TWI730284B - Receiving method, receiving device, transmission method, transmission device, transmission and reception system - Google Patents

Receiving method, receiving device, transmission method, transmission device, transmission and reception system Download PDF

Info

Publication number
TWI730284B
TWI730284B TW108102227A TW108102227A TWI730284B TW I730284 B TWI730284 B TW I730284B TW 108102227 A TW108102227 A TW 108102227A TW 108102227 A TW108102227 A TW 108102227A TW I730284 B TWI730284 B TW I730284B
Authority
TW
Taiwan
Prior art keywords
displacement
frequency
time
shift
signal
Prior art date
Application number
TW108102227A
Other languages
Chinese (zh)
Other versions
TW201937878A (en
Inventor
香田徹
Original Assignee
日商瑞笛思股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2018/024592 external-priority patent/WO2019142372A1/en
Application filed by 日商瑞笛思股份有限公司 filed Critical 日商瑞笛思股份有限公司
Publication of TW201937878A publication Critical patent/TW201937878A/en
Application granted granted Critical
Publication of TWI730284B publication Critical patent/TWI730284B/en

Links

Images

Abstract

一態樣之接收訊號的接收方法,其係包含:推定步驟,其係參照具有餘維度2之不可置換位移的參數空間,來推定接收訊號所表示的時間位移及頻率位移。 One aspect of the receiving method of the received signal includes an estimating step, which refers to a parameter space with a co-dimension 2 irreplaceable displacement to estimate the time shift and the frequency shift represented by the received signal.

Description

接收方法、接收裝置、傳送方法、傳送裝置、傳送接收 Receiving method, receiving device, transmitting method, transmitting device, transmitting and receiving

本發明係關於接收方法、接收裝置、傳送方法、傳送裝置、傳送接收系統。 The present invention relates to a receiving method, a receiving device, a transmitting method, a transmitting device, and a transmitting and receiving system.

目前已經有許多關於通訊系統技術以及其相關的技術之研究與開發,而本發明人們進行了關於使用時間分割方式以及頻率分割方式等的傳送接收系統的研究及開發(例如下列的專利文獻1-6,非專利文獻1-32)。 At present, there have been many researches and developments on communication system technology and its related technologies, and the present inventors have conducted research and development on transmission and reception systems using time division methods and frequency division methods (for example, the following patent documents 1- 6. Non-Patent Document 1-32).

[先前技術文獻] [Prior Technical Literature]

[專利文獻] [Patent Literature]

[專利文獻1]日本「特開2016-189500號」公報 [Patent Document 1] Japanese "JP 2016-189500" gazette

[專利文獻2]國際公開「WO2012/153732 A1」號公報 [Patent Document 2] International Publication "WO2012/153732 A1"

[專利文獻3]國際公開「WO2014/034664 A1」號公報 [Patent Document 3] International Publication "WO2014/034664 A1"

[專利文獻4]國際公開「WO2013/183722 A1」號公報 [Patent Document 4] International Publication "WO2013/183722 A1"

[專利文獻5]日本「特開2016-189501號」公報 [Patent Document 5] Japanese "JP 2016-189501" gazette

[專利文獻6]日本「特開2016-189502號」公報 [Patent Document 6] Japanese "JP 2016-189502" gazette

[專利文獻7]日本「特開2013-251902號」公報 [Patent Document 7] Japanese "JP 2013-251902" gazette

[專利文獻8]日本「特開2012-170083號」公報 [Patent Document 8] Japanese "JP 2012-170083" gazette

[非專利文獻] [Non-Patent Literature]

[非專利文獻1]D. Gabor, ”Theory of Communication”, in Proc. Inst. Elect. Engr,, pt.III, 93, 429-41, 1946. [Non-Patent Document 1] D. Gabor, "Theory of Communication", in Proc. Inst. Elect. Engr,, pt. III, 93, 429-41, 1946.

[非專利文獻2]D.Gabor, ”Lectures on communication theory”, in Technical Report., No., 238. Research Laboratoty of Electronics, Massachusettes Institute of technology Cambribge, 1-48, 1952. [Non-Patent Document 2] D. Gabor, "Lectures on communication theory", in Technical Report., No., 238. Research Laboratoty of Electronics, Massachusettes Institute of technology Cambribge, 1-48, 1952.

[非專利文獻3]L.W.Couch, II, Digital and Analog Communication Systems, 8th Ed.,” Pearson, 2013. [Non-Patent Document 3] L.W. Couch, II, Digital and Analog Communication Systems, 8th Ed.," Pearson, 2013.

[非專利文獻4]G.B.Folland, Harmonic Analysis in Phase Space, Annals of Mathematics Studies Princeton Univ. Press, 1989. [Non-Patent Document 4] G.B.Folland, Harmonic Analysis in Phase Space, Annals of Mathematics Studies Princeton Univ. Press, 1989.

[非專利文獻5]Howe,R. On the role of the Heisenberg groups in harmonic analysis,” Bulltein of the American Mathematical Society, 3-2,821-840(1980) [Non-Patent Document 5] Howe,R. On the role of the Heisenberg groups in harmonic analysis," Bulltein of the American Mathematical Society, 3-2,821-840 (1980)

[非專利文獻6]Rosenberg,J. A selective history of the Stone-von Neumann theorem, Contemporary Mathematics, 365. American Mathematical Society (2004) [Non-Patent Document 6] Rosenberg, J. A selective history of the Stone-von Neumann theorem, Contemporary Mathematics, 365. American Mathematical Society (2004)

[非專利文獻7]I.Daubechies, Time-frequency localization operators: a geometric phase space approach,” IEEE Trans.Information Theory, 34- 4,605- 612,1988. [Non-Patent Document 7] I. Daubechies, Time-frequency localization operators: a geometric phase space approach," IEEE Trans. Information Theory, 34-4,605-612,1988.

[非專利文獻8]I.Daubechies, The wavelet transform, time-frequency localization and signal analysis,” IEEE Trans.Information Theory, 36-5,961-1005, 1990. [Non-Patent Document 8] I. Daubechies, The wavelet transform, time-frequency localization and signal analysis," IEEE Trans.Information Theory, 36-5,961-1005, 1990.

[非專利文獻9]B.Le.Floch,M.Alard & C.Berrou, “coded OFDM: Coded Orthgonal Frequency Division Multiplex,” Proc. of IEEE,83-6,982-996, 1995. [Non-Patent Document 9] B. Le. Floch, M. Alard & C. Berrou, "coded OFDM: Coded Orthgonal Frequency Division Multiplex," Proc. of IEEE, 83-6, 982-996, 1995.

[非專利文獻10]P.Siohan,C.Sciclet,& N.Lacaille, “OFDM/OQAM: Analysis and Design of OFDM/ OQAM Systems, based on Filterbank Theory,” IEEE, Trans. Sig.50-5, 1170-1183, May, 2002. [Non-Patent Document 10] P. Siohan, C. Sciclet, & N. Lacaille, "OFDM/OQAM: Analysis and Design of OFDM/ OQAM Systems, based on Filterbank Theory," IEEE, Trans. Sig.50-5, 1170 -1183, May, 2002.

[非專利文獻11]Sciclet,C., Siohan,P. & Pinchon,D. Perfect reconstruction conditions and design of oversampled DFT-based transmultiplexers, EURASIP J. on Applied Signal Processing,2006,Article ID 15756,1-14,2006. [Non-Patent Document 11] Sciclet, C., Siohan, P. & Pinchon, D. Perfect reconstruction conditions and design of oversampled DFT-based transmultiplexers, EURASIP J. on Applied Signal Processing, 2006, Article ID 15756,1-14, 2006.

[非專利文獻12]B.F.Boroujeny, “OFDM Versus Filter Bank Multicarrier,” IEEE Signal Processing Magazine, 28-3, 92-112,2011. [Non-Patent Document 12] B.F. Boroujeny, "OFDM Versus Filter Bank Multicarrier," IEEE Signal Processing Magazine, 28-3, 92-112, 2011.

[非專利文獻13]P.P.Vaidyanathan, ”Multirate Systems and Filter Banks,” Prentice-Hall, 1993. [Non-Patent Document 13] P.P.Vaidyanathan, "Multirate Systems and Filter Banks," Prentice-Hall, 1993.

[非專利文獻14]J.Ville, ”Th′eorie et application de la notion de signal analytique,” C′ables et transmission,no.2,pp.61-74.1948.(J.Ville: ”Theory and Applications of the notion of complex signal”, translated from the French by I.Stein, T-92,8-1-58,U.S.Air Force Project Rand, 1958) [Non-Patent Document 14] J. Ville, ”Th′eorie et application de la notion de signal analytique,” C′ables et transmission, no.2, pp.61-74.1948. (J.Ville: ”Theory and Applications of the notion of complex signal", translated from the French by I.Stein, T-92,8-1-58,USAir Force Project Rand, 1958)

[非專利文獻15]P.M.Woodward, Probability and Information Theory, with Applications to Radar, Pergamon Press, New York, 1953. [Non-Patent Document 15] P.M. Woodward, Probability and Information Theory, with Applications to Radar, Pergamon Press, New York, 1953.

[非專利文獻16]C.H. Wilcox, ”The synthesis problem for radar ambiguity function,” MRC Technical Report, No. 157, pp.1-46. Mathematics Reaearch Center, U.S.Army, Univ. Wisconsin,Madison, 1960. [Non-Patent Literature 16] C.H. Wilcox, "The synthesis problem for radar ambiguity function," MRC Technical Report, No. 157, pp.1-46. Mathematics Reaearch Center, U.S. Army, Univ. Wisconsin, Madison, 1960.

[非專利文獻17]L. Auslander and R.Tolimieri, “Radar Ambiguity Functions and Group Theory, SIAM J. Math. Anal., 16-3, 577-601, 1985. [Non-Patent Document 17] L. Auslander and R. Tolimieri, "Radar Ambiguity Functions and Group Theory, SIAM J. Math. Anal., 16-3, 577-601, 1985.

[非專利文獻18]C.W. Helstrom, Elements of Signal Detection and Estimation,” PTR Prentice-Hall, 1995. [Non-Patent Document 18] C.W. Helstrom, Elements of Signal Detection and Estimation," PTR Prentice-Hall, 1995.

[非專利文獻19]N. Levanson and E. Mozeson, ”Radar Signals,” Wiley interscience, 2004. [Non-Patent Document 19] N. Levanson and E. Mozeson, "Radar Signals," Wiley interscience, 2004.

[非專利文獻20]Sakurai, J. J .Modern quantum mechanics, S. F. Tuan editor, Rev. ed., Addison-Wesley Pub. Comp. 1994. [Non-Patent Literature 20] Sakurai, J. J. Modern quantum mechanics, S. F. Tuan editor, Rev. ed., Addison-Wesley Pub. Comp. 1994.

[非專利文獻21]J. von Neumann, The Geometry of Operators, vol.II (Ann. Math. Studies, no.22), 1950. [Non-Patent Document 21] J. von Neumann, The Geometry of Operators, vol. II (Ann. Math. Studies, no. 22), 1950.

[非專利文獻22]Youla, D. C Generalized image restoration by the method of alternating orthogonal projections, IEEE Trans. Circuits and Systems, CAS-25-9, 694-702, 1978. [Non-Patent Document 22] Youla, D. C Generalized image restoration by the method of alternating orthogonal projections, IEEE Trans. Circuits and Systems, CAS-25-9, 694-702, 1978.

[非專利文獻23]Stark, H., Cahana, D.& Webb, H. Restoration of arbitrary finiteenergy optical objects from limited spatial and spectral information, J.Opt.Soc.Amer., 71-6,635-642, 1981. [Non-Patent Document 23] Stark, H., Cahana, D. & Webb, H. Restoration of arbitrary finiteenergy optical objects from limited spatial and spectral information, J.Opt.Soc.Amer., 71-6,635-642, 1981.

[非專利文獻24]Kohda,T., Jitsumatsu, Y. & Aihara, K. Separability of time-frequency synchronization, Proc.Int.Radar Symp., 964-969,2013. [Non-Patent Document 24] Kohda, T., Jitsumatsu, Y. & Aihara, K. Separability of time-frequency synchronization, Proc.Int.Radar Symp., 964-969,2013.

[非專利文獻25]T. Kohda, Y. Jitsumatsu, and K. Aihara, “Gabor division/spread spectrum system is separable in time and frequency synchronization,” Proc. VTC 2013 Fall, 1-5,2013. [Non-Patent Document 25] T. Kohda, Y. Jitsumatsu, and K. Aihara, “Gabor division/spread spectrum system is separable in time and frequency synchronization,” Proc. VTC 2013 Fall, 1-5,2013.

[非專利文獻26]Y. Jitsumatsu, T. Kohda, and K. Aihara, “Spread Spectrum-based Cooperative and individual time-frequency synchronization,” Proc.(ISWCS), 1-5,2013. [Non-Patent Document 26] Y. Jitsumatsu, T. Kohda, and K. Aihara, “Spread Spectrum-based Cooperative and individual time-frequency synchronization,” Proc.(ISWCS), 1-5,2013.

[非專利文獻27]Jitsumatsu, Y., Kohda, T., & Aihara, K. Delay-Doppler space divisionbased multiple-access solves multiple-target detection, Jonnsson, M., et al, (eds.) MACOM2013, LNCS8310, Springer, 39-53, 2013. [Non-Patent Document 27]Jitsumatsu, Y., Kohda, T., & Aihara, K. Delay-Doppler space divisionbased multiple-access solves multiple-target detection, Jonnsson, M., et al, (eds.) MACOM2013, LNCS8310 , Springer, 39-53, 2013.

[非專利文獻28]T. Kohda, Y. Jitsumatsu, and K. Aihara, ”Recovering noncoherent MPSK signal with unknown delay and Doppler using its ambiguity function,” 4th International workshop on recent Advanced in Access Network, (RABAN2013), 251-256, 2013. [Non-Patent Literature 28] T. Kohda, Y. Jitsumatsu, and K. Aihara, ”Recovering noncoherent MPSK signal with unknown delay and Doppler using its ambiguity function,” 4th International workshop on recent Advanced in Access Network, (RABAN2013), 251 -256, 2013.

[非專利文獻29]T. Kohda, Y. Jitsumatsu and K. Aihara “Phase-tuned layers with multiple 2D SS codes realize 16PSK communication,” 2014 2014 IEEE Wireless Commun. Networking Conference, WCNC 2014,469-474 (2014). [Non-Patent Document 29] T. Kohda, Y. Jitsumatsu and K. Aihara “Phase-tuned layers with multiple 2D SS codes realize 16PSK communication,” 2014 2014 IEEE Wireless Commun. Networking Conference, WCNC 2014,469-474 (2014) .

[非專利文獻30]Jitsumatsu, Y. & Kohda, T. Digital phase updating loop and delay-Doppler space division multiplexing for higher order MPSK, Jonnsson, M., et al, (eds.) MACOM2014, LNCS8715, Springer,1-15,2014. [Non-Patent Document 30] Jitsumatsu, Y. & Kohda, T. Digital phase updating loop and delay-Doppler space division multiplexing for higher order MPSK, Jonnsson, M., et al, (eds.) MACOM2014, LNCS8715, Springer,1 -15, 2014.

[非專利文獻31] T. Kohda, Y. Jitsumatsu, and K. Aihara, “Frequency-division spread spectrum makes frequency synchronisation easy,” Proc. IEEE Globecom 2012, 3952-3958, 2012. [Non-Patent Document 31] T. Kohda, Y. Jitsumatsu, and K. Aihara, “Frequency-division spread spectrum makes frequency synchronisation easy,” Proc. IEEE Globecom 2012, 3952-3958, 2012.

[非專利文獻32]T. Kohda, Y. Jitsumatsu, and K. Aihara, “Frequency synchronisation using SS technique,” Proc. The ninth Int. Sympo. on Wireless Communication Systems, 855-859, 2012. [Non-Patent Document 32] T. Kohda, Y. Jitsumatsu, and K. Aihara, “Frequency synchronisation using SS technique,” Proc. The ninth Int. Sympo. on Wireless Communication Systems, 855-859, 2012.

[非專利文獻33] J.F.Daughman, “Two-dimensional analysis of cortical receptive field profiles,” Vision Research, 20, 846-856, 1980. [Non-Patent Document 33] J.F. Daughman, "Two-dimensional analysis of cortical receptive field profiles," Vision Research, 20, 846-856, 1980.

[非專利文獻34] J. F. Daughman, “Image analysis by local 2-D spectral signatures,” J. Opt. Soc. Amer. (A), 2, p. P74, 1985. [Non-Patent Document 34] J. F. Daughman, “Image analysis by local 2-D spectral signatures,” J. Opt. Soc. Amer. (A), 2, p. P74, 1985.

[非專利文獻35] J. F. Daughman, “Complete Discrete 2-D Gabor Transform by Neural Networks for Image Analysis and Compression,” IEEE Trans. Acoustics, Speech and Signal Processing, 36-7, 1169-1179, 1988. [Non-Patent Document 35] J. F. Daughman, "Complete Discrete 2-D Gabor Transform by Neural Networks for Image Analysis and Compression," IEEE Trans. Acoustics, Speech and Signal Processing, 36-7, 1169-1179, 1988.

[非專利文獻36] Movella, Javier R. “Tutorial on Gabor filters”. Archived from on 2009-04-19, Retrieved 2008-05-14. [Non-Patent Document 36] Movella, Javier R. "Tutorial on Gabor filters". Archived from on 2009-04-19, Retrieved 2008-05-14.

[非專利文獻37] Hans G. Feichtinger and Thomas Strohmer: Gabor Analysis and Algorithms, Birkhauser, 1998. [Non-Patent Document 37] Hans G. Feichtinger and Thomas Strohmer: Gabor Analysis and Algorithms, Birkhauser, 1998.

[非專利文獻38] Jones, J. P. and Palmer, L. A. “An evaluation of the two-dimensional gabor filter model of simple receptive fields in cat striate cortex”. J. Neurophysiol. 58(6): 1233-1258. 1987. [Non-Patent Document 38] Jones, J. P. and Palmer, L. A. "An evaluation of the two-dimensional gabor filter model of simple receptive fields in cat striate cortex". J. Neurophysiol. 58(6): 1233-1258. 1987.

[非專利文獻39] Tai Sing Lee, “Image representation using 2d Gabor wavelets, “IEEE Trans. on pattern analysis and machine intelligence, 18-10, 1-13, 1996. [Non-Patent Document 39] Tai Sing Lee, “Image representation using 2d Gabor wavelets,” IEEE Trans. on pattern analysis and machine intelligence, 18-10, 1-13, 1996.

[非專利文獻40] W. D. Montgomery “Optical applications of von Neumann's alternating projection theorem,” Optics Letters, 7-1, 1-3, 1982. [Non-Patent Document 40] W. D. Montgomery "Optical applications of von Neumann's alternating projection theorem," Optics Letters, 7-1, 1-3, 1982.

[非專利文獻41] W. D. Montgomery “Restoration of images processing a finite Fourier series,” Optics Letters, 7-2, 54-56, 1982. [Non-Patent Document 41] W. D. Montgomery "Restoration of images processing a finite Fourier series," Optics Letters, 7-2, 54-56, 1982.

[非專利文獻42] A. V. Oppenheim and J. S. Lim, “Importance of phase in Signals,” 1980, Proc of the IEEE, 96-5, 529-541, 1981. [Non-Patent Document 42] A. V. Oppenheim and J. S. Lim, "Importance of phase in Signals," 1980, Proc of the IEEE, 96-5, 529-541, 1981.

[發明概要] [Summary of the invention]

目前本案發明人們根據進行通訊技術的理論方面的相關研究,已達到知悉必須著眼於時間頻率相位平面(TFP,Time Frequency Plane,亦單純稱為TFP)上的位移運算子之本質上的不可置換性。 At present, the inventors of the present case, based on the related research on the theoretical aspects of communication technology, have achieved that they must focus on the inherent non-replaceability of the displacement operators on the Time Frequency Plane (TFP, also simply referred to as TFP). .

本發明的一樣態為基於上述已知悉技術,並以實現高效率的接收方法、接收裝置、傳送方法、傳送裝置、傳送接收系統作為目的。 The state of the present invention is based on the above-mentioned known technology, and aims to realize a high-efficiency receiving method, receiving device, transmission method, transmission device, and transmission receiving system.

為解決上述課題,本發明的一樣態為一種接收訊號的接收方法,其係包含:推定步驟,其係參照具有餘維度2(Codimension 2)之不可置換位移的參數空間,來推定接收訊號所表示的時間位移及頻率位移。 In order to solve the above-mentioned problems, the state of the present invention is a receiving method of a received signal, which includes: an estimation step, which refers to a parameter space with an irreplaceable displacement of Codimension 2 to estimate what the received signal represents的 time shift and frequency shift.

此外,為解決上述課題,本發明的一樣態為一種接收訊號的接收裝置,其係包含:推定部,其係參照具有餘維度2之不可置換位移的參數空間,來推定接收訊號所表示的時間位移及頻率位移。 In addition, in order to solve the above-mentioned problems, the aspect of the present invention is a receiving device for receiving signals, which includes: an estimating unit that estimates the time represented by the received signal by referring to a parameter space with a co-dimension 2 irreplaceable displacement Displacement and frequency displacement.

此外,為解決上述課題,本發明的一樣態為一種傳送訊號的傳送方法,其係包含:位移步驟,其係參照具有餘維度2之不可置換位移的參數空間,使傳送對象之訊號的時間及頻率位移。 In addition, in order to solve the above-mentioned problems, the aspect of the present invention is a signal transmission method, which includes: a displacement step, which refers to a parameter space with a co-dimension 2 irreplaceable displacement, so that the time of the signal of the transmission object is Frequency shift.

此外,為解決上述課題,本發明的一樣態為一種傳送訊號的傳送裝置,其係包含:位移部,其係參照具有餘維度2之不可置換位移的參數空間,使傳送對象之訊號的時間及頻率位移。 In addition, in order to solve the above-mentioned problems, the aspect of the present invention is a signal transmission device, which includes: a displacement part, which refers to a parameter space with a co-dimensional 2 irreplaceable displacement, so that the time of the signal of the transmission object is Frequency shift.

此外,為解決上述課題,本發明的一樣態為一種接收圖像訊號的接收方法,其係包含:推定步驟,其係參照參數空間,來推定接收之圖像訊號所表示的空間位移及空間頻率位移;且上述空間位移及空間頻率位移係各自具有2以上的維度。 In addition, in order to solve the above-mentioned problems, the aspect of the present invention is a receiving method for receiving image signals, which includes: an estimation step, which refers to the parameter space to estimate the spatial displacement and spatial frequency represented by the received image signal Displacement; and the above-mentioned spatial displacement and spatial frequency displacement system each has more than 2 dimensions.

此外,為解決上述課題,本發明的一樣態為一種傳送圖像訊號的傳送方法,其係包含:位移步驟,其係參照參數空間,使傳送對象之圖像訊號的空間及頻率位移;且上述空間的位移及頻率的位移係各自具有2以上的維度。 In addition, in order to solve the above-mentioned problems, the aspect of the present invention is a transmission method for transmitting image signals, which includes: a displacement step, which refers to the parameter space to shift the space and frequency of the image signal of the transmission object; and The spatial displacement and the frequency displacement system each have two or more dimensions.

根據上述構成,可實現高效率的接收方法、接收裝置、傳送方法、傳送裝置、傳送接收系統。 According to the above configuration, a highly efficient receiving method, receiving device, transmitting method, transmitting device, and transmitting and receiving system can be realized.

1、1a:傳送接收裝置 1.1a: Transmitting and receiving device

100、100a:傳送裝置 100, 100a: conveyor

101:傳送用數據取得部 101: Data acquisition unit for transmission

102、102a:傳送訊號產生部 102, 102a: Transmission signal generating unit

103:傳送部 103: Transmission Department

110:位移嵌入部 110: Displacement embedded part

200、200a:接收裝置 200, 200a: receiving device

201:接收部 201: Receiving Department

202、202a:位移推定及接收數據抽出部(推定部) 202, 202a: Displacement estimation and received data extraction unit (estimation unit)

203:接收數據解析部 203: Received data analysis department

S101~S103、S102a:步驟 S101~S103, S102a: steps

S201~S203、S202a:步驟 S201~S203, S202a: steps

〔圖1〕係顯示實施型態中的TFP的三種分割方法。(a)為時間分割(TD,Time Division);(b)為頻率分割(FD,Frequency Division);(c)為Gabor分割(GD,Gabor Division)如[非專利文獻1]所示。其中,(a)當中的實線為表示資訊數據的時間寬度T的劃分;虛線表示基於時間分割相位編碼(TD-PC,TD-Phase code,phase code亦稱PC)的細分割。(b)中的粗虛線表示資訊數據的 頻寬F的劃分;細虛線則表示基於頻率分割相位編碼(FD-PC,FD-phase code)的細分割。 [Figure 1] shows the three segmentation methods of TFP in the implementation type. (a) is Time Division (TD, Time Division); (b) is Frequency Division (FD, Frequency Division); (c) is Gabor Division (GD, Gabor Division) as shown in [Non-Patent Document 1]. Among them, the solid line in (a) represents the division of the time width T of the information data; the dotted line represents the fine division based on the time division phase code (TD-PC, TD-Phase code, phase code also known as PC). The thick dotted line in (b) represents the information data The division of bandwidth F; the thin dashed line represents the fine division based on frequency division phase code (FD-PC, FD-phase code).

〔圖2〕係概略地顯示實施型態中時間頻率位移(time-frequency shift)的不可置換性之圖。不可置換性係在關於位移運算子的積的關係式Tτ,0‧T0,ν=e-i2πτνT0,νTτ,0(左邊對應圖中的三角標號,右邊對應圖中的方形標號)當中,作為相位失真(phase distorsion,PD)e-i2πτν呈現。圖中的圓形標號○表示對稱時間頻率運算子(Symmetrical Time-Frequency Shift Operator,TFSO) [Figure 2] is a diagram schematically showing the irreplaceability of the time-frequency shift in the implementation type. The non-substitutability lies in the relational expression T τ,0 ‧T 0,ν =e -i2πτν T 0,ν T τ,0 about the product of displacement operators (the left side corresponds to the triangle label in the figure, and the right side corresponds to the square in the figure Among them, it appears as phase distortion (PD) e- i2πτν . The circle symbol ○ in the figure indicates the Symmetrical Time-Frequency Shift Operator (TFSO)

Figure 108102227-A0305-02-0010-1
Figure 108102227-A0305-02-0010-1

[非專利文獻26]。 [Non-Patent Document 26].

〔圖3〕(a)為顯示實施型態中配置於TFP上chip level(碼片級)的Gabor函數以及其相關的資訊。特別是,(a-0)為顯示配置於TFP上的chip level的Gabor函數gmm' (t)及其傅立葉轉換(FT)的Gmm' (f)。(a-1)顯示將gmm' (t)以頻率分割相位編碼(FD-PC)X' m' 進行加重加算的TD-template(時間分割模板)的實部、虛部;(a-2)顯示將Gmm' (f)以時間分割相位編碼(TD-PC)Xm進行加重加算的FD-template(頻率分割模板)的實部、虛部。(b)為TFP上的NN’個交叉相關函數(cross correlation function,CCF)以及N’個列和的TD-CCF值與N個行和的FD-CCF值。(c)為根據交替投影定理(APT,Alternating projection theorem)的限時時間空間(TL-TD,time limited time domain)、限頻寬頻率空間(BL-FD,band limited frequency domain)往上方的正交投影的推定值 [Figure 3] (a) shows the Gabor function and its related information configured at the chip level on the TFP in the implementation type. In particular, (a-0) is the Gabor function g mm (t) and its Fourier transform (FT) G mm (f) showing the chip level arranged on the TFP. (a-1) Display the real and imaginary parts of the TD-template (time division template ) that adds g mm ' (t) to frequency division phase encoding (FD-PC) X ' m '; (a-2 ) Shows the real and imaginary parts of the FD-template (frequency division template) that G mm ' (f) is emphasized and added by the time division phase encoding (TD-PC) X m. (b) is NN' cross correlation function (CCF) on TFP, TD-CCF value of N'column sum and FD-CCF value of N row sum. (c) According to the Alternating Projection Theorem (APT, Alternating Projection Theorem), the upper orthogonality of the time limited time space (TL-TD, time limited time domain) and the band limited frequency domain (BL-FD, band limited frequency domain) Estimated value of projection

Figure 108102227-A0305-02-0010-2
Figure 108102227-A0305-02-0010-2

的交互更新過程與收斂值td,fDThe interactive update process and the convergence value t d , f D.

〔圖4〕為實施型態中產生公式(25),(67)的TD特徵標記(signature)v[k]的合成濾波器組(SFB,synthesis Filter Bank)的示意圖,其中上述公式具有TD-PC的Xm,FD-PC的X' m' 以及編號m’的TD-template [Figure 4] is a schematic diagram of the synthesis filter bank (SFB ) of the TD feature mark (sig n ature) v[k] of formulas (25) and (67) generated in the implementation type, wherein the above formula has TD-PC of X m, FD-PC's X 'm' and the number m 'of the TD-template

Figure 108102227-A0305-02-0011-3
Figure 108102227-A0305-02-0011-3

〔圖5〕係顯示產生公式(25),(67)的FD signature [Figure 5] shows the FD signature of formulas (25) and (67)

[數學式5]V[l] [Math 5] V [ l ]

的SFB的示意圖,其中上述公式具有TD-PC的Xm、FD-PC的X' m' 以及編號m’的TD template A schematic view of the SFB, having the above formula wherein X m TD-PC's, FD-PC's X 'm' and the number m 'of the TD template

Figure 108102227-A0305-02-0011-4
Figure 108102227-A0305-02-0011-4

〔圖6〕係顯示產生公式(27),(71)的TD-複封包(TD-CE,TD-Complex Envelope) [Figure 6] shows the TD-Complex Envelope (TD-CE, TD-Complex Envelope) that produces formulas (27) and (71)

[數學式7]ψ[k] [Math 7] ψ [ k ]

的SFB的示意圖,其中上述公式具有作為輸入訊號之實施形態的複數數據 Schematic diagram of the SFB in which the above formula has complex data as the implementation form of the input signal

Figure 108102227-A0305-02-0011-5
Figure 108102227-A0305-02-0011-5

〔圖7〕係顯示產生公式(27),(71)的FD-複封包(FD-CE,TD-Complex Envelope) [Figure 7] shows the FD-Complex Envelope (FD-CE, TD-Complex Envelope) that produces formulas (27) and (71)

[數學式9]Ψ[l] [Math 9] Ψ[ l ]

的SFB的示意圖,其中上述公式具有作為輸入訊號之實施形態的複數數據 Schematic diagram of the SFB in which the above formula has complex data as the implementation form of the input signal

Figure 108102227-A0305-02-0012-6
Figure 108102227-A0305-02-0012-6

〔圖8〕係顯示裝備有實施型態之複數數據 [Figure 8] It shows the complex data of the implementation type of the equipment

Figure 108102227-A0305-02-0012-7
Figure 108102227-A0305-02-0012-7

解碼用的TD相關器陣列的分析濾波器組(AFB,Analysis Filter Bank)的示意圖。 A schematic diagram of the analysis filter bank (AFB, Analysis Filter Bank) of the TD correlator array for decoding.

〔圖9〕係顯示裝備有實施型態之複數數據 [Figure 9] It shows the complex data of the equipment with the implementation type

Figure 108102227-A0305-02-0012-8
Figure 108102227-A0305-02-0012-8

解碼用的FD相關器陣列的AFB的示意圖。 A schematic diagram of the AFB of the FD correlator array for decoding.

〔圖10〕(a)係顯示關於實施型態的TD相關器陣列的示意圖;(c)係顯示FD相關器陣列的分析濾波器組(AFB)的示意圖;(b)係概略地顯示基於von Neumann的APT將兩個陣列進行最大似然估計值的交互更新。 [Figure 10] (a) is a schematic diagram showing the implementation of the TD correlator array; (c) is a schematic diagram showing the analysis filter bank (AFB) of the FD correlator array; (b) is a schematic diagram showing the von based Neumann's APT will interactively update the maximum likelihood estimates of the two arrays.

〔圖11〕係概略地顯示實施型態中的von Neumann’的交替投影定理(APT)的圖。圖中的TL-TD(time limited time domain,限時時間空間)、BL-FD(band limited frequency domain,限頻寬頻率空間)分別地表示Hilbert空間(希爾伯特空間)的兩個部分空間。此外,部分空間TL-TD意味著L△t-(或是TS)-限時Time-limited(TL)空間。部分空間BL-FD意味著L△f-(或是FS)-限頻寬Band-limited(BL)空間。於圖中,箭頭表示各個部份空間的往上方的正交投影,並測出提供最大似然估計值與最大似然值的CCF編號。 [Figure 11] is a diagram schematically showing von Neumann's Alternating Projection Theorem (APT) in the implementation mode. In the figure, TL-TD (time limited time domain, limited time space) and BL-FD (band limited frequency domain, limited bandwidth frequency space) respectively represent two partial spaces of the Hilbert space (Hilbert space). In addition, the partial space TL-TD means LΔt-(or T S )-Time-limited (TL) space. Partial space BL-FD means L△f-(or F S )-band-limited (BL) space. In the figure, the arrows indicate the orthogonal projections of each part of the space upward, and the CCF numbers that provide the maximum likelihood estimation value and the maximum likelihood value are measured.

〔圖12〕係顯示實施型態之 [Figure 12] shows the implementation type

[數學式12]M [Math 12] M

-PSK能夠通訊並且能夠進行高速及高精度距離測量的傳送器(編碼化器)的構成之方塊圖。 -PSK is a block diagram of the structure of a transmitter (encoder) that can communicate and perform high-speed and high-precision distance measurement.

〔圖13〕係顯示實施型態之 [Figure 13] shows the implementation type

[數學式13]M [Math 13] M

-PSK能夠通訊並且能夠進行高速及高精度距離測量的接收同步器(解碼化器)的構成之方塊圖。 -PSK is a block diagram of the structure of a receiver synchronizer (decoder) that can communicate and perform high-speed and high-precision distance measurement.

〔圖14〕係概略地顯示實施型態之主通道(MC,Main channel)之延遲τ-都普勒(Doppler)位移ν空間上CCF實部大小的分佈示例之圖。 [Figure 14] is a diagram schematically showing an example of the distribution of the real part of the CCF in the main channel (MC, Main channel) delay τ -Doppler displacement ν space of the implementation type.

〔圖15〕係概略地顯示當實施型態之人工通道(AC,Artificlal Channel)重疊在主通道(MC)上時在τ-ν空間上的CCF實部的大小的示例分佈之圖。 [Figure 15] is a diagram schematically showing an example distribution of the size of the real part of the CCF in the τ - ν space when the artificial channel (AC, Artificlal Channel) of the implementation type is overlapped on the main channel (MC).

〔圖16〕係顯示將利用了實施型態之餘維度2之具有不可置換的AC位移的參數空間的訊號,進行TFP分割之圖。在與訊號(時間寬度TS,頻寬FS)的時間/頻率平面TFP S分割(Gabor分割)(S(0),S(1),S(2),S(3))平面正交的軸上,顯示有表示AC之不可置換位移量 [Figure 16] is a diagram showing that the signal in the parameter space with irreplaceable AC displacement in dimension 2 of the implementation type is used for TFP division. In the time/frequency plane TFP S division (Gabor division) (S (0) , S (1) , S (2) , S (3) ) plane orthogonal to the signal (time width T S , bandwidth F S) time/frequency plane On the axis of, the non-replaceable displacement of AC is displayed

Figure 108102227-A0305-02-0013-9
Figure 108102227-A0305-02-0013-9

的刻度,以及與TFP分割相應的二維PC碼 Scale, and the two-dimensional PC code corresponding to the TFP segmentation

[數學式15] χ (i)[Math 15] χ ( i ) .

〔圖17〕係顯示將利用了實施型態之餘維度2之具有不可置換的AC位移的參數空間的訊號,進行TFP分割之圖。因應AC之不可置換的位移量,TFP係分別位移(Shift)至AC0的TFP、AC1的TFP、AC2的TFP及AC3的TFP。 [Figure 17] is a diagram showing that the signal in the parameter space with irreplaceable AC displacement of dimension 2 of the implementation type is used for TFP division. In response to the non-replaceable displacement of AC, TFP is shifted to TFP of AC0, TFP of AC1, TFP of AC2, and TFP of AC3, respectively.

〔圖18〕係顯示實施型態1之傳送接受系統的構成例之方塊圖。 [Figure 18] is a block diagram showing a configuration example of the transmission and reception system of the first embodiment.

〔圖19〕係顯示使用實施型態1之傳送接受系統的數據傳送接收處理的流程之流程圖。 [Figure 19] is a flow chart showing the flow of data transmission and reception processing using the transmission and reception system of Embodiment 1.

〔圖20〕係顯示實施型態1之傳送接受系統的構成例之方塊圖。 [FIG. 20] is a block diagram showing a configuration example of the transmission and reception system of the first embodiment.

〔圖21〕係顯示使用實施型態1之傳送接受系統的數據傳送接收處理的流程之流程圖。 [Fig. 21] is a flowchart showing the flow of data transmission and reception processing using the transmission and reception system of Embodiment 1.

[用以實施發明之形態] [Form to implement invention]

[實施形態1] [Embodiment 1]

以下參考圖式來對本實施型態中傳送接收系統來進行說明。以下首先就本實施型態中的傳送接收系統的理論方面及具體構成例進行說明。其後再對應專利申請範圍內記載的內容。 The following describes the transmission and reception system in this embodiment with reference to the drawings. The following first describes the theoretical aspects and specific configuration examples of the transmission and reception system in this embodiment. After that, it corresponds to the content recorded in the scope of the patent application.

此外,以下說明中的專利文獻以及非專利文獻以引用參考方式併入本文中。 In addition, the patent documents and non-patent documents in the following description are incorporated herein by reference.

此外,以下說明中所引用的專利文獻與非專利文獻,僅因就其具有與本說明書記載內容多少的關聯性的觀點而引用。因此,並不因引用此些文獻而影響本說明書中所記載發明的專利性。 In addition, the patent documents and non-patent documents cited in the following description are cited only from the viewpoint that they have some relevance to the content described in this specification. Therefore, the citing of these documents does not affect the patentability of the invention described in this specification.

<<理論方面的概要:利用時間延遲與頻率位移的兩個運算子之不可置換性的通訊(副標題:可高精確度測距的傳輸訊號設計與其接收器設計)>> <<Summary of the theory: communication using the non-replaceability of the two operators of time delay and frequency shift (Subtitle: High-precision ranging transmission signal design and its receiver design)>>

為了時間寬度TS、頻寬FS之數據的高效率傳送,而將時間(TD)、頻率空間(FD)分割的多重化通訊方式之同步為困難的問題。即使是由發射電波的反射訊號來推定delay(延遲)td與Doppler(都普勒)fD的雷達問題,到現在都還處於尚未解決的狀態。此些的根源為與量子力學的位置、運動量運算子[非專利文獻4]同樣為以時間、頻率位移運算子(Time-Frequency Shift Operator,TFSO)為由來的相位失真(phase distortion,PD) In order to efficiently transmit data of the time width T S and the frequency width F S, it is a difficult problem to synchronize the multiple communication methods that divide the time (TD) and the frequency space (FD). Even the radar problem of delay (delay) t d and Doppler (Doppler) f D estimated from the reflected signal of the transmitted radio wave is still in an unresolved state. The root of this is the same as the position and movement operator of quantum mechanics [Non-Patent Document 4], which is the phase distortion (PD) derived from the Time-Frequency Shift Operator (TFSO).

Figure 108102227-A0305-02-0015-10
Figure 108102227-A0305-02-0015-10

或是 Or

Figure 108102227-A0305-02-0015-11
Figure 108102227-A0305-02-0015-11

測距問題由於為不可置換TFSO的PD所含的2個未知參數推定問題,因此若不援用基於魏爾-海森堡集團(WHG,Weyl-Heisenberg Group)的訊號檢測、參數推定論,就無法求得高精確度、高速化。以下整理五點作為本說明書中說明內容的概要。 The ranging problem is the estimation problem of two unknown parameters contained in the PD of the TFSO that cannot be replaced. Therefore, it is impossible to use the signal detection and parameter estimation theory based on the Weyl-Heisenberg Group (WHG, Weyl-Heisenberg Group). Achieve high accuracy and high speed. The following five points are summarized as a summary of the description in this manual.

(概要1) (Summary 1)

第一個部分是表示傳送接收設計當中,以TD訊號與FD訊號同等地作為對象,此外,滿足時間頻率對稱性(TFSP,time-frequency symmetrical property)的對 稱位移運算子(symmetrical TFSO)為基於時間延遲與頻率位移的不可置換性以使多重化訊號的位址(address)訊息顯現化的運算子(參考公式(39)、(44)、(51)、(56))。 The first part is that in the design of transmission and reception, the TD signal and the FD signal are the same as the object. In addition, the pair of time-frequency symmetrical properties (TFSP, time-frequency symmetrical property) is satisfied. The symmetrical TFSO is an operator that displays the address information of the multiplexed signal based on the irreplaceability of time delay and frequency shift (refer to formulas (39), (44), (51)) , (56)).

(概要2) (Summary 2)

第二部分係表示將時間.頻率位移過的高斯(Gassian)Chip函數(Gabor函數),使用週期N、N’的TD-PC、FD-PC(phase code)的調變,也就是TD-BPSK與FD-BPSK(Binary phase shift keying,二維相位位移鍵),於參數最大似然估計的M值檢測法為有用。 The second part is the time. Frequency-shifted Gaussian Chip function (Gabor function), using cycle N, N'TD-PC, FD-PC (phase code) modulation, that is, TD-BPSK and FD-BPSK (Binary phase shift Keying, two-dimensional phase shift keying), is useful for the M value detection method of parameter maximum likelihood estimation.

以往2種的PC被稱做”二維擴散記號”,存有許多擴大解釋用語的誤用。然而本說明書中說明了二維相位位移鍵(BPSK)具有至今尚未被發現的以下優缺點兩面的功能。 In the past, the two types of PCs were called "two-dimensional diffusion notation", and there were many misuses of expanded explanatory terms. However, this specification explains that the two-dimensional phase shift key (BPSK) has the following advantages and disadvantages that have not been discovered so far.

調變而得的TD-及FD-寬帶(broadband)空間訊號(亦稱signature)的複封包(CE)(公式(27))中以PC產生的PD,係作為N個的類型(type)-3(或是類型-1)的TD template CE(公式(29))(或是公式(49))(各個的支撐集合(support)為Ts×L△f,L△t×Fs)、N’個的類型-4(或是類型-2)的FD template CE(公式(33))(或是公式(54))(各個的support為L△t×Fs,Ts×L△f)而自動地被嵌入,因此template檢測的假設檢測可為TD、FD(公式(30)、命題4及公式(35)、命題5)。 Modulated TD- and FD- broadband (broadband) spatial signals (also known as signature) complex packet (CE) (Equation (27)) in the PD generated by the PC, as N types (type)- 3 (or type-1) TD template CE (formula (29)) (or formula (49)) (each support set (support) is T s × L△f, L△t×F s ), N'type-4 (or type-2) FD template CE (formula (33)) (or formula (54)) (each support is L△t×F s , T s ×L△f ) Is automatically embedded, so the hypothesis detection of template detection can be TD, FD (formula (30), proposition 4 and formula (35), proposition 5).

(概要3) (Summary 3)

不同於相位訊息並未被有效利用之通常的最大似然法,第三部分為:類型-3(或是類型-1)的TD-CE template,類型-4(或是類型-2)的FD-CE template matching的四種TD-CCF、FD-CCF的精確式,除了混淆函數(AF,ambiguity function)外,還包含TD-PC,FD-PC調變以時間寬度△t、頻寬△f進行離散化的L=(△t△f)-1點的旋轉因子(twiddle factor) Different from the usual maximum likelihood method where the phase information is not effectively used, the third part is: type-3 (or type-1) TD-CE template, type-4 (or type-2) FD -The four precise formulas of TD-CCF and FD-CCF of CE template matching, in addition to the ambiguity function (AF, ambiguity function), also include TD-PC, FD-PC modulation with time width △t and bandwidth △f Discretization L=(△t△f) -1 point twiddle factor (twiddle factor)

Figure 108102227-A0305-02-0017-12
Figure 108102227-A0305-02-0017-12

又,在上述精確式中,於該W的離散傅立葉轉換(DFT,Discrete Fourier Transform)、反離散傅立葉轉換(IDFT,Inverse Discrete Fourier Transform)型的和值當中,來自不可置換性的PD作為W的冪數出現,其結果為該精確式以三個要素的積而呈現(Lemma 2公式(41)、Lemma4公式(45)、以及公式(52)、(57))。因此,根據本實施型態中的記載方法,可保證以數位訊號處理器(DSP,digital signal processor)的高速計算。 Moreover, in the above-mentioned precise formula, among the sums of discrete Fourier transform (DFT, Discrete Fourier Transform) and inverse Discrete Fourier Transform (IDFT) type of W, the non-substitutable PD is regarded as the sum of W The power appears, and the result is that the exact formula appears as a product of three elements (Lemma 2 formula (41), Lemma 4 formula (45), and formulas (52), (57)). Therefore, according to the method described in this embodiment, high-speed calculation with a digital signal processor (DSP) can be ensured.

(概要4) (Summary 4)

第四個部分為關於專利文獻1中所定義、導入的相位更新迴路(PUL,phase-updating Loop)的收斂,基於Youla[非專利文獻22]的訊號復原法而提供了證明。 The fourth part is about the convergence of the phase-updating loop (PUL) defined and introduced in Patent Document 1, based on Youla [Non-Patent Document 22]'s signal recovery method and provides proof.

首先,作為Hilbert空間的訊號空間之部分空間,導入並且定義了Ts-(或L△t-)限時TD空間E3(或E1)、Fs-(或L△f-)限頻寬(Band-Limited)FD空間E4(或是E2)。接著,基於N、N’個的TD-CCF、FD-CCF陣列,來將此些空間的往上之正交投影運算子(PO,projection Operator);Ts-(或是L△t-)限時運算子P3(或是P1);以及Fs-(或是L△f-)限頻寬運算子P4(或是P2)的四個PO以公式(62)-(64)來定義。 First, as part of the signal space of the Hilbert space, import and define T s- (or L△t-) time-limited TD space E 3 (or E 1 ), F s- (or L△f-) limited bandwidth (Band-Limited) FD space E 4 (or E 2 ). Then, based on N, N'TD-CCF and FD-CCF arrays, the orthogonal projection operator (PO, projection Operator) of these spaces upwards; T s -(or L△t-) Time-limited operator P 3 (or P 1 ); and F s -(or L△f- ) The four POs of the frequency-limited operator P 4 (or P 2 ) are given by formulas (62)-(64) To define.

接著,將替代投影定理(APT,Alternative Projection Theorem)[非專利文獻21]的交互投影運算子(APTO) Next, will replace the projection theorem (APT, Alternative Projection Theorem) [Non-Patent Document 21] interactive projection operator (APTO)

[數學式19]P 3 F -1,d P 4 F d(或P 4 F d P 3 F -1,d)(F d,F -1,d為DFT,IDFT) [Math 19] P 3 F -1, d P 4 F d (or P 4 F d P 3 F -1, d ) ( F d , F -1, d is DFT, IDFT)

以本發明的觀點來定義。接著,使用作為推定值 Defined from the viewpoint of the present invention. Next, use as the estimated value

Figure 108102227-A0305-02-0018-13
Figure 108102227-A0305-02-0018-13

的函數之通訊路徑衰減常數Aei κ的最大似然估計值(MLE,maximum likelihood estimate)的更新式(59)與 The updated equation (59) of the maximum likelihood estimate (MLE) of the communication path attenuation constant Aei κ as a function of

Figure 108102227-A0305-02-0018-14
Figure 108102227-A0305-02-0018-14

的更新式(60)、(61),在APTO的收斂空間(TD-CE template的support、與FD-CE template與其之積集合進行其最大似然估計,即針對chip address(p,p’)的時間寬度L△t、頻寬L△f的矩形空間)內具有td,fD進行其最大似然估計,證明推定值 The updated formulas (60) and (61) of APTO are used for maximum likelihood estimation in the convergence space of APTO (support of TD-CE template, FD-CE template and its product set, that is, for chip address(p, p') The time width L△t and the frequency width L△f in the rectangular space) have t d , f D to perform its maximum likelihood estimation to prove the estimated value

Figure 108102227-A0305-02-0018-15
Figure 108102227-A0305-02-0018-15

為L△t×L△f之精確度,且證明計算量由 Is the accuracy of L△t×L△f, and proves that the calculation amount is

[數學式23]O(NN') [Math 23] O ( NN' )

而被取代為 And was replaced with

[數學式24] O(N+N')。 [Math 24] O ( N + N' ).

也就是說,此APTO為:抽出時間頻率空間(TFP,time-frequency plane)的某個空間,將其他的部分進行濾出(filter-out)的局部選擇運算子(LO,localization operator),為DSP中常用的較具風險的濾波器(filter)的代替物。 That is to say, this APTO is: extract a certain space of time-frequency plane (TFP, time-frequency plane), and filter-out other parts (LO, localization operator), which is Alternatives to risky filters commonly used in DSP.

由於以往通訊中未達奈奎斯(Nyquist)條件的理由,可知從未被使用的高斯函數基於其他優越的性質而發揮本質上的作用。 Due to the reason that the Nyquist condition was not met in the previous communication, it can be known that the Gaussian function that has never been used plays an essential role based on other superior properties.

PUL若使用時間PTs與頻寬P’Fs的必須資源與數據等級的位址(address) If PUL uses time PT s and bandwidth P'F s , the necessary resource and data level address (address)

Figure 108102227-A0305-02-0019-16
Figure 108102227-A0305-02-0019-16

,則為不限定td,fD的存在範圍之探索法。因此,顯示出藉由裝配了TD-高斯函數、FD-高斯函數的二維PC調變訊號的傳送器,以及於TD-CCF、FD-CCF陣列上安裝PUL的接收器的組合,可實現高精確度且高速的訊號復原、高精確度且高速的參數推定的通訊系統。換言之,藉由使用上述的構成,提示出利用不可置換性的通訊系統之範本位移。 , It is an exploratory method that does not limit the existence range of t d , f D. Therefore, it is shown that the combination of a transmitter equipped with a two-dimensional PC modulation signal with TD-Gauss function and FD-Gauss function, and a receiver with PUL installed on TD-CCF and FD-CCF arrays can achieve high A communication system for accurate and high-speed signal recovery, high-precision and high-speed parameter estimation. In other words, by using the above configuration, the template shift of the communication system that utilizes the non-replaceability is suggested.

第五個部分,係提供一種系統,其係一邊進行同步,一邊賦予超高的 In the fifth part, the department provides a system that synchronizes and gives super high

[數學式26]M [Math 26] M

-PSK的編碼化和解碼化。 -PSK encoding and decoding.

[數學式27]M [Math 27] M

-PSK通訊係能夠應用成為可同時進行測距及數據通訊的車載雷達。因為高階的 -The PSK communication system can be used as a vehicle-mounted radar capable of simultaneous ranging and data communication. Because high-end

[數學式28]M [Math 28] M

-PSK訊號 -PSK signal

Figure 108102227-A0305-02-0020-17
Figure 108102227-A0305-02-0020-17

的傳送,在各種相位雜訊的影響下,難以進行相位 Transmission, under the influence of various phase noises, it is difficult to phase

Figure 108102227-A0305-02-0020-18
Figure 108102227-A0305-02-0020-18

的辨別,故從頻率資源有效利用( , So from the effective use of frequency resources (

[數學式31]log2 M-bit [Math 31] log 2 M -bit

傳送)的觀點來看,此雖然很重要但很難實現。 From the point of view of transmission, although this is important, it is difficult to achieve.

為了解決此問題,如圖12的下段部分(開關(Switch)1-1與Switch1-2之間的區塊(block))般,1)將”訊息k”分解成 To solve this problem, as in the lower part of Figure 12 (the block between Switch 1-1 and Switch 1-2), 1) Decompose the "message k" into

Figure 108102227-A0305-02-0020-20
Figure 108102227-A0305-02-0020-20

接著,2)將時間延遲及都普勒位移的參數平面(稱為目標空間(target space)),均等地不相交的分割(disjoint division)為 Next, 2) The parameter plane of time delay and Doppler shift (referred to as target space) is equally disjoint division (disjoint division) as

[數學式33]

Figure 108102227-A0305-02-0021-21
[Math 33]
Figure 108102227-A0305-02-0021-21

個,且各自分配2維PC(TD-PC,FD-PC)(此處, And each is assigned a 2-dimensional PC (TD-PC, FD-PC) (here,

Figure 108102227-A0305-02-0021-22
Figure 108102227-A0305-02-0021-22

);並以第 ); and with the first

Figure 108102227-A0305-02-0021-23
Figure 108102227-A0305-02-0021-23

個2維PC將chip脈波調變,且將此 A 2D PC modulates the pulse wave of the chip, and this

Figure 108102227-A0305-02-0021-24
Figure 108102227-A0305-02-0021-24

-code多重化。 -Code multiplexing.

接著,3)使獲得之signature訊號中對應於第j個目標空間(target space)的部分平面的中心點的時間延遲 Next, 3) Delay the time of the center point of the partial plane corresponding to the j-th target space in the obtained signature signal

Figure 108102227-A0305-02-0021-25
Figure 108102227-A0305-02-0021-25

的量及都普勒位移 Doppler shift

Figure 108102227-A0305-02-0021-26
Figure 108102227-A0305-02-0021-26

的量(將 The amount (will

Figure 108102227-A0305-02-0021-27
Figure 108102227-A0305-02-0021-27

稱為人工通道(AC,Artificlal Channel)的位移(shift)位移; 4)傳送使用經位移之signature調變 It is called the shift of the artificial channel (AC, Artificlal Channel); 4) Transmit and use the shifted signature modulation

[數學式40]M 0 [Math 40] M 0

-PSK訊號 -PSK signal

Figure 108102227-A0305-02-0022-28
Figure 108102227-A0305-02-0022-28

後之訊號。結果, After the signal. result,

Figure 108102227-A0305-02-0022-30
Figure 108102227-A0305-02-0022-30

-位移後之signature係在 -The signature after displacement is

[數學式43](k d ,l D ) [Math 43] ( k d , l D )

(稱為主通道(MC,Main Channel)的位移(shift))的傳播路徑上接收二重位移。使用以下步驟,求得用於與接收到的CE訊號相關之相關函數(CCF)之必要的推定接收CE。如圖13的中段部分(連接於Switch2-1的block)般,1’)將推定值 (Called the shift of the main channel (MC, Main Channel)) receives the double shift on the propagation path. Use the following steps to obtain the necessary estimated received CE for the correlation function (CCF) related to the received CE signal. As shown in the middle part of Figure 13 (block connected to Switch2-1), 1’) will estimate the value

Figure 108102227-A0305-02-0022-31
Figure 108102227-A0305-02-0022-31

分解成 Decompose into

Figure 108102227-A0305-02-0022-32
2’)以第
Figure 108102227-A0305-02-0022-32
2')

Figure 108102227-A0305-02-0023-33
Figure 108102227-A0305-02-0023-33

個2維PC將chip脈波調變;3’)將其訊號位移第 A 2D PC modulates the pulse wave of the chip; 3’) shifts its signal to the first

Figure 108102227-A0305-02-0023-34
Figure 108102227-A0305-02-0023-34

個AC的 AC

Figure 108102227-A0305-02-0023-35
Figure 108102227-A0305-02-0023-35

的量;4’)使用獲得之訊號,使推定第 的量; 4’) Use the obtained signal to make the presumption

Figure 108102227-A0305-02-0023-36
Figure 108102227-A0305-02-0023-36

個的 Of

[數學式50]M 0 [Math 50] M 0

-PSK訊號 -PSK signal

Figure 108102227-A0305-02-0023-37
Figure 108102227-A0305-02-0023-37

調變後之訊號成為推定接收CE。 The modulated signal becomes the presumed receiving CE.

N,N'個陣列型TD-CCF,FD-CCF實部的最大化變數係為以碼片位址(chip address)(ρ',ρ)及數據位址 N, N'array type TD-CCF, the maximum variable system of the real part of FD-CCF is the chip address ( ρ ', ρ ) and data address

Figure 108102227-A0305-02-0024-38
Figure 108102227-A0305-02-0024-38

所決定之CCF編號及推定編碼 The determined CCF number and presumptive code

Figure 108102227-A0305-02-0024-39
Figure 108102227-A0305-02-0024-39

。首先,基於將附有決定 . First of all, based on the decision that will be attached

Figure 108102227-A0305-02-0024-40
Figure 108102227-A0305-02-0024-40

種2維PC編號 Kind of 2D PC Number

Figure 108102227-A0305-02-0024-41
Figure 108102227-A0305-02-0024-41

之數據位址 Data address

Figure 108102227-A0305-02-0024-42
Figure 108102227-A0305-02-0024-42

的相位補償項 Phase compensation term

Figure 108102227-A0305-02-0024-43
Figure 108102227-A0305-02-0024-43

之2種CCF實部最大化的PUL來進行,且如圖13的下段部分(連接於Switch2-2的block)般,使用 The two kinds of CCF real part maximized PUL, and as shown in the lower part of Figure 13 (connected to the block of Switch2-2), use

[數學式58](k d,l D) [Math 58] ( k d , l D )

及變數 And variables

Figure 108102227-A0305-02-0025-44
Figure 108102227-A0305-02-0025-44

的最大似然估計之 Of the maximum likelihood estimate

[數學式60]k *=j * M 0+j * ' [Math 60] k * = j * M 0 + j * '

,將k最大似然解碼。 , Decode k maximum likelihood.

此係將低階 This department will be low-level

[數學式61]M 0 [Math 61] M 0

-ary PSK-based編碼及解碼系統,藉由 -ary PSK-based encoding and decoding system, with

Figure 108102227-A0305-02-0025-46
Figure 108102227-A0305-02-0025-46

種的不可置換AC-shift-多重化的超高 Kind of non-replaceable AC-shift-multiple super high

[數學式63]M [Math 63] M

-ary PSK系統。亦即,此係在 -ary PSK system. That is, this is in

Figure 108102227-A0305-02-0025-47
Figure 108102227-A0305-02-0025-47

種的不可置換shift的AC中,從級聯連接於”訊息k”所決定之AC Among the non-replaceable shift ACs, the cascade is connected to the AC determined by "message k"

[數學式65](k d,l D) [Math 65] ( k d , l D )

的MC輸出,進行參數推定的同步器(測距器)及k的解碼器兼用系統。因此,基於不可置換之AC-shift-編碼化及解碼化的多重化方法,係通訊中PD活用的範本位移。又, The MC output of, the synchronizer (range finder) for parameter estimation and the decoder of k are both used as a system. Therefore, the multiplex method based on non-replaceable AC-shift-encoding and decoding is a template shift used by PD in communication. also,

[數學式66]M [Math 66] M

-PSK解碼的計算複雜度係同步及測距之計算複雜度(N+N')的 -The computational complexity of PSK decoding is based on the computational complexity of synchronization and ranging (N+N')

Figure 108102227-A0305-02-0026-48
Figure 108102227-A0305-02-0026-48

倍。 Times.

<<理論方面的詳細內容,以及通訊系統的具體構成例>> <<Theoretical details, as well as specific examples of the structure of the communication system>>

以下針對本實施型態中的通訊系統的理論方面之詳細內容,以及通訊系統的具體構成例加以說明。 The following describes the detailed content of the theoretical aspects of the communication system in this embodiment, and the specific configuration examples of the communication system.

<1.背景> <1. Background>

通訊的一個重要課題為有效活用頻率資源之通訊方式的設計[非專利文獻1]。分割時間空間(TD)及頻率空間(FD)(參考圖1),並將時間寬度Ts及頻寬Fs的數據多重化的通訊方式(參考圖1)的正交多頻分工(OFDM,Orthogonal Frequency Division Multiplex),係具有基於delay td或Doppler fD使得正交性被破壞的缺點。 An important subject of communication is the design of a communication method that effectively utilizes frequency resources [Non-Patent Document 1]. Orthogonal Frequency (OFDM, Orthogonal Frequency) is a communication method that divides time space (TD) and frequency space (FD) (refer to Figure 1), and multiplexes data of time width Ts and bandwidth Fs (refer to Figure 1) Division Multiplex), the system has the disadvantage of destroying orthogonality based on delay t d or Doppler f D.

此外,圖1顯示TFP的三種分割法。(a)顯示時間分割(TD,time division);(b)顯示頻率分割(FD,Frequency Division);(c)顯示GD(Gabor Division,Gabor分割)[非專利文獻1]。(a)當中的實線表示資訊數據的時間寬度T的劃分,虛線表示基於TD-Phase code(PC)的細分割。(b)中的粗虛線表示資訊數據的頻寬F的劃分,細虛線表示基於FD-Phase code(PC)的細分割。 In addition, Figure 1 shows the three segmentation methods of TFP. (a) display time division (TD, time division); (b) display frequency division (FD, Frequency Division); (c) display GD (Gabor Division, Gabor division) [Non-Patent Document 1]. The solid line in (a) represents the division of the time width T of the information data, and the dotted line represents the fine division based on the TD-Phase code (PC). The thick dashed line in (b) represents the division of the bandwidth F of the information data, and the thin dashed line represents the fine division based on the FD-Phase code (PC).

此外,在經由具有td、fD的通訊路徑而進行通訊前,最早進行的程序是同步處理。然而,伴隨著作為多重化所需要的兩個位移運算之時間、頻率的位移運算(TFSO(time-frequency shift operator))的PD(phase distortion相位失真) In addition, before communicating via a communication path with t d and f D , the earliest procedure is synchronization processing. However, the accompanying work is the PD (phase distortion) of the time and frequency shift operation (TFSO (time-frequency shift operator)) of the two shift operations required for multiplexing.

Figure 108102227-A0305-02-0027-49
Figure 108102227-A0305-02-0027-49

,會接著通訊路徑的PD , Will follow the PD of the communication path

Figure 108102227-A0305-02-0027-50
Figure 108102227-A0305-02-0027-50

而發生,因此同步並不容易。就連由反射來推定td,fD的雷達問題[非專利文獻15]都尚未能找出有效的解決方案。 It happens, so synchronization is not easy. Even the radar problem of estimating t d and f D from reflection [Non-Patent Document 15] has not yet been able to find an effective solution.

首先,本發明人們就td,fD將滿足TFSP(參考圖2)[非專利文獻24,26]的TD訊號與其傅立葉轉換(FT,Fourier Transform)的FD訊號,以TD與FD的相位編碼(PC,phase code)來進行調變,產生TD-signature及FD-signature。 First of all, the inventors used t d and f D to encode the TD signal that satisfies TFSP (refer to Figure 2) [Non-Patent Documents 24, 26] and the FD signal of Fourier Transform (FT) with the phase encoding of TD and FD. (PC, phase code) to perform modulation to generate TD-signature and FD-signature.

此外,圖2係概略地顯示將時間頻率位移(time-frequency shift)的不可置換性之示意圖。不可置換性係在關於位移運算子的積的關係式Tτ,0‧T0,ν=e-i2πτνT0,νTτ,0(左邊為對應圖中三角標號,右邊為對應圖中的方形標號)中,作為相位失真(PD,Phase Distortion)e-i2πτν而呈現。圖中○印記為表示對稱時間頻率運算子(TFSO,Symmetrical Time-Frequency Shift Operator) In addition, FIG. 2 is a schematic diagram schematically showing the irreplaceability of time-frequency shift. The non-substitutability lies in the relational expression T τ,0 ‧T 0,ν =e -i2πτν T 0,ν T τ,0 about the product of the displacement operators (the left side is the triangle label in the corresponding figure, and the right side is the corresponding figure In the square symbol), it appears as a phase distortion (PD, Phase Distortion) e- i2πτν . The mark ○ in the figure indicates the symmetrical time-frequency operator (TFSO, Symmetrical Time-Frequency Shift Operator)

Figure 108102227-A0305-02-0028-51
Figure 108102227-A0305-02-0028-51

[非專利文獻26]。 [Non-Patent Document 26].

接著,由於基於PC的PD作為template而嵌入signature,因而定義為了檢測TD-template、FD-template所使用的混淆函數(AF,ambiguity function)型[非專利文獻15]的TD-CCF、FD-CCF陣列(參考圖3a)。 Next, since the PC-based PD is embedded in the signature as a template, the ambiguity function (AF, ambiguity function) type [Non-Patent Document 15] TD-CCF and FD-CCF used to detect TD-template and FD-template are defined Array (refer to Figure 3a).

接著,檢測將CCF實部設為最大的參數值,以及達成最大值之最大的CCF編號。因此,已知將參數值(參考圖3b、3c)交互更新的td,fD的無資訊推定法係為雷達問題的解決方案([非專利文獻27]-[非專利文獻32]以及專利文獻1-6)。 Next, detect the parameter value that sets the real part of the CCF to the largest value, and the largest CCF number that achieves the largest value. Therefore, it is known that the non-information estimation method of t d , f D that interactively updates the parameter values (refer to Figures 3b and 3c) is the solution to the radar problem ([Non-Patent Document 27]-[Non-Patent Document 32] and patent Literature 1-6).

此外,圖3(a)表示配置於TFP上的chip level的Gabor函數、以及與其相關的資訊。特別是(a-0)表示配置於TFP上的chip level的Gabor函數gmm' (t)以及傅立葉轉換(FT)的Gmm' (f);(a-1)為將gmm' (t)以(FD-PC,FD-Phase code)X' m′進行加重加算的TD-template的實部、虛部。(a-2)為將Gmm' (f)為(TD-PC,TD-Phase code)Xm進行加重加算的FD-template的實部、虛部。(b)為TFP上的NN’個的交叉相關函數(CCF,Cross Correlation Function)以及N’個列和的TD-CCF值與N個行和的FD-CCF值。(c)為基於交替投影定理(APT,Alternating Projection Theorem)的限時時間空間TL-TD、限頻寬頻率空間BL-FD的往上方的正交投影的推定值 In addition, FIG. 3(a) shows the Gabor function of the chip level configured on the TFP and related information. In particular, (a-0) represents the Gabor function g mm ' (t) of the chip level arranged on the TFP and G mm ' (f) of the Fourier transform (FT); (a-1) means that g mm ' (t ) to (FD-PC, FD-Phase code) X 'm' for the addition of increased TD-template of the real part, imaginary part. (a-2) is the real part and imaginary part of the FD-template in which G mm ' (f) is (TD-PC, TD-Phase code) X m and is added. (b) is the NN' cross-correlation function (CCF, Cross Correlation Function) on the TFP and the TD-CCF value of N'column sums and the FD-CCF value of N row sums. (c) is the estimated value of the upward orthogonal projection of the limited time space TL-TD and the limited bandwidth frequency space BL-FD based on the Alternating Projection Theorem (APT)

Figure 108102227-A0305-02-0028-52
Figure 108102227-A0305-02-0028-52

的交互更新過程與收斂值td,fDThe interactive update process and the convergence value t d , f D.

由反射訊號來推定delay td與Doppler fD的測距問題,為包含在來自時間、頻率位移運算子的不可置換性之PD內的兩個未知參數推定問題。因此,其範疇為基於WHG(Weyl-Heisenberg Group)檢測的訊號檢測、參數推定論。然而,除了一部分的例外[非專利文獻17]以外,許多的雷達研究者以無視不可置換性的推定論為依據,因此未能在測距的高精度化上取得成功。另一方面,本說明書中記載的發明,係基於本發明人的此一認知基礎:對於包含雷達問題在內的無線通訊而言,特別是此不可置換性為提升效率的重點所在。此外,Wavelet論文[非專利文獻8]當中,基於相對於函數f(t)進行了時間、頻率位移的Gabor函數[非專利文獻1] Estimating the ranging problem of delay t d and Doppler f D from the reflected signal is the estimation problem of two unknown parameters included in the non-replaceable PD from the time and frequency shift operators. Therefore, its category is signal detection and parameter estimation based on WHG (Weyl-Heisenberg Group) detection. However, with some exceptions [Non-Patent Document 17], many radar researchers rely on the presumption that ignores irreplaceability, and therefore have not succeeded in increasing the accuracy of ranging. On the other hand, the invention described in this specification is based on the present inventor’s cognitive basis: for wireless communications including radar problems, in particular, this irreplaceability is the focus of improving efficiency. In addition, the Wavelet paper [Non-Patent Document 8] is based on a Gabor function that is shifted in time and frequency with respect to the function f(t) [Non-Patent Document 1]

Figure 108102227-A0305-02-0029-53
Figure 108102227-A0305-02-0029-53

而展開 And unfold

Figure 108102227-A0305-02-0029-773
Figure 108102227-A0305-02-0029-773

之係數am,m' 為中心課題。此外,在5G、after 5G(5G後)的OFDM/OQAM或濾波器組多載波(FBMC,Filter Bank Multicarrier)[非專利文獻9,10,12]中,以am,m' 為傳送資訊的多重化訊號f(t)的符號間干擾(ISI,intersymbol interference)以及通道間干擾(ICI,interchannel interference)為零的函數g(t)的設計與gmm'(t)的非正交性的解決作為主題。 The coefficient a m,m ' is the central issue. In addition, in 5G, after 5G (after 5G) OFDM/OQAM or Filter Bank Multicarrier (FBMC, Filter Bank Multicarrier) [Non-Patent Documents 9,10,12], a m, m ' is used to transmit information The design of the function g(t) in which the intersymbol interference (ISI, intersymbol interference) and the interchannel interference (ICI) of the multiplexed signal f(t) are zero is not orthogonal to the non-orthogonality of g mm ' (t) Solve as the subject.

此外,無線通訊當中,雖然time、frequency offsets(時間、頻率偏差)耐性的同步法為必要,然而卻幾乎未揭示td,fD之推定的嘗試。此外,許多通訊研究者認為用於訊號多重化之伴隨著時間、頻率位移mτ0,m'ν0的PD In addition, in wireless communication, although time and frequency offsets (time, frequency deviation) tolerance are necessary for synchronization, there are few attempts to reveal the estimation of t d and f D. In addition, many communication researchers believe that PD with time and frequency shifts mτ 0 , m ' ν 0 for signal multiplexing

Figure 108102227-A0305-02-0030-788
Figure 108102227-A0305-02-0030-788

是可以無視的。然而,由WHG之時間/頻率位移的群論型性質,通訊路徑的PD It can be ignored. However, due to the group-theoretic nature of the time/frequency shift of WHG, the PD of the communication path

Figure 108102227-A0305-02-0030-790
Figure 108102227-A0305-02-0030-790

所接續之位移的PD PD of the continued displacement

Figure 108102227-A0305-02-0030-804
Figure 108102227-A0305-02-0030-804

之其他伴隨多載波化(multi-carrier)的PD Other PDs with multi-carrier

Figure 108102227-A0305-02-0030-792
Figure 108102227-A0305-02-0030-792

也同時發生,因此其機制並不單純。 It also happens at the same time, so the mechanism is not simple.

應於起初處理潛藏於雷達問題的以下三個課題。此外,以往的雷達發射訊號,為使用線性調頻脈衝(Chirp)訊號的線性頻率調變連續波(LFM-CW,Linear FM Continuous Wave),或者是最近被提案的以短時間脈波進行相位調變的壓縮雷達或是其多載波(multi-carrier)版(非專利文獻19)。 The following three topics lurking in the radar problem should be dealt with at the beginning. In addition, the conventional radar transmission signal is a linear frequency modulation continuous wave (LFM-CW, Linear FM Continuous Wave) using a chirp signal, or the recently proposed short-time pulse for phase modulation Compressed radar or its multi-carrier version (Non-Patent Document 19).

(課題1) (Question 1)

作為第一課題,雖然雷達本來為td、fD兩個未知變數問題,但許多接收器為了表示作為混淆函數(AF,Ambiguity Function)之時間τ位移與頻率ν位移的2 變數負數值相關係數,而可進行例如AF絕對值的峰值探索,或是基於chirp訊號的AF特定利用。應該於2個未知數問題使用2個以上的函數。 As the first issue, although radar is originally a problem with two unknown variables, t d and f D , many receivers want to express the negative correlation coefficient of 2 variables between the time τ displacement and the frequency ν displacement as an aliasing function (AF, Ambiguity Function). , And can perform, for example, the peak search of the absolute value of AF, or the specific use of AF based on the chirp signal. More than 2 functions should be used for 2 unknown problems.

(課題2) (Question 2)

作為第二課題,在雷達問題中可列舉發生如與量子力學的位置、運動量運算子同樣地基於不可置換的時間、頻率位移的PD As a second problem, the radar problem can be exemplified by PD based on non-substitutable time and frequency shifts like the position and movement operators of quantum mechanics.

Figure 108102227-A0305-02-0031-59
Figure 108102227-A0305-02-0031-59

或是基於時間寬度Tp;或者頻率遷移寬度Fp之chirp的脈波列的PD Or based on the time width T p ; or the PD of the pulse train of the chirp of the frequency shift width F p

Figure 108102227-A0305-02-0031-56
Figure 108102227-A0305-02-0031-56

。此外,即使經由具有td或fD的通訊路徑、而將時間寬度Ts及頻寬空間Fs的數據於TFP上進行的無重疊多重化傳送方式(參考圖1),仍會接續著 . In addition, even if the data of the time width T s and the bandwidth space F s are transmitted on the TFP through the communication path with t d or f D without overlap (refer to Figure 1), it will continue

Figure 108102227-A0305-02-0031-57
Figure 108102227-A0305-02-0031-57

而存在有PD And there is PD

Figure 108102227-A0305-02-0031-58
Figure 108102227-A0305-02-0031-58

。儘管大多的研究者都忽略此PD,但PD的存在為肩負資訊數據的實數值接收訊號之共通問題。 . Although most researchers ignore this PD, the existence of PD is a common problem with the real-value received signal of the information data.

(課題3) (Topic 3)

第三個課題雖與第二課題相關,但其係為難以觀察到PD發生的機制。也就是說,在通訊或是雷達的空間中,通常將時間位移運算子或是頻率位移運算子分別定義為 Although the third topic is related to the second topic, it is difficult to observe the mechanism of PD occurrence. That is to say, in the space of communication or radar, the time shift operator or the frequency shift operator are usually defined as

Figure 108102227-A0305-02-0032-60
Figure 108102227-A0305-02-0032-60

,由於M(v)S(u)=e-i2πuvS(u)M(v)之M(v)與S(u)的不可置換性係作為PD e-i2 π uv指數的肩部上兩個位移量的積而如實地呈現。關於高精確度測距或是同步法之解決切入點就集中於此。此PD e-i2 π uv的處理(之後稱為TFSP(參考公式4、24,圖2))為本說明書中重要的探究對象。 , Since M(v)S(u)=e -i2πuv S(u)M(v), the irreplaceability of M(v) and S(u) is taken as the two on the shoulders of PD e -i2 π uv index The product of this displacement is presented faithfully. The solution to the high-precision ranging or synchronization method is focused on this point. The processing of PD e -i2 π uv (hereinafter referred to as TFSP (refer to Equations 4 and 24, Fig. 2)) is an important subject of investigation in this specification.

<2.時間.頻率對稱的時間.頻率位移運算子> <2. Time. Frequency symmetry time. Frequency shift operator>

典型的反射訊號提供為 The typical reflected signal is provided as

Figure 108102227-A0305-02-0032-61
Figure 108102227-A0305-02-0032-61

,但ψ(t)為稱為脈波的CE的複數值訊號,而 , But ψ (t) is a complex value signal of CE called pulse wave, and

[數學式84]A,t d,Ω,φ,Ω-Ωr=2π f D [Math 84] A , t d ,Ω, φ ,Ω-Ω r =2 π f D

分別是震幅、抵達時間、載波頻率、載波相位、載波頻率的變位,也就是由參考頻率Ωr=2πfr而來的位移(都普勒位移)。於此為求簡便先暫作Ωr=0。以 They are the displacement of the amplitude, arrival time, carrier frequency, carrier phase, and carrier frequency, which is the displacement (Doppler displacement) from the reference frequency Ω r = 2πf r. For simplicity, let Ω r =0 temporarily. To

[數學式85]F[.] [Math 85] F [. ]

來表示傅立葉轉換(FT,Fourier Transform),而將 To represent the Fourier Transform (FT, Fourier Transform), and the

[數學式86]Ψ(f)=F[ψ(t)] [Math 86] Ψ( f ) = F [ ψ ( t )]

作為ψ(t)的FT的話,re(t;td,fD)的FT則為 As the FT of ψ (t), the FT of re (t; t d ,f D ) is

Figure 108102227-A0305-02-0033-63
Figure 108102227-A0305-02-0033-63

。於此,re(t;td,fD)與Re(f;td,fD)的對子(pair)關於在td,fD上並不對稱。未知數td,fD的積僅出現於TD函數的PD上。 . Thereto, r e (t; t d , f D) and R e (f; t d, f D) of the pair (pair) in about t d, f D and asymmetric. The product of the unknowns t d and f D only appears on the PD of the TD function.

然而,經稍微修正過的公式[非專利文獻24,26] However, the slightly revised formula [Non-Patent Documents 24,26]

Figure 108102227-A0305-02-0033-64
Figure 108102227-A0305-02-0033-64

,提供為對於TD函數x(t)與其FD函數 , Provided as for the TD function x(t) and its FD function

[數學式89]X(f)=F[x(t)] [Math 89] X ( f ) = F [ x ( t )]

,在關於td,fD上,滿足對稱時間頻率運算子(Symmetrical TFSO,Symmetrical Time-Frequency Shift Operators)的對稱時間頻率位移運算子的定義式(參考圖2) , In terms of t d , f D , the definition formula of the symmetric time-frequency shift operator that satisfies the Symmetrical Time-Frequency Shift Operator (Symmetrical TFSO, Symmetrical Time-Frequency Shift Operators) (refer to Figure 2)

Figure 108102227-A0305-02-0033-65
Figure 108102227-A0305-02-0033-65

以及兩個位移運算子之間的恆等式,賦予[對稱TFSO的性質1] And the identity between the two shift operators, giving [the property of symmetric TFSO 1]

[數學式91]

Figure 108102227-A0305-02-0034-66
[Math 91]
Figure 108102227-A0305-02-0034-66

。與通常使用的時間位移運算子S(-td)x(t)=x(t-td)或是頻率位移運算子 . Compared with the commonly used time shift operator S(-t d )x(t)=x(tt d ) or the frequency shift operator

Figure 108102227-A0305-02-0034-67
Figure 108102227-A0305-02-0034-67

不同,雖然公式(4)的TD訊號x(t)的半位移(Half shift) It is different, although the half shift of the TD signal x(t) of formula (4)

Figure 108102227-A0305-02-0034-68
Figure 108102227-A0305-02-0034-68

或是FD訊號x(f)的半位移 Or the half shift of FD signal x(f)

Figure 108102227-A0305-02-0034-69
Figure 108102227-A0305-02-0034-69

,與訊號的時間頻率表現論中所使用的 , Which is used in the theory of signal time-frequency performance

Figure 108102227-A0305-02-0034-70
Figure 108102227-A0305-02-0034-70

或是與 Or with

Figure 108102227-A0305-02-0034-793
Figure 108102227-A0305-02-0034-793

相比之下,僅能觀察到些許的修正,但此為如公式(39),(44)般的雷達訊號或接收訊號的相位資訊可完全地以TD,FD追蹤之表現方法。 In contrast, only a slight correction can be observed, but this is the expression method that the radar signal or the phase information of the received signal like formulas (39) and (44) can be completely tracked by TD and FD.

公式(4)的TFSO與量子力學的von Neumann的典型可換關係(Canonical Commutative Relations,亦稱CCR)[非專利文獻4、6]相同,因此之後稱為「von Neumann的TFSO」。若將有名的海森堡(Heisenberg)之所謂不確定性原理的關係式[非專利文獻4、5] The TFSO of formula (4) is the same as Canonical Commutative Relations (also known as CCR) [Non-Patent Documents 4 and 6] of von Neumann of quantum mechanics, so it is called "von Neumann's TFSO" hereinafter. If the well-known Heisenberg (Non-Patent Documents 4, 5) is related to the so-called uncertainty principle

Figure 108102227-A0305-02-0035-75
Figure 108102227-A0305-02-0035-75

使其對應通訊的時間頻率位移運算子[Tτ,0,T0,ν]的話,可得到 If it corresponds to the time-frequency shift operator [T τ,0 ,T 0,ν ] of the communication, we can get

Figure 108102227-A0305-02-0035-77
Figure 108102227-A0305-02-0035-77

,因此古典力學極限[非專利文獻20] , Therefore the limits of classical mechanics [Non-Patent Document 20]

Figure 108102227-A0305-02-0035-78
Figure 108102227-A0305-02-0035-78

可對應通訊的無扭曲/失真條件 Corresponding to communication without distortion/distortion conditions

Figure 108102227-A0305-02-0035-79
Figure 108102227-A0305-02-0035-79

。然而, . however,

Figure 108102227-A0305-02-0035-80
Figure 108102227-A0305-02-0035-80

分別表示普朗克常數 Planck constant

Figure 108102227-A0305-02-0035-81
Figure 108102227-A0305-02-0035-81

以及量子力學中的交換子。 And the commutator in quantum mechanics.

此外,由TFSO的連鎖法則:在 In addition, by TFSO’s chain rule:

Figure 108102227-A0305-02-0035-82
Figure 108102227-A0305-02-0035-82
Figure 108102227-A0305-02-0036-83
Figure 108102227-A0305-02-0036-83

所導出的[對稱TFSO(symmetrical TFSO)的性質2] Derived [Properties of symmetrical TFSO (symmetrical TFSO) 2]

Figure 108102227-A0305-02-0036-84
Figure 108102227-A0305-02-0036-84

中,公式(7)為公式(9)的第一式的例題。 Where, formula (7) is an example of the first formula of formula (9).

對稱TFSO(symmetrical TFSO)之更重要的性質為由TD、FD訊號的對稱性使未知數的積td、fD在TD、FD函數的PD上表現出對稱,因此如後述般,具有多重化訊號的位址資訊做為PD顯現化參數推定上有重要的作用。例如無線通訊當中[非專利文獻9、10],OFDM訊號 The more important property of symmetrical TFSO (symmetrical TFSO) is that the product td and f D of the unknowns are symmetrical on the PD of the TD and FD functions due to the symmetry of the TD and FD signals. Therefore, as described later, it has multiple signals The address information plays an important role in the estimation of PD visualization parameters. For example, in wireless communications [Non-Patent Documents 9, 10], OFDM signals

Figure 108102227-A0305-02-0036-85
Figure 108102227-A0305-02-0036-85

為中心課題。然而,係數am,n表示應傳送的複數數據,x(t)為時間波形函數。OFDM訊號可表示為 As the central topic. However, the coefficient a m,n represents the complex number data that should be transmitted, and x(t) is a time waveform function. The OFDM signal can be expressed as

Figure 108102227-A0305-02-0036-87
Figure 108102227-A0305-02-0036-87

因此,若無扭曲/失真條件τ 0 ν 0=1(參考公式8)得到滿足的情形下,不論amn的記號為何則PDeiπnτ0mν0並不會帶來影響。然而,若有偏差τ'0τ'=ν 0ν的話, Therefore, if the distortion-free/distortion condition τ 0 ν 0 =1 (refer to Equation 8) is satisfied, PDe iπnτ0mν0 will not affect regardless of the sign of a mn. However, if there is a deviation τ ' = τ 0τ' = ν 0ν ,

[數學式107]

Figure 108102227-A0305-02-0037-88
[Math 107]
Figure 108102227-A0305-02-0037-88

就會接著於td、fD的通訊路徑的PD Will follow the PD of the communication path of t d and f D

Figure 108102227-A0305-02-0037-89
Figure 108102227-A0305-02-0037-89

上發生,因此吾人必須處理包含相位失真PD的訊號 Occurs, so we have to deal with the signal that contains the phase-distorted PD

Figure 108102227-A0305-02-0037-90
Figure 108102227-A0305-02-0037-90

。在如公式(10)般慣用之TFP上的訊號的無重疊疊合法中,如[非專利文獻1、2、9、10、12]、公式(12)般,因群論型性質而導致PD . In the conventional non-overlapping method of signals on TFP as in formula (10), as in [Non-Patent Documents 1, 2, 9, 10, 12] and formula (12), PD is caused by the group-theoretic nature

Figure 108102227-A0305-02-0037-91
Figure 108102227-A0305-02-0037-91

的聚集,因此藉由各種PD減弱接收器的輸出,從而導致數位通訊[非專利文獻3]中重要的同步劣化。儘管如此,削減符號間干擾(ISI,intersymbol interference)以及通道間干擾(ICI,interchannel interference)的時間函數x(t)的設計仍為中心課題。此觀察為本說明書的出發點。 Therefore, the output of the receiver is weakened by various PDs, which leads to the important synchronization degradation in digital communication [Non-Patent Document 3]. Nevertheless, the design of the time function x(t) to reduce intersymbol interference (ISI) and interchannel interference (ICI) is still a central issue. This observation is the starting point of this manual.

<3.似然函數與CCF> <3. Likelihood function and CCF>

雷達理論中,以論述雷達最佳化系統的解析與設計的統計論之Woodward[非專利文獻15]、或是概括性研究訊號檢測及推定論之Helstrom[非專利文獻18]的教科書為基礎。 Radar theory is based on the textbooks of Woodward [Non-Patent Document 15], which discusses the analysis and design of radar optimization systems, or Helstrom [Non-Patent Document 18], which is a general study of signal detection and inference.

就像Auslander與Tolimieri對於[非專利文獻17]Wilcox的研究[非專利文獻16]所注意到的,必須留意此些並未考慮到不可置換性。 As noted by Aulander and Tolimieri in [Non-Patent Document 17] Wilcox's [Non-Patent Document 16], it must be noted that these do not consider irreplaceability.

然而,雷達理論的基礎在於以下的訊號檢測及參數推定論。 However, the basis of radar theory lies in the following signal detection and parameter estimation theory.

<3.1訊號檢測> <3.1 Signal Detection>

反射訊號抵達接收器後,由於該反射訊號會混在雜訊中,因此該反射訊號的決定勢必變得不確定。 After the reflected signal reaches the receiver, since the reflected signal will be mixed in the noise, the decision of the reflected signal is bound to become uncertain.

考量訊號檢測問題:「某特定形式的訊號s(t)於高斯雜訊n(t)中是否於所定時間抵達」。以觀測時間 Consider the signal detection problem: "Whether a certain form of signal s(t) in Gaussian noise n(t) arrives at a predetermined time". By observation time

Figure 108102227-A0305-02-0038-92
Figure 108102227-A0305-02-0038-92

中測定的接收器輸入w(t)為基礎,進行接收器的兩個假設檢測: Based on the receiver input w(t) measured in, two hypothetical tests of the receiver are performed:

H0,「無訊號」,也就是w(t)=n(t) H 0 , "No signal", that is, w(t)=n(t)

H1,「有訊號」,也就是w(t)=s(t)+n(t) H 1 , "there is a signal", that is, w(t)=s(t)+n(t)

若觀測時間中的時間t=tk中可得到測定值wk=w(tk)的情形下,n個的標本wk為假設Hi,i=0,1之下具有結合密度函數(joint probability density function)即(p.d.f.)pi(w)的隨機變數。接收器中,根據似然度比Λ(w)=p1(w)/p0(w),w=(w1,...,wn),來進行觀測者的最佳決定。 If the measured value w k = w(t k ) can be obtained at the time t=t k in the observation time, the n specimens w k are assumed to be H i , i=0, 1 has a binding density function ( joint probability density function) i.e. (pdf) p i (w) of the random variable. In the receiver, the observer's optimal decision is made according to the likelihood ratio Λ(w)=p 1 (w)/p 0 (w), w=(w 1 ,...,w n ).

首先,觀測者對於某決定等級Λ0在Λ(w)<Λ0時選擇H0;在Λ(w)>Λ0時選擇H1First, a decision level for the observer in Λ 0 Λ (w) <Λ 0 is selected H 0; in Λ (w)> selected when H 1 Λ 0.

雷達訊號表示為 The radar signal is expressed as

[數學式112]

Figure 108102227-A0305-02-0039-93
[Math 112]
Figure 108102227-A0305-02-0039-93

[專利文獻15、18]。惟ψ(t)為稱作「複封包(CE,complex envelope)」的複數值訊號,Ω=2 π fc為載波頻率。s(t)的頻譜(spectrum)為 [Patent Documents 15, 18]. However, ψ(t) is a complex-valued signal called "complex envelope (CE)", and Ω=2 π f c is the carrier frequency. The spectrum of s(t) is

Figure 108102227-A0305-02-0039-94
Figure 108102227-A0305-02-0039-94

,於fc附近與-fc附近具有窄峰值,當其頻寬比Ω還小時,訊號稱作窄頻(NB,narrowband)或是準諧波(quasi-harmonic)。 , There are narrow peaks near f c and -f c . When the bandwidth ratio Ω is smaller, the signal is called narrowband (NB, narrowband) or quasi-harmonic.

將接收器輸入之 Input the receiver

Figure 108102227-A0305-02-0039-95
Figure 108102227-A0305-02-0039-95

假定為NB,且假定其CE Assume NB, and assume its CE

[數學式115]ψ w[k] [Math 115] ψ w [ k ]

可由調變器測得。 It can be measured by a modulator.

具有協方差函數 Has a covariance function

Figure 108102227-A0305-02-0039-96
Figure 108102227-A0305-02-0039-96

的靜止NB白色高斯雜訊下的NB訊號 NB signal under static NB white Gaussian noise

Figure 108102227-A0305-02-0039-97
Figure 108102227-A0305-02-0039-97

之最佳檢測器,係具有對數似然度函數(LLF,logarithm of likelihood functional)[非專利文獻18,p.106] The best detector has a logarithm of likelihood function (LLF, logarithm of likelihood functional) [Non-Patent Document 18, p.106]

Figure 108102227-A0305-02-0040-98
Figure 108102227-A0305-02-0040-98

。然而,N0表示白雜訊的單側頻譜密度,g及d2表示似然度函數LFΛ[ψw(t)]的統計量(statistic)及信噪比(signal-to-noise ratio,SNR)。 . However, N 0 represents the one-sided spectral density of the white noise, and g and d 2 represent the statistics of the likelihood function LFΛ[ψ w (t)] and the signal-to-noise ratio (SNR). ).

<3.2 參數推定> <3.2 Parameter estimation>

假設檢測的原理亦可應用於多重假設檢測。若由傳送器傳送了M個訊號之其中一個時,接收器會於觀測時間(0,T)中決定是M個訊號的哪一個。也就是假設Hk「訊號Sk(t)已傳送」之下的接收器輸入為 The principle of hypothesis testing can also be applied to multiple hypothesis testing. If one of the M signals is transmitted by the transmitter, the receiver will determine which of the M signals is in the observation time (0, T). That is, assuming that the receiver input under H k "signal S k (t) has been transmitted" is

Figure 108102227-A0305-02-0040-99
Figure 108102227-A0305-02-0040-99

。然而,ψk(t)表示NB CE,fk表示載波, . However, ψ k (t) represents the NB CE, and f k represents the carrier,

[數學式120]φ k [Math 120] φ k

表示sk(t)的相位,n(t)表示隨機雜訊。 It represents the phase of s k (t), and n(t) represents random noise.

接收器根據輸入w(t)的測定值選擇M個假設的一個。對於n個測定值w1,...,wn,將pk(w)於假設Hk之下的p.d.f.ζ k設為假設Hk的先驗概率。為求簡化,當ζk=M-1時,以訊號sk(t)的正交性 The receiver selects one of M hypotheses based on the measured value of the input w(t). For n measurement values w 1, ..., w n, the p k (w) to assume a prior probability of pdf ζ k H k H k is set under the hypothesis. For simplification, when ζ k =M -1 , the orthogonality of the signal s k (t)

Figure 108102227-A0305-02-0040-100
Figure 108102227-A0305-02-0040-100

為前提(Ei為第i個訊號能)之下,以所有的k≠j為對象,當Λk(w)>Λj(w)時,選擇接收器HkAs the premise (Ei is the i-th signal energy), taking all k≠j as the object, when Λ k (w)> Λ j (w), the receiver H k is selected .

訊號的未知參數設為θ 1,...,θ m,將此些以m-位元參數空間θ中的頻譜θ=(θ1,...,θm)表示。雷達反射訊號表示為 The unknown parameters of the signal are set as θ 1 ,..., θ m , and these are expressed as the frequency spectrum θ=(θ 1 ,...,θ m) in the m-bit parameter space θ. The radar reflection signal is expressed as

Figure 108102227-A0305-02-0041-101
Figure 108102227-A0305-02-0041-101

。然而,Aei κ 為衰減常數,A,td,fc,κ,fD為振幅、抵達時間、載波頻率、相位、都普勒位移。反射訊號的未知參數為θ=(A,κ,td,fD)。 . However, Ae i κ is an attenuation constant, and A, t d , f c , κ, f D are amplitude, arrival time, carrier frequency, phase, and Doppler shift. The unknown parameter of the reflected signal is θ=(A,κ,t d ,f D ).

when

Figure 108102227-A0305-02-0041-102
Figure 108102227-A0305-02-0041-102

,且雜訊為具有頻譜密度N0的白色時,LLF[非專利文獻18,p.251]為 , And when the noise is white with spectral density N 0 , LLF [Non-Patent Document 18, p.251] is

Figure 108102227-A0305-02-0041-103
Figure 108102227-A0305-02-0041-103

藉由變數轉換 By variable conversion

Figure 108102227-A0305-02-0041-104
Figure 108102227-A0305-02-0041-104

(於此處 (Here

Figure 108102227-A0305-02-0041-105
Figure 108102227-A0305-02-0041-105

表示虛部)可得到具有θ'=(td,fD)的A,κ的最大似然估計值(MLE,maximum likelihood estimate)ML推定值(MLE) (Representing the imaginary part) can get the maximum likelihood estimate (MLE, maximum likelihood estimate) of A, κ with θ ' = (t d , f D) ML estimated value (MLE)

Figure 108102227-A0305-02-0042-106
Figure 108102227-A0305-02-0042-106

。因此剩餘的未知參數θ'的MLE的部分,只要求 . Therefore, the remaining part of the MLE of the unknown parameter θ 'only requires

Figure 108102227-A0305-02-0042-107
Figure 108102227-A0305-02-0042-107

最大化的參數值即可[非專利文獻18,p.251]。因此,接收器可專注於θ'的推定。MLEθ'或許可由構成匹配針對接近都普勒位移 The maximum parameter value is sufficient [Non-Patent Document 18, p.251]. Therefore, the receiver can focus on the estimation of θ'. MLEθ 'may be closer to constitute a match for the Doppler shift

Figure 108102227-A0305-02-0042-108
Figure 108102227-A0305-02-0042-108

值的集合之一為對象之訊號 One of the set of values is the signal of the object

Figure 108102227-A0305-02-0042-109
Figure 108102227-A0305-02-0042-109

的濾波器組而得。但是WD為最大fD。然而,以並列的NB濾波器的構成來調查統計量事實上是不可能的。此乃將未知二變數問題分解成兩個的未知一變數問題的最大理由。 Derived from the filter bank. But W D is the maximum f D. However, it is practically impossible to investigate statistics based on the configuration of the parallel NB filter. This is the biggest reason for decomposing the unknown two-variable problem into two unknown one-variable problems.

將公式(15)以及其FT改寫 Rewrite formula (15) and its FT

Figure 108102227-A0305-02-0042-110
Figure 108102227-A0305-02-0042-110

。然而, . however,

Figure 108102227-A0305-02-0043-774
Figure 108102227-A0305-02-0043-774

為具有td、fD的「von Neumann的TFSO」, Is "von Neumann's TFSO" with t d and f D,

[數學式133]ψ(t),φ 0 [Math 133] ψ ( t ), φ 0

為應設計的CE、相位(省略詳細內容), Is the CE and phase to be designed (details omitted),

Figure 108102227-A0305-02-0043-775
Figure 108102227-A0305-02-0043-775

為以參考頻率fr將基底頻寬複數值訊號CE進行位移(調變)為通帶空間訊號的訊號。 In order to shift (modulate) the complex value signal CE of the base bandwidth with the reference frequency f r into a signal of the passband space signal.

為了把握(td,fD)的TFP上的正確的位置,使用週期N的TD-phase code(PC)與週期N’的FD-phase code(PC),來特定TFP上的2位元格(2-D lattice) In order to grasp the correct position on the TFP of (t d , f D ), use the TD-phase code (PC) of period N and the FD-phase code (PC) of period N'to specify the 2-bit format on the TFP (2-D lattice)

Figure 108102227-A0305-02-0043-113
Figure 108102227-A0305-02-0043-113

上的位置。惟,Tc=Ts/N、Fc=Fs/N’、Ts、Fs為chip脈波間隔、chip(sub)載波頻率間隔、數據訊號時間寬度、以及數據訊號頻寬。將(td,fD)的參數空間θ′分割為具有數據位址(address) On the location. However, T c = T s /N, F c = F s /N', T s and F s are the chip pulse interval, chip (sub) carrier frequency interval, data signal time width, and data signal bandwidth. Divide the parameter space θ′ of (t d , f D) into data addresses (address)

Figure 108102227-A0305-02-0043-114
Figure 108102227-A0305-02-0043-114

的NN’個矩形空間 NN’ rectangular spaces

[數學式137]

Figure 108102227-A0305-02-0044-115
[Math 137]
Figure 108102227-A0305-02-0044-115

,以Hm,m' 表示假設「θ'在空間 To H m, m 'represents a hypothesis "θ' in the space

Figure 108102227-A0305-02-0044-116
Figure 108102227-A0305-02-0044-116

當中」。 among".

然而,NN’個假設可以分解成如後述般的:推定TD訊號secho(t;A,κ,td,fD)的fD之N’個假設、以及推定FD訊號Secho(f;A,κ,td,fD)的td之N’個假設。 However, the NN' hypotheses can be decomposed into as follows: the N'hypotheses of f D of the presumed TD signal s echo (t; A,κ,t d ,f D ), and the presumed FD signal S echo (f; a, κ, t d, hypothesis f D) t d of the N '.

考慮以訊號sk(t;θ')互為正交的前提,具有公式(14)的假設Hk中的CEψk(t)與相位 Considering the premise that the signals s k (t; θ ' ) are orthogonal to each other, CEψ k (t) and phase in the hypothesis H k of formula (14)

[數學式139]φ k [Math 139] φ k

的第k個NB反射訊號 The kth NB reflection signal

Figure 108102227-A0305-02-0044-117
Figure 108102227-A0305-02-0044-117

。若以雜訊為具有頻譜密度N0的白色高斯,則其LLF為[非專利文獻18,p129,p.251] . If the noise is a white Gaussian with a spectral density N 0 , its LLF is [Non-Patent Document 18, p129, p.251]

[數學式141]

Figure 108102227-A0305-02-0045-118
[Math 141]
Figure 108102227-A0305-02-0045-118

。以某個決定等級r0為對象,若滿足 . Taking a certain decision level r 0 as the object, if it meets

Figure 108102227-A0305-02-0045-120
Figure 108102227-A0305-02-0045-120

的整數為k=k0,則接收器判定第K個訊號已抵達,若所有的gk若為r0以下的話,則接收器判定沒有訊號。此為ML接收器。因此,正交訊號的設計是重要的。公式(18)表示|gk')|最大化的方法(其一為被積分函數的最大化,另一者為補償載波的相位e以及訊號的相位 If the integer of is k=k 0 , the receiver determines that the K-th signal has arrived. If all g k is below r 0 , the receiver determines that there is no signal. This is the ML receiver. Therefore, the design of orthogonal signals is important. Equation (18) expresses the method of maximizing |g k' )| (one is the maximization of the integrated function, the other is the phase e of the compensation carrier and the phase of the signal

Figure 108102227-A0305-02-0045-776
Figure 108102227-A0305-02-0045-776

)。然而,通常,相位因子因 ). However, in general, the phase factor is due to

[數學式144]CE ψ k(t) [Math 144] CE ψ k ( t )

的重新定義而被吸收。此外,通常並非單純地評價gk')而是單純地評價|gk')|。此種方法會消除相位資訊。Woodward[非專利文獻15]於雷達解析中使用了Ville[非專利文獻14]之被稱作混淆函數(AF,ambiguity function)的二維CCF The redefinition was absorbed. In addition, generally, g k' ) is not simply evaluated but |g k' )|. This method will eliminate the phase information. Woodward [Non-Patent Document 15] uses Ville [Non-Patent Document 14] in radar analysis, which is called an ambiguity function (AF), a two-dimensional CCF

[數學式145]

Figure 108102227-A0305-02-0046-121
[Math 145]
Figure 108102227-A0305-02-0046-121

。經過時間、頻率位移的函數的WHG-based的不可置換及群論型性質於公式(9)的相位函數中顯現。另外,[對稱TFSO的性質3]以TD訊號z(t)與其 . The WHG-based non-permutable and group-theoretic properties of the function of elapsed time and frequency shift appear in the phase function of formula (9). In addition, [the nature of symmetrical TFSO 3] is based on the TD signal z(t) and

[數學式146]FT Z(f)=F[z(t)] [Math 146] FT Z ( f ) = F [ z ( t )]

為對象,經過TD與FD的時間/頻率位移的函數間的內積(inner product)IP為 For the object, the inner product IP between the time/frequency displacement functions of TD and FD is

Figure 108102227-A0305-02-0046-122
Figure 108102227-A0305-02-0046-122

。然而, . however,

Figure 108102227-A0305-02-0046-123
Figure 108102227-A0305-02-0046-123

係表示r(t)與s(t)之間的TD-IP, Is the TD-IP between r(t) and s(t),

Figure 108102227-A0305-02-0046-124
Figure 108102227-A0305-02-0046-124

係表示 Department said

[數學式150]R(f)=F[r(t)] [Math 150] R ( f ) = F [ r ( t )]

versus

[數學式151] S(f)=F[s(t)] [Math 151] S ( f ) = F [ s ( t )]

之間的FD-IP。 FD-IP between.

公式(19)在i)TD-IP、FD-IP的實部為t2=t1與f2=f1時為最大,此時,也達成AF的最大值。ii)若將IP左右的項看作傳送/接收訊號的話,接收訊號之來自不可置換性的PD,代表可用良好設計的接收器的PD來補償。公式(19)教示了:調變訊號的相位,就如電學的交流電壓、電流的「相量(phasor)」(非專利文獻18)般重要;以及兩者的量td,fD常時出現於PD。此部分與依存TD的匹配濾波器(matched filter)的通常方法不同,為實現以WHG為基礎的TD與FD中的(td,fD)-推定法的一大步,係本說明書的重要的骨幹部分。藉由設計具有容易追蹤的相位項的訊號,使得傳送、接收器各方均可達到相位的有效利用。 Equation (19) is the maximum when the real parts of i) TD-IP and FD-IP are t 2 =t 1 and f 2 =f 1 , and at this time, the maximum value of AF is also reached. ii) If the items around IP are regarded as transmitting/receiving signals, the received signal comes from an irreplaceable PD, which means that the PD of a well-designed receiver can be used to compensate. Formula (19) teaches that the phase of the modulated signal is as important as the "phasor" (Non-Patent Document 18) of the alternating voltage and current of electricity; and the two quantities t d and f D always appear于PD. This part is different from the usual method of matched filter (matched filter) which depends on TD. In order to realize the big step of (t d , f D )-estimation method in TD and FD based on WHG, it is an important part of this manual. The backbone of the company. By designing a signal with a phase term that is easy to track, the transmitter and receiver can achieve effective use of phase.

Gabor[非專利文獻1]指出了達成TFP上的訊號解析與時間與頻率的不確定性關係下限之高斯函數的重要性,賦予如下述之函數f的時間、頻率表現。 Gabor [Non-Patent Document 1] points out the importance of the Gaussian function to achieve the lower limit of the uncertainty relationship between time and frequency for signal analysis on TFP, and gives the time and frequency performance of the following function f as follows.

Figure 108102227-A0305-02-0047-125
Figure 108102227-A0305-02-0047-125

。Gabor的高斯函數gm,n(t)的集合,於TFP上具有局部化的性質。然而,此基底並不正交,亦非標架(frame)[非專利文獻7]。此外,許多的通訊研究者,並不使用不滿足奈奎斯(Nyquist)條件的高斯函數。然而,本說明書的(td,fD)-推定法中,高斯函數的數個良好性質發揮重要的作用。 . The set of Gabor Gaussian functions g m,n (t) is localized on TFP. However, this base is not orthogonal, nor is it a frame [Non-Patent Document 7]. In addition, many communication researchers do not use Gaussian functions that do not satisfy the Nyquist condition. However, in the (t d , f D )-estimation method of this specification, several good properties of the Gaussian function play an important role.

<4.TD-、FD-的signature與template> <4. Signature and template of TD- and FD->

TD-PC(phase code),也就是擴散頻譜(spreading spectrum)[非專利文獻3]實現碼分多重存取(CDMA,code-division multiple access)。為使CE TD-PC (phase code), that is, spreading spectrum [Non-Patent Document 3], realizes code-division multiple access (CDMA, code-division multiple access). To make CE

[數學式153]ψ(t) [Math 153] ψ ( t )

滿足TFSP,其FTΨ(f)也進行相位調變。此外,傳送訊號s(t)以獨立的脈波記號c(t)、傳送訊號m(t)調變而成為s(t)=m(t)c(t)。各使用者藉由分配到如訊號正交般的記號因而可進行寬頻帶空間的同時使用。 To meet TFSP, its FTΨ(f) also undergoes phase modulation. In addition, the transmission signal s(t) is modulated by the independent pulse symbol c(t) and the transmission signal m(t) to become s(t)=m(t)c(t). Each user can use a wide-band space at the same time by assigning a symbol that is orthogonal to the signal.

以下,作為 Below, as

Figure 108102227-A0305-02-0048-126
Figure 108102227-A0305-02-0048-126

表示的連續時間訊號的代替,考究以 Instead of the continuous time signal indicated by

Figure 108102227-A0305-02-0048-127
Figure 108102227-A0305-02-0048-127

表示的離散時間訊號。將TD訊號s(t)以△t之間隔標本化,離散FD訊號以L-點的離散傅立葉轉換(DFT)來定義。也就是說,FD的鄰接分格(bin)的頻率間隔為△f=1/(L△t)。 Represents the discrete-time signal. The TD signal s(t) is sampled at intervals of Δt, and the discrete FD signal is defined by L-point Discrete Fourier Transform (DFT). In other words, the frequency interval of adjacent bins of FD is Δf=1/(LΔt).

Figure 108102227-A0305-02-0048-128
Figure 108102227-A0305-02-0048-128

(分數 (fraction

Figure 108102227-A0305-02-0048-129
Figure 108102227-A0305-02-0048-129

的進位))。 The carry)).

為了上述[數學式156]與 For the above [Math 156] and

Figure 108102227-A0305-02-0049-130
Figure 108102227-A0305-02-0049-130

(分數 (fraction

Figure 108102227-A0305-02-0049-131
Figure 108102227-A0305-02-0049-131

的進位))的離散變數以及chip脈波的正交性,若設置 Carry)) discrete variables and the orthogonality of the chip pulse, if set

Figure 108102227-A0305-02-0049-132
Figure 108102227-A0305-02-0049-132

且設置 And set

[數學式161]T c=Mt,F c=M'f [Math 161] T c = Mt , F c = M'f

,則L-點的旋轉因子(twiddle factor)定為 , Then the twiddle factor of the L-point is defined as

Figure 108102227-A0305-02-0049-133
Figure 108102227-A0305-02-0049-133

以下定義7種類的離散時間及離散頻率訊號。 The following defines 7 types of discrete time and discrete frequency signals.

Figure 108102227-A0305-02-0049-134
Figure 108102227-A0305-02-0049-134

。然而,X=(X0,...,XN-1)

Figure 108102227-A0305-02-0050-778
{-1,1}N為週期N的TD-PC;而X'=(X'0,...,X' N'-1)
Figure 108102227-A0305-02-0050-779
{-1,1}N' 為週期N’的FD-PC,即χ=(X,X')。 . However, X=(X 0 ,...,X N-1 )
Figure 108102227-A0305-02-0050-778
{-1,1} N is the TD-PC with period N; and X ' = (X ' 0,...,X ' N ' -1 )
Figure 108102227-A0305-02-0050-779
{-1,1} N 'cycle N' of FD-PC, ie χ = (X, X ') .

對於具有support[-L△t/2,L△t/2][即,時間寬度L△t]的連續時間chip脈波g(t),可得到具有延遲(D/2)△t,D=L-1,L=(△t△f)-1=MM'[非專利文獻10]、與因果型離散時間的L△t-限時(TL,time limited)之chip脈波g[k] For the continuous-time chip pulse g(t) with support[-L△t/2,L△t/2][that is, the time width L△t], a delay (D/2)△t,D can be obtained =L-1,L=(△t△f) -1 =MM ' [Non-Patent Document 10], and the causal discrete time L△t-time limited (TL, time limited) chip pulse g[k]

Figure 108102227-A0305-02-0050-135
Figure 108102227-A0305-02-0050-135

又,support[-L△f/2,L△f/2],即具有頻寬L△f、離散頻率的L△f-限頻寬(BL,band-limited)之chip脈波G[1],可由g[k]的DFT而得 Also, support[-L△f/2,L△f/2], that is, L△f-limited bandwidth (BL, band-limited) chip pulse G[1 ], can be derived from the DFT of g[k]

Figure 108102227-A0305-02-0050-136
Figure 108102227-A0305-02-0050-136

此外,對於chip脈波g[k](或是G[L]的脈波間隔Tc=M△t(或是Fc=M'△f)),受到其support時間寬度L△t(或頻寬L△f)中來自左右兩側的M’/2(或M/2)個chip脈波的干擾。由於未使用保護間隔(guard interval),此為與慣用方法最大的不同點。 In addition, for chip pulse g[k] (or G[L] pulse interval Tc=M△t (or F c = M ' △f)), the support time width L△t (or frequency The interference from M'/2 (or M/2) chip pulses on the left and right sides of the width L△f). Since the guard interval is not used, this is the biggest difference from the conventional method.

下個公式所定義的離散時間TD-signature v[k;χ]及其FD-signature Discrete time TD-signature v[k; χ] and its FD-signature defined by the next formula

Figure 108102227-A0305-02-0050-137
Figure 108102227-A0305-02-0050-137

中,嵌入有下個公式的類型-3的TD-template TD-template of type-3 in which the next formula is embedded

Figure 108102227-A0305-02-0051-138
Figure 108102227-A0305-02-0051-138

與類型-4的FD-template FD-template with type-4

Figure 108102227-A0305-02-0051-139
Figure 108102227-A0305-02-0051-139

。然而, . however,

Figure 108102227-A0305-02-0051-140
Figure 108102227-A0305-02-0051-140

versus

Figure 108102227-A0305-02-0051-141
Figure 108102227-A0305-02-0051-141

為公式(4)中的von Neumann的TD與FD的TFSO的離散版 Is the discrete version of von Neumann's TD and FD's TFSO in formula (4)

Figure 108102227-A0305-02-0051-142
Figure 108102227-A0305-02-0051-142

TD-signature v[k;χ]為包含N’個的TD-templates TD-signature v[k; χ ] is TD-templates containing N'

Figure 108102227-A0305-02-0051-143
Figure 108102227-A0305-02-0051-143

,另一方面,由於FD-signature , On the other hand, due to the FD-signature

[數學式173]V[lχ] [Math 173] V [ l ; χ ]

包含N個的FD-templates Contains N FD-templates

Figure 108102227-A0305-02-0052-144
Figure 108102227-A0305-02-0052-144

,因此,藉由利用PC而在signature與嵌入的template之間的CCF具有大的數值。TD-template Therefore, the CCF between the signature and the embedded template has a large value by using the PC. TD-template

Figure 108102227-A0305-02-0052-145
Figure 108102227-A0305-02-0052-145

為TFP上具有Ts×L△f的矩形support;FD-template Rectangular support with T s ×L△f on TFP; FD-template

Figure 108102227-A0305-02-0052-146
Figure 108102227-A0305-02-0052-146

為L△t×Fs的矩形support。將TFSO的連鎖 It is a rectangular support of L△t×F s. Link TFSO

Figure 108102227-A0305-02-0052-147
Figure 108102227-A0305-02-0052-147

(或是 (Or

Figure 108102227-A0305-02-0052-148
Figure 108102227-A0305-02-0052-148

)適用於公式(22),則可得知TD-signature與FD-signature ) Is applicable to formula (22), then we can know that TD-signature and FD-signature

Figure 108102227-A0305-02-0052-149
Figure 108102227-A0305-02-0052-149

為完全對稱。求得具有[數學式180]CE ψ[k;χ]與載波頻率 It is completely symmetrical. Obtained with [mathematical formula 180] CE ψ [k; χ ] and carrier frequency

Figure 108102227-A0305-02-0053-150
Figure 108102227-A0305-02-0053-150

的雷達TD-訊號s[k:χ]與其FT的FD-訊號S[l;χ]為 The radar TD-signal s[k: χ ] and the FD-signal S[l; χ ] of the FT are

Figure 108102227-A0305-02-0053-151
Figure 108102227-A0305-02-0053-151

由雷達TD-訊號的CE與其DFT CE and DFT of radar TD-signal

Figure 108102227-A0305-02-0053-152
Figure 108102227-A0305-02-0053-152

可設計TD-訊號、FD-訊號 Can design TD-signal, FD-signal

[數學式184]s[kχ],S[lχ]。 [Math 184] s [ k ; χ ], S [ l ; χ ].

此係將時間寬度Ts=NM△t,載波間隔Fs=N’M’△f的signatures In this system , the signatures of time width T s =NM△t and carrier interval F s =N'M'△f

[數學式185]υ[kχ] [Math 185] υ [ k ; χ ]

(或 (or

[數學式186]V[lχ] [Math 186] V [ l ; χ ]

)無重疊地、疊加PP’個二位元序列。然而, ) Superimpose PP' binary sequences without overlap. however,

Figure 108102227-A0305-02-0054-153
Figure 108102227-A0305-02-0054-153

為具有TFP上的格子 Is a grid with TFP

Figure 108102227-A0305-02-0054-154
Figure 108102227-A0305-02-0054-154

上的數據位址 Data address on

Figure 108102227-A0305-02-0054-155
Figure 108102227-A0305-02-0054-155

的數據記號。即,雷達系統中,為了探索事前不知道其範圍的延遲td

Figure 108102227-A0305-02-0054-780
(0,PTs)與Doppler The data mark. That is, in the radar system, in order to explore the delay t d whose range is not known beforehand
Figure 108102227-A0305-02-0054-780
(0,PT s ) and Doppler

Figure 108102227-A0305-02-0054-156
Figure 108102227-A0305-02-0054-156

,而準備PTs×P'Fs的時間寬度、頻寬。另一方面,傳送數據通訊中P‧P’個的 , And prepare the time width and bandwidth of PT s × P ' F s. On the other hand, the number of P‧P's in the transmission data communication

[數學式191]M-值數據 [Math 191] M -value data

,即 , which is

Figure 108102227-A0305-02-0054-157
Figure 108102227-A0305-02-0054-157

於此,假設已傳送經由具有 Here, it is assumed that it has been transmitted via

Figure 108102227-A0305-02-0054-158
Figure 108102227-A0305-02-0054-158

的通訊路徑s[k;χ]。此時,以 The communication path s[k;χ]. At this point, with

Figure 108102227-A0305-02-0055-159
Figure 108102227-A0305-02-0055-159

而得的接收TD-訊號表示為 The received TD-signal is expressed as

Figure 108102227-A0305-02-0055-160
Figure 108102227-A0305-02-0055-160

。然而, . however,

[數學式196]ψ r[k] [Math 196] ψ r [ k ]

為接收訊號的訊號成分的CE,η[k]及ξ[k]為干擾成份及高斯雜訊。FD-訊號以及DFT Is the CE of the signal component of the received signal, and η [k] and ξ [k] are the interference component and Gaussian noise. FD-signal and DFT

[數學式197]R[lχ,A,κ,θ' ,d ]=F d[r[kχ,A,κ,θ' ,d ]] [Math 197] R [ l ; χ , A , κ , θ' , d ] = F d [ r [ k ; χ , A , κ , θ' , d ]]

的詳細內容於此省略。雖然伴隨著不可置換的調變/解調的PD The details of is omitted here. Although accompanied by irreplaceable modulation/demodulation PD

Figure 108102227-A0305-02-0055-777
Figure 108102227-A0305-02-0055-777

可藉由e的重新定義而可使其吸收,但如後述般,應以相關接收器補償。如此的TD、FD接收訊號,提供接收器中的觀測值w與其DFT W。 It can be absorbed by redefining e iκ, but as described later, it should be compensated by the relevant receiver. Such TD and FD receive signals provide the observed value w and its DFT W in the receiver.

獨立同分布(i.i.d,independent and identically distributed)的TD-PC、FD-PC為以M-種檢測法來產生必須的獨立的N’個的TD-templates Independent and identically distributed (i.i.d, independent and identically distributed) TD-PC and FD-PC are the necessary independent N'TD-templates using M-type detection methods

[數學式199]

Figure 108102227-A0305-02-0056-161
[Math 199]
Figure 108102227-A0305-02-0056-161

以及N個的FD-templates And N FD-templates

Figure 108102227-A0305-02-0056-162
Figure 108102227-A0305-02-0056-162

。PC具有兩個功能(訊號的亂雜化以及來自TFSO的PD之產生)。所幸,PD本身在提供容易追蹤性的意義上,為用於參數推定的良好指標。此表示導入PC的優缺點。實際上,相位調變系統的頻寬為比古典雷達系統中的還大N倍,並且多載波(multi-carrier)化,也就是FD-PC比副載波(sub-carriers)需要數N’倍的頻寬。 . The PC has two functions (signal chaos and PD generation from TFSO). Fortunately, PD itself is a good indicator for parameter estimation in the sense of providing easy traceability. This represents the advantages and disadvantages of importing into a PC. In fact, the bandwidth of the phase modulation system is N times larger than that of the classical radar system, and it is multi-carrier, that is, FD-PC requires N'times more than sub-carriers. The bandwidth.

<5.根據M種假設檢測的TD-、FD-訊號檢測與推定> <5. TD-, FD-signal detection and estimation based on M hypothetical detection>

至此,檢測具有公式(27)的CE So far, the CE with formula (27) is detected

[數學式201]ψ[kχ] [Math 201] ψ [ k ; χ ]

(或是有 (Or have

[數學式202]Ψ[lχ] [Math 202] Ψ[ l ; χ ]

的公式(26)的雷達訊號 The radar signal of formula (26)

[數學式203]s[kχ] [Math 203] s [ k ; χ ]

(或是 (Or

[數學式204] S[lχ] [Math 204] S [ l ; χ ]

)且適用M-種假設檢測的準備已周全。 ) And the preparations for the application of M-type hypothesis testing are complete.

接下來考量接收器所選擇之與公式(17)相關的NN’個假設Hmm' 的策略。此部分只要找到將TD(或是FD)的LLF(或是其關聯的CCF)最大化的參數θ' ,d就足夠。一開始,先由具有TFP的格子 Next, consider the NN'hypothetical H mm ' strategy selected by the receiver and related to formula (17). This part only needs to find the parameter θ' ,d that maximizes the LLF of TD (or FD) (or its associated CCF). In the beginning, the grid with TFP

Figure 108102227-A0305-02-0057-163
Figure 108102227-A0305-02-0057-163

上的位址(address) Address

Figure 108102227-A0305-02-0057-165
Figure 108102227-A0305-02-0057-165

的接收TD-template CE Receiving TD-template CE

Figure 108102227-A0305-02-0057-166
Figure 108102227-A0305-02-0057-166

的檢測問題開始考慮。然而, The problem of detection began to be considered. however,

Figure 108102227-A0305-02-0057-167
Figure 108102227-A0305-02-0057-167

,而為chip位址(chip address)ρ′的FD-PC TD-template(參考公式(22)) , And FD-PC TD-template of chip address (chip address) ρ ′ (refer to formula (22))

Figure 108102227-A0305-02-0057-168
Figure 108102227-A0305-02-0057-168

,且 And

Figure 108102227-A0305-02-0057-170
Figure 108102227-A0305-02-0057-170

為kd的推定整數值, Is the presumed integer value of k d,

[數學式211]l μ [Math 211] l μ

為推定 Presumption

[數學式212]l D [Math 212] l D

的控制用整數值。此CE嵌入至公式(27)(參考公式(28)的 The control uses an integer value. This CE is embedded in equation (27) (refer to equation (28)

[數學式213]ψ r [k] [Math 213] ψ r [ k ]

)的ψ[k;χ]的推定接收CE ) The presumed receiving CE of ψ[k; χ]

Figure 108102227-A0305-02-0058-171
Figure 108102227-A0305-02-0058-171

中(參照圖3a-1)。然而,使用關係式 Medium (refer to Figure 3a-1). However, using the relation

Figure 108102227-A0305-02-0058-172
Figure 108102227-A0305-02-0058-172

。公式(29)係如下個章節所示般,CE係包含各種來自PD的有意之相位。將與 . Equation (29) is as shown in the next section. CE includes various intentional phases from PD. Will

Figure 108102227-A0305-02-0058-173
Figure 108102227-A0305-02-0058-173

相補的CE Complementary CE

Figure 108102227-A0305-02-0058-174
Figure 108102227-A0305-02-0058-174

表示為 Expressed as

Figure 108102227-A0305-02-0059-175
Figure 108102227-A0305-02-0059-175

。由於可由公式(22)與公式(27)利用N’個的TD-template . Since formula (22) and formula (27) can use N’ TD-template

Figure 108102227-A0305-02-0059-176
Figure 108102227-A0305-02-0059-176

,因此接收器使用N’個的CE , So the receiver uses N’ CE

Figure 108102227-A0305-02-0059-177
Figure 108102227-A0305-02-0059-177

來決定N’個LLF中的何者為最大(參考圖3b)。 To determine which of the N'LLFs is the largest (refer to Figure 3b).

i)TD的離散時間訊號檢測以及Doppler-shift-ML推定問題:基於NT個的隨機變數w=(w[0],...,w[NT-1])的接收器選擇兩個假設 i) TD discrete-time signal detection, and Doppler-shift-ML estimating problem: Based on N T th random variable w = (w [0], ..., w [N T -1]) of the receiver selects two Hypothesis

Figure 108102227-A0305-02-0059-178
Figure 108102227-A0305-02-0059-178

。然而, . however,

[數學式222]ψ w[k] [Math 222] ψ w [ k ]

為時刻k的觀測值 Is the observed value at time k

[數學式223]

Figure 108102227-A0305-02-0060-179
[Math 223]
Figure 108102227-A0305-02-0060-179

的NB CE, NB CE,

[數學式224]ψ n[k] [Math 224] ψ n [ k ]

為高斯雜訊 Gaussian noise

Figure 108102227-A0305-02-0060-180
Figure 108102227-A0305-02-0060-180

的NB CE,而 NB CE, while

[數學式226]N T=[T/△t]≫1 [Math 226] N T =[ T /△ t ]≫1

為觀測時間(0,T)的樣本數目。假設H1的訊號成分與 Is the number of samples at the observation time (0, T). Assume that the signal component of H1 is

Figure 108102227-A0305-02-0060-181
Figure 108102227-A0305-02-0060-181

相等。N’個CE equal. N’ CE

Figure 108102227-A0305-02-0060-182
Figure 108102227-A0305-02-0060-182

為等能量,在 To wait for energy, in

Figure 108102227-A0305-02-0060-183
Figure 108102227-A0305-02-0060-183

的意義上以偽正交作為前提得到下面的結果。 In the sense of using pseudo-orthogonal as the premise, the following results are obtained.

命題4: Proposition 4:

基於頻譜密度N0的高斯雜訊下的觀測值w=(w[0],...,w[N1-1]) Observations under Gaussian noise based on spectral density N 0 w=(w[0],...,w[N 1 -1])

Figure 108102227-A0305-02-0061-184
Figure 108102227-A0305-02-0061-184

之檢測、推定的第 The detection and presumption of the

Figure 108102227-A0305-02-0061-185
Figure 108102227-A0305-02-0061-185

個的對數似然度為[非專利文獻18] The log likelihood of each is [Non-Patent Document 18]

Figure 108102227-A0305-02-0061-186
Figure 108102227-A0305-02-0061-186

。然而, . however,

Figure 108102227-A0305-02-0061-187
Figure 108102227-A0305-02-0061-187

對於某決定等級r0,以滿足下式的整數值為 For a certain decision level r 0 , the integer value satisfying the following formula is

Figure 108102227-A0305-02-0061-188
Figure 108102227-A0305-02-0061-188

Figure 108102227-A0305-02-0061-189
Figure 108102227-A0305-02-0061-189

。然而, . however,

Figure 108102227-A0305-02-0062-190
Figure 108102227-A0305-02-0062-190

係公式(31)中 In formula (31)

Figure 108102227-A0305-02-0062-191
Figure 108102227-A0305-02-0062-191

之基於公式(16)中Ae-iκ的MLE The MLE based on Ae -iκ in formula (16)

Figure 108102227-A0305-02-0062-192
Figure 108102227-A0305-02-0062-192

的補償版。此時,接收器判定已收到TFP上的格子 Compensated version. At this time, the receiver determines that the grid on the TFP has been received

Figure 108102227-A0305-02-0062-193
Figure 108102227-A0305-02-0062-193

上的位址 Address on

Figure 108102227-A0305-02-0062-194
Figure 108102227-A0305-02-0062-194

之CE。若所有的 The CE. If all

Figure 108102227-A0305-02-0062-195
Figure 108102227-A0305-02-0062-195

都在r0以下的情況下,接收器判定為無訊號。因此 When all values are below r 0 , the receiver determines that there is no signal. therefore

Figure 108102227-A0305-02-0062-196
Figure 108102227-A0305-02-0062-196

為所提供的 For the provided

[數學式243]

Figure 108102227-A0305-02-0063-197
[Math 243]
Figure 108102227-A0305-02-0063-197

之下的 Below

[數學式244]l μ [Math 244] l μ

的MLE。此外, MLE. In addition,

Figure 108102227-A0305-02-0063-199
Figure 108102227-A0305-02-0063-199

為伴隨TFSO To accompany TFSO

Figure 108102227-A0305-02-0063-200
Figure 108102227-A0305-02-0063-200

的相位函數。 The phase function.

接著,基於觀測值w的DFT Next, based on the DFT of the observed value w

Figure 108102227-A0305-02-0063-201
Figure 108102227-A0305-02-0063-201

,轉移至FD中的訊號檢測、延遲推定問題。考慮具有格子 , Transfer to the problem of signal detection and delay estimation in FD. Consider having a lattice

Figure 108102227-A0305-02-0063-202
Figure 108102227-A0305-02-0063-202

上的位址(address) Address

Figure 108102227-A0305-02-0063-203
Figure 108102227-A0305-02-0063-203

的接收FD-template CE Receiving FD-template CE

[數學式250]

Figure 108102227-A0305-02-0064-204
[Math 250]
Figure 108102227-A0305-02-0064-204

的檢測問題。然而, Detection problem. however,

Figure 108102227-A0305-02-0064-205
Figure 108102227-A0305-02-0064-205

,且 And

Figure 108102227-A0305-02-0064-206
Figure 108102227-A0305-02-0064-206

為chip位址(chip address)ρ的TD PC(phase-coded)的FD-template(參考公式(22))。此CE嵌入至公式(27)的DFT FD-template of TD PC (phase-coded) with chip address (chip address) ρ (refer to formula (22)). This CE is embedded in the DFT of equation (27)

[數學式253]Ψ[lχ] [Math 253] Ψ[ l ; χ ]

的接收FD-CE Receiving FD-CE

Figure 108102227-A0305-02-0064-207
Figure 108102227-A0305-02-0064-207

中(參考圖3a-2)。然而, Medium (refer to Figure 3a-2). however,

Figure 108102227-A0305-02-0064-208
Figure 108102227-A0305-02-0064-208

for

[數學式256]l D [Math 256] l D

的推定整數值,kσ為kd的推定控制用整數值,且使用關係式 The estimated integer value of k σ is the integer value for the estimated control of k d , and the relational expression is used

[數學式257]

Figure 108102227-A0305-02-0065-209
[Math 257]
Figure 108102227-A0305-02-0065-209

。將與 . Will

Figure 108102227-A0305-02-0065-210
Figure 108102227-A0305-02-0065-210

相補的集合 Complementary set

Figure 108102227-A0305-02-0065-212
Figure 108102227-A0305-02-0065-212

表示為 Expressed as

Figure 108102227-A0305-02-0065-213
Figure 108102227-A0305-02-0065-213

由公式(22)與(27),可利用N個的FD-templates From formulas (22) and (27), N FD-templates can be used

Figure 108102227-A0305-02-0065-214
Figure 108102227-A0305-02-0065-214

,因此使用接收器為N個的FD-CE , So use FD-CE with N receivers

Figure 108102227-A0305-02-0065-215
Figure 108102227-A0305-02-0065-215

,來決定N個的LLF的何者為最大即可(參考圖3b)。 , To determine which of the N LLFs is the largest (refer to Figure 3b).

ii)FD中的訊號檢測以及延遲-ML推定問題:基於觀測值W=(W[0],...,W[NT-1]),接收器於FD選擇以下兩個假設 ii) Signal detection and delay-ML estimation problem in FD: Based on the observation value W=(W[0],...,W[N T -1]), the receiver chooses the following two assumptions in FD

[數學式263]

Figure 108102227-A0305-02-0066-216
[Math 263]
Figure 108102227-A0305-02-0066-216

。然而, . however,

Figure 108102227-A0305-02-0066-217
Figure 108102227-A0305-02-0066-217

為具有NB CE For having NB CE

[數學式265]ψ w[k] [Math 265] ψ w [ k ]

的觀測值w[k]的DFT; The DFT of the observation value w[k];

Figure 108102227-A0305-02-0066-218
Figure 108102227-A0305-02-0066-218

為具有NB CE For having NB CE

[數學式267]ψ n[k] [Math 267] ψ n [ k ]

雜訊n[k]的DFT,且 DFT of noise n[k], and

Figure 108102227-A0305-02-0066-794
Figure 108102227-A0305-02-0066-794

為頻寬B中的樣本數目,為求簡便設定NB=NTIs the number of samples in bandwidth B. For simplicity, set N B =N T.

Figure 108102227-A0305-02-0066-219
Figure 108102227-A0305-02-0066-219

具有公式(33)的CE CE with formula (33)

Figure 108102227-A0305-02-0067-220
Figure 108102227-A0305-02-0067-220

First

Figure 108102227-A0305-02-0067-221
Figure 108102227-A0305-02-0067-221

號的template的訊號頻譜,且 The signal spectrum of the template of the number, and

Figure 108102227-A0305-02-0067-222
Figure 108102227-A0305-02-0067-222

為具有公式(34)的CE Is CE with formula (34)

Figure 108102227-A0305-02-0067-223
Figure 108102227-A0305-02-0067-223

的互補訊號頻譜。假設H' 1的訊號成分,與 Complementary signal spectrum. Assuming the signal component of H ' 1, and

Figure 108102227-A0305-02-0067-224
Figure 108102227-A0305-02-0067-224

相同。N個的CE the same. N CE

Figure 108102227-A0305-02-0067-225
Figure 108102227-A0305-02-0067-225

為等能量,且在以 Is equal to energy, and is based on

Figure 108102227-A0305-02-0067-226
Figure 108102227-A0305-02-0067-226

的意義上之偽正交作為前提,得到下面結果。 As the premise of pseudo-orthogonal in the sense of, the following results are obtained.

命題5:根據頻譜密度N0的白色高斯雜訊中的觀測值 Proposition 5: Observations in white Gaussian noise based on spectral density N 0

[數學式277]W=(W[0],...,W[N T -1]),W[l]=F d[w[k]] [Math 277] W =( W [0],..., W [ N T -1]), W [ l ] = F d [ w [ k ]]

,來進行 To proceed

Figure 108102227-A0305-02-0068-227
Figure 108102227-A0305-02-0068-227

之檢測以及推定的第 The detection and the presumption of the

Figure 108102227-A0305-02-0068-228
Figure 108102227-A0305-02-0068-228

號的對數似然函數LLF表示為 The log-likelihood function of number LLF is expressed as

Figure 108102227-A0305-02-0068-229
Figure 108102227-A0305-02-0068-229

。然而, . however,

Figure 108102227-A0305-02-0068-230
Figure 108102227-A0305-02-0068-230

,且對於某決定等級r’0,設ρ=ρ 0And a decision level for r '0, and set ρ = ρ 0

[數學式282]

Figure 108102227-A0305-02-0069-231
[Math 282]
Figure 108102227-A0305-02-0069-231

為滿足下式的整數 Is an integer satisfying the following formula

Figure 108102227-A0305-02-0069-232
Figure 108102227-A0305-02-0069-232

。此時,若接收器判定TFP的格子 . At this time, if the receiver determines the TFP grid

Figure 108102227-A0305-02-0069-233
Figure 108102227-A0305-02-0069-233

上的位址(address) Address

Figure 108102227-A0305-02-0069-234
Figure 108102227-A0305-02-0069-234

的訊號抵達,且全部的 Signal arrives, and all

Figure 108102227-A0305-02-0069-235
Figure 108102227-A0305-02-0069-235

都在r' 0之下的話,接收器判定為無訊號。 Under all words r '0, the receiver determines that no signal.

Figure 108102227-A0305-02-0069-236
Figure 108102227-A0305-02-0069-236

為所提供的 For the provided

Figure 108102227-A0305-02-0069-237
Figure 108102227-A0305-02-0069-237

之下的kd的MLE。此外, MLE below k d. In addition,

Figure 108102227-A0305-02-0070-238
Figure 108102227-A0305-02-0070-238

為基於TFSO Based on TFSO

Figure 108102227-A0305-02-0070-239
Figure 108102227-A0305-02-0070-239

Of

Figure 108102227-A0305-02-0070-240
Figure 108102227-A0305-02-0070-240

的FD版的相位函數。 The phase function of the FD version.

<6.參數推定用TD-CCF、FD-CCF> <6. TD-CCF, FD-CCF for parameter estimation>

<6.1 TD-CCF、FD-CCF> <6.1 TD-CCF, FD-CCF>

觀測值 Observations

Figure 108102227-A0305-02-0070-241
Figure 108102227-A0305-02-0070-241

為NB,且假設其CE NB, and suppose its CE

[數學式293]ψ w[k] [Math 293] ψ w [ k ]

的實部及虛部分別可被測定[非專利文獻18,3]。 The real and imaginary parts of can be measured separately [Non-Patent Documents 18, 3].

為了檢測訊號 In order to detect the signal

[數學式294]

Figure 108102227-A0305-02-0071-242
[Math 294]
Figure 108102227-A0305-02-0071-242

(或是 (Or

Figure 108102227-A0305-02-0071-243
Figure 108102227-A0305-02-0071-243

),而使用以下所定義的各個提供關聯的CCF(參考圖3b)。 ), and use each of the associated CCFs defined below (refer to Figure 3b).

以及,為了得到代替具有公式(31) And, in order to get instead of having formula (31)

Figure 108102227-A0305-02-0071-244
Figure 108102227-A0305-02-0071-244

Of

Figure 108102227-A0305-02-0071-245
Figure 108102227-A0305-02-0071-245

(或是具有公式(36) (Or with formula (36)

Figure 108102227-A0305-02-0071-246
Figure 108102227-A0305-02-0071-246

Of

Figure 108102227-A0305-02-0071-247
Figure 108102227-A0305-02-0071-247

)的時間、頻率對稱統計量,而使用以下所定義的各個提供關聯的CCF(參考圖3b)。 ) Time and frequency symmetric statistics, and use the following defined CCFs (refer to Figure 3b).

Lemma 1:當公式(30)的兩個假設H0,H1的CE Lemma 1: When the two assumptions of formula (30) H 0 , CE of H 1

[數學式300]ψ n[k] [Math 300] ψ n [ k ]

假設為高斯雜訊時,CCF Assuming Gaussian noise, CCF

Figure 108102227-A0305-02-0072-248
Figure 108102227-A0305-02-0072-248

成立。惟<‧,‧>d,k為離散時間函數的空間 Established. Only <‧,‧> d,k is the space of discrete time function

Figure 108102227-A0305-02-0072-249
Figure 108102227-A0305-02-0072-249

中的內積(IP,inner product)。因此(作為接收器輸入CE In the inner product (IP, inner product). Therefore (input CE as a receiver

[數學式303]ψ w[kχ] [Math 303] ψ w [ k ; χ ]

的代替),將具有衰減常數 Instead of), will have an attenuation constant

Figure 108102227-A0305-02-0072-795
Figure 108102227-A0305-02-0072-795

的接收CE Receiving CE

Figure 108102227-A0305-02-0072-251
Figure 108102227-A0305-02-0072-251

(即式(28)的接收CE (That is, the receiving CE of equation (28)

[數學式306]ψ r[kχ] [Math 306] ψ r [ k ; χ ]

的訊號成分),以及公式(29)的位址 Signal component), and the address of formula (29)

Figure 108102227-A0305-02-0072-252
Figure 108102227-A0305-02-0072-252

中的推定TD-template CE Presumption in TD-template CE

Figure 108102227-A0305-02-0073-253
Figure 108102227-A0305-02-0073-253

的複數脈衝(impulse)反應的NB匹配濾波器(matched filter)之間的CCF(稱為類型-3的相關器),以 The CCF (called type-3 correlator) between the NB matched filters reflected by the impulse

Figure 108102227-A0305-02-0073-254
Figure 108102227-A0305-02-0073-254

進行定義。於此,作為公式(29)的記號X' ρ' ,X的代替,使用具有Y' ρ' ,Y的 Define. Here, as a substitute for the notation X ' ρ ' , X in the formula (29), the one with Y ' ρ ' , Y is used

Figure 108102227-A0305-02-0073-255
Figure 108102227-A0305-02-0073-255

稍做計算後,可知此CCF可表示為 After a little calculation, we know that this CCF can be expressed as

Figure 108102227-A0305-02-0073-256
Figure 108102227-A0305-02-0073-256

遺憾的是,AF θgg(τ,ν),ΘGG(ν,-τ)一般具有多個的旁波瓣(sidelobe)。然而,高斯碼片脈波g(t)藉由關於其AF的τ,ν的變數分離性及指數函數型衰減特性 Unfortunately, AF θ gg (τ,ν),Θ GG (ν,-τ) generally have multiple sidelobes. However, the Gaussian chip pulse wave g(t) has the variable separability and exponential function type attenuation characteristics of τ and ν with respect to its AF

[數學式312]

Figure 108102227-A0305-02-0074-257
[Math 312]
Figure 108102227-A0305-02-0074-257

,為推定問題帶來嶄新的解答。於此 , Bring a brand-new answer to the presumptive question. Here

Figure 108102227-A0305-02-0074-258
Figure 108102227-A0305-02-0074-258

。為了使 . because

Figure 108102227-A0305-02-0074-259
Figure 108102227-A0305-02-0074-259

成為大的值,當N,N’≫1時,必須縮小θ gg[‧,‧]的第一及第二變數。也就是說,公式(39)的 If it becomes a large value, when N,N'≫1, the first and second variables of θ gg [‧,‧] must be reduced. In other words, the formula (39)

Figure 108102227-A0305-02-0074-260
Figure 108102227-A0305-02-0074-260

項可以完全無視。高斯函數的此性質,於最大化 Items can be completely ignored. This property of Gaussian function is to maximize

Figure 108102227-A0305-02-0074-261
Figure 108102227-A0305-02-0074-261

的lμ的決定上發揮了關鍵作用。 The decision of l μ played a key role.

為評估與旋轉因子(twiddle factor)W的冪數PD相關之PC的三次和,以IDFT-型和 In order to evaluate the cubic sum of the PC related to the power PD of the twiddle factor (twiddle factor) W, an IDFT-type sum

Figure 108102227-A0305-02-0074-262
Figure 108102227-A0305-02-0074-262

、角括弧 , Angle brackets

[數學式318]

Figure 108102227-A0305-02-0075-263
[Math 318]
Figure 108102227-A0305-02-0075-263

與圓括弧(a)m' (簡便的記法以(a)m' =W-am' 定義)之對子來做記號上的標示,DFT-型和 And parentheses (a) m ' (convenient notation is defined by (a) m ' = W -am ' ) to mark the mark, DFT-type and

Figure 108102227-A0305-02-0075-264
Figure 108102227-A0305-02-0075-264

也以 Also with

Figure 108102227-A0305-02-0075-265
Figure 108102227-A0305-02-0075-265

之對子來做記號上的標示,若使用記號 Of the pair to make the mark on the mark, if the mark is used

Figure 108102227-A0305-02-0075-266
Figure 108102227-A0305-02-0075-266

,則Lemma 2:類型-3的接收器的位址為 , Then Lemma 2: The address of the type-3 receiver is

Figure 108102227-A0305-02-0075-267
Figure 108102227-A0305-02-0075-267

,若Y=X,Y'=X'的話,CCF表示為 , If Y=X,Y ' =X ' , CCF is expressed as

[數學式323]

Figure 108102227-A0305-02-0076-268
[Math 323]
Figure 108102227-A0305-02-0076-268

因此,為了使 Therefore, in order to make

Figure 108102227-A0305-02-0076-269
Figure 108102227-A0305-02-0076-269

成為大的值, Becomes a big value,

Figure 108102227-A0305-02-0076-270
Figure 108102227-A0305-02-0076-270

就必須成立。然而,公式(39)的第二個旋轉因子(twiddle factor)的6個項中的5個改變排列 It must be established. However, 5 of the 6 terms of the second twiddle factor of formula (39) change the arrangement

Figure 108102227-A0305-02-0076-271
Figure 108102227-A0305-02-0076-271

,剩下的一個移動至第一個旋轉因子(twiddle factor)。另一方面,於FD當中,若Lemma 3:公式(35)的兩個假設H' 0,H' 1, The remaining one moves to the first twiddle factor. On the other hand, in FD, if Lemma 3: the two assumptions of formula (35) H ' 0 , H ' 1

[數學式327] N[l] [Math 327] N [ l ]

為高斯雜訊的話,則 If it is Gaussian noise, then

Figure 108102227-A0305-02-0077-272
Figure 108102227-A0305-02-0077-272

成立。惟,<‧,‧>d,l為離散頻率的FD-函數的空間 Established. However, <‧,‧> d,l is the space of the FD-function of discrete frequency

Figure 108102227-A0305-02-0077-273
Figure 108102227-A0305-02-0077-273

的IP。 IP.

(作為FD-CE (As FD-CE

[數學式330]ΨW[lχ] [Math 330] Ψ W [ l ; χ ]

的代替)將具有衰減常數 Instead of) will have an attenuation constant

Figure 108102227-A0305-02-0077-274
Figure 108102227-A0305-02-0077-274

的接收FD-CE Receiving FD-CE

Figure 108102227-A0305-02-0077-275
Figure 108102227-A0305-02-0077-275

,也就是接收CE , Which means receiving CE

[數學式333]ψ r[k] [Math 333] ψ r [ k ]

的訊號成分的FT,及公式(33)之位址(address) FT of the signal component of, and the address of formula (33)

[數學式334]

Figure 108102227-A0305-02-0078-276
[Math 334]
Figure 108102227-A0305-02-0078-276

中的推定FD-template CE Presumption in FD-template CE

Figure 108102227-A0305-02-0078-277
Figure 108102227-A0305-02-0078-277

的NB匹配濾波器(matched filter)的複數脈衝回應之間的CCF(稱為類型-4的相關器),以 CCF (called type-4 correlator) between the complex impulse responses of the NB matched filter (matched filter) to

Figure 108102227-A0305-02-0078-278
Figure 108102227-A0305-02-0078-278

進行定義。此CCF表示為 Define. This CCF is expressed as

Figure 108102227-A0305-02-0078-279
Figure 108102227-A0305-02-0078-279

同樣地,為了使 Similarly, in order to make

Figure 108102227-A0305-02-0078-280
Figure 108102227-A0305-02-0078-280

成為大的值,因為可假定 Becomes a large value because it can be assumed

[數學式339]

Figure 108102227-A0305-02-0079-281
[Math 339]
Figure 108102227-A0305-02-0079-281

,因此當N,N’≫1時,可完全無視公式(44) , So when N,N’≫1, formula (44) can be completely ignored

Figure 108102227-A0305-02-0079-282
Figure 108102227-A0305-02-0079-282

全部的項。若整理旋轉因子(Twiddle factor)的三個項,評估PC的三次和,則Lemma4:類型-4的相關接收器具有 All items. If we sort the three terms of the Twiddle factor and evaluate the cubic sum of the PC, then Lemma4: Type-4 related receivers have

Figure 108102227-A0305-02-0079-283
Figure 108102227-A0305-02-0079-283

位址(address),且若Y=X,Y'=X'的話,則CCF表示為 Address (address), and if Y=X, Y ' =X ' , then CCF is expressed as

Figure 108102227-A0305-02-0079-284
Figure 108102227-A0305-02-0079-284

因此,為了使 Therefore, in order to make

Figure 108102227-A0305-02-0079-285
Figure 108102227-A0305-02-0079-285

成為大的值,必須 To become a large value and must

[數學式344]

Figure 108102227-A0305-02-0080-286
[Math 344]
Figure 108102227-A0305-02-0080-286

然而,公式(44)的第二個旋轉因子(twiddle factor)的六個項目中的5個改變排列,並將 However, 5 of the six items in the second twiddle factor of formula (44) change the arrangement and change

Figure 108102227-A0305-02-0080-287
Figure 108102227-A0305-02-0080-287

剩下的一個移動至公式(44)的第一個旋轉因子(twiddle factor),利用高斯函數的變數分離性,可得公式(45)。公式(41)及(45)表示 The remaining one is moved to the first twiddle factor of formula (44), and using the variable separability of Gaussian function, formula (45) can be obtained. Formulas (41) and (45) indicate

Figure 108102227-A0305-02-0080-288
Figure 108102227-A0305-02-0080-288

versus

Figure 108102227-A0305-02-0080-289
Figure 108102227-A0305-02-0080-289

關於 on

[數學式348]k d,l D [Math 348] k d , l D

完成對稱。 Complete symmetry.

will

Figure 108102227-A0305-02-0080-290
Figure 108102227-A0305-02-0080-290

versus

Figure 108102227-A0305-02-0081-291
Figure 108102227-A0305-02-0081-291

的互補對子(CP,complementary pair,[非專利文獻27])的TD-PC與FD-PC的作用做交換的話,可得 If the functions of TD-PC and FD-PC of CP (complementary pair, [Non-Patent Document 27]) are exchanged, we can get

Figure 108102227-A0305-02-0081-292
Figure 108102227-A0305-02-0081-292

and

Figure 108102227-A0305-02-0081-293
Figure 108102227-A0305-02-0081-293

之組(稱為原始對子(OP,original pair)[非專利文獻24,30])如下述內容。 The group (called the original pair (OP, original pair) [Non-Patent Documents 24, 30]) is as follows.

[OP的TD-CCF,FD-CCF:]v[k;χ]及 [OP’s TD-CCF, FD-CCF:] v[k; χ ] and

[數學式353]V[lχ]可做其他的分解 [Math 353] V [ l ; χ ] can be other decomposition

Figure 108102227-A0305-02-0081-294
Figure 108102227-A0305-02-0081-294

。然而,TD-template . However, TD-template

Figure 108102227-A0305-02-0082-295
Figure 108102227-A0305-02-0082-295

以及FD-template And FD-template

Figure 108102227-A0305-02-0082-296
Figure 108102227-A0305-02-0082-296

for

Figure 108102227-A0305-02-0082-297
Figure 108102227-A0305-02-0082-297

。將 . will

Figure 108102227-A0305-02-0082-298
Figure 108102227-A0305-02-0082-298

以下式定義。若將具有格子 Defined by the following formula. If it will have a grid

Figure 108102227-A0305-02-0082-299
Figure 108102227-A0305-02-0082-299

上的位址(address) Address

Figure 108102227-A0305-02-0082-300
Figure 108102227-A0305-02-0082-300

設為具有TD-template Set to have TD-template

Figure 108102227-A0305-02-0082-301
Figure 108102227-A0305-02-0082-301

的推定接收TD-CE Presumptive reception of TD-CE

Figure 108102227-A0305-02-0083-302
Figure 108102227-A0305-02-0083-302

,則可得稱作類型-1相關器的CCF , You can get the CCF called type-1 correlator

Figure 108102227-A0305-02-0083-303
Figure 108102227-A0305-02-0083-303

,且可表示為 , And can be expressed as

Figure 108102227-A0305-02-0083-304
Figure 108102227-A0305-02-0083-304

設置Y=X,Y'=X',除了 Set Y=X,Y ' =X ' , except

Figure 108102227-A0305-02-0083-306
Figure 108102227-A0305-02-0083-306

的項以外,所有的 Except for items, all

Figure 108102227-A0305-02-0083-307
Figure 108102227-A0305-02-0083-307

的項可以無視,因此可得 Can be ignored, so you can get

Figure 108102227-A0305-02-0084-310
Figure 108102227-A0305-02-0084-310

然而,公式(51)的第二旋轉因子(twiddle factor)的6個項目中的5個項目改變排列,並成為 However, 5 of the 6 items of the second twiddle factor of formula (51) change the arrangement and become

Figure 108102227-A0305-02-0084-311
Figure 108102227-A0305-02-0084-311

,且若使剩下的一個移動至第一個旋轉因子twiddle factor,使用高斯函數的AF的變數分離性則可得公式(52)。 , And if the remaining one is moved to the first twiddle factor, the variable separability of AF using Gaussian function can be obtained by formula (52).

接著,若將 Then, if the

Figure 108102227-A0305-02-0084-312
Figure 108102227-A0305-02-0084-312

以下式定義之具有格子 A lattice defined by the following formula

[數學式370]

Figure 108102227-A0305-02-0085-313
[Math 370]
Figure 108102227-A0305-02-0085-313

上的位址(address) Address

Figure 108102227-A0305-02-0085-314
Figure 108102227-A0305-02-0085-314

的FD-template FD-template

Figure 108102227-A0305-02-0085-315
Figure 108102227-A0305-02-0085-315

的推定接收FD-CE,設為 The presumption of receiving FD-CE is set as

Figure 108102227-A0305-02-0085-316
Figure 108102227-A0305-02-0085-316

,則得到稱作類型-2相關器的FD相關器 , Then get the FD correlator called type-2 correlator

Figure 108102227-A0305-02-0085-317
並可得到
Figure 108102227-A0305-02-0085-317
And get

[數學式375]

Figure 108102227-A0305-02-0086-318
[Math 375]
Figure 108102227-A0305-02-0086-318

若Y=X,Y'=X',當無視除了滿足「 If Y=X,Y ' =X ' , when ignoring but satisfying "

Figure 108102227-A0305-02-0086-319
Figure 108102227-A0305-02-0086-319

of

Figure 108102227-A0305-02-0086-320
Figure 108102227-A0305-02-0086-320

」的所有項的話,可得 All the items in ", you can get

Figure 108102227-A0305-02-0086-321
Figure 108102227-A0305-02-0086-321

。然而,公式(56)的第二的旋轉因子(twiddle factor)的6個項目中的5個改變排列 . However, 5 of the 6 items of the second twiddle factor of formula (56) change the arrangement

Figure 108102227-A0305-02-0087-322
Figure 108102227-A0305-02-0087-322

,且若將剩下的一個移動到第一個旋轉因子(twiddle factor)後可得公式(57)。 , And if the remaining one is moved to the first twiddle factor, formula (57) can be obtained.

<6.2 PUL與von Neumann的APT> <6.2 PUL and von Neumann's APT>

關於Lemma 2的 About Lemma 2

Figure 108102227-A0305-02-0087-323
Figure 108102227-A0305-02-0087-323

或是Lemma 4的 Or Lemma 4

Figure 108102227-A0305-02-0087-324
Figure 108102227-A0305-02-0087-324

,若可以得到所有的chip脈波(chip pulse)的時間寬度L△t或是頻寬L△f的精確度之正確推定值 , If it is possible to obtain the correct estimated value of the accuracy of the time width L△t or the bandwidth L△f of all chip pulses

Figure 108102227-A0305-02-0087-325
Figure 108102227-A0305-02-0087-325

的話,兩個CCF Then, two CCFs

Figure 108102227-A0305-02-0087-326
Figure 108102227-A0305-02-0087-326

,將各自含於 , Including each in

Figure 108102227-A0305-02-0088-327
Figure 108102227-A0305-02-0088-327

的干擾成分 Interference component

Figure 108102227-A0305-02-0088-328
Figure 108102227-A0305-02-0088-328

進行濾波(filter)去除,可不需要使用慣用的靈敏濾波器,來將 For filter removal, you do not need to use conventional sensitive filters to remove

Figure 108102227-A0305-02-0088-329
Figure 108102227-A0305-02-0088-329

復原。此部分與以往通訊中所使用的數位訊號處理相比具有根本性的差異。將二組相關器的推定值 recovery. This part is fundamentally different from the digital signal processing used in previous communications. The estimated value of the two sets of correlators

Figure 108102227-A0305-02-0088-330
Figure 108102227-A0305-02-0088-330

更新的簡單方法有稱作相位更新迴路(PUL,phase-updating loop)的下述程序,與既往之通訊的同步所慣用的「相位鎖迴路(phase-locked loop)」完全不同。 A simple method of updating has the following procedure called phase-updating loop (PUL, phase-updating loop), which is completely different from the conventional "phase-locked loop" used for synchronization of communication in the past.

[衰減常數的MLE之具更新PUL的演算法] [MLE with attenuation constant update PUL algorithm]

will

Figure 108102227-A0305-02-0088-331
Figure 108102227-A0305-02-0088-331

and

Figure 108102227-A0305-02-0089-332
Figure 108102227-A0305-02-0089-332

分別設為類型-3及類型-4的相關器陣列的互補對子(CP,com-plementary pair),將 Set as the complementary pair (CP, com-plementary pair) of the type-3 and type-4 correlator arrays, and set

Figure 108102227-A0305-02-0089-333
Figure 108102227-A0305-02-0089-333

and

Figure 108102227-A0305-02-0089-334
Figure 108102227-A0305-02-0089-334

分別設為類型-1及類型-2的相關器陣列的原始對子(OP,original pair),為求簡便在PUL的演算法至收斂為止,設置 Set as the original pair (OP, original pair) of the type-1 and type-2 correlator arrays respectively. For simplicity, set the PUL algorithm until it converges.

Figure 108102227-A0305-02-0089-335
Figure 108102227-A0305-02-0089-335

。作為參數θ′之(td,fD)的s-step的離散化推定值 . As the estimated value of discretization of the s-step of (t d , f D ) among the parameters θ ′

Figure 108102227-A0305-02-0089-336
Figure 108102227-A0305-02-0089-336

以及作為公式(16) And as formula (16)

Figure 108102227-A0305-02-0089-337
Figure 108102227-A0305-02-0089-337

的代替,將使用了各個 Instead of using each

Figure 108102227-A0305-02-0089-338
Figure 108102227-A0305-02-0089-338

的衰減常數 Attenuation constant

Figure 108102227-A0305-02-0090-339
Figure 108102227-A0305-02-0090-339

之s-step的MLE S-step MLE

Figure 108102227-A0305-02-0090-340
Figure 108102227-A0305-02-0090-340

定義為 defined as

Figure 108102227-A0305-02-0090-341
Figure 108102227-A0305-02-0090-341

整數值的對子(pair) Pairs of integer values (pair)

Figure 108102227-A0305-02-0090-342
Figure 108102227-A0305-02-0090-342

的更新,定義為 The update is defined as

Figure 108102227-A0305-02-0090-343
Figure 108102227-A0305-02-0090-343
Figure 108102227-A0305-02-0091-344
Figure 108102227-A0305-02-0091-344

will

Figure 108102227-A0305-02-0091-345
Figure 108102227-A0305-02-0091-345

分別設為 Respectively set to

Figure 108102227-A0305-02-0091-346
Figure 108102227-A0305-02-0091-346

。但初始值 . But the initial value

Figure 108102227-A0305-02-0091-347
Figure 108102227-A0305-02-0091-347

係可自由地選擇。例如可設定為 Department can be freely selected. For example, it can be set to

Figure 108102227-A0305-02-0091-348
Figure 108102227-A0305-02-0091-348

。以chip脈波g[k]、G[l]的時間寬度L△t、以及頻寬L△f為對象,若 . Taking chip pulse g[k], G[l] time width L△t and bandwidth L△f as the object, if

Figure 108102227-A0305-02-0091-349
Figure 108102227-A0305-02-0091-349

成立,則(s+1)-步驟結束。所得到的推定值為MLE,兩個相關器為ML接收器。 If yes, then (s+1)-step ends. The estimated value obtained is MLE, and the two correlators are ML receivers.

失真訊號的復原問題,為訊號處理的重要領域。Youla[非專利文獻22]提供了復原問題的解答。以使用Youla的方法及記數法,可知PUL演算法的收斂是如何地依存於von Neumann的APT[非專利文獻21]。 The recovery of distorted signals is an important area of signal processing. Youla [Non-Patent Document 22] provides answers to recovery problems. Using Youla's method and notation, it can be seen how the convergence of the PUL algorithm depends on von Neumann's APT [Non-Patent Document 21].

考量具有內積(IP,inner product) Consider the inner product (IP, inner product)

Figure 108102227-A0305-02-0092-350
Figure 108102227-A0305-02-0092-350

(或是 (Or

Figure 108102227-A0305-02-0092-351
Figure 108102227-A0305-02-0092-351

),以及範數(norm) ), and norm (norm)

Figure 108102227-A0305-02-0092-352
Figure 108102227-A0305-02-0092-352

(或是 (Or

Figure 108102227-A0305-02-0092-353
Figure 108102227-A0305-02-0092-353

)之由平方可加性的連續離散時間函數(或是離散頻率函數)而成之希爾伯特空間(Hilbert space) ) Is a Hilbert space formed by a continuous discrete time function (or a discrete frequency function) with square additivity

[數學式410]H [Math 410] H

。將ε設為於 . Set ε to

[數學式411]H [Math 411] H

中的任意的閉線性流形(CLM,closed linear manifold)。藉由投影定理[非專利文獻22],若ε'與ε"為互為正交之 Any closed linear manifold (CLM, closed linear manifold) in. According to the projection theorem [Non-Patent Document 22], if ε ' and ε " are orthogonal to each other

[數學式412]H [Math 412] H

的部分空間,則任意的f

Figure 108102227-A0305-02-0093-781
ε為具有特定性地分解f=g+h,g
Figure 108102227-A0305-02-0093-783
ε',h
Figure 108102227-A0305-02-0093-785
ε"。惟,g,h指的是f之ε'"往上的投影,標記為g=Pf,h=Qf。P為ε'往上的投影運算子(PO,projection operator),Q=I-P為ε"的往上的PO,I為恆等運算子。 Part of the space, then any f
Figure 108102227-A0305-02-0093-781
ε is a specific decomposition f=g+h,g
Figure 108102227-A0305-02-0093-783
ε ' ,h
Figure 108102227-A0305-02-0093-785
ε " . However, g, h refers to the upward projection of f of ε' , ε " , marked as g=Pf, h=Qf. P is ε 'upward projection operator (PO, projection operator), Q = IP is ε "up to the PO, I is the identity operator.

ε 1(或是ε 3)設為L△t-(或是Ts-)限時(TL,time limited)的訊號 Set ε 1 (or ε 3 ) to L△t- (or T s -) time limited (TL, time limited) signal

Figure 108102227-A0305-02-0093-796
Figure 108102227-A0305-02-0093-796

的全部所構成之集合。另一方面,將L△f-(或是Fs-)限頻寬(BL,band limited)的訊號 A collection composed of all of. On the other hand, the signal of L△f- (or F s -) is limited to the bandwidth (BL, band limited)

Figure 108102227-A0305-02-0093-355
Figure 108102227-A0305-02-0093-355

的全部所構成之集合,設為ε2(或是ε4)。 The set consisting of all of is set as ε 2 (or ε 4 ).

Figure 108102227-A0305-02-0093-356
Figure 108102227-A0305-02-0093-356

為CLM[非專利文獻22]。 It is CLM [Non-Patent Document 22].

將Pi設為 Set P i to

Figure 108102227-A0305-02-0093-357
Figure 108102227-A0305-02-0093-357

之往上投影的投影運算子,將Qi=I-Pi設為εi的正交補餘 The projection operator of the upward projection, set Q i =IP i as the orthogonal complement of ε i

Figure 108102227-A0305-02-0094-358
Figure 108102227-A0305-02-0094-358

之往上投影的投影運算子。CCF以下述意義發揮PO的作用。也就是說,對於任意的訊號r以及s,訊號r

Figure 108102227-A0305-02-0094-786
ε具有特定地分解 The projection operator for the upward projection. CCF plays the role of PO in the following sense. In other words, for any signal r and s, the signal r
Figure 108102227-A0305-02-0094-786
ε has a specific decomposition

Figure 108102227-A0305-02-0094-359
Figure 108102227-A0305-02-0094-359

。然而, . however,

[數學式419]s [Math 419] s

為S的正交空間。可將相關係數 Is the orthogonal space of S. Correlation coefficient

Figure 108102227-A0305-02-0094-361
Figure 108102227-A0305-02-0094-361

看作將r投射於ε'上方的投影運算子。 Think of it as a projection operator that projects r on top of ε'.

類型-3、類型-4的相關器之互補對子(CP,complementary pair)與類型-1、類型-2的相關器之原始對子(OP,original pair)為如下式的正交投影運算子(PO)。 The complementary pair (CP, complementary pair) of the type-3 and type-4 correlators and the original pair (OP, original pair) of the type-1 and type-2 correlators are the orthogonal projection operators of the following formula (PO).

[數學式421]

Figure 108102227-A0305-02-0095-362
[Math 421]
Figure 108102227-A0305-02-0095-362

。然而, . however,

Figure 108102227-A0305-02-0095-363
Figure 108102227-A0305-02-0095-363

分別為 Respectively

Figure 108102227-A0305-02-0095-364
Figure 108102227-A0305-02-0095-364

的正交補餘。 Orthogonal complement.

運用交替投影定理(APT,Alternative projection theorem)(參考圖11)可得以下的結果。此外,根據APT[非專利文獻21,p.55,theorem 13.7],當將E、F各自設為希爾伯特空間的CLM ε, Using the alternative projection theorem (APT, Alternative projection theorem) (refer to Figure 11), the following results can be obtained. In addition, according to APT [Non-Patent Document 21, p.55, theorem 13.7], when E and F are each CLM ε in Hilbert space,

[數學式424]F [Math 424] F

往上的投影運算子時,運算子的序列E,FE,EFE,FEFE,...具有極限G。此外,序列F,EF,FEF,....也具有極限G。此外,G為 When the projection operator is upward, the sequence of operators E, FE, EFE, FEFE,... has a limit G. In addition, the sequence F, EF, FEF,... also has a limit G. In addition, G is

[數學式425]εF [Math 425] εF

的往上的投影運算子(不需要對稱條件EF=FE)。 The upward projection operator (no need for symmetry condition EF=FE).

[定理(Theorem):PUL演算法的收斂定理](參考圖3c):關於具有公式(60)的s-步驟的推定值 [Theorem: Convergence Theorem of PUL Algorithm] (Refer to Figure 3c): Regarding the estimated value of s-step with formula (60)

Figure 108102227-A0305-02-0096-365
Figure 108102227-A0305-02-0096-365

(或是公式(61))的 (Or formula (61))

Figure 108102227-A0305-02-0096-366
Figure 108102227-A0305-02-0096-366

以及,同樣具有公式(60)的s-步驟推定值 And, also has the s-step estimated value of formula (60)

Figure 108102227-A0305-02-0096-367
Figure 108102227-A0305-02-0096-367

(或是具有公式(61))的(ρ,kσ)(或是(ρ',kσ)),考量其相關的argmax-演算。將包含該argmax-演算法所決定的(s+1)-步驟的最大似然估計值TD及FD的四個PO,以簡略化過的記號標示為 (Or with formula (61)) (ρ,k σ ) (or (ρ ' ,k σ )), considering its related argmax-calculus. The four POs including the maximum likelihood estimates TD and FD of the (s+1)-step determined by the argmax-algorithm are marked as simplified symbols as

Figure 108102227-A0305-02-0096-368
Figure 108102227-A0305-02-0096-368

and

Figure 108102227-A0305-02-0096-369
Figure 108102227-A0305-02-0096-369

。PUL演算法係收斂。 . The PUL algorithm converges.

[證明]: [prove]:

以CP的PO對子(Ts-TL-PO P3,Fs-BL-PO P4)(OP的PO對子(L△t-TL-PO P1,L△f-BL-PO P2))的適用順序可得兩個不同的遞迴公式。此外,將TD-PC X與FD-PC X’,也就是下標(3,4)(1,2)置換的話OP與CP相同,故僅提供CP的證明。 Take CP's PO pair (T s -TL-PO P 3 ,F s -BL-PO P 4 ) (OP's PO pair (L△t-TL-PO P 1 ,L△f-BL-PO P 2 )) Two different recursive formulas can be obtained in the order of application. In addition, if you replace TD-PC X with FD-PC X', that is, the subscript (3,4)(1,2), OP and CP are the same, so only the proof of CP is provided.

首先,提供 First, provide

[數學式431]ψ [Math 431] ψ

的復原演算法。若 Recovery algorithm. If

Figure 108102227-A0305-02-0097-370
Figure 108102227-A0305-02-0097-370

,則 ,then

[數學式433]ψ=F -1,d P 4 F d ψ [Math 433] ψ = F -1,d P 4 F d ψ

,因此可得 , So you can get

[數學式434]g 1=P 3 ψ=P 3 F -1,d P 4 F d ψ=ψ-Q 3 F -1,d P 4 F d ψ [Math. 434] g 1 = P 3 ψ = P 3 F -1,d P 4 F d ψ = ψ - Q 3 F -1,d P 4 F d ψ

,且 And

[數學式435]ψ [Math 435] ψ

滿足運算子方程式 Satisfy the operator equation

[數學式436]A 1 ψ=g 1,A 1=I-Q 3 F -1,d P 4 F d [Math 436] A 1 ψ = g 1 , A 1 = I - Q 3 F -1, d P 4 F d

,因此方程式 , So the equation

[數學式437]ψ=g 1+Q 3 F -1,d P 4 F d ψ [Math 437] ψ = g 1 + Q 3 F -1,d P 4 F d ψ

提供下述TD的遞迴公式[非專利文獻22,23] Provide the following TD recursive formula [Non-Patent Documents 22,23]

Figure 108102227-A0305-02-0098-371
Figure 108102227-A0305-02-0098-371

。根據APT . According to APT

[數學式439]lim i→∞(Q 3 F -1,d P 4 F d) i (ψ 0-ψ) [Math 439] lim i →∞ ( Q 3 F -1,d P 4 F d ) i ( ψ 0 - ψ )

for

[數學式440](ψ 0-ψ) [Math 440] ( ψ 0 - ψ )

的CLM εc=⊥ε3∩ε4之往上的PO。ε c只包含為恆等的零的函數[非專利文獻22,p.699][非專利文獻23,p.637],為 CLM ε c = ⊥ε 3 ∩ε 4 upward PO. ε c contains only functions that are equal to zero [Non-Patent Document 22, p.699] [Non-Patent Document 23, p.637], which is

[數學式441]lim i→∞ ψ i=ψ[Math 441] lim i →∞ ψ i = ψ .

此部分為Youla[非專利文獻22]的主要結果之一。因此結合PO This part is one of the main results of Youla [Non-Patent Document 22]. So combined with PO

[數學式442]P 3 F -1,d P 4 F d [Math 442] P 3 F -1,d P 4 F d

將格子空間 Grid space

Figure 108102227-A0305-02-0098-372
Figure 108102227-A0305-02-0098-372

上的chip與數據位址(address) Chip and data address (address)

Figure 108102227-A0305-02-0099-373
Figure 108102227-A0305-02-0099-373

的L△t×L△f矩形領域(CE The L△t×L△f rectangular area (CE

Figure 108102227-A0305-02-0099-374
Figure 108102227-A0305-02-0099-374

的support以及 Support and

Figure 108102227-A0305-02-0099-375
Figure 108102227-A0305-02-0099-375

的support的積集合): The product collection of support):

[數學式447][((p-1)N+ρ-△a')T c,((ρ-1)N+ρ+△b')T c]×[((p'-1)N'+ρ'-△a)F c,((p'-1)N'+ρ'+△b)F c] [Math 447][(( p -1) N + ρ -△ a' ) T c ,(( ρ -1) N + ρ +△ b' ) T c ]×[(( p' -1) N ' + ρ'-a ) F c ,(( p' -1) N' + ρ' +△ b ) F c ]

抽出,濾波除去剩餘的TFP。然而,△a,△b,△a',△b'為滿足△a+△b=M,△a'+△b'=M'的整數。如此的PO對子,稱為相位空間(或是時間、頻率空間TFP)的局部選擇運算子(localization operator)[非專利文獻7]。由於CE ψ[k]能夠進行訊號復原,因此參數kdExtract and filter to remove the remaining TFP. However, △a, △b, △a ' and △b ' are integers satisfying △a+△b=M,△a ' +△b ' =M '. Such a PO pair is called a localization operator in phase space (or TFP in time and frequency space) [Non-Patent Document 7]. Since CE ψ [k] can perform signal recovery, the parameters k d and

[數學式448]l D [Math 448] l D

可推定L△t及L△f的精確度。與一般的精確的TL(或是BL)運算子[非專利文獻23]不同,TL-PO P3(或是BL-PO P4)將N個的相位調變過的TD-高斯chip脈波g[k](或是N’個相位調變過的FD-高斯chip脈波 The accuracy of L△t and L△f can be estimated. Different from the general precise TL (or BL) operator [Non-Patent Document 23], TL-PO P 3 (or BL-PO P 4 ) modulates the phase of N TD-Gauss chip pulses g[k] (or N'phase modulated FD-Gauss chip pulse

[數學式449]G[l] [Math 449] G [ l ]

)作時間頻率位移,在不設保護間隔(guard interval)下,無重疊地將疊加訊號定義為template。 ) Is a time-frequency shift, and the superimposed signal is defined as a template without setting a guard interval (guard interval).

相反地,在FD之中,若Ψ

Figure 108102227-A0305-02-0100-787
ε 3的話 Conversely, in FD, if Ψ
Figure 108102227-A0305-02-0100-787
ε 3 words

[數學式450]Ψ=F d P 3 F -1,dΨ [Math 450] Ψ = F d P 3 F -1,d Ψ

and

[數學式451]g 2=P 4Ψ=P 4 F d P 3 F -1,dΨ=Ψ-Q 4 F d P 3 F -1,dΨ [Math 451] g 2 = P 4 Ψ = P 4 F d P 3 F -1,d Ψ=Ψ- Q 4 F d P 3 F -1,d Ψ

成立。也就是說Ψ滿足運算子公式[非專利文獻23] Established. In other words, Ψ satisfies the operator formula [Non-Patent Document 23]

[數學式452]A 2Ψ=g 2,A 2=I-Q 4 F d P 3 F -1,d [Math 452] A 2 Ψ = g 2 , A 2 = I - Q 4 F d P 3 F -1,d

,因此可得FD的遞迴公式 , So the recursive formula of FD can be obtained

Figure 108102227-A0305-02-0100-377
Figure 108102227-A0305-02-0100-377

。根據APT . According to APT

[數學式454]lim i→∞(Q 4 F d P 3 F -1,d) i 0-Ψ) [Math 454] lim i →∞ ( Q 4 F d P 3 F -1,d ) i 0 -Ψ)

為(Ψ0-Ψ)的CLM CLM for (Ψ 0 -Ψ)

[數學式455]

Figure 108102227-A0305-02-0101-771
[Math 455]
Figure 108102227-A0305-02-0101-771

的往上的PO。此CLM僅為零函數,因此limi→∞ Ψi=Ψ。 PO of upwards. This CLM is only a zero function, so lim i→∞ Ψ i =Ψ.

因FD CE Because of FD CE

[數學式456]Ψ[l] [Math 456] Ψ[ l ]

被復原,因此可推定參數 Is restored, so the parameters can be estimated

[數學式457]k d,l D [Math 457] k d , l D

為L△t,L△f的精確度。 It is the accuracy of L△t and L△f.

[數學式458]P 4 F d P 3 F -1,d [Math 458] P 4 F d P 3 F -1,d

將另一個的局部選擇運算子(localization operator),即格子空間 Put another localization operator, the grid space

Figure 108102227-A0305-02-0101-378
Figure 108102227-A0305-02-0101-378

上的chip與數據位址(data addresses)的 Of the chip and data addresses on the

Figure 108102227-A0305-02-0101-379
Figure 108102227-A0305-02-0101-379

之L△t×L△f的矩形領域(TD-CE The rectangular area of L△t×L△f (TD-CE

Figure 108102227-A0305-02-0101-380
Figure 108102227-A0305-02-0101-380

的矩形support與FD-CE Rectangular support with FD-CE

[數學式462]

Figure 108102227-A0305-02-0102-381
[Math 462]
Figure 108102227-A0305-02-0102-381

與其的積集合: And its product set:

[數學式463][((p-1)N+ρ-△a')T c,((p-1)N+ρ+△b')T c]×[((p'-1)N'+ρ'-△a)F c,((p'-1)N'+ρ'+△b)F c]) [Math 463][(( p -1) N + ρ -△ a' ) T c ,(( p -1) N + ρ +△ b' ) T c ]×[(( p' -1) N ' + ρ'-a ) F c ,(( p' -1) N' + ρ' +△ b ) F c ])

抽出,濾波除去剩餘部分。(證明結束)。 Extract and filter to remove the remaining part. (The proof ends).

<7.孿生(Twinned)FBMC> <7. Twinned FBMC>

<7.1 SFB:signature傳送器與雷達訊號傳送器> <7.1 SFB: Signature Transmitter and Radar Signal Transmitter>

提供產生公式(25)的TD-signature v[k;χ]以及FD-signature Provide TD-signature v[k; χ] and FD-signature that generate formula (25)

[數學式464]V[lχ] [Math 464] V [ l ; χ ]

的多載波過濾器組(FBMC,multi-carrier filter bank)。藉由反覆執行週期N的TD-PC Xm,於時間t的標本點-∞,...,-Tc,0,Tc,...,∞產生無限序列,另一方面以反覆執行週期N’的FD-PC X’m’,於頻率f的標本點-∞,...,-Fc,0,Fc,...,∞產生無限序列。 Multi-carrier filter bank (FBMC, multi-carrier filter bank). By repeatedly executing TD-PC X m of cycle N, the sample point -∞,...,-T c ,0,T c ,...,∞ at time t generates an infinite sequence, and on the other hand, it executes repeatedly period N 'of FD-PC X' m ', the frequency f of the sampling points -∞, ..., - f c, 0, f c, ..., ∞ infinite sequence.

命題6: Proposition 6:

式(25)的v[k;χ]及 V[k; χ] in formula (25) and

[數學式465]V[lχ] [Math 465] V [ l ; χ ]

可分別地改寫為下式。 It can be rewritten as the following formula respectively.

[數學式466]

Figure 108102227-A0305-02-0103-382
[Math 466]
Figure 108102227-A0305-02-0103-382

惟, but,

Figure 108102227-A0305-02-0103-383
Figure 108102227-A0305-02-0103-383

為下式所定義的調變濾波器 Modulation filter defined by

Figure 108102227-A0305-02-0103-384
Figure 108102227-A0305-02-0103-384

。此外,Vaidyanathan[非專利文獻13]對於輸入x[k]及輸出y[n],將具有濾波器係數h[‧]之三種類的多率濾波器(multi-rate filter)進行定義:縮小率Mf的減密濾波器(decimation filter): . In addition, Vaidyanathan [Non-Patent Document 13] defines three types of multi-rate filters with filter coefficients h[‧] for input x[k] and output y[n]: reduction ratio Decimation filter of M f:

Figure 108102227-A0305-02-0103-385
Figure 108102227-A0305-02-0103-385

擴大率Lf的內插濾波器(interpolation filter): Interpolation filter with expansion rate L f:

Figure 108102227-A0305-02-0103-386
Figure 108102227-A0305-02-0103-386

,以及,縮小率Mf/Lf的減密濾波器(decimation filter): , And the decimation filter of the reduction rate M f /L f:

Figure 108102227-A0305-02-0103-387
Figure 108102227-A0305-02-0103-387

[證明] [prove]

公式(25)的TD-signature v[k;χ](或是FD The TD-signature v[k; χ] (or FD

[數學式472]V[lχ] [Math 472] V [ l ; χ ]

)為具有N’(或是N)個的子頻帶(sub-bands)以及擴大率M(或M’),各m’th sub-band(或是mth sub-band)可看作以FD-PC X’m’(或TD-PC Xm)做相位調變的合成濾波器(SFB,synthesis filter bank)[10,12]之輸出可得的訊號。實際上, ) Is N'(or N) sub-bands and the magnification rate M (or M'), each m'th sub-band (or mth sub-band) can be regarded as FD- PC X'm' (or TD-PC X m ) is a signal obtained from the output of the synthesis filter bank (SFB, synthesis filter bank) [10,12] of phase modulation. In fact,

Figure 108102227-A0305-02-0104-388
Figure 108102227-A0305-02-0104-388

為輸入訊號,且若 Is the input signal, and if

Figure 108102227-A0305-02-0104-389
Figure 108102227-A0305-02-0104-389

為該SFB的(m,m’)th sub-band filter,則輸出 Is the (m,m’)th sub-band filter of the SFB, then output

[數學式475]υ[kχ](或V[lχ]) [Math 475] υ [ k ; χ ] (or V [ l ; χ ])

為公式(67)。(證明結束)。 Is formula (67). (The proof ends).

此外,若使用記號lcm[M,N']=M0N'=MN' 0,lcm[M',N]=M' 0N=M'N0(非專利文獻[13],[10],[11]),藉由導入M0N’、M’0N個多相成分(polyphase component) In addition, if the notation lcm[M,N ' ]=M 0 N ' =MN ' 0 , lcm[M ' ,N]=M ' 0 N=M ' N 0 (Non-Patent Documents [13], [10] , [11]), by introducing M 0 N ', M' 0 N polyphase components (polyphase component)

[數學式476]

Figure 108102227-A0305-02-0105-390
[Math 476]
Figure 108102227-A0305-02-0105-390

來定義各個多相濾波器(polyphase filter)(Vaidyanathan[13]的Type 1多相) To define each polyphase filter (Vaidyanathan [13] Type 1 polyphase)

Figure 108102227-A0305-02-0105-391
Figure 108102227-A0305-02-0105-391

。此外,對於lm=lcm[M,N'],gd=gcd[M,N'],滿足lm=MN' 0=N'M0的各個N’0,M0存在,另一方面,由恆等式lm‧gd=M‧N’可知,M=gd‧M0,N'=gdN' 0成立。 . In addition, lm = lcm [M, N ' ], g d = gcd [M, N'], satisfies lm = MN '0 = N' M 0 of the respective N '0, M 0 is present, on the other hand, by the The identity lm‧g d =M‧N' shows that M=g d ‧M 0 , N ' =g d N ' 0 holds.

因此,可得到以二位元的TD-PC、FD-PC做相位調變過之圖4及圖5所示的signature v[k],V[l]的SFB。 Therefore, the SFB of the signature v[k], V[l] shown in Fig. 4 and Fig. 5 with two-bit TD-PC and FD-PC phase modulation can be obtained.

此外,圖4表示SFB,其產生具有TD-PC與FD-PC的Xm與X' m' ,以及第m’-個的TD template In addition, Fig. 4 shows SFB, which generates X m and X ' m ' with TD-PC and FD-PC, and the m'th TD template

Figure 108102227-A0305-02-0105-392
Figure 108102227-A0305-02-0105-392

的公式(25)、(67)之TD signature v[k]的合成濾波器組(SFB,Synthesys Filter Bank)。 The synthesis filter bank (SFB, Synthesys Filter Bank) of TD signature v[k] in formulas (25) and (67).

此外,圖5表示SFB,其產生具有TD-PC與FD-PC的Xm與X' m' ,及第m’-個的TD template In addition, FIG. 5 shows SFB, which generates X m and X ' m ' with TD-PC and FD-PC, and the m'th TD template

Figure 108102227-A0305-02-0105-394
Figure 108102227-A0305-02-0105-394

的公式(25)、(67)的FD signature FD signature of formulas (25) and (67)

[數學式480]V[l]。 [Math 480] V [ l ].

另一方面,公式(27)提供產生 On the other hand, formula (27) provides

[數學式481]ψ[kχ] [Math 481] ψ [ k ; χ ]

and

[數學式482]Ψ[lχ] [Math 482] Ψ[ l ; χ ]

的SFB。 SFB.

命題7: Proposition 7:

CE ψ[k;χ]及 CE ψ[k; χ] and

[數學式483]Ψ[lχ] [Math 483] Ψ[ l ; χ ]

可如下式般記述。 It can be described as follows.

Figure 108102227-A0305-02-0106-395
Figure 108102227-A0305-02-0106-395

然而, however,

Figure 108102227-A0305-02-0106-396
Figure 108102227-A0305-02-0106-396

係以下式定義的調變濾波器。 It is a modulation filter defined by the following equation.

Figure 108102227-A0305-02-0107-397
Figure 108102227-A0305-02-0107-397

[證明]公式(71)具有以下意義。 [Proof] Formula (71) has the following meaning.

Figure 108102227-A0305-02-0107-805
Figure 108102227-A0305-02-0107-805

(或是 (Or

Figure 108102227-A0305-02-0107-399
Figure 108102227-A0305-02-0107-399

)。 ).

若上述[數學式487](或是[數學式488])為輸入訊號,且 If the above [Math 487] (or [Math 488]) is the input signal, and

Figure 108102227-A0305-02-0107-400
Figure 108102227-A0305-02-0107-400

(或 (or

Figure 108102227-A0305-02-0107-401
Figure 108102227-A0305-02-0107-401

)為該SFB的(q,q’))th sub-band之濾波器,則 ) Is the (q,q’))th sub-band filter of the SFB, then

[數學式491]TD-CE ψ[kχ] [Math 491] TD-CE ψ [ k ; χ ]

(或是FD-CE (Or FD-CE

[數學式492]Ψ[lχ] [Math 492] Ψ[ l ; χ ]

)具有PP’個的sub-bands,並在各sub-band具有擴大率NM(或是N’M’)的SFB的輸出。 ) There are PP' sub-bands, and each sub-band has an SFB output with a magnification rate of NM (or N'M').

因此,可得嵌入圖6、7的資訊數據的傳送訊號的SFB。一般的SFB中並沒有圖4、5的signature產生過程。圖6、7中N=N'=1的情形對應一般的SFB。此外,若使用資料傳送的調製濾波器(MF,modulated filter)特性 Therefore, the SFB of the transmission signal embedded in the information data of Figs. 6 and 7 can be obtained. There is no signature generation process shown in Figures 4 and 5 in the general SFB. The situation of N=N ' =1 in Figures 6 and 7 corresponds to the general SFB. In addition, if using the modulated filter (MF, modulated filter) characteristics of data transmission

Figure 108102227-A0305-02-0108-403
Figure 108102227-A0305-02-0108-403

,則各個多相濾波器(polyphase filter)(Vaidyanathan[非專利文獻13]的Type 1 polyphase) , Each polyphase filter (Type 1 polyphase of Vaidyanathan [Non-Patent Document 13])

Figure 108102227-A0305-02-0108-404
Figure 108102227-A0305-02-0108-404

得到定義。惟,P' 0,P0為滿足P' 0MN=lem[P',MN],P0MN=lem[P,MN]的整數。(證明結束)。 Get defined. However, P ' 0 , P 0 are integers satisfying P ' 0 MN=lem[P ' ,MN], P 0 MN=lem[P,MN]. (The proof ends).

此外,圖6表示SFB,其產生以複數值數據 In addition, Figure 6 shows SFB, which generates complex-valued data

Figure 108102227-A0305-02-0108-405
Figure 108102227-A0305-02-0108-405

為輸入訊號之公式(27)的TD-CE(TD-complex Envelope,TD-複封包) TD-CE (TD-complex Envelope) which is the formula (27) of the input signal

[數學式496]ψ[k]。 [Math 496] ψ [ k ].

此外,圖7表示SFB,其產生以複數值數據 In addition, Figure 7 shows SFB, which generates complex-valued data

Figure 108102227-A0305-02-0109-407
Figure 108102227-A0305-02-0109-407

為輸入訊號之公式(27)的FD-複封包(FD-CE,FD-complex Envelope) FD-complex envelope (FD-CE, FD-complex Envelope) of formula (27) for the input signal

[數學式498]Ψ[l][Math 498] Ψ[ l ] .

<7.2 AFB:接收器與解碼器> <7.2 AFB: Receiver and Decoder>

包含衰減常數Aeiκ 以外的不可置換調變、解調的PD PD that includes non-replaceable modulation and demodulation other than the attenuation constant Ae i κ

Figure 108102227-A0305-02-0109-773
Figure 108102227-A0305-02-0109-773

之公式(28)的接收訊號 The received signal of formula (28)

[數學式500] r[kX,A,κ,θ' ,d ] [Math 500] r [ k ; X , A , κ , θ' , d ]

(或是其FT (Or its FT

[數學式501] R[lX,A,κ,θ' ,d ] [Math 501] R [ l ; X , A , κ , θ' , d ]

)(略記為 ) (Abbreviated as

[數學式502] r[k],R[l])。 [Math 502] r [ k ], R [ l ]).

上述接收訊號[數學式500]與公式(29)的推定template TD-CE Presumption template TD-CE of the above received signal [Math 500] and formula (29)

[數學式503]

Figure 108102227-A0305-02-0110-408
[Math 503]
Figure 108102227-A0305-02-0110-408

(或是公式(33)的推定template FD-CE (Or the presumption template FD-CE of formula (33)

Figure 108102227-A0305-02-0110-409
Figure 108102227-A0305-02-0110-409

)之間的類型-3(或是類型-4)的CCF,將其分別設為 ) Between the type-3 (or type-4) CCF, set them to

Figure 108102227-A0305-02-0110-410
Figure 108102227-A0305-02-0110-410

然而,PD However, PD

Figure 108102227-A0305-02-0110-411
Figure 108102227-A0305-02-0110-411

(或是 (Or

Figure 108102227-A0305-02-0110-776
Figure 108102227-A0305-02-0110-776

)為r[k](參考公式(28)、公式(38)的 ) Is r(k) (refer to formula (28), formula (38)

Figure 108102227-A0305-02-0110-412
Figure 108102227-A0305-02-0110-412

)(或是 ) (Or

[數學式509] R[l] [Math 509] R [ l ]

(參考公式(28)、公式(43)的 (Refer to formula (28) and formula (43)

Figure 108102227-A0305-02-0111-413
Figure 108102227-A0305-02-0111-413

))的訊號成分之調變、解調PD )) Modulation and demodulation of signal components PD

Figure 108102227-A0305-02-0111-774
Figure 108102227-A0305-02-0111-774

的補償項。 Compensation items.

TD-(或FD-)的分析濾波器組(AFB,analysis filter bank)[非專利文獻10,12]可如下述般而得。 The TD- (or FD-) analysis filter bank (AFB, analysis filter bank) [Non-Patent Documents 10, 12] can be obtained as follows.

命題8: Proposition 8:

類型-3與類型-4的CCF分別為 The CCFs of Type-3 and Type-4 are

Figure 108102227-A0305-02-0111-414
Figure 108102227-A0305-02-0111-414

。然而,D=L-1, . However, D=L-1,

Figure 108102227-A0305-02-0111-415
Figure 108102227-A0305-02-0111-415

分別為TD-、FD-AFB的調變濾波器 Modulation filters of TD- and FD-AFB respectively

Figure 108102227-A0305-02-0111-416
Figure 108102227-A0305-02-0111-416

。此外,當N=N’=1時,相當於一般的AFB[非專利文獻10,11]。 . In addition, when N=N'=1, it corresponds to a general AFB [Non-Patent Documents 10, 11].

傳送PxP’個 Send PxP’s

[數學式515] M-值符元 [Math 515] M -value symbol

後,便評估用於推定 After that, it is evaluated for presumption

Figure 108102227-A0305-02-0112-417
Figure 108102227-A0305-02-0112-417

的相關器陣列之位址(address) The address of the correlator array (address)

Figure 108102227-A0305-02-0112-418
Figure 108102227-A0305-02-0112-418

(第p-號頻寬空間,第p’-號的時間)的輸出值。 (P-th bandwidth space, p'-th time) output value.

[證明]: [prove]:

該AFB在各sub-band具有P個縮小率為NM(或是N’M’)的sub-band(子頻帶)(或是P’個的sub-band)第 The AFB has P sub-bands (or P’ sub-bands) with a reduction rate of NM (or N’M’) in each sub-band.

Figure 108102227-A0305-02-0112-419
Figure 108102227-A0305-02-0112-419

(或是,第 (Or, the first

Figure 108102227-A0305-02-0112-420
Figure 108102227-A0305-02-0112-420

個)的sub-band的輸入訊號若為公式(75)(或是公式(76))的相位調變接收TD-訊號 If the input signal of the sub-band of the formula (75) (or formula (76)) is phase modulation to receive the TD-signal

Figure 108102227-A0305-02-0113-421
Figure 108102227-A0305-02-0113-421

(或是FD-訊號) (Or FD-signal)

Figure 108102227-A0305-02-0113-422
Figure 108102227-A0305-02-0113-422

),可知以下二個事實:TD訊號的對稱性[非專利文獻10]: ), we can know the following two facts: the symmetry of the TD signal [Non-Patent Document 10]:

Figure 108102227-A0305-02-0113-423
Figure 108102227-A0305-02-0113-423

(參考公式(21))。 (Refer to formula (21)).

(ii)由TD訊號的對稱性所繼承之FD訊號的性質 (ii) The nature of the FD signal inherited by the symmetry of the TD signal

Figure 108102227-A0305-02-0113-424
Figure 108102227-A0305-02-0113-424

來看,濾波器係數 Look, the filter coefficient

Figure 108102227-A0305-02-0113-425
Figure 108102227-A0305-02-0113-425

(或是 (Or

Figure 108102227-A0305-02-0113-426
Figure 108102227-A0305-02-0113-426

)可說是公式(77)。(證明結束)。 ) Can be said to be formula (77). (The proof ends).

此外,若使用公式(77)之AFB的濾波器特性與P’0MN,P0M’N’個的多相成分(polyphase components) In addition, filter characteristics when using formula (77) with the AFB P '0 MN, P 0 M'N ' th polyphase component (polyphase components)

Figure 108102227-A0305-02-0114-427
Figure 108102227-A0305-02-0114-427

,則各N’、N個的多相濾波器(vaidyanathan[非專利文獻13]的Type 2多相) , Then N’ and N polyphase filters (Vaidyanathan [Non-Patent Document 13] Type 2 polyphase)

Figure 108102227-A0305-02-0114-428
Figure 108102227-A0305-02-0114-428

被定義,得到圖8、9的AFB。若N=N’=1,N0=N’0=1時則對應一般的AFB。 Is defined, and the AFB in Figures 8 and 9 is obtained. If N=N'=1, N 0 =N' 0 =1, it corresponds to the general AFB.

TD-AFB(或是FD-AFB)的二值符元以 The binary symbols of TD-AFB (or FD-AFB) are

Figure 108102227-A0305-02-0114-429
Figure 108102227-A0305-02-0114-429

(或是 (Or

Figure 108102227-A0305-02-0114-430
Figure 108102227-A0305-02-0114-430

)的編碼來定義。 ) To define.

然而, however,

Figure 108102227-A0305-02-0114-431
Figure 108102227-A0305-02-0114-431

為具有MLE值 Has MLE value

Figure 108102227-A0305-02-0115-432
Figure 108102227-A0305-02-0115-432

(參考公式(59))的衰減常數Aeiκ 的MLE。將關於對稱於TD以及FD的圖4-7的SFB,以及圖8、9的TD-AFB、FD-AFB的對子(pair)稱為「twinned-FBMC(孿生FBMC)」。 (Refer to equation (59)) MLE of the attenuation constant Ae i κ. The SFB of FIGS. 4-7, which are symmetrical to TD and FD, and the pair of TD-AFB and FD-AFB of FIGS. 8 and 9 are called "twinned-FBMC (twinned FBMC)".

此外,圖8表示分析濾波器組(AFB,analysis filter bank),其具備用於將複數值數據 In addition, Figure 8 shows the analysis filter bank (AFB, analysis filter bank), which is equipped with a complex value data

Figure 108102227-A0305-02-0115-433
Figure 108102227-A0305-02-0115-433

解碼的TD相關器陣列。 Decoded TD correlator array.

此外,圖9表示AFB,其具備用於將複數值數據 In addition, Figure 9 shows AFB, which is equipped with a complex value data

Figure 108102227-A0305-02-0115-434
Figure 108102227-A0305-02-0115-434

解碼的FD相關器陣列。 The decoded FD correlator array.

此外,圖8、圖9中的 In addition, in Figure 8, Figure 9

Figure 108102227-A0305-02-0115-435
Figure 108102227-A0305-02-0115-435

and

Figure 108102227-A0305-02-0115-436
Figure 108102227-A0305-02-0115-436

,分別地對應上述的 , Respectively corresponding to the above

Figure 108102227-A0305-02-0116-437
Figure 108102227-A0305-02-0116-437

and

Figure 108102227-A0305-02-0116-438
Figure 108102227-A0305-02-0116-438

將PUL演算法如圖10般作為TD-AFB及FD-AFB的介面來安裝後,所得到之時變、適應型AFB,其對於雷達為參數推定器,對於其他的通訊系統則為PUL演算法的收斂後同步器。此外,此對於數據通訊系統為基於複數CCF值 After installing the PUL algorithm as the interface of TD-AFB and FD-AFB as shown in Figure 10, the time-varying, adaptive AFB obtained is a parameter estimator for radar and PUL algorithm for other communication systems After the convergence of the synchronizer. In addition, this is based on complex CCF values for data communication systems

Figure 108102227-A0305-02-0116-439
Figure 108102227-A0305-02-0116-439

and

Figure 108102227-A0305-02-0116-440
Figure 108102227-A0305-02-0116-440

of

Figure 108102227-A0305-02-0116-441
Figure 108102227-A0305-02-0116-441

的解碼器。此外,此FBMC的公式(68)、公式(72)、以及公式(77)所定義的濾波器,全部能夠以多相濾波器(稱作Vaidyanathan的type 1-或type 2-多相[非專利文獻13])來實現,於此省略其詳細內容。 Decoder. In addition, the filters defined by formula (68), formula (72), and formula (77) of this FBMC can all be polyphase filters (called Vaidyanathan's type 1- or type 2-polyphase [non-patent Document 13]) to achieve, the detailed content is omitted here.

此外,圖10(a)係表示TD的相關器陣列,(c)表示FD相關器陣列的分析濾波器組(AFB,analysis filter bank),(b)為概略地表示根據von Neumann的APT進行兩陣列的最大似然估計值之交互更新。 In addition, Fig. 10(a) shows the correlator array of TD, (c) shows the analysis filter bank (AFB, analysis filter bank) of the FD correlator array, and (b) schematically shows the two methods according to von Neumann's APT. Interactive update of the maximum likelihood estimate of the array.

<8.利用時間、頻率位移的不可置換性的通訊之其他例子> <8. Other examples of communication that utilizes the non-replaceability of time and frequency displacement>

利用不可置換性的通訊的典型例之雷達問題中,關於以通訊路徑的delay td,Doppler shift fD為參數的TFSO In the radar problem, which is a typical example of communication that uses non-replaceability, it is about TFSO with the delay t d and Doppler shift f D of the communication path as the parameters

Figure 108102227-A0305-02-0117-775
Figure 108102227-A0305-02-0117-775

,以及具有接收器所需delay,Doppler位移(shift)的推定值 , And the estimated value of delay and Doppler shift (shift) required by the receiver

Figure 108102227-A0305-02-0117-442
Figure 108102227-A0305-02-0117-442

的TFSO TFSO

Figure 108102227-A0305-02-0117-443
Figure 108102227-A0305-02-0117-443

的對子,可知分別就傳送、接收TD、FD訊號之事前的半位移,在td,fD的參數推定上係有用的。本節當中採列二、三個利用了不可置換性的通訊之具體例。 It can be seen that the prior half-shifts of transmitting and receiving TD and FD signals are useful in estimating the parameters of t d and f D. In this section, two and three specific examples of communication that make use of irreplaceability are listed.

前面已議論過為求簡化的單一目標。往複數個目標的延伸是容易的。例如藉由利用公式(32)、公式(37)的決定等級r0,r’0,可檢測出目標搜尋空間中的複數個目標。此外, The single goal for simplification has been discussed earlier. It is easy to extend to and fro several goals. For example, by using equation (32), equation (37) determines the level of r 0, r '0, the search target can be detected in the plurality of target space. In addition,

<8.1 基於CDMT的複數個目標檢測> <8.1 Multiple target detection based on CDMT>

舉例來說,將目標搜尋空間Θ’=[0,T)×[0,F)進行四分割: For example, divide the target search space Θ'=[0,T)×[0,F) into four:

[數學式544] R 1 =[0,T/2)×[0,F/2),R 2 =[0,T/2)×[F/2,F),R 3 =[T/2,T)×[0,F/2),R 4 =[T/2,T)×[F/2,F),將TD-PC、FD-PC分配至各個空間, [Math 544] R 1 =[0, T /2)×[0, F /2), R 2 =[0, T /2)×[ F /2, F ), R 3 =[ T /2 , T )×[0, F /2), R 4 =[ T /2, T )×[ F /2, F ) , allocate TD-PC and FD-PC to each space,

[數學式545] X={X,X'},y={Y,Y'},Z={Z,Z'},W={W,W'} [Math 545] X ={X,X ' }, y ={Y,Y ' }, Z ={Z,Z ' }, W ={W,W ' }

,且將二維PC , And the two-dimensional PC

[數學式546] X,y,Z,W [Math 546] X , y , Z , W

的chip位址(address)表示為 The chip address (address) is expressed as

Figure 108102227-A0305-02-0118-444
Figure 108102227-A0305-02-0118-444

。此外,將signature設為 . In addition, set the signature to

Figure 108102227-A0305-02-0118-445
Figure 108102227-A0305-02-0118-445

。惟χ(1)(2)(3)(4)對應 . Only χ (1) , χ (2) , χ (3) , χ (4) correspond to

[數學式549] X,y,Z,W [Math 549] X , y , Z , W

。雷達傳送訊號的CE為 . The CE of the radar signal is

Figure 108102227-A0305-02-0119-446
Figure 108102227-A0305-02-0119-446

,作為檢測多重目標(target)用。 , Used to detect multiple targets (target).

經過Npath個雙彌散通道(doubly dispersive chanel)的delay,Doppler,衰減常數 Delay, Doppler, attenuation constant through N path double-diffusion channels (doubly dispersive chanel)

Figure 108102227-A0305-02-0119-447
Figure 108102227-A0305-02-0119-447

的通訊路徑的接收訊號之訊號成分為 The signal component of the received signal of the communication path is

Figure 108102227-A0305-02-0119-448
Figure 108102227-A0305-02-0119-448

。另一方面,接收器當中,公式(33)的TD-CE、FD-CE . On the other hand, in the receiver, the TD-CE and FD-CE of formula (33)

Figure 108102227-A0305-02-0119-449
Figure 108102227-A0305-02-0119-449

vio二維PC χ(或 vio two-dimensional PC χ (or

[數學式554]y [Math 554] y

)帶入公式(29),將公式(38)、公式(43)的類型-3、類型-4的 ) Into formula (29), and the type-3 and type-4 of formula (38) and formula (43)

Figure 108102227-A0305-02-0119-450
Figure 108102227-A0305-02-0119-450

Of

[數學式556] l μ ,k σ [Math 556] l μ , k σ

的可動範圍,分別設為 The movable range of are set to

Figure 108102227-A0305-02-0120-451
Figure 108102227-A0305-02-0120-451

(或 (or

Figure 108102227-A0305-02-0120-452
Figure 108102227-A0305-02-0120-452

)的最大似然估計,以進行目標(target)檢索。 ) Maximum likelihood estimation for target retrieval.

於其他部分空間當中的目標(target)檢索亦相同。此為效法碼分多重存取(CDMA,Code division multiple access)的思維以二維PC來進行多重目標(target)檢索,因此稱為碼分多重目標(CDMT,Code Division Multiple Target)。 The target retrieval in other parts of the space is also the same. This is to imitate the code division multiple access (CDMA, Code division multiple access) thinking that uses a two-dimensional PC to perform multiple target retrieval, so it is called Code Division Multiple Target (CDMT).

N=N'=64,Npath=4的數值模擬結果當中,適用PUL演算法的結果為SNR 5dB以上條件的下以80%的機率可成功地檢測出3、4個目標(target)。 Among the numerical simulation results of N=N ' =64 and N path =4, the result of applying the PUL algorithm is that under the condition of SNR above 5dB, 3 or 4 targets can be successfully detected with an 80% probability.

<8.2 嵌入人工型不可置換位移之基於延遲-都普勒的空間分割多工(dD-SDM,delay-Doppler Space Division Multiplexing)的超高多相位位移鍵(MPSK,multiple phase shift keying)> <8.2 Embedded artificial non-replaceable displacement based on delay-Doppler Space Division Multiplexing (dD-SDM, delay-Doppler Space Division Multiplexing) ultra-high multi-phase shift keying (MPSK, multiple phase shift keying)>

使用經PUL的收斂證明而實現了重要作用之於希爾伯特(Hilbert)空間的部分空間、Ts-TL TD空間、以及Fs-BL TD空間的各個往上之正交投影運算子P3、P4的公式(38)、公式(43)的TD-CCF、FD-CCF The use of PUL's proof of convergence has realized the important role of the partial space of the Hilbert space, the T s -TL TD space, and the orthogonal projection operator P of the F s -BL TD space. 3. Formula (38) of P 4 , TD-CCF, FD-CCF of formula (43)

Figure 108102227-A0305-02-0121-453
Figure 108102227-A0305-02-0121-453

,其係表示以不可置換通訊為由來的各種TFSO中的產生傳送、接收訊號的TFSO對子 , Which refers to the TFSO pair that generates transmission and reception signals among various TFSOs based on non-replaceable communication.

Figure 108102227-A0305-02-0121-454
Figure 108102227-A0305-02-0121-454

(或是 (Or

Figure 108102227-A0305-02-0121-455
Figure 108102227-A0305-02-0121-455

)為本質。 ) Is the essence.

其原因為,於此些當中包含有未知數 The reason is that there are unknowns in these

[數學式562](l D ,k d ) [Math 562] ( l D , k d )

及最大似然值 Maximum likelihood

Figure 108102227-A0305-02-0121-456
Figure 108102227-A0305-02-0121-456

的搜索用控制參數 Control parameters for search

[數學式564](l μ ,k σ ) [Math 564] ( l μ , k σ )

之其中之一。調變、解調的TFSO One of them. Modulated and demodulated TFSO

Figure 108102227-A0305-02-0122-458
Figure 108102227-A0305-02-0122-458

或是以數據、chip位址(address) Or based on data, chip address (address)

Figure 108102227-A0305-02-0122-459
Figure 108102227-A0305-02-0122-459

為參數的TFSO TFSO for the parameter

Figure 108102227-A0305-02-0122-460
Figure 108102227-A0305-02-0122-460

係與此些當中的任一者皆無關係。 It has nothing to do with any of these.

另一方面,以 On the other hand, with

Figure 108102227-A0305-02-0122-461
Figure 108102227-A0305-02-0122-461

所指定的TD-CCF、FD-CCF對子 The designated TD-CCF, FD-CCF pair

Figure 108102227-A0305-02-0122-462
Figure 108102227-A0305-02-0122-462

的輸出(公式(41)、(45))當中,以包含各種PD的型態之資訊數據 The output of (Equations (41), (45)) contains information data of various PD types

Figure 108102227-A0305-02-0122-463
Figure 108102227-A0305-02-0122-463

出現於顯方。 Appeared in the Xianfang.

此部分係指,只要使用前述多個目標(target)檢測法, This part means that as long as the aforementioned multiple target detection method is used,

[數學式571]

Figure 108102227-A0305-02-0123-464
[Math 571]
Figure 108102227-A0305-02-0123-464

作為相位項的人工型參數的參數值 The parameter value of the artificial parameter as the phase term

Figure 108102227-A0305-02-0123-465
Figure 108102227-A0305-02-0123-465

(為求簡便設衰減常數為 (For simplicity, set the attenuation constant as

Figure 108102227-A0305-02-0123-466
Figure 108102227-A0305-02-0123-466

)係可利用的。有鑑於上述內容,本實施型態的傳送接收系統中,具體地是使用傳送、接收訊號的Npath個TFSO對子(Pair)以及TD-CCF、FD-CCF對子 ) Is available. In view of the above, the transmission and reception system of this embodiment specifically uses N path TFSO pairs for transmitting and receiving signals, as well as TD-CCF and FD-CCF pairs.

Figure 108102227-A0305-02-0123-467
Figure 108102227-A0305-02-0123-467

的不可置換通訊,利用嵌入參數值 Non-replaceable communication, using embedded parameter values

Figure 108102227-A0305-02-0123-468
Figure 108102227-A0305-02-0123-468

的接收訊號的Npath對子之TD-template、FD-template。將此情形之PUL以手動嵌入接收訊號之不可置換位移量 TD-template and FD-template of the N path pair of the received signal. Manually embed the PUL in this situation into the irreplaceable displacement of the received signal

[數學式576](k d,i ,l D,i ) [Math 576] ( k d, i , l D, i )

,於以接收器進行復原的意義上,其與一般的PUL有些許不同。此外,於非專利文獻[25、30]當中,雖將傳送器(transmitter)及接收器(receiver)之間 的參數更新稱作「active PUL(活性PUL)」;但由於PUL在收斂證明的條件上無法適用於transmitter的更新,本說明書當中,於transmitter嵌入已知的不可置換位移量 In the sense of recovering with the receiver, it is slightly different from the general PUL. In addition, in the non-patent literature [25, 30], although the transmitter and receiver The parameter update of is called "active PUL (active PUL)"; but because PUL cannot be applied to the update of the transmitter on the condition of the proof of convergence, in this manual, a known non-replaceable displacement is embedded in the transmitter

Figure 108102227-A0305-02-0124-469
Figure 108102227-A0305-02-0124-469

,並在接收器(reciever)使用其位移量進行最大似然推定。此為一般的PUL的應用例。 , And use its displacement in the receiver to estimate the maximum likelihood. This is an application example of general PUL.

利用複數個互相獨立的二維PC的CDMT,於 Using a plurality of independent two-dimensional PC CDMT, in

[數學式578]M-ary [Math 578] M -ary

相位位移鍵(PSK,phase shift keying)數據 Phase shift keying (PSK, phase shift keying) data

Figure 108102227-A0305-02-0124-470
Figure 108102227-A0305-02-0124-470

的數據通訊上為有效。將各個相位補償項 The data communication is valid. Each phase compensation item

Figure 108102227-A0305-02-0124-471
Figure 108102227-A0305-02-0124-471

前置於N’、N個的陣列型TD-CCF、FD-CCF的輸入部分的相位調諧層(PTL,phase tuned layer),其係相當於:將TD-CCF、FD-CCF對子 The phase tuned layer (PTL, phase tuned layer) placed in front of the input part of the N’, N array type TD-CCF and FD-CCF is equivalent to: the TD-CCF, FD-CCF pair

Figure 108102227-A0305-02-0124-472
Figure 108102227-A0305-02-0124-472

的輸出(公式(41)、(45))之 Of the output (Equations (41), (45))

[數學式582]

Figure 108102227-A0305-02-0125-473
[Math 582]
Figure 108102227-A0305-02-0125-473

,分別地置換至各個 , Respectively replace to each

Figure 108102227-A0305-02-0125-474
Figure 108102227-A0305-02-0125-474

的相位補償,以及作為取代公式(60)之PUL的最大似然推定的運算 Compensation of the phase, and the calculation of the maximum likelihood estimation as a substitute for the PUL of formula (60)

Figure 108102227-A0305-02-0125-797
Figure 108102227-A0305-02-0125-797

的二變數,將PTL用的變數 The two variables, the variables used by the PTL

[數學式585] l,l' [Math 585] l , l'

修正至追加的三變數 Corrected to the additional three variables

Figure 108102227-A0305-02-0125-798
Figure 108102227-A0305-02-0125-798

。藉此,最大似然的複數輸出的相位變動變成類似於平均零的高斯分布之分布。 . Thereby, the phase variation of the complex output with the maximum likelihood becomes a distribution similar to the Gaussian distribution of mean zero.

本實施型態的傳送接收系統,可得到N=N'=16, In the transmission and reception system of this implementation type, N=N ' =16 can be obtained,

[數學式587]M=8,16, [Math 587] M =8,16,

SNR 30dB的良好數值模擬。然而,當 Good numerical simulation of SNR 30dB. However, when

[數學式588]M=16 [Math 588] M =16

時,分布的主瓣(main lobe)的左右兩側產生側瓣(side lobe),而成為解碼錯誤(error)的原因。因此,僅就使用單純的相位補償之解碼錯誤的觀點來看,僅以 At this time, side lobes are generated on the left and right sides of the distributed main lobe, which causes decoding errors. Therefore, only from the perspective of decoding errors using pure phase compensation, only

[數學式589]M=8 [Math 589] M = 8

為較佳。 For better.

接著,作為本實施型態的傳送接收系統,為了進行 Next, as the transmission and reception system of this embodiment, in order to perform

Figure 108102227-A0305-02-0126-799
Figure 108102227-A0305-02-0126-799

之數據通訊,將用於進行數據通訊的delay-dpppler的參數空間Θ′均等地分割為 For data communication, the parameter space Θ′ of the delay-dpppler used for data communication is equally divided into

Figure 108102227-A0305-02-0126-476
Figure 108102227-A0305-02-0126-476

個,將二維PC A two-dimensional PC

Figure 108102227-A0305-02-0126-477
Figure 108102227-A0305-02-0126-477

分配至各個的部分空間。此外,因為人工型的位移量 Allocate to each part of the space. In addition, because of the artificial displacement

[數學式593](k d,i ,l D,i ) [Math 593] ( k d, i , l D, i )

,係被視為位於其第i個部分空間的中心點附近,故例示實現延遲-都普勒空間分割多工(dDSDM,delay-Doppler space division muliplex)的不可置換通 訊,且該dDSDM係將以8-PSK為基本單位的TD-CCF、FD-CCF的PTL的相位補償項分別地設為 , The system is considered to be located near the center point of its i-th partial space, so it exemplifies the implementation of delay-Doppler space division muliplex (dDSDM, delay-Doppler space division muliplex) non-replaceable communication The dDSDM system sets the phase compensation items of TD-CCF and FD-CCF PTL with 8-PSK as the basic unit as

Figure 108102227-A0305-02-0127-478
Figure 108102227-A0305-02-0127-478

。於此情形下,針對 . In this case, for

Figure 108102227-A0305-02-0127-479
Figure 108102227-A0305-02-0127-479

的PTL以及其最大似然估計的四變數演算分別為 The PTL and the four-variable calculus of its maximum likelihood estimation are respectively

Figure 108102227-A0305-02-0127-480
Figure 108102227-A0305-02-0127-480

。因此,本實施型態中的傳送接收系統,合計具有 . Therefore, the transmission and reception system in this embodiment has a total of

Figure 108102227-A0305-02-0127-481
Figure 108102227-A0305-02-0127-481

個的CCF。可得使用16、32個2位元PC的128PSK、256PSK的解碼結果。然而,因為此係本質地強加相位WM的辨別精度,這不會導致超高 CCF. The decoding results of 128PSK and 256PSK using 16, 32 2-bit PCs are available. However, because this system inherently imposes the discrimination accuracy of the phase W M , this will not lead to super high

[數學式598]M [Math 598] M

-PSK的編碼化、解碼化的改進。 -PSK encoding and decoding improvements.

以下,一邊進行同步,一邊針對進行超高 Below, while synchronizing,

[數學式599]M [Math 599] M

-PSK的編碼化、解碼化的系統;以及針對同步/測距兼用的 -PSK encoding and decoding system; and for both synchronization and ranging

[數學式600]M [Math 600] M

-ary PSK-編碼化、解碼化器,參照圖12~17進行說明。 -ary PSK-encoder and decoder, described with reference to Figures 12-17.

首先,圖12係顯示 First, Figure 12 shows

[數學式601]M [Math 601] M

-PSK能夠通訊並且能夠進行高速及高精度距離測量的傳送器(編碼化器)的構成之方塊圖。 -PSK is a block diagram of the structure of a transmitter (encoder) that can communicate and perform high-speed and high-precision distance measurement.

在進行同步、測距(圖12的開關(Switch)1-1,1-2連接於上的狀態)及 During synchronization and distance measurement (Switches 1-1 and 1-2 in Figure 12 are connected to the state) and

[數學式602]M [Math 602] M

-PSK數據通訊的情況(圖12的開關1-1,1-2連接於上的狀態)下,在傳送器及接收部中,各自進行切換。當輸入的數據 -In the case of PSK data communication (the state where switches 1-1 and 1-2 in Fig. 12 are connected), switch between the transmitter and the receiver. When the input data

Figure 108102227-A0305-02-0128-783
Figure 108102227-A0305-02-0128-783

for

[數學式604]M [Math 604] M

-PSK時(換言之,即具有數據通訊的狀態),各圖所示的開關切換至下側的路線。 -In PSK (in other words, a state with data communication), the switches shown in each figure are switched to the lower route.

於以下,首先針對圖12傳送器之方塊圖中的各方塊進行說明。圖12中,左端的輸入為 In the following, firstly, description will be given to each block in the block diagram of the transmitter in FIG. 12. In Figure 12, the input at the left end is

Figure 108102227-A0305-02-0129-482
Figure 108102227-A0305-02-0129-482

,在圖12所示之開關1-1及開關1-2連接於上側之狀態的同步、測距模式中,傳送器進行 , In the synchronization and ranging mode with the switch 1-1 and switch 1-2 connected to the upper side shown in Figure 12, the transmitter performs

Figure 108102227-A0305-02-0129-483
Figure 108102227-A0305-02-0129-483

。另一方面,在圖12所示之開關1-1及開關1-2連接於下側之狀態中(換言之,即具有數據通訊的狀態),傳送器進行chip波形的輸入 . On the other hand, in the state where the switch 1-1 and the switch 1-2 shown in FIG. 12 are connected to the lower side (in other words, the state with data communication), the transmitter performs chip waveform input

Figure 108102227-A0305-02-0129-484
Figure 108102227-A0305-02-0129-484

。接著,在「k的編碼化器」的方塊中,從0th-AC起, . Then, in the box of "k's encoder", starting from 0th-AC,

Figure 108102227-A0305-02-0129-485
Figure 108102227-A0305-02-0129-485

th-AC並列地配置,於其中間處複數個黑點如 th-AC is arranged side by side, with multiple black dots in the middle such as

Figure 108102227-A0305-02-0130-800
Figure 108102227-A0305-02-0130-800

般縱向配置。此處,各黑點僅係將各AC省略地表現。 General vertical configuration. Here, each black dot is only represented by omitting each AC.

本實施形態的編碼化器係因應「k的編碼化器」之方塊中j的值,將「k的編碼化器」之方塊中左右兩側的開關1-3及開關1-4進行切換,之後,在「k的編碼化器」之方塊中的下游側進行 The encoder of this embodiment switches the switches 1-3 and 1-4 on the left and right sides of the box of "encoder of k" according to the value of j in the box of "encoder of k". After that, perform on the downstream side in the box of "k's encoder"

Figure 108102227-A0305-02-0130-486
Figure 108102227-A0305-02-0130-486

的調變,且編碼化成 Modulation, and coded into

Figure 108102227-A0305-02-0130-487
Figure 108102227-A0305-02-0130-487

之後,於傳送器所具備之開關1-2的上下,獲得各個傳送 After that, go to the top and bottom of the switch 1-2 of the transmitter to obtain each transmission

[數學式612]TD-CEψ[k]/FD-CEΨ[l] [Math 612] TD-CEψ[ k ]/ FD-CE Ψ[ l ]

及各個傳送 And each transmission

[數學式613]TD-CEψAC[k]/FD-CEΨAC[l] [Math 613] TD-CEψ AC [ k ]/FD-CEψ AC [ l ]

。在本實施形態的編碼化器中,更在 . In the encoder of this embodiment,

[數學式614]l c [Math 614] l c

調變後,經過 After modulation, after

[數學式615] (k d,l D) [Math 615] ( k d , l D )

-MC,且增加雜訊(nosie),在經過 -MC, and increase noise (nosie), after passing

[數學式616]l c [Math 616] l c

解調,獲得接收CE。 Demodulate and get the receiving CE.

以上係圖12所示之各方塊的說明。 The above is the description of each block shown in FIG. 12.

因為高階的 Because high-end

[數學式617]M [Math 617] M

-PSK數據 -PSK data

Figure 108102227-A0305-02-0131-489
Figure 108102227-A0305-02-0131-489

傳送,係在位相雜訊的影響下,位相 Transmission, under the influence of phase noise, phase

Figure 108102227-A0305-02-0131-490
Figure 108102227-A0305-02-0131-490

的辨別困難,因此,首先在k的編碼化器(圖12中右下部的實現所圍起來的部分)的中間方塊,編碼化成 It’s difficult to distinguish between, so first, in the middle block of the k coder (the part enclosed by the realization in the lower right of Fig. 12), it is coded into

Figure 108102227-A0305-02-0131-491
Figure 108102227-A0305-02-0131-491

,且考慮進行低階的 , And consider low-level

[數學式621]M 0 [Math 621] M 0

-PSK數據 -PSK data

Figure 108102227-A0305-02-0132-492
Figure 108102227-A0305-02-0132-492

的傳送。另一方面, Transmission. on the other hand,

Figure 108102227-A0305-02-0132-493
Figure 108102227-A0305-02-0132-493

的傳送係援用能夠使時間位移、頻率位移正確復原之本專利案的同步、測距法。因此,將時間延遲、都普勒位移之參數平面Θ,在均等地不相交的分割(disjoint division)為 The transmission system uses the synchronization and ranging method of this patent, which can make the time shift and frequency shift correctly restored. Therefore, the parameter plane Θ of time delay and Doppler shift is equally disjoint division (disjoint division) as

Figure 108102227-A0305-02-0132-494
Figure 108102227-A0305-02-0132-494

個的部分平面Θ(i),分配2維PC χ(i)(參照圖17)。若將chip波形進行由 Part of the plane Θ (i) is assigned a 2-dimensional PC χ (i) (refer to Fig. 17). If the chip waveform is

Figure 108102227-A0305-02-0132-495
Figure 108102227-A0305-02-0132-495

的2維BPSK調變,則將此等 2D BPSK modulation, then this

Figure 108102227-A0305-02-0132-496
Figure 108102227-A0305-02-0132-496

多重化,再者,假定通過此訊號相當於Θ(i)的中心點之時間位移、頻率位移的人工通道(AC,Artificial Channel)。因此,從0th-AC起,在 Multiplexing. Furthermore, it is assumed that passing this signal is equivalent to the artificial channel (AC, Artificial Channel) of the time shift and frequency shift of the center point of Θ (i). Therefore, starting from 0th-AC, in

Figure 108102227-A0305-02-0132-497
Figure 108102227-A0305-02-0132-497

th-AC中選擇因應j的AC,並在此輸出訊號中將 Select the AC corresponding to j in th-AC, and set the

Figure 108102227-A0305-02-0133-498
Figure 108102227-A0305-02-0133-498

進行 get on

[數學式629]M 0 [Math 629] M 0

-PSK調變。此係成為傳送CE,經過 -PSK modulation. This system becomes the transmission CE, after

[數學式630]l c [Math 630] l c

調變並被送出至主通道(MC,Main Channel)的 Modulated and sent to the main channel (MC, Main Channel)

[數學式631](k d,l D) [Math 631] ( k d , l D )

-MC。經過 -MC. after

[數學式632]l c [Math 632] l c

解調而施加雜訊(noise)並成為接收CE。 It demodulates and imposes noise and becomes the receiving CE.

接著,針對圖13所示之各方塊進行說明。 Next, each block shown in FIG. 13 will be described.

圖13係顯示 Figure 13 series display

[數學式633]M [Math 633] M

-PSK能夠通訊並且能夠進行高速及高精度距離測量的接收同步器(解碼化器)的構成之方塊圖。 -PSK is a block diagram of the structure of a receiver synchronizer (decoder) that can communicate and perform high-speed and high-precision distance measurement.

在圖13所示之開關2-1連接於上側的狀態下,接收器進行 In the state where the switch 2-1 shown in Figure 13 is connected to the upper side, the receiver performs

Figure 108102227-A0305-02-0134-499
Figure 108102227-A0305-02-0134-499

。另一方面,在開關2-1連接於下側的狀態下(換言之,即具有數據通訊的狀態),首先,在「k的編碼化器」的方塊中,解碼化成 . On the other hand, in the state where the switch 2-1 is connected to the lower side (in other words, the state with data communication), first of all, in the block of "k's encoder", the decoding becomes

Figure 108102227-A0305-02-0134-500
Figure 108102227-A0305-02-0134-500

,並將經過 And will go through

Figure 108102227-A0305-02-0134-501
Figure 108102227-A0305-02-0134-501

後之訊號輸入至左側的方塊。此方塊係從0th-AC至 The following signal is input into the box on the left. This block is from 0th-AC to

Figure 108102227-A0305-02-0134-502
Figure 108102227-A0305-02-0134-502

th-AC,AC並列地配置,且於其中間處複數個黑點如 th-AC, AC are arranged side by side, and there are multiple black dots in the middle, such as

Figure 108102227-A0305-02-0134-801
Figure 108102227-A0305-02-0134-801

般縱向配置。此處,各黑點僅係將各AC省略地表現。 General vertical configuration. Here, each black dot is only represented by omitting each AC.

本實施形態的編碼化器係因應「k的編碼化器」之方塊中 The encoder of this embodiment corresponds to the box of "k's encoder"

Figure 108102227-A0305-02-0134-503
Figure 108102227-A0305-02-0134-503

的值,並切換左右兩側的開關2-3及開關2-4,之後,在左側進行 And switch the switch 2-3 and switch 2-4 on the left and right sides, and then proceed to the left

Figure 108102227-A0305-02-0135-504
Figure 108102227-A0305-02-0135-504

的解調,且與左端的接收CE一起輸入至下部的block相關器(COR)。 The demodulation and input to the lower block correlator (COR) together with the receiving CE on the left end.

其中,圖13中的「COR」係指Correlator。圖13中「COR」右側的大方塊係(ρ',ρ)選擇所產生之 Among them, "COR" in Figure 13 refers to Correlator. The large box (ρ ', ρ ) on the right side of "COR" in Figure 13 is the result of the selection

[數學式641](k d,l D) [Math 641] ( k d , l D )

,Aeiκ -最大似然估計及 ,Ae i κ -maximum likelihood estimation and

Figure 108102227-A0305-02-0135-779
Figure 108102227-A0305-02-0135-779

復原與進行k的解碼之方塊。在開關2-2連接於上側的狀態下,接收器進行 Recover and decode the block of k. With switch 2-2 connected to the upper side, the receiver performs

Figure 108102227-A0305-02-0135-505
Figure 108102227-A0305-02-0135-505

的處理,且在開關2-2連接於下側的狀態下(換言之,即具有數據通訊的狀態),接收器進行 In the state where the switch 2-2 is connected to the lower side (in other words, the state with data communication), the receiver performs

Figure 108102227-A0305-02-0135-506
Figure 108102227-A0305-02-0135-506

的處理。 Processing.

以上係圖13所示之各方塊的說明。 The above is the description of each block shown in FIG. 13.

考慮將接收CE進行chip波形的2維PC χ之2維BPSK解調。在接收器中,開關2-1連接於下側的狀態之具有數據通訊的模式中,將使chip波形經過j的推定值 Consider performing 2-dimensional PC χ 2-dimensional BPSK demodulation of the chip waveform on the receiving CE. In the receiver, the switch 2-1 is connected to the lower side in the mode with data communication, the chip waveform will pass the estimated value of j

Figure 108102227-A0305-02-0136-507
Figure 108102227-A0305-02-0136-507

的2維PC 2D PC

Figure 108102227-A0305-02-0136-508
Figure 108102227-A0305-02-0136-508

的2維BPSK解調所獲得之訊號,輸入至從0th-AC到 The signal obtained by the 2D BPSK demodulation is inputted from 0th-AC to

Figure 108102227-A0305-02-0136-509
Figure 108102227-A0305-02-0136-509

th-AC中所選擇之 selected in th-AC

Figure 108102227-A0305-02-0136-510
Figure 108102227-A0305-02-0136-510

th-AC,並在此輸出訊號中將 th-AC, and in this output signal,

Figure 108102227-A0305-02-0136-511
Figure 108102227-A0305-02-0136-511

進行 get on

[數學式650]M 0 [Math 650] M 0

-PSK解調。在最終部分的參數推定的方塊(即,可輸入「COR」輸出的方塊)中,針對 -PSK demodulation. In the final part of the parameter estimation box (that is, the box that can be input into "COR" output), for

Figure 108102227-A0305-02-0137-512
Figure 108102227-A0305-02-0137-512

進行關於各個四變數 On each of the four variables

Figure 108102227-A0305-02-0137-513
Figure 108102227-A0305-02-0137-513

之演算argmax,並進行PUL的 Calculate argmax and perform PUL

[數學式653](k d,l D) [Math 653] ( k d , l D )

-最大似然估計(PUL的收斂值為 -Maximum likelihood estimation (the convergence value of PUL is

Figure 108102227-A0305-02-0137-514
Figure 108102227-A0305-02-0137-514

)。 ).

此處,雖然在開關2-2連接於上側時與開關2-2連接於下側時,最大似然估計係共通的,但解碼器係進行 Here, although the maximum likelihood estimation is common when the switch 2-2 is connected to the upper side and the switch 2-2 is connected to the lower side, the decoder performs

Figure 108102227-A0305-02-0137-515
Figure 108102227-A0305-02-0137-515

的復原,且在開關2-2連接於下側的狀態之具有數據通訊模式中,進行 Recovery, and in the data communication mode with switch 2-2 connected to the lower side, perform

Figure 108102227-A0305-02-0137-516
Figure 108102227-A0305-02-0137-516

-最大似然估計值所造成之k的解碼 -Decoding of k caused by the maximum likelihood estimate

[數學式657]k *=j * M 0+j' ,* [Math 657] k * = j * M 0 + j' ,*

。又,即使在一般的同步、測距模式(上面的開關狀態)中,數據 . Moreover, even in the general synchronization and ranging mode (the switch state above), the data

Figure 108102227-A0305-02-0138-517
Figure 108102227-A0305-02-0138-517

係低階的 Low-level

[數學式659]M 0 [Math 659] M 0

-PSK可調變、解調(例如 -PSK adjustable and demodulated (e.g.

[數學式660]M 0=8 [Math 660] M 0 =8

)。 ).

圖14係概略地顯示實施型態之主通道(MC,Main channel)之延遲τ-都普勒(Doppler)位移ν空間上CCF實部大小的分佈示例之圖。 Figure 14 is a diagram schematically showing an example of the distribution of the size of the real part of the CCF on the space of the delay τ-Doppler displacement ν of the main channel (MC, Main channel) of the implementation type.

在同步、測距模式下,主波瓣(main lobe)係位於 In synchronization and ranging mode, the main lobe is located at

[數學式661](k d,l D) [Math 661] ( k d , l D )

,並能夠與其他旁波瓣(side lobe)產生區別化。又,波浪線係顯示背景雜訊(background noise)。 , And can be differentiated from other side lobes. In addition, the wavy line shows background noise.

圖15係概略地顯示當實施型態之人工通道(AC,Artificial Channel)重疊在主通道(MC,Main Channel)上時在τ-ν空間上的CCF實部的大小的示例分佈之圖。 FIG. 15 is a diagram schematically showing an example distribution of the size of the real part of the CCF in the τ-ν space when the artificial channel (AC, Artificial Channel) of the implementation type is overlapped on the main channel (MC, Main Channel).

顯示一種分布,其係在MC之前,使用 Show a distribution, which is before MC, use

[數學式662]M [Math 662] M

-PSK訊號之訊息K的編碼化所導入之三種人工通道(AC)級聯連接時CCF實部的大小分布。雖然MC仍位於 -The size distribution of the real part of the CCF when the three artificial channels (AC) imported by the coding of the message K of the PSK signal are cascaded. Although MC is still located

[數學式663](k d,l D) [Math 663] ( k d , l D )

,但在AC重疊時,MC+AC0、MC+AC1及MC+AC2係各自位於 , But when AC overlaps, MC+AC0, MC+AC1, and MC+AC2 are located at

Figure 108102227-A0305-02-0139-518
Figure 108102227-A0305-02-0139-518

。雖然時間位移、頻率位移的量變得相加,但PD係伴隨著群論型性質傳播。為了獲得如圖15般的分布圖,如本說明書所揭示地,有必要藉由在進行PD之嚴格評價的同時進行CCF實部的最大化的最大似然估計,來使賦予CCF實部的最大值的變量之數量增加,並進行正確地估計。又,經追加之變數j,j'的種類數目係各自為 . Although the amounts of time shift and frequency shift become additive, the PD system propagates along with the group-theoretic nature. In order to obtain a distribution diagram like Figure 15, as disclosed in this specification, it is necessary to maximize the maximum likelihood of the real part of the CCF by performing a strict evaluation of PD while maximizing the real part of the CCF. The number of variables of the value is increased and correctly estimated. In addition, the types and numbers of the added variables j and j'are respectively

Figure 108102227-A0305-02-0139-519
Figure 108102227-A0305-02-0139-519

圖16係顯示將利用了實施型態之餘維度2之具有不可置換的AC位移的參數空間的訊號,進行TFP分割之圖(因為是參數空間所以使用「餘維度」的表現)。 FIG. 16 shows a diagram of using the signal of the parameter space with irreplaceable AC displacement of the additional dimension 2 of the implementation type for TFP division (because it is a parameter space, the performance of the "co-dimension" is used).

在圖16中,在與訊號(時間寬度TS,頻寬FS)的時間/頻率平面TFP S分割(Gabor分割)(S(0),S(1),S(2),S(3))平面正交的軸上,顯示有表示AC之不可置換位移量 In Fig. 16, in the time/frequency plane TFP S division (Gabor division) (S (0) , S (1) , S (2) , S (3 ) of the signal (time width T S , bandwidth F S) in the time/frequency plane ) ) On the axis orthogonal to the plane, the non-replaceable displacement of AC is displayed

Figure 108102227-A0305-02-0140-520
Figure 108102227-A0305-02-0140-520

的刻度。 Of the scale.

圖17亦顯示將利用了實施型態之餘維度2之具有不可置換的AC位移的參數空間的訊號,進行TFP分割之圖。 FIG. 17 also shows a diagram of using the signal of the parameter space with irreplaceable AC displacement of dimension 2 of the implementation type to perform TFP division.

如圖17般,因應AC之不可置換的位移量,TFP係分別位移(Shift)至AC0的TFP、AC1的TFP、AC2的TFP及AC3的TFP。又,訊號S係能夠與 As shown in Figure 17, according to the non-replaceable displacement of AC, TFP is shifted to TFP of AC0, TFP of AC1, TFP of AC2, and TFP of AC3, respectively. In addition, the signal S system can interact with

[數學式667](k d,l D) [Math 667] ( k d , l D )

的MC目標空間(target space)的單位平面 The unit plane of the MC target space (target space)

[數學式668][0,T s)×[0,F s) [Math 668][0, T s )×[0, F s )

劃上等號。也就是說,在目標位於數據位址(address) Equal sign. In other words, the target is located at the data address (address)

Figure 108102227-A0305-02-0140-521
Figure 108102227-A0305-02-0140-521

附近的目標空間之部分平面[(p-1)Ts,pTs)×[(p'-1)Fs,p'Fs)的情況下,因為變得需要確定位址 In the case of part of the plane [(p-1)T s ,pT s )×[(p'-1)F s ,p'F s ) of the nearby target space, it becomes necessary to determine the address

[數學式670]

Figure 108102227-A0305-02-0141-522
[Math 670]
Figure 108102227-A0305-02-0141-522

,故在任何一種情況下(與是否具有數據通訊無關),接受 , So in any case (it has nothing to do with whether there is data communication), accept

Figure 108102227-A0305-02-0141-523
Figure 108102227-A0305-02-0141-523

作為圖13之2種CCF實部的最大化變數。 As the maximum variable of the real part of the two CCFs in Figure 13.

如上述般,在圖12及圖13的傳送接收器中,能夠切換上側及下側的系統。 As described above, in the transmitter receiver of FIGS. 12 and 13, the upper and lower systems can be switched.

在圖12及圖13中,開關1-1、1-2、2-1、2-2連接於上側之系統係為專利文獻6所揭示之系統,此等開關係連接於下側係基於不可置換AC-shift-編碼化、解碼化的多重化方法。 In Fig. 12 and Fig. 13, the system in which switches 1-1, 1-2, 2-1, and 2-2 are connected to the upper side is the system disclosed in Patent Document 6, and these open relations are connected to the lower side based on the impossibility A multiplexing method that replaces AC-shift-encoding and decoding.

如此一來,圖12及圖13係顯示與傳統系統的具有明顯差異及新穎性的圖。 In this way, Fig. 12 and Fig. 13 show diagrams with obvious differences and novelty from the traditional system.

於本實施形態的傳送接收系統,在多值相位調變( In the transmission and reception system of this embodiment, the multi-value phase modulation (

[數學式672]M [Math 672] M

-ary PSK) -ary PSK)

Figure 108102227-A0305-02-0141-524
Figure 108102227-A0305-02-0141-524

的數據訊號傳送中,為了在上述傳送訊號高效地嵌入”訊息k”,相對於整數 In order to efficiently embed the "message k" in the above transmission signal in the transmission of the data signal, relative to the integer

Figure 108102227-A0305-02-0141-525
Figure 108102227-A0305-02-0141-525

,準備二維相位位移鍵(BPSK)用之週期N的TD相位調變編碼(TD-PC) , Prepare the TD phase modulation coding (TD-PC) of period N for the two-dimensional phase shift key (BPSK)

Figure 108102227-A0305-02-0142-526
Figure 108102227-A0305-02-0142-526

與週期N’的FD相位調變編碼(FD-PC) FD phase modulation coding with period N’ (FD-PC)

Figure 108102227-A0305-02-0142-527
Figure 108102227-A0305-02-0142-527

的組合 The combination

Figure 108102227-A0305-02-0142-528
Figure 108102227-A0305-02-0142-528

組。將時間延遲、都普勒位移的參數平面 group. Parameter plane of time delay and Doppler shift

[數學式678]Θ=[0,T max)×[-F max/2,F max/2) [Math 678]Θ=[0, T max )×[- F max /2, F max /2)

及訊號的TFP S=[0,T s )×[0,F s )均等分割為 And the signal TFP S=(0,T s )×(0,F s ) is equally divided into

Figure 108102227-A0305-02-0142-529
Figure 108102227-A0305-02-0142-529

個的部分平面,各自作為 Part of the plane, each as

Figure 108102227-A0305-02-0142-530
Figure 108102227-A0305-02-0142-530

。(Ts=NM△t,Fs=N'M'△f係數據記號 . (T s =NM△t,F s =N'M'△f is the data symbol

Figure 108102227-A0305-02-0142-531
Figure 108102227-A0305-02-0142-531

的時間、頻寬及Tmax,Fmax係作為應檢測出之時間延遲、都普勒位移的最大值、Ts,Fs的整數倍P,P')。△t,△f係量子化寬度。 The time, bandwidth and T max , F max are the time delay to be detected, the maximum value of Doppler shift, T s , integer multiples of F s P, P'). △t,△f are the quantization widths.

接著,將訊息k分解成 Next, decompose the message k into

Figure 108102227-A0305-02-0143-532
Figure 108102227-A0305-02-0143-532

,且將 , And will

Figure 108102227-A0305-02-0143-533
Figure 108102227-A0305-02-0143-533

及其剩下的部分編碼化成 And the rest of it is coded into

Figure 108102227-A0305-02-0143-802
Figure 108102227-A0305-02-0143-802

。為了傳送編碼(j,j'),第一,先施加使用2維PC X(i)將時間Tc=M△t,頻寬Fc=M'△f的chip脈波調變之TD-signature,FD-signature,以(Ts,Fs)級別位移的 . In order to transmit the code (j,j'), first, apply the TD- which uses 2-dimensional PC X (i) to modulate the chip pulse with time T c =M△t and bandwidth F c =M'△f. signature, FD-signature, shifted at (T s ,F s ) level

Figure 108102227-A0305-02-0143-535
Figure 108102227-A0305-02-0143-535

-signature-多重化。第二,假定其多重化訊號係通過具有部分參數平面Θ(j)的中心: -signature-multiplexing. Second, suppose its multiplexed signal passes through the center of a plane with partial parameters Θ (j):

Figure 108102227-A0305-02-0143-536
Figure 108102227-A0305-02-0143-536

的位移之人工通道(AC)。為了對此進行模擬,使第四位移運算子 The displacement of the artificial channel (AC). In order to simulate this, the fourth shift operator

Figure 108102227-A0305-02-0144-537
Figure 108102227-A0305-02-0144-537

於TD-signature及FD-signature訊號產生作用。第三,在獲得之訊號中,將 It has an effect on TD-signature and FD-signature signals. Third, in the received signal, the

[數學式688]M 0 [Math 688] M 0

-ary數據訊號 -ary data signal

Figure 108102227-A0305-02-0144-538
Figure 108102227-A0305-02-0144-538

進行調變 Modulate

Figure 108102227-A0305-02-0144-539
Figure 108102227-A0305-02-0144-539

。將此訊號在TFP上的記號 . Mark this signal on TFP

Figure 108102227-A0305-02-0144-785
Figure 108102227-A0305-02-0144-785

的(P/P')之沒有重疊的疊加訊號,作為傳送TD-CE、FD-CE(參照圖12)。 The superimposed signal without overlapping of (P/P') is used to transmit TD-CE and FD-CE (refer to Figure 12).

[數學式692]M 0 [Math 692] M 0

-ary數據通訊的TD-訊號的CE及其DFT係作為公式(27)的替代 -ary data communication TD-signal CE and its DFT system as a substitute for formula (27)

[數學式693]

Figure 108102227-A0305-02-0145-540
[Math 693]
Figure 108102227-A0305-02-0145-540

而決定。其中, And decided. among them,

[數學式694]υ[kX (i)],V[lX (i)] [Math 694] υ[ k ; X ( i ) ], V [ l ; X ( i ) ]

係TD-signature及FD-signature Department of TD-signature and FD-signature

Figure 108102227-A0305-02-0145-541
Figure 108102227-A0305-02-0145-541

(參照公式(25))。此處, (Refer to formula (25)). Here,

Figure 108102227-A0305-02-0145-542
Figure 108102227-A0305-02-0145-542

係表示,圖16及圖17所示之部分平面附隨chip位址(m,m')的可移動範圍(S的位址的對應部分)。 It means that the part of the plane shown in Figure 16 and Figure 17 is accompanied by the movable range of the chip address (m, m') (the corresponding part of the address of S).

Figure 108102227-A0305-02-0145-543
Figure 108102227-A0305-02-0145-543

,且相較於同步法及測距時的N,N',在數據通訊中,因為將訊號的時間、頻率平面及目標平面進行PC編碼分割,故為了獲得精確度,需為 , And compared with N, N'in the synchronization method and ranging, in data communication, because the time, frequency plane and target plane of the signal are divided by PC coding, in order to obtain accuracy,

Figure 108102227-A0305-02-0145-544
Figure 108102227-A0305-02-0145-544

倍。請參照(具有數據通訊的開關上下,係對應同步法及測距時的數據通訊)圖12及圖13。 Times. Please refer to Figure 12 and Figure 13 (Up and down switches with data communication, corresponding to the synchronization method and data communication during distance measurement).

在公式(87)中,將經過第i個的2維PC X(i)進行調變後之signature ν[k;χ(i)](或 In equation (87), and after the signature will be modulated through ν i-th two-dimensional PC X (i) [k; χ (i)] ( or

[數學式699]V[lX (i)] [Math 699] V [ l ; X ( i ) ]

),進行 ),get on

Figure 108102227-A0305-02-0146-545
Figure 108102227-A0305-02-0146-545

-(χ(i)& signature)-多重化後之訊號,通過 -(χ (i) & signature)-The signal after multiplexing, through

[數學式701]M [Math 701] M

-ary數據 -ary data

Figure 108102227-A0305-02-0146-546
Figure 108102227-A0305-02-0146-546

的k編碼(j,j')對應的位移 The displacement corresponding to the k code (j, j')

Figure 108102227-A0305-02-0146-547
Figure 108102227-A0305-02-0146-547

的AC,且於此承載有 AC, and carry

[數學式704]M 0 [Math 704] M 0

-ary數據 -ary data

Figure 108102227-A0305-02-0147-548
Figure 108102227-A0305-02-0147-548

的訊息之CE CE of the message

Figure 108102227-A0305-02-0147-549
Figure 108102227-A0305-02-0147-549

(或DFT (Or DFT

Figure 108102227-A0305-02-0147-550
Figure 108102227-A0305-02-0147-550

)為新的傳送TD-CE(或FD-CE)。 ) Is the new transmission TD-CE (or FD-CE).

其中, among them,

Figure 108102227-A0305-02-0147-784
Figure 108102227-A0305-02-0147-784

係大小為1的實數(參照圖12的傳送器)。 It is a real number with a size of 1 (refer to the conveyor in Fig. 12).

在接收系統中,為了k的解碼,使經過模擬對應推定值 In the receiving system, for the decoding of k, the estimated value

Figure 108102227-A0305-02-0147-551
Figure 108102227-A0305-02-0147-551

的推定編碼 Presumptive coding

Figure 108102227-A0305-02-0147-552
Figure 108102227-A0305-02-0147-552

與對應的位移 And the corresponding displacement

Figure 108102227-A0305-02-0147-553
Figure 108102227-A0305-02-0147-553

的AC後之位移運算子 Shift operator after AC

Figure 108102227-A0305-02-0148-554
Figure 108102227-A0305-02-0148-554

作用,更進行推定 Presumption

Figure 108102227-A0305-02-0148-555
Figure 108102227-A0305-02-0148-555

的PD補償(參照圖13的傳送器)。具體而言,利用了AC的位移之類型-3、類型-4的相關器,係作為公式(38)、(43)的替代,追加了兩個變數j,j'及因應其的最大化變數 PD compensation (refer to the transmitter in Figure 13). Specifically, the type-3 and type-4 correlators using the displacement of AC are used as a substitute for formulas (38) and (43), and two variables j, j'and the maximum variable corresponding to them are added.

Figure 108102227-A0305-02-0148-556
Figure 108102227-A0305-02-0148-556

Figure 108102227-A0305-02-0148-557
,
Figure 108102227-A0305-02-0148-557

。在上述2種相關函數中,於公式(87)的傳送CE訊號,運算子 . In the above two correlation functions, in formula (87) to transmit the CE signal, the operator

[數學式716]

Figure 108102227-A0305-02-0149-558
[Math 716]
Figure 108102227-A0305-02-0149-558

係插入參數推定用的2維PC運算子 It is a 2-dimensional PC operator for inserting parameter estimation

Figure 108102227-A0305-02-0149-559
Figure 108102227-A0305-02-0149-559

and

[數學式718](k d,l D) [Math 718] ( k d , l D )

的主通道(MC)的運算子 Operator of the master channel (MC)

Figure 108102227-A0305-02-0149-560
Figure 108102227-A0305-02-0149-560

之間(參照圖12)。在另一方的接收側,用於公式(89)、(90)的 Between (refer to Figure 12). On the receiving side of the other party, the formulas (89) and (90)

[數學式720]M [Math 720] M

-ary PSK之 -ary PSK

Figure 108102227-A0305-02-0149-561
Figure 108102227-A0305-02-0149-561

種的 Kind of

Figure 108102227-A0305-02-0149-562
Figure 108102227-A0305-02-0149-562

的AC之推用AC運算子 Use the AC operator to push the AC

Figure 108102227-A0305-02-0149-563
Figure 108102227-A0305-02-0149-563

(或 (or

Figure 108102227-A0305-02-0150-564
Figure 108102227-A0305-02-0150-564

),係插入 ), is inserted

[數學式725](k d,l D) [Math 725] ( k d , l D )

的推定MC運算子 Presumed MC operator

Figure 108102227-A0305-02-0150-565
Figure 108102227-A0305-02-0150-565

(或 (or

Figure 108102227-A0305-02-0150-566
Figure 108102227-A0305-02-0150-566

)與2維PC運算子 ) And the 2-dimensional PC operator

Figure 108102227-A0305-02-0150-567
Figure 108102227-A0305-02-0150-567

之間(參照圖13)。 Between (refer to Figure 13).

圖12及圖13的 Figure 12 and Figure 13

[數學式729]M [Math 729] M

-PSK能夠通訊並且能夠進行高速及高精度距離測量的傳送器及編碼/解碼化器,其係將時間延遲、都普勒位移之餘維度2的參數平面Θ,進行不相 交的分割後之延遲-都普勒空間分割多工(dD-SDM)(非專利文獻30、專利文獻6)的實現例。此係作為 -PSK can communicate and can carry out high-speed and high-precision distance measurement transmitter and encoder/decoder, which is the time delay, Doppler displacement, and the parameter plane Θ of dimension 2, which is different An implementation example of delay-Doppler space division multiplexing (dD-SDM) (Non-Patent Document 30, Patent Document 6) after the division of the intersection. This department serves as

[數學式730]M [Math 730] M

-PSK數據k的替代,並傳送編碼 -Replacement of PSK data k, and transmit encoding

Figure 108102227-A0305-02-0151-568
Figure 108102227-A0305-02-0151-568

,且因為訊號通過Θ(j)中心的時間位移 , And because the signal passes through the time shift of the Θ (j) center

Figure 108102227-A0305-02-0151-569
Figure 108102227-A0305-02-0151-569

及頻率位移 And frequency shift

Figure 108102227-A0305-02-0151-570
Figure 108102227-A0305-02-0151-570

的AC,故藉由產生之PD檢測(參照圖14、15)將j,j'解碼。為了在接收側檢測j,在傳送側使用相異之i的PC χ(i)進行2維BPSK,將此等 Therefore, the generated PD detection (refer to Figures 14 and 15) decodes j, j'. In order to detect j on the receiving side, a PC χ (i) of a different i is used on the transmitting side to perform 2-dimensional BPSK, and so on

Figure 108102227-A0305-02-0151-571
Figure 108102227-A0305-02-0151-571

多重化,並將此輸入至 Multiplex and enter this into

Figure 108102227-A0305-02-0151-572
Figure 108102227-A0305-02-0151-572

th-AC,且在其輸出訊號,進行 th-AC, and in its output signal, carry on

[數學式736]

Figure 108102227-A0305-02-0152-573
[Math 736]
Figure 108102227-A0305-02-0152-573

of

[數學式737]M 0 [Math 737] M 0

-PSK解調。 -PSK demodulation.

因為 because

Figure 108102227-A0305-02-0152-574
Figure 108102227-A0305-02-0152-574

Have

Figure 108102227-A0305-02-0152-575
Figure 108102227-A0305-02-0152-575

種,故 Kind, so

Figure 108102227-A0305-02-0152-576
Figure 108102227-A0305-02-0152-576

個AC與2維BPSK的PC PC with AC and 2D BPSK

Figure 108102227-A0305-02-0152-577
Figure 108102227-A0305-02-0152-577

係必要的。在接收側,使用chip波的TFP上四重多重化,進行被嵌入之template的檢測。使用推定 Department necessary. On the receiving side, quadruple multiplexing is performed on the TFP using the chip wave to detect the embedded template. Use presumption

Figure 108102227-A0305-02-0152-578
Figure 108102227-A0305-02-0152-578

th-AC的選擇,進行 th-AC selection, proceed

[數學式743](k d,l D) [Math 743] ( k d , l D )

的最大似然估計。對於 The maximum likelihood estimation. for

[數學式744]M 0 [Math 744] M 0

-PSK通訊,使用 -PSK communication, use

Figure 108102227-A0305-02-0153-579
Figure 108102227-A0305-02-0153-579

種之不可置換位移的AC插入所產生之多重化,實現高階的 This kind of non-replaceable displacement AC insertion produces multiplexing to achieve high-level

[數學式746]M [Math 746] M

-PSK通訊。 -PSK communication.

此dD-SDM係利用餘維度2之不可置換位移的參數空間之多重化通訊方式。此係因為,與[0,Ts)×[0,Ts]的記號平面中TFP(與target平面的單位部分平面劃上等號)正交的軸,係具有作為AC的不可置換位移軸之3維化後(使用AC的位移階層化)的時間、頻率空間(Time-Frequency Space:TFS)(參照圖16、圖17),故此相較於習知訊號的TFP分割的TDMA、FDMA係為不同的方法。保證參數的高速、高精確度推定之APT-based的PUL係基礎技術。又,因為具有不可置換位移之AC係能夠被各種傳播線路替代,故能夠期望將其應用於期望超高階PSK通信的光通信。 This dD-SDM is a multiple communication method that utilizes the parameter space of non-replaceable displacement of co-dimension 2. This is because the axis orthogonal to TFP (equaled with the unit part plane of the target plane) in the sign plane of [0, T s )×[0, T s] has a non-replaceable displacement axis as AC The time and frequency space (Time-Frequency Space: TFS) (refer to Figure 16 and Figure 17) after 3-dimensionalization (using AC displacement stratification), so it is compared with the TDMA and FDMA system of the TFP division of the conventional signal For different methods. APT-based PUL system basic technology that guarantees high-speed and high-precision estimation of parameters. In addition, since the AC system with irreplaceable displacement can be replaced by various propagation lines, it can be expected to be applied to optical communication where ultra-high-order PSK communication is desired.

在非專利文獻30及專利文獻6中,將 In Non-Patent Document 30 and Patent Document 6, the

[數學式747]

Figure 108102227-A0305-02-0154-580
[Math 747]
Figure 108102227-A0305-02-0154-580

的多重目標檢測問題作為碼分多重目標(CDMT,Code-Division Multiple Targets)(非專利文獻27),使用Npath的2維PC與 The problem of multiple target detection as CDMT (Code-Division Multiple Targets) (Non-Patent Document 27), using N path 's 2-dimensional PC and

Figure 108102227-A0305-02-0154-582
Figure 108102227-A0305-02-0154-582

的位移運算之兩個相位旋轉因子的積 The product of the two phase rotation factors of the shift operation

Figure 108102227-A0305-02-0154-583
Figure 108102227-A0305-02-0154-583

所產生之相位補償,進行目標檢測。因為此係實質上強制區分非常小的相位量 The generated phase compensation is used for target detection. Because this system essentially forces the distinction of very small phase quantities

Figure 108102227-A0305-02-0154-584
Figure 108102227-A0305-02-0154-584

的方法,故就產生對於大的 Method, so it produces for the big

Figure 108102227-A0305-02-0154-585
Figure 108102227-A0305-02-0154-585

相位雜訊之解碼誤差而言,有其極限。又,因為不使用 The decoding error of phase noise has its limits. Also, because I don’t use

[數學式752](k d,l D) [Math 752] ( k d , l D )

-MC的運算子 -MC operator

Figure 108102227-A0305-02-0154-586
Figure 108102227-A0305-02-0154-586

及其補償位移 And its compensation displacement

Figure 108102227-A0305-02-0155-587
Figure 108102227-A0305-02-0155-587

,而進行 , While proceeding

[數學式755]M [Math 755] M

-ary的解碼,故其並非通過MC之二重位移後的多重目標檢測問題,亦非參數推定的收斂的保證。為了解決此問題,在本說明書中重新定義兩種相關函數 -ary decoding, so it is not a problem of multiple target detection after double displacement of MC, nor is it a guarantee of convergence of parameter estimation. In order to solve this problem, two related functions are redefined in this manual

Figure 108102227-A0305-02-0155-588
Figure 108102227-A0305-02-0155-588

,且進行基於各種位移運算子之正確的PD評價與其補償。其中,前述接收部係用於將被含於公式(89)、(90)的兩種相關函數之公式(87)的 , And perform correct PD evaluation and compensation based on various displacement operators. Among them, the aforementioned receiving unit is used to convert the formula (87) of the two correlation functions contained in formulas (89) and (90)

Figure 108102227-A0305-02-0155-589
Figure 108102227-A0305-02-0155-589

(或 (or

Figure 108102227-A0305-02-0155-590
Figure 108102227-A0305-02-0155-590

)的 )of

Figure 108102227-A0305-02-0155-591
Figure 108102227-A0305-02-0155-591

解碼。嵌入接收部(參照圖12)之 decoding. Embedded in the receiving part (refer to Figure 12)

Figure 108102227-A0305-02-0156-592
Figure 108102227-A0305-02-0156-592

的PD補償的計算係非常繁雜,然而,雖然省略詳細的計算過程,但用於高階的 The calculation system of PD compensation is very complicated. However, although the detailed calculation process is omitted, it is used for high-level

[數學式761]M [Math 761] M

-ary PSK的解碼之相關函數,係使用 -ary PSK decoding related functions, which are used

Figure 108102227-A0305-02-0156-593
Figure 108102227-A0305-02-0156-593

種2維PC 2D PC

Figure 108102227-A0305-02-0156-594
Figure 108102227-A0305-02-0156-594

,故進行以下變數的置換: , So the following variables are replaced:

Figure 108102227-A0305-02-0156-595
Figure 108102227-A0305-02-0156-595

(在接收側的置換:伴隨著 (Replacement on the receiving side: with

Figure 108102227-A0305-02-0156-596
Figure 108102227-A0305-02-0156-596

,產生多數個相位項,又,將相關函數實部最大化之最大似然估計參數係從2個變數 , To generate a large number of phase terms, and to maximize the maximum likelihood estimation parameters of the real part of the correlation function from 2 variables

Figure 108102227-A0305-02-0156-597
Figure 108102227-A0305-02-0156-597

(或 (or

Figure 108102227-A0305-02-0157-598
Figure 108102227-A0305-02-0157-598

)擴張成4個變數 ) Expand into 4 variables

Figure 108102227-A0305-02-0157-599
Figure 108102227-A0305-02-0157-599

(或 (or

Figure 108102227-A0305-02-0157-600
Figure 108102227-A0305-02-0157-600

))(參照圖13。其中, )) (Refer to Figure 13. Among them,

Figure 108102227-A0305-02-0157-601
Figure 108102227-A0305-02-0157-601

(或 (or

Figure 108102227-A0305-02-0157-602
Figure 108102227-A0305-02-0157-602

))。在將公式(39),(44)一般化的形式下,各為 )). In the generalized form of formulas (39) and (44), each is

[數學式772]

Figure 108102227-A0305-02-0158-604
[Math 772]
Figure 108102227-A0305-02-0158-604

。其中, . among them,

Figure 108102227-A0305-02-0158-605
Figure 108102227-A0305-02-0158-605

。又, . also,

Figure 108102227-A0305-02-0158-606
Figure 108102227-A0305-02-0158-606

係訊號部分平面 Part of the signal plane

Figure 108102227-A0305-02-0159-772
Figure 108102227-A0305-02-0159-772

隨附的chip住址n,n'的可動範圍,即 The movable range of the attached chip address n, n', namely

Figure 108102227-A0305-02-0159-607
Figure 108102227-A0305-02-0159-607

。公式(91),(92)的混淆函數(AF)θgg[‧],ΘGG[‧]的g,G在高斯函數的情況下為指數遞減函數;以及,因為互斥之chip住址分割 . The confusion function (AF) of formulas (91) and (92) θ gg [‧], Θ GG [‧] g, G in the case of Gaussian function are exponentially decreasing functions; and, because of mutual exclusion of chip address division

Figure 108102227-A0305-02-0159-608
Figure 108102227-A0305-02-0159-608

and

Figure 108102227-A0305-02-0159-609
Figure 108102227-A0305-02-0159-609

為Θ(j)的中心,故能夠無視AF的第一變數與第二變數為大之數據地址(p-q)MN1,(p'-q')M'N1'的p'≠q',p≠q之項及chip住址 Is the center of Θ (j) , so the data address (pq)MN 1 , (p'-q')M'N 1'p'≠q' of (p'-q')M'N 1 'can be ignored for the first variable and the second variable of AF. Item p≠q and chip address

Figure 108102227-A0305-02-0159-610
Figure 108102227-A0305-02-0159-610

的項,因此僅殘存p'=q',p=q及 , So only p'=q', p=q and

Figure 108102227-A0305-02-0159-611
Figure 108102227-A0305-02-0159-611

的項,抽出 Items of

[數學式781]

Figure 108102227-A0305-02-0160-612
[Math 781]
Figure 108102227-A0305-02-0160-612

中的 middle

Figure 108102227-A0305-02-0160-613
Figure 108102227-A0305-02-0160-613

,並能夠特定 And be able to specify

Figure 108102227-A0305-02-0160-614
Figure 108102227-A0305-02-0160-614

此係將Θ不相交的分割且使用2維PC χ(i)將經過調變後的訊號 This system divides Θ disjointly and uses 2-dimensional PC χ (i) to convert the modulated signal

Figure 108102227-A0305-02-0160-615
Figure 108102227-A0305-02-0160-615

-多重化,更挑戰將PD產生源的AC -Multiple, more challenging AC that generates PD

Figure 108102227-A0305-02-0160-616
Figure 108102227-A0305-02-0160-616

個並列化,這是使訊號通過那一個AC的最大原因。又, Parallelization, which is the biggest reason for the signal to pass through that AC. also,

Figure 108102227-A0305-02-0160-617
Figure 108102227-A0305-02-0160-617

的特定係能夠使用 The specific department can use

[數學式787]M 0 [Math 787] M 0

-ary的相位補償 -ary phase compensation

Figure 108102227-A0305-02-0160-618
Figure 108102227-A0305-02-0160-618

來達成(參照圖12及圖13)。 To achieve (refer to Figure 12 and Figure 13).

上述兩種相關函數係對於相位雜訊具有耐性的解碼方法,其係使用互相獨立的2維PC The above two correlation functions are decoding methods that are resistant to phase noise, which use independent 2D PCs

Figure 108102227-A0305-02-0161-619
Figure 108102227-A0305-02-0161-619

,並藉由基於利用了k的編碼 , And by coding based on the use of k

Figure 108102227-A0305-02-0161-620
Figure 108102227-A0305-02-0161-620

及其推定編碼 And its presumptive code

Figure 108102227-A0305-02-0161-621
Figure 108102227-A0305-02-0161-621

-依存的不可置換位移的 -Dependent non-displaceable displacement

Figure 108102227-A0305-02-0161-622
Figure 108102227-A0305-02-0161-622

-AC的PD之PUL的最大似然估計,使相位的最小辨別作為 -The maximum likelihood estimation of the PUL of the AC PD, so that the minimum discrimination of the phase is used as

Figure 108102227-A0305-02-0161-623
Figure 108102227-A0305-02-0161-623

於進行 In progress

[數學式794]M [Math 794] M

-ary PSK的數據通訊之前,建立同步(同步捕捉、同步保持)及測距是有效的。然而,在現實的通訊中,以通過 -Before the data communication of ary PSK, the establishment of synchronization (synchronization capture, synchronization maintenance) and ranging are effective. However, in real communication, to pass

[數學式795](k d,l D) [Math 795] ( k d , l D )

的MC的通訊作為前提之上述兩個相關函數係必要的。兩函數係在圖12及圖13的上開關狀態下進行同步捕捉、同步保持,並在圖12及圖13的下開關狀態下,使 The above two related functions are necessary for the communication of the MC as a prerequisite. The two functions are synchronously captured and kept synchronously in the upper switch state of Fig. 12 and Fig. 13, and in the lower switch state of Fig. 12 and Fig. 13, make

[數學式796]M [Math 796] M

-ary PSK之編碼化及解碼化的並行成為可能。換言之,上述兩種相關函數,相對於雷達作為時間延遲、都普勒位移的測距器而動作,且其係相對於 -Parallelization of encoding and decoding of ary PSK is possible. In other words, the above two correlation functions act as a rangefinder with time delay and Doppler displacement relative to the radar, and they are relative to

[數學式797]M [Math 797] M

-ary數據無線通訊(圖12及圖13的下開關狀態),作為時間延遲/都普勒位移的同步器及編碼/解碼器而動作之不需要振幅調變的多值相位調變解調。此係將2維PC -ary data wireless communication (lower switch state in Fig. 12 and Fig. 13), which operates as a time delay/Doppler shift synchronizer and encoder/decoder, which does not require amplitude modulation for multi-value phase modulation and demodulation. 2D PC

Figure 108102227-A0305-02-0162-624
Figure 108102227-A0305-02-0162-624

作為秘密鍵之無線秘密通訊系統的實現例,或者被提供於秘密的數據通訊及可測距的車載雷達、數據通訊系統。 As an implementation example of a secret key wireless secret communication system, it may be provided for secret data communication, vehicle-mounted radar and data communication systems that can measure distances.

與習知方法不同,於振幅不施加”訊息”的理由是,(1)通訊路徑的衰減常數Aeiκ 的經時推定;(2)解碼器的單純化等。正確的PD評價及其補償以及PD活用,係使作為頻率資源有效利用的通訊方法之超高階的 Different from the conventional method, the reason why "message" is not applied to the amplitude is (1) the estimating with time of the attenuation constant Ae i κ of the communication path; (2) the simplification of the decoder, etc. Correct PD evaluation, compensation, and PD utilization are the ultra-high-end communication methods used as frequency resources

[數學式799]M [Math 799] M

-ary通訊的實現變得容易。又,因為使用 The realization of -ary communication becomes easy. Also, because using

Figure 108102227-A0305-02-0163-625
Figure 108102227-A0305-02-0163-625

個2維PC,故亦使 A 2-dimensional PC, so also

Figure 108102227-A0305-02-0163-626
Figure 108102227-A0305-02-0163-626

多重通訊的進行變得可能。 Multi-communication becomes possible.

<8.3 利用多維不可置換性的訊號處理> <8.3 Signal processing using multi-dimensional non-replaceability>

Daughman將Gabor函數 Daughman put the Gabor function

Figure 108102227-A0305-02-0163-627
Figure 108102227-A0305-02-0163-627

擴張成2維[非專利文獻33,34]。作為前置準備,遵循Howe[非專利文獻5],導入對於 Expansion into 2 dimensions [Non-Patent Documents 33,34]. As a pre-preparation, follow Howe [Non-Patent Document 5] and import the

Figure 108102227-A0305-02-0163-628
Figure 108102227-A0305-02-0163-628

的兩個位移運算子 Two shift operators

Figure 108102227-A0305-02-0164-629
Figure 108102227-A0305-02-0164-629

。其中,ν‧t顯示內積。接著,若對於 . Among them, ν‧t shows the inner product. Then, if for

Figure 108102227-A0305-02-0164-630
Figure 108102227-A0305-02-0164-630

導入標量積(scalar product) Import scalar product

Figure 108102227-A0305-02-0164-631
Figure 108102227-A0305-02-0164-631

,則集合 , Then the collection

Figure 108102227-A0305-02-0164-632
Figure 108102227-A0305-02-0164-632

係變成 Department becomes

Figure 108102227-A0305-02-0164-633
Figure 108102227-A0305-02-0164-633

上的統一(unitary)運算群,在 The unitary operation group on the

Figure 108102227-A0305-02-0164-634
Figure 108102227-A0305-02-0164-634

(將H稱為次數n的Heisenberg group)上的結合律(associative laws) (Call H the Heisenberg group of degree n) associative laws

Figure 108102227-A0305-02-0164-635
Figure 108102227-A0305-02-0164-635

成立。又,若導入 Established. Also, if you import

[數學式811]

Figure 108102227-A0305-02-0165-636
[Math 811]
Figure 108102227-A0305-02-0165-636

並使用傅立葉變換,兩個H的統一表現 And using Fourier transform, the unified performance of the two H

[數學式812]ρ,ρr [Math 812] ρ , ρr

之間, between,

Figure 108102227-A0305-02-0165-637
Figure 108102227-A0305-02-0165-637

的關係成立(Howe('80))。 The relationship is established (Howe ('80)).

Daughman[非專利文獻35]係被定義為,與以下等式具有相同形式的二維空間區域(SD,space domain)的空間變數 Daughman [Non-Patent Document 35] is defined as the space variable of the two-dimensional space domain (SD, space domain) having the same form as the following equation

[數學式814]x=(x,y) [Math 814] x=( x , y )

的複雜Gabor基礎方程式(complex Gabor elementary function)g(x)與2為空間頻率區域(FD,frequency domain)的空間頻率 The complex Gabor elementary function (complex Gabor elementary function) g(x) and 2 are the spatial frequency of the spatial frequency domain (FD, frequency domain)

[數學式815]u=(u,υ) [Math 815] u=( u ,υ)

的2-D傅立葉變換(FT) 2-D Fourier Transform (FT)

Figure 108102227-A0305-02-0165-638
Figure 108102227-A0305-02-0165-638

[非專利文獻35,36]的 [Non-Patent Documents 35,36]

[數學式817]

Figure 108102227-A0305-02-0166-639
[Math 817]
Figure 108102227-A0305-02-0166-639

的2-D Gabor filter族。又,P係直流分量變為零的初始相位。 The 2-D Gabor filter family. In addition, the P-system DC component becomes the initial phase of zero.

[數學式818](x-x 0)r,(y-y 0)r [Math 818] ( x - x 0 ) r , ( y - y 0 ) r

係將橢圓型Gaussian順時針旋轉θ的 Rotating the elliptical Gaussian clockwise by θ

Figure 108102227-A0305-02-0166-640
Figure 108102227-A0305-02-0166-640

。SD函數g(x),FD函數 . SD function g(x), FD function

Figure 108102227-A0305-02-0166-641
Figure 108102227-A0305-02-0166-641

係完全對稱,且在各位移量 The system is completely symmetrical, and in each displacement

[數學式821]x 0 =(x 0 ,y 0 ),u 0 =(u 0 0 ) [Math 821] x 0 =( x 0 , y 0 ), u 0 =( u 0 0 )

的位置包含成為波峰(Peak)的2-D Gaussian envelope;又,提供2次動量(moment) The position of contains the 2-D Gaussian envelope that becomes the Peak; in addition, it provides 2 moments of momentum

Figure 108102227-A0305-02-0166-642
Figure 108102227-A0305-02-0166-642

間的不確定性關係[非專利文獻35,36] Uncertainty relationship between [Non-Patent Documents 35,36]

Figure 108102227-A0305-02-0166-643
Figure 108102227-A0305-02-0166-643

。(等式係能夠藉由公式(97)的2-D Gabor filter族達成。)又, . (The equation system can be achieved by the 2-D Gabor filter family of equation (97).) Also,

Figure 108102227-A0305-02-0167-644
Figure 108102227-A0305-02-0167-644

被稱為調變、標度(scale)參數。 It is called modulation and scale parameter.

在公式(99)的條件下,在圖像處理中,具有最佳分辨率的空間/空間頻率之同時表現(圖像表現係聲音的頻譜(spectrogram)的4維擴張版)係重要的。 Under the condition of formula (99), in image processing, simultaneous representation of space/spatial frequency with the best resolution (image representation is a 4-dimensional expanded version of the sound spectrum (spectrogram)) is important.

為了給定的2-D訊號I[x]的表現(例如256×256之像素(pixel)上的圖像,即(256)2=65536維向量空間的向量),考慮朝向被選定之一組I[x]的2-D向量(vector)的集合 For the performance of a given 2-D signal I[x] (for example, an image on a 256×256 pixel (pixel), that is, a vector in (256) 2 = 65536 dimensional vector space), consider the selected group Set of 2-D vectors of I[x]

Figure 108102227-A0305-02-0167-645
Figure 108102227-A0305-02-0167-645

上的投影所產生的最佳表現。[非專利文獻35]係導致將與線性和 The best performance produced by the projection on the screen. [Non-Patent Document 35] The system leads to the linear sum

Figure 108102227-A0305-02-0167-646
Figure 108102227-A0305-02-0167-646

的誤差能量∥I[x]-H[x]∥2減少到最小化之展開係數 The error energy of ∥I[x]-H[x]∥ 2 is reduced to the minimized expansion coefficient

Figure 108102227-A0305-02-0167-647
Figure 108102227-A0305-02-0167-647

的決定。在Daughman中,因為求得對於非正交系 decision. In Daughman, because it is found that for non-orthogonal systems

Figure 108102227-A0305-02-0167-648
Figure 108102227-A0305-02-0167-648

的ai之梯度法係成為n×n(在上面的例子中,n=65536)的稀疏矩陣問題,且其執行係不切實際的,因此,有人提案了基於神經網絡(neural network)的方法。此外,亦有人提案了關於圖像的邊緣檢測及抽出特徵等之圖像解析的各種方法[非專利文獻37,38,39]。 The gradient method of a i becomes a sparse matrix problem of n×n (in the above example, n=65536), and its execution system is impractical. Therefore, someone proposed a neural network-based method . In addition, various methods for image analysis such as edge detection and feature extraction have also been proposed [Non-Patent Documents 37, 38, 39].

在本專利中,因為(100)係具有空間/空間頻率位移(x0i,u0i)之2D Gauss函數 In this patent, because (100) is a 2D Gauss function with spatial/spatial frequency shift (x 0i , u 0i)

Figure 108102227-A0305-02-0168-649
Figure 108102227-A0305-02-0168-649

所產生之2D Gabor展開,為了仿照基於前面章節的1維不可置換運算之訊號處理法,並對稱地考察SD表現(100)的FD表現,利用I[x],H[x]的2-D Fourier transform The generated 2D Gabor expansion, in order to imitate the signal processing method based on the one-dimensional non-permutable operation in the previous chapter, and to examine the FD performance of SD performance (100) symmetrically, using 2-D of I[x], H[x] Fourier transform

Figure 108102227-A0305-02-0168-650
Figure 108102227-A0305-02-0168-650

,並考慮圖像的SD-FD表現問題 , And consider the SD-FD performance of the image

Figure 108102227-A0305-02-0168-651
Figure 108102227-A0305-02-0168-651

。考慮將圖像作為Hilbert空間之部分空間ε,ε’的要素 . Consider the image as the element of the partial space ε,ε’ of Hilbert space

Figure 108102227-A0305-02-0168-652
Figure 108102227-A0305-02-0168-652

,將誤差 , The error

Figure 108102227-A0305-02-0168-653
Figure 108102227-A0305-02-0168-653

的最小化,進行各n組的SD,FD之正交投影運算子 Minimize, and perform orthogonal projection operators of SD and FD for each n groups

Figure 108102227-A0305-02-0169-654
Figure 108102227-A0305-02-0169-654

所產生之 Produced by

Figure 108102227-A0305-02-0169-655
Figure 108102227-A0305-02-0169-655

的直接分解 Direct decomposition

Figure 108102227-A0305-02-0169-656
Figure 108102227-A0305-02-0169-656

。Template集合 . Template collection

Figure 108102227-A0305-02-0169-657
Figure 108102227-A0305-02-0169-657

的選擇係重要的。舉例來說,將 The choice is important. For example, change

Figure 108102227-A0305-02-0169-658
Figure 108102227-A0305-02-0169-658

作為各(L1△x×L2△y)-空間限制的Gauss函數及(L1△u×L2△v)-空間頻寬限制的Gauss函數,則 As each (L 1 △x×L 2 △y)-space-restricted Gauss function and (L 1 △u×L 2 △v)-spatial bandwidth-restricted Gauss function, then

Figure 108102227-A0305-02-0169-659
Figure 108102227-A0305-02-0169-659

係朝各Hilbert空間的部分空間上的正交投影(OP,orthogonal projection)。能夠於兩OP適用2維的von Neumann的APT。作為來自兩OP之APT的交互投影,因為能夠引導此等的結合運算子localization operator It is an orthogonal projection (OP, orthogonal projection) on part of each Hilbert space. Two-dimensional von Neumann APT can be applied to two OPs. As the interactive projection of the APT from the two OPs, because it can guide the localization operator

Figure 108102227-A0305-02-0170-660
Figure 108102227-A0305-02-0170-660

,故 , Therefore

Figure 108102227-A0305-02-0170-661
Figure 108102227-A0305-02-0170-661

。此係抽出2x2維的SD-FD空間中的peak-address(x0i,u0i) . This system extracts the peak-address (x 0i ,u 0i ) in the SD-FD space of 2x2 dimensions

Figure 108102227-A0305-02-0170-662
Figure 108102227-A0305-02-0170-662

的部分區域,並濾出(filter-out)其他區域的訊號。此訊號再生法係與習知方法完全不同之利用2維不可置換性的訊號處理。其中, Part of the area, and filter-out the signal from other areas. This signal regeneration method is completely different from the conventional method and utilizes 2-dimensional non-replaceability signal processing. among them,

Figure 108102227-A0305-02-0170-663
Figure 108102227-A0305-02-0170-663

Figure 108102227-A0305-02-0170-664
Figure 108102227-A0305-02-0170-664

system

Figure 108102227-A0305-02-0170-665
Figure 108102227-A0305-02-0170-665

的正交空間。又,此時,與Howe的位移運算子公式(93)相異,為了SD,FD訊號 Orthogonal space. Also, at this time, it is different from Howe's shift operator formula (93), for SD and FD signals

Figure 108102227-A0305-02-0171-666
Figure 108102227-A0305-02-0171-666

的對稱性,若利用具有半位移 Symmetry, if you use half displacement

Figure 108102227-A0305-02-0171-667
Figure 108102227-A0305-02-0171-667

的2維von Neumann之SD,FD對稱空間頻率位移運算子(SFSO,symmetrical space-space frequency shift operator) 2D von Neumann's SD, FD symmetrical space-space frequency shift operator (SFSO, symmetrical space-space frequency shift operator)

Figure 108102227-A0305-02-0171-668
Figure 108102227-A0305-02-0171-668

,則具有2x2維的SD-FD空間中的peak-address(x0i,u0i)之2-D Gabor function , Then the 2-D Gabor function of peak-address (x 0i ,u 0i ) in the SD-FD space of 2x2 dimensions

Figure 108102227-A0305-02-0171-669
Figure 108102227-A0305-02-0171-669

及其 and

Figure 108102227-A0305-02-0171-670
Figure 108102227-A0305-02-0171-670

system

Figure 108102227-A0305-02-0171-671
Figure 108102227-A0305-02-0171-671

。考慮DFT。將空間座標 . Consider DFT. Space coordinates

[數學式852]x=(x,y) [Math 852] x=( x , y )

的採樣(sampling)間隔為(M,N),且相對於空間變數 The sampling interval of is (M, N), and relative to the spatial variable

Figure 108102227-A0305-02-0172-672
Figure 108102227-A0305-02-0172-672

的SD函數 SD function

Figure 108102227-A0305-02-0172-673
Figure 108102227-A0305-02-0172-673

,空間頻率 , Spatial frequency

[數學式855]u=(u,υ) [Math 855] u=( u ,υ)

的採樣(sampling)間隔 Sampling interval

[數學式856]△u=1/(L 1x),△υ=1/(L 2y) [Math 856]△ u =1/( L 1x ),△υ=1/( L 2y )

的離散化空間頻率 Discretized spatial frequency

Figure 108102227-A0305-02-0172-675
Figure 108102227-A0305-02-0172-675

的FD函數 FD function

Figure 108102227-A0305-02-0172-676
Figure 108102227-A0305-02-0172-676

,係使用具有與SD函數 , The department uses the function with SD

Figure 108102227-A0305-02-0172-677
Figure 108102227-A0305-02-0172-677

之間的twiddle factor Twiddle factor

[數學式860]

Figure 108102227-A0305-02-0173-678
[Math 860]
Figure 108102227-A0305-02-0173-678

的2維DFT 2D DFT

[數學式861]F (2),d[.],IDFT F -1,(2),d[.] [Math 861] F (2),d [. ],IDFT F -1,(2),d [. ]

的關係 Relationship

Figure 108102227-A0305-02-0173-679
Figure 108102227-A0305-02-0173-679

來決定。 To decide.

因此,SD函數 Therefore, the SD function

Figure 108102227-A0305-02-0173-680
Figure 108102227-A0305-02-0173-680

(或FD函數 (Or FD function

Figure 108102227-A0305-02-0173-681
Figure 108102227-A0305-02-0173-681

)的支撐集合(support)係 ) Support system

[數學式865]L 1x×L 2y [Math 865] L 1x × L 2y

(或 (or

[數學式866]L 1u×L 2△υ [Math 866] L 1u × L 2 △υ

)。 ).

將SD空間的peak-address x0i間隔作為(Mx△x,My△y),並將FD空間的peak-address u0i的peak間隔作為 The interval of peak-address x 0i in SD space is taken as (Mx△x,My△y), and the interval of peak-address u 0i in FD space is taken as

[數學式867](M u u,M υ△υ) [Math 867] ( M u u , M υ △υ)

,且若要求正規化條件 , And if normalization conditions are required

[數學式868]M x x×M u u=M u y×M υ△υ=1 [Math 868] M x x × M u u = M u y × M υ △υ=1

,則得到 , You get

[數學式869]L 1=M x M u ,L 2=M y M υ [Math 869] L 1 = M x M u , L 2 = M y M υ

。又,若亦將 . Also, if also will

Figure 108102227-A0305-02-0174-682
Figure 108102227-A0305-02-0174-682

的空間位移(space shift)、頻率位移(frequency shift) Space shift, frequency shift

Figure 108102227-A0305-02-0174-683
Figure 108102227-A0305-02-0174-683

離散化,則von Neumann的離散TFSO的2維版係作為下式之2維對稱的空間位移、空間頻率位移運算子symmetrical SFSO Discretization, the two-dimensional version of von Neumann's discrete TFSO is used as the two-dimensional symmetrical spatial displacement and spatial frequency displacement operator symmetrical SFSO of the following formula

Figure 108102227-A0305-02-0174-684
Figure 108102227-A0305-02-0174-684

而被定義。於圖像處理,基於此的計算法係有效的。其原因為,藉由公式(108)的兩個位移運算子,因為半位移 And be defined. For image processing, the calculation method based on this is effective. The reason is that with the two shift operators of formula (108), because the half shift

Figure 108102227-A0305-02-0175-685
Figure 108102227-A0305-02-0175-685

的相位項係被嵌入各個SD、FD訊號 The phase term is embedded in each SD and FD signal

Figure 108102227-A0305-02-0175-686
Figure 108102227-A0305-02-0175-686

,故在公式(102)的內積中,能夠有效地抽出 , So in the inner product of formula (102), we can effectively extract

Figure 108102227-A0305-02-0175-687
Figure 108102227-A0305-02-0175-687

。又,具有時間變化的圖像解析係能夠考慮作為利用3維不可置換性之訊號處理的對象。 . In addition, an image analysis system with time variation can be considered as a target of signal processing using 3D non-substitutability.

<9 本說明書中所記載的發明特徵> <9 Features of the invention described in this specification>

本說明書中所構築之時間延遲、都普勒位移的高精確度推定法,僅是利用了不可置換性的多元通訊系統的一例。此為繼通訊理論的始祖Gabor在1946年的論文[非專利文獻1]之後的論文[非專利文獻2],可看作是聚焦於量子力學的二個不可置換運算子而提倡的「利用不可置換性的多元通訊」的一個具體例題。 The high-precision estimation method of time delay and Doppler shift constructed in this manual is only an example of a multi-element communication system that makes use of irreplaceability. This is the paper [Non-Patent Document 2] following the 1946 paper [Non-Patent Document 1] of Gabor, the ancestor of communication theory. A specific example of "Substitutional Multiple Communication".

伴隨著於TFP上進行的訊號的疊加,於訊號的時間以及頻率位移的不可置換性的理解並未進展的現狀中,吾人期待利用不可置換性之通訊系統的實現。 With the superposition of signals on TFP, in the current situation where the understanding of the time and frequency displacement of the signal is not progressing, we look forward to the realization of a communication system that utilizes the non-replaceability.

本說明書中所提案之利用時間、頻率位移的不可置換性的通訊系統,至少具有以下觀點。 The communication system proposed in this specification that utilizes the time and frequency shift of the non-replaceable communication system has at least the following viewpoints.

(觀點1) (Viewpoint 1)

專利文獻1以及參考文獻[非專利文獻26、27、30]中定義、導入的時間/頻率對稱位移運算子(Symmetrical TFSO)(公式4,24)係:(i)藉由其半位移,以參數推定將重要的位移量作為TD、FD的PD而顯現化;(ii)伴隨不可置換的調變、解調PD The time/frequency symmetrical shift operator (Symmetrical TFSO) (Equation 4, 24) defined and imported in Patent Document 1 and references [Non-Patent Documents 26, 27, 30] is: (i) With its half shift, Parameter estimation visualizes important displacement as PD of TD and FD; (ii) Modulation and demodulation accompanied by irreplaceable PD

Figure 108102227-A0305-02-0176-786
Figure 108102227-A0305-02-0176-786

的發生為顯而易知;(iii)伴隨不可置換性的PD評估可回歸至旋轉因子(twiddle factor) The occurrence of is obvious and easy to know; (iii) PD assessment with irreplaceability can be regressed to the twiddle factor

Figure 108102227-A0305-02-0176-688
Figure 108102227-A0305-02-0176-688

的冪運算,其PD補償法具有容易形成等特徵。 The PD compensation method has the characteristics of easy formation and so on.

(觀點2) (Viewpoint 2)

TD-PC、FD-PC調變(2位元BPSK)為習知的通訊技術,藉由理解為時間、頻率位移的運算的一種方式,各個TD-PC、FD-PC調變過的寬帶空間傳送訊號中,有基於PC的PD作為TD-template、FD-template而被嵌入。 TD-PC, FD-PC modulation (2-bit BPSK) is a conventional communication technology. By understanding it as a way of calculating time and frequency displacement, each TD-PC, FD-PC modulated wideband space In the transmission signal, PC-based PDs are embedded as TD-template and FD-template.

(觀點3) (Viewpoint 3)

作為頻率資源有效利用的傳統手段,TFP上的訊號無重疊之疊加中所使用的時間、頻率位移運算,引發數據等級的PD。此PD為參數推定的重要要素。 As a traditional method for effective use of frequency resources, the time and frequency shift calculations used in the superposition of signals on TFP without overlap cause data-level PD. This PD is an important element of parameter estimation.

(觀點4) (Viewpoint 4)

用於參數推定的M種檢測法中所必須之TD-template、FD-template檢測的TD-、FD-似然函數係引導各個TD-CCF、FD-CCF陣列。TD-CCF、FD-CCF定義希爾伯特(Hilbert)空間之部分空間的TL-TD空間、BL-FD空間的往上方的PO P3,P4(或是P1,P2),提供了APT的適用框架。 The TD- and FD-likelihood functions of TD-template and FD-template, which are necessary for the M detection methods for parameter estimation, guide each TD-CCF and FD-CCF array. TD-CCF and FD-CCF define part of the Hilbert space TL-TD space, and the upper PO P 3 , P 4 (or P 1 , P 2 ) of the BL-FD space, provided The applicable framework of APT.

(觀點5) (Viewpoint 5)

表示APT的交互投影的PO對的結合運算子 Represents the combined operator of the PO pairs of the interactive projection of APT

[數學式878]P 3 F -1,d P 4 F d [Math 878] P 3 F -1,d P 4 F d

(或是 (Or

[數學式879]P 4 F d P 3 F -1,d [Math 879] P 4 F d P 3 F -1,d

)基於未滿足奈奎斯(Nyquist)條件之理由,使得基於通訊中未被使用的高斯函數的AF變數分離性或是指數函數型衰減特性,而成為局部選擇TFP的特定部分的局部選擇運算子(localization operator)。其結果TD-CCF與FD-CCF陣列為優質的接收器。 ) Based on the reason that the Nyquist condition is not satisfied, the AF variable separability or exponential function type attenuation characteristics based on the Gaussian function that is not used in communication becomes a local selection operator that locally selects a specific part of TFP (localization operator). As a result, the TD-CCF and FD-CCF arrays are high-quality receivers.

上述各觀點為專利文獻及非專利文獻中公布之後所揭示的嶄新觀點,記載於本說明書中的發明要點,亦能夠如下述般表示。 The above-mentioned viewpoints are novel viewpoints disclosed after publication in patent documents and non-patent documents, and the main points of the invention described in this specification can also be expressed as follows.

(要點1) (Point 1)

基於時間/頻率對稱之時間頻率位移運算子(Symmetrical TFSO)(公式4,24),提供利用了時間延遲、頻率位移的兩種不可置換性的多重通訊用的TFP上所進行之不可置換性操作,所伴隨的PD評估法及PD補償法的演算法及其理論性根據。 Symmetrical TFSO based on time/frequency symmetry (Equations 4, 24) provides non-replaceable operations on the TFP for multiple communications that utilize the two non-replaceable properties of time delay and frequency shift , The accompanying PD evaluation method and PD compensation method algorithm and its theoretical basis.

(要點2) (Point 2)

以構成TD、FD的似然函數來實現基於最大似然相關器的訊號復原或參數最大似然推定。 The likelihood functions constituting TD and FD are used to realize signal restoration or parameter maximum likelihood estimation based on the maximum likelihood correlator.

(要點3) (Point 3)

古典的二位元相位調變(BPSK)引發基於其不可置換性的PD,該PD為參數推定或復原訊號的重要關鍵。 Classical binary phase modulation (BPSK) triggers PD based on its irreplaceability, which is an important key to parameter estimation or signal recovery.

(要點4) (Point 4)

伴隨著屬於通訊的傳統手法之TFP上的訊號的無重疊之疊加或是調變解調而發生的不可置換PD對於數據等級之訊號檢測為有效。 The non-replaceable PD that occurs with the non-overlapping superposition of the signal on the TFP or modulation and demodulation that belongs to the traditional method of communication is effective for data-level signal detection.

(要點5) (Point 5)

將此些PD全部補償的TD的CCF(或是FD的CCF),分別地定義為von Neumann之APT希爾伯特(Hilbert)空間中,二個不可缺少的部分空間(限時時間空間、限頻寬空間)之往上的正交投影運算子。 The CCF of the TD (or the CCF of the FD) that these PDs are fully compensated is defined as two indispensable parts of the APT Hilbert space of von Neumann (time-limited time space, limited frequency (Wide space) orthogonal projection operator up.

(要點6) (Point 6)

TD、FD的正交投影運算子的結合運算子成為TFP上的局部選擇運算子,發揮慣用之DSP的靈敏濾波器的作用。 The combined operator of the orthogonal projection operators of TD and FD becomes the local selection operator on TFP, which plays the role of the sensitive filter of the conventional DSP.

(要點7) (Point 7)

在圖像訊號表現中,廣泛使用具有2×2空間/空間頻率平面(SFP,Space-Frequency plane)上的訊號分離性優異之2維Gabor函數(97)的Gabor展開(100)。然而,在習知技術中,被包含在Gabor函數中的2維空間/頻率位移運算子係與1維訊號的不可置換之時間/頻率位移運算子相同,並未注意到來自不可置換之位移之相位失真的產生。藉由Hilbert空間之SD區域限制函數及FD帶寬限制函數上的正交投影運算子 In image signal performance, Gabor expansion (100) with a 2-dimensional Gabor function (97) with excellent signal separation on a 2×2 space/spatial frequency plane (SFP, Space-Frequency plane) is widely used. However, in the prior art, the 2-dimensional space/frequency shift operator included in the Gabor function is the same as the non-replaceable time/frequency shift operator of the 1-dimensional signal, and no attention is paid to the difference from the non-replaceable displacement. Generation of phase distortion. By the orthogonal projection operator on the SD area limitation function of Hilbert space and the FD bandwidth limitation function

Figure 108102227-A0305-02-0179-689
Figure 108102227-A0305-02-0179-689

的直接分解(102),解決將SD及FD訊號進行對稱處理之圖像的空間/空間頻率的同時表現問題(101),定義關於SD,FD之對稱的空間/頻率位移運算子SFSO(105)之2維Gabor函數(106)及離散版symmetrical SFSO(108),引導局部選擇運算子(localization operator)(103),並提供一種圖像處理方法的理論框架,其係利用基於von Neumann的APT之圖像表現及圖像復原等的不可置換性。 Direct decomposition of (102), solve the problem of simultaneous representation of the space/spatial frequency of the image that symmetrically process SD and FD signals (101), define the symmetrical space/frequency shift operator SFSO of SD and FD (105) The two-dimensional Gabor function (106) and the discrete version of symmetrical SFSO (108), guide the localization operator (103), and provide a theoretical framework for image processing methods, which are based on von Neumann's APT The irreplaceability of image expression and image restoration.

<<傳送接收系統的構成例1>> <<Configuration example 1 of transmission and reception system>>

以下,針對根據上述理論方面的傳送接收系統的第1構成例,參考圖式並進行說明。 Hereinafter, the first configuration example of the transmission and reception system based on the above-mentioned theoretical aspect will be described with reference to the drawings.

圖18為表示本構成例中傳送接收系統1的構成例的方塊圖。如圖18所示般,通訊系統1具有傳送裝置100,及接收裝置200。傳送接收系統1可做為雷達使用,也可以做為雷達以外的通訊系統(例如主要作聲音數據或是影像數據之傳送接收數據的傳送接收系統)。 FIG. 18 is a block diagram showing a configuration example of the transmission and reception system 1 in this configuration example. As shown in FIG. 18, the communication system 1 has a transmitting device 100 and a receiving device 200. The transmitting and receiving system 1 can be used as a radar, or as a communication system other than radar (for example, a transmitting and receiving system mainly for transmitting and receiving data of audio data or image data).

<傳送裝置100> <Transport Device 100>

傳送裝置100於上述的說明中,將記載的事項當作「傳送器」的動作實際地執行之裝置。 In the above description, the transmission device 100 regards the items described as a device that actually executes the actions of the "transporter".

其中一例如圖18所示般,傳送裝置100具備傳送用數據取得部101、傳送訊號產生部102、以及傳送部103。 For example, as shown in FIG. 18, the transmission device 100 includes a transmission data acquisition unit 101, a transmission signal generation unit 102, and a transmission unit 103.

(傳送用數據取得部101) (Transmission data acquisition unit 101)

傳送用數據取得部101係取得傳送接收對象的數據。將傳送接收系統1作為數據傳送接收系統使用的情況下,傳送對象的數據,可為將例如:聲音數據、圖像數據、以及文字數據之至少任一者數位數據化後的內容,亦可為其他的數據。 The transmission data acquisition unit 101 acquires the data of the transmission and reception target. When the transmission and reception system 1 is used as a data transmission and reception system, the data to be transmitted may be a content obtained by digitizing at least any one of, for example, audio data, image data, and text data, or it may be Other data.

此外,以使用傳送接收系統1作為雷達的情形下,傳送對象的數據亦可為雷達用的脈波。 In addition, when the transmission and reception system 1 is used as a radar, the data to be transmitted may also be a pulse wave for radar.

(傳送訊號產生部102) (Transmission signal generator 102)

傳送訊號產生部102,以傳送用數據取得部101取得的傳送對象數據為對象,實施產生傳送訊號處理,藉此產生傳送訊號。 The transmission signal generation unit 102 uses the transmission target data acquired by the transmission data acquisition unit 101 as an object, and performs transmission signal generation processing, thereby generating a transmission signal.

作為傳送訊號產生部102的一個例子,其構成為具有圖4-圖7所示SFB的至少一個。 As an example of the transmission signal generating unit 102, it is configured to have at least one of the SFBs shown in FIGS. 4-7.

就產生傳送訊號處理的例子而言,例如使用具有上述的週期N,N’的TD-、FD-的PC(phase code),即TD、FD-二元相位位移鍵(BPSK,Binary phase-shift keying)等。 As far as the example of the transmission signal processing is concerned, for example, the PC (phase code) of TD- and FD- with the above-mentioned period N, N'is used, that is, TD, FD-Binary phase-shift key (BPSK, Binary phase-shift) keying) and so on.

作為傳送訊號產生部102所產生的傳送訊號,例如,可列舉如上述的 As the transmission signal generated by the transmission signal generating unit 102, for example, the above-mentioned

Figure 108102227-A0305-02-0181-690
Figure 108102227-A0305-02-0181-690

。此外,作為基於傳送訊號產生部102的具體處理,可舉出於<4.TD-、FD-signature與template>當中說明般的各處理。 . In addition, as a specific process based on the transmission signal generating unit 102, the processes described in <4. TD-, FD-signature, and template> can be cited.

此外,傳送訊號產生部102,亦可作為執行上述<7.1 SFB:signature傳送接收器與雷達訊號傳送器>中說明的各處理的構成。又,傳送訊號產生部102,亦可作為執行上述<8.2嵌入人工型不可置換位移之基於延遲-都普勒空間分割多工(dD-SDM,delay-Doppler Space Division Multiplexing)的超高多相位位移鍵(MPSK,multiple phase shift keying)>中說明的各處理的構成。 In addition, the transmission signal generating unit 102 can also be used as a configuration for performing the various processes described in the above-mentioned <7.1 SFB: Signature Transmission Receiver and Radar Signal Transmitter>. In addition, the transmission signal generating unit 102 can also be used as an ultra-high multi-phase shift based on delay-Doppler Space Division Multiplexing (dD-SDM, delay-Doppler Space Division Multiplexing) that performs the above-mentioned <8.2 embedded artificial non-replaceable shift Key (MPSK, multiple phase shift keying)> The configuration of each process described in.

(傳送部103) (Transport Department 103)

傳送部103將傳送訊號產生部102所產生的傳送訊號進行傳送。 The transmission unit 103 transmits the transmission signal generated by the transmission signal generation unit 102.

<接收裝置200> <Receiving Device 200>

接收裝置200為上述說明中,將用以作為「接收器」的動作而記載的事項,將其實際執行的裝置。 The receiving device 200 is a device that actually executes the items described as the operation of the "receiver" in the above description.

作為其中一例,接收裝置200如圖18所示般,具有接收部201、位移推定及接收數據抽出部202、接收數據輸出部203。 As an example, as shown in FIG. 18, the receiving device 200 has a receiving unit 201, a displacement estimation and received data extraction unit 202, and a received data output unit 203.

(接收部201) (Receiving part 201)

接收部201接收傳送裝置100所傳送的訊號。作為接收部201接收之訊息的例子,可如前述的 The receiving unit 201 receives the signal transmitted by the transmitting device 100. As an example of the message received by the receiving unit 201, it can be as described above

[數學式882]TD、FD接收訊號:r[kX],R[lX],[Math 882] TD, FD receiving signal: r [ k : X ], R [ l : X ],.

(位移推定及接收數據抽出部202) (Displacement estimation and received data extraction unit 202)

位移推定及接收數據抽出部202(亦可僅稱推定部)對於接收部201所接收到的訊號,執行位移推定處理,並且抽出接收數據。 The displacement estimation and received data extraction unit 202 (or simply the estimation unit) performs displacement estimation processing on the signal received by the receiving unit 201, and extracts the received data.

作為位移推定及接收數據抽出部202的一例,其係至少可由具有如圖8~10所示之AFB的任一者而構成。 As an example of the displacement estimation and received data extraction unit 202, it can be constituted by at least any one having AFB as shown in FIGS. 8-10.

位移推定及接收數據抽出部202,、執行於例如前述<5.基於M種假設檢測的TD-、FD-訊號檢測及推定>及<6.參數推定用TD-CCF、FD-CCF>當中所說明的各處理。 The displacement estimation and received data extraction unit 202 is executed in, for example, the aforementioned <5. TD-, FD-signal detection and estimation based on M types of hypothesis detection> and <6. TD-CCF, FD-CCF for parameter estimation> Description of each processing.

此外,位移推定及接收數據抽出部202亦可構成為執行前述<7.2 AFB:接收器與解碼器>中所說明的各處理的構成。又,傳送訊號產生部102,亦可作為執行上述<8.2嵌入人工型不可置換位移之基於延遲-都普勒空間分割多工(dD-SDM,delay-Doppler Space Division Multiplexing)的超高多相位位移鍵(MPSK,multiple phase shift keying)>中說明的各處理的構成。 In addition, the displacement estimation and received data extraction unit 202 may also be configured to execute each process described in the aforementioned <7.2 AFB: Receiver and Decoder>. In addition, the transmission signal generating unit 102 can also be used as an ultra-high multi-phase shift based on delay-Doppler Space Division Multiplexing (dD-SDM, delay-Doppler Space Division Multiplexing) that performs the above-mentioned <8.2 embedded artificial non-replaceable shift Key (MPSK, multiple phase shift keying)> The configuration of each process described in.

因此,位移推定及接收數據抽出部202係接收訊號的接收方法(參照圖13),其係執行:推定步驟,其係參照具有餘維度2之不可置換位移的參數空間(參照圖17),來推定接收訊號所表示的時間位移及頻率位移(參照圖13以及因應同圖之開關2-1,2-2的上下連接的各公式(38),(43),及公式(89),(90))。 Therefore, the displacement estimation and received data extraction unit 202 is a receiving method of the received signal (refer to FIG. 13), and it executes: the estimation step, which refers to the parameter space of the non-permutable displacement with the co-dimension 2 (refer to FIG. 17), Estimate the time shift and frequency shift represented by the received signal (refer to Fig. 13 and formulas (38), (43), and formulas (89), (90) corresponding to the upper and lower connections of switches 2-1 and 2-2 in the same figure )).

又,傳送訊號產生部102係執行:位移步驟,其係參照具有餘維度2之不可置換位移的參數空間,使傳送對象之訊號的時間及頻率位移(參照圖12以及因應同圖之開關1-1,1-2的上下連接的各公式(25),(27),及公式(88),(87))。 In addition, the transmission signal generation unit 102 executes: a displacement step, which refers to a parameter space with a co-dimension 2 of non-replaceable displacement to shift the time and frequency of the signal of the transmission target (refer to FIG. 12 and corresponding to the switch 1- in the same figure). The formulas (25), (27), and formulas (88), (87) for the upper and lower connections of 1,1-2).

又,上述具有餘維度2之不可置換位移的參數空間,係藉由顯示有時間位移及頻率位移的第三軸,來將由顯示時間的第一軸與顯示頻率的第二軸所張開之平面,3維化所得到的空間(參照圖17)。 In addition, the above-mentioned non-replaceable displacement parameter space with a co-dimension of 2 uses a third axis showing time displacement and frequency displacement to display the plane opened by the first axis showing time and the second axis showing frequency, 3 Dimension the resulting space (refer to Figure 17).

又,上述 Also, the above

[數學式883](k d,l D) [Math 883] ( k d , l D )

-MC本身亦與AC相同,係餘維度2的參數平面,且係伴隨著在時間/頻率的訊號平面TFP上施加位移運算之參數平面。有必要將”位移平面”與時間t與頻率f的TFP(參照圖16)產生區別。除了對訊號的變數t,f所執行的4則運算、微分、積分等之外,與相位相關的不可置換的位移運算(參見圖17中的第三軸)係被視為特別的。 -MC itself is also the same as AC. It is a parameter plane of co-dimension 2 and a parameter plane accompanied by a displacement operation on the time/frequency signal plane TFP. It is necessary to distinguish the "displacement plane" from the TFP of time t and frequency f (refer to FIG. 16). In addition to the four arithmetic operations, differentiation, integration, etc. performed on the signal variables t, f, the phase-related non-replaceable displacement operations (see the third axis in Figure 17) are considered special.

又,將結合專利文獻6~8增加以下內容。 In addition, the following contents will be added in conjunction with Patent Documents 6 to 8.

a)有必要將調變/解調時的 a) When it is necessary to modulate/demodulate

Figure 108102227-A0305-02-0184-793
Figure 108102227-A0305-02-0184-793

(或其離散版 (Or its discrete version

Figure 108102227-A0305-02-0184-794
Figure 108102227-A0305-02-0184-794

)及衰減常數Aeiκ 的PD eiκ 全部捕捉且合併。此係因為,由於位移的群論型性質,各PD係非獨立地傳播,故其不是精確的PD補償。在時間位移及頻率位移之推定值的更新過程中,有必要留意與此等PD補償的連動(同時並行處理:公式59)。 ) And PD e i κ of the attenuation constant Ae i κ are all captured and merged. This is because, due to the group-theoretic nature of the displacement, each PD is propagated non-independently, so it is not an accurate PD compensation. In the process of updating the estimated values of time shift and frequency shift, it is necessary to pay attention to the linkage with these PD compensations (simultaneous parallel processing: formula 59).

b)本專利的時間位移/頻率位移係各自對應時間/頻率變數之餘維度2的參數空間變數的稱呼,此等不可置換的位移運算係引發相關函數(相位失真)。另一方面,在通訊中的時間偏差及頻率偏差係週期及載波頻率的”偏移”。 b) The time displacement/frequency displacement system of this patent refers to the parameter space variable of the remaining dimension 2 of the time/frequency variable. These non-replaceable displacement calculations cause correlation functions (phase distortion). On the other hand, the time deviation and frequency deviation in communication are the "offset" of the period and carrier frequency.

(1)專利文獻7、8所推定之時間偏差及頻率偏差、以及專利文獻7之OFDM方法之通訊方式中的時間/頻率偏差,係各脈波波形的時間寬度及載波頻率的波動,且對應本專利的時間位移td及頻率位移fD。因為兩專利文獻係無 視td及fD之間的不可置換性,故能夠作為一般的同步捕捉/同步保持法而被理解。 (1) The time deviation and frequency deviation estimated in Patent Documents 7 and 8, and the time/frequency deviation in the communication method of the OFDM method of Patent Document 7 are the fluctuations in the time width of each pulse waveform and the carrier frequency, and correspond to The time displacement t d and frequency displacement f D of this patent. Because the two patent documents ignore the irreplaceability between t d and f D , they can be understood as a general synchronization capture/synchronization maintenance method.

(2)因為”有意的”位移與偏差係容易混用,故在本說明書中,不使用”偏差”而是使用”指數函數肩部的半位移(習知的不可置換位移的一半)”的表現。又,本說明中所記載之發明的一個特徵,係在傳送訊號包含”經過事先半位移後的相位函數”,以及能夠作為考慮具有不可置換性之時間/頻率位移的群論型性質之補償法來表現。 (2) Because "intentional" displacement and deviation are easily mixed, in this specification, "deviation" is not used but the expression of "half displacement of the shoulder of exponential function (half of the conventional non-replaceable displacement)" is used. . In addition, a feature of the invention described in this specification is that the transmission signal includes a "phase function after a half-shift in advance" and can be used as a compensation method that takes into account the group-theoretic nature of time/frequency shifts that are irreplaceable. which performed.

c)用於專利文獻8之頻道(channel)推定之接受後的前導碼係時間區域template訊號,並不能說是頻率區域訊號,其並未基於不可置換,而是一般的頻道推定法。 c) The preamble used for channel estimation in Patent Document 8 is a time zone template signal after acceptance. It cannot be said to be a frequency zone signal. It is not based on non-replacement, but a general channel estimation method.

(1)相對於專利文獻6的PUL演算法,1)定義各種template所屬的Hilbert空間εi,1≦i≦4,作為Hilbert空間的訊號空間之部分空間;2)使上述第1之N’個相關函數(類型3-或類型1-CCF)為朝NM△t(或L△t)-TL-TD函數的Hilbert空間ε3(或ε1)上的正交投影運算子P3(或P1)、以及上述第2之N個相關函數(類型4-或類型2-CCF)為朝N'M'△f(或L△f)-BL-FD函數的Hilbert空間ε4(或ε2)上的正交投影運算子P4(或P2);3)使用TFP進行2維模板匹配(template-matching),局部選擇運算子LO的替代投影定理運算子(APTO,Alternative Projection Theorem Operator)P3F-1.dP4Fd(或P4FdP3F-1,d)的更新過程,係收斂於兩Hilbert空間的合併集合內的函數(von Neumann的APT:F-1d,Fd係IDFT,DFT);4)闡明此TL-TD函數及BL-FD函數的合併集合係空集合,即零函數(Youla定理)等,又,證明了:PUL係提供非與相關函數種類數量N,N'的積N‧N'成比例而是與和值N+N'成比例之 計算複雜度與高斯chip脈波的時間寬度L△t、帶寬L△f之精確的時間位移、頻率位移的推定值(L=(△t△f)-1=MM')。 (1) Compared with the PUL algorithm of Patent Document 6, 1) Define the Hilbert space ε i to which various templates belong, 1≦i≦4, as a partial space of the signal space of the Hilbert space; 2) Set the above-mentioned first N' A correlation function (type 3- or type 1-CCF) is the orthogonal projection operator P 3 (or ε 1 ) on the Hilbert space ε 3 (or ε 1) of the NM△t (or L△t)-TL-TD function P 1 ), and the above-mentioned second N correlation function (type 4- or type 2-CCF) is the Hilbert space ε 4 (or ε 2 ) Orthogonal projection operator on P 4 (or P 2 ); 3) Use TFP for two-dimensional template matching (template-matching), local selection operator LO's alternative projection theorem operator (APTO, Alternative Projection Theorem Operator) ) P 3 F -1.d P 4 F d ( or P 4 F d P 3 F -1 , d) update process, based on the convergence function (von Neumann in the combined set of two APT Hilbert space: F - 1d , F d is IDFT, DFT); 4) clarify that the combined set of TL-TD function and BL-FD function is an empty set, that is, the zero function (Youla theorem), etc., and it is proved that the PUL system provides non-correlation The number of function types is N, the product of N'is proportional to N‧N' but proportional to the sum of N+N'. The calculation complexity is accurate to the time width L△t and bandwidth L△f of the Gauss chip pulse. Estimated value of displacement and frequency displacement (L=(△t△f) -1 =MM').

(2)專利文獻8的頻道推定的最小均方誤差(MMSE,Miminum mean square error)演算法,係基於Bayes規則的2參數推定,故計算複雜度成為積(N‧N')。另一方面,本說明書中的似然函數雖然與Bayes規則相關,但因為其係由時間位移推定的N’個似然函數與頻率位移推定的N個似然函數所組成,且各自在TL-TD空間及BL-FD空間交互地進行最大似然估計,故計算複雜度成為和值(N+N'),此係與文獻3的方法完全相異的參數推定法。 (2) The channel estimation minimum mean square error (MMSE, Miminum mean square error) algorithm of Patent Document 8 is based on the Bayes rule of 2-parameter estimation, so the computational complexity becomes the product (N‧N'). On the other hand, although the likelihood function in this specification is related to the Bayes rule, it is composed of N'likelihood functions estimated by time shift and N likelihood functions estimated by frequency shift, and each is in TL- TD space and BL-FD space perform maximum likelihood estimation interactively, so the computational complexity becomes the sum (N+N'). This is a parameter estimation method completely different from the method in Literature 3.

又,位移推定及接收數據抽出部202,係如公式(84)及使用相關之記載所說明般,作為一實例,執行推定步驟,其係接收訊號所表示之時間位移及頻率位移,且上述推定步驟係使用:第一位移運算子 In addition, the displacement estimation and received data extraction unit 202, as described in the formula (84) and the use-related description, as an example, executes the estimation step, which is the time displacement and frequency displacement represented by the received signal, and the above estimation Step system use: the first shift operator

Figure 108102227-A0305-02-0186-691
Figure 108102227-A0305-02-0186-691

,其係表示時間位移的推定值及頻率位移;第二位移運算子 , Which represents the estimated value of time shift and frequency shift; the second shift operator

Figure 108102227-A0305-02-0186-693
Figure 108102227-A0305-02-0186-693

,其係表示時間位移、頻率位移的推定值;來推定上述接收訊號所表示之時間位移及頻率位移。 , Which represents the estimated value of time displacement and frequency displacement; to estimate the time displacement and frequency displacement indicated by the above-mentioned received signal.

上述推定步驟係使用:第一位移運算子 The above presumption step is to use: the first shift operator

Figure 108102227-A0305-02-0186-694
Figure 108102227-A0305-02-0186-694

、第二位移運算子 , The second shift operator

Figure 108102227-A0305-02-0187-695
Figure 108102227-A0305-02-0187-695

、第三位移運算子 , The third shift operator

Figure 108102227-A0305-02-0187-696
Figure 108102227-A0305-02-0187-696

或其對耦頻率(Dual Frequency) Or its dual frequency (Dual Frequency)

Figure 108102227-A0305-02-0187-697
Figure 108102227-A0305-02-0187-697

及第四位移運算子 And the fourth shift operator

Figure 108102227-A0305-02-0187-698
Figure 108102227-A0305-02-0187-698

或其對耦頻率 Or its coupled frequency

Figure 108102227-A0305-02-0187-699
Figure 108102227-A0305-02-0187-699

,來推定上述接收訊號所表示的時間位移及頻率位移;又,上述第一位移運算子係表示時間位移的推定值、頻率位移及推定時間位移的一半之半位移(Half shift)的相位項;上述第二位移運算子係表示時間位移、頻率位移的推定值及推定頻率位移的一半之半位移的相位項;上述第三位移運算子係表示推定對象的時間位移、推定對象的頻率位移觀測值及推定時間位移的一半之半位移的相位項;以及上述第四位移運算子係表示時間位移、頻率位移的推定值及推定時間位移的一半之半位移的相位項。 , To estimate the time shift and frequency shift represented by the received signal; and, the first shift operator system represents the estimated value of the time shift, the frequency shift and the phase term of the half shift of the estimated time shift; The second displacement operator system represents the estimated value of time displacement, frequency displacement, and the phase term of half of the estimated frequency displacement; the third displacement operator system represents the time displacement of the estimated object and the observed value of frequency displacement of the estimated object And the phase term of the half of the estimated time displacement; and the fourth displacement operation sub-system represents the phase term of the estimated value of the time displacement, the frequency displacement, and the half of the estimated time displacement.

傳送時間訊號的相位函數係包含:關於時間之1或複數個位移參數的位移量之一半的半位移的相位量。又,傳送頻率訊號的相位函數係包含:關於頻率之1或複數個位移參數的位移量之一半的半位移的相位量。 The phase function of the transmitted time signal includes: the phase quantity of the half displacement with respect to 1 of the time or half of the displacement of the plural displacement parameters. In addition, the phase function of the transmitted frequency signal includes the phase amount of half displacement with respect to 1 of the frequency or half of the displacement of the plural displacement parameters.

根據上述般構成的接收裝置200,可實現高效率的接收裝置。作為其一例,將接收裝置200作為雷達接收裝置而構成的情況下,可實現高速的接收裝置。 According to the receiving device 200 configured as described above, a highly efficient receiving device can be realized. As an example, when the receiving device 200 is configured as a radar receiving device, a high-speed receiving device can be realized.

此外,位移推定及接收數據抽出部202所執行的上述推定步驟,如同用公式(84)以及相關記載說明般,作為其一例,參考用該第一位移運算子所表示的第1相關函數 In addition, the above-mentioned estimating steps performed by the displacement estimation and received data extraction unit 202 are as described in formula (84) and related descriptions. As an example, refer to the first correlation function expressed by the first displacement operator

Figure 108102227-A0305-02-0188-700
Figure 108102227-A0305-02-0188-700

,以及用該第2位移運算子所表示的該第2相關函數 , And the second correlation function represented by the second shift operator

Figure 108102227-A0305-02-0188-701
Figure 108102227-A0305-02-0188-701

,來推定上述接收訊號所表示的時間位移以及頻率位移。 , To estimate the time shift and frequency shift represented by the received signal.

此外,如上述般,上述第1相關函數表示為 In addition, as described above, the first correlation function described above is expressed as

Figure 108102227-A0305-02-0188-702
Figure 108102227-A0305-02-0188-702

,上述第2的相關函數,表示為 , The second correlation function above, expressed as

[數學式897]

Figure 108102227-A0305-02-0189-703
[Math 897]
Figure 108102227-A0305-02-0189-703

又,在上述推定步驟中,參照使用上述第一位移運算子、第三位移運算子及第四位移運算子來表示的第一相關函數 In the above estimation step, the first correlation function expressed by the first shift operator, the third shift operator, and the fourth shift operator is referred to

Figure 108102227-A0305-02-0189-704
Figure 108102227-A0305-02-0189-704

,以及參照使用上述第二位移運算子、第三位移運算子及第四位移運算子來表示的上述第二相關函數 , And refer to the second correlation function represented by the second shift operator, the third shift operator, and the fourth shift operator

Figure 108102227-A0305-02-0189-705
Figure 108102227-A0305-02-0189-705

,來推定上述接收訊號所表示的時間位移及頻率位移。 , To estimate the time shift and frequency shift represented by the received signal.

如此一來,上述第一相關函數(參照公式(89))及第二相關函數(參照公式(90))係包含:調變頻率fc的調變及解調中伴隨時間位移td之不可置換演算的相位失真 In this way, the above-mentioned first correlation function (refer to formula (89)) and second correlation function (refer to formula (90)) include: the modulation of the modulation frequency f c and the impossibility of the time shift t d in the demodulation. Phase distortion of displacement calculation

[數學式900]

Figure 108102227-A0305-02-0190-706
[Math 900]
Figure 108102227-A0305-02-0190-706

或其離散版 Or its discrete version

Figure 108102227-A0305-02-0190-792
Figure 108102227-A0305-02-0190-792

;及傳送時的相位失真e; And the phase distortion e iκ during transmission .

此外,位移推定及接收數據抽出部202,如同使用公式(60)、(61)以及其相關的記載說明般地,將時間位移的推定軸、以及頻率位移的推定值 In addition, the displacement estimation and received data extraction unit 202 uses the formulas (60), (61) and related descriptions to describe the estimated axis of the time displacement and the estimated value of the frequency displacement.

Figure 108102227-A0305-02-0190-707
Figure 108102227-A0305-02-0190-707

or

Figure 108102227-A0305-02-0190-708
Figure 108102227-A0305-02-0190-708

的更新處理,以 Update processing to

Figure 108102227-A0305-02-0190-709
Figure 108102227-A0305-02-0190-709

所決定的 Decided

Figure 108102227-A0305-02-0191-710
Figure 108102227-A0305-02-0191-710

,將之設定為 , Set it to

Figure 108102227-A0305-02-0191-711
Figure 108102227-A0305-02-0191-711

來進行處理。 To deal with it.

如此一來,進行位移推定及接收數據抽出部202所執行的推定處理。 In this way, displacement estimation and estimation processing executed by the received data extraction unit 202 are performed.

在上述推定處理中,包含:交互更新步驟,其係交互地重複進行頻率位移的推定值之更新步驟及時間位移的推定值之更新步驟。又,上述頻率位移的推定值之更新步驟係參照上述第一相關函數 The above-mentioned estimation processing includes an interactive update step in which the update step of the estimated value of frequency shift and the update step of the estimated value of time shift are alternately repeated. In addition, the update procedure of the estimated value of the frequency shift refers to the first correlation function

Figure 108102227-A0305-02-0191-712
Figure 108102227-A0305-02-0191-712

(或公式(89)),求得 (Or formula (89)), find

Figure 108102227-A0305-02-0191-713
Figure 108102227-A0305-02-0191-713

,並藉由將其值設定為 , And by setting its value to

Figure 108102227-A0305-02-0191-714
Figure 108102227-A0305-02-0191-714

,來更新頻率位移的推定值。 , To update the estimated value of frequency shift.

又,上述時間位移的推定值之更新步驟係參照上述第二相關函數 In addition, the update procedure of the estimated value of the time shift refers to the second correlation function

Figure 108102227-A0305-02-0192-715
Figure 108102227-A0305-02-0192-715

(或公式(90)),求得 (Or formula (90)), find

Figure 108102227-A0305-02-0192-716
Figure 108102227-A0305-02-0192-716

,並藉由將其值設定為 , And by setting its value to

Figure 108102227-A0305-02-0192-717
Figure 108102227-A0305-02-0192-717

,來更新時間位移的推定值。 , To update the estimated value of the time shift.

又,在上述推定步驟中,如上述般,基於N’個的TD-template訊號檢測的似然函數之頻率位移的最大似然估計及N個FD-template訊號檢測的似然函數之時間位移的最大似然估計,來推定接收訊號所表示的時間位移及頻率位移。 Furthermore, in the above estimation step, as described above, the maximum likelihood estimation of the frequency shift based on the likelihood function of the N'TD-template signal detection and the time shift of the likelihood function of the N FD-template signal detection Maximum likelihood estimation is used to estimate the time shift and frequency shift represented by the received signal.

又,在上述最大似然估計當中,在參照公式(89)的相關函數 In addition, in the above-mentioned maximum likelihood estimation, referring to the correlation function of formula (89)

Figure 108102227-A0305-02-0192-718
Figure 108102227-A0305-02-0192-718

及公式(90)的相關函數 And the correlation function of formula (90)

Figure 108102227-A0305-02-0192-719
Figure 108102227-A0305-02-0192-719

時,其各自適用於作為公式(60)第一式的右邊 , Each of which is applicable as the right side of the first formula of formula (60)

[數學式915]

Figure 108102227-A0305-02-0193-720
[Math 915]
Figure 108102227-A0305-02-0193-720

及第二式 And the second type

Figure 108102227-A0305-02-0193-721
Figure 108102227-A0305-02-0193-721

的替代,且在argmax演算當中, Substitution, and in the argmax calculus,

Figure 108102227-A0305-02-0193-722
Figure 108102227-A0305-02-0193-722

也成為最大似然估計的對象。 It has also become the object of maximum likelihood estimation.

又,在上述最大似然估計中,接收裝置係在 Also, in the above-mentioned maximum likelihood estimation, the receiving device is

[數學式918]M-ary [Math 918] M -ary

通訊下,通過k的編碼化器一部分的 Under communication, part of the encoder through k

Figure 108102227-A0305-02-0193-723
Figure 108102227-A0305-02-0193-723

之接收 Receive

[數學式920]TD-CEψAC[k]/FD-CEΨAC[l] [Math 920] TD-CEψ AC [ k ]/FD-CEψ AC [ l ]

的接收部。 The receiving department.

如此一來,本實施形態的接收裝置係接收訊號的接收裝置,且其包含:推定部,其係參照具有餘維度2之不可置換位移的參數空間,來推定接收訊號所表示的時間位移及頻率位移。 In this way, the receiving device of this embodiment is a receiving device that receives a signal, and it includes an estimating unit that refers to a parameter space with a co-dimension 2 that cannot be replaced with a displacement to estimate the time shift and frequency represented by the received signal Displacement.

又,在上述最大似然估計中,於公式(87)(或(27))的TD-CE,FD-CE(此處,由於因應圖12之傳送器的開關1-1,1-2的上下之多重化等級的不同,故引用對應的公式),右邊的公式(88)(或(25))的TD-signature,FD-signature被多重化,兩signature本身亦能夠藉由使用將高斯函數或其FD函數進行2維PC調變之多重化來獲得。又, In addition, in the above-mentioned maximum likelihood estimation, the TD-CE and FD-CE in formula (87) (or (27)) (here, due to the switch 1-1, 1-2 of the transmitter in Figure 12) The upper and lower levels of multiplexing are different, so the corresponding formula is quoted), the TD-signature and FD-signature of the formula (88) (or (25)) on the right are multiplexed, and the two signatures themselves can also be Gaussian functions by using Or its FD function is obtained by multiplexing 2D PC modulation. also,

[數學式921]M-ary [Math 921] M -ary

通訊的傳送TD-CE,FD-CE係如公式(87)所示,TD-signature,FD-signature係互為獨立的2維PC集合 Communication transmission TD-CE, FD-CE are as shown in formula (87), TD-signature, FD-signature are mutually independent 2-dimensional PC sets

Figure 108102227-A0305-02-0194-724
Figure 108102227-A0305-02-0194-724

所產生之多重化及使因應其k的編碼 The resulting multiple and the code corresponding to its k

Figure 108102227-A0305-02-0194-725
Figure 108102227-A0305-02-0194-725

Of

Figure 108102227-A0305-02-0194-726
Figure 108102227-A0305-02-0194-726

的位移對應的位移演算 The displacement calculation corresponding to the displacement

Figure 108102227-A0305-02-0194-727
Figure 108102227-A0305-02-0194-727

產生作用。 Have an effect.

如此一來,本實施形態的傳送方法係傳送訊號的傳送方法,其係包含:位移步驟,其係參照具有餘維度2之不可置換位移的參數空間,使傳送對象之訊號的時間及頻率位移。 In this way, the transmission method of this embodiment is a transmission signal transmission method, which includes: a displacement step, which refers to a parameter space with a co-dimension 2 irreplaceable displacement to shift the time and frequency of the signal of the transmission object.

又,在上述最大似然估計中,於通過 Moreover, in the above-mentioned maximum likelihood estimation, Yu passed

[數學式926]M-ary [Math 926] M -ary

通訊下之k的編碼化器一部分的 Part of the encoder of k under communication

Figure 108102227-A0305-02-0195-728
Figure 108102227-A0305-02-0195-728

之接收 Receive

[數學式928]TD-CEψAC[k]/FD-CEΨAC[l] [Math 928] TD-CEψ AC [ k ]/FD-CEψ AC [ l ]

與推定接收template的相關函數(公式(89))(右邊第一、第二項係各自為傳送訊號及推定訊號template)之情況下,公式(87)-(90)中的和值Σ所代表之”多重化=無重疊疊加”,係能夠使用各種位移運算子來模擬。在圖12之傳送訊號的生成過程中,進行各種多重化。在公式(87)-(88)中,針對各TD-,FD-chip脈波使用週期 In the case of the correlation function with the estimated reception template (formula (89)) (the first and second terms on the right are the transmitted signal and the estimated signal template respectively), the sum Σ in formulas (87)-(90) represents The "multiplexing = no overlap superposition" can be simulated using various shift operators. In the process of generating the transmission signal shown in FIG. 12, various multiplexing are performed. In formulas (87)-(88), for each TD-, FD-chip pulse wave usage cycle

Figure 108102227-A0305-02-0195-729
Figure 108102227-A0305-02-0195-729

的2維PC調變 2D PC modulation

Figure 108102227-A0305-02-0195-730
Figure 108102227-A0305-02-0195-730

之多重化,生成signature;並以使用將獲得之signature用於數據等級位移的數據多重化,定義傳送TD-CE,FD-CE。又,在沒有位移的單純加法中,因為無法檢測template,故自然能夠明白以下事項:位移運算子係不可缺乏的;以及伴隨著位移演算之PD係為了template檢測,在應支付補償的同時,成為正確的PD失真評價的線索。 The multiplexed, generate signature; and use the obtained signature for data multiplexed data level shift, define and transmit TD-CE, FD-CE. In addition, in simple addition without displacement, because the template cannot be detected, it is natural to understand the following: the displacement operator is indispensable; and the PD associated with the displacement calculation is for template detection, and compensation should be paid at the same time. Clues for correct PD distortion evaluation.

又,於公式(89)的右邊,施以伴隨著調變/解調之PD Also, on the right side of equation (89), apply PD with modulation/demodulation

Figure 108102227-A0305-02-0196-791
Figure 108102227-A0305-02-0196-791

、k的編碼 , The encoding of k

Figure 108102227-A0305-02-0196-731
Figure 108102227-A0305-02-0196-731

of

Figure 108102227-A0305-02-0196-732
Figure 108102227-A0305-02-0196-732

之PD補償。 的PD compensation.

如此一來,在上述位移步驟中,藉由將時間脈波波形進行週期N的時間相位編碼調變,再將經過上述時間相位編碼調變後的時間脈波波形,藉由週期N’的頻率區域相位編碼調變而多載波化,進而產生傳送訊號。 In this way, in the above displacement step, the time pulse waveform is modulated by the time phase code of period N, and then the time pulse waveform after the time phase code modulation is modulated by the frequency of period N' The regional phase code modulation is multi-carrier, and then the transmission signal is generated.

又,在本實施形態的傳送裝置中,在圖12之開關1-1,1-2連接於下的狀態下,藉由使進行了各種多重化後之數據多重化後的TD-signature,FD-signature通過k的編碼 In addition, in the transmission device of this embodiment, in the state where the switches 1-1 and 1-2 in FIG. 12 are connected, the TD-signature, FD after the multiplexed data is multiplexed. -signature pass the code of k

[數學式934]

Figure 108102227-A0305-02-0197-733
[Math 934]
Figure 108102227-A0305-02-0197-733

對應的 corresponding

Figure 108102227-A0305-02-0197-734
Figure 108102227-A0305-02-0197-734

,而獲得 , And get

[數學式936]TD-CE ψAC[k],FD-CE ΨAC[l] [Math 936] TD-CE ψ AC [ k ], FD-CE Ψ AC [ l ]

。其中,前述多重化係將時間脈波波形進行週期N的時間相位編碼調變,再將經過上述時間相位編碼調變後的時間脈波波形,藉由週期N’的頻率區域相位編碼調變而多載波化等。 . Among them, the aforementioned multiplexing is to perform the time pulse waveform with period N time phase code modulation, and then the time pulse waveform after the above-mentioned time phase code modulation is modulated by the frequency region phase code modulation of period N'. Multi-carrier and so on.

又,在圖13之開關2-1,2-2連接於下的狀態下,公式(89),(90)的相關函數的實部最大化係進行關於4個變數 In addition, in the state where the switches 2-1 and 2-2 in Fig. 13 are connected to the bottom, the real part of the correlation function of formulas (89) and (90) is maximized with respect to four variables

Figure 108102227-A0305-02-0197-735
Figure 108102227-A0305-02-0197-735

的argmax演算,並基於PUL,使用 Argmax calculus, and based on PUL, use

Figure 108102227-A0305-02-0197-736
Figure 108102227-A0305-02-0197-736

的交戶更新之收斂值進行 Convergence value of the account update is carried out

Figure 108102227-A0305-02-0197-789
Figure 108102227-A0305-02-0197-789

的復原及k的解碼。 The restoration of and the decoding of k.

又,根據以下的各種構成所規定之朝圖像訊號的擴張,係如8.3節所記載般,其係從利用了伴隨著空間/空間頻率位移間的不可置換性之半位移的1維訊號,朝2維訊號的自然擴張(參照公式(102)-(108))。 In addition, the expansion of the image signal specified by the following various configurations is as described in section 8.3, which is based on a one-dimensional signal that uses a half-shift that is accompanied by a non-substitution between spatial/spatial frequency shifts. Towards a natural expansion of the 2-dimensional signal (refer to formulas (102)-(108)).

(朝圖像訊號的擴張構成1) (Expanded composition towards image signal 1)

一種接收圖像訊號的接收方法,其係包含:推定步驟,其係參照參數空間,來推定接收之圖像訊號所表示的空間位移及空間頻率位移;且上述空間位移及空間頻率位移係各自具有2以上的維度。 A receiving method for receiving an image signal, which includes: an estimation step, which refers to a parameter space to estimate the spatial displacement and the spatial frequency displacement represented by the received image signal; and the above-mentioned spatial displacement and the spatial frequency displacement system each has More than 2 dimensions.

(朝圖像訊號的擴張構成2) (Expanded structure toward image signal 2)

在上述推定步驟中,參照2維對稱之空間位移及空間頻率位移運算子 In the above estimation step, refer to the two-dimensional symmetrical spatial displacement and spatial frequency displacement operators

Figure 108102227-A0305-02-0198-737
Figure 108102227-A0305-02-0198-737

versus

Figure 108102227-A0305-02-0198-738
Figure 108102227-A0305-02-0198-738

,來推定空間位移及空間頻率位移。 , To estimate the spatial displacement and spatial frequency displacement.

(朝圖像訊號的擴張構成3) (Expanded composition towards image signal 3)

一種傳送圖像訊號的傳送方法,其係包含:位移步驟,其係參照參數空間,使傳送對象之圖像訊號的空間及頻率位移;且上述空間的位移及頻率的位移係各自具有2以上的維度。 A transmission method for transmitting an image signal, which includes: a displacement step, which refers to a parameter space to shift the space and frequency of the image signal of the transmission object; and the displacement of the space and the frequency of the displacement system each have 2 or more Dimension.

(朝圖像訊號的擴張構成4) (Expanded composition toward image signal 4)

在上述位移步驟中,參照2維對稱之空間位移及空間頻率位移運算子 In the above displacement step, refer to the two-dimensional symmetrical spatial displacement and spatial frequency displacement operator

Figure 108102227-A0305-02-0199-739
Figure 108102227-A0305-02-0199-739

and

Figure 108102227-A0305-02-0199-740
Figure 108102227-A0305-02-0199-740

,來使空間及頻率位移。 , To shift the space and frequency.

(接收數據輸出部203) (Received data output unit 203)

接收數據輸出部203係將位移推定及接收數據抽出部202所抽出的接收數據輸出。 The received data output unit 203 outputs the received data extracted by the displacement estimation and received data extraction unit 202.

<傳送接收的流程> <Flow of Transmission and Reception>

圖19係表示使用了傳送接收系統1的數據傳送接收處理的流程的流程圖。 FIG. 19 is a flowchart showing the flow of data transmission and reception processing using the transmission and reception system 1.

(S101) (S101)

首先,於步驟S101當中,傳送用數據取得部101取得傳送接收數據。基於傳送用數據取得部101的具體描述如上所述。 First, in step S101, the transmission data acquisition unit 101 acquires transmission and reception data. The specific description based on the data acquisition unit 101 for transmission is as described above.

(S102) (S102)

接著,步驟S102當中,傳送訊號產生部102產生傳送訊號。基於傳送訊號產生部102的具體處理如上述所述。 Next, in step S102, the transmission signal generating unit 102 generates a transmission signal. The specific processing by the transmission signal generating unit 102 is as described above.

(S103) (S103)

接著,步驟S103當中,傳送部103將傳送訊號進行傳送。基於傳送部103的具體處理如上所述。 Next, in step S103, the transmission unit 103 transmits the transmission signal. The specific processing by the transmission unit 103 is as described above.

(S201) (S201)

接著,步驟S201當中,接收部201接收傳送部103所傳送的訊號。基於接收部201的具體如上所述。 Next, in step S201, the receiving unit 201 receives the signal transmitted by the transmitting unit 103. The details based on the receiving unit 201 are as described above.

(S202) (S202)

接著,步驟S202當中,位移推定及接收數據抽出部202進行位移推定處理,並抽出接收數據。基於位移推定及接收數據抽出部202的具體處理如上所述。 Next, in step S202, the displacement estimation and received data extraction unit 202 performs displacement estimation processing and extracts received data. The specific processing based on the displacement estimation and received data extraction unit 202 is as described above.

(S203) (S203)

接著,於步驟S203,接收數據輸出部203將位移推定及接收數據抽出部202所抽出的接收數據進行輸出。基於接收數據輸出部203的具體處理如上所述。 Next, in step S203, the received data output unit 203 outputs the received data extracted by the displacement estimation and received data extraction unit 202. The specific processing based on the received data output unit 203 is as described above.

<<通訊系統的構成例2>> <<Communication system configuration example 2>>

以下參考圖式說明依據上述的理論方面的通訊系統的第1構成例。 Hereinafter, the first configuration example of the communication system based on the above-mentioned theoretical aspect will be described with reference to the drawings.

圖20為表示本構成例中傳送接收系統1a的構成例的方塊圖。如圖20所示,通訊系統1a具備傳送裝置100a及接收裝置200a。傳送接收系統1a可與前述傳送接收系統1相同,可做為雷達使用,也可以做為雷達以外的通訊系統(例如主要作為聲音數據或是影像數據之傳送接收數據的傳送接收系統)。此外,在此對已經做過說明的部件標上相同的標號,並省略其說明。 FIG. 20 is a block diagram showing a configuration example of the transmission and reception system 1a in this configuration example. As shown in FIG. 20, the communication system 1a includes a transmitting device 100a and a receiving device 200a. The transmitting and receiving system 1a can be the same as the aforementioned transmitting and receiving system 1 and can be used as a radar or as a communication system other than radar (for example, a transmitting and receiving system mainly used for transmitting and receiving data of audio data or image data). In addition, the same reference numerals are given to the components that have already been described, and the description thereof is omitted.

<傳送裝置100a> <Transfer device 100a>

傳送裝置100a如同上述般,是將作為「傳送器」之動作而將記載之事項實際執行的裝置。 As described above, the transmission device 100a is a device that actually executes the recorded items as the operation of the "transporter".

作為其中一例,如圖20所示般,傳送裝置100a具有傳送用數據取得部101、傳送訊號產生部102a,以及傳送部103。 As one example, as shown in FIG. 20, the transmission device 100a has a transmission data acquisition unit 101, a transmission signal generation unit 102a, and a transmission unit 103.

(傳送訊號產生部102a) (Transmission signal generator 102a)

傳送訊號產生部102a,係於具有構成例1中的傳送訊號產生部102的構成上,再加上具有位移嵌入部110。 The transmission signal generating unit 102a is based on the configuration of the transmission signal generating unit 102 in the configuration example 1, plus a displacement embedding unit 110.

位移嵌入部110如同接在公式(84)之後所提及般,產生嵌入了參數值 The displacement embedding part 110, as mentioned after the formula (84), generates embedded parameter values

Figure 108102227-A0305-02-0201-741
Figure 108102227-A0305-02-0201-741

的傳送訊號。 The transmission signal.

因此,傳送訊號產生部102a係使用:關於時間之1或複數個的位移參數、以及關於頻率之1或複數個的位移參數 Therefore, the transmission signal generating unit 102a uses: 1 or multiple displacement parameters related to time, and 1 or multiple displacement parameters related to frequency

Figure 108102227-A0305-02-0202-742
Figure 108102227-A0305-02-0202-742

,以對傳送對象的訊號之時間及頻率進行位移。 , To shift the time and frequency of the signal of the transmission object.

<接收裝置200a> <Receiving Device 200a>

接收裝置200a於上述說明中,將作為「接收器」之動作而將記載之事項實際執行之裝置。 In the above description, the receiving device 200a will be a device that actually executes the recorded items as the action of the "receiver".

作為其中一例,如圖20所示,接收裝置200a具有接收部201、位移推定及接收數據抽出部202a、接收數據輸出部203。 As an example, as shown in FIG. 20, the receiving device 200a has a receiving unit 201, a displacement estimation and received data extraction unit 202a, and a received data output unit 203.

(位移推定及接收數據抽出部202a) (Displacement estimation and received data extraction unit 202a)

位移推定及接收數據抽出部202a的一例為:與構成例1中具有與位移推定及接收抽出部202相同的構成。 An example of the displacement estimation and reception data extraction unit 202a has the same configuration as the displacement estimation and reception extraction unit 202 in the configuration example 1.

<傳送、接收的流程> <Flow of transmission and reception>

圖21為流程圖,其係表示使用傳送接收系統1a進行數據傳送接收處理的流程。關於步驟S101、S103、S201、S203的部分,因為與圖19的說明相同故於此省略。 FIG. 21 is a flowchart showing the flow of data transmission and reception processing using the transmission and reception system 1a. The parts of steps S101, S103, S201, and S203 are omitted here because they are the same as the description of FIG. 19.

(S102a) (S102a)

步驟S102a當中,傳送訊號產生部102a產生傳送訊號。基於傳送訊號產生部102a的具體處理如上所述。 In step S102a, the transmission signal generating unit 102a generates a transmission signal. The specific processing based on the transmission signal generating unit 102a is as described above.

(S202a) (S202a)

步驟S202當中,位移推定及接收數據抽出部202a進行位移推定處理,同時抽出接收數據。基於位移推定及接收數據抽出部202a的具體處理如上所述。 In step S202, the displacement estimation and received data extraction unit 202a performs displacement estimation processing and extracts received data at the same time. The specific processing based on the displacement estimation and received data extraction unit 202a is as described above.

<<通訊系統的構成例3>> <<Communication System Configuration Example 3>>

參照圖18~圖21所說明過的傳送接收系統,係能夠具有執行<8.3利用多維不可置換性的訊號處理>中所說明過的各步驟之構成。 The transmission and reception system described with reference to FIGS. 18 to 21 can be configured to perform the steps described in <8.3 Signal Processing Using Multi-Dimensional Non-replaceability>.

作為一實例,如在<8.3利用多維不可置換性的訊號處理>中所說明般,接收裝置200係執行:推定步驟,其係參照參數空間,來推定接收之圖像訊號所表示的空間位移及空間頻率位移;又,上述空間位移及空間頻率位移係各自具有2以上的維度。 As an example, as explained in <8.3 Signal Processing Using Multi-Dimensional Irreplaceability>, the receiving device 200 executes: an estimation step, which refers to the parameter space to estimate the spatial displacement represented by the received image signal and Spatial frequency displacement; In addition, the above-mentioned spatial displacement and spatial frequency displacement systems each have two or more dimensions.

又,如<8.3利用多維不可置換性的訊號處理>中所說明般,作為一實例,在上述推定步驟中,參照表現2維對稱之空間位移及空間頻率位移運算子 Also, as explained in <8.3 Signal Processing Using Multi-Dimensional Non-substitutability>, as an example, in the above estimation step, reference is made to the spatial displacement and spatial frequency displacement operators that express two-dimensional symmetry.

Figure 108102227-A0305-02-0203-743
Figure 108102227-A0305-02-0203-743

與表現伴隨著空間頻率位移之間的不可置換性的運算子 And the operator that expresses the irreplaceability between the spatial frequency shifts

Figure 108102227-A0305-02-0203-744
Figure 108102227-A0305-02-0203-744

,來推定空間位移及空間頻率位移。 , To estimate the spatial displacement and spatial frequency displacement.

同樣地,本構成例的傳送方法係傳送訊號的傳送方法,其係包含:位移步驟,其係參照參數空間,將傳送對象之圖像訊號的空間及頻率位 移,並使用兩個表示空間位移之一半的半位移的相位項(或者,將空間及頻率位移且空間頻率位移之一半的半位移的相位項)的運算子;又,上述空間位移及頻率位移係各自具有2以上的維度。 Similarly, the transmission method of this configuration example is the transmission method of the transmission signal, which includes: a displacement step, which refers to the parameter space, and converts the space and frequency position of the image signal of the transmission object. Shift, and use two operators representing the phase term of half of the space displacement (or the phase term of the space and frequency shift and the half of the space frequency shift); also, the above-mentioned spatial displacement and frequency shift The lines each have more than 2 dimensions.

在上述位移步驟中,參照2維對稱之空間位移及空間頻率位移運算子 In the above displacement step, refer to the two-dimensional symmetrical spatial displacement and spatial frequency displacement operator

Figure 108102227-A0305-02-0204-745
Figure 108102227-A0305-02-0204-745

and

Figure 108102227-A0305-02-0204-746
Figure 108102227-A0305-02-0204-746

,將空間及頻率位移。 , Shift the space and frequency.

[基於軟體的實施例] [Software-based embodiment]

傳送裝置100、100a、及接收裝置200、200a的控制區塊(特別是傳送訊號產生部102、102a、位移推定及接收數據抽出部202、202a)可為藉由形成於積體電路(IC晶片)的邏輯電路(硬體)實現;亦可為藉由軟體而實現。 The control blocks of the transmission device 100, 100a, and the reception device 200, 200a (especially the transmission signal generating unit 102, 102a, the displacement estimation and reception data extraction unit 202, 202a) can be formed by forming an integrated circuit (IC chip ) Logic circuit (hardware) realization; it can also be realized by software.

後者的情況中,傳送裝置100、100a及接收裝置200、200a具備電腦,其將實現各功能的軟體,即程式命令進行執行。此電腦具有例如一個以上的處理器,並且具備儲存上述程式的電腦所可讀取的儲存媒體。此外,於上述電腦中,該處理器由該儲存媒體讀取該程式而執行之,藉此達成本發明的目的。作為該處理的一例,可使用中央處理器(CPU,central processing unit)。作為該儲存媒體的一例,可使用「非暫時性有形媒體」,例如唯讀記憶體(ROM, Read Only Memory)、磁帶、磁碟、卡片、半導體記憶體、可程式邏輯電路等。此外,亦可進一步具有將該程式展開的隨機存取記憶體(RAM,Random Access Memory)等。此外,該程式亦可透過可傳送該程式的任意的傳送媒體(通訊網路或廣播波)而供給至該電腦。此外,本發明的一樣態亦可實現為嵌入載波的數據訊號的型態,而該載波以電子方式傳送前述程式而得以具現化。 In the latter case, the transmitting devices 100, 100a and the receiving devices 200, 200a are equipped with computers, which execute software that implements each function, that is, program commands. This computer has, for example, more than one processor, and a storage medium that can be read by the computer storing the above-mentioned program. In addition, in the above-mentioned computer, the processor reads the program from the storage medium and executes it, thereby achieving the object of the invention. As an example of this processing, a central processing unit (CPU) can be used. As an example of the storage medium, "non-transitory tangible media" can be used, such as read-only memory (ROM, Read Only Memory), tapes, disks, cards, semiconductor memory, programmable logic circuits, etc. In addition, it may further have a random access memory (RAM, Random Access Memory) etc. to expand the program. In addition, the program can also be supplied to the computer through any transmission medium (communication network or broadcast wave) that can transmit the program. In addition, the same aspect of the present invention can also be realized as a form of a data signal embedded in a carrier wave, and the carrier wave is realized by electronically transmitting the aforementioned program.

此外,執行傳送裝置100、100a及接收裝置200、200a各功能的電腦程式產品亦包含於本發明的範疇內。該電腦程式產品經由至少一個的電腦,來載入至少一個的「經任意傳送媒體所提供之程式」,並使該電腦執行至少一個的程式命令。藉此,具備上述至少一個的電腦的處理器,因應程式命令而進行相應的處理。藉此,傳送裝置100、100a、及200、200a的各功能得以實現。此電腦程式產品將此傳送處理(傳送方法)以及接收處理(接收方法)各步驟,以載入了程式的至少一個以上的電腦來執行。 In addition, computer program products that execute the functions of the transmitting devices 100, 100a and the receiving devices 200, 200a are also included in the scope of the present invention. The computer program product loads at least one "program provided via any transmission medium" through at least one computer, and causes the computer to execute at least one program command. In this way, the processor of the computer equipped with at least one of the above-mentioned processors performs corresponding processing in response to the program commands. In this way, the functions of the transmission devices 100, 100a, and 200, 200a are realized. This computer program product executes the steps of the transmission process (transmission method) and the reception process (reception method) by at least one computer loaded with the program.

本發明的上述各實施型態並非限定,而是可以專利範圍所示內容進行各種變更,不同的實施型態中所揭露的技術手段可適當地組合而組成各種實施型態,其亦包含於本發明的技術內容中。此外,於各實施型態中所揭露的各種技術方法的組合,可以形成新的技術特徵。 The above-mentioned implementations of the present invention are not limited, but various changes can be made to the content shown in the scope of the patent. The technical means disclosed in different implementations can be appropriately combined to form various implementations, which are also included in the present invention. The technical content of the invention. In addition, the combination of various technical methods disclosed in each implementation type can form new technical features.

[產業利用性] [Industrial Utilization]

本發明較佳為使用於無線傳送接收系統及雷達系統等。 The present invention is preferably used in wireless transmission and reception systems, radar systems, and the like.

1:傳送接收裝置 1: Transmitting and receiving device

100:傳送裝置 100: Conveyor

101:傳送用數據取得部 101: Data acquisition unit for transmission

102:傳送訊號產生部 102: Transmission signal generator

103:傳送部 103: Transmission Department

200:接收裝置 200: receiving device

201:接收部 201: Receiving Department

202:位移推定及接收數據抽出部 202: Displacement estimation and received data extraction unit

203:接收數據解析部 203: Received data analysis department

Claims (16)

一種接收訊號的接收方法,其係包含:推定步驟,其係參照具有餘維度2之不可置換位移的參數空間,來推定接收訊號所表示的時間位移及頻率位移;又,在上述推定步驟中,使用運算子來推定上述接收訊號所表示的時間位移及頻率位移,且前述運算子係包括關於時間及頻率之對稱位移的半位移。 A receiving method of a received signal, which includes: an estimation step, which refers to a parameter space with an irreplaceable displacement of co-dimension 2 to estimate the time shift and frequency shift represented by the received signal; and, in the above estimation step, The operator is used to estimate the time displacement and the frequency displacement represented by the received signal, and the aforementioned operator includes a half displacement of a symmetrical displacement with respect to time and frequency. 如請求項1所述之接收方法,其中,上述具有餘維度2之不可置換位移的參數空間係藉由顯示有時間位移及頻率位移的第三軸,來將由顯示時間的第一軸與顯示頻率的第二軸所張開之平面3維化所得到的空間。 The receiving method according to claim 1, wherein the parameter space with the non-replaceable displacement of the co-dimension 2 is displayed by displaying the third axis of time displacement and frequency displacement, so that the first axis of display time and the display frequency The space obtained by the 3-dimensionalization of the plane opened by the second axis of. 如請求項1或2所述之接收方法,其中,上述推定步驟係使用第一位移運算子
Figure 108102227-A0305-02-0207-747
、第二位移運算子
Figure 108102227-A0305-02-0207-748
、第三位移運算子
Figure 108102227-A0305-02-0207-749
或其對耦頻率(Dual Frequency)[數學式4]
Figure 108102227-A0305-02-0208-750
及第四位移運算子
Figure 108102227-A0305-02-0208-751
或其對耦頻率
Figure 108102227-A0305-02-0208-752
,來推定上述接收訊號所表示的時間位移及頻率位移;又,上述第一位移運算子係表示時間位移的推定值、頻率位移及推定時間位移的一半之半位移(Half shift)的相位項;上述第二位移運算子係表示時間位移、頻率位移的推定值及推定頻率位移的一半之半位移的相位項;上述第三位移運算子係表示推定對象的時間位移、推定對象的頻率位移觀測值及推定時間位移的一半之半位移的相位項;以及上述第四位移運算子係表示時間位移、頻率位移的推定值及推定時間位移的一半之半位移的相位項;其中,上標的f係表示傅立葉轉換;上標的d係表示離散版的運算子;
Figure 108102227-A0305-02-0208-753
係表示在給定之都普勒位移的推定值
Figure 108102227-A0305-02-0208-754
下的kd之ML推定整數值;kd係表示時間位移; k係表示在M-值相位調變通訊方式所應傳送之資訊數據的整數,且k
Figure 108102227-A0305-02-0209-788
{0,1,...,M-1},此係可分解為整數部分
Figure 108102227-A0305-02-0209-755
與小數部分
Figure 108102227-A0305-02-0209-756
;其中,j與j’係表示整數部分與小數部分的整數;M 0<MM係表示相位調變通訊方式的多值數的整數;l μ 係表示推定都普勒位移l D的控制用整數值;
Figure 108102227-A0305-02-0209-757
係表示在給定之時間位移的推定值
Figure 108102227-A0305-02-0209-758
下的l D之ML推定整數值; k σ 係表示推定時間位移kd之控制用整數值。
The receiving method according to claim 1 or 2, wherein the above-mentioned estimating step uses the first shift operator
Figure 108102227-A0305-02-0207-747
, The second shift operator
Figure 108102227-A0305-02-0207-748
, The third shift operator
Figure 108102227-A0305-02-0207-749
Or its dual frequency (Dual Frequency) [Math 4]
Figure 108102227-A0305-02-0208-750
And the fourth shift operator
Figure 108102227-A0305-02-0208-751
Or its coupled frequency
Figure 108102227-A0305-02-0208-752
, To estimate the time shift and frequency shift represented by the received signal; and, the first shift operator system represents the estimated value of the time shift, the frequency shift and the phase term of the half shift of the estimated time shift; The second displacement operator system represents the estimated value of time displacement, frequency displacement, and the phase term of half of the estimated frequency displacement; the third displacement operator system represents the time displacement of the estimated object and the observed value of frequency displacement of the estimated object And the phase term of the half-and-half of the estimated time shift; and the above-mentioned fourth shift operation sub-system represents the phase term of the time-shift, the estimated value of the frequency shift and the half-and-half of the estimated time shift; where the superscript f represents Fourier transform; the superscript d system represents the discrete version of the operator;
Figure 108102227-A0305-02-0208-753
Is the estimated value of Puller displacement in a given capital
Figure 108102227-A0305-02-0208-754
ML k d of the estimated integer; k represents a time shift lines D; k are diagrams M - integer value of information data transmission phase modulating communication should, and k
Figure 108102227-A0305-02-0209-788
{0,1,..., M -1}, this system can be decomposed into integer parts
Figure 108102227-A0305-02-0209-755
And fractional part
Figure 108102227-A0305-02-0209-756
; Among them, j and j'are integers representing the integer part and the fractional part; M 0 < M and M are integers representing the multi-valued number of phase modulation communication methods; l μ is the control of the estimated Doppler shift l D Use integer values;
Figure 108102227-A0305-02-0209-757
Is the estimated value of displacement at a given time
Figure 108102227-A0305-02-0209-758
The ML estimated integer value of l D below; k σ represents the integer value used for control of the estimated time shift k d.
如請求項3所述之接收方法,其中,在上述推定步驟中,其係參照第一相關函數及第二相關函數,來推定上述接收訊號所表示的時間位移及頻率位移;又,上述第一相關函數係使用上述第一位移運算子、第三位移運算子及第四位移運算子來表示;上述第二相關函數係使用上述第二位移運算子、第三位移運算子及第四位移運算子來表示。 The receiving method according to claim 3, wherein, in the estimating step, it refers to the first correlation function and the second correlation function to estimate the time shift and the frequency shift represented by the received signal; and, the first The correlation function is represented by the first displacement operator, the third displacement operator, and the fourth displacement operator; the second correlation function uses the second displacement operator, the third displacement operator, and the fourth displacement operator. To represent. 如請求項4所述之接收方法,其中,上述第一相關函數及第二相關函數係包含:調變頻率fc的調變及解調中伴隨時間位移td之不可置換演算的相位失真
Figure 108102227-A0305-02-0209-759
或其離散版
Figure 108102227-A0305-02-0210-803
;及傳送時的相位失真e;其中,W係離散時間及頻率的傅立葉轉換演算子(旋轉因子),其係藉由使用各樣本寬度△t,△f,對連續時間及頻率的傅立葉轉換演算子e -jft 的指數的連續時間變數t及連續頻率變數f進行樣本化而得;又,離散頻率變數係
Figure 108102227-A0305-02-0210-760
;kD係離散的時間位移
Figure 108102227-A0305-02-0210-761
l c係離散的載波頻率
Figure 108102227-A0305-02-0210-762
The receiving method according to claim 4, wherein the first correlation function and the second correlation function include: modulation of the modulation frequency f c and phase distortion associated with non-permutation calculation of the time shift t d in the demodulation
Figure 108102227-A0305-02-0209-759
Or its discrete version
Figure 108102227-A0305-02-0210-803
; And the phase distortion e iκ during transmission ; where W is the Fourier transform operator (rotation factor) of discrete time and frequency, which is the Fourier transform of continuous time and frequency by using each sample width △ t , △ f The continuous time variable t and the continuous frequency variable f of the exponent of the calculus e - jft are sampled; and the discrete frequency variable system
Figure 108102227-A0305-02-0210-760
;K D system discrete time displacement
Figure 108102227-A0305-02-0210-761
; L c is the discrete carrier frequency
Figure 108102227-A0305-02-0210-762
.
如請求項4所述之接收方法,其中,上述推定步驟係包含:交互更新步驟,其係交互地重複進行頻率位移的推定值之更新步驟及時間位移的推定值之更新步驟;又,上述頻率位移的推定值之更新步驟係參照上述第一相關函數,來更新頻率位移的推定值;且上述時間位移的推定值之更新步驟係參照上述第二相關函數,來更新時間位移的推定值。 The receiving method according to claim 4, wherein the estimation step includes: an interactive update step, which alternately repeats the update step of the estimated value of the frequency shift and the update step of the estimated value of the time shift; and, the above-mentioned frequency The step of updating the estimated value of displacement refers to the first correlation function to update the estimated value of frequency displacement; and the step of updating the estimated value of time displacement refers to the second correlation function to update the estimated value of time displacement. 如請求項1或2所述之接收方法,其中,在上述推定步驟中,基於N’個的TD-template訊號檢測的似然函數之頻率位移的最大似然估計及N個FD-template訊號檢測的似然函數之時間位移的最大似然估計,來推定上述接收訊號所表示的時間位移及頻率位移。 The receiving method according to claim 1 or 2, wherein, in the above estimation step, the maximum likelihood estimation of the frequency shift based on the likelihood function of the N'TD-template signal detection and the N FD-template signal detection The maximum likelihood estimation of the time shift of the likelihood function of, to estimate the time shift and frequency shift represented by the above-mentioned received signal. 一種接收訊號的接收裝置,其係包含:推定部,其係參照具有餘維度2之不可置換位移的參數空間,來推定接收訊號所表示的 時間位移及頻率位移;又,在上述推定部中,使用包括推定時間位移的一半的半位移之運算子以及包括推定頻率位移的一半的半位移之運算子,來推定上述接收訊號所表示的時間位移及頻率位移。 A receiving device for receiving a signal, which includes: an estimating part, which refers to a parameter space with an irreplaceable displacement of co-dimension 2 to estimate what the received signal represents Time shift and frequency shift; In addition, in the above-mentioned estimating unit, an operator including half of the estimated time shift and a half shift operator including half of the estimated frequency shift are used to estimate the time indicated by the received signal Displacement and frequency displacement. 一種傳送訊號的傳送方法,其係包含:位移步驟,其係參照具有餘維度2之不可置換位移的參數空間,使傳送對象之訊號的時間及頻率位移;又,在上述位移步驟中,基於關於時間及頻率之對稱位移的半位移之量,使傳送對象的訊號之時間及頻率進行位移。 A method of transmitting a signal, which includes: a displacement step, which refers to a parameter space with a co-dimension 2 of non-replaceable displacement to shift the time and frequency of the signal of the transmission object; and, in the above-mentioned displacement step, based on The half displacement of the symmetrical displacement of time and frequency shifts the time and frequency of the signal of the transmission object. 如請求項9所述之傳送方法,其中,在上述位移步驟中,將時間脈波波形進行周期N的時間相位編碼調變,且藉由再使經上述時間相位編碼調變後的時間脈波波形,進行周期N’的頻率區域相位編碼調變而多載波(Multi-carrier)化,進而產生傳送訊號。 The transmission method according to claim 9, wherein, in the above-mentioned shifting step, the time pulse waveform is subjected to a time phase code modulation of period N, and the time pulse wave modulated by the above-mentioned time phase code The waveform is subjected to phase encoding modulation in the frequency region of period N'to be multi-carrier, thereby generating a transmission signal. 一種傳送訊號的傳送裝置,其係包含:位移部,其係參照具有餘維度2之不可置換位移的參數空間,使傳送對象之訊號的時間及頻率位移;又,在上述位移部中,基於關於時間及頻率之對稱位移的半位移之量,使傳送對象的訊號之時間及頻率進行位移。 A transmission device for transmitting a signal, comprising: a displacement part, which refers to a parameter space with a co-dimension 2 of non-replaceable displacement to shift the time and frequency of the signal of the transmission target; and, in the displacement part, based on The half displacement of the symmetrical displacement of time and frequency shifts the time and frequency of the signal of the transmission object. 一種包含傳送裝置與接收裝置的傳送接收系統,其特徵在於:上述傳送裝置係包含位移部,其係參照具有餘維度2之不可置換位移的參數空間,使傳送對象之訊號的時間及頻率位移,且在上述位移部中,基於關於時間及頻率之對稱位移的半位移之 量,使傳送對象的訊號之時間及頻率進行位移;上述接收裝置係包含推定部,其係參照具有餘維度2之不可置換位移的參數空間,來推定接收訊號所表示的時間位移及頻率位移,且在上述推定部中,使用包括推定時間位移的一半的半位移之運算子以及包括推定頻率位移的一半的半位移之運算子,來推定上述接收訊號所表示的時間位移及頻率位移。 A transmitting and receiving system including a transmitting device and a receiving device, characterized in that: the transmitting device includes a displacement part, which refers to a parameter space with a co-dimension 2 irreplaceable displacement to shift the time and frequency of the signal of the transmission object, And in the above-mentioned displacement part, the half displacement based on the symmetrical displacement with respect to time and frequency The above-mentioned receiving device includes an estimating unit, which refers to a parameter space with a co-dimension 2 irreplaceable displacement to estimate the time displacement and frequency displacement represented by the received signal, In addition, in the estimation section, an operator including a half displacement of half the estimated time displacement and an operator including a half displacement of half the estimated frequency displacement are used to estimate the time displacement and frequency displacement indicated by the received signal. 一種接收圖像訊號的接收方法,其係包含:推定步驟,其係參照不可置換位移的參數空間,來推定接收之圖像訊號所表示的空間位移及空間頻率位移;且上述空間位移及空間頻率位移係各自具有2以上的維度;又,在上述推定步驟中,使用運算子來推定上述圖像訊號所表示的空間位移及空間頻率位移,且前述運算子係包括關於空間及空間頻率之對稱位移的半位移。 A receiving method for receiving an image signal, which includes: an estimation step, which refers to a parameter space of irreplaceable displacement to estimate the spatial displacement and the spatial frequency displacement represented by the received image signal; and the above-mentioned spatial displacement and spatial frequency The displacement systems each have 2 or more dimensions; and, in the above estimation step, operators are used to estimate the spatial displacement and spatial frequency displacement represented by the image signal, and the aforementioned operator systems include symmetrical displacements with respect to space and spatial frequency. The half displacement. 如請求項13所述之接收方法,其中,在上述推定步驟中,參照2維對稱之空間位移及空間頻率位移運算子
Figure 108102227-A0305-02-0212-763
Figure 108102227-A0305-02-0212-764
,來推定空間位移及空間頻率位移;其中,上標的f係表示傅立葉轉換;上標的d係表示離散版的運算子;
Figure 108102227-A0305-02-0213-765
係表示空間位移;
Figure 108102227-A0305-02-0213-766
係表示空間頻率位移。
The receiving method according to claim 13, wherein in the above estimation step, the two-dimensional symmetrical spatial displacement and spatial frequency displacement operators are referred to
Figure 108102227-A0305-02-0212-763
versus
Figure 108102227-A0305-02-0212-764
, To estimate the spatial displacement and spatial frequency displacement; among them, the superscript f represents the Fourier transform; the superscript d represents the discrete version of the operator;
Figure 108102227-A0305-02-0213-765
Is the spatial displacement;
Figure 108102227-A0305-02-0213-766
The system represents the spatial frequency displacement.
一種傳送圖像訊號的傳送方法,其係包含:位移步驟,其係參照不可置換位移的參數空間,使傳送對象之圖像訊號的空間及頻率位移;且上述空間的位移及頻率的位移係各自具有2以上的維度,又,在上述位移步驟中,基於關於空間及空間頻率之對稱位移的半位移之量,使傳送對象的圖像訊號之空間及空間頻率進行位移。 A transmission method for transmitting an image signal, which includes: a displacement step, which refers to the parameter space of the non-replaceable displacement to shift the space and frequency of the image signal of the transmission object; and the displacement of the space and the frequency of the displacement are respectively It has more than 2 dimensions, and in the above-mentioned displacement step, the space and spatial frequency of the image signal of the transmission object are displaced based on the amount of half displacement of the symmetrical displacement with respect to the space and the spatial frequency. 如請求項15所述之傳送方法,其中,在上述位移步驟中,參照2維對稱之空間位移及空間頻率位移運算子
Figure 108102227-A0305-02-0213-767
及其對耦頻率
Figure 108102227-A0305-02-0213-768
,來使空間及頻率位移;其中,上標的f係表示傅立葉轉換;上標的d係表示離散版的運算子;
Figure 108102227-A0305-02-0213-769
係表示空間位移;
Figure 108102227-A0305-02-0213-770
係表示空間頻率位移。
The transmission method according to claim 15, wherein, in the displacement step, the two-dimensional symmetrical spatial displacement and spatial frequency displacement operators are referred to
Figure 108102227-A0305-02-0213-767
And its coupling frequency
Figure 108102227-A0305-02-0213-768
, To shift the space and frequency; among them, the superscript f represents the Fourier transform; the superscript d represents the discrete version of the operator;
Figure 108102227-A0305-02-0213-769
Is the spatial displacement;
Figure 108102227-A0305-02-0213-770
The system represents the spatial frequency displacement.
TW108102227A 2018-01-22 2019-01-21 Receiving method, receiving device, transmission method, transmission device, transmission and reception system TWI730284B (en)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
CN107102249 2018-01-22
JP2018001735 2018-01-22
WOPCT/JP2018/001735 2018-01-22
??PCT/JP2018/001735 2018-01-22
TW107102249 2018-01-22
TW107102249 2018-01-22
PCT/JP2018/024592 WO2019142372A1 (en) 2018-01-22 2018-06-28 Reception method, reception device, transmission method, transmission device, transmission/reception system
??PCT/JP2018/024592 2018-06-28
WOPCT/JP2018/024592 2018-06-28

Publications (2)

Publication Number Publication Date
TW201937878A TW201937878A (en) 2019-09-16
TWI730284B true TWI730284B (en) 2021-06-11

Family

ID=68618415

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108102227A TWI730284B (en) 2018-01-22 2019-01-21 Receiving method, receiving device, transmission method, transmission device, transmission and reception system

Country Status (1)

Country Link
TW (1) TWI730284B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5970047A (en) * 1996-05-27 1999-10-19 Sony Corporation Communications method, communication apparatus, reception method, and reception apparatus
EP2330762B1 (en) * 2008-09-22 2014-02-12 Panasonic Corporation Radio communication device and signal division method
US20170288710A1 (en) * 2016-04-01 2017-10-05 Cohere Technologies, Inc. Tomlinson-harashima precoding in an otfs communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5970047A (en) * 1996-05-27 1999-10-19 Sony Corporation Communications method, communication apparatus, reception method, and reception apparatus
EP2330762B1 (en) * 2008-09-22 2014-02-12 Panasonic Corporation Radio communication device and signal division method
US20170288710A1 (en) * 2016-04-01 2017-10-05 Cohere Technologies, Inc. Tomlinson-harashima precoding in an otfs communication system

Also Published As

Publication number Publication date
TW201937878A (en) 2019-09-16

Similar Documents

Publication Publication Date Title
JP6757448B2 (en) Reception method, transmission method
Zepernick et al. Pseudo random signal processing: theory and application
Bodhe et al. Design of Simulink Model for OFDM and Comparison of FFT-OFDM and DWT-OFDM
CN107864020A (en) The transform domain extracting method of underwater Small object simple component sound scattering echo
TWI730284B (en) Receiving method, receiving device, transmission method, transmission device, transmission and reception system
JP5725458B2 (en) Receiver, receiving method and program
Robinson A topological low-pass filter for quasi-periodic signals
CN107318028B (en) multi-image encryption and decryption method and computer readable storage medium
JP2012238977A (en) Spreading device, communication device, transmission device, communication method, and program
Sakiyama et al. $ M $-Channel Critically Sampled Spectral Graph Filter Banks With Symmetric Structure
Hirakawa et al. “Rewiring” Filterbanks for Local Fourier Analysis: Theory and Practice
Asif et al. Performance Evaluation of DWT-FDM and FFT-OFDM for Multicarrier Communications Systems using Time Domain Zero Forcing Equalization
Kohda et al. 2D Markovian SS codes flatten time-frequency distribution of signals in asynchronous Gabor division CDMA systems
JP6982288B2 (en) Signal processing system, reception method and program
Hasini et al. Channel estimation and signal detection in OFDM systems using deep learning
Orr et al. Transform-Based Low Probability of Intercept Communications
CN107294882A (en) Channel estimation methods and device
CN107294883A (en) Channel estimation methods and device
CN107294881A (en) Channel estimation methods and device
Bakulin et al. Filtration of Linear Recurrent Sequences with Random Delay and Random Initial Phase
CN117201240A (en) OTFS channel estimation method based on depth residual error attention network
CN101677249B (en) Joint detection method of time division synchronous code division multiple access system and receiving device thereof
Schimming Statistical analysis and optimization of chaos based broadband communications
KR101474633B1 (en) Scale Problem Solving Apparatous and Method for Blind Signal Sampling in Frequency Domain
KR101474321B1 (en) Permutation/Scale Problem Solving Apparatous and Method for Blind Signal Separation