生,造成很多的人力物力損失。此外,由於太陽能發電廠佔地面積大,傳統人工巡檢存在對異常的太陽能元件定位難,工作效率低、運維成本高等缺陷。
雖然現在也有廠商運用無人機空拍技術來執行巡檢工作,期望藉此降低維修成本,只不過無人機檢測方法只能說是「快篩」,僅用紅外線(Infrared,IR)熱感攝影機來檢查太陽能發電模組溫度是否過高。這個檢測僅能量測到廣義的熱斑現象(即可能為內阻和電池片自身暗電流造成),該資訊只能評估缺陷可能性,無法準確判定缺陷處理方式。若要精準掌握太陽能發電模組的運作效率與健康狀況,偶爾為之的檢測與快速檢查是不夠的,可隨時隨地與遠程監控或許才是讓太陽能發電模組維持正常運作良方。
想要釐清缺陷程度是否嚴重須即時改善,通常還需要借助其他工具做進一步檢測,例如用電致發光(Electroluminescence,EL)檢測才能看到裂紋或更細的問題。然而,太陽能發電模組缺陷模式之判定仰賴經驗、目視診斷過程主觀因素、判定模式難以量化,大量數據判定耗時等問題。
有鑑於上述問題,有必要提出一種新的太陽能發電模組缺陷評估系統與方法,以解決上述問題。
本發明之主要目的係在於提出一種太陽能發電模組缺陷智慧診斷系統。該系統可以針對大型太陽能發電案場,同時使用IR/EL影像資訊,經由深度學習訓練,以進行診斷找出缺陷模式,對太陽能發電系統故障提出預防,降低了維修事故及成本,確保獲利模式。
本發明之另一目的係在於提出一種太陽能發電模組缺陷智慧診斷方法。該技術可以針對大型太陽能發電案場,同時使用IR/EL影像資訊,經由深度學習訓練,以進行診斷找出缺陷模式,避免電量損失及事故發生,大幅度提高太陽能電廠的發電量。
為達本發明之主要目的,本發明提供一種太陽能發電模組缺陷智慧診斷系統,用於複數個太陽能發電模組的缺陷分析,其包含:一第一影像擷取模組,取得該些太陽能發電模組的一第一影像資料;一第二影像擷取模組,取得該些太陽能發電模組的一第二影像資料;一影像處理模組,將該第一影像資料與該第二影像資料做一影像處理,以分別得到一第一影像特徵資料與一第二影像特徵資料;一深度學習模組,先對該第一影像特徵資料做一第一期數的深度訓練,接著對該第二影像特徵資料做一第二期數的深度訓練,且該第一期數少於該第二期數;以及一資訊判斷模組,藉由該第二期數的深度訓練的結果分析出該些太陽能發電模組的缺陷。
為達本發明之另一目的,本發明提供一種太陽能發電模組缺陷智慧診斷方法,用於複數個太陽能發電模組的缺陷分析,其包含:步驟一:取得該些太陽能發電模組的一第一影像資料;步驟二:取得該些太陽能發電模組的一第二影像資料;步驟三:將該第一影像資料與該第二影像資料做一影像處理,以分別得到一第一影像特徵資料與一第二影像特徵資料;步驟四:先對該第一影像特徵資料做一第一期數的深度訓練,接著對該第二影像特徵資料做一第二期數的深度訓練,且該第一期數少於該第二 期數;以及步驟五:藉由該第二期數的深度訓練的結果分析出該些太陽能發電模組的缺陷。
本發明藉由兩階段的影像深度訓練,能夠快速且精確地鑑別出太陽能發電模組缺陷的位置與種類。為了達到快速大量數據判定的功效,本發明之太陽能發電模組缺陷智慧診斷系統與方法,更配合了人工智慧的深度學習模組,以進行穩定的影像鑑別。本發明鑑於第一影像資料與第二影像資料能達到的目的,因此設定出不同期數的訓練方式。先對該第一影像特徵資料做一第一期數(epoch)的深度訓練,接著對該第二影像特徵資料做一第二期數(epoch)的深度訓練,且該第一期數少於該第二期數。
且,本發明之太陽能發電模組缺陷智慧診斷系統與方法所使用的深度學習訓練方式,該深度訓練包含複數個卷積層訓練,是一種將卷積層依底層、中層、頂層的順序漸進式訓練方法。首先全部卷積層的權重都不會凍結,訓練數個期數後,比較底層的卷積層凍結程度較大,以訓練中層的卷積層;再訓練數個期數後,中層的卷積層也進行凍結,以訓練頂層的卷積層。需注意的是,該第一期數的深度訓練係對對該第一影像特徵資料做底層訓練與中層訓練。該第二期數的深度訓練係對對該第二影像特徵資料做中層訓練與頂層訓練。
本發明之太陽能發電模組缺陷智慧診斷系統與方法,能協助上下游業者(系統廠商、安裝業者、銀行業者、保業險者)能夠更加的專業、更加簡便的發現電站安裝運維中出現的各種問題。隨著太陽能電廠的興建,缺陷模式智能診斷運維將具有很大的市場空間和推廣價值。
5:太陽能發電模組缺陷智慧診斷系統
10:第一影像擷取模組
20:第二影像擷取模組
30:影像處理模組
40:深度學習模組
50:資訊判斷模組
為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉數個較佳實施例,並配合所附圖式,作詳細說明如下。第1圖為本發明太陽能發電模組缺陷智慧診斷系統示意圖;第2圖為本發明太陽能發電模組缺陷智慧診斷方法之流程圖。
雖然本發明可表現為不同形式之實施例,但附圖所示者及於本文中說明者係為本發明可之較佳實施例。熟習此項技術者將瞭解,本文所特定描述且在附圖中繪示之裝置及方法係考量為本發明之一範例,非限制性例示性實施例,且本發明之範疇僅由申請專利範圍加以界定。結合一例示性實施例繪示或描述之特徵可與其他實施例之諸特徵進行結合。此等修飾及變動將包括於本發明之範疇內。
本發明之太陽能發電模組缺陷智慧診斷系統與方法,藉由兩種影像的兩階段影像深度訓練,能夠快速且精確地鑑別出太陽能發電模組缺陷的位置與種類。此外,為了達到快速大量數據判定的功效,本發明之太陽能發電模組缺陷智慧診斷系統與方法,更配合了人工智慧的深度學習模組,以進行穩定的影像鑑別。
現請參考第1圖,其為本發明一種太陽能發電模組缺陷智慧診斷系統5,用於複數個太陽能發電模組的缺陷分析,其包含:一第一影像擷取模組10;一第二影像擷取模組20;一影像處理模組30;一深度學習模組40;以及一資訊判斷模組50。
在太陽能發電模組中,各元件組成,包含電池、連接線(ribbon)、乙烯/乙酸乙烯酯共聚物(ethylene vinylacetate,EVA)、玻璃/背板及接線盒(含旁路二極體)、邊框等都有可能產生缺陷。模組各組件缺陷可 能:電池破裂或裂紋、連接線斷裂、封裝材料的黃化(Encapsulant discoloration)與脫層(Delamination)、前後板:玻璃/背板破裂、接線盒與旁路二極體斷裂、光誘發衰退(Light induced degradation)等。
該第一影像擷取模組10,取得該些太陽能發電模組的一第一影像資料。該第二影像擷取模組20,取得該些太陽能發電模組的一第二影像資料。該影像處理模組30,將來自該第一影像擷取模組10之該第一影像資料與來自該第二影像擷取模組20之該第二影像資料做一影像處理,以分別得到一第一影像特徵資料與一第二影像特徵資料。該深度學習模組40,先對來自該影像處理模組30之該第一影像特徵資料做一第一期數的深度訓練,接著對來自該影像處理模組30之該第二影像特徵資料做一第二期數的深度訓練,且該第一期數少於該第二期數。該資訊判斷模組50,藉由來自該深度學習模組40之該第二期數的深度訓練的結果分析出該些太陽能發電模組的缺陷。
其中,該第一影像資料係紅外線(Infrared,IR)影像,且該第二影像資料係電致發光(Electroluminescence,EL)影像。建立紅外線(Infrared,IR)影像的標準主要依據熱影像檢測標準IEC62446-3。
取得該些太陽能發電模組的該第一影像資料是於白天時候拍攝該些太陽能發電模組。用於取得該些太陽能發電模組的該第一影像資料的該第一影像擷取模組10包含:紅外鏡頭:接收和彙聚被測物體發射的紅外輻射;紅外探測器組件:將熱輻射信號變成電信號;電子組件:對電信號進行處理;顯示組件:將電信號轉變成可見光圖像:擷取軟體:處理採集到的溫度數據,轉換成溫度讀數和圖像。
取得該些太陽能發電模組的該第二影像資料是於夜間時候 或低照度(照度<200mW/cm2)拍攝該些太陽能發電模組。較佳地,取得該些太陽能發電模組的該第二影像資料是於照度介於100mW/cm2至200mW/cm2之間拍攝。用於取得該些太陽能發電模組的該第二影像資料的該第二影像擷取模組20包含:攝影鏡頭:接收和彙聚被測物體發射的螢光輻射;螢光探測器組件:將螢光輻射信號變成電信號;電子組件:對電信號進行處理;顯示組件:將電信號轉變成可見光圖像:擷取軟體:處理採集到的溫度數據,轉換成溫度讀數和圖像。該第二影像資料特別是電致發光該第二影像資料,可以偵測出傳統目視檢查或光學影像測量所無法看出的電池與模組缺陷種類,包含1.電池製作缺陷、2.表面網印缺陷、3.電池隱裂缺陷、4.電池破裂缺陷、5.低效率傳導區域缺陷。
取得該些太陽能發電模組的該第一影像資料與該第二影像資料影像的規格包含:感測解析度:640×512像素;像素尺寸17μm;紅外線影像使用紅外線頻寬:7.5-13.5μm拍攝,電致發光影像為可見光拍攝;影像圖框速度(Full Frame Rates):30Hz(National Television System Committee,NTSC)與25Hz(Phase Alternating Line,PAL)。
取得該些太陽能發電模組的該第一影像資料與該第二影像資料影像的紅外鏡頭與電致發光鏡頭主要設置於無人飛行器上,無人飛行器在該些太陽能發電模組上方取得影像傳送到該第一影像擷取模組10與該第二影像擷取模組20。無人飛行器相關規格大致如下:全球定位系統(global positioning system,GPS)懸停精度:垂直:±0.5m;水平:±1.5m;最大下降速度:垂直:5m/s;最大水平飛行速度:54km/h或15m/s;遙控方式:採FASST 2.4 G自動掃描鎖頻;工作環境溫度:-30℃至45℃。
在本發明中,採用的影像處理工具:Adobe Photoshop、 Aphelion、ImageJ、OpenCV、Ulead PhotoImpact或Rapidminer。典型的影像處理流程包含:一、影像之表示與模式建立(Image Modeling)、二、影像之強化處理(Image Enhancement)、三、影像之復原(Image Restoration)、四、影像分析(Image Analysis)、五、影像重建(Image Reconstruction)、六、影像資料壓縮(Image Compression)。
在訓練之前,必須對紅外線/電致發光取得之影像數據進行各類缺陷模式的判別,以得到各種特徵及對應缺陷模式。本發明的影像一開始先藉由人工對該第一影像資料與該第二影像資料影像做特徵提取,並將特徵提取的影像進行影像切割處理,以定義太陽能模組之紅外線/電致發光影像的辨識區域(Region-of-Interest,ROI)。以這些初始資料作為該影像處理模組30的參考資料(reference data)。並對該第一影像資料與該第二影像資料影像,亦即紅外線/電致發光取得之影像,進行失效特徵人工標記、整合分析與各類缺陷模式的判別。將初步分析及處理後之影像數據導入該深度學習模組40,進行調測與訓練,並對模型導出之訓練成果進行分辨率量化及測試。
該影像處理模組30,將來自該第一影像擷取模組10之該第一影像資料與來自該第二影像擷取模組20之該第二影像資料做一影像處理(Image processing)。
該影像處理(Image processing)包含下列:
1.前處理(Image Pre-processing),將取得的太陽能模組之紅外線/電致發光影像(IR/EL image)執行影像前處理(Image Pre-processing),方式主要為:影像二值化(Binarization)取得二值化影像(binary image),將二值化影像(binary image)分別進行邊緣檢測(Edge Detection)以及隔離(Isolation)/增強 (Enhancement)。
2.特徵提取(Feature Extraction),將前處理後的影像進行太陽能模組之紅外線/電致發光影像特徵提取(Feature Extraction),方式包含但不限於:重複線跟蹤法(repeated line tracking)、最大曲率(maximum curvature)、寬線檢測(wide line detector)與Gabor濾波器(Gabor filter)。
3.辨識區域(Region-of-Interest,ROI),將特徵提取的影像進行影像切割處理以定義太陽能模組之紅外線/電致發光影像的辨識區域(Region-of-Interest,ROI)。
4.資料增強處理(Data Augmentation),將ROI影像進行資料增強處理(Data Augmentation),方法將ROI影像做各式各樣的變換,如影像模糊(Gaussian Blur)、影像銳化(Sharpen)、仿射變換(Affine transform)、影像晃動(Shake)、加入高斯雜訊(Gaussian Noise)、以及加入影像隨機丟失(Coarse Dropout),將資料做這些處理增加訓練資料集的資料量及多樣性,可避免在後續深度學習訓練階段出現過度擬合(overfitting)的現象。
5.資料前處理(Data Pre-Processing),將資料增強處理後所得到的資料進行正規化(Data Normalization)、標準化(Standardization)及標記(Labeling)等,可有助於在高維特徵空間上之下降速度。
6,產生資料集(dataset),該第一影像特徵資料與該第二影像特徵資料,包含:訓練資料集(Training dataset)、驗證資料集(Validation dataset)及測試資料集(Testing dataset)。將處理好的該第一影像特徵資料加上第一標籤,處理好的該第二影像特徵資料也加上第二標籤,輸入後續的該深度學習模組40中做訓練並做性能評估、預測分類。
一般而言,在深度學習的訓練中,底層特徵較為低階通用, 頂層特徵較為高階特別,而高階特別的特徵比較接近全連接層。因此可以合理推測,神經網路主要以高階特徵進行分類。而高階特徵從中階特徵成形,中階特徵從低階特徵成形,因此可以推測若低中階特徵變動過於劇烈,將造成高階特徵不易成形;反之若低中階特徵給予一定時間訓練完成後,將之凍結,讓神經網路的訓練著重於成形高階特徵,推測應可加速深度學習的訓練。
因此,本發明該深度學習模組40,提出的訓練策略在訓練過程中會兩段式訓練。由於該第一影像資料,特別是紅外線影像,能夠快速且輕易地地知道太陽能發電模組可能缺陷的位置。本發明藉由該第二影像資料,特別是電致發光影像,在已經知道太陽能發電模組可能缺陷的位置上更進一步的分辨太陽能發電模組的缺陷模式的種類。本發明鑑於第一影像資料與第二影像資料能達到的目的,亦即分別是鑑別出太陽能發電模組缺陷模式的位置與太陽能發電模組缺陷模式的種類,因此設定出不同期數的訓練方式。因此,該深度學習模組40,先對該第一影像特徵資料做一第一期數(epoch)的深度訓練,接著對該第二影像特徵資料做一第二期數(epoch)的深度訓練,且該第一期數少於該第二期數。
此外,在該深度學習模組40中,該深度訓練包含複數個卷積層訓練,該些卷積層訓練按照一序列做底層訓練、中層訓練與頂層訓練。該第一期數的深度訓練係對對該第一影像特徵資料做底層訓練與中層訓練。且,該第二期數的深度訓練係對對該第二影像特徵資料做中層訓練與頂層訓練。亦即,第一影像特徵資料不需要做到頂層訓練,而第二影像特徵資料藉由第一影像特徵資料訓練的結果,所以不需要做底層訓練。
該資訊判斷模組50,藉由來自該深度學習模組40之該第二 期數的深度訓練的結果分析出該些太陽能發電模組的缺陷。
現請參考第2圖,其為本發明一種太陽能發電模組缺陷智慧診斷方法,用於複數個太陽能發電模組的缺陷分析,其包含:步驟一:取得該些太陽能發電模組的一第一影像資料;步驟二:取得該些太陽能發電模組的一第二影像資料;步驟三:將該第一影像資料與該第二影像資料做一影像處理,以分別得到一第一影像特徵資料與一第二影像特徵資料;步驟四:先對該第一影像特徵資料做一第一期數的深度訓練,接著對該第二影像特徵資料做一第二期數的深度訓練,且該第一期數少於該第二期數;以及步驟五:藉由該第二期數的深度訓練的結果分析出該些太陽能發電模組的缺陷分析。
其中,該第一影像資料係紅外線影像,且該第二影像資料係電致發光影像。該深度訓練包含複數個卷積層訓練,該些卷積層訓練按照一序列做底層訓練、中層訓練與頂層訓練。該第一期數的深度訓練係對對該第一影像特徵資料做底層訓練與中層訓練。該第二期數的深度訓練係對對該第二影像特徵資料做中層訓練與頂層訓練。
在步驟四中,重複訓練的部分會分成兩種,一種是模型內遞迴修正參數的次數,這部分是設定遞迴次數越多模型完成訓練耗費時間越長。另一種是在測試模型階段,隨著樣本累積用不同數量的樣本或測試模型進行的訓練。兩個部分都會隨重複訓練的次數逐步去提高精準度。
在步驟四中,採用兩種深度卷積神經網路架構:ResNet-50(Residual Network,殘差網路)與DenseNet(Dense Convolutional Network,稠密卷積神經網路)進行訓練作為驗證案例。
在步驟四中,首先全部卷積層的權重都不會凍結,訓練數個期數後,比較底層的卷積層凍結,以訓練中層的卷積層。再訓練數個期數後,中層的卷積層也進行凍結,以訓練頂層的卷積層。基本概念是由前面的網路訓練中間的網路,再由中間的網路訓練後面的網路,最後訓練出分類器的訓練方式。
由於該第一影像資料,特別是紅外線影像,能夠快速且輕易地知道太陽能發電模組可能缺陷的位置,但卻無法精準的知道缺陷的種類。因此本發明藉由該第二影像資料,特別是電致發光影像,在已經知道太陽能發電模組可能缺陷的位置上更進一步的分辨太陽能發電模組的缺陷模式的種類。亦即是,本發明藉由兩階段的影像深度訓練,能夠快速且精確地鑑別出太陽能發電模組缺陷的位置與種類。
此外,為了達到快速大量數據判定的功效,本發明之太陽能發電模組缺陷智慧診斷系統與方法,更配合了人工智慧的深度學習模組,以進行穩定的影像鑑別。有別於傳統深度學習模組的訓練方式,對各種資料都做一定期數的訓練,本發明鑑於第一影像資料與第二影像資料能達到的目的,亦即分別是鑑別出太陽能發電模組缺陷模式的位置與太陽能發電模組缺陷模式的種類,因此設定出不同期數的訓練方式。先對該第一影像特徵資料做一第一期數(epoch)的深度訓練,接著對該第二影像特徵資料做一第二期數(epoch)的深度訓練,且該第一期數少於該第二期數。
且,本發明之太陽能發電模組缺陷智慧診斷系統與方法所使用的深度學習訓練方式,是一種將卷積層依底層、中層、頂層的順序漸進式訓練方法。首先全部卷積層的權重都不會凍結,訓練數個期數後,比 較底層的卷積層凍結程度較大,以訓練中層的卷積層;再訓練數個期數後,中層的卷積層也進行凍結,以訓練頂層的卷積層。需注意的是,該第一期數的深度訓練係對對該第一影像特徵資料做底層訓練與中層訓練。該第二期數的深度訓練係對對該第二影像特徵資料做中層訓練與頂層訓練。亦即是,第一影像特徵資料不需要做到頂層訓練,而第二影像特徵資料藉由第一影像特徵資料訓練的結果,所以不需要做底層訓練。
雖然本發明已以前述較佳實施例揭示,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與修改。如上述的解釋,都可以作各型式的修正與變化,而不會破壞此發明的精神。因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
5:太陽能發電模組缺陷智慧診斷系統
10:第一影像擷取模組
20:第二影像擷取模組
30:影像處理模組
40:深度學習模組
50:資訊判斷模組

Claims (10)

  1. 一種太陽能發電模組缺陷智慧診斷系統,用於複數個太陽能發電模組的缺陷分析,其包含:一第一影像擷取模組,取得該些太陽能發電模組的一第一影像資料;一第二影像擷取模組,取得該些太陽能發電模組的一第二影像資料;一影像處理模組,將該第一影像資料與該第二影像資料做一影像處理,以分別得到一第一影像特徵資料與一第二影像特徵資料;一深度學習模組,先對該第一影像特徵資料做一第一期數的深度訓練,接著對該第二影像特徵資料做一第二期數的深度訓練,且該第一期數少於該第二期數;以及一資訊判斷模組,藉由該第二期數的深度訓練的結果分析出該些太陽能發電模組的缺陷。
  2. 如請求項1所述太陽能發電模組缺陷智慧診斷系統,其中,該第一影像資料係紅外線影像,且該第二影像資料係電致發光影像。
  3. 如請求項1所述太陽能發電模組缺陷智慧診斷系統,其中,該深度訓練包含複數個卷積層訓練,該些卷積層訓練按照一序列做底層訓練、中層訓練與頂層訓練。
  4. 如請求項1所述太陽能發電模組缺陷智慧診斷系統,其中,該第一期數的深度訓練係對對該第一影像特徵資料做底層訓練與中層訓練。
  5. 如請求項1所述太陽能發電模組缺陷智慧診斷系統,其中,該第二期數的深度訓練係對對該第二影像特徵資料做中層訓練與頂層訓練。
  6. 一種太陽能發電模組缺陷智慧診斷方法,用於複數個太陽能發電模組的缺陷分析,其包含:步驟一:取得該些太陽能發電模組的一第一影像資料;步驟二:取得該些太陽能發電模組的一第二影像資料;步驟三:將該第一影像資料與該第二影像資料做一影像處理,以分別得到一第一影像特徵資料與一第二影像特徵資料;步驟四:先對該第一影像特徵資料做一第一期數的深度訓練,接著對該第二影像特徵資料做一第二期數的深度訓練,且該第一期數少於該第二期數;以及步驟五:藉由該第二期數的深度訓練的結果分析出該些太陽能發電模組的缺陷。
  7. 如請求項6所述太陽能發電模組缺陷智慧診斷方法,其中,該第一影像資料係紅外線影像,且該第二影像資料係電致發光影像。
  8. 如請求項6所述太陽能發電模組缺陷智慧診斷方法,其中,該深度訓練包含複數個卷積層訓練,該些卷積層訓練按照一序列做底層訓練、中層訓練與頂層訓練。
  9. 如請求項6所述太陽能發電模組缺陷智慧診斷方法,其中,該第一期數的深度訓練係對對該第一影像特徵資料做底層訓練與中層訓練。
  10. 如請求項6所述太陽能發電模組缺陷智慧診斷方法,其中,該第二期數的深度訓練係對對該第二影像特徵資料做中層訓練與頂層訓練。
TW109132157A 2020-09-17 2020-09-17 太陽能發電模組缺陷智慧診斷系統與方法 TWI732683B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109132157A TWI732683B (zh) 2020-09-17 2020-09-17 太陽能發電模組缺陷智慧診斷系統與方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109132157A TWI732683B (zh) 2020-09-17 2020-09-17 太陽能發電模組缺陷智慧診斷系統與方法

Publications (2)

Publication Number Publication Date
TWI732683B true TWI732683B (zh) 2021-07-01
TW202213939A TW202213939A (zh) 2022-04-01

Family

ID=77911501

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109132157A TWI732683B (zh) 2020-09-17 2020-09-17 太陽能發電模組缺陷智慧診斷系統與方法

Country Status (1)

Country Link
TW (1) TWI732683B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113567446A (zh) * 2021-07-06 2021-10-29 北京东方国信科技股份有限公司 组件缺陷检测质量分级的方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015179632A1 (en) * 2014-05-22 2015-11-26 Scheffler Lee J Methods and systems for neural and cognitive processing
CN106503461A (zh) * 2016-10-26 2017-03-15 广东产品质量监督检验研究院 一种基于深度学习法构建的光伏组件加速退化模型及光伏组件寿命预测方法
JP2018082602A (ja) * 2016-11-18 2018-05-24 北陸電話工事株式会社 太陽電池モジュール劣化診断システム
TW201901475A (zh) * 2017-05-19 2019-01-01 日商半導體能源硏究所股份有限公司 機器學習方法、機器學習系統及顯示系統
WO2019038693A1 (en) * 2017-08-23 2019-02-28 Telefonaktiebolaget Lm Ericsson (Publ) NEURAL NETWORKS FOR DECODING
US20190286990A1 (en) * 2018-03-19 2019-09-19 AI Certain, Inc. Deep Learning Apparatus and Method for Predictive Analysis, Classification, and Feature Detection
CN110555474A (zh) * 2019-08-28 2019-12-10 上海电力大学 一种基于半监督学习的光伏面板故障检测方法
CN110610475A (zh) * 2019-07-07 2019-12-24 河北工业大学 一种深度卷积神经网络的视觉缺陷检测方法
US20200225655A1 (en) * 2016-05-09 2020-07-16 Strong Force Iot Portfolio 2016, Llc Methods, systems, kits and apparatuses for monitoring and managing industrial settings in an industrial internet of things data collection environment

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015179632A1 (en) * 2014-05-22 2015-11-26 Scheffler Lee J Methods and systems for neural and cognitive processing
US20200225655A1 (en) * 2016-05-09 2020-07-16 Strong Force Iot Portfolio 2016, Llc Methods, systems, kits and apparatuses for monitoring and managing industrial settings in an industrial internet of things data collection environment
CN106503461A (zh) * 2016-10-26 2017-03-15 广东产品质量监督检验研究院 一种基于深度学习法构建的光伏组件加速退化模型及光伏组件寿命预测方法
JP2018082602A (ja) * 2016-11-18 2018-05-24 北陸電話工事株式会社 太陽電池モジュール劣化診断システム
TW201901475A (zh) * 2017-05-19 2019-01-01 日商半導體能源硏究所股份有限公司 機器學習方法、機器學習系統及顯示系統
WO2019038693A1 (en) * 2017-08-23 2019-02-28 Telefonaktiebolaget Lm Ericsson (Publ) NEURAL NETWORKS FOR DECODING
US20190286990A1 (en) * 2018-03-19 2019-09-19 AI Certain, Inc. Deep Learning Apparatus and Method for Predictive Analysis, Classification, and Feature Detection
CN110610475A (zh) * 2019-07-07 2019-12-24 河北工业大学 一种深度卷积神经网络的视觉缺陷检测方法
CN110555474A (zh) * 2019-08-28 2019-12-10 上海电力大学 一种基于半监督学习的光伏面板故障检测方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113567446A (zh) * 2021-07-06 2021-10-29 北京东方国信科技股份有限公司 组件缺陷检测质量分级的方法及系统
CN113567446B (zh) * 2021-07-06 2022-07-19 北京东方国信科技股份有限公司 组件缺陷检测质量分级的方法及系统

Also Published As

Publication number Publication date
TW202213939A (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
Aghaei et al. Innovative automated control system for PV fields inspection and remote control
CN110031477B (zh) 基于图像监控数据的桥梁关键构件病害预警系统及方法
CN111275679B (zh) 一种基于图像的太阳能电池缺陷检测系统及方法
Di Tommaso et al. A multi-stage model based on YOLOv3 for defect detection in PV panels based on IR and visible imaging by unmanned aerial vehicle
CN110689011A (zh) 多尺度联合卷积神经网络的太阳能电池板缺陷检测方法
Liao et al. Using Matlab real-time image analysis for solar panel fault detection with UAV
CN110487802A (zh) 现场检测光伏组件缺陷的识别装置
Prabhakaran et al. Deep Learning-Based Model for Defect Detection and Localization on Photovoltaic Panels.
TWI732683B (zh) 太陽能發電模組缺陷智慧診斷系統與方法
CN113485432A (zh) 一种基于无人机的光伏电站电致发光智能诊断系统及方法
CN115642877A (zh) 一种基于深度学习的光伏组件异常遮挡检测方法及系统
TWI732682B (zh) 太陽能發電模組失效分析系統與方法
CN113837994B (zh) 一种基于边缘检测卷积神经网络的光伏板缺陷诊断方法
CN113962929A (zh) 光伏电池组件缺陷检测方法、系统及光伏电池组件生产线
CN111539950A (zh) 一种基于机器视觉的太阳能板缺陷检测系统
WO2023272479A1 (zh) 电站运维系统、电站运维方法及光伏电站
Sun et al. Dust Detection Techniques for Photovoltaic Panels from a Machine Vision Perspective: A Review
CN115690505A (zh) 光伏组件故障检测方法、装置、计算机设备及存储介质
CN115410154A (zh) 一种风电机舱电气设备热故障识别方法
CN113657621A (zh) 一种隐患监测方法和系统
Jeon Thermal Image Analysis for Fault Detection and Diagnosis of PV Systems
JP6324564B1 (ja) 太陽電池モジュールのカバーガラス異常検知方法
Hwang et al. Soiling detection for photovoltaic modules based on an intelligent method with image processing
Özer et al. An approach based on deep learning methods to detect the condition of solar panels in solar power plants
CN115824957A (zh) 一种基于图像实现风电叶片缺陷自动检测的方法