TWI727005B - Systems and methods for reducing power reflected towards a higher frequency rf generator during a period of a lower rf generator and for using a relationship to reduce reflected power - Google Patents

Systems and methods for reducing power reflected towards a higher frequency rf generator during a period of a lower rf generator and for using a relationship to reduce reflected power Download PDF

Info

Publication number
TWI727005B
TWI727005B TW106106911A TW106106911A TWI727005B TW I727005 B TWI727005 B TW I727005B TW 106106911 A TW106106911 A TW 106106911A TW 106106911 A TW106106911 A TW 106106911A TW I727005 B TWI727005 B TW I727005B
Authority
TW
Taiwan
Prior art keywords
complex
value
generator
radio frequency
computer models
Prior art date
Application number
TW106106911A
Other languages
Chinese (zh)
Other versions
TW201738956A (en
Inventor
亞瑟 M 豪瓦德
約翰 C 小微寇爾
安德魯 馮
大衛 霍普金斯
Original Assignee
美商蘭姆研究公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/061,705 external-priority patent/US10296676B2/en
Priority claimed from US15/098,189 external-priority patent/US9711332B2/en
Priority claimed from US15/098,912 external-priority patent/US10469108B2/en
Priority claimed from US15/098,566 external-priority patent/US10276350B2/en
Application filed by 美商蘭姆研究公司 filed Critical 美商蘭姆研究公司
Publication of TW201738956A publication Critical patent/TW201738956A/en
Application granted granted Critical
Publication of TWI727005B publication Critical patent/TWI727005B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/327Arrangements for generating the plasma
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0491Circuits with frequency synthesizers, frequency converters or modulators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Plasma Technology (AREA)

Abstract

Systems and methods for reducing reflected towards a higher frequency radio frequency (RF) generator during a period of a lower frequency RF generator and for using a relationship to reduce reflected power are described. By tuning the higher frequency RF generator during the period of the lower frequency RF generator, precise control of the higher frequency RF generator is achieved for reducing power reflected towards the higher frequency RF generator. Moreover, by using the relationship to reduce the reflected power, time is saved during processing of a wafer.

Description

在較低頻射頻產生器期間減少反射到較高頻射頻產生器之功率及使用一關係以減少反射功率之系統及方法System and method for reducing reflected power to higher frequency RF generator during lower frequency radio frequency generator and using a relationship to reduce reflected power

本發明實施例係關於在較低頻率射頻(RF)產生器之一期間減少反射到較高頻率射頻(RF)產生器之功率及使用一關係以減少反射功率的系統及方法。The embodiment of the present invention relates to a system and method for reducing the power reflected to a higher frequency radio frequency (RF) generator during one of the lower frequency radio frequency (RF) generators and using a relationship to reduce the reflected power.

電漿系統係用以控制電漿製程。一電漿系統包含複數射頻(RF)源、一阻抗匹配、及一電漿反應器。一工作件被置於電漿室內,然後在電漿室內產生電漿以處理該工作件。工作件以類似或均勻的方式處理是很重要的。為了以類似或均勻的方式處理工作件,調變複數RF源與阻抗匹配是重要的。The plasma system is used to control the plasma manufacturing process. A plasma system includes a complex radio frequency (RF) source, an impedance matching, and a plasma reactor. A work piece is placed in the plasma chamber, and then plasma is generated in the plasma chamber to process the work piece. It is important that the work pieces are handled in a similar or uniform manner. In order to process the work piece in a similar or uniform manner, it is important to modulate the complex RF source to match the impedance.

文中所述之實施例係於此文義下所產生。The embodiments described in the text are produced under this context.

本發明之實施例提供在較低頻率RF產生器之一期間減少反射到較高頻率射頻(RF)產生器之功率及使用一關係以減少反射功率的設備、方法、及電腦程式。應明白,本發明之實施例可以多種方式實施之如一製程、一設備、一系統、一件硬體、或電腦可讀媒體上的一方法。下面將說明數個實施例。Embodiments of the present invention provide devices, methods, and computer programs that reduce the power reflected to a higher frequency radio frequency (RF) generator during one of the lower frequency RF generators and use a relationship to reduce the reflected power. It should be understood that the embodiments of the present invention can be implemented in a variety of ways, such as a process, a device, a system, a piece of hardware, or a method on a computer-readable medium. Several embodiments will be described below.

在某些實施例中,一較高頻率RF產生器所產生之一RF訊號的一RF頻率在一較低頻率RF產生器之一RF訊號之一期間內變化。例如,利用一模型系統決定該較高頻率RF產生器所產生之該RF訊號的各種頻率數值並在該較低頻率RF產生器所產生之該RF訊號的一期間內應用該各種頻率數值。In some embodiments, an RF frequency of an RF signal generated by a higher frequency RF generator changes during a period of an RF signal of a lower frequency RF generator. For example, a model system is used to determine various frequency values of the RF signal generated by the higher frequency RF generator and apply the various frequency values during a period of the RF signal generated by the lower frequency RF generator.

在數個實施例中,在該較低頻率RF產生器所產生之該RF訊號產生之複數負載阻抗變異存在的情況下,使用一模型系統調變一阻抗匹配網路。例如,利用該模型系統計算一最佳組合可變電容值並在該較低頻率RF產生器所產生之該RF訊號的該期間內應用該最佳組合可變電容值。In several embodiments, a model system is used to modulate an impedance matching network in the presence of a complex load impedance variation generated by the RF signal generated by the lower frequency RF generator. For example, using the model system to calculate an optimal combined variable capacitance value and apply the optimal combined variable capacitance value during the period of the RF signal generated by the lower frequency RF generator.

在各種實施例中,該模型系統係用以計算調變軌跡如調變多項式、調變關係等。預先特徵化該阻抗匹配網路而非在一晶圓處理期間使用該模型系統,特徵化該阻抗匹配網路係由下列方式進行:在複數負載阻抗值的一實部與該複數負載阻抗值的一虛部之一兩維網格上計算一最佳組合可變電容值,其中該複數負載阻抗值橫跨一期望的操作空間。接著在該複數負載阻抗值的該實部、該複數負載阻抗值的該虛部、及複數組合可變電容值的一三維網格上計算一最佳RF頻率。對各種最佳組合可變電容值進行一第一擬合並對各種最佳RF頻率進行一第二擬合得到複數多項式函數作為複數解。該第一擬合的一實例為一最佳組合可變電容值=函數(Re(Z Load), Im(Z Load)),其中Zload為一負載阻抗值、Re為該負載阻抗值的一實部、Im為該負載阻抗值的一虛部。該第二擬合的一實例為在一特定最佳組合可變電容值處的一最佳RF頻率=函數(Re(Z Load), Im(Z Load), 最佳組合可變電容值)。In various embodiments, the model system is used to calculate modulation trajectories such as modulation polynomials, modulation relationships, and so on. The impedance matching network is pre-characterized instead of using the model system during a wafer processing. The impedance matching network is characterized by the following method: between a real part of the complex load impedance value and the complex load impedance value An optimal combined variable capacitance value is calculated on a two-dimensional grid of an imaginary part, where the complex load impedance value spans a desired operating space. Then, an optimal RF frequency is calculated on a three-dimensional grid of the real part of the complex load impedance value, the imaginary part of the complex load impedance value, and the complex variable capacitance value. Perform a first fitting on various optimal combined variable capacitance values and perform a second fitting on various optimal RF frequencies to obtain a complex polynomial function as a complex solution. An example of the first fitting is an optimal combined variable capacitance value=function (Re(Z Load), Im(Z Load)), where Zload is a load impedance value, and Re is a real value of the load impedance value. The part and Im are an imaginary part of the load impedance value. An example of the second fitting is an optimal RF frequency at a specific optimal combined variable capacitance value=function (Re(Z Load), Im(Z Load), optimal combined variable capacitance value).

文中所述之系統與方法的某些優點包含決定在該較低頻率RF產生器的每一RF週期期間決定複數RF值以減少反射到該較高頻率RF產生器的功率。使用模型系統決定該較低頻率RF產生器之每一RF週期期間的複數RF值。該複數RF值係自複數參數值所計算,該複數參數值係於該較低頻率RF產生器的一RF 週期期間該較高頻率RF產生器之一輸出處所計算。在計算該複數參數值之該RF週期之後之該較低頻率RF產生器的一RF週期期間,將決定出的該複數RF值應用至該較高頻率RF產生器。應用該複數RF值精準地減少在該較低頻率RF產生器之每一RF週期期間反射到該較高頻率RF產生器的功率。Some advantages of the systems and methods described herein include determining the complex RF value during each RF cycle of the lower frequency RF generator to reduce the power reflected to the higher frequency RF generator. A model system is used to determine the complex RF value during each RF cycle of the lower frequency RF generator. The complex RF value is calculated from a complex parameter value, and the complex parameter value is calculated at an output location of the higher frequency RF generator during an RF period of the lower frequency RF generator. During an RF period of the lower frequency RF generator after the RF period of the calculation of the complex parameter value, the determined complex RF value is applied to the higher frequency RF generator. Applying the complex RF value accurately reduces the power reflected to the higher frequency RF generator during each RF cycle of the lower frequency RF generator.

文中所述之系統與方法的其他優點包含不在晶圓處理期間使用模型系統決定複數最佳RF值及/或複數最佳組合可變電容值。該複數最佳RF值及/或複數最佳組合可變電容值係於晶圓處理之前便預先決定。在晶圓處理期間,處理器接取該複數最佳RF值及/或該複數最佳組合可變電容值並基於利用該模型系統所決定的複數負載阻抗值來應用該複數最佳RF值及/或該複數最佳組合可變電容值。該複數最佳RF值及/或該複數最佳組合可變電容值的預先計算節省晶圓處理期間的時間。Other advantages of the system and method described herein include not using a model system during wafer processing to determine a complex optimal RF value and/or a complex optimal combined variable capacitance value. The complex optimal RF value and/or the complex optimal combined variable capacitance value are determined in advance before wafer processing. During wafer processing, the processor takes the complex optimal RF value and/or the complex optimal combined variable capacitance value and applies the complex optimal RF value and/or the complex load impedance value determined by the model system. / Or the variable capacitance value of the optimal combination of the plural numbers. The pre-calculation of the complex optimal RF value and/or the complex optimal combined variable capacitance value saves time during wafer processing.

自參考附圖之下列詳細說明將能明白其他態樣。Other aspects will be apparent from the following detailed description with reference to the attached drawings.

下面的實施例說明在較低頻率射頻(RF)產生器之一期間中減少反射到較高頻率射頻(RF)產生器之功率及使用一關係以減少反射功率的系統及方法。當明白,可在缺乏部分或全部此些特定細節的情況下實施本發明的實施例。在其他情況中,不再詳細說明已知的製程操作以免不必要地模糊本發明實施例。The following embodiments illustrate the system and method for reducing the power reflected to the higher frequency radio frequency (RF) generator during one of the lower frequency radio frequency (RF) generators and using a relationship to reduce the reflected power. It should be understood that the embodiments of the present invention can be implemented without some or all of these specific details. In other cases, the known process operations are not described in detail so as not to unnecessarily obscure the embodiments of the present invention.

圖1為電漿系統 100之一實施例的圖,其例示使用一模型系統102針對x兆赫(MHz) RF產生器所產生之RF訊號的期間P1產生複數負載阻抗ZL(P1)。電漿系統100包含x MHz RF產生器、y MHz RF產生器104、阻抗匹配網路106、電漿室108。電漿系統 100包含主機電腦系統110、驅動組件112、及一或多個連接機構114。FIG. 1 is a diagram of an embodiment of a plasma system 100, which illustrates the use of a model system 102 to generate a complex load impedance ZL(P1) for a period P1 of an RF signal generated by an x megahertz (MHz) RF generator. The plasma system 100 includes an x MHz RF generator, a y MHz RF generator 104, an impedance matching network 106, and a plasma chamber 108. The plasma system 100 includes a host computer system 110, a driving component 112, and one or more connection mechanisms 114.

電漿室108包含一上電極116、一夾頭118、及一晶圓W。上電極116面對夾頭118並接地如耦合至一參考電壓、耦合至零電壓、耦合至一負電壓等。夾頭118的實例包含一靜電夾具(ESC)與一磁性夾頭。夾頭118的下電極係由金屬如陽極化之鋁、鋁合金等所製成。在各種實施例中,夾頭118的下電極為覆有一層陶瓷的一金屬薄層。又,上電極116係由金屬如鋁、鋁合金等所製成。在某些實施例中,上電極116係由矽所製成。上電極116之位置係與夾頭118的下電極相對並面向下電極。晶圓W係放置在夾頭118的上表面120上以進行處理如在晶圓W上沉積材料、或清理晶圓W、或蝕刻沉積在晶圓W上的膜層、或摻雜晶圓W、或在晶圓W上植入離子、或在晶圓W上產生微影圖案、或蝕刻晶圓W、或濺射晶圓W、或其組合。The plasma chamber 108 includes an upper electrode 116, a chuck 118, and a wafer W. The upper electrode 116 faces the chuck 118 and is grounded, such as coupled to a reference voltage, coupled to a zero voltage, coupled to a negative voltage, and so on. Examples of the chuck 118 include an electrostatic chuck (ESC) and a magnetic chuck. The lower electrode of the chuck 118 is made of metal such as anodized aluminum, aluminum alloy, and the like. In various embodiments, the lower electrode of the chuck 118 is a thin metal layer covered with a layer of ceramic. In addition, the upper electrode 116 is made of metal such as aluminum and aluminum alloy. In some embodiments, the upper electrode 116 is made of silicon. The position of the upper electrode 116 is opposite to the lower electrode of the chuck 118 and faces the lower electrode. The wafer W is placed on the upper surface 120 of the chuck 118 for processing, such as depositing material on the wafer W, or cleaning the wafer W, or etching the film deposited on the wafer W, or doping the wafer W , Or implanting ions on the wafer W, or generating a lithography pattern on the wafer W, or etching the wafer W, or sputtering the wafer W, or a combination thereof.

在某些實施例中,電漿室108係利用複數額外部件所形成,額外部件例如是圍繞上電極116的上電極延伸部、圍繞夾頭118之下電極的下電極延伸部、上電極116與上電極延伸部之間的介電環、下電極與下電極延伸部之間的介電環、位於上電極116與夾頭118之邊緣處以圍繞形成電漿之電漿室108內之一區域的限制環等。In some embodiments, the plasma chamber 108 is formed by a plurality of additional components, such as the upper electrode extension part surrounding the upper electrode 116, the lower electrode extension part surrounding the lower electrode of the chuck 118, the upper electrode 116 and The dielectric ring between the upper electrode extension, the dielectric ring between the lower electrode and the lower electrode extension is located at the edge of the upper electrode 116 and the chuck 118 to surround an area in the plasma chamber 108 where the plasma is formed. Restriction ring, etc.

阻抗匹配網路106包含一或多個電路元件如一或多個電感、或一或多個電容器、或一或多個電阻器、或上述之兩或更多者彼此耦合的組合等。例如,阻抗匹配網路106包含一串聯電路,此串聯電路包含與一電容器串聯耦合的一電感。阻抗匹配網路106更包含與該串聯電路連接的一分流電路。該分流電路包含與一電感串聯連接的一電容器。阻抗匹配網路106包含一或多個電容器,且一或多個電容器如所有可變電容器的對應電容為可變的如利用驅動組件變動等。阻抗匹配網路106包含一或多個具有固定電容的電容器如無法利用驅動組件112變化的電容器等。阻抗匹配網路106之一或多個可變電容器的組合可變電容為值C1。例如,將一或多個可變電容器之複數對應相對平板調整至固定位置而設定可變電容值C1。例如,彼此平行連接之兩或更多電容器的組合電容為複數電容器之複數電容的總和。又例如,彼此串聯連接之兩或更多電容器的組合電容為複數電容器之複數電容之倒數的總和的倒數。在美國專利申請案US 14/245,803中提供了阻抗匹配網路106的實例。The impedance matching network 106 includes one or more circuit elements, such as one or more inductors, or one or more capacitors, or one or more resistors, or a combination of two or more of the foregoing. For example, the impedance matching network 106 includes a series circuit including an inductor coupled in series with a capacitor. The impedance matching network 106 further includes a shunt circuit connected to the series circuit. The shunt circuit includes a capacitor connected in series with an inductor. The impedance matching network 106 includes one or more capacitors, and the corresponding capacitances of the one or more capacitors, such as all variable capacitors, are variable, such as using driving components to vary. The impedance matching network 106 includes one or more capacitors with fixed capacitances, such as capacitors that cannot be changed by the driving component 112. The variable capacitance of one or more variable capacitors of the impedance matching network 106 is the value C1. For example, the complex number of one or more variable capacitors is adjusted to a fixed position relative to the plate to set the variable capacitance value C1. For example, the combined capacitance of two or more capacitors connected in parallel to each other is the sum of the complex capacitances of the plurality of capacitors. For another example, the combined capacitance of two or more capacitors connected in series is the reciprocal of the sum of the reciprocal of the complex capacitances of the complex capacitors. An example of the impedance matching network 106 is provided in the US patent application US 14/245,803.

在某些實施例中,模型系統102包含阻抗匹配網路106的電腦生成模型。例如,模型系統102係由主機電腦系統110的處理器134所產生。匹配網路模型係自阻抗匹配網路106的一分支所推導出如表示阻抗匹配網路106的該分支。例如,當y MHz RF產生器係連接至阻抗匹配網路106的分支電路時,匹配網路模型表示阻抗匹配網路106之分支電路之電路如為其電腦生成模型等。又例如,匹配網路模型所具有之電路元件的數目不等於阻抗匹配網路106所具有之電路元件的數目。In some embodiments, the model system 102 includes a computer-generated model of the impedance matching network 106. For example, the model system 102 is generated by the processor 134 of the host computer system 110. The matching network model is derived from a branch of the impedance matching network 106 as representing the branch of the impedance matching network 106. For example, when the y MHz RF generator is connected to the branch circuit of the impedance matching network 106, the matching network model indicates that the circuit of the branch circuit of the impedance matching network 106 is a computer-generated model. For another example, the number of circuit elements in the matching network model is not equal to the number of circuit elements in the impedance matching network 106.

在某些實施例中,匹配網路模型所具有之電路元件的數目係少於阻抗匹配網路106之分支電路所具有之電路元件的數目。例如,匹配網路模型為阻抗匹配網路106之分支電路的一簡化形式。又例如,阻抗匹配網路106之分支電路之複數可變電容器的複數可變電容被整合為匹配網路模型之一或多個可變電容元件所表示的一組合可變電容、阻抗匹配網路106之分支電路之複數固定電容器的複數固定電容被整合為匹配網路模型之一或多個固定電容元件所表示的一組合固定電容、及/或阻抗匹配網路106之分支電路之複數固定電感的複數電感被整合為匹配網路模型之一或多個電感元件所表示的一組合電感、及/或阻抗匹配網路106之分支電路之複數固定電阻器的複數電阻值被整合為匹配網路模型之一或多個電阻元件所表示的一固定電阻值。例如,藉著取每一電容值之倒數而產生複數倒數電容值、總和複數倒數電容值而產生一倒數組合電容值、然後取該倒數組合電容值的倒數而產生一組合電容值,以整合串聯連接之複數電容器的複數電容值。又例如,總和串聯連接之複數電感的複數電感以產生一組合電感,整合複數電阻器的複數電阻值以產生一組合電阻值。將阻抗匹配網路106之分支電路之所有固定電容器的所有固定電容整合為匹配網路模型之一或多個固定電容元件的一組合固定電容值。在申請號為US 14/245,803的美國專利申請案中提供了匹配網路模型的其他實例。又,自一阻抗匹配網路產生一匹配網路模型的方式係載於申請號為US 14/245,803的美國專利申請案中。In some embodiments, the number of circuit elements in the matching network model is less than the number of circuit elements in the branch circuit of the impedance matching network 106. For example, the matching network model is a simplified form of the branch circuit of the impedance matching network 106. For another example, the complex variable capacitors of the complex variable capacitors of the branch circuit of the impedance matching network 106 are integrated into a combined variable capacitor and impedance matching network represented by one of the matching network models or multiple variable capacitor elements. The complex fixed capacitances of the plurality of fixed capacitors of the branch circuit of 106 are integrated into a combined fixed capacitance represented by one or more fixed capacitance elements of the matching network model, and/or the complex fixed inductance of the branch circuit of the impedance matching network 106 The complex inductance of the matching network model is integrated into a combined inductance represented by one or more inductance elements, and/or the complex resistance values of the complex fixed resistors of the branch circuit of the impedance matching network 106 are integrated into the matching network A fixed resistance value represented by one or more resistance elements of the model. For example, by taking the reciprocal of each capacitance value to generate a complex reciprocal capacitance value, and the sum of the complex reciprocal capacitance value to generate a reciprocal combined capacitance value, and then taking the reciprocal of the reciprocal combined capacitance value to generate a combined capacitance value to integrate the series The complex capacitance value of the connected complex capacitor. For another example, the complex inductances of the complex inductors connected in series are summed to generate a combined inductance, and the complex resistance values of the complex resistors are integrated to generate a combined resistance. All the fixed capacitances of all the fixed capacitors of the branch circuit of the impedance matching network 106 are integrated into a combined fixed capacitance value of one or more fixed capacitance elements of the matching network model. Other examples of matching network models are provided in the US patent application with application number US 14/245,803. In addition, the method of generating a matching network model from an impedance matching network is contained in a US patent application with application number US 14/245,803.

在某些實施例中,匹配網路模型係由具有三個分支(分別針對x MHz、y MHz、及z MHz RF產生器)的阻抗匹配網路106的電路簡圖所產生。三個分支在阻抗匹配網路106的輸出140處彼此相接。電路簡圖一開始包含複數電感與電容器的各種組合。獨立考慮三分支中的一者,匹配網路模型表示三分支中的一者。藉由一輸入裝置將電路元件增加至匹配網路模型,其實例將於下面提供。額外增加的電路元件的實例包含先前未包含於簡圖中並用以解釋阻抗匹配網路106之分支中之功率損失的複數電阻器、包含先前未包含於簡圖中並用以表示各種連接RF帶之電感的複數電感、及包含先前未包含於簡圖中並用以表示寄生電容值的複數電容器。又,藉由輸入裝置更進一步地增加某些電路元件以表示因阻抗匹配網路106之實體尺寸之阻抗匹配網路106之分支的傳輸線本質。例如,阻抗匹配網路106之分支中之一或多個電感之未繞行的長度相較於藉由該一或多個電感而通過之一RF訊號的波長係不可忽略。為了解釋此效應,將簡圖中的一電感分拆為兩或更多的電感。之後,藉由輸入裝置自簡圖移除某些電路元件以產生匹配網路模型。In some embodiments, the matching network model is generated by the circuit diagram of the impedance matching network 106 with three branches (respectively for x MHz, y MHz, and z MHz RF generators). The three branches are connected to each other at the output 140 of the impedance matching network 106. The circuit diagram starts with various combinations of complex inductors and capacitors. Considering one of the three branches independently, the matching network model represents one of the three branches. The circuit elements are added to the matching network model by an input device, examples of which will be provided below. Examples of additional circuit elements include complex resistors that were not previously included in the schematic diagram and used to explain the power loss in the branches of the impedance matching network 106, and include those that were not previously included in the schematic diagram and used to represent various connected RF bands. The complex inductance of the inductance and the complex capacitors that are not included in the diagram and used to represent the parasitic capacitance value. In addition, some circuit elements are further added by the input device to represent the nature of the branched transmission line of the impedance matching network 106 due to the physical size of the impedance matching network 106. For example, the unwinding length of one or more inductors in the branches of the impedance matching network 106 is not negligible compared to the wavelength of an RF signal passing through the one or more inductors. In order to explain this effect, one inductor in the diagram is split into two or more inductors. Afterwards, some circuit components are removed from the sketch by the input device to generate a matching network model.

在各種實施例中,匹配網路模型與阻抗匹配網路106之分支電路具有相同拓撲如複數電路元件之間的複數連接、複數電路元件的數目等。例如,若阻抗匹配網路106的分支電路包含與一電感串聯耦合的一電容器,匹配網路模型包含與一電感串聯耦合的一電容器。在此實例中,阻抗匹配網路106之分支電路與匹配網路模型的該複數電感具有相同數值,阻抗匹配網路106之分支電路與匹配網路模型的該複數電容器具有相同數值。又例如,若阻抗匹配網路106的分支電路包含與一電感並聯耦合的一電容器,匹配網路模型包含與一電感並聯耦合的一電容器。在此實例中,阻抗匹配網路106之分支電路與匹配網路模型的該複數電感具有相同數值,阻抗匹配網路106之分支電路與匹配網路模型的該複數電容器具有相同數值。又例如,匹配網路模型和阻抗匹配網路106具有相同數目及相同類型的複數電路元件,且兩者具有複數電路元件之間的相同類型的複數連接。電路元件之類型的實例包含電阻器、電感、及電容器,連接類型的實例包含串聯、並聯等。In various embodiments, the matching network model and the branch circuit of the impedance matching network 106 have the same topology, such as the multiple connections between the multiple circuit elements, the number of the multiple circuit elements, and so on. For example, if the branch circuit of the impedance matching network 106 includes a capacitor coupled in series with an inductor, the matching network model includes a capacitor coupled in series with an inductor. In this example, the branch circuit of the impedance matching network 106 and the complex inductance of the matching network model have the same value, and the branch circuit of the impedance matching network 106 and the complex capacitor of the matching network model have the same value. For another example, if the branch circuit of the impedance matching network 106 includes a capacitor coupled in parallel with an inductor, the matching network model includes a capacitor coupled in parallel with an inductor. In this example, the branch circuit of the impedance matching network 106 and the complex inductance of the matching network model have the same value, and the branch circuit of the impedance matching network 106 and the complex capacitor of the matching network model have the same value. For another example, the matching network model and the impedance matching network 106 have the same number and the same type of complex circuit elements, and both have the same type of complex connection between the complex circuit elements. Examples of the types of circuit elements include resistors, inductors, and capacitors, and examples of connection types include series, parallel, and the like.

在各種實施例中,模型系統102包含匹配網路模型與RF傳輸模型的組合。匹配網路模型的輸入為輸入142。RF傳輸模型係以串聯方式連接至匹配網路模型的輸出並具有輸出144。RF傳輸模型自RF傳輸線132推導出的方式係類似於匹配網路模型自阻抗匹配網路106推導出的方式。例如,RF傳輸模型具有自RF傳輸線132之電感、電容值、及/或電阻值所推導出的電感、電容值、及/或電阻值。又例如,RF傳輸模型的電容值與RF傳輸線132的電容值相匹配、RF傳輸模型的電感與RF傳輸線132的電感相匹配、且RF傳輸模型的電阻值與RF傳輸線132的電感相匹配。In various embodiments, the model system 102 includes a combination of a matching network model and an RF transmission model. The input of the matching network model is input 142. The RF transmission model is connected in series to the output of the matching network model and has an output 144. The way the RF transmission model is derived from the RF transmission line 132 is similar to the way the matching network model is derived from the impedance matching network 106. For example, the RF transmission model has inductance, capacitance, and/or resistance values derived from the inductance, capacitance, and/or resistance of the RF transmission line 132. For another example, the capacitance value of the RF transmission model matches the capacitance value of the RF transmission line 132, the inductance of the RF transmission model matches the inductance of the RF transmission line 132, and the resistance value of the RF transmission model matches the inductance of the RF transmission line 132.

在某些實施例中,模型系統102包含一RF纜線模型、匹配網路模型、及一RF傳輸模型的組合。RF纜線模型的輸入為輸入142。RF纜線模型的輸出係連接至匹配網路模型的輸入,且匹配網路模型的輸出係連接至RF傳輸模型的輸入。RF傳輸模型具有輸出144。RF纜線模型由RF纜線130所推導出的方式係類似於匹配網路模型由阻抗匹配網路106所推導出的方式。例如,RF纜線模型具有自RF纜線130之複數電感、電容值、及/或電阻值所推導出的複數電感、電容值、及/或電阻值。又例如,RF纜線模型的一電容值與RF纜線130的一電容值相匹配,RF纜線模型的一電感與RF纜線130的一電感相匹配,且RF纜線模型的一電阻值與RF纜線130的一電感相匹配。In some embodiments, the model system 102 includes a combination of an RF cable model, a matching network model, and an RF transmission model. The input of the RF cable model is input 142. The output of the RF cable model is connected to the input of the matching network model, and the output of the matching network model is connected to the input of the RF transmission model. The RF transmission model has an output of 144. The way the RF cable model is derived from the RF cable 130 is similar to the way the matching network model is derived from the impedance matching network 106. For example, the RF cable model has a complex inductance, capacitance, and/or resistance value derived from the complex inductance, capacitance, and/or resistance value of the RF cable 130. For another example, a capacitance value of the RF cable model matches a capacitance value of the RF cable 130, an inductance of the RF cable model matches an inductance of the RF cable 130, and a resistance value of the RF cable model It matches with an inductance of the RF cable 130.

x MHz RF產生器包含用以產生RF訊號的RF電源121。RF電源121具有輸出123,其亦為x MHz RF產生器的輸出。輸出123係藉由RF纜線127連接至阻抗匹配網路106的輸入125。x MHz RF產生器係藉由額外分支的輸入125而連接至阻抗匹配網路106的該額外分支,該額外分支係不同於y MHz RF產生器在分支電路之輸入128處連接至的分支電路。例如,該額外分支所包含之一或多個電阻器、及/或一或多個電容器、及/或一或多個電感的一組合係不同於連接至輸入128之分支電路內之一或多個電阻器、及/或一或多個電容器、及/或一或多個電感的一組合。連接至輸入125的額外分支與連接至輸入128的分支電路兩者皆連接至輸出140。The x MHz RF generator includes an RF power source 121 for generating RF signals. The RF power supply 121 has an output 123, which is also the output of the x MHz RF generator. The output 123 is connected to the input 125 of the impedance matching network 106 via an RF cable 127. The x MHz RF generator is connected to the additional branch of the impedance matching network 106 through the input 125 of the additional branch, which is different from the branch circuit to which the y MHz RF generator is connected at the input 128 of the branch circuit. For example, a combination of one or more resistors, and/or one or more capacitors, and/or one or more inductances included in the additional branch is different from one or more of the branch circuits connected to the input 128. A combination of one resistor, and/or one or more capacitors, and/or one or more inductors. Both the additional branch connected to the input 125 and the branch circuit connected to the input 128 are connected to the output 140.

又,y MHz RF產生器包含用以產生RF訊號的RF電源122。y MHz RF產生器包含連接至y MHz RF產生器之輸出126的感測器124如複數阻抗感測器、複數電流與電壓感測器、複數反射係數感測器、複數電壓感測器、複數電流感測器等。輸出126係藉由RF纜線130連接至阻抗匹配網路106之分支電路的輸入128。阻抗匹配網路106係藉由輸出140與RF傳輸線132連接至電漿室108,RF傳輸線132包含RF棒及圍繞RF棒的RF外導體。In addition, the y MHz RF generator includes an RF power supply 122 for generating RF signals. The y MHz RF generator includes sensors 124 connected to the output 126 of the y MHz RF generator, such as complex impedance sensors, complex current and voltage sensors, complex reflection coefficient sensors, complex voltage sensors, and Current sensor, etc. The output 126 is connected to the input 128 of the branch circuit of the impedance matching network 106 via the RF cable 130. The impedance matching network 106 is connected to the plasma chamber 108 through an output 140 and an RF transmission line 132. The RF transmission line 132 includes an RF rod and an RF outer conductor surrounding the RF rod.

驅動組件112包含一驅動裝置如一或多個電晶體等及一馬達,馬達係藉由連接機構114連接至阻抗匹配網路106的可變電容器。連接機構114的實例包含一或多桿、或藉由齒輪彼此連接之複數桿等。連接機構114係連接至阻抗匹配網路106的一可變電容器。例如,連接機構114係連接至作為分支電路之一部分的一可變電容器,其係藉由輸入128而連接至y MHz RF產生器。The driving component 112 includes a driving device such as one or more transistors and a motor. The motor is connected to the variable capacitor of the impedance matching network 106 through the connecting mechanism 114. Examples of the connecting mechanism 114 include one or more rods, a plurality of rods connected to each other by gears, and the like. The connecting mechanism 114 is connected to a variable capacitor of the impedance matching network 106. For example, the connecting mechanism 114 is connected to a variable capacitor as part of the branch circuit, which is connected to the y MHz RF generator through the input 128.

應注意,在阻抗匹配網路106包含連接至y MHz RF產生器之分支電路中之一個以上的可變電容器的情況中,驅動組件112包含用以控制一個以上之可變電容器的多個分離馬達,每一馬達係藉由一對應的連接機構而連接至一對應的可變電容器。在此例中,複數連接機構可被稱為連接機構114。It should be noted that in the case where the impedance matching network 106 includes more than one variable capacitor connected to the branch circuit of the y MHz RF generator, the driving component 112 includes a plurality of separate motors for controlling more than one variable capacitor. Each motor is connected to a corresponding variable capacitor by a corresponding connecting mechanism. In this example, the plural connection mechanisms may be referred to as the connection mechanism 114.

在某些實施例中,x MHz RF產生器的一實例包含2 MHz RF產生器,y MHz RF產生器的一實例包含27 MHz RF產生器,z MHz RF產生器的一實例包含60 MHz RF產生器。在各種實施例中,x MHz RF產生器的一實例包含400 kHz RF產生器,y MHz RF產生器的一實例包含27 MHz RF產生器,z MHz RF產生器的一實例包含60 MHz RF產生器。In some embodiments, an example of an x MHz RF generator includes a 2 MHz RF generator, an example of a y MHz RF generator includes a 27 MHz RF generator, and an example of a z MHz RF generator includes a 60 MHz RF generator. Device. In various embodiments, an example of an x MHz RF generator includes a 400 kHz RF generator, an example of a y MHz RF generator includes a 27 MHz RF generator, and an example of a z MHz RF generator includes a 60 MHz RF generator. .

應注意,在電漿室100中使用三個RF產生器如x、y、及z MHz RF產生器等的情況中,x MHz RF產生器係連接至阻抗匹配網路106的輸入125、y MHz RF產生器係連接至阻抗匹配網路106的輸入128、複數RF產生器中的第三者係連接至阻抗匹配網路106的第三輸入。輸出140係藉由阻抗匹配網路106的額外分支而連接至輸入125且輸出140係藉由阻抗匹配網路106的分支電路而連接至輸入128。輸出140係藉由阻抗匹配網路106的第三電路分支而連接至第三輸入。It should be noted that in the case where three RF generators such as x, y, and z MHz RF generators are used in the plasma chamber 100, the x MHz RF generator is connected to the input 125, y MHz of the impedance matching network 106 The RF generator is connected to the input 128 of the impedance matching network 106, and the third of the complex RF generators is connected to the third input of the impedance matching network 106. The output 140 is connected to the input 125 by an additional branch of the impedance matching network 106 and the output 140 is connected to the input 128 by a branch circuit of the impedance matching network 106. The output 140 is connected to the third input through the third circuit branch of the impedance matching network 106.

主機電腦系統110包含處理器134與記憶體裝置137。記憶體裝置137儲存模型系統102。處理器134可自記憶體裝置137接取模型系統102而執行之。主機電腦系統110的實例包含筆記型電腦、或桌上型電腦、或平板、或智慧型手機等。如文中所用,中央處理單元(CPU)、控制器、特殊應用積體電路(ASIC)、或可程式化之邏輯裝置(PLD)等詞可取代處理器一詞並與處理器一詞互相交換使用。記憶體裝置的實例包含唯讀記憶體(ROM)、隨機存取記憶體(RAM)、硬碟、揮發性記憶體、非揮發性記體、儲存碟之冗餘陣列、快閃記憶體等。感測器124係藉由網路纜線136而連接至主機電腦系統110。文中所用之網路纜線的實例為使用序列方式、或平行方式、或通用序列匯流排(USB)協議等傳輸數據的纜線。The host computer system 110 includes a processor 134 and a memory device 137. The memory device 137 stores the model system 102. The processor 134 can receive the model system 102 from the memory device 137 and execute it. Examples of the host computer system 110 include a notebook computer, or a desktop computer, or a tablet, or a smart phone, etc. As used in the text, terms such as central processing unit (CPU), controller, application-specific integrated circuit (ASIC), or programmable logic device (PLD) can replace the term processor and be used interchangeably with the term processor . Examples of memory devices include read-only memory (ROM), random access memory (RAM), hard disks, volatile memory, non-volatile memory, redundant array of storage disks, flash memory, etc. The sensor 124 is connected to the host computer system 110 through a network cable 136. Examples of the network cables used in the text are cables that use serial, parallel, or universal serial bus (USB) protocols to transmit data.

在x MHz RF產生器產生之RF訊號之期間P1期間,比x MHz RF產生器具有更高頻率的y MHz RF產生器在複數射頻值RF1(P1)o下操作,其中o為大於零之整數。複數射頻值RF1(P1)o的實例包含RF1(P1)1、RF1(P1)2、RF1(P1)3等。例如,處理器134將包含期間P1用之複數射頻值RF1(P1)o與複數功率位準的一配方提供予y MHz RF產生器。During the period P1 of the RF signal generated by the x MHz RF generator, the y MHz RF generator, which has a higher frequency than the x MHz RF generator, operates under the complex radio frequency value RF1(P1)o, where o is an integer greater than zero . Examples of the complex radio frequency value RF1(P1)o include RF1(P1)1, RF1(P1)2, RF1(P1)3, and so on. For example, the processor 134 provides a formula including the complex radio frequency value RF1(P1)o and the complex power level used in the period P1 to the y MHz RF generator.

在各種實施例中,x與y MHz RF產生器每一者自主機電腦系統110內之處理器134或時脈源如振盪器接收一時脈訊號。在x MHz RF產生器之期間P1期間,y MHz RF產生器產生具有複數期間的一RF訊號。例如,在接收到時脈訊號後,在該時脈訊號的一時脈週期期間x MHz RF產生器產生具有期間P1的一RF訊號,其中期間P1在該時脈週期期間重覆。例如,x MHz RF產生器所產生的RF訊號在期間P1處重覆。又,在該實例中,在接收到該時脈訊號後,在該時脈訊號的該時脈週期期間y MHz RF產生器在期間P1內產生具有複數期間的該RF訊號。例如,y MHz RF產生器所產生的RF訊號在期間P1期間重覆振盪複數次,期間P1為x MHz RF產生器所產生之RF訊號的一振盪。In various embodiments, each of the x and y MHz RF generators receives a clock signal from the processor 134 in the host computer system 110 or a clock source such as an oscillator. During the period P1 of the x MHz RF generator, the y MHz RF generator generates an RF signal with a complex period. For example, after receiving the clock signal, the x MHz RF generator generates an RF signal with a period P1 during a clock period of the clock signal, wherein the period P1 repeats during the clock period. For example, the RF signal generated by the x MHz RF generator is repeated in the period P1. Furthermore, in this example, after receiving the clock signal, the y MHz RF generator generates the RF signal with a complex period in the period P1 during the clock period of the clock signal. For example, the RF signal generated by the y MHz RF generator repeatedly oscillates a plurality of times during the period P1, and the period P1 is an oscillation of the RF signal generated by the x MHz RF generator.

在x MHz RF產生器產生之RF訊號之期間P1期間,y MHz RF產生器藉由連接至y MHz RF產生器與主機電腦系統110的網路纜線138接收配方,然後y MHz RF產生器的數位訊號處理器(DSP)將配方提供予RF電源122。RF電源122產生具有配方中所規定之複數射頻值RF1(P1)o與複數功率位準的RF訊號。During the period P1 of the RF signal generated by the x MHz RF generator, the y MHz RF generator receives the recipe through the network cable 138 connected to the y MHz RF generator and the host computer system 110, and then the y MHz RF generator The digital signal processor (DSP) provides the formula to the RF power supply 122. The RF power supply 122 generates an RF signal having a complex radio frequency value RF1(P1)o and a complex power level specified in the formula.

阻抗匹配網路106受到初始化以具有組合可變電容值C1。例如,處理器134將一訊號發送至驅動組件112的驅動裝置以產生一或多個電流訊號。一或多個電流訊號被驅動裝置產生並發送至驅動組件112之對應一或多個馬達的一或多個定子。驅動組件112之與對應之一或多個定子電場接觸的一或多個轉子旋轉而移動連接機構114,以將阻抗匹配網路106之分支電路之組合可變電容值改變至C1。阻抗匹配網路106之具有組合可變電容值C1的分支電路藉由輸入128與RF纜線130自輸出126接收具有複數射頻值RF1(P1)o的RF訊號。又,阻抗匹配網路106的額外分支藉由RF纜線127與輸入125自x MHz RF產生器的輸出123接收RF訊號。在自x與y MHz RF產生器接收RF訊號後,阻抗匹配網路106匹配連接至阻抗匹配網路106之負載的阻抗與連接至阻抗匹配網路106之源的阻抗以產生經修改的RF訊號。負載的實例包含電漿室108與RF傳輸線132。源的實例包含RF纜線127、RF纜線130、x MHz RF產生器、及y MHz RF產生器。經修改的訊號係藉由RF傳輸線132自阻抗匹配網路106之分支電路的輸出140提供至夾頭118。當經修改的訊號與一或多種製程氣體如含氧氣體、含氟氣體等被提供至夾頭118時,電漿被產生或維持於夾頭118與上電極116之間之間隙中。The impedance matching network 106 is initialized to have a combined variable capacitance value C1. For example, the processor 134 sends a signal to the driving device of the driving component 112 to generate one or more current signals. One or more current signals are generated by the driving device and sent to one or more stators of the driving assembly 112 corresponding to one or more motors. One or more rotors of the driving component 112 that are in contact with the corresponding one or more stator electric fields rotate to move the connecting mechanism 114 to change the combined variable capacitance value of the branch circuit of the impedance matching network 106 to C1. The branch circuit with the combined variable capacitance value C1 of the impedance matching network 106 receives the RF signal with the complex radio frequency value RF1(P1)o from the output 126 through the input 128 and the RF cable 130. In addition, the additional branch of the impedance matching network 106 receives the RF signal from the output 123 of the x MHz RF generator through the RF cable 127 and the input 125. After receiving the RF signal from the x and y MHz RF generators, the impedance matching network 106 matches the impedance of the load connected to the impedance matching network 106 with the impedance of the source connected to the impedance matching network 106 to generate a modified RF signal . Examples of loads include the plasma chamber 108 and the RF transmission line 132. Examples of sources include RF cable 127, RF cable 130, x MHz RF generator, and y MHz RF generator. The modified signal is provided to the chuck 118 via the output 140 of the branch circuit of the impedance matching network 106 through the RF transmission line 132. When the modified signal and one or more process gases such as oxygen-containing gas, fluorine-containing gas, etc. are provided to the chuck 118, plasma is generated or maintained in the gap between the chuck 118 and the upper electrode 116.

在具有射頻RF1(P1)o之RF訊號被產生的時間期間,阻抗匹配網路106具有組合可變電容值C1、x MHz RF產生器產生RF訊號的期間P1、感測器124在輸出126處感測到複數電壓反射係數Γmi(P1)n並藉由網路纜線136將複數電壓反射係數Γmi(P1)n提供予處理器134,其中n為大於零之整數。例如,在期間P1期間,感測器124在複數預定的週期時間間隔處如每0.3微秒、每0.5微秒、每0.1微秒、一微秒的固定分數處、每0.v微秒等量測電壓反射係數Γmi(P1)n,其中n為時間間隔的數目且亦等於複數電壓反射係數Γmi(P1)n的數目而v為大於0且小於10的實數。又例如,感測器124在期間P1期間於自期間P1開始算起的0.3微秒處量測電壓反射係數Γmi(P1)1並於自期間P1開始算起的0.6微秒處量測電壓反射係數Γmi(P1)2。電壓反射係數的實例包含自電漿室108反射到y MHz RF產生器之電壓與y MHz RF產生器所產生之RF訊號內所供給之電壓的一比值。During the time that the RF signal with radio frequency RF1(P1)o is generated, the impedance matching network 106 has a combined variable capacitance value C1, and the x MHz RF generator generates the RF signal during the period P1, the sensor 124 is at the output 126 The complex voltage reflection coefficient Γmi(P1)n is sensed and the complex voltage reflection coefficient Γmi(P1)n is provided to the processor 134 through the network cable 136, where n is an integer greater than zero. For example, during the period P1, the sensor 124 is at a plurality of predetermined periodic time intervals, such as every 0.3 microsecond, every 0.5 microsecond, every 0.1 microsecond, a fixed fraction of one microsecond, every 0.v microsecond, etc. Measure the voltage reflection coefficient Γmi(P1)n, where n is the number of time intervals and is also equal to the number of complex voltage reflection coefficients Γmi(P1)n, and v is a real number greater than 0 and less than 10. For another example, during the period P1, the sensor 124 measures the voltage reflection coefficient Γmi(P1)1 at 0.3 microseconds from the beginning of the period P1 and measures the voltage reflection at 0.6 microseconds from the beginning of the period P1. The coefficient Γmi(P1)2. An example of the voltage reflection coefficient includes a ratio of the voltage reflected from the plasma chamber 108 to the y MHz RF generator and the voltage supplied in the RF signal generated by the y MHz RF generator.

又例如,400 kHz RF訊號的期間P1被分割為8個子期間如ΔT1、ΔT2、ΔT3、ΔT4、ΔT5、ΔT6、ΔT7、ΔT8。此些子期間的每一子期間皆為等於P1/8的一短時間間隔、或約0.v微秒等。在某些實施例中,由於400 kHz頻率在350與450 kHz之間變化,處理器134會使此些子期間之每一者的持續時間更長或更短且處理器134會增加或減少此些子期間的數目。400 kHz RF訊號之期間P1的開始係被處理器134偵測到且期間的開始標記子期間ΔT1的開始,每一額外的ΔT2至ΔT8依序接在子期間ΔT1之後。量測與60 MHz RF產生器相關的電壓反射係數Γmi(P1)n的八個量測值如Γmi(P1)1、Γmi(P1)2、Γmi(P1)3、Γmi(P1)4、Γmi(P1)5、Γmi(P1)6、Γmi(P1)7、Γmi(P1)8。在某些實施例中,八個量測值係於期間P1中所量測。在各種實施例中,八個量測值Γmi(P1)1、Γmi(P1)2、Γmi(P1)3、Γmi(P1)4、Γmi(P1)5、Γmi(P1)6、Γmi(P1)7、及Γmi(P1)8係於400 kHz RF訊號的多個期間如期間P1與期間P(1+1)與期間P(1+2)等中所量測。應注意,八個量測值為一實例,在某些實施例中,可在期間P1中或多個期間中量測任何數目之電壓反射係數的量測值。For another example, the period P1 of the 400 kHz RF signal is divided into 8 sub-periods such as ΔT1, ΔT2, ΔT3, ΔT4, ΔT5, ΔT6, ΔT7, ΔT8. Each of these sub-periods is a short time interval equal to P1/8, or about 0.v microseconds, etc. In some embodiments, since the 400 kHz frequency varies between 350 and 450 kHz, the processor 134 will make the duration of each of these sub-periods longer or shorter and the processor 134 will increase or decrease this The number of these sub-periods. The beginning of the period P1 of the 400 kHz RF signal is detected by the processor 134 and the beginning of the period marks the beginning of the sub-period ΔT1, and each additional ΔT2 to ΔT8 sequentially follows the sub-period ΔT1. Measure the eight measured values of the voltage reflection coefficient Γmi(P1)n related to the 60 MHz RF generator, such as Γmi(P1)1, Γmi(P1)2, Γmi(P1)3, Γmi(P1)4, Γmi (P1)5, Γmi(P1)6, Γmi(P1)7, Γmi(P1)8. In some embodiments, the eight measured values are measured in the period P1. In various embodiments, the eight measured values Γmi(P1)1, Γmi(P1)2, Γmi(P1)3, Γmi(P1)4, Γmi(P1)5, Γmi(P1)6, Γmi(P1) )7, and Γmi(P1)8 are measured in multiple periods of the 400 kHz RF signal, such as period P1, period P(1+1), period P(1+2), etc. It should be noted that the eight measurement values are an example. In some embodiments, any number of measurement values of the voltage reflection coefficient can be measured in the period P1 or in multiple periods.

處理器134自複數電壓反射係數Γmi(P1)n計算複數阻抗Zmi(P1)n。例如,處理器134藉著應用方程式(1)並解出Zmi(P1)1而計算阻抗Zmi(P1)1,其中方程式(1)為Γmi(P1)1 = (Zmi(P1)1 – Zo)/(Zmi(P1)1 + Zo)且Zo為RF傳輸線132的特性阻抗。又例如,處理器134藉著應用方程式(2)並解出Zmi(P1)2而計算阻抗Zmi(P1)2,其中方程式(2)為Γmi(P1)2 = (Zmi(P1)2 – Zo)/(Zmi(P1)2 + Zo)。阻抗Zo係藉由輸入裝置而提供予處理器134,輸入裝置如滑鼠、鍵盤、輸入筆、按鍵板、按鈕、觸碰螢幕等係藉由輸入/輸出介面如序列介面、平行介面、USB介面等連接至處理器134。在某些實施例中,感測器124量測複數阻抗Zmi(P1)n並藉由網路纜線136將複數阻抗Zmi(P1)n提供予處理器134。The processor 134 calculates the complex impedance Zmi(P1)n from the complex voltage reflection coefficient Γmi(P1)n. For example, the processor 134 calculates impedance Zmi(P1)1 by applying equation (1) and solving Zmi(P1)1, where equation (1) is Γmi(P1)1 = (Zmi(P1)1 – Zo) /(Zmi(P1)1 + Zo) and Zo is the characteristic impedance of the RF transmission line 132. For another example, the processor 134 calculates impedance Zmi(P1)2 by applying equation (2) and solving Zmi(P1)2, where equation (2) is Γmi(P1)2 = (Zmi(P1)2 – Zo )/(Zmi(P1)2 + Zo). Impedance Zo is provided to the processor 134 through input devices. Input devices such as mouse, keyboard, stylus, keypad, buttons, touch screen, etc. are through input/output interfaces such as serial interface, parallel interface, and USB interface. Connected to the processor 134. In some embodiments, the sensor 124 measures the complex impedance Zmi(P1)n and provides the complex impedance Zmi(P1)n to the processor 134 through the network cable 136.

複數阻抗Zmi(P1)n係由處理器134供給予模型系統102的輸入142並藉由模型系統102向前傳播以計算模型系統102之輸出144處的複數負載阻抗ZL(P1)n。處理器134初始化模型系統102以使模型系統102具有組合可變電容值C1與複數射頻值RF1(P1)o。例如,處理器134藉由模型系統102的一或多個電路元件使阻抗Zmi(P1)1向前傳播以產生負載阻抗ZL(P1)1。例如,模型系統102受到初始化以具有射頻RF1(P1)1與組合可變電容值C1。當模型系統102包含一電阻元件、一電感元件、一固定電容元件、及一可變電容元件的串接組合時,處理器134計算在模型系統102之輸入142處所接受到之阻抗Zmi(P1)1、橫跨該電阻元件的一複數阻抗、橫跨該電感元件的一複數阻抗、橫跨具有可變電容值C1之該可變電容元件的一複數阻抗、及橫跨該固定電容元件的一複數阻抗的一方向總和以產生負載阻抗ZL(P1)1。又例如,處理器144藉由模型系統102的一或多個電路元件使阻抗Zmi(P1)2向前傳播以產生負載阻抗ZL(P1)2。例如,初始化模型系統102使其具有射頻RF1(P1)2與組合可變電容值C1。當模型系統102包含一電阻元件、一電感元件、一固定電容元件、及一可變電容元件之串接組合時,處理器134計算在模型系統102之輸入142處所接收到之阻抗Zmi(P1)2、橫跨該電阻元件的一複數阻抗、橫跨該電感元件的一複數阻抗、橫跨具有可變電容值C1之該可變電容元件的一複數阻抗、及橫跨該固定電容元件的一複數阻抗的一方向總和以產生負載阻抗ZL(P1)2。The complex impedance Zmi(P1)n is provided by the processor 134 to the input 142 of the model system 102 and propagated forward by the model system 102 to calculate the complex load impedance ZL(P1)n at the output 144 of the model system 102. The processor 134 initializes the model system 102 so that the model system 102 has a combined variable capacitance value C1 and a complex radio frequency value RF1(P1)o. For example, the processor 134 uses one or more circuit elements of the model system 102 to propagate the impedance Zmi(P1)1 forward to generate the load impedance ZL(P1)1. For example, the model system 102 is initialized to have a radio frequency RF1(P1)1 and a combined variable capacitance value C1. When the model system 102 includes a series connection combination of a resistance element, an inductance element, a fixed capacitance element, and a variable capacitance element, the processor 134 calculates the impedance Zmi (P1) received at the input 142 of the model system 102 1. A complex impedance across the resistance element, a complex impedance across the inductive element, a complex impedance across the variable capacitance element with a variable capacitance value C1, and a complex impedance across the fixed capacitance element The sum of the complex impedances in one direction produces the load impedance ZL(P1)1. For another example, the processor 144 uses one or more circuit elements of the model system 102 to propagate the impedance Zmi(P1)2 forward to generate the load impedance ZL(P1)2. For example, the model system 102 is initialized to have a radio frequency RF1(P1)2 and a combined variable capacitance value C1. When the model system 102 includes a series combination of a resistance element, an inductance element, a fixed capacitance element, and a variable capacitance element, the processor 134 calculates the impedance Zmi (P1) received at the input 142 of the model system 102 2. A complex impedance across the resistance element, a complex impedance across the inductive element, a complex impedance across the variable capacitance element with a variable capacitance value C1, and a complex impedance across the fixed capacitance element The sum of the complex impedances in one direction produces the load impedance ZL(P1)2.

在各種實施例中,在RF纜線130上自輸出126至輸入128(包含輸出126)的任何點處量測一電壓反射係數來取代在輸出126處量測一電壓反射係數。例如,感測器124係連接至RF電源122與阻抗匹配網路106之間的點以量測一電壓反射係數。In various embodiments, instead of measuring a voltage reflection coefficient at the output 126, a voltage reflection coefficient is measured at any point on the RF cable 130 from the output 126 to the input 128 (including the output 126). For example, the sensor 124 is connected to a point between the RF power source 122 and the impedance matching network 106 to measure a voltage reflection coefficient.

在某些實施例中,處理器134根據預先指派的權重加權量測到的複數電壓反射係數Γmi(P1)n的每一者。下面將說明,處理器134應用至複數電壓反射係數Γmi(P1)n的複數權重係由處理器134藉由輸入裝置之輸入所接收並基於工程知識及/或製程條件所決定。可將加權之複數電壓反射係數wΓmi(P1)n應用至模型系統102取代應用複數電壓反射係數Γmi(P1)n以決定複數負載阻抗,其中每一w為預先指派的權重。In some embodiments, the processor 134 weights each of the measured complex voltage reflection coefficients Γmi(P1)n according to a pre-assigned weight. As will be explained below, the complex weight applied by the processor 134 to the complex voltage reflection coefficient Γmi(P1)n is received by the processor 134 through the input of the input device and is determined based on engineering knowledge and/or process conditions. The weighted complex voltage reflection coefficient wΓmi(P1)n can be applied to the model system 102 instead of applying the complex voltage reflection coefficient Γmi(P1)n to determine the complex load impedance, where each w is a pre-assigned weight.

圖2為模型系統102之一實施例的圖,模型系統102係受到初始化以具有複數射頻值RF1(P1)o與可變電容值C1以決定複數射頻值RF(P1)n。對於複數射頻值RF(P1)n的每一者而言,期間P1在輸入142處的一電壓反射係數Γ(P1)n為最小值。處理器134自複數負載阻抗ZL(P1)n與模型系統102計算複數射頻值RF(P1)n。對於複數射頻值RF(P1)n之每一者而言,電壓反射係數Γ(P1)為來自電壓反射係數Γ(P1)之多個值中的最小值。例如,處理器134藉由模型系統102向後傳播負載阻抗ZL(P1)1以決定射頻值RF(P1)1,其中模型系統102係受到初始化以具有射頻RF1(P1)1與可變電容值C1,其中射頻值RF(P1)1在輸入142處產生期間P1的一輸入阻抗Z1。處理器134自輸入阻抗Z1計算一電壓反射係數Γ(P1)1的方式係類似於上述使用方程式(1)的方式。又,處理器134藉由模型系統102向後傳播負載阻抗ZL(P1)1以決定射頻值RF(P1)1_1,其中模型系統102係受到初始化以具有射頻值RF1(P1)1與可變電容值C1,其中射頻值RF(P1)1_1在輸入142處產生期間P1的一輸入阻抗Z2。處理器134自輸入阻抗Z2計算一電壓反射係數Γ(P1)2的方式係類似於上述使用方程式(1)的方式。處理器134判斷出電壓反射係數Γ(P1)1係小於電壓反射係數Γ(P1)2並決定射頻值RF1(P1)1為使電壓反射係數Γ(P1)1為最小值者。2 is a diagram of an embodiment of the model system 102. The model system 102 is initialized to have a complex radio frequency value RF1(P1)o and a variable capacitance value C1 to determine the complex radio frequency value RF(P1)n. For each of the complex radio frequency values RF(P1)n, a voltage reflection coefficient Γ(P1)n at the input 142 during the period P1 is the minimum value. The processor 134 calculates the complex radio frequency value RF(P1)n from the complex load impedance ZL(P1)n and the model system 102. For each of the complex radio frequency values RF(P1)n, the voltage reflection coefficient Γ(P1) is the minimum value among the multiple values of the voltage reflection coefficient Γ(P1). For example, the processor 134 uses the model system 102 to propagate the load impedance ZL(P1)1 backward to determine the radio frequency value RF(P1)1, wherein the model system 102 is initialized to have the radio frequency RF1(P1)1 and the variable capacitance value C1 , Where the radio frequency value RF(P1)1 is generated at the input 142 as an input impedance Z1 during the period P1. The way that the processor 134 calculates a voltage reflection coefficient Γ(P1)1 from the input impedance Z1 is similar to the way of using equation (1) above. In addition, the processor 134 uses the model system 102 to propagate the load impedance ZL(P1)1 backward to determine the radio frequency value RF(P1)1_1. The model system 102 is initialized to have the radio frequency value RF1(P1)1 and the variable capacitance value. C1, where the radio frequency value RF(P1)1_1 is generated at the input 142 as an input impedance Z2 of the period P1. The way that the processor 134 calculates a voltage reflection coefficient Γ(P1)2 from the input impedance Z2 is similar to the way of using equation (1) above. The processor 134 determines that the voltage reflection coefficient Γ(P1)1 is smaller than the voltage reflection coefficient Γ(P1)2 and determines the radio frequency value RF1(P1)1 to make the voltage reflection coefficient Γ(P1)1 the smallest value.

又例如,處理器134藉由模型系統102向後傳播負載阻抗ZL(P1)2以決定射頻值RF(P1)2,其中模型系統102係受到初始化以具有射頻RF1(P1)2與可變電容值C1,其中射頻值RF(P1)2在輸入142處產生期間P1的一輸入阻抗Z3。處理器134自輸入阻抗Z3計算一電壓反射係數Γ(P1)3的方式係類似於上述使用方程式(2)的方式。又,處理器134藉由模型系統102向後傳播負載阻抗ZL(P1)2以決定射頻值RF(P1)2_2,其中模型系統102係受到初始化以具有射頻RF1(P1)2與可變電容值C1,其中射頻值RF(P1)2_2在輸入142處產生期間P1的一輸入阻抗Z4。處理器134自輸入阻抗Z4計算一電壓反射係數Γ(P1)4的方式係類似於上述使用方程式(2)的方式。處理器134判斷出電壓反射係數Γ(P1)3係小於電壓反射係數Γ(P1)4並決定射頻值RF1(P1)2為使電壓反射係數Γ(P1)3為最小值者。For another example, the processor 134 uses the model system 102 to propagate the load impedance ZL(P1)2 backward to determine the radio frequency value RF(P1)2, wherein the model system 102 is initialized to have the radio frequency RF1(P1)2 and the variable capacitance value C1, where the radio frequency value RF(P1)2 is generated at the input 142 and an input impedance Z3 of the period P1 is generated. The way that the processor 134 calculates a voltage reflection coefficient Γ(P1)3 from the input impedance Z3 is similar to the way of using equation (2) above. Furthermore, the processor 134 uses the model system 102 to propagate the load impedance ZL(P1)2 backward to determine the radio frequency value RF(P1)2_2, wherein the model system 102 is initialized to have the radio frequency RF1(P1)2 and the variable capacitance value C1 , Wherein the radio frequency value RF(P1)2_2 at the input 142 generates an input impedance Z4 of the period P1. The way that the processor 134 calculates a voltage reflection coefficient Γ(P1)4 from the input impedance Z4 is similar to the way of using equation (2) above. The processor 134 determines that the voltage reflection coefficient Γ(P1)3 is smaller than the voltage reflection coefficient Γ(P1)4 and determines the radio frequency value RF1(P1)2 to make the voltage reflection coefficient Γ(P1)3 the smallest value.

應注意,值ZL(P1)1係自值Zmi(P1)1所決定,值Zmi(P1)1係於第一時間期間如t1等的終點處量測、自期間P1的起始量測、及在期間P1期間量測。值ZL(P1)2係自值Zmi(P1)2所決定,值Zmi(P1)2係於第二時間期間如t2等的終點處量測、自第一時間期間量測、及在期間P1期間量測。第二時間期間t2係接在第一時間期間t1之後且長度等於第一時間期間t1。在各種實施例中,電壓反射係數Γ(P1)1為第一時間期間t1之所有複數電壓反射係數中的最小值,電壓反射係數Γ(P1)2為第二時間期間t2之所有複數電壓反射係數中的最小值。It should be noted that the value ZL(P1)1 is determined from the value Zmi(P1)1, and the value Zmi(P1)1 is measured at the end of the first time period such as t1, etc., from the start measurement of the period P1, And measured during the period P1. The value ZL(P1)2 is determined from the value Zmi(P1)2, and the value Zmi(P1)2 is measured at the end of the second time period such as t2, measured from the first time period, and during the period P1 Period measurement. The second time period t2 is connected after the first time period t1 and has a length equal to the first time period t1. In various embodiments, the voltage reflection coefficient Γ(P1)1 is the minimum value among all the complex voltage reflection coefficients during the first time period t1, and the voltage reflection coefficient Γ(P1)2 is all the complex voltage reflection coefficients during the second time period t2. The minimum value of the coefficient.

在某些實施例中,處理器134執行非線性最小平方最佳化程序以解決並自負載阻抗ZL(P1)n與模型系統102計算複數射頻值RF(P1)n。對於複數射頻值RF(P1)n每一者而言,期間P1的電壓反射係數Γ(P1)n為最小值。在各種實施例中,處理器134供給預定的方程式以解決並自負載阻抗ZL(P1)n與模型系統102計算複數射頻值RF(P1)n。In some embodiments, the processor 134 executes a nonlinear least squares optimization procedure to solve and calculate the complex radio frequency value RF(P1)n from the load impedance ZL(P1)n and the model system 102. For each of the complex radio frequency values RF(P1)n, the voltage reflection coefficient Γ(P1)n during the period P1 is the minimum value. In various embodiments, the processor 134 supplies predetermined equations to solve and calculate the complex radio frequency value RF(P1)n from the load impedance ZL(P1)n and the model system 102.

在各種實施例中,使輸入142處之電壓反射係數Γ為最小值之模型系統102之射頻的一值在文中被稱為有利RF值。In various embodiments, a value of the radio frequency of the model system 102 that minimizes the voltage reflection coefficient Γ at the input 142 is referred to herein as a favorable RF value.

在某些實施例中,一RF值有時在文中被稱為一「參數值」。又,一電容值有時在文中被稱為一「可量測的因子」。In some embodiments, an RF value is sometimes referred to as a "parameter value" in the text. In addition, a capacitance value is sometimes referred to as a "measurable factor" in the text.

在各種實施例中,處理器134除了計算複數射頻值RF(P1)n之外更可計算期間P1之組合可變電容值Coptimum(P1)的一值,或處理器134計算期間P1之組合可變電容值Coptimum(P1)的一值但不計算複數射頻值RF(P1)n。例如,處理器134計算使輸入142處之複數電壓反射係數Γ(P1)n之一加權平均為最小值的組合可變電容值Coptimum(P1)。例如,處理器134計算複數電壓反射係數Γ(P1)n之一加權平均。處理器134藉由模型系統102向後傳播負載阻抗ZL(P1)n以決定使複數電壓反射係數Γ(P1)n之加權平均為最小值的組合可變電容值Coptimum(P1)。例如,處理器134藉由模型系統102向後傳播複數負載阻抗ZL(P1)n中的任何者如ZL(P1)1或ZL(P1)2等以決定使複數電壓反射係數Γ(P1)n之加權平均具有一第一值的組合可變電容值Coptimum(P1)。當複數負載阻抗ZL(P1)n中的任何者向後傳播時,模型系統102被初始化至對應複數射頻值RF1(P1)n中的任何者與可變電容值C1。例如,當負載阻抗ZL(P1)1向後傳播時,模型系統102被初始化至對應的射頻值RF1(P1)1,當負載阻抗ZL(P1)2向後傳播時,模型系統102被初始化至對應的射頻值RF1(P1)2。繼續更進一步的例示,處理器134藉由模型系統102向後傳播複數負載阻抗ZL(P1)n中的任何者以決定使複數電壓反射係數Γ(P1)n之加權平均具有一第二值的另一組合可變電容值Coptimum(P1)2。處理器134判斷出第一值係低於第二值並決定組合可變電容值Coptimum(P1)1為使複數電壓反射係數Γ(P1)n之加權平均為最小值的最佳組合可變電容值Coptimum(P1)。應注意,用以產生加權平均之複數電壓反射係數Γ(P1)n之每一者的權重係由處理器134自輸入裝置所接收。In various embodiments, in addition to calculating the complex radio frequency value RF(P1)n, the processor 134 can also calculate a value of the combined variable capacitance value Coptimum(P1) during the period P1, or the processor 134 can calculate the combination of the period P1 during the calculation period. The variable capacitance value Coptimum(P1) is a value but does not calculate the complex radio frequency value RF(P1)n. For example, the processor 134 calculates the combined variable capacitance value Coptimum(P1) that makes the weighted average of one of the complex voltage reflection coefficients Γ(P1)n at the input 142 the minimum value. For example, the processor 134 calculates a weighted average of one of the complex voltage reflection coefficients Γ(P1)n. The processor 134 uses the model system 102 to propagate the load impedance ZL(P1)n backward to determine the combined variable capacitance value Coptimum(P1) that minimizes the weighted average of the complex voltage reflection coefficient Γ(P1)n. For example, the processor 134 uses the model system 102 to propagate back any of the complex load impedances ZL(P1)n, such as ZL(P1)1 or ZL(P1)2, to determine the value of the complex voltage reflection coefficient Γ(P1)n. The weighted average has a combined variable capacitance value Coptimum(P1) of a first value. When any of the complex load impedances ZL(P1)n propagates backward, the model system 102 is initialized to correspond to any of the complex radio frequency values RF1(P1)n and the variable capacitance value C1. For example, when the load impedance ZL(P1)1 propagates backward, the model system 102 is initialized to the corresponding radio frequency value RF1(P1)1, and when the load impedance ZL(P1)2 propagates backward, the model system 102 is initialized to the corresponding radio frequency value RF1(P1)1. Radio frequency value RF1(P1)2. Continuing to further illustrate, the processor 134 uses the model system 102 to propagate back any of the complex load impedances ZL(P1)n to determine the other that the weighted average of the complex voltage reflection coefficient Γ(P1)n has a second value. A combined variable capacitance value Coptimum(P1)2. The processor 134 determines that the first value is lower than the second value and determines that the combined variable capacitance value Coptimum(P1)1 is the optimal combined variable capacitance that minimizes the weighted average of the complex voltage reflection coefficient Γ(P1)n The value Coptimum(P1). It should be noted that the weight of each of the complex voltage reflection coefficients Γ(P1)n used to generate the weighted average is received by the processor 134 from the input device.

在各種實施例中,以感測器124產生電壓反射係數Γmi(P1)q的q個量測值來取代自感測器124(圖1)獲得電壓反射係數Γmi(P1)n的n個量測值,其中 q為大於n且大於零的整數。處理器134藉由模型系統102使複數電壓反射係數Γmi(P1)q向前傳播以在模型系統102的輸出144處產生負載阻抗ZL(P1)q的q個數值。模型系統102係受到初始化以具有可變電容值C1及複數值RF1(P1)o。處理器134將複數負載阻抗ZL(P1)q分成n個相同的區段並計算n個區段中每個區段內之複數負載阻抗的一平均值。例如,處理器134計算10個量測值ZL(P1)1至ZL(P1)10的一第一平均值並計算10個量測值ZL(P1)11至ZL(P1)20的一第二平均值,其中1、10、11、及20皆為q的實例。第一平均值為複數負載阻抗ZL(P1)n之一者的實例且第二平均值為複數負載阻抗ZL(P1)n之另一者的實例。In various embodiments, the sensor 124 generates q measured values of the voltage reflection coefficient Γmi(P1)q instead of obtaining n quantities of the voltage reflection coefficient Γmi(P1)n from the sensor 124 (FIG. 1). Measured value, where q is an integer greater than n and greater than zero. The processor 134 propagates the complex voltage reflection coefficient Γmi(P1)q forward through the model system 102 to generate q values of the load impedance ZL(P1)q at the output 144 of the model system 102. The model system 102 is initialized to have a variable capacitance value C1 and a complex value RF1(P1)o. The processor 134 divides the complex load impedance ZL(P1)q into n identical sections and calculates an average value of the complex load impedance in each of the n sections. For example, the processor 134 calculates a first average value of 10 measurement values ZL(P1)1 to ZL(P1)10 and calculates a second value of 10 measurement values ZL(P1)11 to ZL(P1)20 The average value, where 1, 10, 11, and 20 are all examples of q. The first average value is an example of one of the complex load impedance ZL(P1)n and the second average value is an example of the other one of the complex load impedance ZL(P1)n.

在某些實施例中,在輸入142處最小化另一參數如功率反射係數等取代最小化電壓反射係數Γ(P1)n。In some embodiments, instead of minimizing the voltage reflection coefficient Γ(P1)n, another parameter, such as the power reflection coefficient, is minimized at the input 142.

圖3為電漿系統100之一實施例之圖,其例示利用模型系統102針對x MHz RF產生器所產生之RF訊號之一期間P(1+m)產生複數負載阻抗ZL(P(1+m))n,其中m為大於零之整數。期間P(1+m)在期間P1之後。例如,x MHz RF產生器所產生之RF訊號之一第一振盪之後緊接著是該RF訊號的一第二振盪。第二振盪與第一振盪是連續的且第一與第二振盪之間並無其他振盪。第二振盪具有期間P2的時間而第一振盪具有期間P1的時間。在某些實施例中,期間P2的時間長度係等於期間P1的時間長度。又例如,第一振盪 of x MHz RF產生器所產生之該RF訊號的該第一振盪之後並非緊接著該RF訊號的該第二振盪而是緊接著一或多個振盪,該一或多個振盪之後係緊接著期間P(1+m)的第(1+m)個振盪。該第(1+m)個振盪與該第一振盪並非是連續的且在該第一振盪與該第(1+m)個振盪之間有一或多個中間振盪。在某些實施例中,期間P(1+m)所涵蓋之時脈週期的時間量係等於期間P1所涵蓋之時脈週期的時間量。3 is a diagram of an embodiment of the plasma system 100, which illustrates the use of the model system 102 to generate a complex load impedance ZL(P(1+m) during a period P(1+m) of the RF signal generated by the x MHz RF generator m)) n, where m is an integer greater than zero. The period P(1+m) is after the period P1. For example, a first oscillation of an RF signal generated by an x MHz RF generator is followed by a second oscillation of the RF signal. The second oscillation and the first oscillation are continuous and there is no other oscillation between the first and the second oscillation. The second oscillation has a time period of P2 and the first oscillation has a time period of P1. In some embodiments, the time length of the period P2 is equal to the time length of the period P1. For another example, the first oscillation of the RF signal generated by the first oscillation of x MHz RF generator is not immediately followed by the second oscillation of the RF signal but immediately followed by one or more oscillations, the one or more The oscillation is followed by the (1+m)th oscillation of the period P(1+m). The (1+m)th oscillation and the first oscillation are not continuous and there are one or more intermediate oscillations between the first oscillation and the (1+m)th oscillation. In some embodiments, the amount of time of the clock cycle covered by the period P(1+m) is equal to the amount of time of the clock cycle covered by the period P1.

在x MHz RF產生器所產生之RF訊號的期間P(1+m)期間,處理器134修改配方以包含複數射頻值RF(P1)n並將複數射頻值RF(P1)n提供予y MHz RF產生器。又,處理器134決定期間P(1+m)用之一段差可變電容值Cstep1。例如,處理器134偵測到400 kHz RF產生器之週期P(1+m)開始且針對RF訊號之期間P(1+m)的一第一部分如週期P(1+m)之第一個1/8部分期間供給射頻值RF(P(1)1。連續地,針對RF訊號之期間P(1+m)的一第二部分如週期P(1+m)之第二個1/8部分期間供給射頻值RF(P(1)2等等。期間P(1+m)的該第二部分係與期間P(1+m)的該第一部分連續。該步驟可變電容值Cstep1在自值C1往值Coptimum(P1)的方向上為一段差。During the period P(1+m) of the RF signal generated by the x MHz RF generator, the processor 134 modifies the formula to include the complex radio frequency value RF(P1)n and provides the complex radio frequency value RF(P1)n to y MHz RF generator. In addition, the processor 134 determines the one-step variable capacitance value Cstep1 for the period P(1+m). For example, the processor 134 detects the beginning of the period P(1+m) of the 400 kHz RF generator and targets a first part of the period P(1+m) of the RF signal, such as the first part of the period P(1+m). The RF value RF(P(1)1) is supplied during the 1/8 period. Continuously, for a second part of the period P(1+m) of the RF signal, such as the second 1/8 of the period P(1+m) The radio frequency value RF(P(1)2, etc.) is supplied during part of the period. The second part of the period P(1+m) is continuous with the first part of the period P(1+m). The variable capacitance value Cstep1 of this step is at There is a difference from the value C1 to the value Coptimum(P1).

應注意,當將對應至阻抗匹配網路106之一或多個可變電容器的一或多個電容值自C1改變到Coptimum(P1)時,該一或多個可變電容器相對於y MHz RF產生器所產生之RF訊號之RF頻率的變化以足夠慢的方式移動。處理器134控制驅動組件112俾使阻抗匹配網路106的組合可變電容值被設定在值Cstep1處來取代將阻抗匹配網路102的組合可變電容值設定在值Coptimum(P1)處。阻抗匹配網路106達到可變電容值Coptimum(P1)所需的時間(如秒之等級等)係大於y MHz RF產生器產生具有複數射頻值RF(P1)n之一RF訊號所需的時間。例如,y MHz RF產生器需微秒等級的時間自複數射頻RF1(P1)o到複數射頻值RF(P1)n。因此,難以直接自值C1達到可變電容值Coptimum(P1)並同時自複數射頻值RF1(P1)o到達複數射頻值RF(P1)n俾使y MHz RF產生器之輸出126處的電壓反射係數Γ(P1)n為最小值。因此,在期間P(1+m)期間沿著朝向可變電容值Coptimum(P1)的方向以複數段差如Cstep1等調整阻抗匹配網路106的可變電容值。It should be noted that when one or more capacitance values corresponding to one or more variable capacitors of the impedance matching network 106 are changed from C1 to Coptimum(P1), the one or more variable capacitors are relative to y MHz RF The change of the RF frequency of the RF signal generated by the generator moves in a sufficiently slow manner. The processor 134 controls the driving component 112 so that the combined variable capacitance value of the impedance matching network 106 is set at the value Cstep1 instead of setting the combined variable capacitance value of the impedance matching network 102 at the value Coptimum(P1). The time required for the impedance matching network 106 to reach the variable capacitance value Coptimum (P1) (such as the level of seconds) is greater than the time required for the y MHz RF generator to generate an RF signal with a complex radio frequency value RF(P1)n . For example, a y MHz RF generator needs microsecond-level time from the complex radio frequency RF1(P1)o to the complex radio frequency value RF(P1)n. Therefore, it is difficult to directly reach the variable capacitance value Coptimum(P1) from the value C1 and at the same time from the complex radio frequency value RF1(P1)o to the complex radio frequency value RF(P1)n so that the voltage at the output 126 of the y MHz RF generator can be reflected The coefficient Γ(P1)n is the minimum value. Therefore, during the period P(1+m), the variable capacitance value of the impedance matching network 106 is adjusted along the direction toward the variable capacitance value Coptimum(P1) with a complex number of steps such as Cstep1.

處理器134更控制y MHz RF產生器以使y MHz RF產生器在期間P(1+m)期間於複數射頻值RF(P1)n處操作。針對複數射頻RF(P1)n與可變電容值Cstep1,y MHz RF產生器產生具有複數射頻值RF(P1)n的RF訊號,此RF訊號通過阻抗匹配網路106的分支電路。又,阻抗匹配網路106的額外分支藉由RF纜線127與輸入125自x MHz RF產生器的輸出123接收RF訊號。在自x與y MHz RF產生器接收到該複數RF訊號後,阻抗匹配網路106產生經修改的訊號,經修改的訊號係提供予下電極118。當使用複數值RF(P1)n來取代複數值RF(P1)o時,相較於期間P1,在期間P(1+m)較少量的功率反射到y MHz RF產生器。The processor 134 further controls the y MHz RF generator so that the y MHz RF generator operates at the complex radio frequency value RF(P1)n during the period P(1+m). For the complex radio frequency RF(P1)n and the variable capacitance value Cstep1, the y MHz RF generator generates an RF signal with the complex radio frequency value RF(P1)n, and this RF signal passes through the branch circuit of the impedance matching network 106. In addition, the additional branch of the impedance matching network 106 receives the RF signal from the output 123 of the x MHz RF generator through the RF cable 127 and the input 125. After receiving the complex RF signals from the x and y MHz RF generators, the impedance matching network 106 generates a modified signal, and the modified signal is provided to the bottom electrode 118. When the complex value RF(P1)n is used to replace the complex value RF(P1)o, compared to the period P1, a smaller amount of power is reflected to the y MHz RF generator during the period P(1+m).

在期間P(1+m)期間,當y MHz RF產生器產生具有複數射頻值RF(P1)n RF訊號且組合可變電容值為Cstep1時,感測器124量測在輸出126處的複數電壓反射係數Γmi(P(1+m)n。例如,400 kHz RF訊號的期間P(1+m)被分割為8個子期間如ΔT1、ΔT2、ΔT3、ΔT4、ΔT5、ΔT6、ΔT7、ΔT8。此些子期間的每一者皆為等於P(1+m)/8、或約為0.v微秒等的一短時間間隔。在某些實施例中,由於400 kHz頻率係於350至450 kHz之間變化,因此處理器134會使此些子期間的每一者更長或更短且處理器134會增加或減少此些子期間的數目。400 kHz RF訊號之期間P(1+m)的開始係被處理器134偵測到且期間的開始標記子期間ΔT1的開始,每一額外的ΔT2至ΔT8依序接在子期間ΔT1之後。量測與60 MHz RF產生器相關的電壓反射係數Γ(P(1+m)n的八個量測值如Γmi(P(1+m))1、Γmi(P(1+m))2、Γmi(P(1+m))3、Γmi(P(1+m))4、Γmi(P(1+m))5、Γmi(P(1+m))6、Γmi(P(1+m))7、Γmi(P(1+m))8。在某些實施例中,八個量測值係於期間P(1+m)中所量測。在各種實施例中,Γmi(P(1+m))1、Γmi(P(1+m))2、Γmi(P(1+m))3、Γmi(P(1+m))4、Γmi(P(1+m))5、Γmi(P(1+m))6、Γmi(P(1+m))7、Γmi(P(1+m))8係於400 kHz RF訊號的多個期間如期間P(1+m)與期間P(1+m+1)與期間P(1+m+2)等中所量測。應注意,八個量測值為一實例,在某些實施例中,可在期間P(1+m)中或多個期間中量測任何數目之電壓反射係數的量測值。During the period P(1+m), when the y MHz RF generator generates a complex radio frequency value RF(P1)n RF signal and the combined variable capacitance value is Cstep1, the sensor 124 measures the complex number at the output 126 Voltage reflection coefficient Γmi(P(1+m)n. For example, the period P(1+m) of the 400 kHz RF signal is divided into 8 sub-periods such as ΔT1, ΔT2, ΔT3, ΔT4, ΔT5, ΔT6, ΔT7, ΔT8. Each of these sub-periods is a short time interval equal to P(1+m)/8, or about 0.v microseconds, etc. In some embodiments, since the frequency of 400 kHz is between 350 and Between 450 kHz, the processor 134 will make each of these sub-periods longer or shorter and the processor 134 will increase or decrease the number of these sub-periods. The period P(1+ The start of m) is detected by the processor 134 and the start of the period marks the beginning of the sub-period ΔT1, and each additional ΔT2 to ΔT8 sequentially follows the sub-period ΔT1. Measure the voltage associated with the 60 MHz RF generator The eight measured values of reflection coefficient Γ(P(1+m)n such as Γmi(P(1+m))1, Γmi(P(1+m))2, Γmi(P(1+m))3 , Γmi(P(1+m))4, Γmi(P(1+m))5, Γmi(P(1+m))6, Γmi(P(1+m))7, Γmi(P(1 +m)) 8. In some embodiments, the eight measured values are measured in the period P(1+m). In various embodiments, Γmi(P(1+m))1, Γmi (P(1+m))2, Γmi(P(1+m))3, Γmi(P(1+m))4, Γmi(P(1+m))5, Γmi(P(1+m) ))6, Γmi(P(1+m))7, Γmi(P(1+m))8 are in multiple periods of 400 kHz RF signal such as period P(1+m) and period P(1+m +1) and the period P(1+m+2), etc. It should be noted that the eight measurement values are an example. In some embodiments, the period P(1+m) may be more or more Measure any number of measurement values of the voltage reflection coefficient during each period.

在期間P(1+m)期間,感測器124將複數電壓反射係數Γmi(P(1+m))n藉由網路纜線136提供予處理器134。處理器134自複數電壓反射係數Γmi(P(1+m))n產生複數阻抗Zmi(P(1+m))n的方式係與上述自複數電壓反射係數Γmi(P1)n產生複數阻抗Zmi(P1)n的方式相同。例如,處理器134自電壓反射係數Γmi(P(1+m))1產生阻抗值Zmi(P(1+m))1,電壓反射係數Γmi(P(1+m))1係在期間P(1+m)之自期間P(1+m)開始的第一時間期間t1內所量測。又,處理器134自電壓反射係數Γmi(P(1+m))2產生阻抗值Zmi(P(1+m))2,電壓反射係數Γmi(P(1+m))2係於期間P(1+m)之第二時間期間t2的終點處所量測,第二時間期間t2係始於第一時間期間t1的終點處且第一時間期間t1係自期間P(1+m)開始。During the period P(1+m), the sensor 124 provides the complex voltage reflection coefficient Γmi(P(1+m))n to the processor 134 via the network cable 136. The processor 134 generates the complex impedance Zmi(P(1+m))n from the complex voltage reflection coefficient Γmi(P(1+m))n and the above-mentioned self-complex voltage reflection coefficient Γmi(P1)n generates the complex impedance Zmi (P1)n is the same way. For example, the processor 134 generates the impedance value Zmi(P(1+m))1 from the voltage reflection coefficient Γmi(P(1+m))1, and the voltage reflection coefficient Γmi(P(1+m))1 is in the period P (1+m) is measured during the first time period t1 starting from the period P(1+m). In addition, the processor 134 generates an impedance value Zmi(P(1+m))2 from the voltage reflection coefficient Γmi(P(1+m))2, and the voltage reflection coefficient Γmi(P(1+m))2 is in the period P (1+m) is measured at the end of the second time period t2. The second time period t2 starts at the end of the first time period t1 and the first time period t1 starts from the period P(1+m).

又,當模型系統102被設定為具有針對期間P(1+m)的複數射頻值RF(P1)n與針對期間P(1+m)的組合可變電容值Cstep1,複數阻抗Zmi(P(1+m))n藉由模型系統102向前傳播以產生模型系統102的輸出144處的複數負載阻抗ZL(P(1+m))n的方式係與自模型系統102的輸入142處之複數阻抗Zmi(P1)n產生輸出144處之複數負載阻抗ZL(P1)n的方式相同。Furthermore, when the model system 102 is set to have a complex radio frequency value RF(P1)n for the period P(1+m) and a combined variable capacitance value Cstep1 for the period P(1+m), the complex impedance Zmi(P( 1+m))n through the forward propagation of the model system 102 to generate the complex load impedance ZL(P(1+m))n at the output 144 of the model system 102 is the same as the input 142 from the model system 102 The complex impedance Zmi(P1)n generates the complex load impedance ZL(P1)n at the output 144 in the same way.

在各種實施例中,相較於組合可變電容值C1,組合可變電容值Cstep1更靠近組合可變電容值Coptimum(P1)。例如,組合可變電容值Cstep1係大於組合可變電容值C1且組合可變電容值Coptimum(P1)係大於組合可變電容值Cstep1。又例如,組合可變電容值Cstep1係小於組合可變電容值C1且組合可變電容值Coptimum(P1)係小於組合可變電容值Cstep1。In various embodiments, the combined variable capacitance value Cstep1 is closer to the combined variable capacitance value Coptimum(P1) than the combined variable capacitance value C1. For example, the combined variable capacitance value Cstep1 is greater than the combined variable capacitance value C1 and the combined variable capacitance value Coptimum (P1) is greater than the combined variable capacitance value Cstep1. For another example, the combined variable capacitance value Cstep1 is smaller than the combined variable capacitance value C1 and the combined variable capacitance value Coptimum(P1) is smaller than the combined variable capacitance value Cstep1.

在某些實施例中,處理器134接收電壓反射係數而產生在模型系統102之輸出144處的複數對應負載電壓反射係數如ΓL(P1)n、ΓL(P(1+m))n等取代自接收自感測器124之電壓反射係數如Γmi(P1)n、Γmi(P(1+m))n等產生阻抗如阻抗Zmi(P1)n、Zmi(P(1+m))n等。複數對應負載電壓反射係數被應用至模型系統102之輸出144處的方式係與負載阻抗如ZL(P1)n、ZL(P(1+m))n等被應用至模型系統102之輸出處的方式相同。毋需自電壓反射係數轉換為阻抗,反之亦然。In some embodiments, the processor 134 receives the voltage reflection coefficient and generates a complex number corresponding to the load voltage reflection coefficient at the output 144 of the model system 102, such as ΓL(P1)n, ΓL(P(1+m))n, etc. instead The voltage reflection coefficients received from the sensor 124, such as Γmi(P1)n, Γmi(P(1+m))n, etc., generate impedances such as impedance Zmi(P1)n, Zmi(P(1+m))n, etc. . The way in which the complex number corresponding to the load voltage reflection coefficient is applied to the output 144 of the model system 102 is related to the way the load impedance such as ZL(P1)n, ZL(P(1+m))n, etc. is applied to the output of the model system 102 The same way. There is no need to convert from voltage reflection coefficient to impedance, and vice versa.

在某些實施例中,處理器134根據預先指派的權重加權複數量測到的電壓反射係數Γmi(P(1+m))n的每一者。處理器134應用至複數電壓反射係數Γmi(P(1+m))n的複數權重係由處理器134藉由輸入裝置之輸入所接收並基於工程知識及/或製程條件所決定。可將加權之複數電壓反射係數wΓmi(P(1+m))n應用至模型系統102取代應用複數電壓反射係數Γmi(P(1+m))n以決定複數負載阻抗ZL(P(1+m))n,其中每一w為預先指派的權重。In some embodiments, the processor 134 weights each of the measured voltage reflection coefficients Γmi(P(1+m))n according to a pre-assigned weight. The complex weight applied by the processor 134 to the complex voltage reflection coefficient Γmi(P(1+m))n is received by the processor 134 through the input of the input device and determined based on engineering knowledge and/or process conditions. The weighted complex voltage reflection coefficient wΓmi(P(1+m))n can be applied to the model system 102 instead of applying the complex voltage reflection coefficient Γmi(P(1+m))n to determine the complex load impedance ZL(P(1+m))n m)) n, where each w is a pre-assigned weight.

在各種實施例中,值Coptimum(P1)與值Cstep1被應用至電漿系統100但不決定複數射頻值RF(P1)n且不將複數射頻值RF(P1)n應用至電漿系統100。In various embodiments, the value Coptimum(P1) and the value Cstep1 are applied to the plasma system 100 but the complex radio frequency value RF(P1)n is not determined and the complex radio frequency value RF(P1)n is not applied to the plasma system 100.

圖4為模型系統102之一實施例的圖,模型系統102係受到初始化以具有複數射頻值RF(P1)n與可變電容值Cstep1以決定複數射頻值RF(P(1+m))n。對於複數射頻值RF(P(1+m))n的每一者而言,期間P(1+m)在輸入142處的一電壓反射係數Γ(P(1+m))n為最小值。處理器134自複數負載阻抗ZL(P(1+m))n與模型系統102計算複數射頻值RF(P(1+m))n。對於複數射頻值RF(P(1+m))n之每一者而言,輸入142處的電壓反射係數Γ(P(1+m))n為來自電壓反射係數Γ(P(1+m))n之多個值中的最小值。例如,處理器134藉由模型系統102向後傳播負載阻抗ZL((P(1+m))1以決定射頻值RF(P(1+m))1,其中模型系統102係被設定具有射頻RF1(P1)1與可變電容值Cstep1,其中射頻值RF(P(1+m))1在輸入142處產生期間P(1+m)的一輸入阻抗Z5。處理器134自輸入阻抗Z5計算一電壓反射係數Γ(P(1+m))5的方式係類似於上述使用方程式(1)的方式。又,處理器134藉由模型系統102向後傳播負載阻抗ZL((P(1+m))1以決定另一射頻值RF(P(1+m))1_1,其中模型系統102係被設定具有射頻值RF(P1)1與可變電容值Cstep1,其中另一射頻值RF(P(1+m))1_1在輸入142處產生期間P(1+m)的一輸入阻抗Z6。處理器134自輸入阻抗Z6計算一電壓反射係數Γ(P(1+m))6的方式係類似於上述使用方程式(1)的方式。處理器134判斷出電壓反射係數Γ(P(1+m))5係小於電壓反射係數Γ(P(1+m))6並判斷出射頻值RF(P(1+m))1為使電壓反射係數Γ(P(1+m))5為最小值者。4 is a diagram of an embodiment of the model system 102. The model system 102 is initialized to have a complex radio frequency value RF(P1)n and a variable capacitance value Cstep1 to determine the complex radio frequency value RF(P(1+m))n . For each of the complex radio frequency values RF(P(1+m))n, a voltage reflection coefficient Γ(P(1+m))n at the input 142 during the period P(1+m) is the minimum . The processor 134 calculates the complex radio frequency value RF(P(1+m))n from the complex load impedance ZL(P(1+m))n and the model system 102. For each of the complex radio frequency values RF(P(1+m))n, the voltage reflection coefficient Γ(P(1+m))n at the input 142 is derived from the voltage reflection coefficient Γ(P(1+m )) The smallest value among the multiple values of n. For example, the processor 134 uses the model system 102 to propagate the load impedance ZL((P(1+m))1 back to determine the radio frequency value RF(P(1+m))1, wherein the model system 102 is set to have a radio frequency RF1 (P1)1 and the variable capacitance value Cstep1, where the radio frequency value RF(P(1+m))1 generates an input impedance Z5 during the period P(1+m) at the input 142. The processor 134 calculates from the input impedance Z5 The way of a voltage reflection coefficient Γ(P(1+m))5 is similar to the way of using equation (1) above. Furthermore, the processor 134 propagates the load impedance ZL((P(1+m) backwards through the model system 102). ))1 to determine another radio frequency value RF(P(1+m))1_1, where the model system 102 is set to have a radio frequency value RF(P1)1 and a variable capacitance value Cstep1, and the other radio frequency value RF(P (1+m)) 1_1 generates an input impedance Z6 during the period P(1+m) at the input 142. The processor 134 calculates a voltage reflection coefficient Γ(P(1+m))6 from the input impedance Z6. Similar to the above method using equation (1). The processor 134 determines that the voltage reflection coefficient Γ(P(1+m))5 is smaller than the voltage reflection coefficient Γ(P(1+m))6 and determines the radio frequency value RF (P(1+m))1 is the minimum value of the voltage reflection coefficient Γ(P(1+m))5.

又例如,處理器134藉由模型系統102向後傳播負載阻抗ZL((P(1+m)2)以決定射頻值RF(P(1+m)2),其中模型系統102係被設定具有射頻值RF(P1)2與可變電容值Cstep1,其中射頻值RF(P(1+m)2)在輸入142處產生期間P(1+m)的一輸入阻抗Z7。處理器134自輸入阻抗Z7計算一電壓反射係數Γ(P(1+m))7的方式係類似於上述使用方程式(1)的方式。又,處理器134藉由模型系統102向後傳播負載阻抗ZL((P(1+m)2)以決定射頻值RF(P(1+m)2_1),其中模型系統102係被設定具有射頻RF(P1)2與可變電容值Cstep1,其中射頻值RF(P(1+m)2_1)在輸入142處產生期間P(1+m)的一輸入阻抗Z8。處理器134自輸入阻抗Z8計算一電壓反射係數Γ(P(1+m))8的方式係類似於上述使用方程式(1)的方式。處理器134判斷出電壓反射係數Γ(P(1+m))7係小於電壓反射係數Γ(P(1+m))8並判斷出射頻值RF(P(1+m)2)為使電壓反射係數Γ(P(1+m))7為最小值者。For another example, the processor 134 uses the model system 102 to propagate the load impedance ZL((P(1+m)2) backwards to determine the radio frequency value RF(P(1+m)2), wherein the model system 102 is set to have a radio frequency The value RF(P1)2 and the variable capacitance value Cstep1, wherein the radio frequency value RF(P(1+m)2) is generated at the input 142 at an input impedance Z7 of the period P(1+m). The processor 134 self-input impedance The way Z7 calculates a voltage reflection coefficient Γ(P(1+m))7 is similar to the way of using equation (1) above. In addition, the processor 134 propagates the load impedance ZL((P(1) backwards through the model system 102). +m)2) to determine the radio frequency value RF(P(1+m)2_1), where the model system 102 is set to have radio frequency RF(P1)2 and variable capacitance value Cstep1, where the radio frequency value RF(P(1+ m) 2_1) An input impedance Z8 of the period P(1+m) is generated at the input 142. The way the processor 134 calculates a voltage reflection coefficient Γ(P(1+m))8 from the input impedance Z8 is similar to the above Using equation (1), the processor 134 determines that the voltage reflection coefficient Γ(P(1+m))7 is less than the voltage reflection coefficient Γ(P(1+m))8 and determines the radio frequency value RF(P(P(1+m)) 1+m)2) is the one that minimizes the voltage reflection coefficient Γ(P(1+m))7.

應注意,值ZL(P(1+m)1)係自負載值Zmi(P(1+m))2所決定,負載值Zmi(P(1+m))2係於第二時間期間如t2等的終點處量測,其中t2係始於時間期間t1的終點且時間期間t1係始於期間P(1+m)。期間P(1+m)的第二時間期間係接在期間P(1+m)的第一時間期間之後。電壓反射係數Γ(P(1+m))5為期間P(1+m)之第一時間期間之所有複數電壓反射係數中的最小值,電壓反射係數Γ(P(1+m))7為期間P(1+m)之第二時間期間之所有複數電壓反射係數中的最小值。It should be noted that the value ZL(P(1+m)1) is determined by the load value Zmi(P(1+m))2, and the load value Zmi(P(1+m))2 is determined during the second time period as Measure at the end of t2, etc., where t2 starts at the end of the time period t1 and the time period t1 starts from the period P(1+m). The second time period of the period P(1+m) is connected after the first time period of the period P(1+m). The voltage reflection coefficient Γ(P(1+m))5 is the minimum value of all the complex voltage reflection coefficients in the first time period of the period P(1+m), and the voltage reflection coefficient Γ(P(1+m))7 It is the minimum value among all the complex voltage reflection coefficients during the second time period of the period P(1+m).

在某些實施例中,處理器134執行非線性最小平方最佳化程序以解決並自複數負載阻抗ZL(P(1+m))n與模型系統102計算複數射頻值RF(P(1+m))n。對於複數射頻值RF(P(1+m))n每一者而言,期間P(1+m)的電壓反射係數Γ(P(1+m))n為最小值。在各種實施例中,處理器134應用預定的方程式以解決並自複數負載阻抗ZL(P(1+m))n與模型系統102計算複數射頻值RF(P(1+m))n。In some embodiments, the processor 134 performs a nonlinear least squares optimization procedure to solve and calculate the complex radio frequency value RF(P(1+m)n from the complex load impedance ZL(P(1+m))n and the model system 102 m))n. For each of the complex radio frequency values RF(P(1+m))n, the voltage reflection coefficient Γ(P(1+m))n during the period P(1+m) is the minimum value. In various embodiments, the processor 134 applies predetermined equations to solve and calculates the complex radio frequency value RF(P(1+m))n from the complex load impedance ZL(P(1+m))n and the model system 102.

在某些實施例中,處理器134除了找到複數射頻值RF(P(1+m))n之外更可找到期間P(1+m)之組合可變電容值Coptimum(P(1+m))的一值,或處理器134找到期間P(1+m)之組合可變電容值Coptimum(P(1+m))的一值但不尋找複數射頻值RF(P(1+m))n。例如,處理器134計算使輸入142處之複數電壓反射係數Γ(P(1+m))n之一加權平均為最小值的組合可變電容值Coptimum(P(1+m))。例如,處理器134計算複數電壓反射係數Γ(P(1+m))n之一加權平均。處理器134 藉由模型系統102向後傳播負載阻抗ZL(P(1+m))n以決定使複數電壓反射係數Γ(P(1+m))n之加權平均為最小值的組合可變電容值Coptimum(P(1+m))。例如,處理器134藉由模型系統102向後傳播複數負載阻抗ZL(P(1+m))n中的任何者如ZL(P(1+m))1或ZL(P(1+m))2等以決定使複數電壓反射係數Γ(P(1+m))n之加權平均具有一第一值的組合可變電容值Coptimum(P(1+m))1。當複數負載阻抗ZL(P(1+m))n中的任何者向後傳播時,模型系統102被初始化至對應複數射頻值RF(P(1)n中的任何者與可變電容值Cstep1。例如,當負載阻抗ZL(P(1+m))1向後傳播時,模型系統102被初始化至對應的射頻值RF(P1)1,當負載阻抗ZL(P(1+m))2向後傳播時,模型系統102被初始化至對應的射頻值RF(P1)2。繼續更進一步的例示,處理器134藉由模型系統102向後傳播複數負載阻抗ZL(P(1+m))n中的任何者以決定使複數電壓反射係數Γ(P(1+m))n之加權平均具有一第二值的另一組合可變電容值Coptimum(P(1+m))2。處理器134判斷出第一值係低於第二值並決定組合可變電容值Coptimum(P(1+m))1為使複數電壓反射係數Γ(P(1+m))n之加權平均為最小值的最佳組合可變電容值Coptimum(P(1+m))。應注意,用以產生加權平均之複數電壓反射係數Γ(P(1+m))n之每一者的權重係由處理器134自輸入裝置所接收。In some embodiments, in addition to finding the complex radio frequency value RF(P(1+m))n, the processor 134 can also find the combined variable capacitance value Coptimum(P(1+m) during the period P(1+m) )), or the processor 134 finds a value of the combined variable capacitance value Coptimum(P(1+m)) during the period P(1+m) but does not find the complex radio frequency value RF(P(1+m) )n. For example, the processor 134 calculates the combined variable capacitance value Coptimum(P(1+m)) that makes the weighted average of one of the complex voltage reflection coefficients Γ(P(1+m))n at the input 142 the minimum value. For example, the processor 134 calculates a weighted average of one of the complex voltage reflection coefficients Γ(P(1+m))n. The processor 134 uses the model system 102 to propagate the load impedance ZL(P(1+m))n backwards to determine the combined variable capacitance that minimizes the weighted average of the complex voltage reflection coefficient Γ(P(1+m))n The value Coptimum(P(1+m)). For example, the processor 134 uses the model system 102 to propagate back any of the complex load impedances ZL(P(1+m))n such as ZL(P(1+m))1 or ZL(P(1+m)) 2 and so on to determine the combined variable capacitance value Coptimum(P(1+m))1 such that the weighted average of the complex voltage reflection coefficient Γ(P(1+m))n has a first value. When any of the complex load impedances ZL(P(1+m))n propagates backward, the model system 102 is initialized to correspond to any of the complex radio frequency values RF(P(1)n and the variable capacitance value Cstep1. For example, when the load impedance ZL(P(1+m))1 propagates backward, the model system 102 is initialized to the corresponding radio frequency value RF(P1)1, when the load impedance ZL(P(1+m))2 propagates backward When time, the model system 102 is initialized to the corresponding radio frequency value RF(P1)2. To further illustrate, the processor 134 uses the model system 102 to propagate back any of the complex load impedance ZL(P(1+m))n It is used to determine another combined variable capacitance value Coptimum(P(1+m))2 such that the weighted average of the complex voltage reflection coefficient Γ(P(1+m))n has a second value. The processor 134 determines The first value is lower than the second value and determines the combined variable capacitance value Coptimum(P(1+m))1 to make the weighted average of the complex voltage reflection coefficient Γ(P(1+m))n the smallest value. The best combination variable capacitance value Coptimum(P(1+m)). It should be noted that the weight of each of the complex voltage reflection coefficients Γ(P(1+m))n used to generate the weighted average is determined by the processor 134 Received from the input device.

在各種實施例中,以感測器124產生電壓反射係數Γmi(P(1+m))q的q個量測值來取代自感測器124(圖3)獲得電壓反射係數Γmi(P(1+m))n的n個量測值。處理器134藉由模型系統102使複數電壓反射係數Γmi(P(1+m))q向前傳播以在模型系統102的輸出144處產生負載阻抗ZL(P(1+m))q的q個數值。模型系統102係受到初始化以具有可變電容值Coptimum(P1)及複數值RF1(P1)n RF1(P1)n。處理器134將複數負載阻抗ZL(P(1+m))q分成n個相同的區段並計算n個區段中每個區段內之複數負載阻抗的一平均值。例如,處理器134計算10個量測值ZL(P(1+m))1至ZL(P(1+m))10的一第一平均值並計算10個量測值ZL(P(1+m))11至ZL(P(1+m))20的一第二平均值,其中1、10、11、及20皆為q的實例。第一平均值為複數負載阻抗ZL(P(1+m))n之一者的實例且第二平均值為複數負載阻抗ZL(P(1+m))n之另一者的實例。In various embodiments, the sensor 124 generates q measured values of the voltage reflection coefficient Γmi(P(1+m))q instead of obtaining the voltage reflection coefficient Γmi(P( 1+m)) n measured values of n. The processor 134 propagates forward the complex voltage reflection coefficient Γmi(P(1+m))q through the model system 102 to generate the load impedance ZL(P(1+m))q at the output 144 of the model system 102 Numerical value. The model system 102 is initialized to have a variable capacitance value Coptimum(P1) and a complex value RF1(P1)n RF1(P1)n. The processor 134 divides the complex load impedance ZL(P(1+m))q into n identical sections and calculates an average value of the complex load impedance in each of the n sections. For example, the processor 134 calculates a first average of 10 measurement values ZL(P(1+m))1 to ZL(P(1+m))10 and calculates 10 measurement values ZL(P(1 +m)) a second average value from 11 to ZL(P(1+m))20, where 1, 10, 11, and 20 are all examples of q. The first average value is an example of one of the complex load impedance ZL(P(1+m))n and the second average value is an example of the other one of the complex load impedance ZL(P(1+m))n.

在某些實施例中,在輸入142處最小化另一參數如功率反射係數等取代最小化電壓反射係數Γ(P1)n。In some embodiments, instead of minimizing the voltage reflection coefficient Γ(P1)n, another parameter, such as the power reflection coefficient, is minimized at the input 142.

圖5為電漿系統100之一實施例之圖,其例示使用電容值Coptimum(P(1+m))及使用複數射頻值RF(P(1+m))n在x MHz RF產生器所產生之RF訊號的一期間P(1+m+q)期間處理晶圓W,其中q為大於零的整數。期間P(1+m+q)在x MHz RF產生器所產生之RF訊號的期間P(1+m)之後。例如,x MHz RF產生器所產生之RF訊號的一第二振盪之後緊接著是該RF訊號的一第三振盪。第三振盪與第二振盪是連續的且第二與第三振盪之間並無其他振盪。第三振盪具有期間P3而第二振盪具有期間P2。在某些實施例中,期間P3的時間長度係等於期間P2的時間長度。又例如,x MHz RF產生器所產生之RF訊號的第二振盪之後並非緊接著該RF訊號的該第三振盪而是緊接著一或多個振盪,該一或多個振盪之後係緊接著期間P(1+m+q)的第(1+m+q)個振盪。第(1+m+q)個振盪與該第二振盪並非是連續的且在該第二振盪與該第(1+m+q)個振盪之間有一或多個中間振盪。在某些實施例中,期間P(1+m+q)所涵蓋之時脈週期的時間量係等於期間P(1+m)所涵蓋之時脈週期的時間量。Figure 5 is a diagram of an embodiment of the plasma system 100, which illustrates the use of a capacitance value Coptimum (P(1+m)) and the use of a complex radio frequency value RF(P(1+m))n in the x MHz RF generator The wafer W is processed during a period P(1+m+q) of the generated RF signal, where q is an integer greater than zero. The period P(1+m+q) is after the period P(1+m) of the RF signal generated by the x MHz RF generator. For example, a second oscillation of the RF signal generated by an x MHz RF generator is followed by a third oscillation of the RF signal. The third oscillation and the second oscillation are continuous and there is no other oscillation between the second and the third oscillation. The third oscillation has a period P3 and the second oscillation has a period P2. In some embodiments, the time length of the period P3 is equal to the time length of the period P2. For another example, the second oscillation of the RF signal generated by the x MHz RF generator is not immediately followed by the third oscillation of the RF signal but is followed by one or more oscillations, and the one or more oscillations are followed by the period The (1+m+q) oscillation of P(1+m+q). The (1+m+q)th oscillation and the second oscillation are not continuous, and there are one or more intermediate oscillations between the second oscillation and the (1+m+q)th oscillation. In some embodiments, the amount of time of the clock cycle covered by the period P(1+m+q) is equal to the amount of time of the clock cycle covered by the period P(1+m).

在x MHz RF產生器所產生之RF訊號的期間P(1+m+q)期間,處理器134修改期間P(1+m+q)期間的配方以包含複數射頻值RF(P(1+m))n並將複數射頻值RF(P(1+m))n提供予y MHz RF產生器。例如,處理器134偵測到400 kHz RF產生器之週期P(1+m+q)開始且針對RF訊號之期間P(1+m+q)的一第一部分如週期P(1+m+q)之第一個1/8部分期間應用射頻值RF(P(1+m))1。連續地,針對RF訊號之期間P(1+m+q)的一第二部分如週期P(1+m+q)之第二個1/8部分期間應用射頻值RF(P(1+m))2等等。期間P(1+m+q)的該第二部分係與期間P(1+m+q)的該第一部分連續。當使用複數值RF(P(1+m))n來取代複數值RF(P1)n時,相較於期間P(1+m),在期間P(1+m+q)期間有較少量的功率反射到y MHz RF產生器。During the period P(1+m+q) of the RF signal generated by the x MHz RF generator, the processor 134 modifies the formula during the period P(1+m+q) to include the complex radio frequency value RF(P(1+ m))n and provide the complex radio frequency value RF(P(1+m))n to the y MHz RF generator. For example, the processor 134 detects that the period P(1+m+q) of the 400 kHz RF generator starts and targets a first part of the period P(1+m+q) of the RF signal such as the period P(1+m+ The radio frequency value RF(P(1+m))1 is applied during the first 1/8 part of q). Continuously, for a second part of the period P(1+m+q) of the RF signal, such as the second 1/8 part of the period P(1+m+q), the radio frequency value RF(P(1+m )) 2 and so on. The second part of the period P(1+m+q) is continuous with the first part of the period P(1+m+q). When the complex value RF(P(1+m))n is used to replace the complex value RF(P1)n, there is less during the period P(1+m+q) compared to the period P(1+m) The amount of power is reflected to the y MHz RF generator.

又,處理器134控制驅動組件112俾使阻抗匹配網路102之分支電路的組合可變電容值被設定在值Cstep2,處來取代將阻抗匹配網路102的組合可變電容值設定在值Coptimum(P1)處,可變電容值設定在值Coptimum(P1)在往值Coptimum(P(1+m))的方向上為一段差。應注意, 在某些實施例中,組合可變電容值Cstep2係等於組合可變電容值Coptimum(P(1+m))。In addition, the processor 134 controls the driving component 112 so that the combined variable capacitance value of the branch circuit of the impedance matching network 102 is set to the value Cstep2, instead of setting the combined variable capacitance value of the impedance matching network 102 to the value Coptimum At (P1), the variable capacitance value is set at the value Coptimum(P1) as a step toward the value Coptimum(P(1+m)). It should be noted that in some embodiments, the combined variable capacitance value Cstep2 is equal to the combined variable capacitance value Coptimum(P(1+m)).

在xMHz RF產生器所產生之RF訊號的期間P(1+m+q)期間,當阻抗匹配網路106的組合可變電容值為Cstep2時,y MHz RF產生器產生具有複數射頻值RF(P(1+m))n的一RF訊號。具有複數射頻值RF(P(1+m))n的該RF訊號通過阻抗匹配網路106的分支電路。又,阻抗匹配網路106的額外分支藉由RF纜線127與輸入125自x MHz RF產生器的輸出123接收RF訊號。在自x與y MHz RF產生器接收到該複數RF訊號後,阻抗匹配網路106產生經修改的訊號,經修改的訊號係提供予下電極118用以在期間P(1+m+q)期間處理晶圓W。During the period P(1+m+q) of the RF signal generated by the xMHz RF generator, when the combined variable capacitance value of the impedance matching network 106 is Cstep2, the y MHz RF generator generates a complex radio frequency value RF( An RF signal of P(1+m))n. The RF signal with a complex radio frequency value RF(P(1+m))n passes through the branch circuit of the impedance matching network 106. In addition, the additional branch of the impedance matching network 106 receives the RF signal from the output 123 of the x MHz RF generator through the RF cable 127 and the input 125. After receiving the complex RF signals from the x and y MHz RF generators, the impedance matching network 106 generates a modified signal, and the modified signal is provided to the bottom electrode 118 for the period P(1+m+q) During the processing of wafer W.

在各種實施例中,相較於組合可變電容值Cstep1,組合可變電容值Cstep2更靠近組合可變電容值Coptimum(P(1+m))。例如,組合可變電容值Cstep2係大於組合可變電容值Cstep1且組合可變電容值Coptimum(P(1+m))係大於組合可變電容值Cstep2。又例如,組合可變電容值Cstep2係小於組合可變電容值Cstep1且組合可變電容值Coptimum(P(1+m))係小於組合可變電容值Cstep2。In various embodiments, the combined variable capacitance value Cstep2 is closer to the combined variable capacitance value Coptimum(P(1+m)) than the combined variable capacitance value Cstep1. For example, the combined variable capacitance value Cstep2 is greater than the combined variable capacitance value Cstep1 and the combined variable capacitance value Coptimum (P(1+m)) is greater than the combined variable capacitance value Cstep2. For another example, the combined variable capacitance value Cstep2 is smaller than the combined variable capacitance value Cstep1 and the combined variable capacitance value Coptimum (P(1+m)) is smaller than the combined variable capacitance value Cstep2.

在各種實施例中,值Coptimum(P(1+m))與值Cstep2被應用至電漿系統100但不決定複數射頻值RF(P(1+m))n且不將複數射頻值RF(P(1+m))n應用至電漿系統100。In various embodiments, the value Coptimum(P(1+m)) and the value Cstep2 are applied to the plasma system 100 but the complex radio frequency value RF(P(1+m))n is not determined and the complex radio frequency value RF( P(1+m))n is applied to the plasma system 100.

圖6顯示圖602與604之實施例,其係用以例示y MHz RF產生器所產生之一RF訊號606的複數期間以及該複數期間係發生在x MHz RF產生器所產生之一RF訊號608的一期間內。圖602繪示y軸上之RF訊號606的複數功率值對x軸上的時間t。圖604繪示y軸上之RF訊號608的複數功率值對x軸上的時間t。兩RF訊號606與608的時間軸x為相同的。例如,在一時間區段t2內發生RF訊號608的10個期間及RF訊號606的一期間P1。又,在時間t2與t4之間的一時間區段內發生RF訊號608的10個期間及RF訊號606的一期間P2。又,在時間t4與t6之間的一時間區段內發生RF訊號608的10個期間及RF訊號606的一期間P3。一RF產生器所產生之一RF訊號的每一期間有時在文中被稱為一RF週期。在RF訊號606的每一期間內發生RF訊號608的10個期間。又,期間P1之後緊接著RF訊號606的期間P2。期間P2之後緊接著RF訊號606的期間P3。Fig. 6 shows the embodiment of Figs. 602 and 604, which are used to illustrate the complex period of an RF signal 606 generated by the y MHz RF generator and an RF signal 608 generated by the x MHz RF generator. Within a period of time. Graph 602 shows the complex power value of the RF signal 606 on the y-axis versus the time t on the x-axis. Graph 604 shows the complex power value of the RF signal 608 on the y-axis versus the time t on the x-axis. The time axis x of the two RF signals 606 and 608 are the same. For example, 10 periods of the RF signal 608 and a period P1 of the RF signal 606 are generated in a time interval t2. In addition, 10 periods of the RF signal 608 and a period P2 of the RF signal 606 occur in a period of time between t2 and t4. In addition, 10 periods of the RF signal 608 and a period P3 of the RF signal 606 are generated in a period between time t4 and t6. Each period of an RF signal generated by an RF generator is sometimes referred to herein as an RF cycle. In each period of the RF signal 606, 10 periods of the RF signal 608 occur. Furthermore, the period P1 is immediately followed by the period P2 of the RF signal 606. The period P2 is immediately followed by the period P3 of the RF signal 606.

在某些實施例中,在RF訊號606的一期間內可發生RF訊號608之大於一個的期間如100個期間、200個期間、介於100與200之間的任何數目的期間等。RF訊號608與RF訊號606之期間之間的此類比例為RF訊號608與606之頻率之間的比例。In some embodiments, more than one period of the RF signal 608 may occur within a period of the RF signal 606, such as 100 periods, 200 periods, any number of periods between 100 and 200, and so on. Such a ratio between the periods of the RF signal 608 and the RF signal 606 is the ratio between the frequencies of the RF signal 608 and 606.

期間P2與期間P1之連續的且期間P3與期間P2是連續的。又,期間P3與期間P1並非連續的。在期間P1與P3之間有期間P2之振盪。The period P2 and the period P1 are continuous, and the period P3 and the period P2 are continuous. In addition, the period P3 and the period P1 are not continuous. Between periods P1 and P3, there is an oscillation of period P2.

圖7A為圖700之一實施例,其係用以例示針對電漿室108的各種製程條件自負載阻抗Zload的複數值產生複數最佳組合可變電容值Coptimum如Coptimum1、Coptimum2、Coptimum3等。圖700繪示負載阻抗Zload之一虛部如電抗等(y軸上的Im(Zload))及負載阻抗Zload之一實部如電阻等(Re(Zload))。複數製程條件的實例包含x MHz RF產生器之操作的各種頻率值、或y MHz RF產生器之操作的各種頻率值、或上電極116與夾頭118之間的間隙、或電漿室108內的溫度、或電漿室108內的壓力、或x MHz RF產生器所產生之RF訊號的功率值、或y MHz RF產生器所產生之RF訊號的功率值、電漿室108內之氣體的化學品、或上述兩或更多者的組合。例如,一製程條件1包含x MHz RF產生器所產生之RF訊號的一頻率值frq1、x MHz RF產生器所產生之RF訊號的一功率值pwr1、y MHz RF產生器所產生之RF訊號的一頻率值頻率值frq1、y MHz RF產生器所產生之RF訊號的一功率值pwr2、電漿室108內之一溫度tmp1、電漿室108內之一壓力pr1、間隙gp1(毫米,mm)、及兩種製程氣體的一化學品。一製程條件2包含x MHz RF產生器所產生之RF訊號的一頻率值frq2、x MHz RF產生器所產生之RF訊號的一功率值pwr2、y MHz RF產生器所產生之RF訊號的一頻率值頻率值frq3、y MHz RF產生器所產生之RF訊號的一功率值pwr3、電漿室108內之一溫度tmp1、電漿室108內之一壓力pr1、間隙gp1(mm)、及兩種製程氣體的該化學品。值Zload1係對應至製程條件1且值Zload2係對應至製程條件2。類似地,一值ZloadQ係對應至製程條件Q,其中Q為大於零的整數。例如,ZloadQ為當電漿室係操作在製程條件Q時在阻抗匹配網路106之輸出140與夾頭118之間所量測到的一阻抗。在各種實施例中,電漿室108係利用有限數目的複數製程條件Q操作且不會在此有限數目的條件之外操作。FIG. 7A is an embodiment of the diagram 700, which is used to illustrate the generation of complex optimal combined variable capacitance values Coptimum, such as Coptimum1, Coptimum2, Coptimum3, etc., from the complex value of the load impedance Zload for various process conditions of the plasma chamber 108. The graph 700 shows an imaginary part of the load impedance Zload, such as reactance, etc. (Im(Zload) on the y-axis), and a real part of the load impedance Zload, such as resistance, etc. (Re(Zload)). Examples of multiple process conditions include various frequency values of the operation of the x MHz RF generator, or various frequency values of the operation of the y MHz RF generator, or the gap between the upper electrode 116 and the chuck 118, or the plasma chamber 108 The temperature or the pressure in the plasma chamber 108, or the power value of the RF signal generated by the x MHz RF generator, or the power value of the RF signal generated by the y MHz RF generator, the gas in the plasma chamber 108 Chemicals, or a combination of two or more of the above. For example, a process condition 1 includes a frequency value frq1 of an RF signal generated by an x MHz RF generator, a power value pwr1 of an RF signal generated by an x MHz RF generator, and a power value of an RF signal generated by a y MHz RF generator. A frequency value frq1, a power value pwr2 of the RF signal generated by the y MHz RF generator, a temperature tmp1 in the plasma chamber 108, a pressure pr1 in the plasma chamber 108, a gap gp1 (mm, mm) , And a chemical of two process gases. A process condition 2 includes a frequency value frq2 of the RF signal generated by the x MHz RF generator, a power value pwr2 of the RF signal generated by the x MHz RF generator, and a frequency of the RF signal generated by the y MHz RF generator Frequency value frq3, a power value pwr3 of the RF signal generated by the y MHz RF generator, a temperature tmp1 in the plasma chamber 108, a pressure pr1 in the plasma chamber 108, a gap gp1 (mm), and two The chemical in the process gas. The value Zload1 corresponds to process condition 1 and the value Zload2 corresponds to process condition 2. Similarly, a value of ZloadQ corresponds to the process condition Q, where Q is an integer greater than zero. For example, ZloadQ is an impedance measured between the output 140 of the impedance matching network 106 and the chuck 118 when the plasma chamber is operated under the process condition Q. In various embodiments, the plasma chamber 108 is operated with a limited number of complex process conditions Q and does not operate outside this limited number of conditions.

圖7B為模型系統102之一實施例的圖,其係用以例示產生使模型系統102之輸入142處之一電壓反射係數Γ為零的複數最佳值Coptimum。處理器134藉由模型系統102使Zload的各種值自模型系統102的輸出144向後傳播以決定使輸入142處之電壓反射係數Γ為零的複數最佳值Coptimum。Zload的複數值係藉由處理器134自輸入裝置輸入或預先程序化以由處理器134所產生,Zload的複數值係基於複數製程條件所限制。例如,在阻抗匹配網路106之輸出140與夾頭118之間之一點處所量測到的Zload為當電漿室108內存在製程條件1時的Zload1。又例如,在阻抗匹配網路106之輸出140與夾頭118之間之該點處所量測到的Zload為當電漿室108內存在製程條件2時的Zload2。在此實例中,Zload的複數值被限制為當製程條件被限制至製程條件1與2時的Zload1與Zload2。電漿室108並未使用非上述製程條件的製程條件操作。在某些實施例中,電漿室108無法利用非預定製程條件的製程條件操作。7B is a diagram of an embodiment of the model system 102, which is used to illustrate the generation of a complex optimal value Coptimum that makes a voltage reflection coefficient Γ at the input 142 of the model system 102 zero. The processor 134 uses the model system 102 to propagate various values of Zload backward from the output 144 of the model system 102 to determine the complex optimal value Coptimum that makes the voltage reflection coefficient Γ at the input 142 zero. The complex value of Zload is input by the processor 134 from an input device or pre-programmed to be generated by the processor 134, and the complex value of Zload is restricted based on the complex number process conditions. For example, the Zload measured at a point between the output 140 of the impedance matching network 106 and the chuck 118 is Zload1 when there is process condition 1 in the plasma chamber 108. For another example, the Zload measured at the point between the output 140 of the impedance matching network 106 and the chuck 118 is Zload2 when there is process condition 2 in the plasma chamber 108. In this example, the complex value of Zload is limited to Zload1 and Zload2 when the process conditions are limited to process conditions 1 and 2. The plasma chamber 108 is not operated using process conditions other than the above process conditions. In some embodiments, the plasma chamber 108 cannot be operated with process conditions other than the predetermined process conditions.

針對Zload的每一值,處理器134藉由模型系統102決定最佳組合可變電容值Coptimum的一值。例如針對值Zload1,決定使模型系統102之輸入142處之電壓反射係數Γ為零的電容值Coptimum1。又,針對值Zload2,決定使模型系統102之輸入142處之電壓反射係數Γ為零的電容值Coptimum2。For each value of Zload, the processor 134 uses the model system 102 to determine a value of the optimal combined variable capacitance value Coptimum. For example, for the value Zload1, the capacitance value Coptimum1 that makes the voltage reflection coefficient Γ at the input 142 of the model system 102 zero is determined. Furthermore, for the value Zload2, the capacitance value Coptimum2 that makes the voltage reflection coefficient Γ at the input 142 of the model system 102 zero is determined.

在某些實施例中,達到輸入142處之另一參數如功率反射係數等的零值來取代達到電壓反射係數Γ的零值。In some embodiments, the zero value of another parameter at the input 142, such as the power reflection coefficient, is reached instead of reaching the zero value of the voltage reflection coefficient Γ.

圖7C為表720與多項式(1)的一實施例,兩者係皆由處理器134所產生。表720包含複數負載阻抗值Zload與複數最佳組合可變電容值Coptimum之間的對應關係。例如,處理器134如上面參考圖7B所解釋的應用模型系統102針對一值ZloadQ決定能使模型系統102之輸入142處之電壓反射係數Γ為零的一電容值CoptimumQ,其中Q為大於零的整數。值ZloadQ為複數值Zload中的一者且值CoptimumQ為複數值Coptimum中的一者。處理器134將表720儲存在記憶體裝置137中。表720為複數負載阻抗值Zload與複數電容值Coptimum之間之關係的一實例。FIG. 7C shows an embodiment of table 720 and polynomial (1), both of which are generated by the processor 134. The table 720 contains the correspondence between the complex load impedance value Zload and the complex optimal combined variable capacitance value Coptimum. For example, the processor 134 applies the model system 102 as explained above with reference to FIG. 7B to determine, for a value ZloadQ, a capacitance value CoptimumQ that enables the voltage reflection coefficient Γ at the input 142 of the model system 102 to be zero, where Q is greater than zero. Integer. The value ZloadQ is one of the complex values Zload and the value CoptimumQ is one of the complex values Coptimum. The processor 134 stores the table 720 in the memory device 137. Table 720 is an example of the relationship between the complex load impedance value Zload and the complex capacitance value Coptimum.

在某些實施例中,處理器134產生代表複數最佳組合可變電容值Coptimum與複數負載阻抗值Zload之間之關係的多項式(1)來取代表620或除了產生表620之外更產生代表複數最佳組合可變電容值Coptimum與複數負載阻抗值Zload之間之關係的多項式(1)。複數組合可變電容值Coptimum為Zload之實部與Zload之虛部之函數,且該函數係藉著將函數擬合至圖600(圖6A)上之複數值Coptimum 所決定。由多項式(1)所代表的該函數係由處理器134所擬合。In some embodiments, the processor 134 generates a polynomial (1) representing the relationship between the complex optimal combined variable capacitance value Coptimum and the complex load impedance value Zload to replace the table 620 or generate a representative table 620 The polynomial (1) of the relationship between the complex optimal combination variable capacitance value Coptimum and the complex load impedance value Zload. The complex variable capacitance value Coptimum is a function of the real part of Zload and the imaginary part of Zload, and the function is determined by fitting the function to the complex value Coptimum on the graph 600 (FIG. 6A). The function represented by the polynomial (1) is fitted by the processor 134.

圖8A為圖800的一實施例,其係用以例示自複數最佳電容值Coptimum與自複數負載阻抗值Zload產生複數最佳RF值RFoptimum1、RFoptimum2、RFoptimum3等。圖800繪示x軸上的複數負載阻抗值Zload的實部、y軸上之複數負載阻抗值Zload的虛部、及z軸上的複數最佳電容值Coptimum。最佳電容值Coptimum1與負載阻抗值Zload1係對應至最佳RF值RFoptimum1。又,最佳電容值Coptimum2與負載阻抗值Zload2係對應至最佳RF值RFoptimum2,且最佳電容值Coptimum3與負載阻抗值Zload3係對應至最佳RF值RFoptimum3。FIG. 8A is an embodiment of the graph 800, which is used to illustrate the generation of the complex optimal RF values RFoptimum1, RFoptimum2, RFoptimum3, etc. from the complex optimal capacitance value Coptimum and the complex load impedance value Zload. The graph 800 shows the real part of the complex load impedance value Zload on the x-axis, the imaginary part of the complex load impedance value Zload on the y-axis, and the complex optimal capacitance value Coptimum on the z-axis. The optimal capacitance value Coptimum1 and the load impedance value Zload1 correspond to the optimal RF value RFoptimum1. In addition, the optimal capacitance value Coptimum2 and the load impedance value Zload2 correspond to the optimal RF value RFoptimum2, and the optimal capacitance value Coptimum3 and the load impedance value Zload3 correspond to the optimal RF value RFoptimum3.

圖8B為模型系統102的一實施例,其係用以例示自複數最佳電容值Coptimum與複數負載阻抗值Zload產生複數最佳RF值RFoptimum。處理器134應用模型系統102之輸出144處的負載阻抗值ZloadQ並初始化模型系統102使其具有值CoptimumQ,然後藉由模型系統102向後傳播值ZloadQ以決定能使模型系統102之輸入142處之電壓反射係數Γ為最小值如非零值等的一最佳RF值RFoptimumQ,其中Q為大於零的整數。例如,處理器134藉由受到初始化以具有值Coptimum1的模型系統102向後傳播負載阻抗值Zload1以決定能使模型系統102之輸入142處之電壓反射係數Γ為一第一值的一第一RF最佳值RFA。又,處理器134藉由模型系統102向後傳播負載阻抗值Zload1以決定能使模型系統102之輸入142處之電壓反射係數Γ為一第二值的一第二RF最佳值RFB。處理器134比較該第一值與該第二值以決定出該第一值為兩者中的最小值並更進一步地決定值RFA為能使輸入142處之電壓反射係數Γ為最小值者。值RFA為值RFoptimum1的一實例。又例如,處理器134藉由受到初始化以具有值Coptimum2的模型系統102向後傳播負載阻抗值Zload2以決定能使模型系統102之輸入142處之電壓反射係數Γ為一第一值的一第一RF最佳值RFC。又,處理器134藉由模型系統102向後傳播負載阻抗值Zload2以決定能使模型系統102之輸入142處之電壓反射係數Γ為一第二值的一第二RF最佳值RFD。處理器134比較該第一值與該第二值以決定出該第一值為兩者中的最小值並更進一步地決定值RFC為能使輸入142處之電壓反射係數Γ為最小值者。值RFC為值RFoptimum2的一實例。值RFoptimumQ為複數值RFoptimum中的一者。FIG. 8B is an embodiment of the model system 102, which is used to illustrate the generation of the complex optimal RF value RFoptimum from the complex optimal capacitance value Coptimum and the complex load impedance value Zload. The processor 134 applies the load impedance value ZloadQ at the output 144 of the model system 102 and initializes the model system 102 to have the value CoptimumQ, and then the model system 102 propagates the value ZloadQ back to determine the voltage at the input 142 of the model system 102 The reflection coefficient Γ is an optimal RF value RFoptimumQ with a minimum value such as a non-zero value, where Q is an integer greater than zero. For example, the processor 134 is initialized to propagate the load impedance value Zload1 back to the model system 102 with the value Coptimum1 to determine a first RF maximum that enables the voltage reflection coefficient Γ at the input 142 of the model system 102 to be a first value. Good value RFA. In addition, the processor 134 uses the model system 102 to propagate the load impedance value Zload1 backward to determine a second RF optimal value RFB that enables the voltage reflection coefficient Γ at the input 142 of the model system 102 to be a second value. The processor 134 compares the first value with the second value to determine that the first value is the minimum of the two, and further determines the value RFA as the one that enables the voltage reflection coefficient Γ at the input 142 to be the minimum. The value RFA is an example of the value RFoptimum1. For another example, the processor 134 is initialized to propagate the load impedance value Zload2 back to the model system 102 with the value Coptimum2 to determine a first RF that enables the voltage reflection coefficient Γ at the input 142 of the model system 102 to be a first value. The best value RFC. In addition, the processor 134 uses the model system 102 to propagate the load impedance value Zload2 backward to determine a second RF optimal value RFD that enables the voltage reflection coefficient Γ at the input 142 of the model system 102 to be a second value. The processor 134 compares the first value with the second value to determine the first value to be the minimum of the two, and further determines the value RFC to be the one that enables the voltage reflection coefficient Γ at the input 142 to be the minimum. The value RFC is an example of the value RFoptimum2. The value RFoptimumQ is one of the complex values RFoptimum.

又例如,處理器134應用模型系統102之輸出144處的負載阻抗值ZloadQ並初始化模型系統102使其具有值CoptimumQ,然後藉由模型系統102向後傳播值ZloadQ以決定能使一RF產生器所產生之一RF訊號之一狀態 S1的一電壓反射係數多項式Γ1與一RF產生器所產生之一RF訊號之一狀態 S2的一電壓反射係數多項式Γ2的組合的一值為最小值如非零值、零值等的一最佳RF值RFoptimumQ。複數電壓反射係數之該組合的一實例為A*Γ1 + B*Γ2,其中A為介於0至1之間的一係數且B為介於0至1之間的另一係數。係數A與B係由使用者藉由輸入裝置而提供予處理器132。B的一實例為(1-A)。例如,處理器134藉由被初始化以具有值Coptimum1的模型系統102向後傳播負載阻抗值Zload1以決定使模型系統102之輸入142處之電壓反射係數Γ1與Γ2之組合具有一第一值的一第一RF最佳值RFA。又,處理器134藉由模型系統102向後傳播負載阻抗值Zload1以決定使模型系統102之輸入142處之電壓反射係數Γ1與Γ2之組合具有一第二值的一第二RF最佳值RFB。處理器134比較該第一值與該第二值以判斷出該第一為兩值中的最小值並更進一步判斷出值RFA為使模型系統102之輸入142處的多項式A*Γ1 + (1-A)*Γ2為最小值者。值RFA為值RFoptimum1的一實例。For another example, the processor 134 applies the load impedance value ZloadQ at the output 144 of the model system 102 and initializes the model system 102 to have the value CoptimumQ, and then propagates the value ZloadQ backwards through the model system 102 to determine whether it can be generated by an RF generator The combination of a voltage reflection coefficient polynomial Γ1 of a state S1 of an RF signal and a voltage reflection coefficient polynomial Γ2 of a state S2 of an RF signal generated by an RF generator has a minimum value such as a non-zero value, An optimal RF value RFoptimumQ of zero value etc. An example of this combination of complex voltage reflection coefficients is A*Γ1 + B*Γ2, where A is a coefficient between 0 and 1 and B is another coefficient between 0 and 1. The coefficients A and B are provided to the processor 132 by the user through the input device. An example of B is (1-A). For example, the processor 134 is initialized to propagate the load impedance value Zload1 back to the model system 102 with the value Coptimum1 to determine a first value for the combination of the voltage reflection coefficients Γ1 and Γ2 at the input 142 of the model system 102 to have a first value. An RF best value RFA. In addition, the processor 134 uses the model system 102 to propagate the load impedance value Zload1 backward to determine a second RF optimal value RFB that enables the combination of the voltage reflection coefficients Γ1 and Γ2 at the input 142 of the model system 102 to have a second value. The processor 134 compares the first value with the second value to determine that the first value is the minimum of the two values, and further determines that the value RFA is the polynomial A*Γ1 + (1 -A)*Γ2 is the minimum value. The value RFA is an example of the value RFoptimum1.

在某些實施例中,可最小化輸入142處的另一參數如功率反射係數等或狀態S1與S2之參數的組合來取代最小化電壓反射係數Γ或電壓反射係數Γ1與Γ2的組合,或除了最小化電壓反射係數Γ或電壓反射係數Γ1與Γ2的組合之外更另外最小化輸入142處的另一參數如功率反射係數等或狀態S1與S2之參數的組合。In some embodiments, another parameter at the input 142, such as the power reflection coefficient, or the combination of the parameters of the states S1 and S2, can be minimized instead of minimizing the voltage reflection coefficient Γ or the combination of the voltage reflection coefficients Γ1 and Γ2, or In addition to minimizing the voltage reflection coefficient Γ or the combination of the voltage reflection coefficients Γ1 and Γ2, another parameter at the input 142 such as the power reflection coefficient or the combination of the parameters of the states S1 and S2 is also minimized.

在各種實施例中,在狀態S1期間一RF產生器所產生的一RF訊號具有一功率位準大於狀態S2期間之RF訊號的一功率位準,功率位準例如是一或多個功率量、一或多個功率量的均方根功率量、一RF訊號之一包脈線的一功率位準等。類似地,在狀態S1期間一RF訊號具有一頻率位準大於狀態S2期間之RF訊號的一頻率位準,頻率位準例如是一或多個頻率量、一或多個頻率量的均方根頻率量等。在此些實施例中,狀態S1在文中被稱為是高狀態而狀態S2在文中被稱為低狀態。In various embodiments, an RF signal generated by an RF generator during the state S1 has a power level greater than that of the RF signal during the state S2. The power level is, for example, one or more power quantities, The root mean square power amount of one or more power amounts, a power level of a pulse line of an RF signal, etc. Similarly, during the state S1, an RF signal has a frequency level greater than that of the RF signal during the state S2. The frequency level is, for example, one or more frequency quantities, or the root mean square of one or more frequency quantities. The amount of frequency and so on. In these embodiments, the state S1 is referred to as a high state in the text and the state S2 is referred to as a low state in the text.

在某些實施例中,在狀態S2期間一RF產生器所產生的一RF訊號具有一功率位準大於狀態S1期間之RF訊號的一功率位準。類似地,在此些實施例中,在狀態S2期間RF訊號具有一頻率位準大於狀態S1期間之RF訊號的一頻率位準,頻率位準例如是一或多個頻率量、一或多個頻率量的均方根頻率量等。在此些實施例中,狀態S1被在文中被稱為是低狀態而狀態S2在文中被稱為高狀態。In some embodiments, an RF signal generated by an RF generator during the state S2 has a power level greater than that of the RF signal during the state S1. Similarly, in these embodiments, the RF signal during the state S2 has a frequency level greater than that of the RF signal during the state S1. The frequency level is, for example, one or more frequency quantities, one or more The root mean square frequency of the frequency and so on. In these embodiments, the state S1 is referred to as a low state in the text and the state S2 is referred to as a high state in the text.

在各種實施例中,在狀態S2期間一RF產生器所產生的一RF訊號具有一功率位準等於狀態S1期間之RF訊號的一功率位準。In various embodiments, an RF signal generated by an RF generator during the state S2 has a power level equal to that of the RF signal during the state S1.

在各種實施例中,無論狀態S2期間一RF產生器所產生的一RF訊號的一功率位準是否大於或小於狀態S1期間之RF訊號的一功率位準,狀態S2期間之RF訊號的一頻率位準係大於或小於狀態S1期間之RF訊號的一頻率位準。In various embodiments, regardless of whether a power level of an RF signal generated by an RF generator during the state S2 is greater than or less than a power level of the RF signal during the state S1, a frequency of the RF signal during the state S2 The level is greater than or less than a frequency level of the RF signal during the state S1.

在某些實施例中,文中所用的一位準如一頻率位準、一功率位準等包含一或多個值,且第一狀態如狀態S1、狀態S2等之一位準所具有的複數數值排除不同於第一狀態之第二狀態如狀態 S1、狀態S2等之一位準的複數數值。例如,在狀態S1期間之一RF訊號之複數功率值中沒有任一者等於在狀態S2期間之RF訊號的複數功率值。又例如,在狀態S1期間之一RF訊號之複數頻率值中沒有任一者等於在狀態S2期間之RF訊號的複數功率值。In some embodiments, the level used in the text, such as a frequency level, a power level, etc., includes one or more values, and the first state, such as state S1, state S2, etc., has a complex value Exclude the complex value of one level of the second state that is different from the first state, such as state S1, state S2, and so on. For example, none of the complex power values of an RF signal during the state S1 is equal to the complex power values of the RF signal during the state S2. For another example, none of the complex frequency values of an RF signal during the state S1 is equal to the complex power value of the RF signal during the state S2.

圖8C為表820的一實施例,表820包含複數負載阻抗值Zload、複數最佳電容值Coptimum、及複數最佳射頻值RFoptimum之間的對應關係,上述者係皆由處理器134利用模型系統102所產生。例如,處理器134如上面參考圖8B所解釋的應用模型系統102針對值ZloadQ與電容值CoptimumQ決定能使模型系統102之輸入142處之電壓反射係數Γ為最小值的值RFoptimumQ,其中Q為大於零的整數。處理器134將表820儲存在記憶體裝置137中。FIG. 8C is an embodiment of the table 820. The table 820 includes the corresponding relationship between the complex load impedance value Zload, the complex optimal capacitance value Coptimum, and the complex optimal radio frequency value RFoptimum, all of which are used by the processor 134 using the model system 102 produced. For example, the processor 134 applies the model system 102 to the value ZloadQ and the capacitance value CoptimumQ as explained above with reference to FIG. 8B to determine the value RFoptimumQ that enables the voltage reflection coefficient Γ at the input 142 of the model system 102 to be the minimum value, where Q is greater than An integer of zero. The processor 134 stores the table 820 in the memory device 137.

處理器134如上面參考圖8B所解釋的應用模型系統102所產生之表的其他實例係提供於下: [表I]

Figure 02_image001
[表II]
Figure 02_image002
[表III]
Figure 02_image003
應注意, R1至R5為電阻值而X1至X5為電抗值。更應注意,表I中的複數值RFoptimum係於模型系統102受到初始化以具有最佳電容值Coptimum1時所產生。又,表II中的複數值RFoptimum係於模型系統102受到初始化以具有最佳電容值Coptimum2時所產生。又,表III中的複數值RFoptimum係於模型系統102受到初始化以具有最佳電容值Coptimum3時所產生。Other examples of the table generated by the processor 134 using the model system 102 as explained above with reference to FIG. 8B are provided below: [Table I]
Figure 02_image001
[Table II]
Figure 02_image002
[Table III]
Figure 02_image003
It should be noted that R1 to R5 are resistance values and X1 to X5 are reactance values. It should be noted that the complex value RFoptimum in Table I is generated when the model system 102 is initialized to have the optimal capacitance value Coptimum1. In addition, the complex value RFoptimum in Table II is generated when the model system 102 is initialized to have the optimal capacitance value Coptimum2. In addition, the complex value RFoptimum in Table III is generated when the model system 102 is initialized to have the optimal capacitance value Coptimum3.

針對負載阻抗ZloadQ與最佳電容值Coptimum1的每一值,處理器134找到表I內的一列以尋找一值Re(Zload)並找到表I內的一行以尋找一值Im(Zload),然後基於值Re(Zload)與Im(Zload)找到最佳值RFoptimumQ。類似地,針對負載阻抗ZloadQ與最佳電容值Coptimum2的每一值,處理器134找到表II內的一列以尋找一值Re(Zload)並找到表II內的一行以尋找一值Im(Zload),然後基於值Re(Zload)與Im(Zload)找到最佳值RFoptimumQ。又,針對負載阻抗ZloadQ與最佳電容值Coptimum3的每一值,處理器134找到表III內的一列以尋找一值Re(Zload)並找到表III內的一行以尋找一值Im(Zload),然後基於值Re(Zload)與Im(Zload)找到最佳值RFoptimumQ。For each value of the load impedance ZloadQ and the optimal capacitance value Coptimum1, the processor 134 finds a column in Table I to find a value Re(Zload) and a row in Table I to find a value Im(Zload), and then based on The values Re(Zload) and Im(Zload) find the optimal value RFoptimumQ. Similarly, for each value of the load impedance ZloadQ and the optimal capacitance value Coptimum2, the processor 134 finds a column in Table II to find a value Re(Zload) and finds a row in Table II to find a value Im(Zload) , And then find the optimal value RFoptimumQ based on the values Re(Zload) and Im(Zload). Furthermore, for each value of the load impedance ZloadQ and the optimal capacitance value Coptimum3, the processor 134 finds a column in Table III to find a value Re(Zload) and finds a row in Table III to find a value Im(Zload), Then find the optimal value RFoptimumQ based on the values Re(Zload) and Im(Zload).

在各種實施例中,RFoptimumQ與RFoptimum兩種表示方式在本文中可交換使用。又,在此些實施例中,ZloadQ與Zload兩種表示方式在本文中可交換使用。又,在此些實施例中,Coptimum與CoptimumQ兩種表示方式在本文中可交換使用。In various embodiments, the two representations of RFoptimumQ and RFoptimum can be used interchangeably herein. In addition, in these embodiments, ZloadQ and Zload can be used interchangeably in this text. Moreover, in these embodiments, Coptimum and CoptimumQ can be used interchangeably in this document.

在某些實施例中,處理器134近似查找表I、II、及III以產生一多項式RFoptimumQ = 函數3(Re(Zload), Im(Zload), CoptimumQ),其中函數3為一函數。例如,最佳擬合表I至III中的複數RFoptimumQ值、Re(Zload)的複數值、及Im(Zload)的複數值,處理器134產生表I至III中的複數CoptimumQ值而產生多項式RFoptimumQ = 函數3(Re(Zload), Im(Zload), CoptimumQ)。查找表I至II及多項式RFoptimumQ = 函數3(Re(Zload), Im(Zload), CoptimumQ)係儲存至記憶體裝置137中。In some embodiments, the processor 134 looks up tables I, II, and III approximately to generate a polynomial RFoptimumQ = function 3 (Re(Zload), Im(Zload), CoptimumQ), where function 3 is a function. For example, the complex RFoptimumQ value, the complex value of Re(Zload), and the complex value of Im(Zload) in the best fit tables I to III, the processor 134 generates the complex CoptimumQ value in Tables I to III to generate the polynomial RFoptimumQ = Function 3(Re(Zload), Im(Zload), CoptimumQ). The lookup tables I to II and the polynomial RFoptimumQ = function 3 (Re(Zload), Im(Zload), CoptimumQ) are stored in the memory device 137.

圖8C亦產生多項式(2)的一實施例。表820與多項式(2)每一者皆為複數負載阻抗值Zload、複數最佳電容值Coptimum、及複數最佳射頻值RFoptimum之間之關係的實例。在某些實施例中,處理器134產生多項式(2)來取代產生表820或產生表820之外更額外產生多項式(2)。複數RF值RFoptimum為複數組合可變電容值Coptimum、複數Z負載值的實部、及複數Z負載值的虛部的一函數,該函數係藉著將函數擬合至圖800(圖8A)上的複數值RFoptimum 所決定。由多項式(2)所代表的函數係由處理器134所擬合。FIG. 8C also generates an embodiment of polynomial (2). Each of Table 820 and polynomial (2) is an example of the relationship between the complex load impedance value Zload, the complex optimal capacitance value Coptimum, and the complex optimal radio frequency value RFoptimum. In some embodiments, the processor 134 generates polynomial (2) instead of generating table 820 or generates polynomial (2) in addition to generating table 820. The complex RF value RFoptimum is a function of the complex combined variable capacitance value Coptimum, the real part of the complex Z load value, and the imaginary part of the complex Z load value. This function is achieved by fitting the function to the graph 800 (Figure 8A) The complex value of RFoptimum is determined. The function represented by the polynomial (2) is fitted by the processor 134.

圖9為模型系統102之一實施例之方塊圖,其係用以例示產生使模型系統102之輸入142處之電壓反射係數為零的複數最佳值Coptimum與RFoptimum。模型系統102之輸入142處之電壓反射係數Γ取決於複數負載阻抗值Zload、複數最佳電容值Coptimum如可變電容器位置等、及複數RF頻率最佳值RFoptimum。針對每一負載阻抗ZloadQ,具有處理器134決定之能使模型系統102之輸入142處之Γ = 0的最佳電容值CoptimumQ與RF頻率最佳值RFoptimumQ的一單一組合。舉例來說,處理器134將負載阻抗值ZloadQ應用於模型系統102的輸出144處,然後更藉由模型系統102向後傳播值ZloadQ以決定能使模型系統102之輸入142處之電壓反射係數Γ為零的最佳RF值RFoptimumQ與最佳電容值CoptimumQ。最佳電容值CoptimumQ與RF頻率最佳值RFoptimumQ在文中有時被稱為調變值。使用複數調變值,阻抗匹配網路106調變阻抗匹配網路106之輸出140處的負載阻抗,俾使阻抗匹配網路106之輸入128處的電壓反射係數Γ為零,其係等於輸入128處的一阻抗50 + 0j Ω,其中j為一複數。利用模型系統102,處理器134預先計算或產生查找表或多項式函數以找尋複數調變值。查找表的實例為: [表IV]

Figure 02_image004
[表V]
Figure 02_image005
9 is a block diagram of an embodiment of the model system 102, which is used to illustrate the generation of complex optimal values Coptimum and RFoptimum that make the voltage reflection coefficient at the input 142 of the model system 102 zero. The voltage reflection coefficient Γ at the input 142 of the model system 102 depends on the complex load impedance value Zload, the complex optimal capacitance value Coptimum such as the variable capacitor position, etc., and the complex RF frequency optimal value RFoptimum. For each load impedance ZloadQ, there is a single combination of the optimal capacitance value CoptimumQ and the RF frequency optimal value RFoptimumQ determined by the processor 134 to enable Γ=0 at the input 142 of the model system 102. For example, the processor 134 applies the load impedance value ZloadQ to the output 144 of the model system 102, and then uses the model system 102 to propagate the value ZloadQ backward to determine the voltage reflection coefficient Γ at the input 142 of the model system 102 to be Zero optimal RF value RFoptimumQ and optimal capacitance value CoptimumQ. The optimal capacitance value CoptimumQ and the RF frequency optimal value RFoptimumQ are sometimes referred to as the modulation value in the text. Using complex modulation values, the impedance matching network 106 modulates the load impedance at the output 140 of the impedance matching network 106 so that the voltage reflection coefficient Γ at the input 128 of the impedance matching network 106 is zero, which is equal to the input 128 An impedance at 50 + 0j Ω, where j is a complex number. Using the model system 102, the processor 134 pre-calculates or generates a look-up table or polynomial function to find the complex modulation value. Examples of lookup tables are: [Table IV]
Figure 02_image004
[Table V]
Figure 02_image005

在電漿製程期間,針對複數負載阻抗Zload中的每一者,處理器134找到表IV內的一列以尋找Re(Zload)的一值並找到表IV內的一行以尋找Im(Zload)的一值,然後基於值Re(Zload)與Im(Zload)找到最佳電容值CoptimumQ如Coptimum11、或Coptimum12、或Coptimum13、或Coptimum14、或Coptimum15、或Coptimum21、或Coptimum22、或Coptimum23、或Coptimum24、或Coptimum25、或Coptimum31、或Coptimum32、或Coptimum33、或Coptimum34、或Coptimum35、或Coptimum41、或Coptimum42、或Coptimum43、或Coptimum44、或Coptimum45、或Coptimum51、或Coptimum52、或Coptimum53、或Coptimum54、或Coptimum55等。類似地,針對複數負載阻抗Zload中的每一者,處理器134找到表V內的一列以尋找Re(Zload)的一值並找到表V內的一行以尋找Im(Zload)的一值,然後基於值Re(Zload)與Im(Zload)找到RF頻率最佳值RFoptimumQ如RFoptimum11、或RFoptimum12、或RFoptimum13、或RFoptimum14、或RFoptimum15、或RFoptimum21、或RFoptimum22、或RFoptimum23、或RFoptimum24、或RFoptimum25、或RFoptimum31、或RFoptimum32、或RFoptimum33、或RFoptimum34、或RFoptimum35、或RFoptimum41、或RFoptimum42、或RFoptimum43、或RFoptimum44、或RFoptimum45、或RFoptimum51、或RFoptimum52、或RFoptimum53、或RFoptimum54、或RFoptimum55。應注意,針對表IV中的每一CoptimumQ值及針對表V中的每一RF最佳值RFoptimumQ,匹配網路模型102之輸入142處的電壓反射係數為零。During the plasma process, for each of the complex load impedances Zload, the processor 134 finds a column in Table IV to find a value of Re(Zload) and finds a row in Table IV to find a value of Im(Zload) Then find the best capacitance value CoptimumQ based on the values Re(Zload) and Im(Zload), such as Coptimum11, or Coptimum12, or Coptimum13, or Coptimum14, or Coptimum15, or Coptimum21, or Coptimum22, or Coptimum23, or Coptimum24, or Coptimum25, Or Coptimum31, or Coptimum32, or Coptimum33, or Coptimum34, or Coptimum35, or Coptimum41, or Coptimum42, or Coptimum43, or Coptimum44, or Coptimum45, or Coptimum51, or Coptimum52, or Coptimum53, or Coptimum54, or Coptimum55, etc. Similarly, for each of the complex load impedances Zload, the processor 134 finds a column in table V to find a value of Re(Zload) and finds a row in table V to find a value of Im(Zload), and then Find the RF frequency optimal value RFoptimumQ based on the values Re(Zload) and Im(Zload), such as RFoptimum11, or RFoptimum12, or RFoptimum13, or RFoptimum14, or RFoptimum15, or RFoptimum21, or RFoptimum22, or RFoptimum23, or RFoptimum24, or RFoptimum25, or RFoptimum31 , Or RFoptimum32, or RFoptimum33, or RFoptimum34, or RFoptimum35, or RFoptimum41, or RFoptimum42, or RFoptimum43, or RFoptimum44, or RFoptimum45, or RFoptimum51, or RFoptimum52, or RFoptimum53, or RFoptimum54, or RFoptimum55. It should be noted that for each CoptimumQ value in Table IV and for each RF optimal value RFoptimumQ in Table V, the voltage reflection coefficient at the input 142 of the matching network model 102 is zero.

在某些實施例中,處理器134藉著產生下列多項式函數近似查找表IV與V: Coptimum = 函數1(Re(Zload), Im(Zload)) . . .方程式(3) RFoptimum = 函數2(Re(Zload), Im(Zload)) . . .方程式(4) 其中函數1為Re(Zload)與Im(Zload)的一函數,函數2為Re(Zload)與Im(Zload)的一函數。例如,最佳擬合Re(Zload)與Im(Zload)的複數值,處理器134產生表IV中的複數Coptimum以產生多項式(3)。又例如,處理器134對表V中的複數RFoptimum、Re(Zload)與Im(Zload)的複數值最佳擬合以產生方程式(4)。將查找表IV與V及方程式(3)與(4)儲存至記憶體裝置137中。In some embodiments, the processor 134 approximates the lookup tables IV and V by generating the following polynomial functions: Coptimum = function 1(Re(Zload), Im(Zload))... Equation (3) RFoptimum = function 2( Re(Zload), Im(Zload))... Equation (4) where function 1 is a function of Re(Zload) and Im(Zload), and function 2 is a function of Re(Zload) and Im(Zload). For example, to best fit the complex values of Re(Zload) and Im(Zload), the processor 134 generates the complex number Coptimum in Table IV to generate the polynomial (3). For another example, the processor 134 best fits the complex numbers RFoptimum, Re(Zload), and Im(Zload) in Table V to generate equation (4). The look-up tables IV and V and equations (3) and (4) are stored in the memory device 137.

圖10為電漿系統1000之一實施例的方塊圖,其係用以例示基於複數負載阻抗值應用複數最佳值RFoptimum與Coptimum。電漿系統1000包含y MHz RF產生器。在某些實施例中,y MHz RF產生器為一400 kHz RF產生器、或一2 MHz RF產生器、或一27 MHz RF產生器、或一60 MHz RF產生器。在電漿室108中處理晶圓W期間,感測器124量測y MHz RF產生器之輸出126處的電壓反射係數Γmi的量。處理器134藉由網路纜線136接收電壓反射係數Γmi並將應用方程式(1)將電壓反射係數Γmi轉換為一阻抗值Zmi。FIG. 10 is a block diagram of an embodiment of a plasma system 1000, which is used to illustrate the application of complex optimal values RFoptimum and Coptimum based on complex load impedance values. The plasma system 1000 includes a y MHz RF generator. In some embodiments, the y MHz RF generator is a 400 kHz RF generator, or a 2 MHz RF generator, or a 27 MHz RF generator, or a 60 MHz RF generator. During the processing of the wafer W in the plasma chamber 108, the sensor 124 measures the voltage reflection coefficient Γmi at the output 126 of the y MHz RF generator. The processor 134 receives the voltage reflection coefficient Γmi through the network cable 136 and applies equation (1) to convert the voltage reflection coefficient Γmi into an impedance value Zmi.

處理器134在輸入142處應用阻抗值Zmi藉由模型系統102向前傳播阻抗值Zmi以在輸出144處產生負載阻抗值ZloadQ的方式係類似於自複數值Zmi(P1)n (圖1)產生複數負載阻抗值ZL(P1)n的方式。處理器134自記憶體137接取一表A如表I、或表II、或表III、或表IV與V、或表820等並自表A決定對應至值ZloadQ的值CoptimumQ與值RFoptimumQ。例如,當決定模型系統102之輸出144處之負載阻抗為Zload1時,處理器134自記憶體137接取表A並自表A決定對應至值Zload1的值Coptimum1與值RFoptimum1。又例如,當決定模型系統102之輸出144處之負載阻抗為Zload2時,處理器134自記憶體137接取表A並自表A決定對應至值Zload2的值Coptimum2與值RFoptimum2。又更例如,當阻抗匹配網路106與模型系統102的電容值被設定至Coptimum1且當模型系統102之輸出144處的負載阻抗被決定為R1且負載阻抗的電抗被決定為X1時,處理器134自表I決定值RFoptimum111 係對應至值R1與X1。又更例如,當決定模型系統102之輸出144處之負載阻抗的一電阻為R1且負載阻抗之電抗為X1時,處理器134自表IV決定值Coptimum11係對應至值R1與X1。又,在此實例中,處理器134自表V決定值RFoptimum11係應至值R1與X1。The processor 134 applies the impedance value Zmi at the input 142 and propagates the impedance value Zmi forward by the model system 102 to generate the load impedance value ZloadQ at the output 144 in a manner similar to the self-complex value Zmi(P1)n (Figure 1). The method of complex load impedance value ZL(P1)n. The processor 134 receives a table A such as table I, or table II, or table III, or tables IV and V, or table 820 from the memory 137 and determines the value CoptimumQ and the value RFoptimumQ corresponding to the value ZloadQ from the table A. For example, when determining that the load impedance at the output 144 of the model system 102 is Zload1, the processor 134 accesses the table A from the memory 137 and determines the value Coptimum1 and the value RFoptimum1 corresponding to the value Zload1 from the table A. For another example, when determining that the load impedance at the output 144 of the model system 102 is Zload2, the processor 134 accesses the table A from the memory 137 and determines the value Coptimum2 and the value RFoptimum2 corresponding to the value Zload2 from the table A. For another example, when the capacitance value of the impedance matching network 106 and the model system 102 is set to Coptimum1 and the load impedance at the output 144 of the model system 102 is determined to be R1 and the reactance of the load impedance is determined to be X1, the processor The value RFoptimum111 determined by 134 from Table I corresponds to the values R1 and X1. For another example, when a resistor that determines the load impedance at the output 144 of the model system 102 is R1 and the reactance of the load impedance is X1, the processor 134 determines from Table IV that the value Coptimum11 corresponds to the values R1 and X1. Also, in this example, the processor 134 determines from the table V that the value RFoptimum11 corresponds to the values R1 and X1.

又例如,處理器134應用多項式(1)至值ZloadQ以計算值CoptimumQ並應用多項式(2)至複數值ZloadQ與CoptimumQ以決定值RFoptimumQ。例如,處理器134應用多項式(1)至值Zload1以計算值Coptimum1並應用多項式(2)至複數值Zload1與Coptimum1以決定值RFoptimum1。又例如,處理器134 應用多項式(1)至值Zload2以計算值Coptimum2並應用多項式(2)至複數值Zload2與Coptimum2以決定值RFoptimum2。又便例如,處理器134自記憶體裝置137接取多項式RFoptimumQ = 函數3(Re(Zload), Im(Zload), CoptimumQ)並將多項式應用至值R1與X1及Coptimum1以產生值RFoptimum111。在此實例中,阻抗匹配網路106與模型系統102的電容值係被設定為Coptimum1。又例如,處理器134自記憶體裝置137接取方程式(3)並將方程式(3)應用至值R1與X1以決定值Coptimum1。又,在此實例中,處理器134自記憶體裝置137接取方程式(4)並將方程式(4)應用至值R1與X1以決定值RFoptimum1。又例如,處理器134判斷y MHz RF產生器所產生之RF訊號是否為多狀態訊號。例如,在提供予處理器134的一配方中指定 RF訊號需具有兩狀態S1與S2。在此實例中,阻抗匹配網路140與模型系統102的電容值係被設定為Coptimum1。處理器134針對值Coptimum1預先決定,為了最小化y MHz RF產生器所產生之RF訊號之狀態S1之電壓反射係數多項式Γ1與RF訊號之狀態S2之電壓反射係數多項式Γ2的組合,必須將最佳RF值RFoptimumQ提供予y MHz RF產生器。For another example, the processor 134 applies polynomial (1) to the value ZloadQ to calculate the value CoptimumQ and applies polynomial (2) to the complex values ZloadQ and CoptimumQ to determine the value RFoptimumQ. For example, the processor 134 applies polynomial (1) to the value Zload1 to calculate the value Coptimum1 and applies polynomial (2) to the complex values Zload1 and Coptimum1 to determine the value RFoptimum1. For another example, the processor 134 applies polynomial (1) to the value Zload2 to calculate the value Coptimum2 and applies polynomial (2) to the complex values Zload2 and Coptimum2 to determine the value RFoptimum2. For another example, the processor 134 receives the polynomial RFoptimumQ = function 3 (Re(Zload), Im(Zload), CoptimumQ) from the memory device 137 and applies the polynomial to the values R1 and X1 and Coptimum1 to generate the value RFoptimum111. In this example, the capacitance value of the impedance matching network 106 and the model system 102 is set to Coptimum1. For another example, the processor 134 receives the equation (3) from the memory device 137 and applies the equation (3) to the values R1 and X1 to determine the value Coptimum1. Also, in this example, the processor 134 receives the equation (4) from the memory device 137 and applies the equation (4) to the values R1 and X1 to determine the value RFoptimum1. For another example, the processor 134 determines whether the RF signal generated by the y MHz RF generator is a multi-state signal. For example, in a recipe provided to the processor 134, it is specified that the RF signal needs to have two states S1 and S2. In this example, the capacitance value of the impedance matching network 140 and the model system 102 is set to Coptimum1. The processor 134 pre-determines the value Coptimum1. In order to minimize the combination of the voltage reflection coefficient polynomial Γ1 of the state S1 of the RF signal generated by the y MHz RF generator and the voltage reflection coefficient polynomial Γ2 of the state S2 of the RF signal, the optimal The RF value RFoptimumQ is provided to the y MHz RF generator.

處理器134修改配方以將值RFoptimumQ包含於配方中並藉由網路纜線138將配方發送予y MHz RF產生器。在接收到值RFoptimumQ後,y MHz RF產生器的DSP控制RF電源122以產生具有頻率值RFoptimumQ或落在頻率值RFoptimumQ之預定範圍內的RF訊號。RF電源122在接收到指示欲產生該RF訊號的訊號後,產生該RF訊號並藉由RF纜線將該RF訊號發送至阻抗匹配網路106的輸入130,其中該RF訊號具有頻率值RFoptimumQ或落在頻率值RFoptimumQ的預定範圍內。The processor 134 modifies the formula to include the value RFoptimumQ in the formula and sends the formula to the y MHz RF generator via the network cable 138. After receiving the value RFoptimumQ, the DSP of the y MHz RF generator controls the RF power supply 122 to generate an RF signal with a frequency value RFoptimumQ or within a predetermined range of the frequency value RFoptimumQ. After the RF power supply 122 receives the signal indicating that the RF signal is to be generated, it generates the RF signal and sends the RF signal to the input 130 of the impedance matching network 106 through the RF cable, wherein the RF signal has a frequency value of RFoptimumQ or It falls within the predetermined range of the frequency value RFoptimumQ.

又,在某些欲改變阻抗匹配網路106之組合可變電容值的實施例中,處理器134將代表值CoptimumQ的一訊號發送至驅動組件112的驅動裝置以產生一或多個電流訊號。例如,當應用表I、II、或III、或多項式RFoptimumQ = 函數3(Re(Zload), Im(Zload), CoptimumQ)時,阻抗匹配網路106與模型系統102係被設定為值CoptimumQ,RFoptimumQ係自值CoptimumQ所決定所以毋需達到值CoptimumQ。在此實例中,值ZloadQ係於模型系統102受到初始化102以具有最佳值CoptimumQ時所決定。又例如,當應用表IV與V、或方程式(3)與(4)時,阻抗匹配網路106與模型系統102係未被設定為值CoptimumQ且係被設定為另一組合可變電容值。可調整組合可變電容值以達到值CoptimumQ。Furthermore, in some embodiments where the combined variable capacitance value of the impedance matching network 106 is to be changed, the processor 134 sends a signal representing the value CoptimumQ to the driving device of the driving component 112 to generate one or more current signals. For example, when the application table I, II, or III, or the polynomial RFoptimumQ = function 3 (Re(Zload), Im(Zload), CoptimumQ), the impedance matching network 106 and the model system 102 are set to the values CoptimumQ, RFoptimumQ It is determined by the value CoptimumQ, so there is no need to reach the value CoptimumQ. In this example, the value ZloadQ is determined when the model system 102 is initialized 102 to have the optimal value CoptimumQ. For another example, when applying Tables IV and V, or equations (3) and (4), the impedance matching network 106 and the model system 102 are not set to the value CoptimumQ and are set to another combined variable capacitance value. The combined variable capacitor value can be adjusted to reach the value CoptimumQ.

驅動裝置基於電容值CoptimumQ產生一或多個電流訊號並將其發送至驅動組件112之對應一或多個馬達的對應一或多個定子。與該對應一或多個定子電場接觸的驅動組件112的一或多個轉子旋轉而移動連接機構114以將阻抗匹配網路106之分支電路的組合可變電容值改變至CoptimumQ。具有組合可變電容值CoptimumQ之阻抗匹配網路106的分支電路藉由輸入128與RF纜線130自輸出126接收具有射頻值RFoptimumQ的RF訊號,並使連接至阻抗匹配網路106之負載的阻抗與連接至阻抗匹配網路106之源的阻抗匹配以產生經修改的訊號。源的實例包含y MHz RF產生器與RF纜線130。經修改的訊號係自阻抗匹配網路106之分支電路的輸出140藉由RF傳輸線132提供予夾頭118。當經修改的訊號與一或多種製程氣體一起被提供予夾頭118時,電漿被產生或維持於夾頭118與上電極116之間的間隙中以處理晶圓W。The driving device generates one or more current signals based on the capacitance value CoptimumQ and sends them to the corresponding one or more stators of the driving component 112 corresponding to one or more motors. One or more rotors of the driving component 112 that are in contact with the corresponding one or more stator electric fields rotate to move the connecting mechanism 114 to change the combined variable capacitance value of the branch circuit of the impedance matching network 106 to CoptimumQ. The branch circuit of the impedance matching network 106 with the combined variable capacitance value CoptimumQ receives the RF signal with the radio frequency value RFoptimumQ from the output 126 through the input 128 and the RF cable 130, and adjusts the impedance of the load connected to the impedance matching network 106 It is matched with the impedance of the source connected to the impedance matching network 106 to generate a modified signal. Examples of sources include a y MHz RF generator and RF cable 130. The modified signal is provided from the output 140 of the branch circuit of the impedance matching network 106 through the RF transmission line 132 to the chuck 118. When the modified signal and one or more process gases are provided to the chuck 118, plasma is generated or maintained in the gap between the chuck 118 and the upper electrode 116 to process the wafer W.

藉著使用表A如表I、或表II、或表III、或表IV與V、或表820等、或多項式A如多項式(2)、或多項式RFoptimumQ = 函數3(Re(Zload), Im(Zload), CoptimumQ)、或方程式(3)與(4)等產生複數值RFoptimumQ與CoptimumQ能增加用以處理晶圓W之電漿系統1000的操作速度。例如,在感測器124量測電壓反射係數Γmi之後,毋需使用模型系統102來決定複數值RFoptimumQ與CoptimumQ。相對地,在感測器124量測電壓反射係數Γmi之前,複數值RFoptimumQ與CoptimumQ便已預先儲存在表A中及/或已產生多項式A。一旦感測器124量測電壓反射係數Γmi後,處理器134便可自表A接取複數值RFoptimumQ 與CoptimumQ及/或處理器134便可應用多項式A計算複數值RFoptimumQ 與CoptimumQ。在量測電壓反射係數Γmi 毋需使用模型系統102計算複數值RFoptimumQ與CoptimumQ可節省處理晶圓W期間的時間。又,將複數值RFoptimumQ與CoptimumQ應用至電漿系統1000能減少反射到y MHz RF產生器的功率以改善處理晶圓W的效率。By using table A such as table I, or table II, or table III, or table IV and V, or table 820, etc., or polynomial A such as polynomial (2), or polynomial RFoptimumQ = function 3(Re(Zload), Im (Zload), CoptimumQ), or equations (3) and (4) to generate complex values RFoptimumQ and CoptimumQ can increase the operating speed of the plasma system 1000 for processing wafer W. For example, after the sensor 124 measures the voltage reflection coefficient Γmi, there is no need to use the model system 102 to determine the complex values RFoptimumQ and CoptimumQ. In contrast, before the sensor 124 measures the voltage reflection coefficient Γmi, the complex values RFoptimumQ and CoptimumQ are pre-stored in Table A and/or polynomial A has been generated. Once the sensor 124 measures the voltage reflection coefficient Γmi, the processor 134 can take the complex values RFoptimumQ and CoptimumQ from Table A and/or the processor 134 can apply the polynomial A to calculate the complex values RFoptimumQ and CoptimumQ. When measuring the voltage reflection coefficient Γmi, it is not necessary to use the model system 102 to calculate the complex values RFoptimumQ and CoptimumQ, which can save time during the processing of the wafer W. In addition, applying the complex values RFoptimumQ and CoptimumQ to the plasma system 1000 can reduce the power reflected to the y MHz RF generator to improve the efficiency of processing the wafer W.

在某些實施例中,複數值RFoptimumQ或複數值CoptimumQ中的任何者皆落在物理可接取之空間外。例如,60 MHz RF產生器的頻率調變範圍係自57.00 MHz至63.00 MHz,自模型系統102所決定之值RFoptimum1係低於57 MHz或高於63 MHz。在此類情況中,就縮放距離(scaled distance)來看最佳操作條件係位於最靠近界外解如RFoptimumQ、CoptimumQ等之限制空間的邊界上。縮放距離的實例 = [(電容器位置) – (CoptimumQ)]^2 + k^2 * [(RF頻率) – (RFoptimumQ)]^2,其中k為藉由輸入裝置提供予處理器134作為輸入的一預定值。In some embodiments, any of the complex-valued RFoptimumQ or the complex-valued CoptimumQ falls outside the physically accessible space. For example, the frequency modulation range of a 60 MHz RF generator is from 57.00 MHz to 63.00 MHz, and the value RFoptimum1 determined by the model system 102 is lower than 57 MHz or higher than 63 MHz. In such cases, in terms of scaled distance, the optimal operating conditions are located on the boundary of the restricted space closest to the out-of-bounds solutions such as RFoptimumQ, CoptimumQ, etc. Example of scaling distance = [(capacitor position) – (CoptimumQ)]^2 + k^2 * [(RF frequency) – (RFoptimumQ)]^2, where k is provided by the input device to the processor 134 as input A predetermined value.

在各種實施例中,處理器134根據預先指派的權重加權複數量測到的電壓反射係數Γmi的每一者。處理器134應用至複數電壓反射係數Γmi的複數權重係由處理器134藉由輸入裝置接收輸入且係基於工程知識及/或製程條件所決定。可將加權之複數電壓反射係數wΓmin應用至模型系統102取代應用複數電壓反射係數Γmi以決定複數負載阻抗ZloadQ,其中每一w為預先指派的權重。In various embodiments, the processor 134 weights each of the complex number of measured voltage reflection coefficients Γmi according to a pre-assigned weight. The complex weight applied by the processor 134 to the complex voltage reflection coefficient Γmi is determined by the processor 134 through the input device receiving input and is determined based on engineering knowledge and/or process conditions. The weighted complex voltage reflection coefficient wΓmin can be applied to the model system 102 instead of applying the complex voltage reflection coefficient Γmi to determine the complex load impedance ZloadQ, where each w is a pre-assigned weight.

圖11為圖1100的一實施例,其係用以例示當y MHz RF產生器為一60 MHz RF產生器時輸入128處之阻抗匹配網路106之輸入阻抗的變異。伽傌的實部與虛部係自輸入阻抗所計算並顯示出因x MHz RF產生器所產生之RF訊號的效應而隨著時間變化。圖1100在x軸上繪示伽傌的實部並在y軸上繪示伽傌的虛部。圖1100中顯示伽傌的實部與虛部形成一圖樣。如圖1100所示,該圖樣的一完整週期需要x MHz RF產生器的一期間或約2.5微秒。在某些實施例中,該完整週期需要大於或小於2.5微秒如2微秒、3微秒、介於2.5至4微秒之間的一範圍、介於1至2.5微秒之間的一範圍等。FIG. 11 is an embodiment of FIG. 1100, which is used to illustrate the variation of the input impedance of the impedance matching network 106 at the input 128 when the y MHz RF generator is a 60 MHz RF generator. The real and imaginary parts of the galaxy are calculated from the input impedance and show changes over time due to the effect of the RF signal generated by the x MHz RF generator. The graph 1100 shows the real part of Gara on the x-axis and the imaginary part of Gara on the y-axis. The graph 1100 shows that the real part and the imaginary part of Gara form a pattern. As shown in Figure 1100, a complete cycle of the pattern requires a period of x MHz RF generator or about 2.5 microseconds. In some embodiments, the complete period needs to be greater than or less than 2.5 microseconds, such as 2 microseconds, 3 microseconds, a range between 2.5 to 4 microseconds, and a range between 1 to 2.5 microseconds. Scope etc.

圖12為圖1200之一實施例,其係用以例示當y MHz RF產生器為一60 MHz RF產生器時反射到y MHz RF產生器之一電壓的傅立葉轉換,其係表示為y MHz RF產生器所供給之前饋功率的分數。圖1200繪示電壓的平方對y MHz RF產生器所產生之RF訊號之頻率。電壓的平方為反射至y MHz RF產生器之功率的一代表量。在某些實施例中,在y MHz RF訊號所產生之RF訊號之基礎頻率處的反射功率會被文中所述的系統與方法過濾。圖1100之傅立葉頻譜中位於基礎頻率處的小反射功率峰係顯示於圖1200中。又,有位於60 MHz ± 400 kHz等之互調頻率處的大反射功率峰。文中所述的系統與方法應用模型系統102減少在各種頻率處反射到y MHz RF產生器的功率,此些頻率例如是y MHz ± x MHz的互調頻率、60 MHz ± 400 kHz的互調頻率等。文中所述的系統與方法找到最佳組合可變電容值與複數射頻值以最小化不只是在基礎頻率處亦是在其他頻率如y MHz ± x MHz之互調頻率處的所有反射功率。Fig. 12 is an embodiment of Fig. 1200, which is used to illustrate the Fourier transformation of a voltage reflected to the y MHz RF generator when the y MHz RF generator is a 60 MHz RF generator, which is expressed as y MHz RF The fraction of the forward feed power supplied by the generator. Figure 1200 shows the square of the voltage versus the frequency of the RF signal generated by the y MHz RF generator. The square of the voltage is a representative quantity of the power reflected to the y MHz RF generator. In some embodiments, the reflected power at the fundamental frequency of the RF signal generated by the y MHz RF signal is filtered by the system and method described in the article. The small reflected power peak at the fundamental frequency in the Fourier spectrum of Fig. 1100 is shown in Fig. 1200. In addition, there are large reflected power peaks at intermodulation frequencies such as 60 MHz ± 400 kHz. The system and method described in the article apply the model system 102 to reduce the power reflected to the y MHz RF generator at various frequencies, such as y MHz ± x MHz intermodulation frequency, 60 MHz ± 400 kHz intermodulation frequency Wait. The system and method described in the article find the best combination of variable capacitance value and complex radio frequency value to minimize all reflected power not only at the fundamental frequency but also at other frequencies such as the intermodulation frequency of y MHz ± x MHz.

為了減少反射功率,在某些實施例中,以一速率收集y MHz RF產生器之前饋與反射波形數據以擷取x MHz RF產生器之一期間內的變化。例如,以每秒取至少十億個樣本的速率在至少2.5微秒內進行此類數據收集。接著以複數區段如0.1 微秒的範圍分析收集到的數據,將x MHz期間的2.5微秒分解為25個分離的阻抗量測值。圖11中顯示分析波形之複數0.1微秒區段的結果,其中複數區段之間的一時間差為0.03微秒因此不同點之間有些許程度的重疊。接著,計算功率反射係數如|Γ|^2的一平均以得到在x MHz之一期間內反射到y MHz RF產生器的一平均功率。在模型系統102中以處理器134變化組合可變電容值與RF頻率並以處理器134將針對每25個阻抗量測值功率反射係數如何改變的情況記錄至記憶體裝置137中。接著,處理器134決定能最小化整體如平均功率反射係數之阻抗匹配網路106之組合可變電容值之電容器位置的數值及/或y MHz RF產生器的RF頻率。在各種實施例中,總計算時間將大於2.5微秒但能達到時間規模約數毫秒的功率輸送改善。藉著使用模型系統102,能將y MHz RF產生器調變至一RF頻率以在x MHz RF頻率的一期間內平均達到功率反射係數 |Γ|^2的最小平均值。針對x MHz RF產生器所產生之RF訊號的一期間使用相同之組合可變電容值的電容器值與RF頻率。In order to reduce the reflected power, in some embodiments, the front-feed and reflected waveform data of the y MHz RF generator are collected at a rate to capture the changes during one of the x MHz RF generators. For example, such data collection is performed in at least 2.5 microseconds at a rate of at least one billion samples per second. Then analyze the collected data in the range of a complex number such as 0.1 microseconds, and decompose the 2.5 microseconds during x MHz into 25 separate impedance measurement values. Figure 11 shows the result of analyzing the multiple 0.1 microsecond segments of the waveform, where a time difference between the multiple segments is 0.03 microseconds, so there is a slight overlap between different points. Next, calculate an average of the power reflection coefficient such as |Γ|^2 to obtain an average power reflected to the y MHz RF generator during a period of x MHz. In the model system 102, the processor 134 changes the combined variable capacitance value and the RF frequency, and the processor 134 records how the power reflection coefficient changes for every 25 impedance measurement values to the memory device 137. Next, the processor 134 determines the value of the capacitor position and/or the RF frequency of the y MHz RF generator that can minimize the overall variable capacitance value of the impedance matching network 106 such as the average power reflection coefficient. In various embodiments, the total calculation time will be greater than 2.5 microseconds but can achieve a power delivery improvement on a time scale of about a few milliseconds. By using the model system 102, the y MHz RF generator can be modulated to an RF frequency so as to reach the minimum average value of the power reflection coefficient |Γ|^2 on average during a period of x MHz RF frequency. For a period of the RF signal generated by the x MHz RF generator, the same combined variable capacitance capacitor value and RF frequency are used.

在某些實施例中,在x MHz RF產生器所產生之RF訊號的一單一RF 週期內調變y MHz RF產生器所產生之RF訊號的頻率。例如,將x MHz RF產生器所產生之RF訊號的一RF週期如 2.5微秒期間區段化為五個皆為0.5微秒的區段。在複數區段的每一區段內應用一不同的y MHz RF頻率且複數頻率的每一者皆為利用模型系統102針對模型系統102之組合可變電容值最佳值所決定的一最佳頻率。又例如,將x MHz RF產生器所產生之RF訊號的一週期的 2.5微秒期間區段化為四個皆為0.625微秒的區段,在四個區段的每一區段期間決定y MHz RF產生器所產生之RF訊號的一不同頻率。自模型系統102所決定的複數頻率能最小化每一區段期間之y MHz RF產生器之輸出126處或輸入128 (圖1)處的一反射功率係數。又更例如,藉由某些簡單函數如正弦波、餘弦波等調變在x MHz 處之y MHz RF產生器所產生之RF訊號的RF頻率。處理器134獲得在y MHz RF產生器之輸出126處所獲得的25個初始量測值以計算頻率調變的振幅與相位,減少週期平均的功率反射係數。在數個實施例中,以微秒、次微秒、或毫秒的時間規模調整y MHz RF產生器的頻率。In some embodiments, the frequency of the RF signal generated by the y MHz RF generator is modulated within a single RF cycle of the RF signal generated by the x MHz RF generator. For example, one RF period of the RF signal generated by the x MHz RF generator, such as a 2.5 microsecond period, is segmented into five segments each of 0.5 microseconds. A different y MHz RF frequency is applied in each of the complex sections, and each of the complex frequencies is an optimal value determined by the model system 102 with respect to the optimal value of the combined variable capacitance value of the model system 102 frequency. For another example, the 2.5 microsecond period of one cycle of the RF signal generated by the x MHz RF generator is segmented into four segments each of 0.625 microseconds, and y is determined during each of the four segments. A different frequency of the RF signal generated by the MHz RF generator. The complex frequency determined from the model system 102 can minimize a reflected power coefficient at the output 126 or input 128 (FIG. 1) of the y MHz RF generator during each segment. For another example, the RF frequency of the RF signal generated by the y MHz RF generator at x MHz is modulated by some simple functions such as sine wave, cosine wave, etc. The processor 134 obtains the 25 initial measurement values obtained at the output 126 of the y MHz RF generator to calculate the amplitude and phase of the frequency modulation, and reduce the power reflection coefficient of the period average. In several embodiments, the frequency of the y MHz RF generator is adjusted in microseconds, sub-microseconds, or milliseconds.

在某些實施例中,x MHz RF產生器與y MHz RF產生器所產生的複數RF訊號具有複數狀態。例如,x MHz RF產生器具有操作狀態S1與S2且y MHz RF產生器亦同。一RF產生器在狀態S1期間所產生之一RF訊號的功率位準係大於該RF產生器在狀態S2期間所產生之一RF訊號的功率位準。例如,一RF產生器在狀態S1所產生之一RF訊號之複數功率量的包脈線比狀態S2期間之RF訊號之複數功率量的包脈線具有更高的功率位準。In some embodiments, the complex RF signals generated by the x MHz RF generator and the y MHz RF generator have complex states. For example, the x MHz RF generator has operating states S1 and S2 and the y MHz RF generator is the same. The power level of an RF signal generated by an RF generator during the state S1 is greater than the power level of an RF signal generated by the RF generator during the state S2. For example, an RF generator in the state S1 generates a complex power envelope of an RF signal that has a higher power level than a complex power envelope of the RF signal during the state S2.

在各種實施例中,x MHz RF產生器與y MHz RF產生器所產生的複數RF訊號為連續的。例如,x與y MHz RF產生器每一者皆具有一單一狀態。In various embodiments, the complex RF signals generated by the x MHz RF generator and the y MHz RF generator are continuous. For example, each of the x and y MHz RF generators has a single state.

應瞭解,在某些上述實施例的某些者中,一RF訊號被供給至夾頭118的下電極且上電極116係接地。在各種實施例中,一RF訊號可被供給至上電極116且夾頭118的下電極係接地。It should be understood that in some of the foregoing embodiments, an RF signal is supplied to the lower electrode of the chuck 118 and the upper electrode 116 is grounded. In various embodiments, an RF signal can be supplied to the upper electrode 116 and the lower electrode of the chuck 118 is grounded.

文中所述之實施例可利用各種電腦系統組態實施,電腦系統包含手持硬體單元、微處理器系統、微處理器系或可程式化的消費電子裝置、微電腦、主機電腦等。文中所述的實施例亦可以分散計算環境實施,在分散計算環境中任務係由經由電腦網路鏈結之複數遠端處理硬體單元進行。The embodiments described in the text can be implemented using various computer system configurations. The computer system includes a handheld hardware unit, a microprocessor system, a microprocessor system or programmable consumer electronic devices, a microcomputer, a host computer, etc. The embodiments described in the article can also be implemented in a distributed computing environment. In the distributed computing environment, tasks are performed by a plurality of remote processing hardware units linked via a computer network.

在某些實施例中,控制器為系統的一部分,系統可為上述實例的一部分。此類系統可包含半導體製程設備,其包含一製程工具或複數製程工具、一製程室或複數製程室、一製程平臺或複數製程平臺、及/或特定的製程元件(晶圓平臺、氣體流動系統等)。此系統係與一些電子裝置整合,此些電子裝置係用以在半導體晶圓或基板處理之前、期間及之後控制系統的操作。此些電子裝置係稱為「控制器」,其可控制系統的各種元件或子部件。取決於製程需求及/或系統類型,控制器可被程式化以控制文中所揭露的任何製程包含輸送製程氣體、溫度設定(如加熱及/或冷卻)、壓力設定、真空設定、功率設定、RF產生器設定、RF匹配電路設定、頻率設定、流率設定、流體輸送設定、位置與操作設定、晶圓傳輸進入或離開工具與連接至系統或與系統交界的其他傳輸設備及/或裝載互鎖機構。In some embodiments, the controller is part of the system, and the system may be part of the above examples. Such systems may include semiconductor process equipment, which includes a process tool or a plurality of process tools, a process chamber or a plurality of process chambers, a process platform or a plurality of process platforms, and/or specific process components (wafer platform, gas flow system) Wait). This system is integrated with some electronic devices that are used to control the operation of the system before, during and after semiconductor wafer or substrate processing. These electronic devices are called "controllers", which can control various components or sub-components of the system. Depending on the process requirements and/or system type, the controller can be programmed to control any process disclosed in the article, including process gas delivery, temperature setting (such as heating and/or cooling), pressure setting, vacuum setting, power setting, RF Generator setting, RF matching circuit setting, frequency setting, flow rate setting, fluid delivery setting, position and operation setting, wafer transfer entering or leaving the tool and other transfer equipment and/or load interlocking connected to or interfacing with the system mechanism.

概括地說,在各種實施例中,控制器可被定義為具有各種積體電路、邏輯、記憶體及/或軟體的電子裝置,其可接收指令、發佈指令、控制操作、致能清潔操作、致能終點量測等。積體電路可包含儲存了程式指令之具有韌體形式的晶片、數位訊號處理器(DSP)、被定義為ASIC、PLD的晶片、一或多個微處理器、或能執行程式指令(如軟體)的微控制器。程式指令可為與控制器通訊之具有各種獨立設定(或程式檔案)形式的指令,其定義為了在半導體晶圓上或針對半導體晶圓進行製程所用的操作參數。在某些實施例中,操作參數為製程工程師為了完成一或多膜層、材料、金屬、氧化物、矽、二氧化矽、表面、電路及/或晶圓之晶粒之製造期間的一或多個製程步驟所定義之配方的一部分。In summary, in various embodiments, the controller can be defined as an electronic device with various integrated circuits, logic, memory and/or software, which can receive instructions, issue instructions, control operations, enable cleaning operations, Enable endpoint measurement, etc. An integrated circuit may include a chip in the form of firmware that stores program instructions, a digital signal processor (DSP), a chip defined as an ASIC, PLD, one or more microprocessors, or the ability to execute program instructions (such as software ) Microcontroller. The program commands can be commands in the form of various independent settings (or program files) that communicate with the controller, and are defined as operating parameters used for processing on or against semiconductor wafers. In some embodiments, the operating parameters are one or more during the manufacturing process of one or more films, materials, metals, oxides, silicon, silicon dioxide, surfaces, circuits, and/or wafers by the process engineer. Part of a recipe defined by multiple process steps.

在某些實施例中控制器為整合至系統、耦合至系統、藉由網路連接至系統、或其組合的電腦的一部分或控制器耦合至電腦。例如,控制器可位於「雲端」中或工廠主機電腦系統的全部或部分中,這允許使用者遠端接取晶圓製程。控制器可致能遠端接取系統以監控製造操作的目前進展、檢視過去製造操作的歷程、自複數製造操作檢視驅勢或效能度量、改變現有製程的參數、設定製程步驟以符合現有製程、或開始一新的製程。In some embodiments, the controller is a part of a computer integrated into the system, coupled to the system, connected to the system via a network, or a combination thereof, or the controller is coupled to the computer. For example, the controller can be located in the "cloud" or in all or part of the factory host computer system, which allows users to remotely access the wafer process. The controller can enable remote access to the system to monitor the current progress of manufacturing operations, view the history of past manufacturing operations, view driving force or performance metrics from multiple manufacturing operations, change existing process parameters, set process steps to conform to existing processes, Or start a new process.

在某些實例中,遠端電腦(或伺服器)可經由電腦網路對系統提供製程配方,網路包含區域網路或網際網路。遠端電腦可包含使用者介面,使用者介面讓使用者能進入或程式化參數及/或設定,然後自遠端電腦與系統通訊。在某些實例中,控制器接收具有處理晶圓用之設定之形式的指令。應瞭解,設定係特別針對欲在晶圓上施行之製程的類型及控制器用以交界或控制之工具的類型。因此如上所述,可分散控制器如藉著包含一或多個藉由網路互連並朝向共同目的如文中所述之製程工作的離散控制器。為了此類目的的分散控制器的實例為製程室上的一或多個積體電路,其係與一或多個位於遠端(例如位於平臺位準或遠端電腦的一部分)的積體電路通訊而共同控制製程室上的製程。In some instances, the remote computer (or server) can provide process recipes to the system via a computer network, and the network includes a local area network or the Internet. The remote computer may include a user interface, which allows the user to enter or program parameters and/or settings, and then communicate with the system from the remote computer. In some instances, the controller receives commands in the form of settings for processing wafers. It should be understood that the setting is specifically for the type of process to be performed on the wafer and the type of tool that the controller uses to interface or control. Therefore, as described above, a decentralized controller may include one or more discrete controllers that are interconnected by a network and work toward a common purpose as described in the process. An example of a distributed controller for such purposes is one or more integrated circuits on the process room, which are connected with one or more integrated circuits located remotely (for example, at the platform level or part of a remote computer) Communication and joint control of the process in the process room.

不受限地,在各種實施例中,系統可包含電漿蝕刻室、沉積室、旋轉沖洗室、金屬鍍室、清潔室、邊緣蝕刻室、物理氣相沉積(PVD)室、化學氣相沉積(CVD)室、原子層沉積(ALD)室、原子層蝕刻(ALE)室、離子植入室、軌道室、及和半導體晶圓之製造相關或用於製造的任何其他半導體製程室。Without limitation, in various embodiments, the system may include a plasma etching chamber, a deposition chamber, a rotating rinse chamber, a metal plating chamber, a clean room, an edge etching chamber, a physical vapor deposition (PVD) chamber, and a chemical vapor deposition chamber. (CVD) chamber, atomic layer deposition (ALD) chamber, atomic layer etching (ALE) chamber, ion implantation chamber, orbital chamber, and any other semiconductor processing chamber related to or used for the manufacture of semiconductor wafers.

更應注意,雖然上述操作係參考平行板電漿室如電容耦合電漿室等,但在某些實施例中,上述的操作可應用至其他類型的電漿室如包含感應耦合電漿(ICP)反應器、變壓器耦合電漿(TCP)反應器、導體工具、介電工具的電漿室、包含電子迴旋共振(ECR)反應器的電漿室等。例如,x兆赫射頻產生器、y兆赫射頻產生器與z 兆赫射頻產生器係耦合至ICP電漿室內的電感。電感形狀的實例包含螺管、圓頂形線圈、平板形線圈等。It should be noted that although the above operation refers to a parallel plate plasma chamber such as a capacitively coupled plasma chamber, etc., in some embodiments, the above operation can be applied to other types of plasma chambers such as inductively coupled plasma (ICP ) Reactor, transformer coupled plasma (TCP) reactor, conductor tool, plasma chamber of dielectric tool, plasma chamber containing electron cyclotron resonance (ECR) reactor, etc. For example, the x MHz radio frequency generator, the y MHz radio frequency generator, and the z MHz radio frequency generator are coupled to the inductance in the ICP plasma chamber. Examples of inductor shapes include solenoids, dome-shaped coils, plate-shaped coils, and the like.

如上所述,取決於工具所欲進行的製程操作,控制器可與下列的一或多者通訊交流:其他工具的電路或模組、其他工具的元件、叢集工具、其他工具的界面、相鄰工具、鄰近工具、位於工廠內的工具、主電腦、另一控制器、或半導體製造工廠中用以將晶圓容器載入與載出工具位置及/或裝載接口的材料運輸用工具。As mentioned above, depending on the process operation that the tool intends to perform, the controller can communicate with one or more of the following: circuits or modules of other tools, components of other tools, cluster tools, interfaces of other tools, adjacent Tool, proximity tool, tool located in the factory, host computer, another controller, or material transportation tool used to load and unload the wafer container into and out of the tool position and/or loading interface in the semiconductor manufacturing factory.

考慮到上述實施例,應瞭解,某些實施例可進行涉及儲存在電腦系統中之數據的各種電腦施行操作。此些電腦施行操作需要操控物理數量。Considering the above-mentioned embodiments, it should be understood that certain embodiments can perform various computer-implemented operations involving data stored in a computer system. These computers need to manipulate physical quantities to perform operations.

某些實施例亦關於用以執行此些操作的硬體單元或設備。可針對專門用途的電腦專門建構設備。當一電腦被定義為專門用途之電腦時,此電腦除了能夠針對專門用途運行之外,亦可進行其他製程、程式執行或其他非屬專門用途的子程式。Some embodiments also relate to hardware units or devices used to perform such operations. The equipment can be specially constructed for special purpose computers. When a computer is defined as a computer for special purposes, in addition to being able to operate for special purposes, this computer can also perform other processes, program executions, or other subprograms that are not for special purposes.

在某些實施例中,操作可由選擇性活化的電腦執行或者可由儲存在電腦記憶體、或自電腦網路所獲得的一或多個電腦程式所配置。當數據係自電腦網路獲得時,該數據可由電腦網路上的其他電腦如電端計算資源所處理。In some embodiments, operations can be performed by a selectively activated computer or can be configured by one or more computer programs stored in computer memory or obtained from a computer network. When the data is obtained from a computer network, the data can be processed by other computers on the computer network, such as electrical terminal computing resources.

亦可將文中所述之一或多個實施例製作成非暫態電腦可讀媒體上的電腦可讀碼。非暫態電腦可讀媒體可以是可儲存數據且後續可被電腦系統讀取的任何數據儲存硬體單元如記憶體裝置。非暫態電腦可讀媒體的實例包含硬碟、網路附加儲存(NAS)、ROM、RAM、光碟-ROM(CD-ROM)、可錄CD(CD-R)、可重覆寫入之CD(CD-RW)、磁帶及其他光學式及非光學式儲存硬體單元。在某些實施例中,非暫態電腦可讀媒體可包含分散於網路耦合電腦系統的電腦可讀實質媒體,因此電腦可讀碼係以分散方式儲存及執行。One or more of the embodiments described in the text can also be made into a computer-readable code on a non-transitory computer-readable medium. The non-transitory computer-readable medium can be any data storage hardware unit, such as a memory device, that can store data and can be read by a computer system later. Examples of non-transitory computer-readable media include hard disks, network attached storage (NAS), ROM, RAM, compact disc-ROM (CD-ROM), recordable CD (CD-R), and rewritable CD (CD-RW), magnetic tape and other optical and non-optical storage hardware units. In some embodiments, the non-transitory computer-readable medium may include a computer-readable physical medium dispersed in a network-coupled computer system, so the computer-readable code is stored and executed in a distributed manner.

雖然上述某些方法操作係以特定順序說明之,但應瞭解,在各種實施例中,在方法操作之間可進行其他閒雜步驟或者可調整方法操作使其發生的時間略有不同,或者可將方法操作分配至允許方法操作以各種間隔進行的系統中,或者可以不同於文中所示的順序來進行方法操作。Although some of the above method operations are described in a specific order, it should be understood that, in various embodiments, other steps may be performed between method operations or the method operations may be adjusted to slightly differ in time of occurrence, or may be changed Method operations are distributed to systems that allow method operations to be performed at various intervals, or method operations may be performed in a different order than shown in the text.

更應注意,在不脫離本文所述之各種實施例的範圍的情況下,在一實施例中,來自任何上述實施例的一或多個特徵可與任何其他實施例的一或多個徵特結合。It should also be noted that without departing from the scope of the various embodiments described herein, in one embodiment, one or more features from any of the above embodiments may be combined with one or more features of any other embodiment. Combine.

為了讓熟知此項技藝者能清楚瞭解本發明,已詳細說明了前面的實施例,應明白,在隨附之申請專利範圍的範疇內可進行某些變化與修改。因此,此些實施例應被視為是說明性而非限制性的,且實施例並不限於文中所述的細節,在隨附申請範圍的範疇與等效物內可修改此些實施例。In order to allow those skilled in the art to understand the present invention clearly, the foregoing embodiments have been described in detail, and it should be understood that certain changes and modifications can be made within the scope of the attached patent application. Therefore, these embodiments should be regarded as illustrative rather than restrictive, and the embodiments are not limited to the details described in the text, and these embodiments can be modified within the scope and equivalents of the attached application.

100‧‧‧電漿系統102‧‧‧模型系統104‧‧‧RF產生器106‧‧‧阻抗匹配網路108‧‧‧電漿室110‧‧‧主機電腦系統112‧‧‧驅動組件114‧‧‧連接機構116‧‧‧上電極118‧‧‧夾頭120‧‧‧上表面121‧‧‧RF電源122‧‧‧RF電源123‧‧‧輸出124‧‧‧感測器125‧‧‧輸入126‧‧‧輸出127‧‧‧RF纜線128‧‧‧輸入130‧‧‧RF纜線132‧‧‧RF傳輸線134‧‧‧處理器136‧‧‧網路纜線137‧‧‧記憶體裝置138‧‧‧網路纜線140‧‧‧輸出142‧‧‧輸入144‧‧‧輸出602‧‧‧圖604‧‧‧圖606‧‧‧RF訊號608‧‧‧RF訊號700‧‧‧圖720‧‧‧表800‧‧‧圖820‧‧‧表1000‧‧‧電漿系統1100‧‧‧圖1200‧‧‧圖100‧‧‧Plasma system 102‧‧‧Model system 104‧‧‧RF generator 106‧‧‧Impedance matching network 108‧‧‧Plasma chamber 110‧‧‧Host computer system 112‧‧‧Drive components 114‧ ‧‧Connecting mechanism 116‧‧‧Upper electrode 118‧‧‧Clamp 120‧‧‧Upper surface 121‧‧‧RF power supply 122‧‧‧RF power supply 123‧‧‧output 124‧‧‧sensor 125‧‧‧ Input 126‧‧‧Output 127‧‧‧RF cable 128‧‧‧Input 130‧‧‧RF cable 132‧‧‧RF transmission cable 134‧‧‧Processor 136‧‧‧Network cable 137‧‧‧Memory Body device 138‧‧‧Network cable 140‧‧‧Output 142‧‧‧Input 144‧‧‧Output 602‧‧‧Figure 604‧‧‧Figure 606‧‧‧RF signal 608‧‧‧RF signal 700‧‧ ‧Picture 720‧‧‧Table 800‧‧‧Picture 820‧‧‧Table 1000‧‧‧Plasma system 1100‧‧‧Picture 1200‧‧‧Picture

參考附圖之下列說明可瞭解本發明實施例。The embodiments of the present invention can be understood with reference to the following description of the drawings.

圖1為一電漿系統之一實施例之圖,其例示針對x兆赫(MHz)RF產生器所產生之一射頻(RF)訊號的一期間P1產生複數負載阻抗ZL(P1)n。FIG. 1 is a diagram of an embodiment of a plasma system, which illustrates the generation of complex load impedance ZL(P1)n during a period P1 of a radio frequency (RF) signal generated by an x megahertz (MHz) RF generator.

圖2為一模型系統之一實施例的圖,此模型系統係受到初始化以具有複數射頻值RF1(P1)o與一可變電容值C1以決定複數射頻值RF(P1)n。2 is a diagram of an embodiment of a model system which is initialized to have a complex radio frequency value RF1(P1)o and a variable capacitance value C1 to determine the complex radio frequency value RF(P1)n.

圖3為一電漿系統之一實施例的圖,其係用以例示利用模型系統針對x MHz RF產生器所產生之一RF訊號的一期間P(1+m)產生複數負載阻抗ZL(P(1+m))n。Figure 3 is a diagram of an embodiment of a plasma system, which is used to illustrate the use of a model system to generate a complex load impedance ZL(P) during a period P(1+m) of an RF signal generated by an x MHz RF generator (1+m))n.

圖4為一模型系統之一實施例的圖,此模型系統係受到初始化以具有複數射頻值RF(P1)n與一可變電容值Cstep1以決定複數射頻值RF(P(1+m))n。Figure 4 is a diagram of an embodiment of a model system which is initialized to have a complex radio frequency value RF(P1)n and a variable capacitance value Cstep1 to determine the complex radio frequency value RF(P(1+m)) n.

圖5為一電漿系統之一實施例的圖,其係用以例示使用一電容值Coptimum(P(1+m))及使用複數射頻值RF(P(1+m))n在x MHz RF產生器所產生之一RF訊號的一期間P(1+m+q)期間處理一晶圓。Fig. 5 is a diagram of an embodiment of a plasma system, which is used to illustrate the use of a capacitance value Coptimum(P(1+m)) and the use of a complex radio frequency value RF(P(1+m))n at x MHz During a period P(1+m+q) of an RF signal generated by the RF generator, a wafer is processed.

圖6顯示複數圖的複數實施例,其係用以例示y MHz RF產生器所產生之一RF訊號的複數期間以及該複數期間係發生在x MHz RF產生器所產生之一RF訊號的一期間內。Figure 6 shows a complex embodiment of the complex diagram, which is used to illustrate the complex period of an RF signal generated by the y MHz RF generator and the complex period occurs during a period of an RF signal generated by the x MHz RF generator Inside.

圖7A為一圖之一實施例,其係用以例示自一電漿室之各種製程條件用之負載阻抗Zload的複數數值產生複數最佳組合可變電容值Coptimum。FIG. 7A is an embodiment of a diagram, which is used to exemplify the complex value of the load impedance Zload used for various process conditions of a plasma chamber to generate the complex optimal combined variable capacitance value Coptimum.

圖7B為一模型系統之一實施例的圖,其係用以例示產生使模型系統之輸入處之一電壓反射係數Γ為零的複數最佳組合可變電容值Coptimum。FIG. 7B is a diagram of an embodiment of a model system, which is used to illustrate the generation of a complex optimal combined variable capacitance value Coptimum that makes a voltage reflection coefficient Γ at the input of the model system zero.

圖7C為一表與一多項式的一實施例,此兩者係由處理器在處理晶圓之前應用模型系統所產生。FIG. 7C is an embodiment of a table and a polynomial, both of which are generated by the processor applying the model system before processing the wafer.

圖8A為一圖之一實施例,其係用以例示自複數最佳組合可變電容值Coptimum及自複數負載阻抗值Zload產生複數最佳RF值。FIG. 8A is an embodiment of a diagram, which is used to illustrate the generation of the complex optimal RF value from the complex optimal combined variable capacitance value Coptimum and the complex load impedance value Zload.

圖8B為一模型系統之一實施例,其係用以例示自一最佳組合可變電容值CoptimumQ與一負載阻抗值ZloadQ產生一最佳RF值RFoptimumQ。FIG. 8B is an embodiment of a model system, which is used to illustrate the generation of an optimal RF value RFoptimumQ from an optimal combination of variable capacitance value CoptimumQ and a load impedance value ZloadQ.

圖8C為一表的一實施例,此表包含複數負載阻抗值Zload、複數最佳電容值Coptimum、與複數最佳射頻值RFoptimum之間的對應。FIG. 8C is an embodiment of a table. The table includes the correspondence between the complex load impedance value Zload, the complex optimal capacitance value Coptimum, and the complex optimal radio frequency value RFoptimum.

圖9為一模型系統之一實施例的圖,其係用以例示產生使模型系統之輸入處之一反射係數為零的最佳RF值RFoptimumQ與最佳組合可變電容值CoptimumQ。FIG. 9 is a diagram of an embodiment of a model system, which is used to illustrate the generation of the optimal RF value RFoptimumQ and the optimal combined variable capacitance value CoptimumQ that make a reflection coefficient of the input of the model system zero.

圖10為一電漿系統之一實施例之一方塊圖,其係用以例示基於負載阻抗值ZloadQ應用最佳值RFoptimumQ與CoptimumQ。FIG. 10 is a block diagram of an embodiment of a plasma system, which is used to illustrate the application of the optimal values RFoptimumQ and CoptimumQ based on the load impedance value ZloadQ.

圖11為一圖之一實施例,其係用以例示當y MHz RF產生器為一60 MHz RF產生器時一阻抗匹配網路之一輸入阻抗的變異。FIG. 11 is an embodiment of a diagram, which is used to illustrate the variation of an input impedance of an impedance matching network when the y MHz RF generator is a 60 MHz RF generator.

圖12為一圖之一實施例,其係用以例示當y MHz RF產生器為一60 MHz RF產生器時反射至y MHz RF產生器之一電壓的傅立葉轉換。FIG. 12 is an embodiment of a diagram, which is used to illustrate the Fourier transformation of a voltage reflected to the y MHz RF generator when the y MHz RF generator is a 60 MHz RF generator.

100‧‧‧電漿系統 100‧‧‧Plasma system

102‧‧‧模型系統 102‧‧‧Model System

104‧‧‧RF產生器 104‧‧‧RF generator

106‧‧‧阻抗匹配網路 106‧‧‧Impedance matching network

108‧‧‧電漿室 108‧‧‧Plasma Room

110‧‧‧主機電腦系統 110‧‧‧Host computer system

112‧‧‧驅動組件 112‧‧‧Drive components

114‧‧‧連接機構 114‧‧‧Connecting mechanism

116‧‧‧上電極 116‧‧‧Upper electrode

118‧‧‧夾頭 118‧‧‧Chuck

120‧‧‧上表面 120‧‧‧Upper surface

121‧‧‧RF電源 121‧‧‧RF power supply

122‧‧‧RF電源 122‧‧‧RF power supply

123‧‧‧輸出 123‧‧‧output

124‧‧‧感測器 124‧‧‧Sensor

125‧‧‧輸入 125‧‧‧input

126‧‧‧輸出 126‧‧‧output

127‧‧‧RF纜線 127‧‧‧RF cable

128‧‧‧輸入 128‧‧‧input

130‧‧‧RF纜線 130‧‧‧RF cable

132‧‧‧RF傳輸線 132‧‧‧RF transmission line

134‧‧‧處理器 134‧‧‧Processor

136‧‧‧網路纜線 136‧‧‧Network cable

137‧‧‧記憶體裝置 137‧‧‧Memory device

138‧‧‧網路纜線 138‧‧‧Network cable

140‧‧‧輸出 140‧‧‧Output

142‧‧‧輸入 142‧‧‧input

144‧‧‧輸出 144‧‧‧Output

Claims (26)

一種減少朝射頻(RF)產生器反射之功率的方法,包含:接收第一複數量測到的輸入參數值,該第一複數量測到的輸入參數值係於該射頻(RF)產生器操作於第一複數射頻值且一阻抗匹配網路具有一第一可變可量測的因子時在該RF產生器之一輸出與該阻抗匹配網路之一輸入之間所感測;初始化一或多個電腦模型以使該一或多個電腦模型具有該第一可變可量測的因子與該第一複數射頻值;在該一或多個電腦模型具有該第一可變可量測的因子與該第一複數射頻值時,利用該一或多個電腦模型自該第一複數量測到的輸入參數值決定第一複數輸出參數值;利用該第一複數輸出參數值與該一或多個電腦模型決定第一複數有利射頻值,其中該第一複數有利射頻值的每一者係使該一或多個電腦模型之一輸入處的一反射係數為一最小值,其中該決定該第一複數有利射頻值的步驟包含:將該第一複數輸出參數值其中一者從該一或多個電腦模型的一輸出經過該一或多個電腦模型而向後傳播至該一或多個電腦模型的該輸入,以決定該反射係數的數值於該一或多個電腦模型的該輸入處在複數反射係數值中係最低的;及自該向後傳播步驟,確定該第一複數有利射頻值其中一者,其使得在該一或多個電腦模型的該輸入處的該反射係數具有最低值;控制該RF產生器以使該RF產生器在該第一複數有利射頻值下操作以減少朝向該RF產生器反射的功率。 A method for reducing the power reflected toward a radio frequency (RF) generator, comprising: receiving a first plurality of measured input parameter values, the first plurality of measured input parameter values being related to the operation of the radio frequency (RF) generator Sensed between an output of the RF generator and an input of the impedance matching network when the first complex radio frequency value and an impedance matching network has a first variable measurable factor; initialize one or more Computer models such that the one or more computer models have the first variable measurable factor and the first complex radio frequency value; the one or more computer models have the first variable measurable factor And the first complex radio frequency value, use the one or more computer models to determine the first complex output parameter value from the input parameter value measured by the first complex number; use the first complex output parameter value and the one or more A computer model determines a first complex favorable radio frequency value, wherein each of the first complex favorable radio frequency values makes a reflection coefficient at an input of the one or more computer models a minimum value, wherein the first complex favorable radio frequency value is determined to be a minimum value. The step of a plurality of favorable radio frequency values includes: one of the first plurality of output parameter values from an output of the one or more computer models passes through the one or more computer models and propagates back to the one or more computer models The input to determine that the value of the reflection coefficient is the lowest among the complex reflection coefficient values at the input of the one or more computer models; and from the backward propagation step, one of the first complex favorable radio frequency values is determined , Which makes the reflection coefficient at the input of the one or more computer models have the lowest value; controls the RF generator so that the RF generator operates at the first complex favorable radio frequency value to reduce the direction toward the RF The power reflected by the generator. 如申請專利範圍第1項的減少朝射頻(RF)產生器反射之功率的方法, 其中該接收該第一複數量測到的輸入參數值的步驟係在一第二RF產生器的一第一RF週期期間加以執行,其中該初始化步驟係在該第一RF週期期間加以執行,其中該一或多個電腦模型包含該阻抗匹配網路的一模型,其中該反射係數係針對該第一RF週期為最小值,其中該控制該RF產生器的步驟係在該第二RF產生器的一第二RF週期期間加以執行,該方法更包含:在該第二RF產生器的該第二RF週期期間接收第二複數量測到的輸入參數值,該第二複數量測到的輸入參數值係於該RF產生器操作於該第一複數有利射頻值時在該RF產生器之該輸出與該阻抗匹配網路之該輸入之間所感測;針對該第二RF週期初始化該一或多個電腦模型以使該一或多個電腦模型具有該第一複數有利射頻值;當該一或多個電腦模型具有該第一複數有利射頻值時,利用該一或多個電腦模型自該第二複數量測到的輸入參數值針對該第二RF週期決定第二複數輸出參數值;利用該第二複數輸出參數值與該一或多個電腦模型決定第二複數有利射頻值,其中該第二複數有利射頻值的每一者係使該一或多個電腦模型之該輸入處之該第二RF週期的該反射係數為一最小值;及在該第二RF產生器之一第三RF週期期間控制該RF產生器以使該RF產生器在該第二複數有利射頻值下操作。 For example, the method of reducing the power reflected to the radio frequency (RF) generator in the first item of the scope of patent application, The step of receiving the first plurality of measured input parameter values is performed during a first RF cycle of a second RF generator, and the initialization step is performed during the first RF cycle, wherein The one or more computer models include a model of the impedance matching network, wherein the reflection coefficient is a minimum value for the first RF period, and the step of controlling the RF generator is performed in the second RF generator Is executed during a second RF period, and the method further includes: receiving a second plurality of measured input parameter values during the second RF period of the second RF generator, the second plurality of measured input parameters The value is sensed between the output of the RF generator and the input of the impedance matching network when the RF generator is operating at the first plurality of favorable radio frequency values; the one or more are initialized for the second RF period Computer models so that the one or more computer models have the first plural favorable radio frequency value; when the one or more computer models have the first plural favorable radio frequency value, use the one or more computer models from the first Two complex numbers of measured input parameter values determine a second complex output parameter value for the second RF cycle; use the second complex output parameter value and the one or more computer models to determine a second complex favorable radio frequency value, wherein the first Each of the two complex favorable radio frequency values makes the reflection coefficient of the second RF cycle at the input of the one or more computer models a minimum value; and a third RF in the second RF generator During the period, the RF generator is controlled so that the RF generator operates at the second plurality of favorable radio frequency values. 如申請專利範圍第2項的減少朝射頻(RF)產生器反射之功率的方法,其中該第三RF週期係與該第二RF週期為連續的。 For example, in the method for reducing the power reflected toward a radio frequency (RF) generator in the second patent application, the third RF period is continuous with the second RF period. 如申請專利範圍第2項的減少朝射頻(RF)產生器反射之功率的方法,其中該第三RF週期係於該第二RF週期之後且該第二RF週期與該第三RF週期之間有一或多個中間RF週期。 For example, the method for reducing the reflected power toward a radio frequency (RF) generator in the scope of the patent application, wherein the third RF period is after the second RF period and between the second RF period and the third RF period There are one or more intermediate RF cycles. 如申請專利範圍第2項的減少朝射頻(RF)產生器反射之功率的方法,其中該第二RF週期係與該第一RF週期是連續的。 For example, the method for reducing the power reflected toward a radio frequency (RF) generator in the second patent application, wherein the second RF period is continuous with the first RF period. 如申請專利範圍第2項的減少朝射頻(RF)產生器反射之功率的方法,其中該第二RF週期係於該第一RF週期之後且該第一RF週期與該第二RF週期之間有一或多個中間RF週期。 For example, the method for reducing the reflected power toward a radio frequency (RF) generator in the second scope of the patent application, wherein the second RF period is after the first RF period and between the first RF period and the second RF period There are one or more intermediate RF cycles. 如申請專利範圍第1項的減少朝射頻(RF)產生器反射之功率的方法,更包含利用該第一複數輸出參數值及該一或多個電腦模型計算一最佳可變電容值,其中該最佳可變電容值係使該一或多個電腦模型之該輸入處的一加權反射係數為最小值。 For example, the method for reducing the reflected power toward a radio frequency (RF) generator in the first item of the patent application further includes calculating an optimal variable capacitance value by using the first complex output parameter value and the one or more computer models, where The optimal variable capacitance value is such that a weighted reflection coefficient at the input of the one or more computer models is the minimum value. 如申請專利範圍第1項的減少朝射頻(RF)產生器反射之功率的方法,其中該第一複數量測到的輸入參數值係接收自連接至該RF產生器的該輸出的一感測器,其中該RF產生器的該輸出係經由一RF纜線而連接至該阻抗匹配網路的該輸入。 For example, the method for reducing the power reflected toward a radio frequency (RF) generator in the first patent application, wherein the first complex number of measured input parameter values is received from a sensor connected to the output of the RF generator Wherein the output of the RF generator is connected to the input of the impedance matching network via an RF cable. 如申請專利範圍第1項的減少朝射頻(RF)產生器反射之功率的方法,其中該一或多個電腦模型包含一RF纜線的模型、該阻抗匹配網路的模型、及一RF傳輸線的模型,其中該RF纜線係連接於該RF產生器的該輸出與該阻抗匹配網路的該輸入之間,其中該RF傳輸線係連接至該阻抗匹配網路的一輸出。 For example, the method for reducing the power reflected toward a radio frequency (RF) generator in the first patent application, wherein the one or more computer models include a model of an RF cable, a model of the impedance matching network, and an RF transmission line The model of, wherein the RF cable is connected between the output of the RF generator and the input of the impedance matching network, and the RF transmission line is connected to an output of the impedance matching network. 如申請專利範圍第9項的減少朝射頻(RF)產生器反射之功率的方法,其中該第一複數輸出參數值係藉由以下步驟加以決定:將該第一複數量測到的輸入參數值向前傳播經過該RF纜線的該模型以在該RF纜線的該模型 的一輸出處產生第一複數中間值;將該第一複數中間值向前傳播經過該阻抗匹配網路的該模型以在該阻抗匹配網路的該模型的一輸出處產生第二複數中間值;及將該第二複數中間值向前傳播經過該RF傳輸線的該模型以產生該第一複數輸出參數值。 For example, the method for reducing the power reflected to a radio frequency (RF) generator in the scope of the patent application, wherein the first complex output parameter value is determined by the following steps: the input parameter value measured by the first complex number Propagate forward through the model of the RF cable so that the model of the RF cable Generates a first complex intermediate value at an output of the impedance matching network; propagates the first complex intermediate value forward through the model of the impedance matching network to generate a second complex intermediate value at an output of the impedance matching network of the model ; And the second complex intermediate value is propagated forward through the model of the RF transmission line to generate the first complex output parameter value. 如申請專利範圍第9項的減少朝射頻(RF)產生器反射之功率的方法,其中該反射係數在該RF纜線的該模型的一輸入處為最小值。 For example, the method for reducing the power reflected toward a radio frequency (RF) generator in the ninth patent application, wherein the reflection coefficient is the minimum value at an input of the model of the RF cable. 如申請專利範圍第1項的減少朝射頻(RF)產生器反射之功率的方法,其中該第一複數量測到的輸入參數值包含複數阻抗值,且該第一可變可量測的因子包含該阻抗匹配網路的電容。 For example, the method for reducing the power reflected toward a radio frequency (RF) generator in the scope of the patent application, wherein the first complex number of measured input parameter values includes a complex impedance value, and the first variable measurable factor Contains the capacitance of the impedance matching network. 如申請專利範圍第1項的減少朝射頻(RF)產生器反射之功率的方法,其中該一或多個電腦模型係受到初始化,以當該一或多個電腦模型具有該阻抗匹配網路的一組合電容時具有該第一可變可量測的因子。 For example, the method for reducing the reflected power toward a radio frequency (RF) generator in the first patent application, wherein the one or more computer models are initialized so that when the one or more computer models have the impedance matching network A combined capacitance has the first variable measurable factor. 一種控制器,包含:一處理器,建構以:接收第一複數量測到的輸入參數值,該第一複數量測到的輸入參數值係於一射頻(RF)產生器操作於第一複數射頻值且一阻抗匹配網路具有一第一可變可量測的因子時在該RF產生器之一輸出與該阻抗匹配網路之一輸入之間所感測;初始化一或多個電腦模型以使該一或多個電腦模型具有該第一可變可量測的因子與該第一複數射頻值;在該一或多個電腦模型具有該第一可變可量測的因子與該第一複數射頻值時,利用該一或多個電腦模型自該第一複數量測到的輸入參數值決定第一複數輸出參數值; 利用該第一複數輸出參數值與該一或多個電腦模型決定第一複數有利射頻值,其中該第一複數有利射頻值的每一者係使該一或多個電腦模型之一輸入處的一反射係數為一最小值,其中為了決定該第一複數有利射頻值,該第一複數輸出參數值其中一者係從該一或多個電腦模型的一輸出經過該一或多個電腦模型而向後傳播至該一或多個電腦模型的該輸入,其中該第一複數輸出參數值其中一者係加以向後傳播,以決定該反射係數的數值於該一或多個電腦模型的該輸入處在複數反射係數值中係最低的,其中該第一複數輸出參數值其中一者係加以向後傳播,確定該第一複數有利射頻值其中一者,其使得在該一或多個電腦模型的該輸入處的該反射係數具有最低值;及控制該RF產生器以使該RF產生器在該第一複數有利射頻值下操作以減少朝向該RF產生器反射的功率;及一記憶體裝置,連接至該處理器。 A controller includes: a processor configured to: receive a first plurality of measured input parameter values, the first plurality of measured input parameter values are operated by a radio frequency (RF) generator operating on the first complex number RF value and an impedance matching network with a first variable measurable factor are sensed between an output of the RF generator and an input of the impedance matching network; initialize one or more computer models to Make the one or more computer models have the first variable measurable factor and the first complex radio frequency value; make the one or more computer models have the first variable measurable factor and the first In the case of a complex radio frequency value, use the one or more computer models to determine the first complex output parameter value from the input parameter value measured by the first complex number; Utilize the first complex output parameter value and the one or more computer models to determine a first complex favorable radio frequency value, wherein each of the first complex favorable radio frequency values is the input of one of the one or more computer models A reflection coefficient is a minimum value, wherein in order to determine the first complex number of favorable radio frequency values, one of the first complex number output parameter values is obtained from an output of the one or more computer models through the one or more computer models Backward propagation to the input of the one or more computer models, wherein one of the first complex output parameter values is propagated backward to determine the value of the reflection coefficient at the input of the one or more computer models The complex reflection coefficient value is the lowest, wherein one of the first complex output parameter values is propagated backwards to determine one of the first complex favorable radio frequency values, which makes the input of the one or more computer models The reflection coefficient at the position has the lowest value; and controlling the RF generator so that the RF generator operates at the first plurality of favorable radio frequency values to reduce the power reflected toward the RF generator; and a memory device connected to The processor. 如申請專利範圍第14項的控制器,其中該第一複數量測到的輸入參數值係在一第二RF產生器的一第一RF週期期間加以接收,其中該一或多個電腦模型係建構成在該第一RF週期期間加以初始化,其中該一或多個電腦模型包含該阻抗匹配網路的一模型,其中該反射係數係針對該第一RF週期為最小值,其中該RF產生器係在該第二RF產生器的一第二RF週期期間加以控制,其中該處理器係建構以: 在該第二RF產生器的該第二RF週期期間接收第二複數量測到的輸入參數值,該第二複數量測到的輸入參數值係於該RF產生器操作於該第一複數有利射頻值時在該RF產生器之該輸出與該阻抗匹配網路之該輸入之間所感測;針對該第二RF週期初始化該一或多個電腦模型以使該一或多個電腦模型具有該第一複數有利射頻值;當該一或多個電腦模型具有該第一複數有利射頻值時,利用該一或多個電腦模型自該第二複數量測到的輸入參數值針對該第二RF週期決定第二複數輸出參數值;利用該第二複數輸出參數值與該一或多個電腦模型決定第二複數有利射頻值,其中該第二複數有利射頻值的每一者係使該一或多個電腦模型之該輸入處之該第二RF週期的該反射係數為一最小值;及在該第二RF產生器之一第三RF週期期間控制該RF產生器以使該RF產生器在該第二複數有利射頻值下操作。 For example, the controller of the 14th item of the scope of patent application, wherein the first complex number of measured input parameter values are received during a first RF period of a second RF generator, wherein the one or more computer models are The structure is initialized during the first RF period, wherein the one or more computer models include a model of the impedance matching network, wherein the reflection coefficient is a minimum value for the first RF period, and the RF generator It is controlled during a second RF cycle of the second RF generator, where the processor is constructed to: During the second RF period of the second RF generator, a second plurality of measured input parameter values is received, and the second plurality of measured input parameter values is due to the fact that the RF generator is operating on the first complex number. The radio frequency value is sensed between the output of the RF generator and the input of the impedance matching network; the one or more computer models are initialized for the second RF cycle so that the one or more computer models have the A first complex number of favorable radio frequency values; when the one or more computer models have the first complex number of advantageous radio frequency values, the input parameter values measured from the second complex number using the one or more computer models are directed to the second RF The period determines the second complex output parameter value; the second complex output parameter value and the one or more computer models are used to determine the second complex advantageous radio frequency value, wherein each of the second complex advantageous radio frequency values makes the one or The reflection coefficient of the second RF cycle at the input of a plurality of computer models is a minimum; and during a third RF cycle of the second RF generator, the RF generator is controlled so that the RF generator is at The second complex number operates at a favorable radio frequency value. 如申請專利範圍第14項的控制器,其中該第一複數量測到的輸入參數值係接收自連接至該RF產生器的該輸出的一感測器,其中該RF產生器的該輸出係經由一RF纜線而連接至該阻抗匹配網路的該輸入。 For example, the controller of item 14 of the scope of patent application, wherein the first plurality of measured input parameter values are received from a sensor connected to the output of the RF generator, wherein the output of the RF generator is It is connected to the input of the impedance matching network via an RF cable. 如申請專利範圍第14項的控制器,其中該一或多個電腦模型包含由該處理器產生的模型,其中該一或多個電腦模型包含一RF纜線的模型、該阻抗匹配網路的模型、及一RF傳輸線的模型,其中該RF纜線係連接於該RF產生器的該輸出與該阻抗匹配網路的該輸入之間,其中該RF傳輸線係連接至該阻抗匹配網路的一輸出。 For example, the controller of claim 14, wherein the one or more computer models include models generated by the processor, and the one or more computer models include a model of an RF cable, and a model of the impedance matching network Model, and a model of an RF transmission line, wherein the RF cable is connected between the output of the RF generator and the input of the impedance matching network, and the RF transmission line is connected to one of the impedance matching network Output. 如申請專利範圍第17項的控制器,其中為了決定該第一複數輸出參數值,該處理器係建構以:將該第一複數量測到的輸入參數值向前傳播經 過該RF纜線的該模型以在該RF纜線的該模型的一輸出處產生第一複數中間值;將該第一複數中間值向前傳播經過該阻抗匹配網路的該模型以在該阻抗匹配網路的該模型的一輸出處產生第二複數中間值;及將該第二複數中間值向前傳播經過該RF傳輸線的該模型以產生該第一複數輸出參數值。 For example, in the controller of item 17 of the scope of patent application, in order to determine the value of the first complex number output parameter, the processor is constructed to: propagate the measured input parameter value of the first complex number forward through Pass the model of the RF cable to generate a first complex intermediate value at an output of the model of the RF cable; propagate the first complex intermediate value forward through the model of the impedance matching network to A second complex intermediate value is generated at an output of the model of the impedance matching network; and the second complex intermediate value is propagated forward through the model of the RF transmission line to generate the first complex output parameter value. 如申請專利範圍第17項的控制器,其中該反射係數在該RF纜線的該模型的一輸入處為最小值。 Such as the controller of the 17th patent application, wherein the reflection coefficient is the minimum value at an input of the model of the RF cable. 如申請專利範圍第14項的控制器,其中該第一複數量測到的輸入參數值包含複數阻抗值,且該第一可變可量測的因子包含該阻抗匹配網路的電容。 For example, the controller of item 14 of the scope of patent application, wherein the first complex number of measured input parameter values includes a complex impedance value, and the first variable measurable factor includes the capacitance of the impedance matching network. 如申請專利範圍第14項的控制器,其中該一或多個電腦模型係受到初始化,以當該一或多個電腦模型具有該阻抗匹配網路的一組合電容時具有該第一可變可量測的因子。 For example, the controller of claim 14, wherein the one or more computer models are initialized to have the first variable capacity when the one or more computer models have a combined capacitance of the impedance matching network The measured factor. 一種電漿系統,包含:一射頻(RF)產生器,建構成操作於第一複數射頻值以產生一RF訊號;一阻抗匹配網路,具有經由一RF纜線連接至該RF產生器的一輸出的一輸入,其中該阻抗匹配網路係建構成具有一第一可變可量測的因子;一主電腦,連接至該RF產生器,其中該主電腦係建構以:接收第一複數量測到的輸入參數值,該第一複數量測到的輸入參數值係在該RF產生器之該輸出與該阻抗匹配網路之該輸入之間所感測;初始化一或多個電腦模型以使該一或多個電腦模型具有該第一可變可量測的因子與該第一複數射頻值; 在該一或多個電腦模型具有該第一可變可量測的因子與該第一複數射頻值時,利用該一或多個電腦模型自該第一複數量測到的輸入參數值決定第一複數輸出參數值;利用該第一複數輸出參數值與該一或多個電腦模型決定第一複數有利射頻值,其中該第一複數有利射頻值的每一者係使該一或多個電腦模型之一輸入處的一反射係數為一最小值其中為了決定該第一複數有利射頻值,該第一複數輸出參數值其中一者係從該一或多個電腦模型的一輸出經過該一或多個電腦模型而向後傳播至該一或多個電腦模型的該輸入,其中該第一複數輸出參數值其中一者係加以向後傳播,以決定該反射係數的數值於該一或多個電腦模型的該輸入處在複數反射係數值中係最低的,其中該第一複數輸出參數值其中一者係加以向後傳播,確定該第一複數有利射頻值其中一者,其使得在該一或多個電腦模型的該輸入處的該反射係數具有最低值;及控制該RF產生器以使該RF產生器在該第一複數有利射頻值下操作以減少朝向該RF產生器反射的功率。 A plasma system includes: a radio frequency (RF) generator configured to operate on a first complex radio frequency value to generate an RF signal; an impedance matching network having an RF generator connected to the RF generator via an RF cable An input of output, wherein the impedance matching network is constructed with a first variable measurable factor; a host computer is connected to the RF generator, wherein the host computer is constructed to: receive the first complex quantity Measured input parameter values, the first complex number of measured input parameter values are sensed between the output of the RF generator and the input of the impedance matching network; initialize one or more computer models to make The one or more computer models have the first variable measurable factor and the first complex radio frequency value; When the one or more computer models have the first variable measurable factor and the first complex radio frequency value, the one or more computer models are used to determine the first complex number of input parameter values measured A complex output parameter value; using the first complex output parameter value and the one or more computer models to determine a first complex favorable radio frequency value, wherein each of the first complex favorable radio frequency values makes the one or more computers A reflection coefficient at one input of the model is a minimum value. In order to determine the first complex number favorable radio frequency value, one of the first complex output parameter values is passed from an output of the one or more computer models through the one or A plurality of computer models are propagated backward to the input of the one or more computer models, wherein one of the first complex output parameter values is propagated backward to determine the value of the reflection coefficient in the one or more computer models The input of is the lowest in the complex reflection coefficient value, where one of the first complex output parameter values is propagated backwards to determine one of the first complex favorable radio frequency values, which makes it in the one or more The reflection coefficient at the input of the computer model has the lowest value; and the RF generator is controlled so that the RF generator operates under the first plural favorable radio frequency value to reduce the power reflected toward the RF generator. 如申請專利範圍第22項的電漿系統,其中該第一複數量測到的輸入參數值係在一第二RF產生器的一第一RF週期期間加以接收,其中該一或多個電腦模型係建構成在該第一RF週期期間加以初始化,其中該一或多個電腦模型包含該阻抗匹配網路的一模型,其中該反射係數係針對該第一RF週期為最小值,其中該RF產生器係在該第二RF產生器的一第二RF週期期間加以控制, 其中該主電腦係建構以:在該第二RF產生器的該第二RF週期期間接收第二複數量測到的輸入參數值,該第二複數量測到的輸入參數值係於該RF產生器操作於該第一複數有利射頻值時在該RF產生器之該輸出與該阻抗匹配網路之該輸入之間所感測;針對該第二RF週期初始化該一或多個電腦模型以使該一或多個電腦模型具有該第一複數有利射頻值;當該一或多個電腦模型具有該第一複數有利射頻值時,利用該一或多個電腦模型自該第二複數量測到的輸入參數值針對該第二RF週期決定第二複數輸出參數值;利用該第二複數輸出參數值與該一或多個電腦模型決定第二複數有利射頻值,其中該第二複數有利射頻值的每一者係使該一或多個電腦模型之該輸入處之該第二RF週期的該反射係數為一最小值;及在該第二RF產生器之一第三RF週期期間控制該RF產生器以使該RF產生器在該第二複數有利射頻值下操作。 For example, the plasma system of the 22nd patent application, wherein the input parameter value measured by the first complex quantity is received during a first RF period of a second RF generator, wherein the one or more computer models The system configuration is initialized during the first RF cycle, wherein the one or more computer models include a model of the impedance matching network, wherein the reflection coefficient is a minimum value for the first RF cycle, and the RF generation The device is controlled during a second RF period of the second RF generator, The host computer is configured to receive a second plurality of measured input parameter values during the second RF period of the second RF generator, and the second plurality of measured input parameter values are related to the RF generator The device is sensed between the output of the RF generator and the input of the impedance matching network when operating at the first complex favorable radio frequency value; the one or more computer models are initialized for the second RF period to make the One or more computer models have the first complex number of favorable radio frequency values; when the one or more computer models have the first complex number of favorable radio frequency values, use the one or more computer models to measure from the second complex number The input parameter value determines the second complex output parameter value for the second RF period; the second complex output parameter value and the one or more computer models are used to determine the second complex favorable radio frequency value, wherein the second complex favorable radio frequency value is Each makes the reflection coefficient of the second RF cycle at the input of the one or more computer models a minimum value; and controls the RF generation during a third RF cycle of the second RF generator So that the RF generator operates at the second complex favorable radio frequency value. 如申請專利範圍第23項的電漿系統,其中該第一複數量測到的輸入參數值係接收自連接至該RF產生器的該輸出的一感測器。 For example, the plasma system of item 23 of the scope of patent application, wherein the first complex number of measured input parameter values is received from a sensor connected to the output of the RF generator. 如申請專利範圍第23項的電漿系統,其中該一或多個電腦模型由該主電腦加以產生,其中該一或多個電腦模型包含一RF纜線的模型、該阻抗匹配網路的模型、及一RF傳輸線的模型,其中該RF纜線係連接於該RF產生器的該輸出與該阻抗匹配網路的該輸入之間,其中該RF傳輸線係連接至該阻抗匹配網路的一輸出。 For example, the plasma system of item 23 of the scope of patent application, wherein the one or more computer models are generated by the host computer, and the one or more computer models include a model of an RF cable and a model of the impedance matching network , And a model of an RF transmission line, wherein the RF cable is connected between the output of the RF generator and the input of the impedance matching network, and the RF transmission line is connected to an output of the impedance matching network . 如申請專利範圍第25項的電漿系統,其中為了決定該第一複數輸出參數值,該主電腦係建構以:將該第一複數量測到的輸入參數值向前傳播 經過該RF纜線的該模型以在該RF纜線的該模型的一輸出處產生第一複數中間值;將該第一複數中間值向前傳播經過該阻抗匹配網路的該模型以在該阻抗匹配網路的該模型的一輸出處產生第二複數中間值;及將該第二複數中間值向前傳播經過該RF傳輸線的該模型以產生該第一複數輸出參數值。 For example, in the plasma system of the 25th patent application, in order to determine the first complex output parameter value, the host computer is constructed to: propagate forward the input parameter value measured by the first complex number Pass the model of the RF cable to generate a first complex intermediate value at an output of the model of the RF cable; propagate the first complex intermediate value forward through the model of the impedance matching network to A second complex intermediate value is generated at an output of the model of the impedance matching network; and the second complex intermediate value is propagated forward through the model of the RF transmission line to generate the first complex output parameter value.
TW106106911A 2016-03-04 2017-03-03 Systems and methods for reducing power reflected towards a higher frequency rf generator during a period of a lower rf generator and for using a relationship to reduce reflected power TWI727005B (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US15/061,705 US10296676B2 (en) 2013-05-09 2016-03-04 Systems and methods for tuning an impedance matching network in a step-wise fashion
US15/061,705 2016-03-04
US15/098,189 2016-04-13
US15/098,189 US9711332B2 (en) 2013-05-09 2016-04-13 Systems and methods for tuning an impedance matching network in a step-wise fashion for multiple states of an RF generator
US15/098,912 US10469108B2 (en) 2013-05-09 2016-04-14 Systems and methods for using computer-generated models to reduce reflected power towards a high frequency RF generator during a cycle of operations of a low frequency RF generator
US15/098,912 2016-04-14
US15/098,566 US10276350B2 (en) 2013-05-09 2016-04-14 Systems and methods for using computer-generated models to reduce reflected power towards an RF generator during state transitions of the RF generator by controlling RF values of the RF generator
US15/098,566 2016-04-14

Publications (2)

Publication Number Publication Date
TW201738956A TW201738956A (en) 2017-11-01
TWI727005B true TWI727005B (en) 2021-05-11

Family

ID=59792397

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106106911A TWI727005B (en) 2016-03-04 2017-03-03 Systems and methods for reducing power reflected towards a higher frequency rf generator during a period of a lower rf generator and for using a relationship to reduce reflected power

Country Status (4)

Country Link
JP (1) JP6909590B2 (en)
KR (1) KR20170103661A (en)
CN (1) CN107154334B (en)
TW (1) TWI727005B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11437262B2 (en) 2018-12-12 2022-09-06 Applied Materials, Inc Wafer de-chucking detection and arcing prevention
JP7345155B2 (en) 2019-01-31 2023-09-15 Spiber株式会社 Heat retention agent and method for imparting heat retention to articles
CN114207768A (en) * 2019-06-07 2022-03-18 朗姆研究公司 System and method for tuning a MHz RF generator within an operating cycle of the kHz RF generator
JP2022102688A (en) 2020-12-25 2022-07-07 株式会社ダイヘン High frequency power system
CN113065237B (en) * 2021-03-19 2022-11-08 四川英杰电气股份有限公司 Method for automatically setting frequency modulation boundary and radio frequency power supply
US11923175B2 (en) * 2021-07-28 2024-03-05 COMET Technologies USA, Inc. Systems and methods for variable gain tuning of matching networks
JP2023050839A (en) 2021-09-30 2023-04-11 株式会社ダイヘン High-frequency power source device
CN114217121A (en) * 2021-12-08 2022-03-22 通鼎互联信息股份有限公司 Electrical experiment method for determining rated average power of radio frequency
JP2023098298A (en) 2021-12-28 2023-07-10 株式会社ダイヘン High-frequency power supply device
JP2023097863A (en) 2021-12-28 2023-07-10 株式会社ダイヘン High frequency power system
JP2023098299A (en) 2021-12-28 2023-07-10 株式会社ダイヘン High frequency power unit
JP2023098203A (en) 2021-12-28 2023-07-10 株式会社ダイヘン High-frequency power supply device
CN115954257B (en) * 2023-03-14 2023-05-23 长鑫存储技术有限公司 Substrate processing apparatus, gas confinement assembly, and adjustment method and adjustment apparatus therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW418593B (en) * 1998-02-09 2001-01-11 Eni Tech Inc Ratiometric autotuning algorithm for RF plasma generator
TW200419631A (en) * 2002-10-01 2004-10-01 Tokyo Electron Ltd Method and system for analyzing data from a plasma process
US20050029954A1 (en) * 2003-08-06 2005-02-10 Canon Kabushiki Kaisha Plasma processing apparatus and method
TW201004488A (en) * 2008-03-23 2010-01-16 Advanced Energy Ind Inc Method and apparatus for advanced frequency tuning
TW201513566A (en) * 2013-09-30 2015-04-01 普來馬特股份有限公司 Impedance matching method and impedance matching system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9030101B2 (en) * 2012-02-22 2015-05-12 Lam Research Corporation Frequency enhanced impedance dependent power control for multi-frequency RF pulsing
US9620337B2 (en) * 2013-01-31 2017-04-11 Lam Research Corporation Determining a malfunctioning device in a plasma system
TWI647735B (en) * 2013-03-15 2019-01-11 美商蘭姆研究公司 Modeling to establish ion energy associated with the plasma system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW418593B (en) * 1998-02-09 2001-01-11 Eni Tech Inc Ratiometric autotuning algorithm for RF plasma generator
TW200419631A (en) * 2002-10-01 2004-10-01 Tokyo Electron Ltd Method and system for analyzing data from a plasma process
US20050029954A1 (en) * 2003-08-06 2005-02-10 Canon Kabushiki Kaisha Plasma processing apparatus and method
TW201004488A (en) * 2008-03-23 2010-01-16 Advanced Energy Ind Inc Method and apparatus for advanced frequency tuning
TW201513566A (en) * 2013-09-30 2015-04-01 普來馬特股份有限公司 Impedance matching method and impedance matching system

Also Published As

Publication number Publication date
CN107154334B (en) 2019-03-19
KR20170103661A (en) 2017-09-13
JP2017188434A (en) 2017-10-12
CN107154334A (en) 2017-09-12
TW201738956A (en) 2017-11-01
JP6909590B2 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
TWI727005B (en) Systems and methods for reducing power reflected towards a higher frequency rf generator during a period of a lower rf generator and for using a relationship to reduce reflected power
US10911081B2 (en) Systems and methods for reducing power reflected towards a higher frequency RF generator during a period of a lower RF generator and for using a relationship to reduce reflected power
US10403482B2 (en) Systems and methods for tuning an impedance matching network in a step-wise fashion for multiple states of an RF generator
CN110246744B (en) System and method for adjusting ion energy distribution function through odd harmonic mixing
CN107154787B (en) System and method for tuning an impedance matching network in a step-wise manner
US10276350B2 (en) Systems and methods for using computer-generated models to reduce reflected power towards an RF generator during state transitions of the RF generator by controlling RF values of the RF generator
US10853444B2 (en) Systems and methods for tuning an impedance matching network in a step-wise fashion
US10296676B2 (en) Systems and methods for tuning an impedance matching network in a step-wise fashion
KR102615894B1 (en) Systems and methods for increasing the efficiency of delivered power of a megahertz RF generator in the presence of a kilohertz RF generator
US11929235B2 (en) Systems and methods for tuning a MHz RF generator within a cycle of operation of a kHZ RF generator
TWI751138B (en) Systems and methods for reducing reflected power during state transitions by using radio frequency values
CN107294510B (en) System and method for tuning an impedance matching network in a step-wise manner for multiple states