TWI730889B - Method for detecting the water content in the liquid to be measured by infrared rays - Google Patents
Method for detecting the water content in the liquid to be measured by infrared rays Download PDFInfo
- Publication number
- TWI730889B TWI730889B TW109129698A TW109129698A TWI730889B TW I730889 B TWI730889 B TW I730889B TW 109129698 A TW109129698 A TW 109129698A TW 109129698 A TW109129698 A TW 109129698A TW I730889 B TWI730889 B TW I730889B
- Authority
- TW
- Taiwan
- Prior art keywords
- infrared light
- liquid
- water content
- tested
- infrared
- Prior art date
Links
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本發明係設一油管、一紅外光發射器、一紅外光接收器及一處理部。油管流通一待測液,且供紅外光發射器與紅外光接收器相對應的穿透設置。當紅外光發射器發出一紅外光,其波長範圍係介於900nm~902.5nm之間,且紅外光係穿透待測液而抵達紅外光接收器;處理部依複數取樣時間讀取紅外光接收器之電壓訊號,複數電壓訊號可計算出一數值總合。再用以計算待測液之光學參數,每一光學參數對應特定之含水量,複數光學參數構成一基礎數據。其供一未知含水量之待測液之其光學參數進行比對,而得出其含水量。而兼具可即時檢測潤滑油之含水量提高潤滑效益、模組化可直接應用於相關裝置、可進行遠端多數監控符合產業效益,及紅外線檢測減少外界干擾等優點。The invention is provided with an oil pipe, an infrared light transmitter, an infrared light receiver and a processing unit. The oil pipe circulates a liquid to be tested, and is provided for the corresponding penetrating settings of the infrared light transmitter and the infrared light receiver. When the infrared light emitter emits an infrared light, its wavelength range is between 900nm~902.5nm, and the infrared light penetrates the liquid to be tested and reaches the infrared light receiver; the processing unit reads the infrared light reception according to the plural sampling time The voltage signal of the device and the multiple voltage signals can be calculated as a sum of values. It is then used to calculate the optical parameters of the liquid to be tested. Each optical parameter corresponds to a specific water content. The complex optical parameters constitute a basic data. It is used to compare the optical parameters of a test liquid with unknown water content to obtain its water content. It also has the advantages of real-time detection of the water content of the lubricating oil to improve lubrication efficiency, modularization can be directly applied to related devices, remote monitoring of most of them in line with industrial benefits, and infrared detection to reduce external interference.
Description
本發明係有關一種以紅外線檢測待測液中含水量之方法,尤指一種兼具可即時檢測潤滑油之含水量提高潤滑效益、模組化可直接應用於相關裝置、可進行遠端多數監控符合產業效益,及紅外線檢測減少外界干擾之以紅外線檢測待測液中含水量之方法。The present invention relates to a method for detecting the water content in a liquid to be measured by infrared rays, especially a method that can detect the water content of lubricating oil in real time and improve the lubrication efficiency. The modularization can be directly applied to related devices and can perform remote monitoring It is in line with industrial benefits and infrared detection reduces external interference. It is a method of infrared detection of water content in the liquid to be tested.
過去的機台設備或儀器,例如:內燃機系統或齒輪軸承之潤滑油更換指標,都是以使用時間或運轉行程的哩程數來做更換,這樣的更換指標可能會過早更換(潤滑油可能尚未劣化),造成不必要的成本浪費,但若過晚更換(離線模式檢測無法即時得到結果),則可能造成機台增加磨耗(損)。 一般檢測設備價格昂貴,並需要將潤滑油樣品帶回檢驗室進行檢測,此為離線模式檢測裝置,必須等待相當之檢測時間才能知道潤滑油之狀態,既不便也耗時。 有鑑於此,必須研發出可解決上述習用缺點之技術。 In the past, machine equipment or instruments, such as the lubricating oil replacement index of internal combustion engine systems or gear bearings, were replaced by the use time or mileage of the operating stroke. Such replacement indicators may be replaced prematurely (the lubricating oil may be Not yet degraded), resulting in unnecessary cost waste, but if it is replaced too late (the offline mode detection cannot obtain the result immediately), it may cause the machine to increase wear (damage). Generally, testing equipment is expensive, and the lubricant sample needs to be brought back to the testing room for testing. This is an offline mode testing device. You must wait for a considerable amount of testing time to know the status of the lubricant, which is both inconvenient and time-consuming. In view of this, it is necessary to develop a technology that can solve the above-mentioned conventional shortcomings.
本發明之目的,在於提供一種以紅外線檢測待測液中含水量之方法,其兼具可即時檢測潤滑油之含水量提高潤滑效益、模組化可直接應用於相關裝置、可進行遠端多數監控符合產業效益,及紅外線檢測減少外界干擾等優點。特別是,本發明所欲解決之問題係在於一般檢測設備價格昂貴,並需要將潤滑油樣品帶回檢驗室進行檢測,此為離線模式檢測裝置,必須等待相當之檢測時間才能知道潤滑油之狀態,既不便也耗時等問題。 解決上述問題之技術手段係提供一種以紅外線檢測待測液中含水量之方法,其包括下列步驟: 一、準備步驟; 二、數值總合之取得步驟; 三、光學參數計算步驟; 四、不同含水量之基礎資料取得步驟;及 五、檢測步驟。 本發明之上述目的與優點,不難從下述所選用實施例之詳細說明與附圖中,獲得深入瞭解。 茲以下列實施例並配合圖式詳細說明本發明於後: The purpose of the present invention is to provide a method for detecting the water content of the liquid to be measured by infrared rays, which can detect the water content of the lubricating oil in real time and improve the lubrication efficiency. Monitoring is in line with industrial benefits, and infrared detection reduces external interference. In particular, the problem to be solved by the present invention is that the general testing equipment is expensive and the lubricant sample needs to be brought back to the testing room for testing. This is an off-line mode testing device. You must wait for a considerable testing time to know the status of the lubricant. , Both inconvenience and time-consuming. The technical means to solve the above problems is to provide a method for detecting the water content in the liquid to be measured by infrared rays, which includes the following steps: 1. Preparation steps; 2. Steps for obtaining the sum of values; 3. Calculation steps of optical parameters; 4. Steps for obtaining basic data of different water content; and Five, detection steps. The above-mentioned objects and advantages of the present invention can be easily understood from the detailed description of the following selected embodiments and the accompanying drawings. Hereinafter, the present invention will be described in detail with the following examples and drawings:
參閱第1及第2圖,本發明係為一種以紅外線檢測待測液中含水量之方法,其包括下列步驟:
一、準備步驟S1:準備一油管10、一紅外光發射器20、一紅外光接收器30及一處理部40。該油管10具有一入口11、一出口12及一通道13,該通道13係連通該入口11及該出口12;該油管10用以容納待測含水量之一待測液91;該紅外光發射器20係用以發出一紅外光L,該紅外光L係可穿透該通道13、該待測液91其中至少一者,而抵達該紅外光接收器30;該紅外光L之波長範圍係介於900nm~902.5nm之間。該處理部40係電性連結該紅外光發射器20及該紅外光接收器30。
二、數值總合之取得步驟S2:參閱第3圖,於該紅外光L穿透該通道13與該待測液91之一時間範圍內,該處理部40每隔一取樣時間(例如:T
1、T
2、…、T
n)即讀取該紅外光接收器30之電壓訊號,進而取得該複數電壓訊號(例如:V
1、V
2、…、V
n),其數量定義為n;
再以下列之公式(1)計算出一數值總和(S):
S=
(公式1);
其中,n=取樣個數,在本案實施例為2000(個);
V
i=電壓訊號,即V
1、V
2、…、V
n(單位=伏特);
ΔT=取樣時間,即T
1、T
2、…、T
n(單位=秒)。
三、光學參數計算步驟S3:該數值總和(S)係供該處理部40計算該待測液91之一光學參數,其係由下列之公式2所定義:
(公式2);
其中,C=權數、λ=紅外線波長、S=數值總和、ν=待測液運動黏度、n=電壓訊號之取樣數量、T
1=待測液溫度、T
0=外界溫度;其中該ν係指該待測液91在40 ℃下之黏度,其單位為cSt;且C=0.5。
四、不同含水量之基礎資料取得步驟S4:先以複數不同含水量之該待測液91,依序分別進行該數值總合之取得步驟S2與該光學參數計算步驟S3,而得到複數光學參數,該複數待測液91的其中之一係為含水量100%之純水,並將對應該含水量100%之純水的光學參數當成100,而其餘不同含水量之該待測液91之光學參數,則依比例分別計算,進而得到一基礎數據(如第4圖所示)。
五、檢測步驟S5:對一未知含水量之待測液91進行檢測,計算出其光學參數,將此計算得到之光學參數與該基礎數據進行比對,即可得出相對應之含水量。
當然,以第4圖所示之基礎數據為例,若對一未知含水量之待測液91進行檢測,計算出其光學參數為84.2,其係介於代表含水量94.8%的光學參數85.6,以及代表含水量92.4%之光學參數82.8之間,以傳統之內插法可推知其含水量為93.6%。同樣的,也可用外插法推知光學參數低於62.0之情況。由於內插法或外插法均為已知技術,在此不詳述其細節。
實務上,該待測液91可為切削油、研磨油、…、循環油其中一者。
該處理部40可連接雲端裝置(公知技術,圖面未示),進而可進行遠端即時監控。
關於本發明之使用方式,係在預先建立該基礎數據後,將該油管10之該入口11與該出口12分別連通至一機台油槽(具有該待測液91)內(如第2圖所示),使得該通道13內充滿該待測液91。啟動該紅外光發射器20、該紅外光接收器30及該處理部40。使得處理部40依取樣時間,開始記錄測量該紅外光接受器30之電壓訊號;進而將擷取到之該電壓訊號進行計算,最後可得到該待測液91之光學參數。
關於數值總合之計算方式,茲舉一例說明如下:
以1秒取樣4次(即獲得4個點)為例,取樣時間(ΔT)=1/4s= 0.25s=250 ms。而本案採用取樣2000點,即持續取樣500秒可以得到2000個取樣值(n=2000)。
更詳細的說,每一次取樣時間會得到一電壓訊號。2000次取樣可得到2000筆電壓訊號(例如:V
1、V
2、. . .V
n)。
以下列之公式(1)可以計算出數值總和(S):
S=
(公式1);
其中,n=取樣個數,在本案實施例為2000(個);
V
i=電壓訊號,即V
1、V
2、…、V
n(單位=伏特);
ΔT=取樣時間,即T
1、T
2、…、T
n(單位=秒)。
例如,參閱第3圖,其中:
第一點(V
1)=
V(伏特);
第二點(V
2)=
V(伏特)。
其可以下列計算方式得到:
;
之後的第三點、第四點、…、第N點(V
n)可依此類推計算。
最後得到2000點總和=數值總和(S)。
關於光學參數之計算,以純水為例:
;
。
本發明之重點在於,潤滑劑(液、油)在產業上是一個不可或缺的存在,若有適當潤滑保養,可使機台長時間高效率運轉,以達到減少磨耗與磨損之成效。但一般檢測儀器價格昂貴,若能以一般光學模組檢測,將可以方便又快速的檢測及保養,達到便利性及節省成本之效益。
本發明利用紅外線較不易受環境影響干擾之特性,即時檢測工具機切削油含水量變化,可預防過早或過慢更換之影響後果,並可以解決線上與遠端監控之問題。
本發明之優點及功效係如下所述:
[1] 可即時檢測潤滑油之含水量提高潤滑效益。本發明可直接裝設於相關之機台油槽,進而即時檢測使用中之潤滑油之含水量,隨時有異常隨時警示,可提高潤滑效益。故,可即時檢測潤滑油之含水量提高潤滑效益。
[2] 模組化可直接應用於相關裝置。本發明為模組化設計,可裝設於未出廠之機台油槽,亦可另外加設於現有之相關裝置。故,模組化可直接應用於相關裝置。
[3] 可進行遠端多數監控符合產業效益。本發明可以該處理部連結雲端裝置,達成複數機台油槽同步監控者。故,可進行遠端多數監控符合產業效益。
[4] 紅外線檢測減少外界干擾。本發明利用紅外線較不易受環境影響干擾之特性,進行檢測。故,紅外線檢測減少外界干擾。
以上僅是藉由較佳實施例詳細說明本發明,對於該實施例所做的任何簡單修改與變化,皆不脫離本發明之精神與範圍。
Referring to Figures 1 and 2, the present invention is a method for detecting water content in a liquid to be measured by infrared rays, which includes the following steps: 1. Preparation step S1: prepare an
10:油管 11:入口 12:出口 13:通道 20:紅外光發射器 30:紅外光接收器 40:處理部 91:待測液 L:紅外光 V 1、V 2、V n:電壓訊號 S1:準備步驟 S2:數值總合之取得步驟 S3:光學參數計算步驟 S4:不同含水量之基礎資料取得步驟 S5:檢測步驟10: Oil pipe 11: Inlet 12: Outlet 13: Channel 20: Infrared light transmitter 30: Infrared light receiver 40: Processing part 91: Liquid to be tested L: Infrared light V 1 , V 2 , V n : Voltage signal S1: Preparatory step S2: Obtain the sum of numerical values Step S3: Calculation of optical parameters Step S4: Obtain basic data of different water content Step S5: Detection step
第1圖係本發明之檢測方法之流程圖 第2圖係本發明之主要裝置之示意圖 第3圖係本發明之複數取樣時間與電壓訊號之對應關係之示意圖 第4圖係本發明之光學參數與含水量之對應關係之長條圖 Figure 1 is a flowchart of the detection method of the present invention Figure 2 is a schematic diagram of the main device of the present invention Figure 3 is a schematic diagram of the corresponding relationship between the complex sampling time and the voltage signal of the present invention Figure 4 is a bar graph of the correspondence between optical parameters and water content of the present invention
S1:準備步驟 S1: Preparation steps
S2:數值總合之取得步驟 S2: Steps to obtain the sum of values
S3:光學參數計算步驟 S3: Optical parameter calculation steps
S4:不同含水量之基礎資料取得步驟 S4: Steps to obtain basic data for different water content
S5:檢測步驟 S5: Detection steps
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109129698A TWI730889B (en) | 2020-08-31 | 2020-08-31 | Method for detecting the water content in the liquid to be measured by infrared rays |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109129698A TWI730889B (en) | 2020-08-31 | 2020-08-31 | Method for detecting the water content in the liquid to be measured by infrared rays |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI730889B true TWI730889B (en) | 2021-06-11 |
TW202210811A TW202210811A (en) | 2022-03-16 |
Family
ID=77517103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109129698A TWI730889B (en) | 2020-08-31 | 2020-08-31 | Method for detecting the water content in the liquid to be measured by infrared rays |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI730889B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202372439U (en) * | 2011-12-07 | 2012-08-08 | 尚世哲 | Online crude oil water content detector employing infrared image photometry |
CN103616331A (en) * | 2013-11-29 | 2014-03-05 | 大连海事大学 | Device and method for detecting moisture content of lubricating oil |
US20150377776A1 (en) * | 2009-12-18 | 2015-12-31 | Schlumberger Technology Corporation | Probe using ultraviolet and infrared radiation for multi-phase flow analysis |
CN105352912A (en) * | 2015-12-11 | 2016-02-24 | 天津成科传动机电技术股份有限公司 | Water-in-oil detecting device based on infrared absorption method |
-
2020
- 2020-08-31 TW TW109129698A patent/TWI730889B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150377776A1 (en) * | 2009-12-18 | 2015-12-31 | Schlumberger Technology Corporation | Probe using ultraviolet and infrared radiation for multi-phase flow analysis |
CN202372439U (en) * | 2011-12-07 | 2012-08-08 | 尚世哲 | Online crude oil water content detector employing infrared image photometry |
CN103616331A (en) * | 2013-11-29 | 2014-03-05 | 大连海事大学 | Device and method for detecting moisture content of lubricating oil |
CN105352912A (en) * | 2015-12-11 | 2016-02-24 | 天津成科传动机电技术股份有限公司 | Water-in-oil detecting device based on infrared absorption method |
Also Published As
Publication number | Publication date |
---|---|
TW202210811A (en) | 2022-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107560984B (en) | A kind of oil liquid pollution on-line monitoring device and monitoring method of hydraulic system | |
CN102707037B (en) | On-line monitoring system for diesel lubrication oil | |
CN103851029B (en) | A kind of with large engineering vehicle hydraulic system online auto monitoring system | |
CN210513217U (en) | Engine lubricating oil on-line monitoring system | |
CN212646694U (en) | Lubricating oil station with oil product online detection function | |
Zhang et al. | Engine wear monitoring with OLVF | |
CN104777831B (en) | A kind of method for diagnosing faults of fluid pressure type immersed pump system | |
CN113916531A (en) | Fault diagnosis and prediction system for on-line monitoring of vibration and oil of nuclear power gearbox | |
CN105195527B (en) | A kind of oily on-line monitoring method of mill lubrication without temperature-compensating | |
CN112666339A (en) | Online analysis system and method for lubricating oil of unit oil station | |
CN115095579B (en) | Fault early warning method of hydraulic system | |
TWI730889B (en) | Method for detecting the water content in the liquid to be measured by infrared rays | |
CN114486889A (en) | Detection system and method for through hole rate of micro array holes of composite wallboard | |
CN208334373U (en) | Marine diesel lubricating oil moisture prior-warning device | |
CN111537439B (en) | System and method for automatically identifying and evaluating defects of pressure-bearing equipment | |
CN113155443B (en) | Lubricating oil state monitoring and fault diagnosis system and method for reducer of coal mining machine | |
CN203756651U (en) | Automatic on-line monitoring system of large engineering vehicle hydraulic system in use | |
CN213689626U (en) | Self-cleaning standing water content analyzer | |
CN201876451U (en) | Multi-parameter oil monitoring and analyzing device based on multi-sensor fusion technology | |
CN106151169A (en) | A kind of oil product detection devices and methods therefor | |
CN112285330A (en) | Self-cleaning standing water content analyzer | |
CN108527002B (en) | Built-in detection system for heat generation of spindle of numerical control machine tool | |
CN216900171U (en) | Online video monitoring device of fluid quality | |
CN1212507C (en) | New method of liquid state environment different medium interface measurement | |
CN112946024B (en) | Method for checking measurement characteristics of residual chlorine sensor |