TWI726459B - Transfer learning aided prediction system, method and computer program product thereof - Google Patents

Transfer learning aided prediction system, method and computer program product thereof Download PDF

Info

Publication number
TWI726459B
TWI726459B TW108138497A TW108138497A TWI726459B TW I726459 B TWI726459 B TW I726459B TW 108138497 A TW108138497 A TW 108138497A TW 108138497 A TW108138497 A TW 108138497A TW I726459 B TWI726459 B TW I726459B
Authority
TW
Taiwan
Prior art keywords
oropharyngeal
prediction model
training
cancer prognosis
image data
Prior art date
Application number
TW108138497A
Other languages
Chinese (zh)
Other versions
TW202117746A (en
Inventor
高嘉鴻
陳尚文
沈偉誌
吳國禎
Original Assignee
中國醫藥大學附設醫院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中國醫藥大學附設醫院 filed Critical 中國醫藥大學附設醫院
Priority to TW108138497A priority Critical patent/TWI726459B/en
Application granted granted Critical
Publication of TWI726459B publication Critical patent/TWI726459B/en
Publication of TW202117746A publication Critical patent/TW202117746A/en

Links

Images

Abstract

A transfer learning aided prediction system for analyzing an image data of the pharyngeal cancer tumor of a patient is provided. The system includes a data augmentation module and an analyzing module. The data augmentation module is used to apply a data expansion process to the image data, so as to generate a plurality of slices of the pharyngeal cancer tumor. The analyzing module determines a treatment response according to a pharyngeal cancer prognosis prediction model. The basic structure of the pharyngeal cancer prognosis prediction model can be consistent with that of a uterine cervical cancer prognosis prediction model. The uterine cervical cancer prognosis prediction model is constructed by a deep learning technique and is trained to achieve excellent predictive results, and the pharyngeal cancer prognosis prediction model is transformed from the uterine cervical cancer prognosis prediction model by a transfer learning technique.

Description

遷移學習輔助預測系統、方法及電腦程式產品 Transfer learning auxiliary prediction system, method and computer program product

本發明屬於輔助預測技術領域,特別是使用遷移學習將已訓練完成的子宮頸癌深度學習預後預測模型轉換成口咽/下咽癌預後預測模型的技術領域。 The present invention belongs to the technical field of auxiliary prediction, in particular to the technical field of using transfer learning to convert a trained cervical cancer deep learning prognosis prediction model into an oropharyngeal/hypopharyngeal cancer prognosis prediction model.

合併化學與放射治療(Chemoradiotherapy)是目前局部晚期(local advanced)口咽/下咽癌的常規治療方法之一,由於合併化學與放射治療對於病患的身體健康會造成一定程度的影響,且病患在進行治療後仍可能發生腫瘤轉移或局部復發等,因此若能事先預測治療預後,進而慎選治療策略,病患的醫療品質可有效地被提升。然而,目前並沒有專門針對口咽/下咽癌的預測技術或產品。 Combination of chemical and radiotherapy (Chemoradiotherapy) is currently one of the conventional treatments for locally advanced oropharyngeal/hypopharyngeal cancer. Because the combination of chemical and radiotherapy will have a certain degree of impact on the health of the patient, and the disease Patients may still develop tumor metastasis or local recurrence after treatment. Therefore, if the prognosis of the treatment can be predicted in advance, and then the treatment strategy can be carefully selected, the quality of the patient's medical treatment can be effectively improved. However, there are currently no predictive technologies or products specifically for oropharyngeal/hypopharyngeal cancer.

此外,現有技術將醫療影像分析與傳統的機器學習或統計學演算法組合而成的預測技術在精準度上仍有缺陷,其預測失誤的機率十分高。 In addition, the existing technology, which combines medical image analysis with traditional machine learning or statistical algorithms, still has shortcomings in accuracy, and the probability of prediction errors is very high.

另外,針對不同的疾病,目前必須開發不同的預測模型,由於預測模型的開發成本昂貴且耗時,因此目前的開發方法仍有改善的空間。 In addition, different predictive models must be developed for different diseases. Since the development of predictive models is expensive and time-consuming, there is still room for improvement in current development methods.

對此,本發明提供一種遷移學習輔助預測系統、方法及電腦程式產品,能有效解決上述問題。 In this regard, the present invention provides a migration learning auxiliary prediction system, method, and computer program product, which can effectively solve the above-mentioned problems.

本發明提出一種輔助預測系統,是以子宮頸癌預後預測模型為基礎,經由遷移學習而轉換成一口咽/下咽癌預後預測模型。該口咽/下咽癌預後預測模型可對口咽/下咽癌病患的腫瘤影像進行分析,進而預測該病患的在合併化學與放射治療後的預後。由於子宮頸癌預後預測模型或口咽/下咽癌預後預測模型是透過擴充放大量影像資料進行訓練,可提供良好的預測效果。 The present invention provides an auxiliary prediction system, which is based on a cervical cancer prognosis prediction model and is converted into an oropharyngeal/hypopharyngeal cancer prognosis prediction model through migration learning. The prognosis prediction model for oropharyngeal/hypopharyngeal cancer can analyze tumor images of patients with oropharyngeal/hypopharyngeal cancer, and then predict the prognosis of the patient after combined chemical and radiotherapy. Since the cervical cancer prognosis prediction model or the oropharyngeal/hypopharyngeal cancer prognosis prediction model is trained by expanding the image data, it can provide a good prediction effect.

根據本發明的一觀點,茲提出一種遷移學習輔助預測系統,用以分析病患在進行治療前的口咽/下咽癌腫瘤的影像資料。該系統包含小樣本資料擴充模組及口咽/下咽癌預後預測模型。小樣本資料擴充模組可將影像資料進行資料擴充處理,進而產生複數個切片影像。口咽/下咽癌預後預測模型可透對切片影像進行特徵分析,以預測病患接受治療的預後。 According to an aspect of the present invention, a migration learning assisted prediction system is proposed to analyze the image data of the patient’s oropharyngeal/hypopharyngeal cancer tumors before treatment. The system includes a small sample data expansion module and a prognostic prediction model for oropharyngeal/hypopharyngeal cancer. The small sample data expansion module can perform data expansion processing on the image data to generate multiple slice images. The prognosis prediction model of oropharyngeal/hypopharyngeal cancer can analyze the characteristics of slice images to predict the prognosis of patients receiving treatment.

根據本發明的另一觀點,是提供一種遷移學習輔助預測方法,用以分析病患在進行治療前的口咽/下咽腫瘤的影像資料,該方法是透過深度學習輔助預測系統來執行,且該方法包含步驟:藉由小樣本資料擴充模組將影像資料進行資料擴充處理,以產生複數個切片影像;以及藉由口咽/下咽癌預後預測模型,對切片影像進行特徵分析,以預測病患在接受治療後是否會發生口咽/下咽癌治療反應事件,其中口咽/下咽癌預後預測模型是由子宮頸癌預後預測模型透過遷移學習轉換而成。 According to another aspect of the present invention, a migration learning assisted prediction method is provided to analyze the image data of the patient’s oropharyngeal/hypopharyngeal tumors before treatment. The method is implemented through a deep learning assisted prediction system, and The method includes the steps of: performing data expansion processing on the image data by a small sample data expansion module to generate a plurality of slice images; and using an oropharyngeal/hypopharyngeal cancer prognosis prediction model to perform feature analysis on the slice images to predict Whether the patient will have an oropharyngeal/hypopharyngeal cancer treatment response event after receiving treatment, in which the prognosis prediction model for oropharyngeal/hypopharyngeal cancer is transformed from the cervical cancer prognosis prediction model through migration learning.

根據本發明又另一觀點,是提供一種電腦程式產品,儲存於非暫態電腦可讀取媒體之中,用於使深度學習輔助預測系統運作,其中深度學習輔助預測系統是用以分析病患在進行治療前的口咽/下咽癌腫瘤的影像資料,其中電腦程式產品包含:藉由小樣本資料擴充模組,將影像資料進行資料擴充處理,以產生影像資料的複數個切片影像;以及藉由口咽/下咽癌預後預測模型對切片影像進行特徵分析,以預測病患在接受治療後的反應;其中,口咽/下咽癌預後預測模型是由子宮頸癌預後預測模型透過遷移學習轉換而成。 According to yet another aspect of the present invention, there is provided a computer program product stored in a non-transitory computer readable medium for operating a deep learning assisted prediction system, wherein the deep learning assisted prediction system is used to analyze patients The image data of oropharyngeal/hypopharyngeal cancer tumors before treatment, in which the computer program product includes: through the small sample data expansion module, the image data is expanded to generate multiple slice images of the image data; and The prognosis prediction model for oropharyngeal/hypopharyngeal cancer is used to perform feature analysis on slice images to predict the patient’s response after treatment. Among them, the prognosis prediction model for oropharyngeal/hypopharyngeal cancer is based on the cervical cancer prognosis prediction model through migration learning Converted into.

1:遷移學習輔助預測系統(預測系統) 1: Transfer learning assisted prediction system (prediction system)

11:資料輸入端 11: Data input terminal

12:小樣本資料擴充模組 12: Small sample data expansion module

14:分析模組 14: Analysis module

15:口咽/下咽癌預後預測模型 15: Prognosis prediction model for oropharyngeal/hypopharyngeal cancer

16:子宮頸癌預後預測模型 16: Prognosis prediction model for cervical cancer

17:訓練用模型 17: Training model

18:訓練模組 18: Training module

20:電腦程式產品 20: Computer Program Products

152-1:外部感知卷積層 152-1: External perception convolutional layer

152-2:第一內部感知卷積層 152-2: The first internal perceptual convolutional layer

152-3:第二內部感知卷積層 152-3: The second inner perceptual convolutional layer

154:全局平均池化層 154: Global average pooling layer

156:損失函數層 156: Loss function layer

22:正規化運算單元 22: Normalization operation unit

24:激活函數 24: Activation function

26:最大池化層 26: Maximum pooling layer

28:特徵路徑 28: feature path

29:特徵的項目 29: Featured items

T1:第一門檻值 T1: the first threshold

T2:第二門檻值 T2: second threshold

S11~S16、S21~S25、S51~S57S61~S62、S71~S72、S81~S72:步驟 S11~S16, S21~S25, S51~S57, S61~S62, S71~S72, S81~S72: steps

圖1是本發明一實施例的遷移學習輔助預測系統的系統架構圖;圖2(A)是本發明一實施例的遷移學習輔助預測方法的基本步驟流程圖;圖2(B)是本發明一實施例的資料擴充處理的流程示意圖;圖3是本發明一實施例的口咽/下咽癌預後預測模型的建立過程示意圖;圖4(A)是本發明一實施例的訓練用模型於訓練前的架構示意圖;圖4(B)是本發明一實施例的子宮頸癌預後預測模型的架構示意圖;圖4(C)是本發明一實施例的口咽/下咽癌預後預測模型的架構示意圖;圖5是本發明一實施例的子宮頸癌預後預測模型的建立過程流程圖;圖6是本發明第一實施例的口咽/下咽癌預後預測模型的建立過程流程圖;圖7是本發明第二實施例的口咽/下咽癌預後預測模型的建立過程流程圖;圖8是本發明第三實施例的口咽/下咽癌預後預測模型的建立過程流程圖。 Figure 1 is a system architecture diagram of a transfer learning assisted prediction system according to an embodiment of the present invention; Figure 2(A) is a flow chart of the basic steps of a transfer learning assisted prediction method according to an embodiment of the present invention; Figure 2(B) is the present invention Fig. 3 is a schematic diagram of the establishment process of an oropharyngeal/hypopharyngeal cancer prognostic prediction model of an embodiment of the present invention; Fig. 4(A) is a training model used in an embodiment of the present invention. Schematic diagram of the architecture before training; Fig. 4(B) is a schematic diagram of the architecture of the cervical cancer prognosis prediction model according to an embodiment of the present invention; Fig. 4(C) is the prognosis prediction model of oropharyngeal/hypopharyngeal cancer according to an embodiment of the present invention Schematic diagram of the architecture; FIG. 5 is a flowchart of the establishment process of a cervical cancer prognosis prediction model according to an embodiment of the present invention; FIG. 6 is a flowchart of the establishment process of the oropharyngeal/hypopharyngeal cancer prognosis prediction model according to the first embodiment of the present invention; 7 is a flowchart of the process of establishing a prognosis prediction model for oropharyngeal/hypopharyngeal cancer in the second embodiment of the present invention; Fig. 8 is a process flowchart of the process of establishing a prognostic prediction model for oropharyngeal/hypopharyngeal cancer in the third embodiment of the present invention.

以下說明書將提供本發明的多個實施例。可理解的是,這些實施例並非用以限制。本發明的各實施例的特徵可加以修飾、置換、組合、分離及設計以應用於其他實施例。 The following description will provide a number of embodiments of the present invention. It can be understood that these embodiments are not intended to limit. The features of each embodiment of the present invention can be modified, substituted, combined, separated, and designed to be applied to other embodiments.

圖1是本發明一實施例的遷移學習輔助預測系統1(以下簡稱預測系統1)的系統架構圖,其中預測系統1用以分析病患在進行治療前的口咽/下咽癌腫瘤的影像資料,進而預測病患在治療後是否會發生一口咽/下咽癌治療事件。如圖1所示,預測系統1可包含一小樣本資料擴充模組12、一分析模組14、一口咽/下咽癌預後預測模型15及一訓練模組18,其中口咽/下咽癌預後預測模型15是轉換自一子宮頸癌預後預測模型16。 Fig. 1 is a system architecture diagram of a migration learning assisted prediction system 1 (hereinafter referred to as prediction system 1) according to an embodiment of the present invention, wherein the prediction system 1 is used to analyze the image of the patient’s oropharyngeal/hypopharyngeal cancer tumor before treatment Data to predict whether the patient will have an oropharyngeal/hypopharyngeal cancer treatment event after treatment. As shown in Fig. 1, the prediction system 1 can include a small sample data expansion module 12, an analysis module 14, an oropharyngeal/hypopharyngeal cancer prognosis prediction model 15 and a training module 18, wherein the oropharyngeal/hypopharyngeal cancer The prognosis prediction model 15 is converted from a cervical cancer prognosis prediction model 16.

此外,在一實施例中,預測系統1可更包含一資料輸入端11,用以取得來自外部的影像資料,亦即使用者可藉由資料輸入端11將影像資料輸入至預測系統1中。需注意的是,若針對口咽/下咽癌預後預測模型15,則「影像」可例如是一口咽/下咽癌的病患在進行一治療前的口咽/下咽腫瘤的一正電子發射電腦斷層掃描(positron emission tomography,PET)影像(以下簡稱PET影像)或電腦斷層掃描(computed tomography,CT)影像(以下簡稱CT影像),其中治療可例如但不限定為合併化學與放射治療,而「影像資料」可例如是該PET影像或CT影像的感興趣體積(Volume Of Interest,VOI)範圍,但不限於此;相似地,若針對子宮頸癌預後預測模型16,則則「影像」可例如是一子宮頸癌的病患在進行一治療前的子宮頸腫瘤的PET影像或CT影像。為說明更清楚,以下段落皆將以PET影像來舉例。 In addition, in one embodiment, the prediction system 1 may further include a data input terminal 11 for obtaining image data from the outside, that is, the user can input the image data into the prediction system 1 through the data input terminal 11. It should be noted that for oropharyngeal/hypopharyngeal cancer prognosis prediction model 15, the "image" can be, for example, a positron of an oropharyngeal/hypopharyngeal cancer patient before undergoing a treatment. Transmitting positron emission tomography (PET) images (hereinafter referred to as PET images) or computed tomography (CT) images (hereinafter referred to as CT images), in which treatment can be, for example, but not limited to, combined chemical and radiotherapy, The “image data” can be, for example, the volume of interest (VOI) range of the PET image or CT image, but is not limited to this; similarly, if the cervical cancer prognosis prediction model 16 is used, then “image” It can be, for example, a PET image or CT image of a cervical tumor of a patient with cervical cancer before undergoing a treatment. To make the description clearer, the following paragraphs will use PET images as examples.

在一實施例中,當預測系統1取得一名病患的口咽/下咽腫瘤的影像資料後,小樣本資料擴充模組12可將該影像資料進行一資料擴充處理,以產生口咽/下咽腫瘤的影像資料的複數個切片影像。分析模組14可藉由口咽/下咽癌預後預測模型15對該等細部的影像資料進行一特徵分析,以取得每個切片影像對應一口咽/下咽癌治療反應事件(定義為第一治療反應事件)的一發生機率,並且分析模組14可根據一第一門檻值T1及該發生機率來決定每個切片影像是否會發生第一治療反應事件。此外,分析模組14可根據同一腫瘤每個切片影像的第一治療反應事件發生機率或會發生第一治療反應事件切片影像的數量配合一第二門檻值T2來預測該患者在接受治療後是否會發生第一治療反應事件。換言之,只要將病患在接受化學與放射治療前的口咽/下咽腫瘤的影像資料輸入至預測系統1之中,預測系統1即可預測出該病患在接受化學與放射治療後的口咽/下咽癌治療反應事件,其中口咽/下咽癌治療反應事件可例如是口咽/下咽腫瘤的復發或轉移可能性等預後事件,且不限於此。 In one embodiment, after the prediction system 1 obtains the image data of an oropharyngeal/hypopharyngeal tumor of a patient, the small sample data expansion module 12 may perform a data expansion process on the image data to generate an oropharyngeal/hypopharyngeal tumor. Multiple slice images of imaging data of hypopharyngeal tumors. The analysis module 14 can use the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15 to perform a feature analysis on the image data of these details to obtain each slice image corresponding to an oropharyngeal/hypopharyngeal cancer treatment response event (defined as the first The occurrence probability of treatment response event), and the analysis module 14 can determine whether the first treatment response event will occur in each slice image according to a first threshold T1 and the occurrence probability. In addition, the analysis module 14 can predict whether the patient will be treated according to the probability of occurrence of the first treatment response event of each slice image of the same tumor or the number of slice images that will occur the first treatment response event and a second threshold value T2. The first treatment response event will occur. In other words, as long as the image data of the patient’s oropharyngeal/hypopharyngeal tumor before receiving chemical and radiotherapy is input into the prediction system 1, the prediction system 1 can predict the patient’s oral cavity after chemical and radiotherapy. Pharyngeal/hypopharyngeal cancer treatment response events, where oropharyngeal/hypopharyngeal cancer treatment response events may be prognostic events such as the recurrence or metastasis possibility of oropharyngeal/hypopharyngeal tumors, and are not limited thereto.

本發明的特色之一在於,口咽/下咽癌預後預測模型15是轉換自子宮頸癌預後預測模型16。此外,在一實施例中,口咽/下咽癌預後預測模型15亦可被轉換回為子宮頸癌預後預測模型16,因此預測系統1亦可通用於子宮頸癌的預後預測,但並非限定。 One of the characteristics of the present invention is that the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15 is converted from the cervical cancer prognosis prediction model 16. In addition, in an embodiment, the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15 can also be converted back to the cervical cancer prognosis prediction model 16. Therefore, the prediction system 1 can also be used for the prognosis prediction of cervical cancer, but is not limited. .

以下將說明各元件的細節。 The details of each element will be described below.

預測系統1可以是一影像處理裝置,其可透過任何具有微處理器的裝置來實現,例如桌上型電腦、筆記型電腦、智慧型行動裝置、伺服器或雲端主機等類似裝置。在一實施例中,預測系統1可具備網路通訊功能,以將資料透過網路進行傳輸,其中網路通訊可以是有線網路或無線網路,因此預測系統1 亦可透過網路來取得影像資料。在一實施例中,預測系統1可由微處理器中執行一電腦程式產品20來實現,例如電腦程式產品20可具有複數個指令,該等指令可使處理器執行特殊運作,進而使處理器執行小樣本資料擴充模組12、分析模組14、口咽/下咽癌預後預測模型15、子宮頸癌預後預測模型16或訓練模組18的功能,但並非限定,例如在另一實施例中,該等模組亦可透過不同的電腦程式來實現。在一實施例中,電腦程式產品20可儲存於非暫態電腦可讀取媒體之中,例如記憶體之中,但不限於此。 The prediction system 1 can be an image processing device, which can be implemented by any device with a microprocessor, such as a desktop computer, a notebook computer, a smart mobile device, a server, a cloud host, and the like. In one embodiment, the prediction system 1 may have a network communication function to transmit data through the network. The network communication may be a wired network or a wireless network, so the prediction system 1 Image data can also be obtained through the Internet. In one embodiment, the prediction system 1 may be implemented by executing a computer program product 20 in a microprocessor. For example, the computer program product 20 may have a plurality of instructions that can enable the processor to perform special operations, and then the processor to execute The functions of the small sample data expansion module 12, the analysis module 14, the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15, the cervical cancer prognosis prediction model 16, or the training module 18, but are not limited, for example, in another embodiment , These modules can also be implemented through different computer programs. In one embodiment, the computer program product 20 can be stored in a non-transitory computer readable medium, such as a memory, but it is not limited thereto.

在一實施例中,資料輸入端11是用以取得來自外部資料的一實體連接埠,例如當預測系統1是由電腦實現時,資料輸入端11可以是電腦上的通用序列匯流排(universal serial bus,USB)介面、各種傳輸線接頭等,但並非限定。此外,資料輸入端11亦可與無線通訊晶片整合,因此能以無線傳輸的方式接收資料。 In one embodiment, the data input terminal 11 is a physical connection port used to obtain external data. For example, when the prediction system 1 is implemented by a computer, the data input terminal 11 may be a universal serial bus on the computer. bus, USB) interface, various transmission line connectors, etc., but not limited. In addition, the data input terminal 11 can also be integrated with a wireless communication chip, so that data can be received in a wireless transmission manner.

小樣本資料擴充模組12可以是一功能模組,其可透過一程式碼來實現,舉例來說,當預測系統1中的微處理器執行該程式碼時,該程式碼可使該微處理器執行所述的小樣本資料擴充模組12的功能。 The small sample data expansion module 12 can be a functional module, which can be implemented by a program code. For example, when the microprocessor in the prediction system 1 executes the program code, the program code can enable the microprocessor to execute the program code. The processor executes the functions of the small sample data expansion module 12 described above.

分析模組14可將影像資料輸入至口咽/下咽癌預後預測模型15或子宮頸癌預後預測模型16中,並使用口咽/下咽癌預後預測模型15或子宮頸癌預後預測模型16找出影像資料的每個切片影像中的多個影像特徵,接著使用口咽/下咽癌預後預測模型15或子宮頸癌預後預測模型16中的一特徵路徑來預測每個切片影像所對應的治療反應事件的發生機率。在一第一實施例中,分析模組14亦會將一切片影像的發生機率與第一門檻值T1進行比較,其中第一門檻值T1為一機率門檻,且當發生機率等於或高於第一門檻值T1時,分析模組14將該切片 影像認定為會發生治療反應事件。在一實施例中,分析模組14會統計該等切片影像中會發生治療反應事件的切片影像的數量,並將會發生治療反應事件的切片影像的數量與第二門檻值T2比較,其中第二門檻值T2為一數量門檻,且當該數量等於或高於第二門檻值T2時,分析模組14將該影像資料認定為會發生治療反應事件,亦即該影像資料的來源患者在治療後會發生治療反應事件。在一第二實施例中,分析模組14在取得每個切片影像發生治療反應事件的機率後,並不會將每個切片影像的機率與第一門檻值T1進行比較,而是直接統整每個切片影像的機率(例如計算出該等機率的平均值),再將該等機率的平均值與一第三門檻值進行比較,當該等機率的平均值高於第三門檻值時,分析模組14將該影像資料認定為會發生治療反應事件,亦即該影像資料的來源患者在治療後會發生治療反應事件。 The analysis module 14 can input the image data into the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15 or the cervical cancer prognosis prediction model 16, and use the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15 or the cervical cancer prognosis prediction model 16 Find out multiple image features in each slice image of the image data, and then use a feature path in the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15 or cervical cancer prognosis prediction model 16 to predict the corresponding image of each slice Probability of treatment response events. In a first embodiment, the analysis module 14 also compares the occurrence probability of all images with a first threshold T1, where the first threshold T1 is a probability threshold, and when the occurrence probability is equal to or higher than the first threshold T1 When a threshold value T1, the analysis module 14 slices The imaging is deemed to be a treatment response event. In one embodiment, the analysis module 14 counts the number of slice images in which treatment response events will occur in the slice images, and compares the number of slice images in which treatment response events will occur with the second threshold T2, where the first The second threshold T2 is a quantitative threshold, and when the number is equal to or higher than the second threshold T2, the analysis module 14 determines the image data as a treatment response event, that is, the source patient of the image data is being treated Treatment response events will occur later. In a second embodiment, after the analysis module 14 obtains the probability of a treatment response event in each slice image, it does not compare the probability of each slice image with the first threshold value T1, but directly integrates it. The probability of each slice image (for example, calculating the average of the probabilities), and then compare the average of the probabilities with a third threshold value. When the average of the probabilities is higher than the third threshold value, The analysis module 14 determines that the image data is subject to a treatment response event, that is, the source patient of the image data will have a treatment response event after treatment.

口咽/下咽癌預後預測模型15是利用深度卷積神經網路來分析口咽/下咽癌腫瘤的影像特徵的人工智慧模型;特別的是,口咽/下咽癌預後預測模型15是基於已訓練完成的子宮頸癌預後預測模型16進行調整而形成,而子宮頸癌預後預測模型16是基於一訓練用模型進行訓練而形成。在一實施例中,口咽/下咽癌預後預測模型15或子宮頸癌預後預測模型16是由複數演算法(例如程式碼)所組成。此外,為區分訓練前與訓練後的子宮頸癌預後預測模型16,本文中對於訓練前的子宮頸癌預後預測模型16將以「訓練用模型17」來稱之 The oropharyngeal/hypopharyngeal cancer prognosis prediction model 15 is an artificial intelligence model that uses deep convolutional neural networks to analyze the image characteristics of oropharyngeal/hypopharyngeal cancer tumors; in particular, the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15 is The cervical cancer prognosis prediction model 16 is adjusted and formed based on the completed training, and the cervical cancer prognosis prediction model 16 is formed by training based on a training model. In one embodiment, the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15 or the cervical cancer prognosis prediction model 16 is composed of a complex algorithm (such as a code). In addition, in order to distinguish the cervical cancer prognosis prediction model 16 before and after training, the cervical cancer prognosis prediction model 16 before training will be referred to as "training model 17" in this article.

訓練模組18可對一訓練用模型17進行訓練,使該訓練用模型17形成子宮頸癌預後預測模型16。訓練模組18亦可對子宮頸癌預後預測模型16進行調整,使子宮頸癌預後預測模型16轉換成口咽/下咽癌預後預測模型15。此外,訓練模組18亦可用於調整第一門檻值T1及第二門檻值T2。 The training module 18 can train a training model 17 so that the training model 17 forms a cervical cancer prognosis prediction model 16. The training module 18 can also adjust the cervical cancer prognosis prediction model 16 to convert the cervical cancer prognosis prediction model 16 into the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15. In addition, the training module 18 can also be used to adjust the first threshold value T1 and the second threshold value T2.

當子宮頸癌預後預測模型16被調整而轉換成口咽/下咽癌預後預測模型15後,口咽/下咽癌預後預測模型15即可被實際使用。接著將說明口咽/下咽癌預後預測模型15被實際使用時的情況。 After the cervical cancer prognosis prediction model 16 is adjusted and converted into the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15, the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15 can be actually used. Next, the situation when the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15 is actually used will be described.

圖2(A)是本發明一實施例的深度學習輔助預測方法的基本步驟流程圖,其用於說明預測系統1實際使用口咽/下咽癌預後預測模型15分析病患的影像資料的步驟流程,並請同時參考圖1。如圖2(A)所示,首先步驟S11被執行,資料輸入端11取得一口咽/下咽腫癌病患在接受化學與放射治療之前的口咽/下咽腫瘤的一影像資料。之後,步驟S12被執行,小樣本資料擴充模組12對影像資料進行資料擴充處理,以從產生影像資料的複數個切片影像。之後,步驟S13被執行,分析模組14使用口咽/下咽癌預後預測模型15對每個切片影像資料進行特徵分析,以取得每個切片影像對應第一治療反應事件的發生機率;之後,步驟S14被執行,分析模組14根據第一門檻值T1及每個切片影像的發生機率來決定每f個切片影像是否會發生第一治療反應事件;之後步驟S15被執行,分析模組14統計會發生第一治療反應事件的切片影像的數量(定義為一第一數量);之後步驟S16被執行,分析模組14根據第二門檻值T2與第一數量來預測患者在治療後是否會發生第一治療反應事件。在另一實施例中,當步驟S13被執行後,步驟S17被執行,分析模組14統整每個切片影像對應第一治療反應事件的機率,並根據統整後的數據(例如該等機率的平均值)與第三門檻值來預測患者在治療後是否會發生第一治療反應事件。接著將說明各步驟的細節。 FIG. 2(A) is a flowchart of the basic steps of a deep learning assisted prediction method according to an embodiment of the present invention, which is used to illustrate the steps of the prediction system 1 actually using the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15 to analyze the patient's image data Flow, and please refer to Figure 1 at the same time. As shown in FIG. 2(A), first step S11 is executed, and the data input terminal 11 obtains an image data of an oropharyngeal/hypopharyngeal tumor of an oropharyngeal/hypopharyngeal cancer patient before receiving chemical and radiotherapy. After that, step S12 is executed, and the small sample data expansion module 12 performs data expansion processing on the image data to generate a plurality of slice images of the image data. After that, step S13 is executed, and the analysis module 14 uses the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15 to perform feature analysis on each slice image data to obtain the occurrence probability of each slice image corresponding to the first treatment response event; Step S14 is executed, and the analysis module 14 determines whether the first treatment response event will occur for every f slice images according to the first threshold value T1 and the occurrence probability of each slice image; then step S15 is executed, and the analysis module 14 counts The number of slice images in which the first treatment response event will occur (defined as a first number); then step S16 is executed, and the analysis module 14 predicts whether the patient will occur after treatment based on the second threshold T2 and the first number The first treatment response event. In another embodiment, after step S13 is executed, step S17 is executed, and the analysis module 14 integrates the probability of each slice image corresponding to the first treatment response event, and according to the integrated data (such as the probability The average value of) and the third threshold value are used to predict whether the patient will have the first treatment response event after treatment. Next, the details of each step will be explained.

關於步驟S11,系統的使用者(例如醫師)可透過資料輸入端11將影像資料輸入至預測系統1之中,此處影像資料可例如是PET影像中口咽/下咽腫瘤的感興趣體積範圍(VOI),其中VOI範圍可由各種已知的方法來取得,在一實施 例中,VOI範圍須包含整個完整的腫瘤。在一實施例中,影像資料是病患在攝取示蹤劑(例如18F-FDG)後,病患的子宮頸腫瘤對示蹤劑呈現異常代謝反應的影像資料。在一實施例中,影像資料可具有複數個體積像素(voxel),且每個體積像素的像素值是指葡萄糖的標準代謝值(Standardized Uptake Value,以下簡稱SUV)。 Regarding step S11, a user of the system (such as a physician) can input image data into the prediction system 1 through the data input terminal 11, where the image data can be, for example, the volume of interest of the oropharyngeal/hypopharyngeal tumor in the PET image. (VOI), where the VOI range can be obtained by various known methods. In one embodiment, the VOI range must include the entire tumor. In one embodiment, the imaging data is the imaging data of the patient's cervical tumor showing an abnormal metabolic reaction to the tracer after the patient has taken the tracer (for example, 18 F-FDG). In one embodiment, the image data may have a plurality of voxels, and the pixel value of each voxel refers to the Standardized Uptake Value (SUV) of glucose.

關於步驟S12,當病患的影像資料被輸入至預測系統1後,小樣本資料擴充模組12可根據電腦程式產品20中的指令而對影像資料進行資料擴充處理。步驟S12的目的在於,假如可用的影像資料有限,將造成系統訓練的成果不如預期,因此在訓練前必須先擴充資料量。 Regarding step S12, after the patient's image data is input to the prediction system 1, the small sample data expansion module 12 can perform data expansion processing on the image data according to the instructions in the computer program product 20. The purpose of step S12 is that if the available image data is limited, the results of the system training will be less than expected. Therefore, the amount of data must be expanded before training.

在此先說明步驟S12的資料擴充處理的細節,請同時參考圖1至圖2(B),其中圖2(B)是本發明一實施例的資料擴充處理的流程示意圖,且該資料擴充處理是由小樣本資料擴充模組12來執行,亦即可透過預測系統1中的處理器的執行來實現整個流程。 First, the details of the data expansion processing in step S12 will be described. Please also refer to FIG. 1 to FIG. 2(B), wherein FIG. 2(B) is a schematic diagram of the data expansion processing flow of an embodiment of the present invention, and the data expansion processing It is executed by the small sample data expansion module 12, that is, the entire process can be realized by the execution of the processor in the prediction system 1.

如圖2(B)所示,首先步驟S21被執行,小樣本資料擴充模組12對輸入至預測系統1之中的影像資料(以下定義為原始影像資料)進行插值處理(interpolated)。此步驟的目的在於提升影像資料的解析度。之後,步驟S22被執行,由於前述插值處理改變影像解析度,小樣本資料擴充模組12以腫瘤在原始影像資料的空間範圍內中具有最大SUV值的體像素(SUVmax)為基礎,將插值前的SUVmax座標轉換為插值後的座標。之後,步驟S23被執行,小樣本資料擴充模組12從插值後的影像資料中取出以SUVmax作為中心點的一個感興趣體積區域(VOI)。之後,步驟S24被執行,小樣本資料擴充模組12將通過VOI中心(SUVmax)的XY平面、XZ平面及YZ平面設定為一基本切片影像組。之後,步驟S25被執行,小樣本資料擴充模組12將基本切片影像組的其中一平面以一特定方向進行逆時針旋轉, 以取得複數個擴充切片影像組。藉此步驟S12可被完成,小樣本資料擴充模組12可從單一影像資料中產生多個切片影像。 As shown in FIG. 2(B), first step S21 is executed, and the small sample data expansion module 12 interpolates the image data (hereinafter defined as the original image data) input into the prediction system 1. The purpose of this step is to improve the resolution of the image data. After that, step S22 is executed. Since the aforementioned interpolation process changes the image resolution, the small sample data expansion module 12 uses the volume pixel (SUV max ) with the largest SUV value of the tumor in the spatial range of the original image data as the basis to interpolate The previous SUV max coordinates are converted to the interpolated coordinates. After that, step S23 is executed, and the small sample data expansion module 12 extracts a volume of interest (VOI) with SUV max as the center point from the interpolated image data. After that, step S24 is executed, and the small sample data expansion module 12 sets the XY plane, XZ plane, and YZ plane passing through the VOI center (SUV max) as a basic slice image group. After that, step S25 is executed, and the small sample data expansion module 12 rotates one of the planes of the basic slice image group counterclockwise in a specific direction to obtain a plurality of extended slice image groups. In this way, step S12 can be completed, and the small sample data expansion module 12 can generate multiple slice images from a single image data.

需注意的是,步驟S12不限於僅能在訓練完成的口咽/下咽癌預後預測模型15或子宮頸癌預後預測模型16的實際使用時被執行,當訓練用模型17訓練時所需的影像資料不足時,亦可執行步驟S12將影像資料進行擴張。 It should be noted that step S12 is not limited to being executed when the trained oropharyngeal/hypopharyngeal cancer prognosis prediction model 15 or cervical cancer prognosis prediction model 16 is actually used. It is required when the training model 17 is used for training. When the image data is insufficient, step S12 can also be executed to expand the image data.

請再次參考圖2(A),關於步驟S13至S16或步驟S17,當取得多個切片影像後,分析模組14可使用口咽/下咽癌預後預測模型15可對該等切片影像進行分析。由於每個切片影像皆包含了腫瘤局部特徵,口咽/下咽癌預後預測模型15可自動分析該等切片影像中的腫瘤局部特徵,並透過特徵路徑來決定該等切片影像的輸出結果為何,藉此取得每個切片影像對應口咽/下咽癌治療事件的發生機率,並根據所有切片影像的結果預測患者是否會發生口咽/下咽癌治療事件。藉此,預測系統1可預測出該患者在接受放射性化療後的預後,以輔助使用者(例如醫師)判斷是否需進行治療方式的調整。此外,步驟S13至S16或步驟S17的說明可見於前述段落中分析模組14的說明中,故不再詳述。 Please refer to FIG. 2(A) again. Regarding steps S13 to S16 or step S17, when multiple slice images are obtained, the analysis module 14 can use the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15 to analyze the slice images . Since each slice image contains the local features of the tumor, the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15 can automatically analyze the local tumor features in the slice images, and determine the output results of the slice images through the feature path. In this way, the probability of occurrence of treatment events for oropharyngeal/hypopharyngeal cancer corresponding to each slice image is obtained, and the occurrence of oropharyngeal/hypopharyngeal cancer treatment events is predicted based on the results of all slice images. In this way, the prediction system 1 can predict the prognosis of the patient after receiving radiochemotherapy, so as to assist the user (for example, a physician) to determine whether the treatment mode needs to be adjusted. In addition, the description of steps S13 to S16 or step S17 can be found in the description of the analysis module 14 in the foregoing paragraphs, and therefore will not be described in detail.

前述段落已說明口咽/下咽癌預後預測模型15的實際使用情形,而後續段落則將針對口咽/下咽癌預後預測模型15的建立過程進行說明。 The foregoing paragraphs have described the actual use of the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15, and the subsequent paragraphs will describe the establishment process of the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15.

圖3是本發明一實施例的口咽/下咽癌預後預測模型15的建立過程的示意圖,並請同時參考圖1。如圖3所示,訓練用模型17經由訓練後可形成子宮頸癌預後預測模型16,而子宮頸癌預後預測模型16經由調整後可形成口咽/下咽癌預後預測模型15。在一實施例中,訓練用模型17所進行的訓練可例如是深度學習、機器學習,但並非限定。在一實施例中,子宮頸癌預後預測模型16所進行的調整可例如是遷移學習,但並非限定。 FIG. 3 is a schematic diagram of the establishment process of the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15 according to an embodiment of the present invention. Please also refer to FIG. 1. As shown in FIG. 3, the training model 17 can form the cervical cancer prognosis prediction model 16 after training, and the cervical cancer prognosis prediction model 16 can form the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15 after adjustment. In an embodiment, the training performed by the training model 17 may be, for example, deep learning or machine learning, but it is not limited. In an embodiment, the adjustment performed by the cervical cancer prognosis prediction model 16 may be, for example, transfer learning, but is not limited.

在一實施例中,訓練模組18可使用深度學習技術使訓練用模型17進行訓練,而當訓練用模型17訓練完成後會產生一特徵路徑,該特徵路徑可視為人工智慧模型中的神經元傳導路徑,其中每個神經元可代表一個影像特徵偵測,且每個影像特徵偵測可能會具有不同的權重值,藉此訓練用模型17被訓練完成後,即可形成子宮頸癌預後預測模型16。在一實施例中,訓練模組18可使用遷移學習技術使該子宮頸癌預後預測模型16進行部分參數的調整,進而使子宮頸癌預後預測模型16轉換成口咽/下咽癌預後預測模型15。 In one embodiment, the training module 18 can use deep learning technology to train the training model 17, and after the training of the training model 17 is completed, a characteristic path will be generated. The characteristic path can be regarded as a neuron in the artificial intelligence model. Conduction path, in which each neuron can represent an image feature detection, and each image feature detection may have a different weight value, so that after the training model 17 is trained, it can form the prognosis prediction of cervical cancer Model 16. In one embodiment, the training module 18 can use the transfer learning technology to make the cervical cancer prognosis prediction model 16 adjust some parameters, and then convert the cervical cancer prognosis prediction model 16 into an oropharyngeal/hypopharyngeal cancer prognosis prediction model 15.

在一實施例中,訓練用模型17需經歷至少一「訓練階段」來進行訓練並建立出一特徵路徑,且訓練用模型17需經歷至少一「測試階段」來測試該特徵路徑的準確度,當準確度達到需求時,才能做為後續實際使用的子宮頸癌預後預測模型16。在本發明中,訓練用模型17將經歷複數次訓練,並且每次訓練後皆會產生不同的特徵路徑,而準確度最高的特徵路徑會被設定為子宮頸癌預後預測模型16的實際特徵路徑。此外,為方便後續段落的說明,子宮頸癌預後預測模型16調整時所使用的口咽/下咽癌的影像資料定義為「第一訓練用資料」,而訓練用模型17訓練時所使用的子宮頸癌腫瘤的影像資料定義為「第二訓練用資料」。 In one embodiment, the training model 17 needs to go through at least one "training phase" to train and establish a feature path, and the training model 17 needs to go through at least one "test phase" to test the accuracy of the feature path. When the accuracy reaches the requirement, it can be used as the actual cervical cancer prognosis prediction model16. In the present invention, the training model 17 will undergo multiple trainings, and will generate different feature paths after each training, and the feature path with the highest accuracy will be set as the actual feature path of the cervical cancer prognosis prediction model 16. . In addition, for the convenience of the explanation in the subsequent paragraphs, the oropharyngeal/hypopharyngeal cancer image data used in the adjustment of the cervical cancer prognosis prediction model 16 is defined as the "first training data", and the training model 17 used in training The imaging data of cervical cancer tumors is defined as "data for second training."

接著將針對訓練用模型17、子宮頸癌預後預測模型16及口咽/下咽癌預後預測模型15的基本架構進行說明,請同時參考圖1至圖4(C),其中圖4(A)是本發明一實施例的訓練用模型17於訓練前的架構示意圖,圖4(B)是本發明一實施例的子宮頸癌預後預測模型16的架構示意圖,圖4(C)是本發明一實施例的口咽/下咽癌預後預測模型15的架構示意圖。 Next, the basic architectures of training model 17, cervical cancer prognosis prediction model 16, and oropharyngeal/hypopharyngeal cancer prognosis prediction model 15 will be described. Please also refer to Figures 1 to 4(C), of which Figure 4(A) It is a schematic diagram of the architecture of the training model 17 before training according to an embodiment of the present invention. FIG. 4(B) is a schematic diagram of the architecture of the cervical cancer prognosis prediction model 16 according to an embodiment of the present invention. FIG. 4(C) is a schematic diagram of the first embodiment of the present invention. The structure diagram of the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15 of the embodiment.

關於訓練用模型17,如圖4(A)所示,訓練用模型17的架構可包含一外部感知卷積層(mlpconv layer)152-1、一第一內部感知卷積層152-2、一第二內部感知卷積層152-3、一全局平均池化層(global average pooling layer)154及一損失函數層156。 Regarding the training model 17, as shown in Figure 4(A), the architecture of the training model 17 may include an external perceptual convolution layer (mlpconv layer) 152-1, a first internal perceptual convolution layer 152-2, and a second The internal perceptual convolution layer 152-3, a global average pooling layer 154, and a loss function layer 156.

訓練用模型17所進行的訓練是利用複數個訓練用的子宮頸癌腫瘤的影像資料(第二訓練用資料)對訓練用模型17進行複數次訓練而形成。在一實施例中,每個第二訓練用資料可包含一名子宮頸癌患者於治療前的腫瘤影像以及該名患者於治療後的子宮頸癌治療反應事件(以下定義為第二治療反應事件)的發生情形。較佳地,第二訓練用資料可預先透過小樣本資料擴充模組12進行擴充而產生多個切片影像。 The training performed by the training model 17 is formed by training the training model 17 multiple times using a plurality of training images of cervical cancer tumors (second training data). In one embodiment, each second training data may include a tumor image of a cervical cancer patient before treatment and a cervical cancer treatment response event of the patient after treatment (hereinafter defined as a second treatment response event ). Preferably, the second training data can be expanded in advance through the small sample data expansion module 12 to generate multiple slice images.

在一實施例中,外部感知卷積層152-1可用以從一個第二訓練用資料的該等切片影像中取得複數個影像特徵。第一內部感知卷積層152-2及第二內部感知卷積層152-3用以整合該等影像特徵。全局平均池化層154用以建立該等影像特徵與一第二治療反應事件之間的一關聯性(例如建立出特徵路徑),並根據該關聯性產生一正向預測預測機率(例如事件會發生的機率)及一負向預測機率(例如事件不會發生的機率),其中正向預測機率及負向預測機率可整合成第二治療反應事件的發生機率。損失函數層156可用以調整正向預測機率及負向預測機率的訓練次數權重,使兩者在訓練時被特徵路徑上被選用的機會相似,避免每次訓練的結果皆僅偏向正向預測預測機率或負向預測機率;舉例來說,若每次訓練的結果皆為「事件會發生的機率」而沒有「事件不會發生的機率」,則可能造成後續預測的結果失真,而損失函數層156的作用即是使兩者被選用到的機會相似。 In one embodiment, the external perceptual convolutional layer 152-1 can be used to obtain a plurality of image features from the slice images of a second training data. The first inner perceptual convolutional layer 152-2 and the second inner perceptual convolutional layer 152-3 are used to integrate the image features. The global average pooling layer 154 is used to establish a correlation between the image features and a second treatment response event (for example, to establish a characteristic path), and to generate a forward prediction prediction probability (for example, event meeting The probability of occurrence) and a negative prediction probability (such as the probability that the event will not occur), where the positive prediction probability and the negative prediction probability can be integrated into the occurrence probability of the second treatment response event. The loss function layer 156 can be used to adjust the weights of the number of training times for the positive prediction probability and the negative prediction probability, so that the two have similar chances of being selected on the feature path during training, avoiding the result of each training to only be biased towards the positive prediction prediction Probability or negative prediction probability; for example, if the result of each training is "the probability that the event will occur" but there is no "the probability that the event will not occur", the subsequent prediction results may be distorted and the function layer will be lost The role of 156 is to make the chances of both being selected similar.

在一實施例中,外部感知卷積層152-1、第一內部感知卷積層152-2及第二內部感知卷積層152-3可各自包含一正規化運算單元22以執行正規化運算。此處正規化運算可例如但不限定為批量正規化(Batch normalization)。正規化運算單元22可將每個多層感知卷積層152的卷積運算結果的資料進行正規化,藉此加快後續資料處理收斂的速度,使訓練過程更加穩定。此外,在一實施例中,每個多層感知卷積層152可各自包含一池化單元26以執行池化運算,此處池化運算可例如是最大池化(Maximum pooling),池化層26的作用是減少多層感知卷積層152所得的特徵地圖的尺寸,並且將特徵集中保留至縮小的特徵地圖中,廣義而言,池化層26的作用可視為從特徵地圖中將重要的特徵萃取出來,如此可強調重要的特徵。在一些實施例中,最大池化層26亦可改為平均池化層架構。 In an embodiment, the outer perceptual convolutional layer 152-1, the first inner perceptual convolutional layer 152-2, and the second inner perceptual convolutional layer 152-3 may each include a normalization operation unit 22 to perform the normalization operation. Here, the normalization operation may be, for example, but not limited to batch normalization (Batch normalization). The normalization operation unit 22 can normalize the data of the convolution operation result of each multi-layer perceptual convolution layer 152, thereby speeding up the convergence speed of subsequent data processing and making the training process more stable. In addition, in an embodiment, each multi-layer perceptual convolutional layer 152 may each include a pooling unit 26 to perform a pooling operation. Here, the pooling operation may be, for example, Maximum pooling. The function is to reduce the size of the feature map obtained by the multi-layer perceptual convolution layer 152 and to concentrate the features in the reduced feature map. In a broad sense, the role of the pooling layer 26 can be regarded as extracting important features from the feature map. This emphasizes important features. In some embodiments, the maximum pooling layer 26 can also be changed to an average pooling layer structure.

在一實施例中,外部感知卷積層152-1、第一內部感知卷積層152-2、第二內部感知卷積層152-3及全局平均池化層154可各自包含一個激活函數24(Activation function)。激活函數24可用於調整外部感知卷積層152-1、第一內部感知卷積層152-2、第二內部感知卷積層152-3或全局平均池化層154的輸出,使輸出結果產生非線性的效果,進而提升訓練用模型的預測能力。激活函數24可以是飽和激活函數(Saturated Activation function)或非飽和激活函數(Non-saturate Activation function),當激活函數24是飽和激活函數時,激活函數24可採用tanh、sigmoid等架構,而當激活函數24是非飽和激活函數時,激活函數24可採用線性整流函數(Rectified Linear Unit,ReLU)或其變化架構(例如ELU、Leaky ReLU、PReLU、RReLU或其它變化架構)。在一較佳實施例中,多層感知卷積層152的激活函數24是採用ReLU架構,而全局平均池化層154的激活函數24是採用ReLU以外的架構。 In one embodiment, the outer perceptual convolutional layer 152-1, the first inner perceptual convolutional layer 152-2, the second inner perceptual convolutional layer 152-3, and the global average pooling layer 154 may each include an activation function 24 (Activation function ). The activation function 24 can be used to adjust the output of the outer perceptual convolutional layer 152-1, the first inner perceptual convolutional layer 152-2, the second inner perceptual convolutional layer 152-3 or the global average pooling layer 154, so that the output result is non-linear Effect, and then improve the predictive ability of the training model. The activation function 24 can be a saturated activation function or a non-saturate activation function. When the activation function 24 is a saturated activation function, the activation function 24 can adopt architectures such as tanh and sigmoid. When the function 24 is a non-saturated activation function, the activation function 24 may adopt a linear rectification function (Rectified Linear Unit, ReLU) or its variation architecture (for example, ELU, Leaky ReLU, PReLU, RReLU or other variation architecture). In a preferred embodiment, the activation function 24 of the multi-layer perceptual convolution layer 152 adopts a ReLU architecture, and the activation function 24 of the global average pooling layer 154 adopts a structure other than ReLU.

如圖4(A)所示,由於訓練用模型17尚未進行訓練,因此特徵路徑尚未建立,且可用於分析的影像特徵的項目也尚未決定。在一實施例中,訓練用模型17所進行的每次「訓練」包含「從切片影像的影像特徵中找出與第二治療反應事件相關的項目」、「調整外部感知卷積層152-1、第一內部感知卷積層152-2、第二內部感知卷積層152-3、全局平均池化層(global average pooling layer)154及一損失函數層156各自的內部參數」以及「建立出與第二治療反應事件相關的影像特徵之間的特徵路徑」。此外,在一實施例中,訓練模組18亦可根據每次訓練後所產生的預測模型對於的預估準確度來設定第一門檻值或第二門檻值,但並非限定。在一實施例中,預估準確度可透過AUC曲線來評估,但並非限定。 As shown in FIG. 4(A), since the training model 17 has not been trained yet, the feature path has not been established, and the items of image features that can be used for analysis have not yet been determined. In one embodiment, each "training" performed by the training model 17 includes "finding items related to the second treatment response event from the image features of the slice image", "adjusting the external perception convolutional layer 152-1, The internal parameters of the first internal perceptual convolutional layer 152-2, the second internal perceptual convolutional layer 152-3, the global average pooling layer 154, and a loss function layer 156" and "established with the second The characteristic path between the imaging features related to the treatment response event". In addition, in an embodiment, the training module 18 can also set the first threshold or the second threshold according to the prediction accuracy of the prediction model generated after each training, but it is not limited. In one embodiment, the estimation accuracy can be evaluated through the AUC curve, but it is not limited.

關於子宮頸癌預後預測模型16,如圖4(B)所示,子宮頸癌預後預測模型16的架構亦可包含外部感知卷積層152-1、第一內部感知卷積層152-2、第二內部感知卷積層152-3、全局平均池化層154及一損失函數層156。由於子宮頸癌預後預測模型16是訓練用模型17訓練完成所形成的預測模型,因此相較於訓練用模型17,子宮頸癌預後預測模型16已具備可用於分析的影像特徵的項目29,並且特徵路徑28已建立。 Regarding the cervical cancer prognosis prediction model 16, as shown in Figure 4(B), the architecture of the cervical cancer prognosis prediction model 16 may also include an external perceptual convolution layer 152-1, a first internal perceptual convolution layer 152-2, and a second An internal perceptual convolution layer 152-3, a global average pooling layer 154, and a loss function layer 156. Since the cervical cancer prognosis prediction model 16 is a prediction model formed by the training of the training model 17, compared with the training model 17, the cervical cancer prognosis prediction model 16 already has items 29 that can be used for analysis of image features, and Feature path 28 has been established.

關於口咽/下咽癌預後預測模型15,如圖4(C)所示,口咽/下咽癌預後預測模型15的架構亦可包含外部感知卷積層152-1、第一內部感知卷積層152-2、第二內部感知卷積層152-3、全局平均池化層154及一損失函數層156。由於口咽/下咽癌預後預測模型15是透過調整子宮頸癌預後預測模型16而形成,因此其特徵路徑、外部感知卷積層152-1的內部參數、第一內部感知卷積層152-2的內部參數、第二內部感知卷積層152-3的內部參數、全局平均池化層154的內部參數及一損失函數層156的內部參數可能與子宮頸癌預後預測模型16不同。在一實 施例中,口咽/下咽癌預後預測模型15的特徵路徑28與子宮頸癌預後預測模型16的特徵路徑28可不相同,但並非限定。 Regarding the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15, as shown in Figure 4(C), the architecture of the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15 may also include an external perception convolution layer 152-1 and a first internal perception convolution layer 152-2, a second internal perceptual convolution layer 152-3, a global average pooling layer 154, and a loss function layer 156. Since the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15 is formed by adjusting the cervical cancer prognosis prediction model 16, its characteristic path, the internal parameters of the external perception convolution layer 152-1, and the first internal perception convolution layer 152-2 The internal parameters, the internal parameters of the second internal perceptual convolution layer 152-3, the internal parameters of the global average pooling layer 154, and the internal parameters of a loss function layer 156 may be different from the cervical cancer prognosis prediction model 16. One real In the embodiment, the characteristic path 28 of the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15 and the characteristic path 28 of the cervical cancer prognosis prediction model 16 may be different, but it is not limited.

接著將針對訓練用模型17經訓練而形成子宮頸癌預後預測模型16的過程進行說明。圖5是本發明一實施例的子宮頸癌預後預測模型16的建立過程的流程圖,其可透過訓練模組18來執行,其中步驟S51至S56對應「訓練階段」,步驟S57對應「測試階段」,並請同時參考圖1至圖4(C)。首先,步驟S51被執行,訓練用模型17的基本架構被設定完成,亦即外部感知卷積層152-1、內部感知卷積層152-2及152-3、全局平均池化層154及損失函數層156的數量被設定完成,其中外部感知卷積層152-1及內部感知卷積層152-2及152-3可各自包含特徵偵測器,且每個特徵偵測器是隨機產生。之後步驟S52被執行,訓練用模型17取得複數個第二訓練用資料的複數個切片影像;之後步驟S53被執行,外部感知卷積層152-1及內部感知卷積層152-2及152-3的該等特徵偵測器對該等切片影像進行卷積運算,以找出影像特徵;之後步驟S54被執行,全局平均池化層154將影像特徵強化;之後步驟S55被執行,全局平均池化層154建立出特徵路徑,其中預測路徑包含二個輸出結果,其中一個輸出結果為正向預測機率,另一個輸出結果為負向預測機率;之後步驟S56被執行,重新執行步驟S52至S55,直至完成預設的訓練次數(例如500次);之後步驟S57被執行,預測系統1使用複數個測試用的影像資料的切片影像來測試每個特徵路徑的準確度,並將準確度最高的特徵路徑設定為子宮頸癌預後預測模型16的特徵路徑。藉此,子宮頸癌預後預測模型16可被建立,並可預測出每個切片影像對於第二治療反應事件的發生機率。 Next, the process of training the training model 17 to form the cervical cancer prognosis prediction model 16 will be described. 5 is a flowchart of the establishment process of the cervical cancer prognosis prediction model 16 according to an embodiment of the present invention, which can be executed by the training module 18, where steps S51 to S56 correspond to the "training phase", and step S57 corresponds to the "test phase" ", and please refer to Figures 1 to 4(C) at the same time. First, step S51 is executed, and the basic architecture of the training model 17 is set up, that is, the outer perceptual convolution layer 152-1, the inner perceptual convolution layer 152-2 and 152-3, the global average pooling layer 154, and the loss function layer. The number of 156 is set. The outer perceptual convolutional layer 152-1 and the inner perceptual convolutional layers 152-2 and 152-3 can each include feature detectors, and each feature detector is randomly generated. Then step S52 is executed, the training model 17 obtains a plurality of slice images of the second training data; then step S53 is executed, the outer perception convolution layer 152-1 and the inner perception convolution layer 152-2 and 152-3 The feature detectors perform convolution operations on the slice images to find image features; then step S54 is executed, and the global average pooling layer 154 enhances the image features; then step S55 is executed, the global average pooling layer 154 established a feature path, where the predicted path contains two output results, one of which is the positive prediction probability, and the other output is the negative prediction probability; then step S56 is executed, and steps S52 to S55 are re-executed until completion The preset number of training times (for example, 500 times); then step S57 is executed, and the prediction system 1 uses a plurality of slice images of the image data for testing to test the accuracy of each feature path, and sets the feature path with the highest accuracy It is the characteristic path of cervical cancer prognosis prediction model 16. In this way, the cervical cancer prognosis prediction model 16 can be established, and the probability of each slice image for the second treatment response event can be predicted.

在一實施例中,當子宮頸癌預後預測模型16被建立後,訓練模組18可進一步根據步驟S57所測試出的準確度來調整第一門檻值T1或第二門檻值T2,但並非限定。 In one embodiment, after the cervical cancer prognosis prediction model 16 is established, the training module 18 may further adjust the first threshold value T1 or the second threshold value T2 according to the accuracy tested in step S57, but it is not limited .

接著將針對子宮頸癌預後預測模型16經訓練而形成口咽/下咽癌預後預測模型15的過程進行說明。圖6是本發明第一實施例的口咽/下咽癌預後預測模型15的建立過程的流程圖,並請同時參考圖1至圖5。如圖6所示,首先步驟S61被執行,子宮頸癌預後預測模型16被建立完成。之後步驟S62被執行,訓練模組18直接沿用子宮頸癌深度學習預測模型16作為口咽/下咽癌預後預測模型15。 Next, the process of forming the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15 by the cervical cancer prognosis prediction model 16 will be described. 6 is a flowchart of the establishment process of the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15 according to the first embodiment of the present invention, and please refer to FIGS. 1 to 5 at the same time. As shown in Fig. 6, first step S61 is executed, and the cervical cancer prognosis prediction model 16 is established. After that, step S62 is executed, and the training module 18 directly uses the cervical cancer deep learning prediction model 16 as the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15.

在本實施例中,口咽/下咽癌預後預測模型15是直接沿用子宮頸癌預後預測模型16,亦即不會對子宮頸癌預後預測模型16的特徵路徑、做為分析的影像特徵的項目及各元件(外部感知卷積層152-1、第一內部感知卷積層152-2、第二內部感知卷積層152-3、全局平均池化層154及損失函數層156)的內部參數進行調整,並且亦不對第一門檻值T1及第二門檻值T2(或第三門檻值)進行調整,換言之,本實施例直接使用子宮頸癌深度學習

Figure 108138497-A0305-02-0019-12
預測模型來預測口咽/下咽癌的預後。 In this embodiment, the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15 directly uses the cervical cancer prognosis prediction model 16, that is, the feature path of the cervical cancer prognosis prediction model 16 is not used as the image feature for analysis. The internal parameters of the project and each component (external perceptual convolution layer 152-1, first internal perceptual convolution layer 152-2, second internal perceptual convolution layer 152-3, global average pooling layer 154, and loss function layer 156) are adjusted , And the first threshold value T1 and the second threshold value T2 (or the third threshold value) are not adjusted. In other words, this embodiment directly uses the cervical cancer deep learning
Figure 108138497-A0305-02-0019-12
Predictive model to predict the prognosis of oropharyngeal/hypopharyngeal cancer.

圖7是本發明第二實施例的口咽/下咽癌預後預測模型15的建立過程的流程圖,並請同時參考圖1至圖5。如圖7所示,首先步驟S71被執行,子宮頸癌預後預測模型16被建立完成。之後步驟S72被執行,訓練模組18沿用子宮頸癌預後預測模型16的外部感知卷積層152-1、第一內部感知卷積層152-2、第二內部感知卷積層152-3、全局平均池化層154及該損失函數層156,並透過大量訓練用的口咽/下咽癌腫瘤的影像資料(例如包含經擴充後的切片影像)來重新調整第一門檻值T1及第二門檻值T2或重新調整第三門檻值。 FIG. 7 is a flowchart of the establishment process of the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15 according to the second embodiment of the present invention, and please refer to FIGS. 1 to 5 at the same time. As shown in Fig. 7, first step S71 is executed, and the cervical cancer prognosis prediction model 16 is established. Then step S72 is executed, and the training module 18 uses the external perception convolution layer 152-1, the first internal perception convolution layer 152-2, the second internal perception convolution layer 152-3, and the global average pool of the cervical cancer prognosis prediction model 16. The transformation layer 154 and the loss function layer 156 are used to readjust the first threshold value T1 and the second threshold value T2 through a large amount of image data of oropharyngeal/hypopharyngeal cancer tumors used for training (for example, including expanded slice images) Or readjust the third threshold.

在本實施例中,口咽/下咽癌預後預測模型15是沿用子宮頸癌預後預測模型16的特徵路徑、做為分析的影像特徵的項目及各元件(外部感知卷積層152-1、第一內部感知卷積層152-2、第二內部感知卷積層152-3、全局平均池化層154及損失函數層156)的內部參數進行調整,但會對第一門檻值T1及第二門檻值T2進行調整。此外,在一實施例中,若預測系統1是採用如圖2(A)中的步驟S17,則可改為對第三門檻值進行調整。 In this embodiment, the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15 uses the feature path of the cervical cancer prognosis prediction model 16, as the image feature items for analysis, and various components (external perception convolution layer 152-1, No. The internal parameters of an internal perceptual convolution layer 152-2, a second internal perceptual convolution layer 152-3, a global average pooling layer 154, and a loss function layer 156) are adjusted, but the first threshold value T1 and the second threshold value are adjusted T2 is adjusted. In addition, in an embodiment, if the prediction system 1 adopts step S17 in FIG. 2(A), the third threshold value can be adjusted instead.

在一實施例中,第一門檻值T1的調整方式為將口咽/下咽癌腫瘤切片影像輸入口咽/下咽癌預後預測模型15以獲得切片影像預測治療反應事件的發生機率,並且透過獲得最佳預測準確率的目標調整第一門檻值T1。 In one embodiment, the adjustment method of the first threshold T1 is to input the oropharyngeal/hypopharyngeal cancer tumor slice image into the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15 to obtain the slice image to predict the incidence of treatment response events, and pass The first threshold value T1 is adjusted for the goal of obtaining the best prediction accuracy.

在一實施例中,第二門檻值T2的調整方式為將口咽/下咽癌腫瘤切片影像輸入口咽/下咽癌預後預測模型15以獲得切片影像預測治療反應事件的發生機率以及使用調整後的第一門檻值T1判斷切片影像是否會發生治療反應事件,並且以透過獲得最佳預測準確率的目標調整第二門檻值T2。 In one embodiment, the second threshold value T2 is adjusted by inputting oropharyngeal/hypopharyngeal cancer tumor slice images into the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15 to obtain slice images to predict the incidence of treatment response events and use adjustments The subsequent first threshold T1 determines whether there will be a treatment response event in the slice image, and the second threshold T2 is adjusted with the goal of obtaining the best prediction accuracy.

圖8是本發明第三實施例的口咽/下咽癌預後預測模型15的建立過程的流程圖,並請同時參考圖1至圖5。如圖8所示,首先步驟S81被執行,子宮頸癌預後預測模型16被建立完成。之後步驟S82被執行,訓練模組18沿用子宮頸癌預後預測模型16的外部感知卷積層152-1、第一內部感知卷積層152-2、第二內部感知卷積層152-3,並透過大量訓練用的口咽/下咽癌腫瘤的影像資料(例如包含經擴充後的切片影像)來重新訓練全局平均池化層154及該損失函數層156,以及透過大量訓練用的口咽/下咽癌腫瘤的影像資料(例如包含經擴充後的切片影像)來重新調整第一門檻值T1及第二門檻值T2或重新調整第三門檻值。 FIG. 8 is a flowchart of the establishment process of the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15 according to the third embodiment of the present invention, and please refer to FIGS. 1 to 5 at the same time. As shown in Fig. 8, first step S81 is executed, and the cervical cancer prognosis prediction model 16 is established. Then step S82 is executed, and the training module 18 uses the external perceptual convolutional layer 152-1, the first internal perceptual convolutional layer 152-2, and the second internal perceptual convolutional layer 152-3 of the cervical cancer prognosis prediction model 16, and a large number of Training image data of oropharyngeal/hypopharyngeal cancer tumors (for example, including expanded slice images) to retrain the global average pooling layer 154 and the loss function layer 156, as well as the oropharyngeal/hypopharyngeal training for a large number of training The image data of the cancer tumor (for example, including the expanded slice image) is used to readjust the first threshold value T1 and the second threshold value T2 or readjust the third threshold value.

在本實施例中,口咽/下咽癌預後預測模型15將沿用子宮頸癌預後預測模型16中用於分析的影像特徵的項目,但會重新訓練全局平均池化層154,進而建立出新的特徵路徑。此外,損失函數層156的內部參數、第一門檻值T1及第二門檻值T2亦將重新進行調整。 In this embodiment, the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15 will continue to use the image feature items used for analysis in the cervical cancer prognosis prediction model 16, but will retrain the global average pooling layer 154 to create a new Characteristic path. In addition, the internal parameters of the loss function layer 156, the first threshold value T1 and the second threshold value T2 will also be re-adjusted.

在一實施例中,全局平均池化層154中可被調整的參數為將影像特徵整合為切片影像預測治療反應事件發生機率的參數。 In one embodiment, the parameter that can be adjusted in the global average pooling layer 154 is a parameter that integrates image features into slice images to predict the probability of occurrence of treatment response events.

在一實施例中,損失函數層156中可被調整的參數為其代表的一運算式。在一實施例中,子宮頸癌預後預測模型16的損失函數層156可為:1-((2 * sensitivity * Positive Predictive Value)/(sensitivity+Positive Predictive Value)),其中sensitivity為所有醫療事件發生的切片影像中被準確預測為治療反應事件發生的比例,Positive Predictive Value為被預測為治療反應事件發生的切片影像中實際為治療反應事件發生切片影像的比例。在一實施例中,口咽/下咽癌預後預測模型15的損失函數層156被調整為:sqrt(power(1-specificity,n)+power(1-sensitivity,n)),其中specificity為所有被預測為沒有治療反應事件發生的切片影像中被準確預測為治療反應事件不發生的比例,sqrt為提取平方根的運算函數,power為次方運算函數,在此實施例中,n設定為2。 In one embodiment, the adjustable parameter in the loss function layer 156 is an expression represented by it. In an embodiment, the loss function layer 156 of the cervical cancer prognosis prediction model 16 may be: 1-((2 * sensitivity * Positive Predictive Value)/(sensitivity+Positive Predictive Value)), where sensitivity is the occurrence of all medical events The proportion of slice images that are accurately predicted to be the occurrence of treatment response events, and the Positive Predictive Value is the proportion of slice images that are actually predicted to be the occurrence of treatment response events. In one embodiment, the loss function layer 156 of the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15 is adjusted to: sqrt(power(1-specificity,n)+power(1-sensitivity,n)), where specificity is all The proportion of slice images that are predicted to be no treatment response events that are accurately predicted to be no treatment response events. sqrt is an arithmetic function for extracting the square root, and power is a power arithmetic function. In this embodiment, n is set to 2.

在一實施例中,訓練模組18可自動依照一些條件門檻而選擇要採用圖6、圖7或圖8之實施例。舉例來說,訓練模組18可預先採用圖6的實施例,並且使用一些測試用的影像資料(已具備是否會發生該第一治療反應事件的資訊)來進行準確度的驗證,當準確度達到一門檻時,即繼續使用圖6的實施例。當圖6的實施例的準確度未達到門檻時,則改為採用圖7的實施例,並再次進行準確 度的驗證,當準確度達到門檻時,則繼續使用圖7的實施例。而當圖7的實施例準確度未達到門檻時,則改為採用圖8的實施例;本發明不限於此。 In an embodiment, the training module 18 can automatically select the embodiment of FIG. 6, FIG. 7, or FIG. 8 according to some condition thresholds. For example, the training module 18 may use the embodiment of FIG. 6 in advance, and use some image data for testing (information about whether the first treatment response event will occur) is used to verify the accuracy. When a threshold is reached, the embodiment of FIG. 6 is continued to be used. When the accuracy of the embodiment of FIG. 6 does not reach the threshold, the embodiment of FIG. 7 is used instead, and the accuracy is performed again. For verification of the degree of accuracy, when the accuracy reaches the threshold, the embodiment of FIG. 7 is continued to be used. When the accuracy of the embodiment of FIG. 7 does not reach the threshold, the embodiment of FIG. 8 is adopted instead; the present invention is not limited to this.

藉此,本發明的口咽/下咽癌預後預測模型15可形成。 Thereby, the prognosis prediction model 15 for oropharyngeal/hypopharyngeal cancer of the present invention can be formed.

在一實驗範例中,透過多筆實際數據驗證本發明一實施例的口咽/下咽癌預後預測模型15,其中口咽/下咽癌預後預測模型15預測為正向(亦即會發生治療反應事件)且實際結果一致的數據共有36筆,而預測為正向但實驗結果相反的有16筆,因此口咽/下咽癌預後預測模型15對於正向預測的準確度可達69%,已能因應實際需求。此外,口咽/下咽癌預後預測模型15預測為負向(亦即不會發生治療反應事件)且實際結果一致的數據共有33筆,而預測為負向但實驗結果相反的有12筆,因此口咽/下咽癌預後預測模型15對於負向預測的準確度可達到73%,亦能因應實際需求。 In an experimental example, the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15 of an embodiment of the present invention is verified through multiple actual data, wherein the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15 predicts positive (that is, treatment will occur). Response events) and the actual results are consistent with a total of 36 data, and the prediction is positive but the experimental results are opposite there are 16 cases, so the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15 has an accuracy of 69% for the positive prediction. It has been able to meet actual needs. In addition, the oropharyngeal/hypopharyngeal cancer prognosis prediction model 15 predicts negative (that is, no treatment response event will occur) and the actual results are consistent with 33 data, while the prediction is negative but the experimental results are opposite, there are 12 data. Therefore, the prognosis prediction model 15 for oropharyngeal/hypopharyngeal cancer has an accuracy of 73% for negative prediction, which can also meet actual needs.

藉此,本發明的子宮頸腫瘤影像輔助預測系統可透過小樣本資料擴充模組將少量的影像資料擴充,而無須在一開始就輸入龐大的影像資料。此外,本發明的口咽/下咽癌預後預測模型可直接沿用已訓練完成的子宮頸癌預後預測模型,或將癌預後預測模型進行部分參數調整而取得,無須重新耗費大量時間建立新的預測模型。 In this way, the cervical tumor image assisted prediction system of the present invention can expand a small amount of image data through the small sample data expansion module, without the need to input huge image data at the beginning. In addition, the oropharyngeal/hypopharyngeal cancer prognosis prediction model of the present invention can directly use the trained cervical cancer prognosis prediction model, or the cancer prognosis prediction model can be obtained by adjusting some parameters, without having to spend a lot of time to establish new predictions. model.

儘管本發明已透過上述實施例來說明,可理解的是,根據本發明的精神及本發明所主張的申請專利範圍,許多修飾及變化都是可能的。 Although the present invention has been illustrated through the above-mentioned embodiments, it is understandable that many modifications and changes are possible according to the spirit of the present invention and the scope of the patent application claimed by the present invention.

S11~S16:步驟 S11~S16: steps

Claims (11)

一種遷移學習輔助預測系統,用以分析一病患在進行一治療前的一口咽/下咽癌腫瘤的一影像資料,包含:一小樣本資料擴充模組,將該口咽/下咽癌腫瘤的該影像資料進行一資料擴充處理,以產生該口咽/下咽癌腫瘤的該影像資料的複數個切片影像;以及一分析模組,使用一口咽/下咽癌預後預測模型對每個切片影像進行一特徵分析,以取得每個切片影像對應一第一治療反應事件的一發生機率,並根據一第一門檻值及該發生機率決定每個切片影像是否會發生該第一治療反應事件,以及根據一第二門檻值及會發生該第一治療反應事件的該等切片影像的數量,預測該病患在治療後是否會發生該第一治療反應事件;其中,該口咽/下咽癌預後預測模型是由一子宮頸癌預後預測模型透過一遷移學習轉換而成。 A migration learning auxiliary prediction system for analyzing an image data of an oropharyngeal/hypopharyngeal cancer tumor of a patient before a treatment, including: a small sample data expansion module for the oropharyngeal/hypopharyngeal cancer tumor Perform a data expansion process on the image data to generate a plurality of slice images of the image data of the oropharyngeal/hypopharyngeal cancer tumor; and an analysis module that uses an oropharyngeal/hypopharyngeal cancer prognosis prediction model for each slice The image performs a feature analysis to obtain a probability of occurrence of a first treatment response event corresponding to each slice image, and determines whether the first treatment response event will occur in each slice image according to a first threshold value and the occurrence probability, And based on a second threshold and the number of slice images in which the first treatment response event will occur, predict whether the patient will have the first treatment response event after treatment; wherein, the oropharyngeal/hypopharyngeal cancer The prognosis prediction model is converted from a cervical cancer prognosis prediction model through a transfer learning. 如請求項1所述的遷移學習輔助預測系統,其中該子宮頸癌預後預測模型是由一訓練用模型經歷複數次訓練及測試而形成,其中該等訓練是利用複數個訓練用的子宮頸癌腫瘤的影像資料對該訓練用模型進行複數次訓練而形成,其中該訓練用模型包含:一外部感知卷積層(mlpconv layer),用以從一個訓練用的子宮頸癌腫瘤的該影像資料中取得複數個影像特徵;至少一內部感知卷積層,用以整合該等影像特徵;一全局平均池化層(global average pooling layer),用以建立該等影像特徵與一第二治療反應事件之間的一關聯性,並根據該關聯性產生一正向預測機率或一負向預測機率,其中該正向預測機率或該負向預測機率對應該第二治療反應事件的一發生機率;以及 一損失函數層,用以調整該正向預測機率及該向負預測機率的一訓練次數權重。 The transfer learning assisted prediction system according to claim 1, wherein the cervical cancer prognosis prediction model is formed by a training model undergoing multiple training and testing, wherein the training uses multiple training cervical cancers The image data of the tumor is formed by training the training model multiple times, wherein the training model includes: an external perception convolution layer (mlpconv layer), which is used to obtain the image data of a cervical cancer tumor for training A plurality of image features; at least one internal perceptual convolutional layer to integrate the image features; a global average pooling layer to establish the relationship between the image features and a second treatment response event A correlation, and a positive prediction probability or a negative prediction probability is generated according to the correlation, wherein the positive prediction probability or the negative prediction probability corresponds to a probability of occurrence of the second treatment response event; and A loss function layer for adjusting a weight of training times for the positive prediction probability and the negative prediction probability. 如請求項2所述的遷移學習輔助預測系統,其中該口咽/下咽癌預後預測模型是直接沿用該子宮頸癌的預後預測模型。 The migration learning assisted prediction system according to claim 2, wherein the oropharyngeal/hypopharyngeal cancer prognosis prediction model directly uses the cervical cancer prognosis prediction model. 如請求項2所述的遷移學習輔助預測系統,其中該口咽/下咽癌預後預測模型是直接沿用該子宮頸癌預後預測模型的該外部感知卷積層、該至少一內部感知卷積層、該全局平均池化層及該損失函數層,並透過大量訓練用的口咽/下咽癌腫瘤的影像資料重新調整該第一門檻值及該第二門檻值。 The transfer learning assisted prediction system according to claim 2, wherein the oropharyngeal/hypopharyngeal cancer prognosis prediction model directly uses the external perceptual convolutional layer, the at least one internal perceptual convolutional layer, and the cervical cancer prognostic prediction model. The global average pooling layer and the loss function layer are used to readjust the first threshold value and the second threshold value through a large amount of image data of oropharyngeal/hypopharyngeal cancer tumors used for training. 如請求項2所述的遷移學習輔助預測系統,其中該口咽/下咽癌預後預測模型是直接沿用該子宮頸癌預後預測模型的該外部感知卷積層及該至少一內部感知卷積層,並透過大量訓練用的口咽/下咽癌腫瘤的影像資料重新訓練該全局平均池化層及該損失函數層,並重新調整該第一門檻值及該第二門檻值。 The transfer learning assisted prediction system according to claim 2, wherein the oropharyngeal/hypopharyngeal cancer prognosis prediction model directly uses the external perceptual convolutional layer and the at least one internal perceptual convolutional layer of the cervical cancer prognostic prediction model, and Retrain the global average pooling layer and the loss function layer through a large amount of image data of oropharyngeal/hypopharyngeal cancer tumors used for training, and readjust the first threshold value and the second threshold value. 一種遷移學習輔助預測方法,用以分析一病患在進行一治療前的一口咽/下咽腫瘤的一影像資料,該方法是透過一深度學習輔助預測系統來執行,且該方法包含步驟:透過一小樣本資料擴充模組,該口咽/下咽癌腫瘤的該影像資料進行一資料擴充處理,以產生該口咽/下咽癌腫瘤的該影像資料的複數個切片影像;透過一分析模組,使用一口咽/下咽癌預後預測模型對每個切片影像進行一特徵分析,以取得每個切片影像對應一第一治療反應事件的一發生機率;透過該分析模組,根據一第一門檻值及該發生機率決定每個切片影像是否會發生該第一治療反應事件;以及透過該分析模組,根據一第二門檻值及會發生該第一治療反應事件的該等切片影像的數量,預測該病患在治療後是否會發生該第一治療反應事件; 其中,該口咽/下咽癌預後預測模型是由一子宮頸癌預後預測模型透過一遷移學習轉換而成。 A transfer learning-assisted prediction method is used to analyze an image data of an oropharyngeal/hypopharyngeal tumor of a patient before undergoing a treatment. The method is implemented through a deep learning-assisted prediction system, and the method includes the steps: A small sample data expansion module, the image data of the oropharyngeal/hypopharyngeal cancer tumor undergoes a data expansion process to generate multiple slice images of the image data of the oropharyngeal/hypopharyngeal cancer tumor; through an analysis module Group, using an oropharyngeal/hypopharyngeal cancer prognosis prediction model to perform a feature analysis on each slice image to obtain a probability of occurrence of each slice image corresponding to a first treatment response event; through the analysis module, according to a first The threshold value and the probability of occurrence determine whether the first treatment response event will occur in each slice image; and through the analysis module, according to a second threshold value and the number of slice images in which the first treatment response event will occur , Predict whether the patient will have the first treatment response event after treatment; Among them, the oropharyngeal/hypopharyngeal cancer prognosis prediction model is converted from a cervical cancer prognosis prediction model through a transfer learning. 如請求項6所述的遷移學習輔助預測方法,其中該子宮頸癌預後預測模型是由一訓練用模型經歷複數次訓練及測試而形成,其中該等訓練是利用複數個訓練用子宮頸癌腫瘤的影像資料對該訓練用模型進行複數次訓練而形成,其中該訓練用模型包含:一外部感知卷積層(mlpconv layer),用以從一訓練用子宮頸癌腫瘤的該影像資料中取得複數個原始特徵;至少一內部感知卷積層,用以整合該等原始特徵;一全局平均池化層(global average pooling layer),用以建立該等原始特徵與一第二治療反應事件之間的一關聯性,並根據該關聯性產生一正向預測機率及一負向預測機率,其中該正向預測機率及該負向預測機率被整合為該第二治療反應事件的一發生機率;以及一損失函數層,用以調整該正向預測機率及該向負預測機率的一訓練次數權重。 The migration learning assisted prediction method according to claim 6, wherein the cervical cancer prognosis prediction model is formed by a training model undergoing multiple training and testing, wherein the training uses multiple training cervical cancer tumors The training model is formed by performing multiple training on the image data of the training model, wherein the training model includes: an external perception convolution layer (mlpconv layer) for obtaining a plurality of images from the image data of a training cervical cancer tumor Original features; at least one internal perceptual convolution layer to integrate the original features; a global average pooling layer to establish a correlation between the original features and a second treatment response event And generate a positive prediction probability and a negative prediction probability according to the correlation, wherein the positive prediction probability and the negative prediction probability are integrated into an occurrence probability of the second treatment response event; and a loss function The layer is used to adjust a weight of training times for the positive prediction probability and the negative prediction probability. 如請求項7所述的遷移學習輔助預測方法,其中該遷移學習包含步驟:直接沿用該子宮頸癌預後預測模型。 The transfer learning assisted prediction method according to claim 7, wherein the transfer learning includes the step of directly using the cervical cancer prognosis prediction model. 如請求項7所述的遷移學習輔助預測方法,其中該遷移學習包含步驟:直接沿用該子宮頸癌預後預測模型的該外部感知卷積層、該至少一內部感知卷積層、該全局平均池化層及該損失函數層;以及透過大量訓練用的口咽/下咽癌腫瘤的影像資料重新調整該第一門檻值及該第二門檻值。 The transfer learning-assisted prediction method according to claim 7, wherein the transfer learning includes the step of directly using the external perceptual convolutional layer, the at least one internal perceptual convolutional layer, and the global average pooling layer of the cervical cancer prognosis prediction model And the loss function layer; and readjust the first threshold value and the second threshold value through a large amount of image data of oropharyngeal/hypopharyngeal cancer tumors used for training. 如請求項7所述的遷移學習輔助預測方法,其中該遷移學習包含步驟:直接沿用該子宮頸癌預後預測模型的該外部感知卷積層及該至少一內部感知卷積層;以及透過大量訓練用的口咽/下咽癌腫瘤的影像資料重新訓練該全局平均池化層及該損失函數層,並重新調整該第一門檻值及該第二門檻值。 The transfer learning assisted prediction method according to claim 7, wherein the transfer learning comprises the steps of: directly using the external perceptual convolutional layer and the at least one internal perceptual convolutional layer of the cervical cancer prognosis prediction model; and using a large amount of training The image data of the oropharyngeal/hypopharyngeal cancer tumor retrains the global average pooling layer and the loss function layer, and readjusts the first threshold value and the second threshold value. 一種電腦程式產品,儲存於一非暫態電腦可讀取媒體之中,用以使遷移學習輔助預測系統運作,其中該遷移學習輔助預測系統是用以分析一病患在進行一治療前的一口咽/下咽癌腫瘤的一影像資料,其中該電腦程式產品包含:一指令,透過一小樣本資料擴充模組,該口咽/下咽癌腫瘤的該影像資料進行一資料擴充處理,以產生該口咽/下咽癌腫瘤的該影像資料的複數個切片影像;一指令,透過一分析模組,使用一口咽/下咽癌預後預測模型對每個切片影像進行一特徵分析,以取得每個切片影像對應一第一治療反應事件的一發生機率;一指令,透過該分析模組,根據一第一門檻值及該發生機率決定每個切片影像是否會發生該第一治療反應事件;以及一指令,透過該分析模組,根據一第二門檻值及會發生該第一治療反應事件的該等切片影像的數量,預測該病患在治療後是否會發生該第一治療反應事件其中,該口咽/下咽癌預後預測模型是由一子宮頸癌預後預測模型透過一遷移學習轉換而成。 A computer program product stored in a non-transitory computer-readable medium for the operation of a transfer learning assisted prediction system, wherein the transfer learning assisted prediction system is used to analyze a patient’s mouth before a treatment An image data of a pharynx/hypopharyngeal cancer tumor, wherein the computer program product includes: a command, through a small sample data expansion module, the image data of the oropharyngeal/hypopharyngeal cancer tumor undergoes a data expansion process to generate A plurality of slice images of the image data of the oropharyngeal/hypopharyngeal cancer tumor; an instruction, through an analysis module, uses an oropharyngeal/hypopharyngeal cancer prognosis prediction model to perform a feature analysis on each slice image to obtain each Each slice image corresponds to a probability of occurrence of a first treatment response event; a command, through the analysis module, determines whether the first treatment response event will occur in each slice image according to a first threshold value and the occurrence probability; and A command to predict whether the patient will have the first treatment response event after treatment based on a second threshold value and the number of slice images in which the first treatment response event will occur through the analysis module. The oropharyngeal/hypopharyngeal cancer prognosis prediction model is converted from a cervical cancer prognosis prediction model through a transfer learning.
TW108138497A 2019-10-25 2019-10-25 Transfer learning aided prediction system, method and computer program product thereof TWI726459B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108138497A TWI726459B (en) 2019-10-25 2019-10-25 Transfer learning aided prediction system, method and computer program product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108138497A TWI726459B (en) 2019-10-25 2019-10-25 Transfer learning aided prediction system, method and computer program product thereof

Publications (2)

Publication Number Publication Date
TWI726459B true TWI726459B (en) 2021-05-01
TW202117746A TW202117746A (en) 2021-05-01

Family

ID=77020620

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108138497A TWI726459B (en) 2019-10-25 2019-10-25 Transfer learning aided prediction system, method and computer program product thereof

Country Status (1)

Country Link
TW (1) TWI726459B (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018504674A (en) * 2014-12-03 2018-02-15 ベンタナ メディカル システムズ, インコーポレイテッド Computational pathology system and method for early cancer prediction
US20190066835A1 (en) * 2017-05-25 2019-02-28 Enlitic, Inc. Chest x-ray differential diagnosis system
CN109858562A (en) * 2019-02-21 2019-06-07 腾讯科技(深圳)有限公司 A kind of classification method of medical image, device and storage medium
TW201922174A (en) * 2017-10-30 2019-06-16 公益財團法人癌症研究會 Image diagnosis assistance apparatus, data collection method, image diagnosis assistance method, and image diagnosis assistance program
CN110021425A (en) * 2019-01-31 2019-07-16 湖南品信生物工程有限公司 A kind of relatively detector and its construction method and cervical cancer cell detection method
CN110097974A (en) * 2019-05-15 2019-08-06 天津医科大学肿瘤医院 A kind of nasopharyngeal carcinoma far-end transfer forecasting system based on deep learning algorithm
CN110111895A (en) * 2019-05-15 2019-08-09 天津医科大学肿瘤医院 A kind of method for building up of nasopharyngeal carcinoma far-end transfer prediction model
CN110223352A (en) * 2019-06-14 2019-09-10 浙江明峰智能医疗科技有限公司 A kind of medical image scanning automatic positioning method based on deep learning
US10438354B2 (en) * 2016-11-23 2019-10-08 General Electric Company Deep learning medical systems and methods for medical procedures

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018504674A (en) * 2014-12-03 2018-02-15 ベンタナ メディカル システムズ, インコーポレイテッド Computational pathology system and method for early cancer prediction
US10438354B2 (en) * 2016-11-23 2019-10-08 General Electric Company Deep learning medical systems and methods for medical procedures
US20190066835A1 (en) * 2017-05-25 2019-02-28 Enlitic, Inc. Chest x-ray differential diagnosis system
TW201922174A (en) * 2017-10-30 2019-06-16 公益財團法人癌症研究會 Image diagnosis assistance apparatus, data collection method, image diagnosis assistance method, and image diagnosis assistance program
CN110021425A (en) * 2019-01-31 2019-07-16 湖南品信生物工程有限公司 A kind of relatively detector and its construction method and cervical cancer cell detection method
CN109858562A (en) * 2019-02-21 2019-06-07 腾讯科技(深圳)有限公司 A kind of classification method of medical image, device and storage medium
CN110097974A (en) * 2019-05-15 2019-08-06 天津医科大学肿瘤医院 A kind of nasopharyngeal carcinoma far-end transfer forecasting system based on deep learning algorithm
CN110111895A (en) * 2019-05-15 2019-08-09 天津医科大学肿瘤医院 A kind of method for building up of nasopharyngeal carcinoma far-end transfer prediction model
CN110223352A (en) * 2019-06-14 2019-09-10 浙江明峰智能医疗科技有限公司 A kind of medical image scanning automatic positioning method based on deep learning

Also Published As

Publication number Publication date
TW202117746A (en) 2021-05-01

Similar Documents

Publication Publication Date Title
TWI681406B (en) Deep learning of tumor image-aided prediction of prognosis of patients with uterine cervical cancer system, method and computer program product thereof
CN111126574B (en) Method, device and storage medium for training machine learning model based on endoscopic image
US11941807B2 (en) Artificial intelligence-based medical image processing method and medical device, and storage medium
US20210233244A1 (en) System and method for image segmentation using a joint deep learning model
US20210312242A1 (en) Synthetically Generating Medical Images Using Deep Convolutional Generative Adversarial Networks
KR102067340B1 (en) Method for generating breast masses according to the lesion characteristics and the system thereof
Zhao et al. D2a u-net: Automatic segmentation of covid-19 lesions from ct slices with dilated convolution and dual attention mechanism
Sun et al. ISSMF: Integrated semantic and spatial information of multi-level features for automatic segmentation in prenatal ultrasound images
CN111354442A (en) Tumor image deep learning assisted cervical cancer patient prognosis prediction system and method
CN115641957A (en) New auxiliary chemotherapy curative effect prediction method and system based on image genomics
Bansal et al. Multi-objective genetic algorithm based deep learning model for automated COVID-19 detection using medical image data
TWI726459B (en) Transfer learning aided prediction system, method and computer program product thereof
Tang et al. Lesion segmentation and RECIST diameter prediction via click-driven attention and dual-path connection
Shanid et al. Lung cancer detection from CT images using salp-elephant optimization-based deep learning
TW202027093A (en) Computer-aided recognition system for treatment response of rectal cancer, and its method and computer program product
WO2020258507A1 (en) X-ray film classification method and apparatus, terminal, and storage medium
CN112712875B (en) Auxiliary prediction system and method for transfer learning
Velichko et al. A Comprehensive Review of Deep Learning Approaches for Magnetic Resonance Imaging Liver Tumor Analysis
Dodia et al. A novel bi-level lung cancer classification system on CT scans
Jin et al. Metadata and Image Features Co-Aware Personalized Federated Learning for Smart Healthcare
CN111382756A (en) Image computer-assisted colorectal cancer treatment response prediction system, method and computer program
Kurasova et al. Semi-Supervised Learning with Pseudo-Labeling for Pancreatic Cancer Detection on CT Scans
CN115170568B (en) Automatic segmentation method and system for rectal cancer image and chemoradiotherapy response prediction system
Shanshool et al. Improved accuracy of pulmonary nodule classification on LIDC-IDRI dataset using deep learning
Zeng et al. Label Diffusion Graph Learning network for semi-supervised breast histological image recognition