TWI732041B - Composite materials having red emitting phosphors - Google Patents

Composite materials having red emitting phosphors Download PDF

Info

Publication number
TWI732041B
TWI732041B TW106131582A TW106131582A TWI732041B TW I732041 B TWI732041 B TW I732041B TW 106131582 A TW106131582 A TW 106131582A TW 106131582 A TW106131582 A TW 106131582A TW I732041 B TWI732041 B TW I732041B
Authority
TW
Taiwan
Prior art keywords
thermally conductive
phosphate
conductive material
item
patent application
Prior art date
Application number
TW106131582A
Other languages
Chinese (zh)
Other versions
TW201915140A (en
Inventor
迪蓋伯 波洛伯
詹姆士 墨菲
弗洛倫西奧 加西亞
梅根 布瑞斯特
Original Assignee
美商現代照明解決方案公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商現代照明解決方案公司 filed Critical 美商現代照明解決方案公司
Priority to TW106131582A priority Critical patent/TWI732041B/en
Publication of TW201915140A publication Critical patent/TW201915140A/en
Application granted granted Critical
Publication of TWI732041B publication Critical patent/TWI732041B/en

Links

Images

Abstract

A lighting apparatus includes an LED light source radiationally coupled to a composite material including a phosphor of formula I and a thermally conductive material dispersed in at least a portion of a binder material. The thermally conductive material includes a material selected from the group consisting of indium oxide, tin oxide, indium tin oxide, calcium oxide, barium oxide, strontium oxide, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, strontium hydroxide, zinc hydroxide, aluminum phosphate, magnesium phosphate, calcium phosphate, barium phosphate, strontium phosphate, diamond, graphene, polyethylene nanofibers, carbon nanotubes, silver metal nanoparticles, copper metal nanoparticles, gold metal nanoparticles, aluminum metal nanoparticles, boron nitride, silicon nitride, an alkali metal halide, calcium fluoride, magnesium fluoride, a compound of formula II, and combinations thereof.

Description

具有發射紅光磷光體之複合材料Composite material with red-emitting phosphor

[0002] 本發明係關於包括磷光體和導熱材料的複合材料,及包括該複合材料之照明器具及背光裝置。[0002] The present invention relates to a composite material including a phosphor and a thermally conductive material, and a lighting fixture and a backlight device including the composite material.

[0003] 基於藉由Mn4+ 活化之錯合氟化物材料的發射紅光磷光體(諸如在US 7,358,542、US 7,497,973、及US 7,648,649中描述者)可與發射黃光/綠光磷光體(YAG:Ce或其他石榴石組成物)組合使用以從藍光LED達成暖白光(CCT<5000 K在黑體軌跡上,演色性指數(CRI>80),其等同藉由現行的螢光燈、白熾燈和鹵素燈所產生的。這些材料強烈地吸收藍光且在甚少深紅/NIR發射下充分地發射在約610-635奈米(nm)之間的光。因此,發光效率與具有明顯發射在更深紅(為眼敏感性不良處)的紅磷光體相比被極大化。量子效率在藍光(440-460 nm)激發下能超過85%。   [0004] 雖然使用經Mn4+ 活化(或摻雜)之氟化物主體的照明系統的效率和CRI可能是相當高的,一個潛在的限制是其易於在製造和使用條件下(例如在高溫度和濕度下)劣化。如US 8,252,613所述的,可能使用後合成(post-synthesis)之加工步驟來降低此劣化。然而,改良該等材料之穩定性的其他方法的開發是所欲者。[0003] Red-emitting phosphors based on complex fluoride materials activated by Mn 4+ (such as those described in US 7,358,542, US 7,497,973, and US 7,648,649) can be combined with yellow/green-emitting phosphors (YAG). :Ce or other garnet composition) used in combination to achieve warm white light from blue LED (CCT<5000 K on the blackbody locus, color rendering index (CRI>80), which is equivalent to the current fluorescent lamp, incandescent lamp and Produced by halogen lamps. These materials strongly absorb blue light and fully emit light between about 610-635 nanometers (nm) with little deep red/NIR emission. Therefore, the luminous efficiency and obvious emission in deeper red The red phosphor (for poor eye sensitivity) is maximized compared to the red phosphor. The quantum efficiency can exceed 85% under blue light (440-460 nm) excitation. [0004] Although the use of Mn 4+ activated (or doped) The efficiency and CRI of the fluoride-based lighting system may be quite high. A potential limitation is that it is prone to degradation under manufacturing and use conditions (for example, under high temperature and humidity). As described in US 8,252,613, it may be used Post-synthesis processing steps to reduce this degradation. However, the development of other methods to improve the stability of these materials is desirable.

[0005] 簡言之,一方面,一種照明器具包括輻射偶合到複合材料之發光二極體(LED)光源,該複合材料包括分散在黏合劑材料之至少一部分中的式I之磷光體和導熱材料,

Figure 02_image001
其中該導熱材料包含選自以下所組成群組之材料:氧化銦、氧化錫、氧化銦錫、氧化鈣、氧化鋇、氧化鍶、氫氧化鋁、氫氧化鎂、氫氧化鈣、氫氧化鋇、氫氧化鍶、氫氧化鋅、磷酸鋁、磷酸鎂、磷酸鈣、磷酸鋇、磷酸鍶、鑽石、石墨烯、聚乙烯奈米纖維、碳奈米管、銀金屬奈米粒子、銅金屬奈米粒子、金金屬奈米粒子、鋁金屬奈米粒子、氮化硼、氮化矽、鹼金屬鹵化物、氟化鈣、氟化鎂、式II之化合物、及其組合;
Figure 02_image003
其中A於每次出現時獨立地是Li、Na、K、Rb、Cs、或其組合,M於每次出現時獨立地是Si、Ge、Sn、Ti、Zr、Al、Ga、In、Sc、Hf、Y、La、Nb、Ta、Bi、Gd、或其組合,x於每次出現時獨立地是在[(M,Mn)Fy ]離子和[MFy ]離子上之電荷的絕對值,且y是5、6、或7。   [0006] 一方面,一種照明器具包括輻射偶合到複合材料之LED光源。該複合材料包括磷光層,其包含分散在第一黏合劑材料之至少一部分中的式I的磷光體;和導熱層,其包含分散在配置於該磷光層上的第二黏合劑材料中的導熱材料。該導熱材料包括選自以下所組成群組之材料:氧化銦、氧化錫、氧化銦錫、氧化鈣、氧化鋇、氧化鍶、氫氧化鋁、氫氧化鎂、氫氧化鈣、氫氧化鋇、氫氧化鍶、氫氧化鋅、磷酸鋁、磷酸鎂、磷酸鈣、磷酸鋇、磷酸鍶、鑽石、石墨烯、聚乙烯奈米纖維、碳奈米管、銀金屬奈米粒子、銅金屬奈米粒子、金金屬奈米粒子、鋁金屬奈米粒子、氮化硼、氮化矽、鹼金屬鹵化物、氟化鈣、氟化鎂、式II之化合物、及其組合。[0005] Briefly, in one aspect, a lighting fixture includes a light emitting diode (LED) light source that is radiation-coupled to a composite material, the composite material includes a phosphor of formula I dispersed in at least a portion of a binder material and a thermally conductive material,
Figure 02_image001
The thermally conductive material includes materials selected from the group consisting of indium oxide, tin oxide, indium tin oxide, calcium oxide, barium oxide, strontium oxide, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, Strontium hydroxide, zinc hydroxide, aluminum phosphate, magnesium phosphate, calcium phosphate, barium phosphate, strontium phosphate, diamond, graphene, polyethylene nanofiber, carbon nanotube, silver metal nanoparticle, copper metal nanoparticle , Gold metal nanoparticles, aluminum metal nanoparticles, boron nitride, silicon nitride, alkali metal halides, calcium fluoride, magnesium fluoride, compounds of formula II, and combinations thereof;
Figure 02_image003
Where A is independently Li, Na, K, Rb, Cs, or a combination thereof at each occurrence, and M is independently Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc at each occurrence , Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof, x is independently the absolute of the charge on the [(M,Mn)F y ] ion and [MF y] ion each time it appears Value, and y is 5, 6, or 7. [0006] In one aspect, a lighting fixture includes an LED light source that is radiation coupled to a composite material. The composite material includes a phosphorescent layer, which includes a phosphor of formula I dispersed in at least a part of a first binder material; and a thermally conductive layer, which includes a thermally conductive layer dispersed in a second binder material disposed on the phosphorescent layer material. The thermal conductive material includes materials selected from the group consisting of indium oxide, tin oxide, indium tin oxide, calcium oxide, barium oxide, strontium oxide, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, hydrogen Strontium oxide, zinc hydroxide, aluminum phosphate, magnesium phosphate, calcium phosphate, barium phosphate, strontium phosphate, diamond, graphene, polyethylene nanofiber, carbon nanotube, silver metal nanoparticle, copper metal nanoparticle, Gold metal nanoparticles, aluminum metal nanoparticles, boron nitride, silicon nitride, alkali metal halides, calcium fluoride, magnesium fluoride, compounds of formula II, and combinations thereof.

[0010] 在以下說明書及申請專利範圍中,單數型“一(a或an)”及“該(the)”除非其上下文清楚地另行指明,否則包括複數個所指對象。如本文使用的,“或”一詞不意味排它性而是指所指成分的至少一者是存在的且包括其中可存在所指成分之組合的例子,除非上下文清楚地另行指明。   [0011] 如遍及說明書和申請專利範圍所使用的,可以應用約略用語以在不造成與該表述相關之基本功能的改變下去修飾任何能容許變化之定量表述。因此,藉由諸如“約”和“實質上”之用語(等)修飾之值不限於所指定之精確值。在一些例子中,該約略用語可對應於用於測量該值之儀器的精確度。   [0012] 如本文中使用的,可以使用“磷光體”、“磷光體組成物”、及“磷光體材料”等用語以表示單一種磷光體或二或多種磷光體之摻合物。如本文中使用的,“燈”、“照明器具(light apparatus)”、和“照明系統”等用語是指可見光和紫外光之任何來源,該等光可藉由至少一種在施加能量時產生發光之發光元件(例如磷光體材料或發光二極體)來產生。   [0013] 如本文中使用的,“層”一詞是指以連續或不連續方式配置在下方表面之至少一部份上的材料。另外,“層”一詞不必須意指該經配置材料的厚度均一,而是該經配置材料可具有均一或可變之厚度。如本文中使用的,“經配置在…上”一詞除非另行具體指明,否則是指層或材料彼此直接接觸配置或藉由其間具有中間層或特徵而間接配置。   [0014] 參照圖1,根據一具體例顯示照明器具(例如燈10)之構形的非限制性實例。燈10包括發光二極體(LED)光源(例如LED晶片12)和與LED晶片12電連接之引線14。引線14可包括藉由較厚之引線架16所支撐之薄線材或引線14可包括自身支撐之電極且可省略引線架16。引線14供應電流給LED晶片12且因此使LED晶片12發出輻射。   [0015] 光源可以是任何藍光或UV光源,其能在其所射出之輻射被導到磷光體上時產生白光。LED晶片10可以是發射近UV或藍光之LED。LED晶片10可包含基於任何合適之III-V、II-VI或IV-IV半導體層且具有約250至550奈米(nm)發射波長之半導體二極體。尤其,LED晶片10可含有至少一個包含GaN、ZnSe或SiC之半導體層。例如,LED晶片10可包含由式Ini Gaj Alk N(其中0≦i;0≦j;0≦k且i+j+k=1)所示之氮化物化合物半導體,其具有大於約250 nm且小於約550 nm之發射波長。在一具體例中,LED晶片10是具有約400至約500 nm之峰發射波長的發射藍光LED晶片。   [0016] 雖然本文所討論之揭示內容的例示結構的一般討論是針對基於LED之光源且更特別是針對基於無機LED之光源,應注意:除非另行註明,否則LED晶片可以基於有機LED之光源或任何其他光源代替;且任何提及LED晶片之表述僅是合適光源的代表。   [0017] LED晶片12可被封裝在罩體18內,該罩體包封LED晶片12和封裝材料20。罩體18可以是例如玻璃或塑膠。LED晶片12實質上可以位於該封裝材料20的中心。封裝材料20可以是環氧樹脂、塑膠、低溫玻璃、聚合物、或如在此技藝中已知之任何其他合適的封裝材料。在某些具體例中,封裝材料20是環氧樹脂或聚合物材料諸如聚矽氧。罩體18和封裝材料20皆應是對從LED晶片12、式I之磷光體(在以下描述的)、任何額外的發光材料(在以下描述的)或其組合所發射之光的波長透明或實質透射的以透射過那些元件。   [0018] 替代地,燈10可僅包含封裝材料20而無罩體18。LED晶片12可以使用例如引線架16、自身支撐之電極、罩體18之底部、或安裝在引線架16上之台座(未顯示)之一或多者來支撐。在一些具體例中,LED晶片12被安裝在反射杯(未顯示)中。反射杯可以由反射材料製成或塗覆有反射材料,反射材料是諸如氧化鋁、氧化鈦、或在此技藝中已知之其他介電材料。   [0019] 在燈10中,LED晶片12輻射偶合到複合材料。該複合材料包括分散在黏合劑材料之至少一部分中的式I之磷光體和導熱材料。輻射偶合意思是該等元件彼此相關聯以致從其中一者發射之輻射傳輸至另一者。如圖1中說明的,該複合材料之層22被配置在LED晶片12之表面11之至少一部分上。層22可使用合適方法配置在LED晶片12之表面11之該部分上。在非限制性實例中,可以形成聚矽氧漿液,其中式I之磷光體粒子和該導熱材料被隨機地或均一地懸浮,且一層該漿液可被沉積在LED晶片12之表面11之至少一部分上。所說明之具體例僅是該複合材料和LED晶片12在燈10中的可能位置的實例。   [0020] 在一些其他具體例中,該複合材料可被塗覆在燈10之罩體18的內面17上,而非直接配置在LED晶片12上。該複合材料可被塗覆在整個內面17上或罩體18之內面17之一或多個部分上。經由舉例,內面17之一部分(其藉由編號19所指明)可被該複合材料塗覆。內面17之此一部分19可經選擇而使得所欲量之來自LED晶片12的光穿過所選之部分。額外或替代地,該複合材料可定位在除了罩體18以外之一或多個合適位置上。   [0021] 參照圖2,燈30,在一些具體例中,包括複合材料,該複合材料包括配置在LED晶片12之表面11之至少一部分上的磷光體層24和配置在磷光體層24上之包括導熱材料的導熱層26。磷光體層24包括如本文中描述之式I的磷光體,其至少分散在第一黏合劑材料之一部分中。導熱層26包括至少分散在第二黏合劑材料之一部分中的導熱材料(如本文中描述的)。該第一黏合劑材料和該第二黏合劑材料包括如下述之合適的黏合劑材料。在一些具體例中,該第一黏合劑材料和該第二黏合劑材料是相同的。磷光體層24和導熱層26可分別使用個別漿液(第一漿液具有分散在該第一黏合劑材料中之式I的磷光體粒子且第二漿液具有分散在該第二黏合劑材料中之導熱材料)配置。   [0022] 適合用於該第一及/或第二黏合劑材料之材料可包括對藉由LED晶片12、式I之磷光體、額外之發光材料(以下描述的)或其組合者所發射之光為光學透明的,且與式I之磷光體、該導熱材料和在照明器具中之任何周圍材料或層為化學及光學上可相容之材料。用於如本文中描述之照明器具的第一及/或第二黏合劑材料的材料實例可包括環氧化物、聚矽氧及聚矽氧衍生物(其包括但不限於胺基聚矽氧(AMS)、聚苯基甲基矽氧烷、聚苯基烷基矽氧烷、聚二苯基矽氧烷、聚二烷基矽氧烷、矽倍半氧烷、氟化聚矽氧、及經乙烯基及氫化物取代之聚矽氧)、低溫玻璃、或其組合。   [0023] 式I之磷光體是錯合氟化物。在一具體例中,式I之磷光體是摻雜錳(Mn4+ )之錯合氟化物。錯合氟化物具有主體晶格(host lattice),該主體晶格含有由作為配位基之氟離子所包圍的一個配位中心,且視需要被相反離子(A)抵銷電荷。例如,在K2 [SiF6 ]中,該配位中心是Si且該相反離子是K。錯合氟化物通常以簡單之二元氟化物之組合表示。在該錯合氟化物之化學式中的方括號(偶而因要簡化而省略)指明在該特別的錯合氟化物中存在之錯離子是與該簡單之氟離子不同的新化學物質。在式I之磷光體中,該Mn4+ 摻雜劑或活化劑充作額外之配位中心,取代該配位中心(例如Si)的一部分而形成發光中心。摻雜錳的式I:A2 [(M,Mn)F6 ]磷光體也可以A2 [MF6 ]:Mn4+ 表示。該主體晶格(包括該相反離子)可進一步改良該活化劑離子之激發和發射性質。如本文中使用的,“式I之磷光體”及”摻雜錳之磷光體”等詞可在通篇的說明書中交換地被使用。   [0024] 在式I中的相反離子A是Li、Na、K、Rb、Cs、或其組合,且y是6。在某些具體例中,A是Na、K、Rb、或其組合。在式I中的配位中心M是選自以下所組成群組的元素:Si、Ge、Ti、Zr、Hf、Sn、Al、Ga、In、Sc、Y、Bi、La、Gd、Nb、Ta、及其組合。在某些具體例中,M是Si、Ge、Ti、或其組合。在一些具體例中,A是K且M是Si。式I之磷光體的例子包括K2 [SiF6 ]:Mn4+ 、K2 [TiF6 ]:Mn4+ 、K2 [SnF6 ]:Mn4+ 、Cs2 [TiF6 ]:Mn4+ 、Rb2 [TiF6 ]:Mn4+ 、Cs2 [SiF6 ]:Mn4+ 、Rb2 [SiF6 ]:Mn4+ 、Na2 [TiF6 ]:Mn4+ 、Na2 [ZrF6 ]:Mn4+ 、K3 [ZrF7 ]:Mn4+ 、K3 [BiF6 ]:Mn4+ 、K3 [YF6 ]:Mn4+ 、K3 [LaF6 ]:Mn4+ 、K3 [GdF6 ]:Mn4+ 、K2 [NbF7 ]:Mn4+ 及K2 [TaF7 ]:Mn4+ 。在某些具體例中,式I之磷光體是K2 [SiF6 ]:Mn4+ 。   [0025] 在如本文中描述之照明器具中可被使用之其他摻雜錳的磷光體包括:     (A) A2 [MF5 ]:Mn4+ ,其中A是選自Li、Na、K、Rb、Cs、及其組合;且其中M是選自Al、Ga、In、及其組合;     (B) A3 [MF6 ]:Mn4+ ,其中A是選自Li、Na、K、Rb、Cs、及其組合;且其中M是選自Al、Ga、In、及其組合;     (C) Zn2 [MF7 ]:Mn4+ ,其中M是選自Al、Ga、In、及其組合;     (D) A[In2 F7 ]:Mn4+ ,其中A是選自Li、Na、K、Rb、Cs、及其組合;     (E) E[MF6 ]:Mn4+ ,其中E是選自Mg、Ca、Sr、Ba、Zn、及其組合;且其中M是選自Ge、Si、Sn、Ti、Zr、及其組合;     (F) Ba0.65 Zr0.35 F2.70 :Mn4+ ;及     (G) A3 [ZrF7 ]:Mn4+ ,其中A是選自Li、Na、K、Rb、Cs、及其組合。   [0026] 在一些具體例中,該摻雜錳之磷光體(例如式I之磷光體)可被後處理以強化性能及顏色穩定性性質而獲得如美國專利8,252,613中所述之顏色穩定的摻雜錳的磷光體。該後處理方法包括使摻雜錳之磷光體(例如式I之磷光體)在提高之溫度下與氣體形式之含氟氧化劑接觸。   [0027] 在如本文中所述之式I的磷光體中的錳含量之範圍可為約1.2莫耳百分比(mol%)(約0.3重量百分比(wt%))至約16.5 mol%(約4 wt%)。在一些具體例中,錳含量之範圍可為約2 mol%(約0.5 wt%)至13.4 mol%(約3.3 wt%),或約2 mol%至12.2 mol%(約3 wt%),或約2 mol%至11.2 mol%(約2.76 wt%),或約2 mol%至約10 mol%(約2.5 wt%),或約2 mol%至5.5 mol%(約1.4 wt%),或約2 mol%至約3.0 mol%(約0.75 wt%)。   [0028] 用於該複合材料之層22(圖1)及/或磷光體層24(圖2)中的式I的磷光體可具有在約10微米至約80微米範圍的D50粒度的粒度分布。在一些具體例中,所欲為使用具有更小粒度(例如小於約30微米之D50粒度)的粒子。在一些具體例中,式I的磷光體具有在約10微米至約20微米範圍內的D50粒度。在特別具體例中,式I的磷光體具有在約12微米至約18微米範圍內的D50粒度。   [0029] 用於如本文中描述之照明器具中的導熱材料包括選自以下所組成群組之材料:氧化銦、氧化錫、氧化銦錫、氧化鈣、氧化鋇、氧化鍶、氫氧化鋁、氫氧化鎂、氫氧化鈣、氫氧化鋇、氫氧化鍶、氫氧化鋅、磷酸鋁、磷酸鎂、磷酸鈣、磷酸鋇、磷酸鍶、鑽石、石墨烯、聚乙烯奈米纖維、碳奈米管、銀金屬奈米粒子、銅金屬奈米粒子、金金屬奈米粒子、鋁金屬奈米粒子、氮化硼、氮化矽、鹼金屬鹵化物、氟化鈣、氟化鎂、式II之化合物、及其組合;

Figure 02_image003
其中在式II之化合物中的A是Li、Na、K、Rb、Cs、或其組合,且在式II之化合物中的M是選自以下所組成群組之元素Si、Ge、Ti、Zr、Hf、Sn、Al、Ga、In、Sc、Y、Bi、La、Gd、Nb、Ta、及其組合。在一些具體例中,A是Na、K、Rb、或其組合。在一些具體例中,M是Si、Ge、Ti、或其組合。   [0030] 在一些具體例中,該導熱材料包括具有高於5瓦每公尺凱氏(W/m.K)的導熱度的材料。在一些具體例中,該導熱材料不含錳。   [0031] 該鹼金屬鹵化物可包括Na、K、Rb、Cs的氟化物、氯化物或溴化物、或其組合。該鹼金屬鹵化物之合適實例包括KF、KHF2 、KCl、KBr、NaF、NaHF2 、RbF、RbHF2 、CsF、CsHF2 、或其組合。在一些具體例中,在式II之化合物中,A包括K、Na或其組合。在某些具體例中,A是K且M是Si。式II之化合物的合適實例包括但不限於K2 SiF6 、K2 TiF6 、K2 ZrF6 、K2 SnF6 、K3 ZrF7 、K3 LnF6 、K3 YF6 、K2 NbF7 、K2 TaF7 、Na2 SiF6 、Na2 TiF6 、Na2 SnF6 、Na2 ZrF6 、LiKSiF6 、RbKLiAlF6 、或其組合。   [0032] 式I之磷光體、該導熱材料或二者可均一地或不均一地分散在該第一黏合劑材料、該第二黏合劑材料或如本文中所述之黏合劑材料中。該導熱材料之存在含量以該複合材料之總量計可以是大於1重量百分比。在一些具體例中,該導熱材料之存在含量以該複合材料之總量計是在約1重量百分比至約50重量百分比的範圍內。在一些具體例中,該導熱材料之存在含量以該複合材料之總量計是在約5重量百分比至約30重量百分比的範圍內。在一些具體例中,該導熱材料之存在含量以該複合材料之總量計是在約10重量百分比至約20重量百分比的範圍內。   [0033] 該導熱材料可具有細的粒度分布,例如次微米級尺寸或更小。該導熱材料之細粒子可避免藉由LED晶片12、式I之磷光體、任何額外之發光材料或其組合所發射之光的非所欲散射。在一些具體例中,該導熱材料具有小於1微米之平均粒度。在一具體例中,該導熱材料具有在約0.01微米至約0.5微米之範圍內的平均粒度。   [0034] 在不局限於任何理論下,咸信在該複合材料中如上述之導熱材料與式I之磷光體的存在可在該照明器具之製造或操作期間(例如在高溫下)幫助減低或防止式I之磷光體的劣化。   [0035] 除了包括式I之磷光體之外,照明器具10可另外包括一或多種額外的發光材料,例如無機磷光體、量子點(QD)材料、電致發光聚合物、及磷光染料。發射例如綠光、藍光、黃光、紅光、橘光、或其他色光之輻射的額外發光材料可被使用以客製所得之光,諸如具有在2500-10000K範圍中之相關色溫(CCT)及在50-99範圍中之CRI的白光。在某些具體例中,額外之發光材料包括發射綠光之磷光體,諸如摻雜Ce3+ 之石榴石磷光體。   [0036] 在複合材料包括分散在黏合劑材料中的式I之磷光體和導熱材料的具體例中,額外之發光材料可連同式I之磷光體和該導熱材料被添加於該複合材料中。例如,該式I之磷光體可與一或多種額外之發光材料例如發射綠光、藍光、黃光、橘光、或紅光之磷光體或QD材料摻混於該複合材料中以產生白光。在一些其他例子中,該額外之發光材料可被分開地配置在該照明器具中(例如在本文中所述之燈10中),而使得LED晶片12輻射偶合到該額外之發光材料。該額外之發光材料可分開地分散在如本文中所述之任何黏合劑材料中,且層體可被配置在該照明器具內之合適位置。例如,當包括該複合材料之層22如圖1顯示被配置在LED晶片12之表面11上,包括該額外之發光材料的層(未在圖1中顯示的)可被配置在層22上或在層22與LED晶片12之表面11之間。   [0037] 在一些例子中,如圖2中說明的,額外之發光材料可連同式I之磷光體被添加在磷光體層24中或連同該導熱材料被添加在導熱層26中。在一些其他的例子中,包括該額外的發光材料的層(未在圖2中顯示)可被配置在LED晶片12之表面11上,其中LED晶片12係定位在磷光體層24與表面11之間或在磷光體層24與導熱層26之間。   [0038] 適合用於照明器具10中之額外的磷光體包括但不限於:   ((Sr1-z (Ca,Ba,Mg,Zn)z )1-(x+w) (Li,Na,K,Rb)w Cex )3 ( Al1-y Siy )O4+y+3(x-w) F1-y-3(x-w) ,0<x≦0.10,0≦y≦0.5,0≦z≦0.5,0≦w≦x;(Ca,Ce)3 Sc2 Si3 O12 (CaSiG);(Sr,Ca,Ba)3 Al1-x Six O4+x F1-x :Ce3+ (SASOF));(Ba,Sr,Ca)5 (PO4 )3 (Cl,F,Br,OH):Eu2+ ,Mn2+ ;(Ba,Sr,Ca)BPO5 :Eu2+ ,Mn2+ ;(Sr,Ca)10 (PO4 )6 *vB2 O3 :Eu2+ (其中0<v≦1);Sr2 Si3 O8 *2SrCl2 :Eu2+ ;(Ca,Sr,Ba)3 MgSi2 O8 :Eu2+ ,Mn2+ ;BaAl8 O13 :Eu2+ ;2SrO*0.84P2 O5 *0.16B2 O3 :Eu2+ ;(Ba,Sr,Ca)MgAl10 O17 :Eu2+ ,Mn2+ ;(Ba,Sr,Ca)Al2 O4 :Eu2+ ;(Y,Gd,Lu,Sc,La)BO3 :Ce3+ ,Tb3+ ;ZnS:Cu+ ,Cl- ;ZnS:Cu+ ,Al3+ ;ZnS:Ag+ ,Cl- ;ZnS:Ag+ ,Al3+ ;(Ba,Sr,Ca)2 Si1-ξ O4-2ξ :Eu2+ (其中-0.2≦ξ≦0.2);(Ba,Sr,Ca)2 (Mg,Zn)Si2 O7 :Eu2+ ;(Sr,Ca,Ba)(Al,Ga,In)2 S4 :Eu2+ ;(Y,Gd,Tb,La,Sm,Pr,Lu)3 (Al,Ga)5-α O12-3/2α :Ce3+ (其中0≦α≦0.5);(Ca,Sr)8 (Mg,Zn)(SiO4 )4 Cl2 :Eu2+ ,Mn2+ ;Na2 Gd2 B2 O7 :Ce3+ ,Tb3+ ;(Sr,Ca,Ba,Mg,Zn)2 P2 O7 :Eu2+ ,Mn2+ ;(Gd,Y,Lu,La)2 O3 :Eu3+ ,Bi3+ ;(Gd,Y,Lu,La)2 O2 S:Eu3+ ,Bi3+ ;(Gd,Y,Lu,La)VO4 :Eu3+ ,Bi3+ ;(Ca,Sr)S:Eu2+ ,Ce3+ ;SrY2 S4 :Eu2+ ;CaLa2 S4 :Ce3+ ;(Ba,Sr,Ca)MgP2 O7 :Eu2+ ,Mn2+ ;(Y,Lu)2 WO6 :Eu3+ ,Mo6+ ;(Ba,Sr,Ca)β Srγ Nμ :Eu2+ (其中2β+4γ=3μ); (Ba,Sr,Ca)2 Si5-x Alx N8-x Ox :Eu2+ (其中0≦x≦2);Ca3 (SiO4 )Cl2 :Eu2+ ; (Lu,Sc,Y,Tb)2-u-v Cev Ca1+u Liw Mg2-w Pw (Si,Ge)3-w O12-u/2 (其中0.5≦u≦1,0<v≦0.1,且0≦w≦0.2); (Y,Lu,Gd)2-φ Caφ Si4 N6+φ C1-φ :Ce3+ ,(其中0≦φ≦0.5);摻雜Eu2+ 及/或Ce3+ 之(Lu,Ca,Li,Mg,Y),α-SiAlON;(Ca,Sr,Ba)SiO2 N2 :Eu2+ ,Ce3+ ; β-SiAlON:Eu2+ ,3.5MgO*0.5MgF2 *GeO2 :Mn4+ ;(Sr,Ca,Ba)AlSiN3 :Eu2+ ;(Sr,Ca,Ba)3 SiO5 :Eu2+ ; Ca1-c-f Cec Euf Al1+c Si1-c N3 (其中0≦c≦0.2,0≦f≦0.2);Ca1-h-r Ceh Eur Al1-h (Mg,Zn)h SiN3 (其中0≦h≦0.2,0≦r≦0.2);Ca1-2s-t Ces (Li,Na)s Eut AlSiN3 (其中0≦s≦0.2,0≦t≦0.2,s+t>0);及Ca1-σ-χ- f Ceσ (Li,Na)χ Euf Al1+σ-χ Si1-σ+χ N3 (其中0≦σ≦0.2,0≦χ≦0.4,0≦f≦0.2)。   [0039] 在一些具體例中,該額外之發光材料包括發射綠光之量子點(QD)材料。該發射綠光之QD材料可包括II-VI族化合物、III-V族化合物、IV-IV族化合物、IV族化合物、I-III-VI2 族化合物、或其混合物。II-VI族化合物之非限制性實例包括CdSe、CdTe、CdS、ZnSe、ZnTe、ZnS、HgTe、HgS、HgSe、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe、或其組合。III-V族化合物可選自以下所組成之群組:GaN、GaP、GaAs、AlN、AlP、AlAs、InN、InP、InAs、GaNP、GaNAs、GaPAs、AlNP、AlNAs、AlPAs、InNP、InNAs、InPAs、GaAlNP、GaAlNAs、GaAlPAs、GaInNP、GaInNAs、GaInPAs、InAlNP、InAlNAs、InAlPAs、及其組合。IV族化合物之實例包括Si、Ge、SiC、及SiGe。I-III-VI2 族黃銅礦型化合物的實例包括CuInS2 、CuInSe2 、CuGaS2 、CuGaSe2 、AgInS2 、AgInSe2 、AgGaS2 、AgGaSe2 、及其組合。   [0040] 用於作為該額外之發光材料的QD材料可以是核/殼QD,其包括核、至少一個塗覆在該核上之殼、及包括一或多種配位體(較佳是有機聚合型配位體)之外塗層。用於製備核-殼QD之例示材料包括但不限於Si、Ge、Sn、Se、Te、B、C(包括鑽石)、P、Co、Au、BN、BP、BAs、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdSeZn、CdTe、HgS、HgSe、HgTe、BeS、BeSe、BeTe、MgS、MgSe、MnS、MnSe、GeS、GeSe、GeTe、SnS、SnSe、SnTe、PbO、PbS、PbSe、PbTe、CuF、CuCl、CuBr、CuI、Si3 N4 、Ge3 N4 、Al2 O3 、(Al,Ga,In)2 (S,Se,Te)3 、Al2 CO、及二或更多種此等材料的適當組合。例示之核-殼QD包括但不限於CdSe/ZnS、CdSe/CdS、CdSe/CdS/ZnS、CdSeZn/CdS/ZnS、CdSeZn /ZnS、InP/ZnS、PbSe/PbS、PbSe/PbS、CdTe/CdS、及CdTe/ZnS。   [0041] 該QD材料一般包括與其表面共軛、配合、相關聯、或附接之配位體。尤其,該QD可包括塗層,該塗層包含配位體以保護該QD免於環境條件(包括提高之溫度、高強度之光、外部氣體、及水分),控制聚集,且允許該QD分散在該主體黏合劑材料中。   [0042] 電致發光聚合物之材料可包括聚茀(較佳是聚(9,9-二辛基茀)及其共聚物(諸如聚(9,9’-二辛基茀-共-雙-N,N’-(4-丁苯基)二苯胺) (F8-TFB);聚(乙烯基咔唑);及聚伸苯乙烯基及其衍生物。適合用於作為該磷光染料之材料可包括但不限於參(1-苯基異喹啉)銥(III)(紅染料)、參(2-苯基吡啶)銥(綠染料)、及雙(2-(4,6-二氟苯基)吡啶根-N,C2)銥(III)(藍染料)。也可使用得自ADS(American Dyes Source, Inc.)之市售的螢光和磷光金屬錯合物。ADS綠染料包括ADS060GE、ADS061GE、ADS063GE、ADS066GE、ADS078GE、ADS090GE。ADS藍染料包括ADS064BE、ADS065BE、及ADS070BE。ADS紅染料包括ADS067RE、ADS068RE、ADS069RE、ADS075RE、ADS076RE、ADS067RE、及ADS077RE。   [0043] 該個別發光材料(例如式I之磷光體和該額外之發光材料)之每一者的比率可取決於所欲之所得光輸出特徵來變化。在該照明器具中該個別發光材料之相對比例可被調節而使得當該個別發光材料之發射被摻混且被用在照明器具中,具有預定x和y值之可見光係在藉由國際照明委員會(Internation Commission on Illumination(CIE))所創設之色度圖上產生。在某些具體例中,該照明器具發射白光。在一些具體例中,所得之白光可擁有在約0.20至約0.55之範圍中的x值,及在約0.20至約0.55之範圍中的y值。在如本文描述之照明器具中每一發光材料之確切身份和含量可根據最終使用者的需要來變化。   [0044] 雖然沒有說明,圖1和2之燈10和30也可包括散射粒子,其可包埋在封裝材料20中。該等散射粒子可包含例如氧化鋁(Al2 O3 )、氧化鈦(TiO2 )、氧化鋯(ZrO2 )、氧化鋅(ZnO)或其組合。該等散射粒子存在含量可以少於或等於封裝材料20之總量的約0.2重量百分比。在一些具體例中,該散射粒子存在含量可以少於或等於封裝材料20之總量的約0.1重量百分比。該散射粒子可具有例如大於1微米之平均粒度,以在可忽略之吸收量下,有效地散射從該LED晶片、式I之磷光體、該額外之發光材料、或其組合所發射之同調光。在一些具體例中,該散射粒子具有在約1微米至約10微米之範圍中的平均粒度。   [0045] 上述之複合材料除了可用在LED中之外還可用在額外之應用中。例如,該複合材料可被用在螢光燈、陰極射線管、電漿顯示裝置或液晶顯示器(LCD)。該複合材料也可用在電磁卡計、γ射線照相機、電腦斷層掃描儀、或雷射機內的閃爍計。這些用途僅是意圖例示而非窮舉。   [0046] 照明器具之非限制性實例包括用於藉由發光二極體(LED)激發之裝置諸如螢光燈、陰極射線管、電漿顯示裝置、液晶顯示器(LCD)、電漿螢幕、氙激發燈、及UV激發之標示系統。所表列之這些裝置僅是意圖例示而非窮舉。在一些具體例中,背光裝置包括如本文描述之照明器具。該背光裝置可包括表面安裝之裝置(SMD)結構。該背光裝置之實例包括但不限於電視、電腦、監視器、智慧型手機、平板電腦和其他手持裝置,其具有包括如所述之LED光源的顯示器。   [0047] 雖然已在本文中圖示說明且描述者僅本發明之某些特徵,很多改良型和變化型對此技藝之技術人員是可想到的。因此,應了解所附之申請專利範圍是意圖涵蓋落在本發明之真實精神內的所有此等改良型和變化型。[0010] In the following specification and the scope of the patent application, the singular type "一 (a or an)" and "the (the)" include plural referents unless the context clearly indicates otherwise. As used herein, the term "or" does not mean exclusivity but means that at least one of the indicated ingredients is present and includes examples in which a combination of the indicated ingredients may be present, unless the context clearly dictates otherwise. [0011] As used throughout the specification and the scope of the patent application, abbreviated terms can be used to modify any quantitative expression that can allow changes without causing changes in the basic functions related to the expression. Therefore, the value modified by the terms (etc.) such as "about" and "substantially" is not limited to the precise value specified. In some examples, the abbreviated term may correspond to the accuracy of the instrument used to measure the value. [0012] As used herein, the terms "phosphor", "phosphor composition", and "phosphor material" may be used to denote a single phosphor or a blend of two or more phosphors. As used herein, the terms "lamp", "light apparatus", and "lighting system" refer to any source of visible light and ultraviolet light, which can generate light by at least one of the energy applied The light-emitting elements (such as phosphor materials or light-emitting diodes) to produce. [0013] As used herein, the term "layer" refers to a material disposed on at least a portion of the underlying surface in a continuous or discontinuous manner. In addition, the term "layer" does not necessarily mean that the configured material has a uniform thickness, but the configured material may have a uniform or variable thickness. As used herein, the term "disposed on" unless specifically stated otherwise, refers to layers or materials that are disposed in direct contact with each other or indirectly disposed by having intermediate layers or features therebetween. [0014] Referring to FIG. 1, a non-limiting example of the configuration of a lighting appliance (such as a lamp 10) is shown according to a specific example. The lamp 10 includes a light emitting diode (LED) light source (such as an LED chip 12) and a lead 14 electrically connected to the LED chip 12. The lead 14 may include a thin wire supported by a thicker lead frame 16 or the lead 14 may include a self-supporting electrode and the lead frame 16 may be omitted. The lead 14 supplies current to the LED chip 12 and thus causes the LED chip 12 to emit radiation. [0015] The light source can be any blue or UV light source, which can generate white light when the radiation emitted by it is directed to the phosphor. The LED chip 10 may be an LED emitting near UV or blue light. The LED chip 10 may include a semiconductor diode based on any suitable III-V, II-VI or IV-IV semiconductor layer and having an emission wavelength of about 250 to 550 nanometers (nm). In particular, the LED chip 10 may contain at least one semiconductor layer containing GaN, ZnSe or SiC. For example, the LED chip 10 may include a nitride compound semiconductor represented by the formula In i Ga j Al k N (where 0≦i; 0≦j; 0≦k and i+j+k=1), which has a value greater than about The emission wavelength of 250 nm and less than about 550 nm. In a specific example, the LED chip 10 is a blue-emitting LED chip having a peak emission wavelength of about 400 to about 500 nm. [0016] Although the general discussion of the exemplary structure of the disclosure discussed herein is directed to LED-based light sources and more particularly to inorganic LED-based light sources, it should be noted that unless otherwise noted, LED chips may be based on organic LED light sources or Replace with any other light source; and any reference to the LED chip is only representative of a suitable light source. [0017] The LED chip 12 may be packaged in a cover 18 that encapsulates the LED chip 12 and the packaging material 20. The cover 18 may be, for example, glass or plastic. The LED chip 12 may be located substantially in the center of the packaging material 20. The packaging material 20 can be epoxy, plastic, low temperature glass, polymer, or any other suitable packaging material as known in the art. In some embodiments, the encapsulation material 20 is epoxy resin or a polymer material such as silicone. Both the cover 18 and the packaging material 20 should be transparent or transparent to the wavelength of light emitted from the LED chip 12, the phosphor of formula I (described below), any additional luminescent material (described below), or a combination thereof Substantially transmissive to transmit through those elements. [0018] Alternatively, the lamp 10 may only include the packaging material 20 without the cover 18. The LED chip 12 can be supported by, for example, one or more of the lead frame 16, a self-supporting electrode, the bottom of the cover 18, or a pedestal (not shown) mounted on the lead frame 16. In some specific examples, the LED chip 12 is installed in a reflector cup (not shown). The reflector cup may be made of or coated with a reflective material, such as aluminum oxide, titanium oxide, or other dielectric materials known in the art. [0019] In the lamp 10, the LED chip 12 is radiation coupled to the composite material. The composite material includes a phosphor of formula I and a thermally conductive material dispersed in at least a part of a binder material. Radiation coupling means that the elements are related to each other so that the radiation emitted from one is transmitted to the other. As illustrated in FIG. 1, the composite material layer 22 is disposed on at least a part of the surface 11 of the LED chip 12. The layer 22 can be disposed on the portion of the surface 11 of the LED chip 12 using a suitable method. In a non-limiting example, a polysiloxane slurry can be formed, wherein the phosphor particles of formula I and the thermally conductive material are randomly or uniformly suspended, and a layer of the slurry can be deposited on at least a portion of the surface 11 of the LED chip 12 on. The specific examples described are only examples of possible positions of the composite material and the LED chip 12 in the lamp 10. [0020] In some other specific examples, the composite material may be coated on the inner surface 17 of the cover 18 of the lamp 10 instead of being directly disposed on the LED chip 12. The composite material may be coated on the entire inner surface 17 or one or more parts of the inner surface 17 of the shell 18. By way of example, a part of the inner surface 17 (which is designated by the number 19) can be coated with the composite material. This portion 19 of the inner surface 17 can be selected such that a desired amount of light from the LED chip 12 passes through the selected portion. Additionally or alternatively, the composite material may be positioned at one or more suitable locations other than the shell 18. [0021] Referring to FIG. 2, the lamp 30, in some specific examples, includes a composite material including a phosphor layer 24 disposed on at least a portion of the surface 11 of the LED chip 12 and a phosphor layer 24 disposed on the phosphor layer 24 including thermal conductivity Material of the thermally conductive layer 26. The phosphor layer 24 includes a phosphor of Formula I as described herein, which is dispersed in at least a portion of the first binder material. The thermally conductive layer 26 includes a thermally conductive material (as described herein) dispersed in at least a portion of the second adhesive material. The first adhesive material and the second adhesive material include suitable adhesive materials as described below. In some specific examples, the first adhesive material and the second adhesive material are the same. The phosphor layer 24 and the thermally conductive layer 26 can use separate slurries (the first slurry has the phosphor particles of formula I dispersed in the first binder material and the second slurry has the thermally conductive material dispersed in the second binder material. ) Configuration. [0022] Suitable materials for the first and/or second adhesive materials may include those emitted by the LED chip 12, the phosphor of Formula I, additional luminescent materials (described below), or a combination thereof The light is optically transparent and is chemically and optically compatible with the phosphor of formula I, the thermally conductive material and any surrounding materials or layers in the lighting fixture. Examples of materials used for the first and/or second adhesive materials of the lighting fixtures as described herein may include epoxides, polysiloxanes, and polysiloxane derivatives (which include but are not limited to aminopolysiloxanes ( AMS), polyphenylmethylsiloxane, polyphenylalkylsiloxane, polydiphenylsiloxane, polydialkylsiloxane, silsesquioxane, fluorinated polysiloxane, and Polysiloxane substituted by vinyl and hydride), low temperature glass, or a combination thereof. [0023] The phosphor of formula I is a complex fluoride. In a specific example, the phosphor of formula I is a complex fluoride doped with manganese (Mn 4+ ). The complex fluoride has a host lattice, which contains a coordination center surrounded by a fluoride ion as a ligand, and the charge is offset by a counter ion (A) as necessary. For example, in K 2 [SiF 6 ], the coordination center is Si and the counter ion is K. Complex fluorides are usually expressed as a combination of simple binary fluorides. The square brackets in the chemical formula of the complex fluoride (occasionally omitted for simplification) indicate that the complex ion present in the particular complex fluoride is a new chemical substance different from the simple fluoride ion. In the phosphor of formula I, the Mn 4+ dopant or activator serves as an additional coordination center, replacing a part of the coordination center (for example, Si) to form a luminescent center. The manganese-doped formula I: A 2 [(M,Mn)F 6 ] phosphor can also be represented by A 2 [MF 6 ]:Mn 4+ . The host lattice (including the counter ion) can further improve the excitation and emission properties of the activator ion. As used herein, the terms "phosphor of formula I" and "manganese-doped phosphor" may be used interchangeably throughout the specification. [0024] The counter ion A in Formula I is Li, Na, K, Rb, Cs, or a combination thereof, and y is 6. In some specific examples, A is Na, K, Rb, or a combination thereof. The coordination center M in formula I is an element selected from the group consisting of Si, Ge, Ti, Zr, Hf, Sn, Al, Ga, In, Sc, Y, Bi, La, Gd, Nb, Ta, and combinations thereof. In some specific examples, M is Si, Ge, Ti, or a combination thereof. In some specific examples, A is K and M is Si. Examples of phosphors of formula I include K 2 [SiF 6 ]: Mn 4+ , K 2 [TiF 6 ]: Mn 4+ , K 2 [SnF 6 ]: Mn 4+ , Cs 2 [TiF 6 ]: Mn 4 + , Rb 2 [TiF 6 ]: Mn 4+ , Cs 2 [SiF 6 ]: Mn 4+ , Rb 2 [SiF 6 ]: Mn 4+ , Na 2 [TiF 6 ]: Mn 4+ , Na 2 [ZrF 6 ]: Mn 4+ , K 3 [ZrF 7 ]: Mn 4+ , K 3 [BiF 6 ]: Mn 4+ , K 3 [YF 6 ]: Mn 4+ , K 3 [LaF 6 ]: Mn 4+ , K 3 [GdF 6 ]: Mn 4+ , K 2 [NbF 7 ]: Mn 4+ and K 2 [TaF 7 ]: Mn 4+ . In some specific examples, the phosphor of formula I is K 2 [SiF 6 ]:Mn 4+ . [0025] Other manganese-doped phosphors that can be used in lighting fixtures as described herein include: (A) A 2 [MF 5 ]: Mn 4+ , where A is selected from Li, Na, K, Rb, Cs, and combinations thereof; and where M is selected from Al, Ga, In, and combinations thereof; (B) A 3 [MF 6 ]: Mn 4+ , where A is selected from Li, Na, K, Rb , Cs, and combinations thereof; and where M is selected from Al, Ga, In, and combinations thereof; (C) Zn 2 [MF 7 ]: Mn 4+ , where M is selected from Al, Ga, In, and Combination; (D) A[In 2 F 7 ]: Mn 4+ , where A is selected from Li, Na, K, Rb, Cs, and combinations thereof; (E) E[MF 6 ]: Mn 4+ , where E is selected from Mg, Ca, Sr, Ba, Zn, and combinations thereof; and wherein M is selected from Ge, Si, Sn, Ti, Zr, and combinations thereof; (F) Ba 0.65 Zr 0.35 F 2.70 : Mn 4 + ; And (G) A 3 [ZrF 7 ]: Mn 4+ , where A is selected from Li, Na, K, Rb, Cs, and combinations thereof. [0026] In some embodiments, the manganese-doped phosphor (such as the phosphor of formula I) can be post-processed to enhance performance and color stability properties to obtain a color-stable doped phosphor as described in U.S. Patent No. 8,252,613 Heteromanganese phosphor. The post-treatment method includes contacting a manganese-doped phosphor (such as a phosphor of formula I) with a fluorine-containing oxidant in gas form at an elevated temperature. [0027] The manganese content in the phosphor of Formula I as described herein may range from about 1.2 mole percent (mol%) (about 0.3 weight percent (wt%)) to about 16.5 mol% (about 4 wt%). In some specific examples, the manganese content may range from about 2 mol% (about 0.5 wt%) to 13.4 mol% (about 3.3 wt%), or about 2 mol% to 12.2 mol% (about 3 wt%), or About 2 mol% to 11.2 mol% (about 2.76 wt%), or about 2 mol% to about 10 mol% (about 2.5 wt%), or about 2 mol% to 5.5 mol% (about 1.4 wt%), or about 2 mol% to about 3.0 mol% (about 0.75 wt%). [0028] The phosphor of Formula I used in the layer 22 (FIG. 1) and/or the phosphor layer 24 (FIG. 2) of the composite material may have a particle size distribution of D50 particle size ranging from about 10 microns to about 80 microns. In some embodiments, it is desirable to use particles with a smaller particle size (for example, a D50 particle size of less than about 30 microns). In some embodiments, the phosphor of Formula I has a D50 particle size in the range of about 10 microns to about 20 microns. In a particular embodiment, the phosphor of Formula I has a D50 particle size in the range of about 12 microns to about 18 microns. [0029] The thermally conductive material used in the lighting appliance as described herein includes a material selected from the group consisting of indium oxide, tin oxide, indium tin oxide, calcium oxide, barium oxide, strontium oxide, aluminum hydroxide, Magnesium hydroxide, calcium hydroxide, barium hydroxide, strontium hydroxide, zinc hydroxide, aluminum phosphate, magnesium phosphate, calcium phosphate, barium phosphate, strontium phosphate, diamond, graphene, polyethylene nanofiber, carbon nanotube , Silver metal nanoparticle, copper metal nanoparticle, gold metal nanoparticle, aluminum metal nanoparticle, boron nitride, silicon nitride, alkali metal halide, calcium fluoride, magnesium fluoride, compound of formula II , And its combination;
Figure 02_image003
Wherein A in the compound of formula II is Li, Na, K, Rb, Cs, or a combination thereof, and M in the compound of formula II is an element selected from the group consisting of Si, Ge, Ti, Zr , Hf, Sn, Al, Ga, In, Sc, Y, Bi, La, Gd, Nb, Ta, and combinations thereof. In some specific examples, A is Na, K, Rb, or a combination thereof. In some specific examples, M is Si, Ge, Ti, or a combination thereof. [0030] In some specific examples, the thermally conductive material includes a material having a thermal conductivity higher than 5 watts per meter Kjeldahl (W/mK). In some specific examples, the thermally conductive material does not contain manganese. [0031] The alkali metal halide may include fluoride, chloride or bromide of Na, K, Rb, Cs, or a combination thereof. Suitable examples of the alkali metal halide include KF, KHF 2 , KCl, KBr, NaF, NaHF 2 , RbF, RbHF 2 , CsF, CsHF 2 , or a combination thereof. In some embodiments, in the compound of formula II, A includes K, Na, or a combination thereof. In some specific examples, A is K and M is Si. Suitable examples of compounds of formula II include, but are not limited to, K 2 SiF 6 , K 2 TiF 6 , K 2 ZrF 6 , K 2 SnF 6 , K 3 ZrF 7 , K 3 LnF 6 , K 3 YF 6 , K 2 NbF 7 , K 2 TaF 7 , Na 2 SiF 6 , Na 2 TiF 6 , Na 2 SnF 6 , Na 2 ZrF 6 , LiKSiF 6 , RbKLiAlF 6 , or a combination thereof. [0032] The phosphor of formula I, the thermally conductive material, or both may be uniformly or non-uniformly dispersed in the first adhesive material, the second adhesive material, or the adhesive material as described herein. The content of the thermally conductive material may be greater than 1 weight percent based on the total amount of the composite material. In some embodiments, the content of the thermally conductive material is in the range of about 1 weight percent to about 50 weight percent based on the total amount of the composite material. In some embodiments, the content of the thermally conductive material is in the range of about 5 weight percent to about 30 weight percent based on the total amount of the composite material. In some embodiments, the content of the thermally conductive material is in the range of about 10% by weight to about 20% by weight based on the total amount of the composite material. [0033] The thermally conductive material may have a fine particle size distribution, such as sub-micron size or smaller. The fine particles of the thermally conductive material can avoid undesired scattering of light emitted by the LED chip 12, the phosphor of formula I, any additional luminescent material, or a combination thereof. In some embodiments, the thermally conductive material has an average particle size of less than 1 micron. In a specific example, the thermally conductive material has an average particle size in the range of about 0.01 microns to about 0.5 microns. [0034] Without being limited to any theory, it is believed that the presence of the above-mentioned thermally conductive material and the phosphor of formula I in the composite material can help to reduce or reduce or reduce or reduce or reduce the temperature during the manufacture or operation of the lighting fixture (for example, at high temperatures). Prevent the deterioration of the phosphor of formula I. [0035] In addition to including the phosphor of Formula I, the lighting fixture 10 may additionally include one or more additional luminescent materials, such as inorganic phosphors, quantum dot (QD) materials, electroluminescent polymers, and phosphorescent dyes. Additional luminescent materials that emit radiation such as green light, blue light, yellow light, red light, orange light, or other colored light can be used to customize the resulting light, such as having a correlated color temperature (CCT) in the range of 2500-10000K and CRI white light in the range of 50-99. In some embodiments, the additional luminescent material includes a phosphor that emits green light, such as a Ce 3+ doped garnet phosphor. [0036] In specific examples where the composite material includes the phosphor of Formula I and the thermally conductive material dispersed in the binder material, additional luminescent material may be added to the composite material along with the phosphor of Formula I and the thermally conductive material. For example, the phosphor of formula I can be blended with one or more additional luminescent materials such as phosphors or QD materials emitting green, blue, yellow, orange, or red light in the composite material to generate white light. In some other examples, the additional luminescent material may be separately disposed in the lighting fixture (for example, in the lamp 10 described herein), so that the LED chip 12 is radiatively coupled to the additional luminescent material. The additional luminescent material can be separately dispersed in any adhesive material as described herein, and the layer body can be arranged at a suitable position in the lighting fixture. For example, when the layer 22 including the composite material is disposed on the surface 11 of the LED chip 12 as shown in FIG. 1, a layer including the additional luminescent material (not shown in FIG. 1) may be disposed on the layer 22 or Between the layer 22 and the surface 11 of the LED chip 12. [0037] In some examples, as illustrated in FIG. 2, additional luminescent material may be added to the phosphor layer 24 together with the phosphor of formula I or added to the thermally conductive layer 26 together with the thermally conductive material. In some other examples, a layer (not shown in FIG. 2) including the additional luminescent material may be disposed on the surface 11 of the LED chip 12, wherein the LED chip 12 is positioned between the phosphor layer 24 and the surface 11 Or between the phosphor layer 24 and the thermally conductive layer 26. [0038] Additional phosphors suitable for use in the lighting fixture 10 include but are not limited to: ((Sr 1-z (Ca, Ba, Mg, Zn) z ) 1-(x+w) (Li, Na, K ,Rb) w Ce x ) 3 (Al 1-y Si y )O 4+y+3(xw) F 1-y-3(xw) , 0<x≦0.10, 0≦y≦0.5, 0≦z ≦0.5, 0≦w≦x; (Ca,Ce) 3 Sc 2 Si 3 O 12 (CaSiG); (Sr,Ca,Ba) 3 Al 1-x Si x O 4+x F 1-x :Ce 3 + (SASOF)); (Ba,Sr,Ca) 5 (PO 4 ) 3 (Cl,F,Br,OH):Eu 2+ ,Mn 2+ ;(Ba,Sr,Ca)BPO 5 :Eu 2+ ,Mn 2+ ;(Sr,Ca) 10 (PO 4 ) 6 *vB 2 O 3 :Eu 2+ (where 0<v≦1); Sr 2 Si 3 O 8 *2SrCl 2 :Eu 2+ ;(Ca ,Sr,Ba) 3 MgSi 2 O 8 :Eu 2+ ,Mn 2+ ;BaAl 8 O 13 :Eu 2+ ;2SrO*0.84P 2 O 5 *0.16B 2 O 3 :Eu 2+ ;(Ba,Sr ,Ca)MgAl 10 O 17 :Eu 2+ ,Mn 2+ ; (Ba,Sr,Ca)Al 2 O 4 :Eu 2+ ; (Y,Gd,Lu,Sc,La)BO 3 :Ce 3+ , Tb 3+; ZnS: Cu +, Cl -; ZnS: Cu +, Al 3+; ZnS: Ag +, Cl -; ZnS: Ag +, Al 3+; (Ba, Sr, Ca) 2 Si 1-ξ O 4-2ξ :Eu 2+ (where -0.2≦ξ≦0.2); (Ba,Sr,Ca) 2 (Mg,Zn)Si 2 O 7 :Eu 2+ ; (Sr,Ca,Ba)(Al, Ga,In) 2 S 4 :Eu 2+ ; (Y,Gd,Tb,La,Sm,Pr,Lu) 3 (Al,Ga) 5-α O 12-3/2α :Ce 3+ (where 0≦ α≦0.5); (Ca,Sr) 8 (Mg,Zn)(SiO 4 ) 4 Cl 2 :Eu 2+ ,Mn 2+ ; Na 2 Gd 2 B 2 O 7 :Ce 3+ ,Tb 3+ ;( Sr,Ca,Ba,Mg,Zn) 2 P 2 O 7 :Eu 2+ ,Mn 2+ ; (Gd,Y,Lu,La) 2 O 3 :Eu 3+ ,Bi 3+ ; (Gd,Y,Lu,La) 2 O 2 S:Eu 3+ ,Bi 3+ ; (Gd,Y,Lu,La)VO 4 :Eu 3+ ,Bi 3 + ;(Ca,Sr)S:Eu 2+ ,Ce 3+ ;SrY 2 S 4 :Eu 2+ ;CaLa 2 S 4 :Ce 3+ ;(Ba,Sr,Ca)MgP 2 O 7 :Eu 2+ ,Mn 2+ ;(Y,Lu) 2 WO 6 :Eu 3+ ,Mo 6+ ;(Ba,Sr,Ca) β Sr γ N μ :Eu 2+ (where 2β+4γ=3μ); (Ba, Sr,Ca) 2 Si 5-x Al x N 8-x O x :Eu 2+ (where 0≦x≦2); Ca 3 (SiO 4 )Cl 2 :Eu 2+ ; (Lu,Sc,Y, Tb) 2-uv Ce v Ca 1+u Li w Mg 2-w P w (Si,Ge) 3-w O 12-u/2 (where 0.5≦u≦1, 0<v≦0.1, and 0≦ w≦0.2); (Y,Lu,Gd) 2-φ Ca φ Si 4 N 6+φ C 1-φ :Ce 3+ , (where 0≦φ≦0.5); doped with Eu 2+ and/or Ce 3+ of (Lu,Ca,Li,Mg,Y),α-SiAlON; (Ca,Sr,Ba)SiO 2 N 2 :Eu 2+ ,Ce 3+ ; β-SiAlON:Eu 2+ ,3.5MgO* 0.5MgF 2 *GeO 2 :Mn 4+ ;(Sr,Ca,Ba)AlSiN 3 :Eu 2+ ;(Sr,Ca,Ba) 3 SiO 5 :Eu 2+ ; Ca 1-cf Ce c Eu f Al 1 +c Si 1-c N 3 (where 0≦c≦0.2, 0≦f≦0.2); Ca 1-hr Ce h Eu r Al 1-h (Mg,Zn) h SiN 3 (where 0≦h≦0.2 , 0≦r≦0.2); Ca 1-2s-t Ce s (Li,Na) s Eu t AlSiN 3 (where 0≦s≦0.2, 0≦t≦0.2, s+t>0); and Ca 1 -σ-χ- f Ce σ (Li,Na) χ Eu f Al 1+σ-χ Si 1-σ+χ N 3 (where 0≦σ≦0.2, 0≦χ≦0.4, 0≦f≦0.2) . [0039] In some embodiments, the additional luminescent material includes a quantum dot (QD) material that emits green light. The green light emitting QD material may include II-VI group compounds, III-V group compounds, IV-IV group compounds, IV group compounds, I-III-VI group 2 compounds, or mixtures thereof. Non-limiting examples of II-VI group compounds include CdSe, CdTe, CdS, ZnSe, ZnTe, ZnS, HgTe, HgS, HgSe, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe , CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, HgZnSTe, or a combination thereof. Group III-V compounds can be selected from the group consisting of GaN, GaP, GaAs, AlN, AlP, AlAs, InN, InP, InAs, GaNP, GaNAS, GaPAs, AlNP, AlNAs, AlPAs, InNP, InNAs, InPAs , GaAlNP, GaAlNAs, GaAlPAs, GaInNP, GaInNAs, GaInPAs, InAlNP, InAlNAs, InAlPAs, and combinations thereof. Examples of group IV compounds include Si, Ge, SiC, and SiGe. Examples of chalcopyrite-type compound I-III-VI 2 group comprises CuInS 2, CuInSe 2, CuGaS 2 , CuGaSe 2, AgInS 2, AgInSe 2, AgGaS 2, AgGaSe 2, and combinations thereof. [0040] The QD material used as the additional luminescent material may be a core/shell QD, which includes a core, at least one shell coated on the core, and includes one or more ligands (preferably organic polymer Type ligand) outside coating. Exemplary materials for preparing core-shell QDs include but are not limited to Si, Ge, Sn, Se, Te, B, C (including diamond), P, Co, Au, BN, BP, BAs, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdSeZn, CdTe, HgS, HgSe, HgTe, BeS, BeSe, BeTe, MgS, MgSe, MnS, MnSe, GeS, GeSe, GeTe, SnS, SnSe, SnTe, PbO, PbS, PbSe, PbTe, CuF, CuCl, CuBr, CuI, Si 3 N 4 , Ge 3 N 4 , Al 2 O 3 , (Al, Ga, In) 2 (S, Se, Te) 3 , Al 2 CO, and appropriate combinations of two or more of these materials. Exemplary core-shell QDs include but are not limited to CdSe/ZnS, CdSe/CdS, CdSe/CdS/ZnS, CdSeZn/CdS/ZnS, CdSeZn/ZnS, InP/ZnS, PbSe/PbS, PbSe/PbS, CdTe/CdS, And CdTe/ZnS. [0041] The QD material generally includes a ligand that is conjugated, matched, associated with, or attached to its surface. In particular, the QD may include a coating that includes ligands to protect the QD from environmental conditions (including elevated temperature, high-intensity light, external air, and moisture), control aggregation, and allow the QD to disperse In the main body adhesive material. [0042] The material of the electroluminescent polymer may include poly (preferably poly(9,9-dioctyl) and its copolymers (such as poly(9,9'-dioctyl)-co-double -N,N'-(4-butylphenyl)diphenylamine) (F8-TFB); poly(vinylcarbazole); and polystyrene and its derivatives. Suitable for use as the phosphorescent dye material Can include but not limited to ginseng (1-phenylisoquinoline) iridium (III) (red dye), ginseng (2-phenylpyridine) iridium (green dye), and bis (2-(4,6-difluoro) Phenyl)pyridine-N,C2)iridium(III) (blue dye). Commercially available fluorescent and phosphorescent metal complexes from ADS (American Dyes Source, Inc.) can also be used. ADS green dyes include ADS060GE, ADS061GE, ADS063GE, ADS066GE, ADS078GE, ADS090GE. ADS blue dyes include ADS064BE, ADS065BE, and ADS070BE. ADS red dyes include ADS067RE, ADS068RE, ADS069RE, ADS075RE, ADS076RE, ADS067RE and ADS067RE. [004] For example, the ratio of each of the phosphor of formula I and the additional luminescent material) can vary depending on the desired light output characteristics. The relative proportion of the individual luminescent materials in the lighting fixture can be adjusted so that The emission of the individual luminescent materials is blended and used in lighting fixtures. The visible light with predetermined x and y values is generated on the chromaticity diagram created by the International Commission on Illumination (CIE). In some embodiments, the lighting fixture emits white light. In some embodiments, the resulting white light may have an x value in the range of about 0.20 to about 0.55, and a y value in the range of about 0.20 to about 0.55. The exact identity and content of each luminescent material in the lighting fixture as described herein can be changed according to the needs of the end user. [0044] Although not illustrated, the lamps 10 and 30 of FIGS. 1 and 2 may also include scattering particles, It can be embedded in the packaging material 20. The scattering particles can include, for example, aluminum oxide (Al 2 O 3 ), titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), zinc oxide (ZnO), or a combination thereof. The content of the equal scattering particles may be less than or equal to about 0.2 weight percent of the total amount of the packaging material 20. In some embodiments, the content of the scattering particles may be less than or equal to about 0.1 weight percent of the total amount of the packaging material 20. The scattering particles may have, for example, an average particle size greater than 1 micron, so as to effectively scatter the co-dimming light emitted from the LED chip, the phosphor of formula I, the additional luminescent material, or a combination thereof under a negligible amount of absorption. .in In some specific examples, the scattering particles have an average particle size in the range of about 1 micrometer to about 10 micrometers. [0045] The above-mentioned composite materials can be used in additional applications in addition to being used in LEDs. For example, the composite material can be used in fluorescent lamps, cathode ray tubes, plasma display devices, or liquid crystal displays (LCD). The composite material can also be used in electromagnetic card meters, gamma-ray cameras, computed tomography scanners, or scintillators in laser machines. These uses are intended to be illustrative rather than exhaustive. [0046] Non-limiting examples of lighting fixtures include devices for excitation by light emitting diodes (LEDs) such as fluorescent lamps, cathode ray tubes, plasma display devices, liquid crystal displays (LCD), plasma screens, xenon Excitation lamp, and UV excitation marking system. The listed devices are only intended to be illustrative and not exhaustive. In some specific examples, the backlight device includes a lighting fixture as described herein. The backlight device may include a surface mount device (SMD) structure. Examples of such backlight devices include, but are not limited to, televisions, computers, monitors, smart phones, tablets, and other handheld devices, which have displays that include LED light sources as described. [0047] Although only certain features of the present invention have been illustrated and described herein, many improvements and variations are conceivable by those skilled in the art. Therefore, it should be understood that the scope of the appended patent application is intended to cover all such improvements and variations that fall within the true spirit of the present invention.

[0048]10‧‧‧燈11‧‧‧表面12‧‧‧LED晶片14‧‧‧引線16‧‧‧引線架17‧‧‧內面18‧‧‧罩體19‧‧‧內面之一部分20‧‧‧封裝材料22‧‧‧層24‧‧‧磷光體層26‧‧‧導熱層30‧‧‧燈[0048]10‧‧‧lamp 11‧‧‧surface 12‧‧‧LED chip 14‧‧‧lead 16‧‧‧lead frame 17‧‧‧inner surface 18‧‧‧part of the inner surface of the cover 19‧‧‧ 20‧‧‧Encapsulation material 22‧‧‧Layer 24‧‧‧Phosphor layer 26‧‧‧Heat conductive layer 30‧‧‧Lamp

[0007] 當以下詳細說明在參照附圖下被研讀時,本發明之這些和其他特徵、方面、和優點將更佳地被了解,在該等圖中類似字符在整個該等圖中代表類似部分,其中:   [0008] 圖1是根據本揭示內容之一具體例的照明器具的示意橫截面視圖;及   [0009] 圖2是根據本揭示內容之另一具體例的照明器具的示意橫截面視圖。[0007] When the following detailed description is studied with reference to the accompanying drawings, these and other features, aspects, and advantages of the present invention will be better understood. Similar characters in the drawings represent similarities throughout the drawings. Part, in which:   [0008] FIG. 1 is a schematic cross-sectional view of a lighting fixture according to a specific example of the present disclosure; and [0009] FIG. 2 is a schematic cross-sectional view of a lighting fixture according to another specific example of the present disclosure view.

10‧‧‧燈 10‧‧‧Light

11‧‧‧表面 11‧‧‧surface

12‧‧‧LED晶片 12‧‧‧LED chip

14‧‧‧引線 14‧‧‧Lead

16‧‧‧引線架 16‧‧‧Lead Frame

17‧‧‧內面 17‧‧‧Inside

18‧‧‧罩體 18‧‧‧Hood

19‧‧‧內面之一部分 19‧‧‧Part of the inner surface

20‧‧‧封裝材料 20‧‧‧Packaging materials

22‧‧‧層 22‧‧‧Floor

Claims (10)

一種照明器具,其包含:輻射偶合到複合材料的發光二極體(LED)光源,該複合材料包含分散在黏合劑材料之至少一部分中的式I磷光體和導熱材料,A x [(M,Mn)F y ] (I)其中該導熱材料包括選自以下所組成群組之材料:磷酸鋁、磷酸鎂、磷酸鈣、磷酸鋇、磷酸鍶、鹼金屬鹵化物、氟化鈣、氟化鎂、式II之化合物、及其組合;A x [MF y ] (II)其中A於每次出現時獨立地是Li、Na、K、Rb、Cs、或其組合,M於每次出現時獨立地是Si、Ge、Sn、Ti、Zr、Al、Ga、In、Sc、Hf、Y、La、Nb、Ta、Bi、Gd、或其組合,x於每次出現時獨立地是在[(M,Mn)Fy]離子和[MFy]離子上之電荷的絕對值,且y是5、6、或7。 A lighting fixture comprising: a light emitting diode (LED) light source coupled to a composite material by radiation, the composite material comprising a phosphor of formula I and a thermally conductive material dispersed in at least a part of a binder material, A x [(M, Mn)F y ] (I) wherein the thermally conductive material includes a material selected from the group consisting of aluminum phosphate, magnesium phosphate, calcium phosphate, barium phosphate, strontium phosphate, alkali metal halide, calcium fluoride, magnesium fluoride , The compound of formula II, and combinations thereof; A x [MF y ] (II) where A is Li, Na, K, Rb, Cs, or a combination thereof independently at each occurrence, and M is independent at each occurrence Ground is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof, x is independently in each occurrence of [( The absolute value of the charge on M,Mn)F y ] ion and [MF y ] ion, and y is 5, 6, or 7. 如申請專利範圍第1項之照明器具,其中該導熱材料具有小於1微米之平均粒度。 Such as the luminaire of item 1 of the scope of patent application, wherein the thermally conductive material has an average particle size of less than 1 micron. 如申請專利範圍第1項之照明器具,其中該導熱材料具有在約0.01微米至約0.5微米之平均粒度。 For example, the lighting fixture of the first item of the scope of patent application, wherein the thermally conductive material has an average particle size of about 0.01 micron to about 0.5 micron. 如申請專利範圍第1項之照明器具,其中該導熱材料以該複合材料之總量計係以約1重量百分比至約50重量百分比之範圍存在。 For example, the lighting appliance of the first item of the scope of patent application, wherein the thermally conductive material is present in the range of about 1 weight percent to about 50 weight percent based on the total amount of the composite material. 如申請專利範圍第1項之照明器具,其中該導熱材料以該複合材料之總量計係以約10重量百分比至約20重量百分比之範圍存在。 For example, the lighting appliance of the first item of the scope of patent application, wherein the thermally conductive material is present in the range of about 10% by weight to about 20% by weight based on the total amount of the composite material. 如申請專利範圍第1項之照明器具,其中該導熱材料不含錳。 For example, the lighting appliance in the first item of the scope of patent application, wherein the thermally conductive material does not contain manganese. 如申請專利範圍第1項之照明器具,其中該鹼金屬鹵化物包含氟化鉀、氯化鉀、溴化鉀、或其組合。 For example, the lighting appliance of item 1 of the scope of patent application, wherein the alkali metal halide comprises potassium fluoride, potassium chloride, potassium bromide, or a combination thereof. 如申請專利範圍第1項之照明器具,其中A是K且M是Si。 Such as the lighting appliance in the first item of the scope of patent application, where A is K and M is Si. 如申請專利範圍第1項之照明器具,其中該黏合劑材料包含聚矽氧或聚矽氧衍生物、環氧樹脂或低溫玻璃。 For example, the lighting appliance in the first item of the scope of patent application, wherein the adhesive material includes polysiloxane or polysiloxane derivatives, epoxy resin or low temperature glass. 一種背光裝置,其包含如申請專利範圍第1項之照明器具。 A backlight device, which includes the lighting appliance as claimed in the first item of the scope of patent application.
TW106131582A 2017-09-14 2017-09-14 Composite materials having red emitting phosphors TWI732041B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106131582A TWI732041B (en) 2017-09-14 2017-09-14 Composite materials having red emitting phosphors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106131582A TWI732041B (en) 2017-09-14 2017-09-14 Composite materials having red emitting phosphors

Publications (2)

Publication Number Publication Date
TW201915140A TW201915140A (en) 2019-04-16
TWI732041B true TWI732041B (en) 2021-07-01

Family

ID=66992207

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106131582A TWI732041B (en) 2017-09-14 2017-09-14 Composite materials having red emitting phosphors

Country Status (1)

Country Link
TW (1) TWI732041B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112341145A (en) * 2020-07-23 2021-02-09 王誉富 Functional ceramic with health care function and preparation method thereof
CN113214825B (en) * 2021-04-26 2022-11-15 云南民族大学 Multi-fluoride red-light material for solid-state lighting LED and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060226758A1 (en) * 2005-04-08 2006-10-12 Nichia Corporation Light emitting device with silicone resin layer formed by screen printing
CN103429701A (en) * 2011-03-23 2013-12-04 通用电气公司 Color stable manganese-doped phosphors
TW201400589A (en) * 2012-05-22 2014-01-01 Koninkl Philips Electronics Nv New phosphors, such as new narrow-band red emitting phosphors, for solid state lighting
US20150028365A1 (en) * 2013-07-24 2015-01-29 Juanita N. Kurtin Highly refractive, transparent thermal conductors for better heat dissipation and light extraction in white leds
TW201728745A (en) * 2015-12-01 2017-08-16 馬克專利公司 Mn-activated phosphors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060226758A1 (en) * 2005-04-08 2006-10-12 Nichia Corporation Light emitting device with silicone resin layer formed by screen printing
CN103429701A (en) * 2011-03-23 2013-12-04 通用电气公司 Color stable manganese-doped phosphors
TW201400589A (en) * 2012-05-22 2014-01-01 Koninkl Philips Electronics Nv New phosphors, such as new narrow-band red emitting phosphors, for solid state lighting
US20150028365A1 (en) * 2013-07-24 2015-01-29 Juanita N. Kurtin Highly refractive, transparent thermal conductors for better heat dissipation and light extraction in white leds
TW201728745A (en) * 2015-12-01 2017-08-16 馬克專利公司 Mn-activated phosphors

Also Published As

Publication number Publication date
TW201915140A (en) 2019-04-16

Similar Documents

Publication Publication Date Title
US10158052B2 (en) LED based device with wide color gamut
US11515453B2 (en) Light-converting material with semiconductor nanoparticles, process for its preparation, and light source
US10230022B2 (en) Lighting apparatus including color stable red emitting phosphors and quantum dots
US8502441B2 (en) Light emitting device having a coated nano-crystalline phosphor and method for producing the same
US11008509B2 (en) Coated manganese doped phosphors
US11149195B2 (en) Coated red line emitting phosphors
TWI798246B (en) Coated manganese doped phosphors
TWI732041B (en) Composite materials having red emitting phosphors
KR102463480B1 (en) Composite material with red light emitting phosphor
KR20130057354A (en) White light emitting diode and lighting apparatus including the same
US9938457B1 (en) Methods for fabricating devices containing red line emitting phosphors
TW202403016A (en) Phosphor compositions and devices thereof