TWI731243B - Composition for forming solar cell electrode and electrode prepared using the same - Google Patents

Composition for forming solar cell electrode and electrode prepared using the same Download PDF

Info

Publication number
TWI731243B
TWI731243B TW107118778A TW107118778A TWI731243B TW I731243 B TWI731243 B TW I731243B TW 107118778 A TW107118778 A TW 107118778A TW 107118778 A TW107118778 A TW 107118778A TW I731243 B TWI731243 B TW I731243B
Authority
TW
Taiwan
Prior art keywords
solar cell
composition
glass frit
mol
electrode
Prior art date
Application number
TW107118778A
Other languages
Chinese (zh)
Other versions
TW201925124A (en
Inventor
朴珉秀
朴相熙
金泰俊
李喆浩
鄭名成
河賢辰
Original Assignee
大陸商常州聚和新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商常州聚和新材料股份有限公司 filed Critical 大陸商常州聚和新材料股份有限公司
Publication of TW201925124A publication Critical patent/TW201925124A/en
Application granted granted Critical
Publication of TWI731243B publication Critical patent/TWI731243B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/04Frit compositions, i.e. in a powdered or comminuted form containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/08Frit compositions, i.e. in a powdered or comminuted form containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/20Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing titanium compounds; containing zirconium compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)

Abstract

Disclosed herein are a composition for solar cell electrodes and a solar cell electrode. The composition for solar cell electrodes includes: a conductive powder; a tellurium (Te)-silver (Ag)-boron (B)-based glass frit; and an organic vehicle, wherein the glass frit has a molar ratio of tellurium (Te) to boron (B) of 70:1 to 5:1.

Description

用於形成太陽能電池電極的組成物和使用其製備的電極Composition for forming solar cell electrode and electrode prepared using the same

本發明是有關於一種用於太陽能電池電極的組成物及一種使用其形成的電極。 The present invention relates to a composition used for solar cell electrodes and an electrode formed using the same.

太陽能電池利用將日光的光子轉換成電力的p-n接面(p-n junction)的光生伏打效應(photovoltaic effect)來產生電力。在太陽能電池中,分別在具有p-n接面的半導體晶片或基板的上表面及下表面上形成前電極及後電極。然後,由進入半導體晶片的日光誘發p-n接面處的光生伏打效應,且通過p-n接面處的光生伏打效應而產生的電子經由電極向外部提供電流。通過對用於太陽能電池電極的組成物進行施加、圖案化及烘烤而在晶片上形成太陽能電池的電極。 Solar cells use the photovoltaic effect of the p-n junction (p-n junction) that converts sunlight photons into electricity to generate electricity. In a solar cell, a front electrode and a back electrode are respectively formed on the upper surface and the lower surface of a semiconductor wafer or substrate with a p-n junction. Then, sunlight entering the semiconductor wafer induces a photovoltaic effect at the p-n junction, and electrons generated by the photovoltaic effect at the p-n junction provide current to the outside through the electrodes. The electrode of the solar cell is formed on the wafer by applying, patterning, and baking the composition for the electrode of the solar cell.

作為用於太陽能電池電極的組成物,使用包含導電粉、玻璃料及有機載體的導電膏組成物。玻璃料用於熔融半導體晶片上的抗反射膜,從而形成導電粉與晶片之間的電接觸。 As the composition used for the solar cell electrode, a conductive paste composition containing conductive powder, glass frit, and organic vehicle is used. The glass frit is used to melt the anti-reflection film on the semiconductor wafer to form electrical contact between the conductive powder and the wafer.

具體來說,玻璃料不僅對太陽能電池的電特性(例如電極的開路電壓(Voc)及串聯電阻(Rs))產生影響且也會對決定太陽能電池的轉換效率及填充因數的電極的縱橫比產生影響。 Specifically, the glass frit not only affects the electrical characteristics of the solar cell (such as the open circuit voltage (Voc) and series resistance (Rs) of the electrode), but also affects the aspect ratio of the electrode that determines the conversion efficiency and fill factor of the solar cell. influences.

因此,需要一種可改善太陽能電池的電特性的用於太陽能電池電極的組成物。 Therefore, there is a need for a composition for solar cell electrodes that can improve the electrical characteristics of solar cells.

本發明的背景技術揭露於日本未經審查專利公開案第2012-084585號中。 The background art of the present invention is disclosed in Japanese Unexamined Patent Publication No. 2012-084585.

本發明的一個目的是提供一種可確保電極與晶片的表面之間的高接觸效率,從而使電極的接觸電阻及串聯電阻最小化的用於太陽能電池電極的組成物、以及一種使用所述組成物製作的電極。 An object of the present invention is to provide a composition for solar cell electrodes that can ensure high contact efficiency between the electrode and the surface of the wafer, thereby minimizing the contact resistance and series resistance of the electrode, and a composition using the composition Manufactured electrodes.

本發明的另一目的是提供一種可確保太陽能電池的高填充因數及高轉換效率的用於太陽能電池電極的組成物、以及一種使用所述組成物製作的電極。 Another object of the present invention is to provide a composition for solar cell electrodes that can ensure a high fill factor and high conversion efficiency of the solar cell, and an electrode made using the composition.

本發明的這些目的及其他目的可通過以下闡述的本發明來實現。 These and other objects of the present invention can be achieved by the present invention described below.

本發明的一個態樣是關於一種用於太陽能電池電極的組成物。 One aspect of the present invention relates to a composition for solar cell electrodes.

所述用於太陽能電池電極的組成物包含:導電粉;碲(Te)-銀(Ag)-硼(B)系玻璃料;以及有機載體,其中所述玻璃料的 碲(Te)對硼(B)的莫耳比為70:1到5:1。 The composition for the solar cell electrode includes: conductive powder; tellurium (Te)-silver (Ag)-boron (B) series glass frit; and an organic carrier, wherein the glass frit is The molar ratio of tellurium (Te) to boron (B) is 70:1 to 5:1.

所述玻璃料可包含50mol%到80mol%的氧化碲(TeO2)、0.5mol%到20mol%的氧化硼(B2O3)及1mol%到30mol%的硝酸銀(AgNO3)。 The glass frit may include 50 mol% to 80 mol% tellurium oxide (TeO2), 0.5 mol% to 20 mol% boron oxide (B 2 O 3 ), and 1 mol% to 30 mol% silver nitrate (AgNO 3 ).

所述玻璃料的硝酸銀(AgNO3)對氧化硼(B2O3)的莫耳比可為1:3到3:1。 The molar ratio of silver nitrate (AgNO 3 ) to boron oxide (B 2 O 3 ) of the glass frit may be 1:3 to 3:1.

所述玻璃料的硝酸銀(AgNO3)對氧化碲(TeO2)的莫耳比可為1:80到1:9。 The molar ratio of silver nitrate (AgNO 3 ) to tellurium oxide (TeO 2 ) of the glass frit may be 1:80 to 1:9.

所述玻璃料可不含鉍(Bi)或鉛(Pb)。 The glass frit may not contain bismuth (Bi) or lead (Pb).

所述玻璃料可具有0.1μm到10μm的粒徑。 The glass frit may have a particle size of 0.1 μm to 10 μm.

所述玻璃料還可包括以下元素的氧化物中的至少一種:鈉(Na)、鋰(Li)、鋅(Zn)、磷(P)、鍺(Ge)、鎵(Ga)、鈰(Ce)、鐵(Fe)、矽(Si)、鎢(W)、鎂(Mg)、鉬(Mo)、銫(Cs)、鍶(Sr)、鈦(Ti)、錫(Sn)、銦(In)、釩(V)、鋇(Ba)、鎳(Ni)、銅(Cu)、鉀(K)、砷(As)、鈷(Co)、鋯(Zr)、錳(Mn)及鋁(Al)。 The glass frit may further include at least one of oxides of the following elements: sodium (Na), lithium (Li), zinc (Zn), phosphorus (P), germanium (Ge), gallium (Ga), cerium (Ce) ), iron (Fe), silicon (Si), tungsten (W), magnesium (Mg), molybdenum (Mo), cesium (Cs), strontium (Sr), titanium (Ti), tin (Sn), indium (In ), vanadium (V), barium (Ba), nickel (Ni), copper (Cu), potassium (K), arsenic (As), cobalt (Co), zirconium (Zr), manganese (Mn) and aluminum (Al ).

所述組成物可包含:60wt%到95wt%的所述導電粉;0.1wt%到20wt%的所述玻璃料;以及1wt%到30wt%的所述有機載體。 The composition may include: 60wt% to 95wt% of the conductive powder; 0.1wt% to 20wt% of the glass frit; and 1wt% to 30wt% of the organic carrier.

所述組成物還可包含:分散劑、觸變劑、塑化劑、黏度穩定劑、消泡劑、顏料、紫外線(UV)穩定劑、抗氧化劑及偶合劑中的至少一種添加劑。 The composition may also include at least one additive selected from the group consisting of a dispersant, a thixotropic agent, a plasticizer, a viscosity stabilizer, a defoamer, a pigment, an ultraviolet (UV) stabilizer, an antioxidant, and a coupling agent.

本發明的另一個態樣是關於一種太陽能電池電極。 Another aspect of the present invention relates to a solar cell electrode.

所述太陽能電池電極可使用上述用於太陽能電池電極的組成物來製作。 The solar cell electrode can be produced using the above-mentioned composition for solar cell electrodes.

本發明提供一種可在確保太陽能電池的高填充因數及高轉換效率的同時使電極的接觸電阻及串聯電阻最小化的用於太陽能電池電極的組成物、以及一種使用所述組成物製作的電極。 The present invention provides a composition for a solar cell electrode that can minimize the contact resistance and series resistance of the electrode while ensuring the high filling factor and high conversion efficiency of the solar cell, and an electrode made using the composition.

10:基板 10: substrate

11:半導體基板 11: Semiconductor substrate

12:射極 12: Ejector

21:後電極 21: back electrode

23:前電極 23: front electrode

100:太陽能電池 100: solar cell

圖1為根據本發明一實施例的太陽能電池的示意圖。 Fig. 1 is a schematic diagram of a solar cell according to an embodiment of the present invention.

以下,將詳細地闡述本發明的實施例。 Hereinafter, embodiments of the present invention will be explained in detail.

會不必要地模糊本發明主題的已知功能及構造的詳細說明將被省略。 A detailed description of known functions and configurations that would unnecessarily obscure the subject of the present invention will be omitted.

除非上下文清晰地另外指出,否則本文所使用的單數形式“一(a、an)”及“所述(the)”旨在也包括複數形式。此外,當在本說明書中使用用語“包括及/或包含(comprises、comprising、includes及/或including)”時,是指出存在所述特徵、整數、步驟、操作、元件、組分、及/或其群組,但並不排除一個或多個其他特徵、整數、步驟、操作、元件、組分、及/或其群組的存在或添加。 Unless the context clearly indicates otherwise, the singular forms "a, an" and "the" used herein are intended to also include the plural forms. In addition, when the term "comprises, comprising, includes and/or including" is used in this specification, it refers to the presence of the features, integers, steps, operations, elements, components, and/or The group, but does not exclude the existence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.

另外,除非另外陳述,否則在分析組分時會考慮到誤差裕度。 In addition, unless stated otherwise, margins of error are taken into account when analyzing components.

本文所使用的用語“金屬氧化物”可指一種金屬氧化物或多種金屬氧化物。 The term "metal oxide" as used herein may refer to one metal oxide or multiple metal oxides.

此外,本文用來表示某些值的範圍的“X到Y”意謂著“大於或等於X且小於或等於Y”。 In addition, "X to Y" used herein to indicate a range of certain values means "greater than or equal to X and less than or equal to Y".

用於太陽能電池電極的組成物Composition for solar cell electrodes

根據本發明的一種用於太陽能電池電極的組成物包含導電粉、碲(Te)-銀(Ag)-硼(B)系玻璃料以及有機載體,其中所述玻璃料的碲(Te)對硼(B)的莫耳比為70:1到5:1。 A composition for solar cell electrodes according to the present invention includes conductive powder, tellurium (Te)-silver (Ag)-boron (B) glass frit, and an organic carrier, wherein the tellurium (Te) of the glass frit is opposite to boron The molar ratio of (B) is 70:1 to 5:1.

現在,將更詳細地闡述根據本發明的用於太陽能電池電極的組成物的每一組分。 Now, each component of the composition for solar cell electrodes according to the present invention will be explained in more detail.

導電粉Conductive powder

導電粉用於對用於太陽能電池電極的組成物賦予導電性。根據本發明的用於太陽能電池電極的組成物可包含例如銀(Ag)或鋁(Al)等金屬粉作為所述導電粉。舉例來說,導電粉可為銀粉。導電粉可具有奈米級細微性或微米級細微性。舉例來說,導電粉可為平均粒徑為數十奈米到數百奈米或平均粒徑為數微米到數十微米的銀粉。作為另外一種選擇,導電粉可為具有不同細微性的兩種或更多種類型的銀粉的混合物。 The conductive powder is used to impart conductivity to the composition used for the solar cell electrode. The composition for solar cell electrodes according to the present invention may contain metal powder such as silver (Ag) or aluminum (Al) as the conductive powder. For example, the conductive powder may be silver powder. The conductive powder may have nano-level fineness or micron-level fineness. For example, the conductive powder may be silver powder with an average particle size of tens of nanometers to hundreds of nanometers or an average particle size of several micrometers to tens of micrometers. Alternatively, the conductive powder may be a mixture of two or more types of silver powders having different finenesses.

導電粉可具有各種顆粒形狀,例如球形、薄片形、或非晶形顆粒形狀,對此並無限制。 The conductive powder may have various particle shapes, such as spherical, flake-shaped, or amorphous particle shapes, without limitation.

導電粉可具有0.1μm到10μm、具體來說0.5μm到5μm的平均粒徑(D50)。在此範圍內,所述組成物可減小太陽能電池的接觸電阻及線電阻。此處,可在通過超音波處理(ultrasonication)在25℃下將導電粉分散在異丙醇(isopropyl alcohol,IPA)中3分鐘後,利用1064D型粒徑分析儀(茨拉斯有限公司(CILAS Co.,Ltd.))測量平均粒徑。 The conductive powder may have an average particle diameter (D50) of 0.1 μm to 10 μm, specifically 0.5 μm to 5 μm. Within this range, the composition can reduce the contact resistance and line resistance of the solar cell. Here, the conductive powder can be dispersed in isopropyl alcohol (IPA) at 25°C for 3 minutes by ultrasonication, and then a 1064D particle size analyzer (CILAS Co., Ltd. (CILAS) can be used to disperse the conductive powder in isopropyl alcohol (IPA) for 3 minutes. Co., Ltd.)) measured the average particle size.

在用於太陽能電池電極的組成物中,可存在60wt%到95wt%、具體來說70wt%到90wt%的量的導電粉。在此範圍內,所述組成物可提高太陽能電池的轉換效率且可易於製備成膏形式。 In the composition for the solar cell electrode, the conductive powder may be present in an amount of 60 wt% to 95 wt%, specifically 70 wt% to 90 wt%. Within this range, the composition can improve the conversion efficiency of the solar cell and can be easily prepared into a paste form.

碲(Te)-銀(Ag)-硼(B)系玻璃料Tellurium (Te)-Silver (Ag)-Boron (B) glass frit

玻璃料用於通過在用於太陽能電池電極的組成物的烘烤製程期間對抗反射層進行蝕刻並對導電粉進行熔融而在射極區中形成銀晶粒。此外,玻璃料會改善導電粉與晶片的黏合力,且在烘烤製程期間被軟化以降低烘烤溫度。 The glass frit is used to form silver crystal grains in the emitter region by etching the anti-reflective layer and melting the conductive powder during the baking process of the composition for the solar cell electrode. In addition, the glass frit improves the adhesion between the conductive powder and the chip, and is softened during the baking process to lower the baking temperature.

作為根據本發明的玻璃料,使用碲(Te)-銀(Ag)-硼(B)系玻璃料,其中碲(Te)對硼(B)的莫耳比介於70:1到5:1範圍內。玻璃料可提高電極與晶片的表面之間的接觸效率,從而在提高太陽能電池的填充因數及轉換效率的同時使電極的接觸電阻及串聯電阻最小化。具體來說,玻璃料的碲(Te)對硼(B)的莫耳比可為35:1到8:1、更具體來說為20:1到10:1。 As the glass frit according to the present invention, a tellurium (Te)-silver (Ag)-boron (B) series glass frit is used, wherein the molar ratio of tellurium (Te) to boron (B) ranges from 70:1 to 5:1 Within range. The glass frit can improve the contact efficiency between the electrode and the surface of the wafer, thereby minimizing the contact resistance and series resistance of the electrode while improving the fill factor and conversion efficiency of the solar cell. Specifically, the molar ratio of tellurium (Te) to boron (B) of the glass frit may be 35:1 to 8:1, more specifically, 20:1 to 10:1.

碲(Te)-銀(Ag)-硼(B)系玻璃料可包括氧化碲(TeO2)、硝酸銀(AgNO3)及氧化硼(B2O3)。此處,除硝酸銀(AgNO3) 以外,銀也可源自氧化銀、氰化銀、鹵化銀、碳酸銀或乙酸銀。舉例來說,可通過以下方式來製備玻璃料:使用球磨機或行星式磨機將上述原料混合,在900℃到1,300℃下熔融此混合物,並將熔融混合物淬火到25℃,然後使用盤磨機、行星式磨機等來粉碎所獲得的產物。玻璃料可具有0.1μm到10μm的平均粒徑(D50)。 The tellurium (Te)-silver (Ag)-boron (B) glass frit may include tellurium oxide (TeO 2 ), silver nitrate (AgNO 3 ), and boron oxide (B 2 O 3 ). Here, in addition to silver nitrate (AgNO 3 ), silver may also be derived from silver oxide, silver cyanide, silver halide, silver carbonate, or silver acetate. For example, the glass frit can be prepared by using a ball mill or planetary mill to mix the above-mentioned raw materials, melting the mixture at 900°C to 1,300°C, and quenching the molten mixture to 25°C, and then using a disc mill , Planetary mill, etc. to crush the obtained product. The glass frit may have an average particle diameter (D50) of 0.1 μm to 10 μm.

在一個實施例中,玻璃料可包含50mol%到80mol%的氧化碲(TeO2)、0.5mol%到20mol%的氧化硼(B2O3)及1mol%到30mol%的硝酸銀(AgNO3)。 In one embodiment, the glass frit may include 50 mol% to 80 mol% tellurium oxide (TeO 2 ), 0.5 mol% to 20 mol% boron oxide (B 2 O 3 ), and 1 mol% to 30 mol% silver nitrate (AgNO 3 ) .

在一個實施例中,玻璃料可包含0.5mol%到20mol%、具體來說0.5mol%到7mol%、更具體來說0.5mol%到5mol%的氧化硼(B2O3)。玻璃料可包含1mol%到30mol%、具體來說1mol%到10mol%、更具體來說2mol%到7mol%的硝酸銀(AgNO3)。玻璃料可包含50mol%到80mol%、具體來說60mol%到75mol%的氧化碲(TeO2)。在這些範圍內,玻璃料可在提高太陽能電池的填充因數的同時使電極的接觸電阻及串聯電阻最小化。 In one embodiment, the glass frit may include 0.5 mol% to 20 mol%, specifically 0.5 mol% to 7 mol%, more specifically 0.5 mol% to 5 mol% of boron oxide (B 2 O 3 ). The glass frit may contain 1 mol% to 30 mol%, specifically 1 mol% to 10 mol%, more specifically 2 mol% to 7 mol% of silver nitrate (AgNO 3 ). The glass frit may contain 50 mol% to 80 mol%, specifically 60 mol% to 75 mol% of tellurium oxide (TeO 2 ). Within these ranges, the glass frit can increase the fill factor of the solar cell while minimizing the contact resistance and series resistance of the electrode.

玻璃料的硝酸銀(AgNO3)對氧化硼(B2O3)的莫耳比可為3:1到1:3。在此範圍內,玻璃料可提高太陽能電池的填充因數。 The molar ratio of silver nitrate (AgNO 3 ) to boron oxide (B 2 O 3 ) of the glass frit can be 3:1 to 1:3. Within this range, the glass frit can increase the fill factor of the solar cell.

玻璃料的硝酸銀(AgNO3)對氧化碲(TeO2)的莫耳比可為1:80到1:9。在此範圍內,玻璃料可提高太陽能電池的填充因數。 The molar ratio of silver nitrate (AgNO 3 ) to tellurium oxide (TeO 2 ) of the glass frit can be 1:80 to 1:9. Within this range, the glass frit can increase the fill factor of the solar cell.

玻璃料可不含鉍(Bi)或鉛(Pb)。不含鉍(Bi)或鉛(Pb) 的玻璃料可使電極的接觸電阻及串聯電阻最小化,而不使其他性質劣化。 The glass frit may not contain bismuth (Bi) or lead (Pb). Does not contain bismuth (Bi) or lead (Pb) The glass frit can minimize the contact resistance and series resistance of the electrode without deteriorating other properties.

所述玻璃料還可包括以下元素的氧化物中的至少一種:鈉(Na)、鋰(Li)、鋅(Zn)、磷(P)、鍺(Ge)、鎵(Ga)、鈰(Ce)、鐵(Fe)、矽(Si)、鎢(W)、鎂(Mg)、鉬(Mo)、銫(Cs)、鍶(Sr)、鈦(Ti)、錫(Sn)、銦(In)、釩(V)、鋇(Ba)、鎳(Ni)、銅(Cu)、鉀(K)、砷(As)、鈷(Co)、鋯(Zr)、錳(Mn)及鋁(Al)。 The glass frit may further include at least one of oxides of the following elements: sodium (Na), lithium (Li), zinc (Zn), phosphorus (P), germanium (Ge), gallium (Ga), cerium (Ce) ), iron (Fe), silicon (Si), tungsten (W), magnesium (Mg), molybdenum (Mo), cesium (Cs), strontium (Sr), titanium (Ti), tin (Sn), indium (In ), vanadium (V), barium (Ba), nickel (Ni), copper (Cu), potassium (K), arsenic (As), cobalt (Co), zirconium (Zr), manganese (Mn) and aluminum (Al ).

在用於太陽能電池電極的組成物中,可存在0.1wt%到20wt%、具體來說為0.5wt%到10wt%的量的玻璃料。在此範圍內,玻璃料可確保在各種片電阻下p-n接面的穩定性,使電阻最小化,且最終提高太陽能電池的效率。 In the composition for the solar cell electrode, the glass frit may be present in an amount of 0.1 wt% to 20 wt%, specifically 0.5 wt% to 10 wt%. Within this range, the glass frit can ensure the stability of the p-n junction under various sheet resistances, minimize the resistance, and ultimately improve the efficiency of the solar cell.

有機載體Organic carrier

有機載體通過與用於太陽能電池電極的組成物的無機組分進行機械混合而對所述組成物賦予適合於印刷的黏度及流變特性。 The organic carrier is mechanically mixed with the inorganic components of the composition used for the solar cell electrode to impart viscosity and rheological properties suitable for printing to the composition.

有機載體可為用於太陽能電池電極的組成物中所用的任何典型有機載體,且一般包含黏合劑樹脂、溶劑等。 The organic vehicle may be any typical organic vehicle used in the composition of the solar cell electrode, and generally includes a binder resin, a solvent, and the like.

黏合劑樹脂可為丙烯酸酯樹脂或纖維素樹脂中的一種或多種。一般使用乙基纖維素作為所述黏合劑樹脂。另外,黏合劑樹脂可為以下中的一種或多種:乙基羥乙基纖維素、硝基纖維素、乙基纖維素與酚樹脂的摻合物、醇酸樹脂、酚樹脂、丙烯酸酯樹 脂、二甲苯樹脂、聚丁烯樹脂(polybutene resin)、聚酯樹脂、脲樹脂、三聚氰胺樹脂、乙酸乙烯酯樹脂、木松香、醇的聚甲基丙烯酸酯等。 The binder resin may be one or more of acrylate resin or cellulose resin. Ethyl cellulose is generally used as the binder resin. In addition, the binder resin may be one or more of the following: ethyl hydroxyethyl cellulose, nitrocellulose, a blend of ethyl cellulose and phenol resin, alkyd resin, phenol resin, acrylic resin Grease, xylene resin, polybutene resin, polyester resin, urea resin, melamine resin, vinyl acetate resin, wood rosin, alcohol polymethacrylate, etc.

溶劑可為以下中的一種或多種:例如,己烷、甲苯、乙基溶纖劑、環己酮、丁基溶纖劑、丁基卡必醇(二乙二醇單丁醚)、二丁基卡必醇(二乙二醇二丁醚)、丁基卡必醇乙酸酯(二乙二醇單丁醚乙酸酯)、丙二醇單甲醚、己二醇、萜品醇、甲基乙基酮、苯甲醇、γ-丁內酯、及乳酸乙酯。這些溶劑可單獨使用或作為其混合物形式使用。 The solvent can be one or more of the following: for example, hexane, toluene, ethyl cellosolve, cyclohexanone, butyl cellosolve, butyl carbitol (diethylene glycol monobutyl ether), dibutyl card Alcohol (Diethylene Glycol Dibutyl Ether), Butyl Carbitol Acetate (Diethylene Glycol Monobutyl Ether Acetate), Propylene Glycol Monomethyl Ether, Hexylene Glycol, Terpineol, Methyl Ethyl Ketones, benzyl alcohol, gamma-butyrolactone, and ethyl lactate. These solvents can be used alone or as a mixture thereof.

在用於太陽能電池電極的組成物中,可存在1wt%到30wt%的量的有機載體。在此範圍內,有機載體可對所述組成物提供足夠的黏合強度及良好的可印刷性。 In the composition for the solar cell electrode, the organic vehicle may be present in an amount of 1 wt% to 30 wt%. Within this range, the organic vehicle can provide sufficient adhesion strength and good printability to the composition.

添加劑additive

根據本發明的用於太陽能電池電極的組成物可視需要還包含任何典型添加劑以增強流動性、可處理性及穩定性。添加劑可包括分散劑、觸變劑、塑化劑、黏度穩定劑、消泡劑、顏料、紫外線穩定劑、抗氧化劑、偶合劑等。這些添加劑可單獨使用或作為其混合物形式使用。以用於太陽能電池電極的組成物的總重量計,可存在0.1wt%到5wt%的量的添加劑,但所述添加劑的含量可視需要進行改變。 The composition for solar cell electrodes according to the present invention may further include any typical additives as needed to enhance fluidity, handleability and stability. Additives may include dispersants, thixotropic agents, plasticizers, viscosity stabilizers, defoamers, pigments, ultraviolet stabilizers, antioxidants, coupling agents, and the like. These additives can be used alone or as a mixture thereof. Based on the total weight of the composition for the solar cell electrode, the additive may be present in an amount of 0.1 wt% to 5 wt%, but the content of the additive may be changed as needed.

太陽能電池電極及包括所述太陽能電池電極的太陽能電池Solar cell electrode and solar cell including the solar cell electrode

本發明的其他態樣是關於一種由用於太陽能電池電極的組成物形成的電極以及包括所述電極的太陽能電池。圖1示出根據本發明一個實施例的太陽能電池。 Another aspect of the present invention relates to an electrode formed of a composition for a solar cell electrode and a solar cell including the electrode. Fig. 1 shows a solar cell according to an embodiment of the present invention.

參照圖1,根據本實施例的太陽能電池100包括基板10、形成於基板10的前表面上的前電極23、及形成於基板10的背表面上的後電極21。 1, the solar cell 100 according to the present embodiment includes a substrate 10, a front electrode 23 formed on the front surface of the substrate 10, and a rear electrode 21 formed on the back surface of the substrate 10.

在一個實施例中,基板10可為於其上形成有p-n接面的基板。具體來說,基板10可包括半導體基板11及射極12。更具體來說,基板10可為通過利用n型摻雜劑對p型半導體基板11的一個表面進行摻雜以形成n型射極12而製備的基板。作為另外一種選擇,基板10可為通過利用p型摻雜劑對n型半導體基板11的一個表面進行摻雜以形成p型射極12而製備的基板。此處,半導體基板11可為p型基板或n型基板。P型基板可為摻雜有p型摻雜劑的半導體基板11,且n型基板可為摻雜有n型摻雜劑的半導體基板11。 In one embodiment, the substrate 10 may be a substrate with a p-n junction formed thereon. Specifically, the substrate 10 may include a semiconductor substrate 11 and an emitter 12. More specifically, the substrate 10 may be a substrate prepared by doping one surface of the p-type semiconductor substrate 11 with an n-type dopant to form the n-type emitter 12. Alternatively, the substrate 10 may be a substrate prepared by doping one surface of the n-type semiconductor substrate 11 with a p-type dopant to form the p-type emitter 12. Here, the semiconductor substrate 11 may be a p-type substrate or an n-type substrate. The P-type substrate may be a semiconductor substrate 11 doped with p-type dopants, and the n-type substrate may be a semiconductor substrate 11 doped with n-type dopants.

在對基板10、半導體基板11等的說明中,將此種基板的光進入所述基板所透過的表面稱為前表面(光接收表面)。另外,將基板的與前表面相對的表面稱為背表面。 In the description of the substrate 10, the semiconductor substrate 11, etc., the surface through which the light of such a substrate enters the substrate is referred to as the front surface (light-receiving surface). In addition, the surface of the substrate opposite to the front surface is referred to as the back surface.

在一個實施例中,半導體基板11可由結晶矽或化合物半導體形成。此處,結晶矽可為單晶體或多晶體。作為結晶矽,例如可使用矽晶片。 In one embodiment, the semiconductor substrate 11 may be formed of crystalline silicon or compound semiconductor. Here, the crystalline silicon may be single crystal or polycrystalline. As crystalline silicon, for example, a silicon wafer can be used.

此處,p型摻雜劑可為包含例如硼、鋁或鎵等III族元素 的材料。另外,n型摻雜劑可為包含例如磷、砷或銻等V族元素的材料。 Here, the p-type dopant may include group III elements such as boron, aluminum, or gallium. s material. In addition, the n-type dopant may be a material containing a group V element such as phosphorus, arsenic, or antimony.

前電極23及/或後電極21可使用根據本發明的用於太陽能電池電極的組成物來製作。具體來說,前電極23可使用包含銀粉作為導電粉的組成物來製作,且後電極21可使用包含鋁粉作為導電粉的組成物來製作。前電極23可通過將用於太陽能電池電極的組成物印刷到射極12上、然後進行烘烤來形成,且後電極21可通過將用於太陽能電池電極的組成物施加到半導體基板11的背表面、然後進行烘烤來形成。 The front electrode 23 and/or the back electrode 21 can be made using the composition for solar cell electrodes according to the present invention. Specifically, the front electrode 23 can be made using a composition containing silver powder as a conductive powder, and the back electrode 21 can be made using a composition containing aluminum powder as a conductive powder. The front electrode 23 may be formed by printing the composition for solar cell electrodes on the emitter 12 and then baking, and the rear electrode 21 may be formed by applying the composition for solar cell electrodes to the back of the semiconductor substrate 11 The surface is then baked to form.

接下來,將參考實例來更詳細地闡述本發明。然而,應注意,提供這些實例僅用於說明,而不應理解為以任何方式限制本發明。 Next, the present invention will be explained in more detail with reference to examples. However, it should be noted that these examples are provided for illustration only, and should not be construed as limiting the present invention in any way.

此外,為清晰起見,對所屬領域中的技術人員顯而易見的細節不再予以贅述。 In addition, for the sake of clarity, details that are obvious to those skilled in the art will not be repeated.

實例1Example 1

作為有機黏合劑,在60℃下將3.0wt%的乙基纖維素(STD4,陶氏化學公司(Dow Chemical Company))充分溶解在6.5wt%的丁基卡必醇中,且接著向黏合劑溶液中添加了87.5wt%的平均粒徑為2.0μm的球形銀粉(AG-4-8,同和高級技術有限公司(Dowa Hightech Co.,Ltd.))、2.5wt%的平均粒徑為2.0μm且具有表1所示組成的玻璃料、0.2wt%的分散劑(BYK 102,畢克化學公司(BYK-chemie))及0.3wt%的觸變劑(奇科薩特牢 (Thixatrol)ST,海名斯有限公司(Elementis Co.,Ltd.)),然後在3輥捏合機中進行混合及捏合,從而製備用於太陽能電池電極的組成物。 As an organic binder, 3.0wt% ethyl cellulose (STD4, Dow Chemical Company) was fully dissolved in 6.5wt% butyl carbitol at 60°C, and then added to the binder 87.5wt% of spherical silver powder with an average particle size of 2.0μm (AG-4-8, Dowa Hightech Co., Ltd.) was added to the solution, 2.5wt% of which had an average particle size of 2.0μm And has a glass frit with the composition shown in Table 1, 0.2wt% dispersant (BYK 102, BYK-chemie) and 0.3wt% thixotropic agent (Chicosat (Thixatrol ST, Elementis Co., Ltd.), and then mixed and kneaded in a 3-roll kneader to prepare a composition for solar cell electrodes.

實例2到實例7以及比較例1到比較例3Example 2 to Example 7 and Comparative Example 1 to Comparative Example 3

除了將玻璃料的組成改變為如表1所列以外,以與實例1相同的方式製備了用於太陽能電池電極的組成物。 A composition for solar cell electrodes was prepared in the same manner as in Example 1, except that the composition of the glass frit was changed to be as listed in Table 1.

Figure 107118778-A0305-02-0014-1
Figure 107118778-A0305-02-0014-1

性質評價Property evaluation

(1)接觸電阻(Rc,mΩ)、串聯電阻(Rs,mΩ)及開路電壓(Voc,mV):通過以預定圖案進行網版印刷、然後在紅外(IR)乾燥爐中進行乾燥,將在實例及比較例中製備的用於太陽能電池電極的組成物中的每一者沉積在晶片的前表面上。使根據此程式而形成的電池在帶型烘烤爐中在600℃到900℃下經受烘烤60秒到210秒,且接著利用傳遞長度方法(transfer length method,TLM)測試儀關於接觸電阻(Rc)、串聯電阻(Rs)及開路電壓(Voc)進行了評價。結果示出於表2中。 (1) Contact resistance (Rc, mΩ), series resistance (Rs, mΩ) and open circuit voltage (Voc, mV): screen printing with a predetermined pattern, and then drying in an infrared (IR) drying oven, Each of the compositions for solar cell electrodes prepared in the Examples and Comparative Examples was deposited on the front surface of the wafer. The battery formed according to this formula is subjected to baking in a belt-type baking furnace at 600°C to 900°C for 60 seconds to 210 seconds, and then a transfer length method (TLM) tester is used for contact resistance ( Rc), series resistance (Rs) and open circuit voltage (Voc) were evaluated. The results are shown in Table 2.

(2)填充因數(%)及效率(%):通過以預定圖案進行 網版印刷、然後在紅外乾燥爐中進行乾燥,將在實例及比較例中製備的用於太陽能電池電極的組成物中的每一者沉積在晶片的前表面上。接著,將鋁膏印刷在晶片的背表面上並以與上述相同的方式進行了乾燥。使根據此程式而形成的電池在帶型烘烤爐中在400℃到900℃下經受烘烤30秒到180秒,且接著利用太陽能電池效率測試儀CT-801(帕桑有限公司(Pasan Co.,Ltd.))關於填充因數(FF,%)及轉換效率(Eff.,%)進行了評價。結果示出於表2中。 (2) Filling factor (%) and efficiency (%): by using a predetermined pattern Screen printing and then drying in an infrared drying oven, each of the compositions for solar cell electrodes prepared in the Examples and Comparative Examples were deposited on the front surface of the wafer. Next, aluminum paste was printed on the back surface of the wafer and dried in the same manner as described above. The battery formed according to this program was subjected to baking in a belt-type baking oven at 400°C to 900°C for 30 seconds to 180 seconds, and then a solar cell efficiency tester CT-801 (Pasan Co. ., Ltd.)) evaluated the filling factor (FF, %) and conversion efficiency (Eff., %). The results are shown in Table 2.

Figure 107118778-A0305-02-0015-2
Figure 107118778-A0305-02-0015-2

如表2所示,可以看出,使用其中碲對硼的莫耳比落在本文所述範圍內的用於太陽能電池電極的組成物製作的太陽能電池電極可表現出與晶片的表面具有高接觸效率,從而在提高太陽能電池的填充因數及轉換效率的同時使接觸電阻及串聯電阻最小化。 As shown in Table 2, it can be seen that the solar cell electrodes made with the composition for solar cell electrodes in which the molar ratio of tellurium to boron falls within the range described herein can exhibit high contact with the surface of the wafer Efficiency, thereby minimizing contact resistance and series resistance while improving the fill factor and conversion efficiency of the solar cell.

相反地,可以看出,其中碲對硼的莫耳比處於本文所述範圍之外的比較例1及比較例2的太陽能電池電極具有高串聯電阻及接觸電阻,且不含銀的比較例3的太陽能電池電極表現出高 電阻及低填充因數。 On the contrary, it can be seen that the solar cell electrodes of Comparative Example 1 and Comparative Example 2 in which the molar ratio of tellurium to boron is outside the range described herein have high series resistance and contact resistance, and Comparative Example 3 without silver Of solar cell electrodes exhibited high Resistance and low fill factor.

儘管本文中已闡述了一些實施例,然而應理解在不背離本發明的精神及範圍的條件下,所屬領域中的技術人員可作出各種修改、變型及改變。因此,應理解,提供前述實施例僅用於說明目的,而不應視為以任何方式限制本發明。 Although some embodiments have been described herein, it should be understood that various modifications, variations, and changes can be made by those skilled in the art without departing from the spirit and scope of the present invention. Therefore, it should be understood that the foregoing embodiments are provided for illustrative purposes only, and should not be regarded as limiting the present invention in any way.

10‧‧‧基板 10‧‧‧Substrate

11‧‧‧半導體基板 11‧‧‧Semiconductor substrate

12‧‧‧射極 12‧‧‧Ejector

21‧‧‧後電極 21‧‧‧Back electrode

23‧‧‧前電極 23‧‧‧Front electrode

100‧‧‧太陽能電池 100‧‧‧Solar cell

Claims (9)

一種用於太陽能電池電極的組成物,包括:導電粉;玻璃料,包含50mol%到80mol%的氧化碲、0.5mol%到5mol%的氧化硼及1mol%到30mol%的硝酸銀;以及有機載體,其中所述玻璃料的碲對硼的莫耳比為70:1到10:1。 A composition for solar cell electrodes, comprising: conductive powder; glass frit, containing 50 mol% to 80 mol% tellurium oxide, 0.5 mol% to 5 mol% boron oxide, and 1 mol% to 30 mol% silver nitrate; and an organic carrier, The molar ratio of tellurium to boron of the glass frit is 70:1 to 10:1. 如申請專利範圍第1項所述的用於太陽能電池電極的組成物,其中所述玻璃料的硝酸銀對氧化硼的莫耳比為1:3到3:1。 The composition for solar cell electrodes as described in item 1 of the scope of patent application, wherein the molar ratio of silver nitrate to boron oxide of the glass frit is 1:3 to 3:1. 如申請專利範圍第1項所述的用於太陽能電池電極的組成物,其中所述玻璃料的硝酸銀對氧化碲的莫耳比為1:80到1:9。 The composition for solar cell electrodes as described in item 1 of the scope of patent application, wherein the molar ratio of silver nitrate to tellurium oxide of the glass frit is 1:80 to 1:9. 如申請專利範圍第1項所述的用於太陽能電池電極的組成物,其中所述玻璃料不含鉍或鉛。 The composition for solar cell electrodes as described in item 1 of the scope of patent application, wherein the glass frit does not contain bismuth or lead. 如申請專利範圍第1項所述的用於太陽能電池電極的組成物,其中所述玻璃料具有0.1μm到10μm的粒徑。 The composition for solar cell electrodes as described in item 1 of the scope of patent application, wherein the glass frit has a particle size of 0.1 μm to 10 μm. 如申請專利範圍第1項所述的用於太陽能電池電極的組成物,其中所述玻璃料還包括以下元素的氧化物中的至少一種:鈉、鋰、鋅、磷、鍺、鎵、鈰、鐵、矽、鎢、鎂、鉬、銫、鍶、鈦、錫、銦、釩、鋇、鎳、銅、鉀、砷、鈷、鋯、錳及鋁。 The composition for solar cell electrodes as described in item 1 of the scope of patent application, wherein the glass frit further includes at least one of the oxides of the following elements: sodium, lithium, zinc, phosphorus, germanium, gallium, cerium, Iron, silicon, tungsten, magnesium, molybdenum, cesium, strontium, titanium, tin, indium, vanadium, barium, nickel, copper, potassium, arsenic, cobalt, zirconium, manganese and aluminum. 如申請專利範圍第1項所述的用於太陽能電池電極的組成物,包括:60wt%到95wt%的所述導電粉;0.1wt%到20wt%的所述玻璃料;以及1wt%到30wt%的所述有機載體。 The composition for solar cell electrodes as described in the first item of the patent application includes: 60wt% to 95wt% of the conductive powder; 0.1wt% to 20wt% of the glass frit; and 1wt% to 30wt% The organic vehicle. 如申請專利範圍第1項所述的用於太陽能電池電極的組成物,還包含:分散劑、觸變劑、塑化劑、黏度穩定劑、消泡劑、顏料、紫外線穩定劑、抗氧化劑及偶合劑中的至少一種添加劑。 The composition for solar cell electrodes as described in item 1 of the scope of patent application, further includes: dispersant, thixotropic agent, plasticizer, viscosity stabilizer, defoamer, pigment, ultraviolet stabilizer, antioxidant, and At least one additive in the coupling agent. 一種太陽能電池電極,其中使用如申請專利範圍第1項到第8項中任一項所述的用於太陽能電池電極的組成物來製作。 A solar cell electrode, which is produced using the composition for a solar cell electrode as described in any one of items 1 to 8 in the scope of the patent application.
TW107118778A 2017-12-05 2018-05-31 Composition for forming solar cell electrode and electrode prepared using the same TWI731243B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2017-0165625 2017-12-05
KR1020170165625A KR20190066158A (en) 2017-12-05 2017-12-05 Composition for forming solar cell electrode and electrode prepared using the same
??10-2017-0165625 2017-12-05

Publications (2)

Publication Number Publication Date
TW201925124A TW201925124A (en) 2019-07-01
TWI731243B true TWI731243B (en) 2021-06-21

Family

ID=66847719

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107118778A TWI731243B (en) 2017-12-05 2018-05-31 Composition for forming solar cell electrode and electrode prepared using the same

Country Status (3)

Country Link
KR (1) KR20190066158A (en)
CN (1) CN109872832A (en)
TW (1) TWI731243B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210121343A (en) * 2020-03-26 2021-10-08 창저우 퓨전 뉴 머티리얼 씨오. 엘티디. Composition for forming solar cell electrode and solar cell electrode prepared using the same
CN114974648A (en) * 2021-02-22 2022-08-30 深圳市首骋新材料科技有限公司 Silicon solar cell front conductive silver paste and preparation method thereof, and silicon solar cell front electrode

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201735054A (en) * 2016-03-18 2017-10-01 大州電子材料股份有限公司 Lead-free conductive paste for solar cell

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7736546B2 (en) * 2008-01-30 2010-06-15 Basf Se Glass frits
KR20140092744A (en) * 2012-12-29 2014-07-24 제일모직주식회사 Composition for forming solar cell electrode and electrode prepared using the same
US20160284889A1 (en) * 2013-03-29 2016-09-29 Shoei Chemical Inc. Conductive paste for solar cell element surface electrodes and method for manufacturing solar cell element
CN107408586B (en) * 2015-03-13 2021-10-19 昭荣化学工业株式会社 Conductive paste for forming solar cell electrode
KR101816234B1 (en) * 2015-04-28 2018-01-08 삼성에스디아이 주식회사 Composition forforming electrode, electrode manufactured using the same and solar cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201735054A (en) * 2016-03-18 2017-10-01 大州電子材料股份有限公司 Lead-free conductive paste for solar cell

Also Published As

Publication number Publication date
CN109872832A (en) 2019-06-11
KR20190066158A (en) 2019-06-13
TW201925124A (en) 2019-07-01

Similar Documents

Publication Publication Date Title
KR101696985B1 (en) Composition for forming solar cell electrode and electrode prepared using the same
CN104078092A (en) Composition for solar cell electrodes and electrode fabricated using the same
TWI731243B (en) Composition for forming solar cell electrode and electrode prepared using the same
KR101980946B1 (en) Front electrode for solar cell and solar cell comprising the same
TWI612020B (en) Composition for solar cell electrodes and electrode fabricated using the same
TWI684286B (en) Composition for forming solar cell electrode and electrode prepared using the same
TWI728475B (en) Solar cell electrode and fabrication method thereof and solar cell including the same
TWI731236B (en) Composition for forming solar cell electrode and solar cell electrode prepared using the same
TWI721620B (en) Composition for forming solar cell electrode and solar cell electrode prepared using the same
CN109416954B (en) Composition for P-type solar cell electrode, electrode prepared therefrom, and P-type solar cell prepared using same
CN108022670B (en) Composition for forming solar cell electrode and electrode prepared using the same
TWI686959B (en) Composition for solar cell electrode and electrode fabricated using the same
CN111354803A (en) Method for forming solar cell electrode and solar cell
TWI681410B (en) Composition for solar cell electrode and solar cell electrode prepared using the same
TWI741393B (en) Composition for forming dsw based solar cell electrode and dsw based solar cell electrode prepared using the same
TWI663739B (en) Composition for solar cell electrodes and solar cell electrode fabricated using the same
TWI741283B (en) Composition for electrodes of solar cell and solar cell
KR20150019404A (en) Composition for forming solar cell electrode and electrode prepared using the same