TWI727329B - 用於基於深度學習方法提供對資源之選擇性存取之防欺騙系統及方法 - Google Patents
用於基於深度學習方法提供對資源之選擇性存取之防欺騙系統及方法 Download PDFInfo
- Publication number
- TWI727329B TWI727329B TW108118753A TW108118753A TWI727329B TW I727329 B TWI727329 B TW I727329B TW 108118753 A TW108118753 A TW 108118753A TW 108118753 A TW108118753 A TW 108118753A TW I727329 B TWI727329 B TW I727329B
- Authority
- TW
- Taiwan
- Prior art keywords
- image
- flash
- user
- flash image
- anatomical feature
- Prior art date
Links
Images
Landscapes
- Collating Specific Patterns (AREA)
Abstract
本發明揭示用於提供選擇性存取與包括在合適電腦硬體上執行之軟體之一裝置連接可用之資源之系統,該系統包括:相關聯於該裝置之至少一個相機,該相機能夠拍攝一人類掌紋之至少一個相片;一偵測器模組,其在無實體接觸之情況下使用本端分類器定位及分割該手掌之關注區域;一轉換處理器,其將相關聯於一人類掌紋之該關注區域之原始像素資料轉換為相關聯於該掌紋之一獨特簽章;及一鑑認及識別引擎,該鑑認及識別引擎基於該獨特簽章及含有複數個使用者模型之至少一個資料庫判定是否應授予存取該等資源之一或多者。
Description
本發明大體上係關於用於鑑認及識別之生物特徵量測技術之使用,且更特定言之係關於用於經由電腦(諸如行動裝置)鑑認及識別使用者以選擇性地允許或拒絕存取各種資源之基於非接觸之解決方案。在本發明中,透過涉及以下關鍵步驟之一程序使用一個人之手掌之一影像或一組影像執行鑑認或識別:(1)使用本端分類器偵測掌紋區;(2)從關注區域提取特徵;及(3)針對儲存於可透過一學習程序動態地擴充之一資料庫中之使用者模型計算匹配得分。
諸如智慧型手機、平板電腦及筆記型電腦之行動裝置已變得被許多人日常廣泛採用及使用。此等裝置已變得愈來愈強大且隨著開發者創造出愈來愈多應用程式及在應用程式上運行之服務,此等裝置變得更融入於吾等之日常生活中。此等行動裝置不僅自身提供一強大計算平台,而且其等亦提供連接至在通常經由一無線鏈路存取一小區站點且接著回載至網際網路骨幹之遠端平台上可用之一實際上無限組服務、應用程式及資料。除存取此等遠端平台外,行動裝置亦具有透過短程及長程無線連接而連接至其他行動裝置之能力。
或許最重要的係,此等裝置之不斷增加之滲透連同相關聯於此等裝置中之組件部分之持續減少之成本已導致裝置變得具有更大性能的同時對於許多使用者而言仍可負擔。舉例而言,作為組件部分之成本之減少及更強大軟體之開發之一結果,大量智慧型手機現包含可拍攝大約八百萬或更高像素之極其詳細之相片之強大相機。
在行動裝置及其等與如此多功能性連結之廣泛使用且其需要與如此多不同的資源相互作用之背景下出現的一個重要問題係需要控制對此等資源之各者之存取,使得僅應被授權存取可適用資源之該等個人或裝置實際上能夠如此做。在通常情況中,透過文字/數字字串(諸如使用者ID及密碼)之輸入控制資源存取。舉例而言,可要求一智慧型手機使用者在被允許存取裝置上之任何功能性之前輸入一四位碼。另外,裝置上之各本端應用程式或其他資源可要求使用者在獲得存取資源之前輸入一或多個文字/數字字串。在此情況中,正確資料(使用者ID、密碼等等)可被儲存於裝置之記憶體中。替代性地,為存取定位遠離於裝置之資源(應用程式、資料、通信性能等等),可要求使用者及/或裝置發送一組正確文字/數字字串至遠端資源,其繼而在允許存取資源之前確認所發送資料匹配正確資料。
如吾人可想像,對於一典型智慧型手機使用者,舉例而言,用於鑑認及識別之前述技術存在數個缺點。作為其中一者,記住針對如此多不同的應用程式、服務及其他資源之使用者ID及密碼(各具有對於須如何構建該等ID及密碼之其等自身之要求)之需要可為相當令人生畏的且使用者經常遺忘針對其等不頻繁存取之資源之ID及密碼。另一缺點係,使用文字/數字字串控制對資源之存取存在安全問題。舉例而言,存在可用於駭客此等字串以獲得未授權存取至資源之強大軟體程式。
又,一使用者使用其手指在智慧型手機螢幕上輸入密碼及使用者ID之典型基於接觸之方法本身導致安全風險。經驗豐富之駭客經常能夠基於藉由手指留下之油脂殘留物從螢幕「提取」指紋圖案以獲得未授權存取。此在輸入諸如一四位數之一短數字字串以解鎖裝置之背景下尤其如此。一旦裝置被解鎖,甚至無法保全裝置上之許多資源,導致各種安全風險。
定下目標消除或減少上文論述之缺點之一個解決方案涉及使用生物特徵量測技術控制對經由行動裝置可用之資源之存取。雖然此等解決方案已在一些情況中消除上文論述之一些缺點,但其等仍經受數個劣勢。舉例而言,一些基於接觸之解決方案需要使用者將其手指放置於具有擷取使用者之指紋之能力之裝置感測器上,接著,針對本端或遠端定位之指紋資料匹配使用者之指紋,以判定是否存在足以允許使用者或裝置存取一或多個資源之一匹配。在此情況中,如在上文所參考,一指紋可被一駭客從裝置感測器提取且用於在隨後時間利用所挪用指紋獲得未授權存取一或多個資源。此等解決方案通常亦經受一繁忙使用者在一典型日程期間試圖獲得存取裝置上之許多不同資源之背景下無法接受執行處理,以判定指紋是否係一匹配所必要的時間之缺點。
存在相關聯於基於接觸之方法之額外健康問題,涉及細菌、病毒或其他生物危害之傳輸,尤其在使用者之間共用裝置之情況中。如在此項技術中已知,一個人之指尖(且更一般言之一個人之手)經常係在人之間傳遞細菌、病毒或其他生物危害之主要媒介之一者。在被多人共用之個別裝置之情況中,其中一使用者使用其指尖鍵入一識別字串或透過基於接觸之生物特徵量測方法(諸如指紋或掌紋辨識等等)鑑認或識別使用者自身之基於接觸之鑑認及識別方法產生經由共用接觸媒介傳遞該等生物危害之風險。
因此,本發明之一目的係提供支援對使用者及裝置之精確、安全及快速鑑認及識別以提供選擇性存取透過配備有相機之裝置可存取之資源之一基於非接觸之生物特徵量測系統及方法。
在本發明之一項實施例中,被要求將其等自身識別或鑑認為獲得存取一或多個資源之一條件之此等配備有相機之裝置(為方便起見在下文中有時稱為智慧型手機,儘管該等裝置應被理解為包含具有一相機性能之所有裝置,包含行動裝置及固定裝置二者,諸如桌上型電腦)之使用者使用智慧型手機相機拍攝其等手掌或兩個手掌之一個相片或一系列相片。接著,本發明之系統採用電腦視覺技術分析該掌紋影像且確認該掌紋簽章匹配一資料庫中之該使用者之模型(使用者鑑認)或在一資料庫中之許多模型中找到匹配使用者模型(使用者識別)。
從與隨附圖式連結之以下例示性實施例之實施方式將變得明白本發明之進一步特徵及態樣。
100:裝置
105:相機
110:相機資料處理器
115:關注區域偵測器
120:轉換處理器
125:簽章
130:鑑認及識別(AID)引擎
135:資料庫
140:本端資源
145:遠端資源介面
150:網路介面
155:模型建立引擎
160:AID單元
200:遠端伺服器
205:AID單元
210:應用程式
215:資料
300:遠端裝置
305:AID單元
310:應用程式
315:資料
400:無線網路
500:資料網路
圖1係描繪在本發明之一較佳實施例中之本發明之系統之主要組件之圖式;圖2係在圖解說明在本發明之一較佳實施例中之本發明之方法時有用之一方塊圖;圖3係圖解說明根據本發明之一較佳實施例之一行動裝置與一或多個遠端伺服器之間的安全連接之一圖式;圖4係圖解說明根據在本發明之一較佳實施例中之本發明之鑑認一使用者或裝置之關鍵步驟之一流程圖;及
圖5係圖解說明根據在本發明之一較佳實施例中之本發明之識別一使用者或裝置之關鍵步驟之一流程圖。
現將詳細參考本發明之各種例示性實施例。應理解,例示性實施例之以下論述不意欲為對本發明之一限制,如在本文中廣泛揭示。實情係,以下論述經提供以為讀者給出對本發明之特定態樣及特徵之一更詳細理解。
在詳細描述本發明之實施例之前,將理解,在本文中使用之術語僅出於描述特定實施例之目的且不意欲限制。除非另外定義,在本文中使用之所有術語具有相同於由本發明從屬之一般技術者普遍理解之含義。儘管類似於或等效於在本文中描述之方法及材料之任何方法及材料可用於本發明之實踐,但現描述較佳方法及材料。在本文中提及之所有公開案以引用的方式併入本文中以揭示及描述與所引用公開案連結之方法及/或材料。本發明控制其與任何併入公開案衝突之程度。
如在本文中及隨附申請專利範圍中所使用,單數形式「一」及「該」包含複數參考,除非在文中另外明確規定。因此,舉例而言,對「一手掌」之參考包含一個人之一單一手掌或兩個手掌且對「一影像」之參考包含對一或多個影像之參考。此外,可使用等效術語描述之術語之使用包含該等等效術語之使用。因此,舉例而言,術語「相機」之使用應被理解為包含能夠獲得一物件之一影像之任何裝置。作為另一實例且如上文所提及,術語「智慧型手機」包含具有一相機性能之所有裝置。
在本發明之較佳實施例中之本發明之描述將如下。參考圖1,對本發明之系統之關鍵組件之一論述以及其中此等組件之各者與彼此相互作用以
導出本發明之優勢之內容現如下。裝置100可為包含能夠拍攝高品質相片之一相機之任何裝置。較佳地,裝置100之相機亦含有能夠被選擇性及快速地啟動及撤銷啟動之一閃光元件以用於照明被拍攝之區。此等裝置100之實例包含智慧型手機、平板電腦、筆記型電腦及可藉由一使用者攜載且提供允許本發明之功能性可被操作之一計算平台之任何其他裝置,以及桌上型電腦或各種固定嵌入裝置。此等固定嵌入裝置之實例可包含固定至提供安全存取實體空間或其他資源之設施入口或其他策略位置之相機設備或出於時間及出席協定之此等目的固定至策略位置之相機設備以及其他應用。儘管未要求,但裝置100亦可含有各種其他特徵,諸如一觀察螢幕(其亦可為一觸控螢幕)、一小鍵盤、一加速度計、GPS性能、儲存容量及一中央處理單元(CPU)。
裝置100包含至少一個相機105,其較佳地能夠產生(例如)兩百萬或更高像素之高品質相片。相機資料處理器110從相機105接收影像資料且如在此項技術中已知般處理該影像資料以建立可以各種方式使用(包含出於與現描述之本發明連結概述之目的)之相片之像素資料表示。來自相機資料處理器110之資料被饋送至關注區域偵測器115,其用於將手掌區定位於更廣泛影像內,且使用一高位準之精確性及一致性刻畫該區,從而透過具有不同光照條件及手掌至相機之定向之各種單獨影像提供具有在手掌上之實質上相同形狀及位置之手掌區之遮罩。
在關注區域偵測器115之一項實施例中,使用基於滑動窗之本端分類器偵測關注區域以藉由分類得分標記手掌及非手掌像素,其後接著將相鄰手掌像素分組為輸入影像中之相連分量之一分割步驟。由於從範例影像之大集合學習顯著數量之區辨本端特徵以擷取手掌外觀之穩定特性以形成強
大分類器,故可達成對於影像雜訊之一高位準之精確性及穩健性。因此,練就之偵測器可精確定位及刻畫呈具有各種手定向及光照條件之自由形式之輸入影像上之關注區域。
在關注區域偵測器115之一項實施例中,基於Haar Wavelets及AdaBoost(參考1)之本端分類器用於偵測一使用者之手之手掌區中之關注區域。在關注區域偵測器115之另一實施例中,基於支援向量機(參考2)之本端分類器被用於偵測一使用者之手之手掌區中之關注區域。在關注區域偵測器115之另一實施例中,一迴旋神經網路被用於偵測一使用者之手之手掌區中之關注區域,諸如在美國專利案第5,067,164號及第5,058,179號及(參考3及參考4)中所描述。
接著,關注區域偵測器115饋送影像資料(包含手掌區遮罩)至轉換處理器120,其用於從表示個人之手掌區之特性特徵之影像塊提取可用於區分個人與另一使用者之一簽章125,其中該等影像塊係該手掌區遮罩內之小取樣窗。
在一項實施例中,簽章125係如下計算之一向量。首先,計算在影像中之數個精選區域中之邊緣定向之一直方圖。此可使用用於提取本端影像描述符之電腦視覺之熟知方法之一者執行,諸如換標不變量特徵變換(見參考5)、定向梯度直方圖(見參考6)及在此項技術中已知之其他參考。其次,(例如)使用熟知之K-means叢集演算法相各定向直方圖與已由訓練資料計算之數個原型。最後,形成簽章向量,使得向量之分量k對應於上述提及之第k個原型。分量k含有直方圖較於接近所有其他原型更接近於原型k之區域之數目。此操作序列在文獻中被已知為一「特徵包(Bag of Features)」表示(例如,見參考7)。從當前教示應明白,在本發明之另一
實施例中,多個特徵包可用於保存局部區域之間的幾何關係。
接著,簽章125被饋送至鑑認及識別引擎(AID引擎)130,其用於實施本發明之許多關鍵程序,如在下文所描述。AID引擎130與使用者模型之資料庫135(若存在)通信以儲存一使用者模型之一本端副本。因此,在本端地滯留於裝置100上且不需要與(例如)遠端伺服器或遠端裝置外部通信之應用程式或服務之情況中,可比較由藉由相機105拍攝之掌紋影像導致之一使用者簽章與儲存於使用者模型之資料庫135中之已知使用者模型,以用於鑑認或識別。使用者模型係由一個人之手掌影像之一集合計算之統計模型,其中從定義該模型之該等影像導出簽章。在一項實施例中,使用者模型由從使用者之參考影像計算之簽章之一所謂高斯(Gaussian)密度模型構成。給出查詢影像S之簽章,使用者模型被用於計算一匹配得分。
簽章125亦被饋送至模型建立引擎155以在使用者首次登入期間初始化使用者模型或在已存在模型時選擇性地併入該簽章之資訊以定義儲存於使用者模型之資料庫135中之使用者模型。在本發明之一項實施例中,模型建立引擎155使用從使用者之新影像提取之簽章更新上述提及之平均值及方差Mi及Vi。
裝置100亦較佳地含有一遠端資源介面145,其與AID引擎130通信。
遠端資源介面145充當在裝置100上實施之鑑認及識別功能性與發生於外部/遠端資源(諸如遠端伺服器及遠端裝置)上之該等相同功能性之間的介面。因此,舉例而言,遠端資源介面145與駐留於遠端伺服器上之應用程式互動,以按需要藉由遠端應用程式協調鑑認或識別。此可包含藉由用於一使用者操作裝置100之鑑認或識別或用於裝置100自身之鑑認或識別之外部資源管理及回應於請求。
遠端資源介面145可與網路介面150通信以發射及接收與鑑認及識別活動連結之資料。可使用各種無線通信協定,包含射頻以及其他(包含且不限制,藍芽(Bluetooth)及其他近場通信技術)。在本發明之一較佳實施例中,舉例而言,藉由加密及/或其他方法(其減少或消除相關聯於本發明之鑑認及識別方法之使用者資料及其他資料可被未授權當事人攔截之可能性)如在此項技術中已知般保全通過公開無線鏈路從裝置100來回通信之資料。網路介面150通常包括如在此項技術中已知之一射頻收發器模組且允許裝置100經由無線鏈路與無線網路400通信。繼而,無線網路400通常將藉由裝置100發射或接收之資料回載至資料網路500,再次如在此項技術中所已知。
僅藉由實例,本發明允許藉由遠端伺服器及應用程式及駐留於遠端伺服器上之其他資源鑑認或識別裝置100之使用者或裝置100自身。如在圖1中圖解說明,遠端伺服器200可經由上文論述之通信路徑與裝置100通信。以此方式且如藉由駐留於裝置100上之遠端資源介面145所控制,駐留於遠端伺服器200上之AID單元205可從裝置100請求及接收鑑認及識別資料以用於與駐留於遠端伺服器200上或藉由其可存取之已知且經驗證使用者模型相比較,如在下文更全面描述。此鑑認及識別性能提供選擇性存
取一或多個應用程式210、資料215及駐留於遠端伺服器200上之其他資源。相同性能亦可提供選擇性存取本端資源140(包含應用程式、資料及/或駐留於裝置100上之其他資源以及其中此等本端資源尋求存取遠離於裝置100之資料或其他資源之情況)。
在本發明之另一實施例中,如上文論述之通信可發生於裝置100與一或多個遠端裝置300之間。遠端裝置300可為相同於或不同於裝置100之裝置類型且根據本發明之教示之鑑認/識別功能性可雙向發生。換言之,裝置100可回應於來自遠端裝置300之鑑認/識別請求以便經由遠端裝置300上之AID單元305存取(例如)駐留於遠端裝置300上之一或多個應用程式310及/或資料315。但再者,遠端裝置300可接收及回應於藉由裝置100初始化之鑑認及識別請求以便遠端裝置300(或操作其之一使用者)存取駐留於裝置100上之資源。在一些情況中,裝置100及遠端裝置300將在共用資源之前皆要求另一者之鑑認及/或識別。舉例而言,此可在裝置100與遠端裝置300之使用者之間的一所要安全通信之背景下發生。
現轉至圖2,現描述根據本發明之一較佳實施例之使用者/裝置鑑認及/或識別之方法。藉由最初論述,首先描述在本發明之教示之背景下之鑑認與識別之間的差異。
在鑑認之情況中,使用者展現呈一使用者ID或使用者姓名之形式之一身份且本發明之系統確認該使用者確實係其所聲稱之人。接著,系統比較從使用者之手掌之一影像或若干影像導出之簽章與使用者模型之資料庫中之對應模型。若其等匹配,則該使用者被鑑認。若其等不匹配,則該使用者被拒絕。
在圖4中展示根據在一較佳實施例中之本發明之教示之用於使用者鑑
認之流程圖。如一第一步驟,在裝置100處之使用者可輸入其姓名或其他識別資訊至裝置100中,或使用者之身份可已預載入於裝置100中。分別地,使用者使用裝置100之相機105拍攝其手或雙手之手掌之一相片或相片集。接著,相機資料處理器110發送原始像素資料至關注區域偵測器115,其判定影像內之手掌區。來自關注區域偵測器115之經遮蓋手掌區被饋送至轉換處理器120,其導出使用者之獨特簽章。可在一遠端資源上或部分在一遠端資源上且部分在裝置100上替代性地處理此轉換功能。在所成像手掌區與裝置100之間無直接接觸,使用手之高解析度影像,由終端使用者呈現自由形式且處於任何定向且不具有一普通數位相機以外之任何特殊硬體之情況下,本發明之系統使用涉及特徵提取、將特徵處理為使用者簽章及將使用者簽章匹配至所儲存使用者簽章或使用者模型之一多步驟軟體解決方案識別個入,其中:(i)從輸入影像偵測及分割出一單一或多個關注區域以移除無關像素資料及隔離手掌區(ii)從影像提取數個高維稀疏特徵向量(例如,見參考8);(iii)在其中鄰近特徵向量合併為一更緊湊及穩健影像表示之一程序中建立針對各影像之一單一簽章;及(iv)將多個影像簽章組合為針對各個別使用者之一身份模型。
接著,鑑認及識別引擎130在使用者模型之資料庫135中查詢使用者之模型(基於先前呈現之使用者識別資料)。此時,若所導出之使用者簽章匹配所儲存之使用者模型,則該使用者被鑑認且被允許存取所要資源或資源組。或者,若使用者簽章與模型不匹配,則該使用者被拒絕存取所要資源或資源組。可遠離於裝置100替代性地執行關於查詢及匹配之前述功能性。
在識別之情況中,使用者僅呈現一掌紋影像或影像組,且鑑認及識
別引擎130比較從掌紋影像或若干影像導出之簽章與使用者模型之資料庫135中之所有模型或模型之一子集。若找到一匹配,則該使用者被識別。若未找到一匹配,則該使用者未知。
在圖5中展示用於使用者識別之流程圖。在此情況中,如在鑑認之情況中,使用者拍攝其手之手掌之一相片或相片集。此資料再次被處理為藉由相機資料處理器110形成之像素且被發送至關注區域偵測器115,以判定影像內之手掌區。來自關注區域偵測器115之經遮蓋手掌區被饋送至轉換處理器120,其導出使用者之獨特簽章且接著AID引擎130比較所導出之簽章與儲存於使用者模型之資料庫135中之所有模型或模型之一子集。可在一遠端資源上或部分在一遠端資源上且部分在裝置100上替代性地處理上文參考之轉換及比較功能。在任何事件中,若找到一匹配,則使用者被識別且可被授予存取一資源或資源組。若未找到匹配,則使用者無法被識別且將不授予存取一所要資源或資源組。
使用何種模式(鑑認或識別)取決於應用。一般言之,鑑認提供較高程度之精確性但由於一使用者需要採取額外步驟輸入其身份之一額外因素,故提供較低使用者體驗等級。第二身份因素可呈現普通形式之任一者,諸如一使用者姓名、使用者ID、密碼、獨特員工ID、社會安全號、電子郵件地址、各種其他生物特徵量測模態等等。在本發明之一項實施例中,第二身份因素係從個人之第二個手之掌紋影像導出之簽章,其中個人之兩個掌紋影像或影像集之各者之個別簽章共同用於鑑認或識別。
重要的係注意,在上文描述之各情況(鑑認或識別)中,並非針對本端地定位於裝置100內之使用者模型之資料庫135內之一模型匹配一使用者簽章,取而代之藉由在裝置100處拍攝之一使用者之手掌之一影像或影像
集產生之一簽章可針對定位於遠端伺服器200或一或多個遠端裝置300之一者或二者處之一資料庫中含有之一模型或若干模型而匹配。在此情況中,裝置100之使用者通常將尋求存取駐留於此等遠端平台處之一或多個資源而非本端地定位於裝置100內之一資源。藉由實例,在解鎖(例如)一智慧型手機之情況中,可在智慧型手機/裝置100處本端地完成處理,然而若開始進行鑑認(例如,與一基於遠端之應用程式連結),該處理之一些部分可在一遠端伺服器200完成,其中針對匹配之使用者模型可被儲存於遠端伺服器200而非本端地儲存於智慧型手機上。另外,從本教示應明白,可在AID單元160、205、305之任一者之間同步使用者模型、簽章及/或其他生物特徵量測資料以允許在裝置100、遠端伺服器200、遠端裝置300之任一者進行本端鑑認或識別而不需要該裝置100、遠端伺服器200或遠端裝置300已本端地產生該使用者模型、簽章及/或其他生物特徵量測資料。
現返回至圖2,可見,在本發明之一較佳實施例中,在步驟(1),裝置100用於拍攝待使用相機105(步驟(3))識別(步驟(2))之使用者之手掌之一相片或一系列相片。一閃光組件(步驟(4))可被嵌入裝置100中以提供影像之必要預處理,尤其當閃光組件係關於為個人之手掌影像之關注區域偵測、特徵提取及簽章處理提供最小充足光。接著,影像之手掌區藉由關注區域偵測器115(步驟(5))遮蓋且饋送至轉換處理器120(步驟(6))以將原始像素轉換為一獨特識別之使用者簽章,簽章125。使用者簽章係含有相關聯於使用者之掌紋影像之相關識別資訊之一緊密碼且可被快速及精確地匹配至使用者模型之一大資料庫,諸如使用者模型之資料庫135或在一遠端平台之一資料庫(步驟(7))。所導出之使用者簽章之一個益處係其本質上無法重建來自使用者模型之一資料庫之一使用者手掌影像。在步驟(8)中,
AID引擎130比較來自手掌影像或影像集之使用者簽章與使用者模型之資料庫中之使用者簽章以識別或鑑認使用者為可適用。可在一遠端資源上或部分在一遠端資源上且部分在裝置100上替代性地處理上文參考之轉換及比較功能。
現轉至圖3,可見,在其中相對於一遠端資源完成鑑認或識別之情況中,裝置100與該遠端資源之間的通信較佳地發生於一安全連接上,如在此項技術中所已知。此可涉及在此項技術中已知之一或多個技術以包含(例如)強加密、公開或私密金鑰加密、數位證書及/或數位簽章等等。
既然已描述本發明之系統及主要方法,故將論述額外新穎特徵,諸如用於防止與鑑認/識別連結之欺騙之各種方法以及用於編碼及與遠端資源交換交易資訊之一新穎方法。
欺騙保護係本發明之一重要態樣。舉例而言,其防止入侵者使用一手掌之一印刷相片替代一真手用於鑑認。關於欺騙保護之本發明之一新穎態樣涉及偵測及使用一人手之三維特性以便提供安全以防欺騙。
在欺騙偵測之一實例中,為區分一相片與一真手,本發明之系統以一快速序列拍攝一系列相片,其中間歇地且在變化時間長度使用相機閃光燈。使用閃光燈拍攝之一3D物件(一真手)之相片將具有特定高亮區域及藉由閃光燈產生之陰影,然而在手之位置上,其中手之一2D表示(舉例而言,在另一行動裝置之顯示螢幕上展示之一手掌或一手掌影像之一印刷相片)將不展示此等高亮區域及陰影。此允許本發明之系統利用在閃光相片與非閃光相片之間產生之手上之高亮區域及陰影之一比較以區分一印刷相片及一真手。以此方式,偶然獲得一授權使用者之手掌之一相片之一未授權當事人無法使用該相片獲得未授權存取本端或遠端資源。
用於偵測一真手之進一步方法包含手之3D建模。在此情況中,本發明之系統可在拍攝一系列多個相片時提示使用者轉動其手。一真實3D物件將隨著各連續影像展現手之不同部分,然而一2D物件將始終展示手之完全相同部分,僅具有變化失真度。此使本發明之系統區分一印刷相片與一真手。類似地,取代旋轉該手,在拍攝一系列相片時可提示使用者將手握拳或從一拳張開。區分一真手與一手之相片之其他方法亦係可能的。
本發明之另一新穎態樣係其中可偵測及防止重播攻擊之一方法。在此情況中,一入侵者修改一行動裝置,使得其將來自一合法使用者之真手之一個或一系列先前記錄之相片發送至網路以用於鑑認或識別而非發送藉由相機拍攝之影像。此處假定入侵者可在不被一授權使用者意識到或授權使用者無法防止此情況之情況下拍攝授權使用者之手之相片。若此實際上係一風險(例如,其中一授權使用者正在睡覺或無意識之一情況),則較佳地以要求一或多個額外身份因素(諸如一使用者ID或獨立於掌紋影像之其他形式之資料)鑑認一使用者之此一方式使用系統。
為偵測及防禦一重播攻擊,本發明之系統發出一系列相片且在各種間隔閃光,即,其記錄一系列相片,其中一些關閉閃光燈且其他開啟閃光燈。可隨機或根據一預定序列選擇特定相片及開啟/關閉閃光燈序列且其等可針對各鑑認或識別請求而改變。本發明之系統可容易地偵測一入侵者是否使用先前記錄之一系列相片,此係因為相片及閃光燈之開啟/關閉模式將不匹配實際上發送至行動裝置之模式。
偵測一重播攻擊之另一方法涉及儲存所有先前使用之影像且比較新影像與該資料庫。由於以兩個不同掌紋之影像為基礎之像素資料可本質上從不在特定容許度上完全相同或實質上相同,故系統可偵測何時一先前拍
攝之影像再次被使用。偵測一重播攻擊之其他方法亦係可能的。
本發明之又另一新穎態樣係在一系列相片及/或閃光模式之定時內嵌入交易資訊或其他資料之能力。此定時模式可進一步用於編碼關於交易本身之資訊。接著,一密碼雜湊可應用至此資訊。雜湊碼使所得代碼緊湊(短)且亦防止觀察閃光模式之任何人導出關於代碼之原始內容之任何資訊。在本發明之一項實施例中,影像及/或閃光模式之序列之定時被用作一防欺騙機制之部分,以判定提供用於鑑認或識別之影像序列是否匹配來自交易本身之資訊。一特定實施方案可包含:
1.具有閃光模式之手掌區之一低解析度視訊。
2.手掌區之一或若干高解析度靜止影像。
3.電腦視覺技術以確保高解析度影像係來自相同於視訊中之物件之一物件。
基於本發明之系統及方法之上述描述,可理解,各種應用係可能的。實例包含(不限於)存取一或多個裝置、存取駐留於該等裝置上或遠端地定位於一伺服器上或其他遠端裝置上之一或多個應用程式、各種交易應用程式(諸如選舉投票、國家福利之分配、財政支付)及任何其他類型之交易所需使用者身份驗證。
雖然已展示及描述本發明之特定實施例,但熟習此項技術者將明白,基於本文中之教示,可在不脫離本發明及其更廣泛態樣之情況下做出改變及修改。
[1] Paul Viola及Michael Jones,Rapid Object Detection using a Boosted Cascade of Simple Features,Proceedings of IEEE Computer
Vision and Pattern Recognition,2001,第I:511-518頁。
[2] Corinna Cortes及Vladimir N. Vapnik,Support-Vector Networks,Machine Learning,20,1995。
[3] Yann LeCun、Léon Bottou、Yoshua Bengio、Patrick Haffner: Gradient-Based Learning Applied to Document Recognition,Proceedings of the IEEE,86(11):2278-2324,1998年11月。
[4] Pierre Sermanet、Koray Kavukcuoglu、Soumith Chintala及Yann LeCun: Pedestrian Detection with Unsupervised Multi-Stage Feature Learning,Proc.International Conference on Computer Vision and Pattern Recognition (CVPR'13),IEEE,2013年6月。
[5] David G. Lowe,Distinctive Image Features From Scale-Invariant Keypoints,International Journal of Computer Vision, 60, 2 (2004),第91-110頁。
[6] N. Dalal及B. Triggs,Histograms of Oriented Gradients for Human Detection.In Proceedings of Computer Vision and Pattern Recognition,2005。
[7] Y-Lan Boureau、Jean Ponce及Yann LeCun: A Theoretical Analysis of Feature Pooling in Vision Algorithms,Proc.International Conference on Machine learning (ICML'10),2010。
[8] Yann LeCun、Koray Kavukvuoglu及Clément Farabet: Convolutional Networks and Applications in Vision,Proc.International Symposium on Circuits and Systems (ISCAS'10),IEEE,2010。
100:裝置
105:相機
110:相機資料處理器
115:關注區域偵測器
120:轉換處理器
125:簽章
130:鑑認及識別(AID)引擎
135:資料庫
140:本端資源
145:遠端資源介面
150:網路介面
155:模型建立引擎
160:AID單元
200:遠端伺服器
205:AID單元
210:應用程式
215:資料
300:遠端裝置
305:AID單元
310:應用程式
315:資料
400:無線網路
500:資料網路
Claims (21)
- 一種用於基於一深度學習方法提供選擇性存取與一智慧型手機連接可用之資源之防欺騙(anti-spoofing)系統,該系統包括:(a)該智慧型手機包括一數位處理器、一記憶體模組、一作業系統及包括可由該數位處理器執行之指令之一非暫態儲存媒體;(b)至少一相機,其與該智慧型手機相關聯並經組態以擷取一第一使用者之一解剖特徵之包括一閃光影像及一非閃光影像之複數個影像,其中在該解剖特徵並未實體接觸該智慧型手機下擷取該複數個影像;及(c)至少一閃光組件,其與該智慧型手機相關聯並經組態以在該閃光影像之擷取期間發出一閃光並在該非閃光影像之擷取期間不發出一閃光;其中該數位處理器執行下列:(1)使用基於滑動窗之本端分類器(sliding-window-based local classifiers)及由自一範例影像集合學習之區辨本端特徵(discriminative local features)所形成之分類器分析該解剖特徵之該閃光影像及該非閃光影像以藉由分類得分(classification scores)來標記解剖特徵及非解剖特徵像素;(2)使用一經訓練偵測器在該閃光影像及該非閃光影像中定位及分割該解剖特徵之一關注區域;(3)使用該關注區域中之小取樣窗以識別含有(encompassing)該解剖特徵之特性生物特徵之影像塊(image patches); (4)自該等影像塊之像素級別資料提取一簽章,其中該簽章係該第一使用者獨有且係用於區分該第一使用者與一第二使用者,且其中提取該簽章包括在複數個影像塊中創建邊緣定向之一直方圖(a histogram of edge orientations);(5)基於該解剖特徵之一三維特性及複數個經儲存使用者模型判定一欺騙嘗試,其中該三維特性係基於該閃光影像及該非閃光影像間之一比較,其中該閃光影像及該非閃光影像間之該比較包括在該閃光影像及該非閃光影像之至少一者中判定一高亮區域及一陰影區域,以判定該閃光影像及該非閃光影像之至少一者表示一3D物件或該解剖特徵之一2D表示;(6)基於該欺騙嘗試之該判定來拒絕該第一使用者存取該等資源之一或多者;及(7)將該解剖特徵之該閃光影像及該非閃光影像之該至少一者及該三維特性儲存於該範例影像集合中。
- 如請求項1之系統,其中該數位處理器進一步執行藉由選擇性地包含該解剖特徵之該閃光影像及該非閃光影像之該至少一影像、該等影像塊之該像素級別資料及該簽章以使用新資料改良該等使用者模型,以擴充至少一資料庫及該欺騙嘗試之該判定。
- 如請求項1之系統,其中該數位處理器進一步執行使用從該關注區域上之該等影像塊提取之描述符。
- 如請求項3之系統,其中該等描述符經編碼為高維稀疏向量且其中該等稀疏向量合併為至少一個群組。
- 如請求項1之系統,其中由一特徵包(Bag of Features)或多個特徵包表示計算該簽章。
- 如請求項1之系統,其中該分析該解剖特徵之該閃光影像及該非閃光影像使用Haar Wavelets及AdaBoost演算法。
- 如請求項1之系統,其中該分析該解剖特徵之該閃光影像及該非閃光影像使用支援向量機、一迴旋神經網路或兩者。
- 如請求項1之系統,其中該等使用者模型包括由該第一使用者之解剖特徵影像之一集合計算之一統計模型。
- 如請求項1之系統,其中該等使用者模型包括一高斯密度模型或高斯密度模型之一混合物。
- 如請求項1之系統,其中該等資源之至少一者遠離於該智慧型手機或駐留於該智慧型手機。
- 如請求項10之系統,其中該等資源之該至少一者包括一應用程式或一資料庫。
- 如請求項1之系統,其中該第一使用者之兩個解剖特徵影像之個別簽章可一起使用於該欺騙嘗試之該判定。
- 如請求項1之系統,其中進一步基於一或多個其他模態(modalities)拒絕存取該等資源之一或多者。
- 如請求項13之系統,其中該一或多個其他模態包括以下之一或多者:通行碼、安全問題、指紋辨識、面部辨識、虹膜辨識、書寫簽章辨識及其他生物特徵量測及非生物特徵量測模態。
- 如請求項1之系統,其中該拒絕存取該等資源之一或多者係進一步基於選擇性地拒絕一或多個使用者進行一或多個交易。
- 如請求項1之系統,其中在該解剖特徵之一移動期間擷取該複數個影像之至少二者,且其中該三維特性係進一步基於該移動。
- 如請求項1之系統,其中該複數個影像包括閃光及非閃光影像之一序列,且其中該欺騙嘗試之該判定係進一步基於該閃光及非閃光影像之序列與先前記錄之閃光及非閃光影像之一序列間之一比較。
- 如請求項1之系統,其中該欺騙嘗試之該判定係進一步基於該複數個影像之至少一者與該範例影像集合中之該第一使用者解剖特徵之至少一影 像間之一比較。
- 如請求項15之系統,其中一交易資訊或其他資料被嵌入於連續影像間之一或多個時間間隔之中,且其中該欺騙嘗試之該判定係進一步基於該交易資訊與該交易間之一比較。
- 如請求項1之系統,其中該複數個影像之至少一者之擷取與一後續影像之擷取分隔一時間間隔,且其中該欺騙嘗試之該判定係進一步基於該時間間隔與先前記錄連續影像間之一先前時間間隔間之一比較。
- 一種用於基於一深度學習方法提供選擇性存取與一智慧型手機連接可用之資源之由一智慧型手機實施之防欺騙方法,該方法包括:(a)使用與該智慧型手機相關聯並經組態以擷取一第一使用者之一解剖特徵之包括一閃光影像及一非閃光影像之複數個影像之至少一相機,其中在該解剖特徵並未實體接觸該智慧型手機下擷取該複數個影像;及(b)使用與該智慧型手機相關聯並經組態以在該閃光影像之擷取期間發出一閃光之至少一閃光組件;(c)使用基於滑動窗之本端分類器及由自一範例影像集合學習之區辨本端特徵所形成之分類器來分析該解剖特徵之該閃光影像及該非閃光影像以藉由分類得分來標記解剖特徵及非解剖特徵像素;(d)使用一經訓練偵測器在該閃光影像及該非閃光影像中定位及分割該解剖特徵之一關注區域; (e)使用該關注區域中之小取樣窗以識別含有該解剖特徵之特性生物特徵之影像塊;(f)自該等影像塊之像素級別資料提取一簽章,其中該簽章係該第一使用者獨有且係用於區分該第一使用者與一第二使用者,且其中提取該簽章包括在複數個影像塊中創建邊緣定向之一直方圖;(g)基於該解剖特徵之一三維特性及複數個經儲存使用者模型判定一欺騙嘗試,其中該三維特性係基於該閃光影像及該非閃光影像間之一比較,其中該閃光影像及該非閃光影像間之該比較包括在該閃光影像及該非閃光影像之至少一者中判定一高亮區域及一陰影區域,以判定該閃光影像及該非閃光影像之至少一者表示一3D物件或一解剖特徵之一2D表示;(h)基於該欺騙嘗試之該判定拒絕該第一使用者存取該等資源之一或多者;及(i)將該解剖特徵之該至少一影像儲存於該範例影像集合中。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361890123P | 2013-10-11 | 2013-10-11 | |
US61/890,123 | 2013-10-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201937392A TW201937392A (zh) | 2019-09-16 |
TWI727329B true TWI727329B (zh) | 2021-05-11 |
Family
ID=54198279
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108118753A TWI727329B (zh) | 2013-10-11 | 2014-10-09 | 用於基於深度學習方法提供對資源之選擇性存取之防欺騙系統及方法 |
TW103135263A TWI664552B (zh) | 2013-10-11 | 2014-10-09 | 與配備有相機之裝置連接之用於生物特徵量測鑑認之系統及方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103135263A TWI664552B (zh) | 2013-10-11 | 2014-10-09 | 與配備有相機之裝置連接之用於生物特徵量測鑑認之系統及方法 |
Country Status (2)
Country | Link |
---|---|
AR (1) | AR097974A1 (zh) |
TW (2) | TWI727329B (zh) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AR097974A1 (es) * | 2013-10-11 | 2016-04-20 | Element Inc | Sistema y método para autenticación biométrica en conexión con dispositivos equipados con cámara |
US11615285B2 (en) | 2017-01-06 | 2023-03-28 | Ecole Polytechnique Federale De Lausanne (Epfl) | Generating and identifying functional subnetworks within structural networks |
IL282574B2 (en) | 2017-09-18 | 2023-10-01 | Element Inc | Methods, systems and media for detecting forgeries in mobile authentication |
US11972343B2 (en) | 2018-06-11 | 2024-04-30 | Inait Sa | Encoding and decoding information |
US11893471B2 (en) | 2018-06-11 | 2024-02-06 | Inait Sa | Encoding and decoding information and artificial neural networks |
US11663478B2 (en) | 2018-06-11 | 2023-05-30 | Inait Sa | Characterizing activity in a recurrent artificial neural network |
BR112021018149B1 (pt) | 2019-03-12 | 2023-12-26 | Element Inc | Método implementado por computador para detectar falsificação de reconhecimento de identidade biométrica usando a câmera de um dispositivo móvel, sistema implementado por computador e meio de armazenamento legível por computador não transitório |
US11652603B2 (en) | 2019-03-18 | 2023-05-16 | Inait Sa | Homomorphic encryption |
US11569978B2 (en) | 2019-03-18 | 2023-01-31 | Inait Sa | Encrypting and decrypting information |
CN110706422A (zh) * | 2019-08-09 | 2020-01-17 | 深圳市群索科技有限公司 | 一种选票生成装置 |
US11816553B2 (en) | 2019-12-11 | 2023-11-14 | Inait Sa | Output from a recurrent neural network |
US11580401B2 (en) | 2019-12-11 | 2023-02-14 | Inait Sa | Distance metrics and clustering in recurrent neural networks |
US11651210B2 (en) | 2019-12-11 | 2023-05-16 | Inait Sa | Interpreting and improving the processing results of recurrent neural networks |
US11797827B2 (en) | 2019-12-11 | 2023-10-24 | Inait Sa | Input into a neural network |
EP4073710A1 (en) * | 2019-12-11 | 2022-10-19 | Inait SA | Constructing and operating an artificial recurrent neural network |
US11507248B2 (en) | 2019-12-16 | 2022-11-22 | Element Inc. | Methods, systems, and media for anti-spoofing using eye-tracking |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030135764A1 (en) * | 2002-01-14 | 2003-07-17 | Kun-Shan Lu | Authentication system and apparatus having fingerprint verification capabilities thereof |
US7474769B1 (en) * | 2004-09-14 | 2009-01-06 | Unisys Corporation | Bioindex mechanism for increasing the relative speed of biometric identification against large population samples |
TWI664552B (zh) * | 2013-10-11 | 2019-07-01 | 艾勒門公司 | 與配備有相機之裝置連接之用於生物特徵量測鑑認之系統及方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6178255B1 (en) * | 1998-04-28 | 2001-01-23 | Cross Match Technologies, Inc. | Individualized fingerprint scanner |
US6956608B1 (en) * | 2000-08-11 | 2005-10-18 | Identix Incorporated | Fingerprint imaging device including an optical plate having microreflectors |
DE10315923A1 (de) * | 2003-04-08 | 2004-10-28 | Tbs Holding Ag | Verfahren und Anordnung zur berührungslosen Detektion von Daten unebener Flächen |
US7660442B2 (en) * | 2006-09-01 | 2010-02-09 | Handshot, Llc | Method and system for capturing fingerprints, palm prints and hand geometry |
-
2014
- 2014-10-08 AR ARP140103763A patent/AR097974A1/es active IP Right Grant
- 2014-10-09 TW TW108118753A patent/TWI727329B/zh active
- 2014-10-09 TW TW103135263A patent/TWI664552B/zh active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030135764A1 (en) * | 2002-01-14 | 2003-07-17 | Kun-Shan Lu | Authentication system and apparatus having fingerprint verification capabilities thereof |
US7474769B1 (en) * | 2004-09-14 | 2009-01-06 | Unisys Corporation | Bioindex mechanism for increasing the relative speed of biometric identification against large population samples |
TWI664552B (zh) * | 2013-10-11 | 2019-07-01 | 艾勒門公司 | 與配備有相機之裝置連接之用於生物特徵量測鑑認之系統及方法 |
Also Published As
Publication number | Publication date |
---|---|
TW201528030A (zh) | 2015-07-16 |
TWI664552B (zh) | 2019-07-01 |
AR097974A1 (es) | 2016-04-20 |
TW201937392A (zh) | 2019-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2019203766B2 (en) | System and method for biometric authentication in connection with camera-equipped devices | |
TWI727329B (zh) | 用於基於深度學習方法提供對資源之選擇性存取之防欺騙系統及方法 | |
RU2589344C2 (ru) | Способ, устройство и система аутентификации на основе биологических характеристик | |
US20180204080A1 (en) | System for multiple algorithm processing of biometric data | |
US12019728B2 (en) | AdHoc enrollment process | |
Wojciechowska et al. | The overview of trends and challenges in mobile biometrics | |
Hamdan et al. | A self-immune to 3D masks attacks face recognition system | |
US10867022B2 (en) | Method and apparatus for providing authentication using voice and facial data | |
Arora et al. | Biometrics for forensic identification in web applications and social platforms using deep learning | |
Patil | A study of biometric, multimodal biometric systems: Fusion techniques, applications and challenges | |
Grafilon et al. | A signature comparing android mobile application utilizing feature extracting algorithms | |
Singh et al. | Adapted Facial Recognition And Spoofing Detection For Management Decision Making System: A Visually Impaired People Perspective | |
Bennet et al. | Performance & analysis of biometric security system & palm print steganographic techniques | |
Abouzakhar et al. | A fingerprint matching model using unsupervised learning approach | |
El Nahal | Mobile Multimodal Biometric System for Security |