TWI730146B - Optical system - Google Patents

Optical system Download PDF

Info

Publication number
TWI730146B
TWI730146B TW106124809A TW106124809A TWI730146B TW I730146 B TWI730146 B TW I730146B TW 106124809 A TW106124809 A TW 106124809A TW 106124809 A TW106124809 A TW 106124809A TW I730146 B TWI730146 B TW I730146B
Authority
TW
Taiwan
Prior art keywords
optical element
lens
light source
optical
laser light
Prior art date
Application number
TW106124809A
Other languages
Chinese (zh)
Other versions
TW201908856A (en
Inventor
林經綸
蔡威弘
Original Assignee
揚明光學股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 揚明光學股份有限公司 filed Critical 揚明光學股份有限公司
Priority to TW106124809A priority Critical patent/TWI730146B/en
Publication of TW201908856A publication Critical patent/TW201908856A/en
Application granted granted Critical
Publication of TWI730146B publication Critical patent/TWI730146B/en

Links

Images

Abstract

An optical system including a first laser light source capable of outputting a first laser light beam, a first optical element and a first material layer is provided. The first optical element is disposed on a light path of the first laser light source. The first optical element is provided with a first surface. A first axis and a second axis perpendicular to each other on the first surface are provided with different radius of curvature. The first material layer is disposed at a light path downstream of the first optical element, and the first material layer has a photoluminescent material. Another optical system is also provided.

Description

光學系統Optical system

本發明是有關於一種光學系統,且特別是有關於一種適用於投影機(Projector)的光學系統。 The present invention relates to an optical system, and particularly relates to an optical system suitable for a projector.

隨著近年來固態光源及投影技術的發展,以發光二極體(Light Emitting Diode,LED)及雷射二極體(Laser Diode,LD)等固態光源為主的投影機逐漸受到市場的青睞。 With the development of solid-state light sources and projection technology in recent years, projectors based on solid-state light sources such as Light Emitting Diode (LED) and Laser Diode (LD) have gradually become favored by the market.

於一種習知的投影機的架構中,激發光源發出的激發光束直接入射於螢光輪(Phosphor Wheel),但此種架構會使得螢光輪所承受的能量密度過高,而影響投影機的發光效率以及可靠度(Reliability)。 In a conventional projector architecture, the excitation light beam emitted by the excitation light source is directly incident on the phosphor wheel (Phosphor Wheel), but this architecture will cause the phosphor wheel to bear too high energy density, which will affect the luminous efficiency of the projector. And reliability (Reliability).

於另一種習知的投影機的架構中,激發光源發出的激發光束會先入射於擴散片(Diffuser)後再入射至螢光輪。擴散片用以使激發光束散射,以使入射於螢光輪的能量分佈均勻。然而,於此種投影機的架構下,會需要增設擴散片而使整體投影機的成本提高,並且擴散片的存在也會使得整體的光穿透率降低。此外,在高能量密度的激發光束下,可能會有擴散片被破壞的風險產生。 In another conventional projector architecture, the excitation light beam emitted by the excitation light source is incident on the diffuser first and then incident on the fluorescent wheel. The diffuser is used to scatter the excitation beam to make the energy distribution incident on the fluorescent wheel uniform. However, under the structure of this kind of projector, it is necessary to add a diffuser to increase the cost of the overall projector, and the existence of the diffuser also reduces the overall light transmittance. In addition, under the excitation beam with high energy density, there may be a risk of damage to the diffuser.

本發明提供一種光學系統,其具有良好的發光效率以及可靠度,並且具有較低的成本。 The present invention provides an optical system, which has good luminous efficiency and reliability, and has a lower cost.

本發明的實施例的光學系統包括雷射光源、光學元件以及材料層。雷射光源可輸出雷射光束。光學元件設於雷射光源的光路上。光學元件設有一第一表面,此第一表面上相互垂直的第一軸以及第二軸設有不同的曲率半徑。第一材料層設於光學元件的光路下游。材料層含有光致發光材料。 The optical system of the embodiment of the present invention includes a laser light source, an optical element, and a material layer. The laser light source can output a laser beam. The optical element is arranged on the optical path of the laser light source. The optical element is provided with a first surface, and a first axis and a second axis perpendicular to each other on the first surface are provided with different radii of curvature. The first material layer is arranged downstream of the optical path of the optical element. The material layer contains a photoluminescent material.

本發明的實施例的光學系統包括第一雷射光源、螢光粉層以及第一雙錐透鏡。第一雷射光源可發出第一雷射光束。螢光粉層位於第一雷射光束的光路上。第一雙錐透鏡設置於第一雷射光源與螢光粉層之間,並位於第一雷射光束的行進路徑上,使第一雷射光束可穿透第一雙錐透鏡達到螢光粉層。 The optical system of the embodiment of the present invention includes a first laser light source, a phosphor layer, and a first double cone lens. The first laser light source can emit a first laser beam. The phosphor layer is located on the optical path of the first laser beam. The first double cone lens is arranged between the first laser light source and the phosphor layer, and is located on the traveling path of the first laser beam, so that the first laser beam can penetrate the first double cone lens to reach the phosphor powder Floor.

基於上述,在本發明的相關實施例的光學系統中,由於光學系統內的光學元件的表面上相互垂直的第一軸以及第二軸設有不同的曲率半徑,當雷射光束穿透此光學元件時,可以使得雷射光束所形成的光點矩陣的形狀擴張,而降低後續投射於材料層上的能量密度。由另一觀點來看本發明的相關實施例的光學系統,由於雷射光束穿透雙錐透鏡後達到螢光輪的反應區中的螢光粉層,雙錐透鏡可以使得雷射光束所形成的光點矩陣的形狀擴張,而降低後續投射於螢光粉層上的能量密度。因此,本發明相 關實施例的光學系統可以在不使用擴散片的情況下,降低雷射光束投射於材料層(或螢光粉層)上的能量密度,進而使得光學系統可以具有良好的發光效率以及可靠度,同時,由於本發明相關實施例的光學系統不需使用擴散片而可達到雷射光束擴散的效果,因此也避免了擴散片被破壞的風險。 Based on the above, in the optical system of the related embodiment of the present invention, since the first axis and the second axis that are perpendicular to each other on the surface of the optical element in the optical system are provided with different radii of curvature, when the laser beam penetrates the optical When the device is used, the shape of the spot matrix formed by the laser beam can be expanded, and the energy density subsequently projected on the material layer can be reduced. Looking at the optical system of the related embodiment of the present invention from another point of view, since the laser beam penetrates the double cone lens and reaches the phosphor layer in the reaction area of the phosphor wheel, the double cone lens can make the laser beam form The shape of the light spot matrix expands, and the energy density subsequently projected on the phosphor layer is reduced. Therefore, the present invention The optical system of this embodiment can reduce the energy density of the laser beam projected on the material layer (or phosphor layer) without using a diffuser, so that the optical system can have good luminous efficiency and reliability. At the same time, since the optical system of the related embodiment of the present invention does not need to use a diffuser to achieve the effect of diffusing the laser beam, the risk of damage to the diffuser is also avoided.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.

1、1’、1”:光學系統 1, 1’, 1”: Optical system

10、10’、10”:合光裝置 10, 10’, 10”: Combining light device

20:成像裝置 20: imaging device

22:光閥 22: Light valve

24:投影鏡頭 24: Projection lens

26:全反射稜鏡 26: Total reflection

110、120:雷射光源 110, 120: Laser light source

130:合光元件 130: Synthesizer

141、142、143:光學元件 141, 142, 143: optical components

150、170、180:透鏡 150, 170, 180: lens

160:分光元件 160: Spectroscopic element

190:材料層 190: Material layer

A1:第一軸 A1: The first axis

A2:第二軸 A2: second axis

A3:第三軸 A3: third axis

A4:第四軸 A4: Fourth axis

IB:影像光束 IB: image beam

L、L1、L2:雷射光束 L, L1, L2: laser beam

L3:照明光束 L3: Illumination beam

L3R:紅色光束 L3R: Red beam

L3B:藍色光束 L3B: Blue beam

L3G:綠色光束 L3G: Green beam

LD:經封裝的藍光雷射二極體晶片 LD: Packaged blue laser diode chip

PW:螢光輪 PW: Fluorescent wheel

RM1、RM2、RM3:反射鏡 RM1, RM2, RM3: reflector

S1、S2、S3:表面 S1, S2, S3: surface

OEM、OEM’:光學元件矩陣 OEM, OEM’: Optical element matrix

圖1繪示為本發明一實施例的光學系統的架構示意圖。 FIG. 1 is a schematic structural diagram of an optical system according to an embodiment of the invention.

圖2繪示為圖1中的光學系統的光學元件的上視示意圖。 FIG. 2 is a schematic top view of the optical elements of the optical system in FIG. 1.

圖3為雷射光束經過圖1的光學系統的光學元件後投射於材料層上的光點矩陣的分佈圖。 FIG. 3 is a distribution diagram of a matrix of light spots projected on a material layer after a laser beam passes through the optical elements of the optical system of FIG. 1.

圖4繪示為本發明另一實施例的光學系統的架構示意圖。 FIG. 4 is a schematic structural diagram of an optical system according to another embodiment of the invention.

圖5繪示為圖4中的光學系統的另一個光學元件的上視示意圖。 FIG. 5 is a schematic top view of another optical element of the optical system in FIG. 4.

圖6為雷射光束經過圖4的光學系統的兩個光學元件後投射於材料層上的光點矩陣的分佈圖。 FIG. 6 is a distribution diagram of the light spot matrix projected on the material layer after the laser beam passes through the two optical elements of the optical system of FIG. 4.

圖7繪示為本發明再一實施例的光學系統的架構示意圖。 FIG. 7 is a schematic structural diagram of an optical system according to still another embodiment of the present invention.

圖8繪示為雷射光束經過擴散片後投射於材料層上的光點分佈圖。 FIG. 8 is a diagram showing the distribution of light spots projected on the material layer after the laser beam passes through the diffuser.

圖9繪示為雷射光束經過圖7的光學系統的光學元件矩陣後投射於材料層上的光點分佈圖。 FIG. 9 is a diagram showing the distribution of light spots projected on the material layer after the laser beam passes through the optical element matrix of the optical system of FIG. 7.

圖1繪示為本發明一實施例的光學系統的架構示意圖。圖2繪示為圖1中的光學系統的光學元件的上視圖。圖3為雷射光束經過圖1的光學系統的光學元件後投射於材料層上的光點矩陣的分佈圖。 FIG. 1 is a schematic structural diagram of an optical system according to an embodiment of the invention. FIG. 2 is a top view of optical elements of the optical system in FIG. 1. FIG. 3 is a distribution diagram of a matrix of light spots projected on a material layer after a laser beam passes through the optical elements of the optical system of FIG. 1.

本發明所指的光學元件,係指光學元件具有部份或全部可反射或穿透的材質所構成,通常包括玻璃或塑膠所組成。 The optical element referred to in the present invention refers to an optical element composed of a part or all of reflective or penetrable materials, usually including glass or plastic.

請參照圖1,在本實施例中,光學系統1為投影機。光學系統1包括合光裝置10以及成像裝置20。合光裝置10包括雷射光源110、雷射光源120、合光元件130、光學元件141、透鏡群150、分光元件160、透鏡群170、透鏡群180、包括有材料層190的螢光輪PW(Phosphor Wheel)、反射鏡RM1、反射鏡RM2、反射鏡RM3。成像裝置20包括光閥22、投影鏡頭24以及全反射稜鏡26(Total Reflection Prism)。值得一提的是,在前述的光學系統中,並不需要設置擴散片即得具有對應的效果。於以下段落中將分別對光學系統1中的各元件進行說明。 Please refer to FIG. 1. In this embodiment, the optical system 1 is a projector. The optical system 1 includes a light combining device 10 and an imaging device 20. The light combining device 10 includes a laser light source 110, a laser light source 120, a light combining element 130, an optical element 141, a lens group 150, a light splitting element 160, a lens group 170, a lens group 180, and a fluorescent wheel PW including a material layer 190 ( Phosphor Wheel), mirror RM1, mirror RM2, mirror RM3. The imaging device 20 includes a light valve 22, a projection lens 24, and a total reflection prism 26 (Total Reflection Prism). It is worth mentioning that in the aforementioned optical system, there is no need to provide a diffuser in order to have a corresponding effect. Each element in the optical system 1 will be described in the following paragraphs.

本發明所指的雷射光源110以及雷射光源120分別指單一個經封裝的雷射二極體模組,或是由多枚前述的雷射二極體模組所組成的矩陣。前述的經封裝的雷射二極體模組中係包括有雷 射二極體晶片(Laser Diode,LD)。在本實施例中,雷射光源110以及雷射光源120分別為多個以矩陣方式排列的經封裝的藍光雷射二極體模組。雷射光源110可輸出雷射光束L1。雷射光源120可輸出雷射光束L2。雷射光束L1以及雷射光束L2的顏色實質上為藍色。雷射光束L1以及雷射光束L2分別具有一光譜。光譜是廣泛被應用於記載光線的性質。舉例來說,光譜係指光束依照光的波長或頻率大小順次排列形成的圖案。雷射光束L1以及雷射光束L2的這些光譜的峰值波長(Peak Wavelength)分別介於400奈米至470奈米之間,雷射光束L1以及雷射光束L2的這些光譜的峰值波長為光強度最大處所對應的波長。更明確的說,雷射光束L1以及雷射光束L2在一光譜能量分佈圖譜中分別具有一相對應的光譜能量分布曲線(Spectral Energy Distribution Curve),而此分布曲線的波峰係落在藍色的波長區間(例如是400奈米至470奈米)之中。 The laser light source 110 and the laser light source 120 referred to in the present invention respectively refer to a single packaged laser diode module or a matrix composed of a plurality of the aforementioned laser diode modules. The aforementioned packaged laser diode module includes a Laser Diode (LD). In this embodiment, the laser light source 110 and the laser light source 120 are respectively a plurality of packaged blue laser diode modules arranged in a matrix. The laser light source 110 can output a laser beam L1. The laser light source 120 can output a laser beam L2. The colors of the laser beam L1 and the laser beam L2 are substantially blue. The laser beam L1 and the laser beam L2 each have a spectrum. Spectrum is widely used to record the properties of light. For example, the spectrum refers to a pattern formed by light beams arranged in sequence according to the wavelength or frequency of light. The peak wavelengths (Peak Wavelength) of these spectra of laser beam L1 and laser beam L2 are between 400 nm and 470 nm, respectively. The peak wavelengths of these spectra of laser beam L1 and laser beam L2 are light intensity. The wavelength corresponding to the largest location. More specifically, the laser beam L1 and the laser beam L2 each have a corresponding Spectral Energy Distribution Curve in a spectral energy distribution map, and the peak of this distribution curve falls on the blue In the wavelength range (for example, 400 nm to 470 nm).

本發明所指的合光元件130,係指可將一個以上的光束合成一光束輸出的光學元件,如條紋鏡、分色鏡(Dichroic filter)、透鏡或全反射稜鏡等。請參照圖1,在本實施例中,合光元件130為條紋鏡(Stripe Mirror)。由於條紋鏡己泛被應用於光源合光之應域。簡而言之,合光元件130具有多個交替排列的透光部份(未示出)以及反射部份(未示出)。在本實施例中,光束能夠藉由合光元件130的透光部份穿透合光元件130,並且光束能夠藉由合光元件130的反射部份而反射。 The light combining element 130 referred to in the present invention refers to an optical element that can combine more than one light beam to output a light beam, such as a striped mirror, a dichroic filter, a lens, or a total reflection mirror. Please refer to FIG. 1, in this embodiment, the light combining element 130 is a stripe mirror. Because the striped mirror has been widely used in the field of light combining light. In short, the light combining element 130 has a plurality of light-transmitting parts (not shown) and reflective parts (not shown) that are alternately arranged. In this embodiment, the light beam can penetrate the light combining element 130 through the light-transmitting part of the light combining element 130, and the light beam can be reflected by the reflective part of the light combining element 130.

本發明所指的光學元件141為具有屈光度(Positive Refractive Power)的雙錐透鏡(Biconic Lens)或自由曲面透鏡(Free form lens)。於本實施例中,光學元件141的表面S1作為光束的入光面。表面S1上相互垂直的第一軸A1以及第二軸A2設有不同的曲率半徑(Radius of Curvature)。於其他的實施例中,光學元件141為自由曲面透鏡(Free-Form Lens),自由曲面透鏡為具有自由曲面(Free-Form Surface)的透鏡,自由曲面非為軸對稱。而光學元件141的屈光度可為正或負,於本例中,光學元件141的屈光度為正。 The optical element 141 referred to in the present invention is a biconical lens (Biconic lens) or a free form lens with a positive refractive power (Positive Refractive Power). In this embodiment, the surface S1 of the optical element 141 serves as the light incident surface of the light beam. The first axis A1 and the second axis A2 perpendicular to each other on the surface S1 are provided with different radii of curvature (Radius of Curvature). In other embodiments, the optical element 141 is a free-form lens, the free-form lens is a lens with a free-form surface, and the free-form surface is not axisymmetric. The refractive power of the optical element 141 can be positive or negative. In this example, the refractive power of the optical element 141 is positive.

在本實施例中,透鏡群150具有負屈光度(Negative Refractive Power)。透鏡群170以及透鏡群180皆具有正屈光度。而各透鏡群150、170、180包括一枚或是兩枚或以上具有屈光度的透鏡。 In this embodiment, the lens group 150 has a negative refractive power (Negative Refractive Power). Both the lens group 170 and the lens group 180 have positive refractive power. Each lens group 150, 170, 180 includes one or two or more lenses with refractive power.

在本發明所指的分光元件160,係指分光片、偏振片、反射鏡、透鏡、平板玻璃、稜鏡、積分柱、導光棒、或包括前述各者之至少一者之組合等可將一個光束分成數個光束輸出的元件。詳細來說,分光元件160係泛指具有分光功能的光學元件,如半反半透鏡、利用P極性、S極性分光的偏振片、各種波片、利用入光角分光的各種稜鏡、利用波長分光的分光片等等。在本實施例中,分光元件160為二向色鏡(Dichroic Mirror,DM),其具有波長選擇性,為利用波長(顏色)進行分光的分色片。在相關的實施例中,分光元件160可為具有分色功能的光學元件,且例如 是為鍍附在其他構件上的分色膜或是塗層。而於本實施例中,分光元件160例如是具有可讓藍色光束穿透,並讓黃色光束、紅色光束以及綠色光束反射的分光功能或是,於本例中,分光元件160可以反射藍色光以外波長區間的光線。 The beam splitter 160 referred to in the present invention refers to a beam splitter, a polarizer, a mirror, a lens, a plate glass, a scallop, an integrating rod, a light guide rod, or a combination including at least one of the foregoing. A light beam is divided into several light beam output components. In detail, the light splitting element 160 generally refers to an optical element with a light splitting function, such as half mirrors, polarizers that use P polarity and S polarity to split light, various wave plates, various beams that use incident angles to split light, and use wavelengths. Spectroscopic splitter and so on. In this embodiment, the dichroic element 160 is a dichroic mirror (DM), which has wavelength selectivity, and is a dichroic plate that uses wavelength (color) to perform light splitting. In related embodiments, the light splitting element 160 may be an optical element with a color separation function, and for example It is a dichroic film or coating that is plated on other components. In this embodiment, the light splitting element 160 has, for example, a light splitting function that allows blue light beams to pass through and reflects yellow, red, and green light beams. Or, in this example, the light splitting element 160 can reflect blue light. Light outside the wavelength range.

在本發明所指的螢光輪PW係指的是全反射式螢光輪(Reflective Phosphor Wheel)、全穿透式螢光輪(Transmissive Phosphor Wheel)或是半穿半反式螢光輪。在本實施例中,螢光輪PW為半穿半反式螢光輪。半穿半反式螢光輪PW的圓型基板上設置有透光區以及反應區。螢光輪PW的反應區中包括有材料層190及設於其與基板之間的反光層。透光區以及反應區共同構成環狀圖形。在本發明所指的材料層190係混有光致發光材料。更明確地說,於本例中,光致發光材料為螢光粉,且反應區中得按顏色的不同而於其材料層190中混有紅光螢光粉以及綠光螢光粉。材料層190可以接收激發光束,並藉由光致發光(Photoluminescence)現象而依其中所包括的螢光粉特性而產生相對應波長的轉換光束。螢光輪PW上的透光區域則可讓光束穿透螢光輪PW。透光層可為透明材料或為未設有材料的鏤空區。而於本例中,透光層係指透明玻璃。 The fluorescent wheel PW referred to in the present invention refers to a Reflective Phosphor Wheel, a Transmissive Phosphor Wheel, or a Transmissive Phosphor Wheel. In this embodiment, the fluorescent wheel PW is a half-through and half-trans fluorescent wheel. A light-transmitting area and a reaction area are provided on the round substrate of the semi-transmitting and semi-transmitting fluorescent wheel PW. The reaction zone of the phosphor wheel PW includes a material layer 190 and a reflective layer disposed between the material layer 190 and the substrate. The light-transmitting area and the reaction area together form a ring pattern. The material layer 190 referred to in the present invention is mixed with photoluminescent materials. More specifically, in this example, the photoluminescent material is phosphor, and the material layer 190 has to be mixed with red phosphor and green phosphor in the reaction zone according to different colors. The material layer 190 can receive the excitation light beam and generate a converted light beam with a corresponding wavelength according to the characteristics of the phosphor included in the photoluminescence phenomenon. The light-transmitting area on the fluorescent wheel PW allows the light beam to penetrate the fluorescent wheel PW. The light-transmitting layer can be a transparent material or a hollow area without material. In this example, the light-transmitting layer refers to transparent glass.

在本發明所指的光閥一詞已為業界所廣泛使用,一般來說,係指數位微鏡元件(Digital Micro-mirror Device,DMD)、矽基液晶面板(liquid-crystal-on-silicon panel,LCOS Panel)或是穿透式液晶面板等空間光調變器之任一者。而於本實施例中,光閥 為數位微鏡元件。 The term light valve in the present invention has been widely used in the industry. Generally speaking, it is an exponential micro-mirror device (DMD), a liquid-crystal-on-silicon panel , LCOS Panel) or any one of spatial light modulators such as transmissive LCD panels. In this embodiment, the light valve It is a digital micromirror component.

在本發明所指的投影鏡頭24是由至少一枚透鏡所組成的。投影鏡頭24內部可設有孔徑光欄(或稱光圈),而孔徑光欄的前後分設有至少一透鏡以調整影像光束IB的形狀及像差等特性。於本例中,投影鏡頭24包括10枚具有屈光度的透鏡及光圈(Aperture Stop)。而於另一例中,投影鏡頭24包括少於等於20枚具有屈光度的透鏡。而於另一例中,投影鏡頭24包括少於等於8枚具有屈光度的透鏡。 The projection lens 24 referred to in the present invention is composed of at least one lens. The projection lens 24 may be provided with an aperture diaphragm (or called an aperture), and at least one lens is provided at the front and rear of the aperture diaphragm to adjust the shape and aberration of the image beam IB. In this example, the projection lens 24 includes 10 lenses with diopters and an aperture (Aperture Stop). In another example, the projection lens 24 includes less than or equal to 20 lenses with diopters. In another example, the projection lens 24 includes less than or equal to 8 lenses with diopters.

本發明所指的反射鏡RM1、RM2、RM3可為用以反射光束的透鏡、稜鏡、凸面鏡、凹面鏡或平面鏡等光學元件。在本實施例中,反射鏡RM1、反射鏡RM2以及反射鏡RM3分別為平面鏡。 The reflecting mirrors RM1, RM2, RM3 referred to in the present invention can be optical elements such as lenses, mirrors, convex mirrors, concave mirrors or flat mirrors for reflecting light beams. In this embodiment, the mirror RM1, the mirror RM2, and the mirror RM3 are plane mirrors, respectively.

於以下段落中,會示例性地說明光學系統1中各元件的安排以及光束的傳輸過程。 In the following paragraphs, the arrangement of the components in the optical system 1 and the transmission process of the light beam will be exemplified.

首先,先說明本實施例的光學系統1中各元件的安排,在本實施例中,雷射光源110的光路與雷射光源120的光路彼此垂直且交於合光元件130。雷射光源110的出光處設置位置對應於合光元件130的透光部份,而雷射光源120的出光處設置位置對應於合光元件130的反射部份。光學元件141(雙錐透鏡)設於雷射光源110的光路以及雷射光源120的光路上,且光學元件141設於雷射光源110與材料層190(螢光粉層)之間。透鏡群150、透鏡群170以及透鏡群180設置於光學元件141與材料層190之 間。透鏡群150、分光元件160、透鏡群170、透鏡群180、材料層190、螢光輪PW、反射鏡RM1、反射鏡RM2以及反射鏡RM3設於光學元件141的光路下游(Downstream)。本發明所指的甲元件在乙元件的光路下游,係指光束會先經過乙元件後再到達甲元件之意。成像裝置20的全反射稜鏡26設置於光閥22與投影鏡頭24之間。 First, the arrangement of the components in the optical system 1 of this embodiment will be explained. In this embodiment, the optical path of the laser light source 110 and the optical path of the laser light source 120 are perpendicular to each other and intersect the light combining element 130. The light emitting position of the laser light source 110 corresponds to the transparent part of the light combining element 130, and the light emitting position of the laser light source 120 corresponds to the reflecting part of the light combining element 130. The optical element 141 (double cone lens) is arranged on the optical path of the laser light source 110 and the optical path of the laser light source 120, and the optical element 141 is arranged between the laser light source 110 and the material layer 190 (phosphor layer). The lens group 150, the lens group 170, and the lens group 180 are disposed between the optical element 141 and the material layer 190 between. The lens group 150, the dichroic element 160, the lens group 170, the lens group 180, the material layer 190, the fluorescent wheel PW, the reflecting mirror RM1, the reflecting mirror RM2, and the reflecting mirror RM3 are arranged downstream of the optical path of the optical element 141 (Downstream). In the present invention, element A is downstream of the optical path of element B, which means that the light beam will pass through element B before reaching element A. The total reflection beam 26 of the imaging device 20 is disposed between the light valve 22 and the projection lens 24.

接著,再說明本實施例的光學系統1中光束的傳輸過程,雷射光源110、120所發出的雷射光束L1、L2藉由合光元件130合成並輸出雷射光束L。雷射光束L依序通過光學元件141、透鏡群150、分光元件160、透鏡群170、透鏡群180後,最後傳遞至螢光輪PW上的材料層190或透光層(未示出)。螢光輪PW上的馬達(未示出)會轉動,而當光束照射螢光輪PW的材料層190中的光致發光材料時,材料層以及透光層會依序被雷射光束L照射。當雷射光束L傳遞至材料層190時,則材料層190會依序被激發出紅色光束L3R以及綠色光束L3G並被材料層190後方的反光層反射,並依序經由透鏡群180、透鏡群170、分光元件160進入成像裝置20。而當雷射光束L傳遞至螢光輪PW上的透光層時,則雷射光束L會穿透螢光輪PW而後依序被反射鏡RM1、反射鏡RM2以及反射鏡RM3所反射並經由分光元件160進入成像裝置20,如圖中的紅色光束L3R、綠色光束L3G及藍光光束L3B所示者,而前述各光束其具分別具有一光譜,且此光譜的峰值波長分別介於625奈米至740奈米、495奈米至570奈米之間以及400 奈米至475奈米之間。 Next, the transmission process of the light beam in the optical system 1 of this embodiment will be explained again. The laser light beams L1 and L2 emitted by the laser light sources 110 and 120 are combined by the light combining element 130 and output the laser light beam L. After the laser beam L passes through the optical element 141, the lens group 150, the beam splitting element 160, the lens group 170, and the lens group 180 in sequence, it is finally transmitted to the material layer 190 or the light-transmitting layer (not shown) on the phosphor wheel PW. The motor (not shown) on the fluorescent wheel PW will rotate, and when the light beam irradiates the photoluminescent material in the material layer 190 of the fluorescent wheel PW, the material layer and the light-transmitting layer will be irradiated by the laser beam L in sequence. When the laser beam L is transmitted to the material layer 190, the material layer 190 is sequentially excited to emit a red light beam L3R and a green light beam L3G and is reflected by the reflective layer behind the material layer 190, and then passes through the lens group 180 and the lens group in sequence. 170. The beam splitting element 160 enters the imaging device 20. When the laser beam L is transmitted to the light-transmitting layer on the fluorescent wheel PW, the laser beam L will penetrate the fluorescent wheel PW and then be sequentially reflected by the mirror RM1, the mirror RM2, and the mirror RM3 and pass through the light splitting element. 160 enters the imaging device 20, as shown by the red light beam L3R, the green light beam L3G, and the blue light beam L3B in the figure, and each of the aforementioned light beams has a spectrum, and the peak wavelength of this spectrum is between 625 nm and 740. Nanometers, between 495 nanometers and 570 nanometers, and 400 Between nanometers and 475 nanometers.

接著,照明光束L3會先傳遞至成像裝置20中的全反射稜鏡26而被全反射射往光閥22。光閥22將照明光束L3之各部份依時序轉換為影像光束IB後,影像光束IB再穿透全反射稜鏡26並被投影鏡頭24所接收。投影鏡頭24將影像光束IB投射至成像平面(Imaging Plane)或是屏幕上以形成影像畫面。 Then, the illuminating light beam L3 is first transmitted to the total reflection beam 26 in the imaging device 20 and is totally reflected toward the light valve 22. After the light valve 22 converts the parts of the illumination light beam L3 into the image light beam IB according to the time sequence, the image light beam IB penetrates the total reflection beam 26 and is received by the projection lens 24. The projection lens 24 projects the image beam IB onto an imaging plane (Imaging Plane) or a screen to form an image frame.

值得一提的是,在本實施例中,雷射光束L在尚未經過光學元件141前所形成的光點矩陣的形狀的長寬比(Aspect Ratio)例如是1:1,換言之,雷射光束L在尚未經過光學元件141前所形成的光點矩陣的形狀類似於正方形。而於材料層190上受到雷射光束L照射而激發的受激光面的長寬比(例如是16:9),受激光面在設計上通常會與光閥22的長寬比(例如是16:10)接近。在本實施例中,由於光學元件141的表面S1上相互垂直的第一軸A1以及第二軸A2設有不同的曲率半徑,可使得雷射光束L投射至材料層190上的光點矩陣的形狀擴張(例如是16:9)而與材料層190的受激光面的長寬比符合,同時,也分散了雷射光束L於材料層190上的能量密度。 It is worth mentioning that in this embodiment, the aspect ratio of the shape of the spot matrix formed by the laser beam L before passing through the optical element 141 is, for example, 1:1. In other words, the laser beam L The shape of the spot matrix formed by L before passing through the optical element 141 is similar to a square. The aspect ratio of the laser surface excited by the laser beam L on the material layer 190 (for example, 16:9), the laser surface is usually designed to have the aspect ratio of the light valve 22 (for example, 16 : 10) Close. In this embodiment, since the first axis A1 and the second axis A2 perpendicular to each other on the surface S1 of the optical element 141 are provided with different radii of curvature, the laser beam L can be projected to the spot matrix on the material layer 190 The shape is expanded (for example, 16:9) to conform to the aspect ratio of the laser surface of the material layer 190, and at the same time, the energy density of the laser beam L on the material layer 190 is dispersed.

在此必須說明的是,下述實施例沿用前述實施例的部份內容,關於相同的元件名稱可以參考前述實施例的部份內容。 It must be noted that the following embodiments follow part of the content of the previous embodiment, and for the same component names, you can refer to the part of the content of the previous embodiment.

圖4繪示為本發明另一實施例的光學系統的架構示意圖。圖5繪示為圖4中的光學系統的另一個光學元件的上視示意圖。圖6為雷射光束經過圖4的光學系統的兩個光學元件後投射 於材料層上的光點矩陣的示意圖。 FIG. 4 is a schematic structural diagram of an optical system according to another embodiment of the invention. FIG. 5 is a schematic top view of another optical element of the optical system in FIG. 4. Figure 6 is the projection of the laser beam after passing through the two optical elements of the optical system of Figure 4 Schematic diagram of the matrix of light spots on the material layer.

請參照圖4,圖4的光學系統1’大致類似於圖1的光學系統1。在本實施例中,光學系統1’中的合光裝置10’進一步包括有多枚光學元件142及光學元件143。在本發明所指的光學元件142、143可為雙錐透鏡或自由曲面透鏡,而在本實施例中,各光學元件142、143分別為雙錐透鏡。請參照圖5,光學元件142設有表面S2。表面S2上相互垂直的第三軸A3以及第四軸A4設有不同的曲率半徑。而光學元件143與光學元件142同。相同的標號以及元件名稱類似於圖1中的光學系統1的各元件的說明。 Please refer to FIG. 4, the optical system 1'of FIG. 4 is roughly similar to the optical system 1 of FIG. In this embodiment, the light combining device 10' in the optical system 1'further includes a plurality of optical elements 142 and optical elements 143. The optical elements 142 and 143 referred to in the present invention may be double cone lenses or free-form surface lenses. In this embodiment, the optical elements 142 and 143 are double cone lenses, respectively. Please refer to FIG. 5, the optical element 142 is provided with a surface S2. The third axis A3 and the fourth axis A4 perpendicular to each other on the surface S2 are provided with different radii of curvature. The optical element 143 is the same as the optical element 142. The same reference numerals and component names are similar to the description of each component of the optical system 1 in FIG. 1.

於以下段落中示例性地說明光學系統1’相較於光學系統1的元件的安排及光束的傳輸過程的差異。 In the following paragraphs, the difference between the arrangement of the components of the optical system 1'and the optical system 1 and the transmission process of the light beam is exemplified.

於本例中,各光學元件142、143係設置於雷射光源110、120的光路上且設置於雷射光源110、120與合光元件130的光路之間。於本例中,雷射光源110、120前方分別係設置有多個光學元件142、143,各光學元件142、143以矩陣方式排列而形成光學元件矩陣OEM。而每一光學元件142、143分別對應雷射光源110、120中的一枚雷射二極體模組,並分別同軸設置。透過上述的配置使雷射光束L1、L2可分別依序穿透光學元件142、143以及光學元件141達到材料層190,於本例中,光學元件141為雙錐透鏡。 In this example, the optical elements 142 and 143 are arranged on the optical paths of the laser light sources 110 and 120 and between the laser light sources 110 and 120 and the light combining element 130. In this example, a plurality of optical elements 142 and 143 are respectively arranged in front of the laser light sources 110 and 120, and the optical elements 142 and 143 are arranged in a matrix to form an optical element matrix OEM. Each optical element 142, 143 corresponds to a laser diode module in the laser light source 110, 120, and is arranged coaxially. Through the above configuration, the laser beams L1 and L2 can respectively penetrate the optical elements 142 and 143 and the optical element 141 to reach the material layer 190 in sequence. In this example, the optical element 141 is a double cone lens.

請參照圖6,承上述,在本實施例的光學系統1’中,光學元件141除了對雷射光束L所形成的光點矩陣的形狀擴張之外,光學元件142更對雷射光束L1以及雷射光束L2在光點矩陣中所 分別形成的每一個光點個別地調整其形狀。也就是說,本實施例的光學系統1’透過光學元件142的設置,可以個別地擴張在雷射光束L投射至材料層190(或螢光粉層)上的光點矩陣中的每一個光點的大小,進而更進一步地降低在材料層190(或螢光粉層)上的能量密度。 Please refer to FIG. 6 for the above, in the optical system 1'of the present embodiment, the optical element 141 expands the shape of the spot matrix formed by the laser beam L, and the optical element 142 is more sensitive to the laser beam L1 and The laser beam L2 is in the spot matrix Each light spot formed separately adjusts its shape individually. That is to say, the optical system 1'of the present embodiment can be individually expanded through the arrangement of the optical element 142 to project each light spot in the matrix of the laser beam L onto the material layer 190 (or phosphor layer). The size of the dots further reduces the energy density on the material layer 190 (or phosphor layer).

圖7繪示為本發明再一實施例的光學系統的架構示意圖。圖8繪示為在習知技術中雷射光束經過擴散片後投射於材料層上的光點示意圖。圖9繪示為雷射光束經過圖7的光學系統的光學元件矩陣後投射於材料層上的光點示意圖。 FIG. 7 is a schematic structural diagram of an optical system according to still another embodiment of the present invention. FIG. 8 is a schematic diagram of the light spot projected on the material layer after the laser beam passes through the diffuser in the prior art. FIG. 9 is a schematic diagram of the light spots projected on the material layer after the laser beam passes through the optical element matrix of the optical system of FIG. 7.

請參照圖7,圖7的光學系統1”大致類似於圖1的光學系統1,於此處就差異之處簡要說明如下。在本實施例中,光學系統1”中的合光裝置10”不具有雷射光源120、光學元件142、合光元件130以及透鏡群1506。相同的標號以及元件名稱類似於圖1的光學系統1以及圖4的光學系統1”的各元件的說明,於此不再贅述。惟於另一例中,可參酌其他的實施例選擇性地增加雷射光源120及合光元件130以增加雷射光束的強度。 Please refer to FIG. 7. The optical system 1" of FIG. 7 is roughly similar to the optical system 1 of FIG. 1, and the differences are briefly described as follows. In this embodiment, the light combining device 10" in the optical system 1" It does not have the laser light source 120, the optical element 142, the light combining element 130, and the lens group 1506. The same reference numerals and element names are similar to the description of each element of the optical system 1 in FIG. 1 and the optical system 1" in FIG. No longer. However, in another example, the laser light source 120 and the light combining element 130 can be selectively added by referring to other embodiments to increase the intensity of the laser beam.

於以下段落中示例性地說明光學系統1”的安排及光束的傳輸過程。光學系統1”的多個光學元件141以矩陣方式且緊密排列而形成光學元件矩陣OEM’。而每一光學元件141分別對應雷射光源110中的一枚雷射二極體模組,並分別同軸設置,且光學元件141的表面S1作為光束的出光面。 The arrangement of the optical system 1" and the transmission process of the light beam are exemplarily described in the following paragraphs. The plurality of optical elements 141 of the optical system 1" are arranged in a matrix and closely arranged to form an optical element matrix OEM'. Each optical element 141 corresponds to a laser diode module in the laser light source 110 and is arranged coaxially, and the surface S1 of the optical element 141 serves as the light exit surface of the light beam.

接著,雷射光束L1依序穿透光學元件141、分光元件 160、透鏡群170、透鏡群180,最後傳遞至螢光輪PW上的材料層190上,而其傳輸過程皆類似於光學系統1。 Then, the laser beam L1 sequentially penetrates the optical element 141 and the beam splitting element 160, the lens group 170, and the lens group 180 are finally transferred to the material layer 190 on the phosphor wheel PW, and the transmission process is similar to that of the optical system 1.

請參照圖8以及圖9,由圖8與圖9相比較後,可看出雷射光束L1經過光學元件矩陣OEM’後投射於材料層190上的光點擴散的效果(如圖9)較明顯於經過擴散片投射於材料層190上的光點擴散的效果(如圖8)。換言之,本實施例的光學系統1”對於雷射光束L的擴散效果相較於在習知技術中使用擴散片的方式的擴散效果為佳。 Please refer to Figure 8 and Figure 9. After comparing Figure 8 with Figure 9, it can be seen that the laser beam L1 passes through the optical element matrix OEM' and then projects on the material layer 190 to diffuse the light spots (as shown in Figure 9). It is obvious that the light spot projected on the material layer 190 through the diffusion sheet diffuses the effect (as shown in FIG. 8). In other words, the diffusion effect of the optical system 1" of the present embodiment on the laser beam L is better than the diffusion effect of the method of using a diffusion sheet in the prior art.

綜上所述,在本發明的相關實施例的光學系統中,由於光學系統內的光學元件的表面上相互垂直的第一軸以及第二軸設有不同的曲率半徑,當雷射光束穿透此光學元件時,可以使得雷射光束所形成的光點矩陣的形狀擴張,而降低後續投射於材料層上的能量密度。由另一觀點來看本發明相關實施例的光學系統,由於雷射光束穿透雙錐透鏡後達到螢光輪的反應區中的螢光粉層,雙錐透鏡可以使得雷射光束所形成的光點矩陣的形狀擴張,而降低後續投射於螢光粉層上的能量密度。因此,本發明相關實施例的光學系統可以在不使用擴散片的情況下,降低雷射光束投射於材料層(或螢光粉層)上的能量密度,進而使得光學系統可以具有良好的發光效率以及可靠度。同時,由於本發明相關實施例的光學系統不需使用擴散片而可達到雷射光束擴散的效果,因此也避免了擴散片被破壞的風險。 In summary, in the optical system of the related embodiment of the present invention, since the first axis and the second axis that are perpendicular to each other on the surface of the optical element in the optical system are provided with different radii of curvature, when the laser beam penetrates With this optical element, the shape of the spot matrix formed by the laser beam can be expanded, and the energy density subsequently projected on the material layer can be reduced. Looking at the optical system of the related embodiment of the present invention from another point of view, since the laser beam penetrates the double cone lens and reaches the phosphor layer in the reaction zone of the phosphor wheel, the double cone lens can make the light formed by the laser beam The shape of the dot matrix expands and reduces the energy density subsequently projected on the phosphor layer. Therefore, the optical system of the related embodiment of the present invention can reduce the energy density of the laser beam projected on the material layer (or phosphor layer) without using a diffuser, thereby enabling the optical system to have good luminous efficiency. And reliability. At the same time, since the optical system of the related embodiment of the present invention does not need to use a diffuser to achieve the effect of diffusing the laser beam, the risk of damage to the diffuser is also avoided.

雖然本發明已以實施例揭露如上,然其並非用以限定本 發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Inventions, any person with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention shall be defined as the scope of the appended patent application. quasi.

1‧‧‧光學系統 1‧‧‧Optical system

10‧‧‧合光裝置 10‧‧‧Combined light device

20‧‧‧成像裝置 20‧‧‧Imaging device

22‧‧‧光閥 22‧‧‧Light valve

24‧‧‧投影鏡頭 24‧‧‧Projection lens

26‧‧‧全反射稜鏡 26‧‧‧Total reflection

110、120‧‧‧雷射光源 110、120‧‧‧Laser light source

130‧‧‧合光元件 130‧‧‧Combined light element

141‧‧‧光學元件 141‧‧‧Optical components

150、170、180‧‧‧透鏡 150、170、180‧‧‧lens

160‧‧‧分光元件 160‧‧‧Splitter element

190‧‧‧材料層 190‧‧‧Material layer

IB‧‧‧影像光束 IB‧‧‧Image beam

L、L1、L2‧‧‧雷射光束 L, L1, L2‧‧‧Laser beam

L3‧‧‧照明光束 L3‧‧‧Illumination beam

L3R‧‧‧紅色光束 L3R‧‧‧Red beam

L3B‧‧‧藍色光束 L3B‧‧‧Blue beam

L3G‧‧‧綠色光束 L3G‧‧‧Green beam

LD‧‧‧經封裝的藍光雷射二極體晶片 LD‧‧‧Packed blue laser diode chip

PW‧‧‧螢光輪 PW‧‧‧Fluorescent Wheel

RM1、RM2、RM3‧‧‧反射鏡 RM1, RM2, RM3‧‧‧Mirror

S1‧‧‧表面 S1‧‧‧surface

Claims (10)

一種光學系統,包括:一第一雷射光源,可輸出一第一雷射光束;一第一光學元件,設於該第一雷射光源的光路上,該第一光學元件設有一第一表面,該第一表面上相互垂直的一第一軸以及一第二軸設有不同的曲率半徑;一透鏡矩陣,設置於該第一雷射光源的光路上並位於該第一雷射光源及該第一光學元件之間;以及一第一材料層,設於該第一光學元件的光路下游,該第一材料層含有光致發光材料。 An optical system, comprising: a first laser light source capable of outputting a first laser beam; a first optical element arranged on the optical path of the first laser light source, and the first optical element is provided with a first surface , A first axis and a second axis perpendicular to each other on the first surface are provided with different radii of curvature; a lens matrix is arranged on the optical path of the first laser light source and located between the first laser light source and the Between the first optical elements; and a first material layer arranged at the downstream of the optical path of the first optical element, the first material layer containing a photoluminescent material. 如申請專利範圍第1項所述的光學系統,其中該第一光學元件為一雙錐透鏡或一自由曲面透鏡,該第一光學元件之屈光度為正。 According to the optical system described in claim 1, wherein the first optical element is a double cone lens or a free-form surface lens, and the refractive power of the first optical element is positive. 如申請專利範圍第2項所述的光學系統,其中該透鏡矩陣包括有一第二光學元件,該第二光學元件設有一第二表面,該第二表面上相互垂直的一第三軸以及一第四軸設有不同的曲率半徑,且該第一光學元件及該第一材料層設於該第二光學元件的光路下游,該第二光學元件為一雙錐透鏡或一自由曲面透鏡,該第二光學元件之屈光度為正。 The optical system described in item 2 of the scope of patent application, wherein the lens matrix includes a second optical element, the second optical element is provided with a second surface, a third axis and a first axis perpendicular to each other on the second surface Four axes are provided with different radii of curvature, and the first optical element and the first material layer are arranged downstream of the optical path of the second optical element. The second optical element is a double cone lens or a free-form surface lens. The diopter of the second optical element is positive. 如申請專利範圍第3項所述的光學系統,進一步包括:一第二雷射光源,可輸出一第二雷射光束; 一第三光學元件,設於該第二雷射光源的光路上,該第三光學元件設有一第三表面,該第三表面上相互垂直的一第五軸以及一第六軸設有不同的曲率半徑,且該第一光學元件及該第一材料層設於該第三光學元件的光路下游,該第三光學元件為一雙錐透鏡或一自由曲面透鏡,該第三光學元件之屈光度為正。 The optical system described in item 3 of the scope of patent application further includes: a second laser light source capable of outputting a second laser beam; A third optical element is arranged on the optical path of the second laser light source, the third optical element is provided with a third surface, and a fifth axis and a sixth axis perpendicular to each other on the third surface are provided with different The radius of curvature, and the first optical element and the first material layer are arranged downstream of the optical path of the third optical element, the third optical element is a double cone lens or a free-form surface lens, and the refractive power of the third optical element is positive. 如申請專利範圍第4項所述的光學系統,更包括:一合光元件,設置於該第一雷射光源及該第二雷射光源的光路上,該合光元件可反射該第一雷射光束及該第二雷射光束之任一者,並使另一者穿透;以及一透鏡,具有正屈光度,該透鏡設置於該第一光學元件與該第一材料層之間。 For example, the optical system described in item 4 of the scope of patent application further includes: a light combining element disposed on the optical path of the first laser light source and the second laser light source, and the light combining element can reflect the first laser light source. Either one of the beam and the second laser beam is penetrated by the other; and a lens having a positive refractive power, the lens being arranged between the first optical element and the first material layer. 如申請專利範圍第1項所述的光學系統,其中該透鏡矩陣包括一第二光學元件,該光學系統進一步包括有:一第二雷射光源,可輸出一第二雷射光束;一第三光學元件,設於該第二雷射光源的光路上,該第三光學元件設置於該第二雷射光源及該第一光學元件之間;一透鏡,具有正屈光度,該透鏡設置於該第一光學元件與該第一材料層之間;以及一合光元件,設置於該第一雷射光源及該第二雷射光源的光路上,該合光元件可反射該第一雷射光束及該第二雷射光束之任一者,並使另一者穿透; 其中,該第一光學元件、該第二光學元件與該第三光學元件分別為一雙錐透鏡或一自由曲面透鏡,且該第一光學元件的屈光度、該第二光學元件與該第三光學元件的屈光度為正,該第一材料層為一螢光輪,該合光元件為一條紋鏡。 The optical system described in the first item of the scope of patent application, wherein the lens matrix includes a second optical element, and the optical system further includes: a second laser light source capable of outputting a second laser beam; and a third An optical element is arranged on the optical path of the second laser light source, and the third optical element is arranged between the second laser light source and the first optical element; a lens having a positive refractive power, and the lens is arranged on the first optical element. Between an optical element and the first material layer; and a light combining element disposed on the optical path of the first laser light source and the second laser light source, the light combining element can reflect the first laser beam and Any one of the second laser beams, and make the other penetrate; Wherein, the first optical element, the second optical element and the third optical element are respectively a double cone lens or a free-form surface lens, and the refractive power of the first optical element, the second optical element and the third optical element The diopter of the element is positive, the first material layer is a fluorescent wheel, and the light combining element is a striped mirror. 一種光學系統,包括:一第一雷射光源,可發出一第一雷射光束;一螢光粉層,位於該第一雷射光束的光路上;一第一雙錐透鏡,設置於該第一雷射光源與該螢光粉層之間,並位於該第一雷射光束的行進路徑上,使該第一雷射光束可穿透該第一雙錐透鏡達到該螢光粉層;以及一透鏡矩陣,設置於該第一雷射光源的光路上並位於該第一雷射光源及該第一雙錐透鏡之間。 An optical system comprising: a first laser light source capable of emitting a first laser beam; a phosphor layer located on the optical path of the first laser beam; and a first double cone lens arranged on the first laser beam Between a laser light source and the phosphor layer and located on the traveling path of the first laser beam, so that the first laser beam can penetrate the first biconical lens to reach the phosphor layer; and A lens matrix is arranged on the optical path of the first laser light source and located between the first laser light source and the first biconical lens. 如申請專利範圍第7項所述的光學系統,其中該透鏡矩陣包括有一第二雙錐透鏡,該第一雷射光束可依序穿透該第二雙錐透鏡及該第一雙錐透鏡後到達該螢光粉層,其中該第一雙錐透鏡以及該第二雙錐透鏡之屈光度分別為正。 The optical system according to claim 7, wherein the lens matrix includes a second double cone lens, and the first laser beam can sequentially penetrate the second double cone lens and the first double cone lens. When reaching the phosphor layer, the refractive powers of the first biconical lens and the second biconical lens are respectively positive. 如申請專利範圍第8項所述的光學系統,進一步包括有一第二雷射光源,可發出一第二雷射光束,該第二雷射光源及該第一雙錐透鏡之間設有一第三雙錐透鏡,該第二雷射光束可依序穿透該第三雙錐透鏡及該第一雙錐透鏡後到達該螢光粉層,其中該第三雙錐透鏡之屈光度為正。 For example, the optical system described in item 8 of the scope of patent application further includes a second laser light source capable of emitting a second laser beam, and a third laser light source is provided between the second laser light source and the first biconical lens. A double cone lens, the second laser beam can sequentially penetrate the third double cone lens and the first double cone lens to reach the phosphor layer, wherein the refractive power of the third double cone lens is positive. 如申請專利範圍第7項所述的光學系統,其進一步包括有一螢光輪,該螢光輪包括有該反應區及一透光區,該反應區設置有該螢光粉層。 For example, the optical system described in claim 7 further includes a fluorescent wheel including the reaction zone and a light-transmitting zone, and the reaction zone is provided with the phosphor layer.
TW106124809A 2017-07-25 2017-07-25 Optical system TWI730146B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106124809A TWI730146B (en) 2017-07-25 2017-07-25 Optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106124809A TWI730146B (en) 2017-07-25 2017-07-25 Optical system

Publications (2)

Publication Number Publication Date
TW201908856A TW201908856A (en) 2019-03-01
TWI730146B true TWI730146B (en) 2021-06-11

Family

ID=66590160

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106124809A TWI730146B (en) 2017-07-25 2017-07-25 Optical system

Country Status (1)

Country Link
TW (1) TWI730146B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111694208B (en) 2019-03-14 2022-02-22 中强光电股份有限公司 Projection device
TWI698698B (en) * 2019-05-30 2020-07-11 台達電子工業股份有限公司 Illumination system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080252853A1 (en) * 2007-04-10 2008-10-16 Industrial Technology Research Institute Color-mixing laser module and projectors using the same
TW201213858A (en) * 2010-06-22 2012-04-01 Panasonic Corp Laser projector
CN104136960A (en) * 2012-02-21 2014-11-05 优志旺电机株式会社 Coherent light source device and projector
CN105278226A (en) * 2014-06-13 2016-01-27 中强光电股份有限公司 Light source module and projection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080252853A1 (en) * 2007-04-10 2008-10-16 Industrial Technology Research Institute Color-mixing laser module and projectors using the same
TW201213858A (en) * 2010-06-22 2012-04-01 Panasonic Corp Laser projector
CN104136960A (en) * 2012-02-21 2014-11-05 优志旺电机株式会社 Coherent light source device and projector
CN105278226A (en) * 2014-06-13 2016-01-27 中强光电股份有限公司 Light source module and projection device

Also Published As

Publication number Publication date
TW201908856A (en) 2019-03-01

Similar Documents

Publication Publication Date Title
US9645480B2 (en) Light source module and projection apparatus having the same
US10386710B2 (en) Projector and illumination system thereof
TWM547687U (en) Projector
US9977316B2 (en) Projection apparatus and illumination system thereof
US10606156B2 (en) Illumination system and projection device
US11336873B2 (en) Illumination system and projection apparatus
CN110389486B (en) Light source device and display device
TWI731073B (en) Illumination system
TW201833653A (en) Projection System
TWI720144B (en) Light source apparatus
TWI730146B (en) Optical system
TWI726073B (en) Optical system
US10838291B2 (en) Illumination system and projection device
US11126074B2 (en) Illumination system and projection apparatus
WO2020135300A1 (en) Light source system and projection device
CN109459906B (en) Optical system
TWI809249B (en) Illumination system and fabrication method thereof and projector
CN116893565A (en) Light source device
US10775689B2 (en) Illumination system and projection apparatus
US11860524B2 (en) Projection device with high color purity
US11397316B2 (en) Projection device
WO2022188307A1 (en) Laser light path system and projection device
TWI826284B (en) Illumination system
US20240027886A1 (en) Illumination system and projection device
US20220206371A1 (en) Illumination system and projection apparatus