TWI725449B - Metal-dielectric optical filter, sensor device, and fabrication method - Google Patents

Metal-dielectric optical filter, sensor device, and fabrication method Download PDF

Info

Publication number
TWI725449B
TWI725449B TW108121126A TW108121126A TWI725449B TW I725449 B TWI725449 B TW I725449B TW 108121126 A TW108121126 A TW 108121126A TW 108121126 A TW108121126 A TW 108121126A TW I725449 B TWI725449 B TW I725449B
Authority
TW
Taiwan
Prior art keywords
sensor
filter
optical filter
optical
filters
Prior art date
Application number
TW108121126A
Other languages
Chinese (zh)
Other versions
TW201937208A (en
Inventor
喬治 J 歐肯佛斯
提姆 葛斯塔弗森
傑佛瑞 詹姆斯 庫納
馬克斯 畢格
瑞察 A 二世 布萊迪
Original Assignee
美商唯亞威方案公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商唯亞威方案公司 filed Critical 美商唯亞威方案公司
Priority to TW108121126A priority Critical patent/TWI725449B/en
Publication of TW201937208A publication Critical patent/TW201937208A/en
Application granted granted Critical
Publication of TWI725449B publication Critical patent/TWI725449B/en

Links

Images

Abstract

An optical filter, a sensor device including the optical filter, and a method of fabricating the optical filter are provided. The optical filter includes one or more dielectric layers and one or more metal layers stacked in alternation. The metal layers are intrinsically protected by the dielectric layers. In particular, the metal layers have tapered edges that are protectively covered by one or more of the dielectric layers.

Description

金屬介電光學濾光器、感測器裝置及製造方法Metal dielectric optical filter, sensor device and manufacturing method

本發明係關於一種金屬介電光學濾光器、一種包含此一光學濾光器之感測器裝置及一種製造此一光學濾光器之方法。The present invention relates to a metal dielectric optical filter, a sensor device including the optical filter, and a method of manufacturing the optical filter.

光學感測器在光學感測器裝置(諸如影像感測器、環境光感測器、近接感測器、色相感測器及UV感測器)中用來將光學信號轉換成電信號,從而允許光學信號之偵測或影像捕捉。一光學感測器通常包含一或多個感測器元件及安置於該一或多個感測器元件上之一或多個光學濾光器。 例如,一彩色影像感測器包含安置成一陣列(即,一彩色濾光器陣列(CFA))之複數個彩色濾光器。CFA包含具有不同彩色通帶之不同類型的彩色濾光器,例如紅色、綠色及藍色(RGB)濾光器。 習知地,使用染料形成之吸收濾光器係用作彩色濾光器。不幸的是,此等基於染料的彩色濾光器具有相對寬的彩色通帶,從而導致較不閃亮的色彩。替代地,由堆疊式介電層形成之二向色濾光器(即,干擾濾光器)可用作彩色濾光器。此等全介電彩色濾光器具有較高的透射級及較窄的彩色通帶,從而導致較明亮及較閃亮的色彩。然而,全介電彩色濾光器之彩色通帶經歷伴有入射角變化之相對大的中心波長偏移,從而導致非期望的色彩偏移。 此外,全介電彩色濾光器通常包含大量堆疊式介電層且係相對較厚。因此,全介電彩色濾光器係昂貴的且難以製造。特定言之,全介電彩色濾光器難以進行化學蝕刻。因此,較佳的是將剝離製程用於圖案化。用於圖案化CFA中之全介電彩色濾光器之剝離製程之實例在1992年6月9日發佈之Hanrahan之美國專利第5,120,622號中、在1998年1月27日發佈之Buchsbaum之美國專利第5,711,889號中、在2001年5月29日發佈之Edlinger等人之美國專利第6,238,583號中、在2003年10月28日發佈之Buchsbaum等人之美國專利第6,638,668號中及在2010年1月19日發佈之Buchsbaum等人之美國專利第7,648,808號中揭示。然而,剝離製程通常限於濾光器間隔為濾光器高度之約兩倍,從而難以達成適於較小的彩色影像感測器之全介電CFA。 除透射彩色通帶中之可見光外,基於染料的彩色濾光器及全介電彩色濾光器兩者亦透射紅外(IR)光,其造成雜訊。因此,一彩色影像感測器通常亦包含安置於CFA上之一IR阻斷濾光器。IR阻斷濾光器亦用於在可見光譜範圍中操作之其他光學感測器裝置。習知地,由有色玻璃形成之吸收濾光器或由堆疊式介電層形成之二向色濾光器係用作IR阻斷濾光器。替代地,由堆疊式金屬及介電層形成之誘導透射濾光器可用作IR阻斷濾光器。金屬介電IR阻斷濾光器之實例在1997年7月15日發佈之Sakamoto等人之美國專利第5,648,653號中及在2006年11月7日發佈之Ockenfuss等人之美國專利第7,133,197號中揭示。 為了避免一IR阻斷濾光器之使用,由堆疊式金屬及介電層形成之誘導透射濾光器可用作彩色濾光器。金屬介電光學濾光器(諸如金屬介電彩色濾光器)固有地進行IR阻斷。通常,金屬介電彩色濾光器具有相對窄的彩色通帶,其不會使波長明顯偏移但伴有入射角變化。此外,金屬介電彩色濾光器通常遠薄於全介電彩色濾光器。金屬介電彩色濾光器之實例在1990年12月25日發佈之McGuckin等人之美國專利第4,979,803號中、在2000年2月29日發佈之Wang之美國專利第6,031,653號中、在2009年12月10日公開之Gidon等人之美國專利申請案第2009/0302407號中、在2011年8月25日公開之Grand之美國專利申請案第2011/0204463號中及在2012年4月12日公開之Gidon等人之美國專利申請案第2012/0085944號中揭示。 通常,金屬介電光學濾光器(諸如金屬介電彩色濾光器)中之金屬層係銀層或鋁層,其等在環境中係不穩定的且在暴露於甚至少量水或硫時亦會變質。化學蝕刻銀層將銀層之邊緣暴露於環境,從而使其變質。因此,在多數例項中,CFA中之金屬介電彩色濾光器係藉由僅調整介電層之厚度以選擇用於金屬介電彩色濾光器之不同彩色通帶而圖案化。換言之,需要具有不同彩色通帶之不同類型的金屬介電彩色濾光器具有彼此數目相同的銀層及彼此厚度相同的銀層。不幸的是,此等要求嚴重限制用於金屬介電彩色濾光器之可能光學設計。 本發明提供不具有此等要求之金屬介電光學濾光器,其等尤其適用於影像感測器及其他感測器裝置,諸如環境光感測器、近接感測器、色相感測器及UV感測器。Optical sensors are used in optical sensor devices (such as image sensors, ambient light sensors, proximity sensors, hue sensors, and UV sensors) to convert optical signals into electrical signals, thereby Allow optical signal detection or image capture. An optical sensor usually includes one or more sensor elements and one or more optical filters disposed on the one or more sensor elements. For example, a color image sensor includes a plurality of color filters arranged in an array (ie, a color filter array (CFA)). CFA includes different types of color filters with different color passbands, such as red, green, and blue (RGB) filters. Conventionally, absorption filters formed using dyes are used as color filters. Unfortunately, these dye-based color filters have relatively wide color passbands, resulting in less shiny colors. Alternatively, a dichroic filter (ie, interference filter) formed of stacked dielectric layers may be used as a color filter. These all-dielectric color filters have higher transmission levels and narrower color passbands, resulting in brighter and shinier colors. However, the color passband of the all-dielectric color filter undergoes a relatively large center wavelength shift accompanied by a change in the incident angle, resulting in an undesirable color shift. In addition, all-dielectric color filters usually include a large number of stacked dielectric layers and are relatively thick. Therefore, full dielectric color filters are expensive and difficult to manufacture. In particular, it is difficult to chemically etch a full dielectric color filter. Therefore, it is preferable to use the lift-off process for patterning. Examples of the lift-off process for the full dielectric color filter used in patterned CFA are in Hanrahan's U.S. Patent No. 5,120,622 issued on June 9, 1992, and Buchsbaum's U.S. Patent issued on January 27, 1998 No. 5,711,889, Edlinger et al. U.S. Patent No. 6,238,583 issued on May 29, 2001, Buchsbaum et al. U.S. Patent No. 6,638,668 issued on October 28, 2003, and in January 2010 It is disclosed in US Patent No. 7,648,808 of Buchsbaum et al., issued on the 19th. However, the lift-off process is usually limited to a filter interval of approximately twice the height of the filter, which makes it difficult to achieve a full dielectric CFA suitable for smaller color image sensors. In addition to transmitting visible light in the color passband, both dye-based color filters and fully dielectric color filters also transmit infrared (IR) light, which causes noise. Therefore, a color image sensor usually also includes an IR blocking filter placed on the CFA. IR blocking filters are also used in other optical sensor devices operating in the visible spectrum. Conventionally, absorption filters formed of colored glass or dichroic filters formed of stacked dielectric layers are used as IR blocking filters. Alternatively, an induced transmission filter formed of stacked metal and dielectric layers can be used as an IR blocking filter. Examples of metal dielectric IR blocking filters are in U.S. Patent No. 5,648,653 of Sakamoto et al. issued on July 15, 1997 and U.S. Patent No. 7,133,197 of Okenfuss et al. issued on November 7, 2006. reveal. In order to avoid the use of an IR blocking filter, an induced transmission filter formed of stacked metal and dielectric layers can be used as a color filter. Metal dielectric optical filters, such as metal dielectric color filters, inherently perform IR blocking. Generally, a metal dielectric color filter has a relatively narrow color passband, which does not significantly shift the wavelength but is accompanied by a change in the incident angle. In addition, metal dielectric color filters are generally much thinner than full dielectric color filters. Examples of metal dielectric color filters are in McGuckin et al.'s U.S. Patent No. 4,979,803 issued on December 25, 1990, in Wang's U.S. Patent No. 6,031,653 issued on February 29, 2000, and in 2009 In the US Patent Application No. 2009/0302407 of Gidon et al. published on December 10, in the US Patent Application No. 2011/0204463 of Grand published on August 25, 2011, and on April 12, 2012 It is disclosed in the published US Patent Application No. 2012/0085944 of Gidon et al. Generally, the metal layer in a metal dielectric optical filter (such as a metal dielectric color filter) is a silver layer or an aluminum layer, which is unstable in the environment and is also exposed to even small amounts of water or sulfur. Will go bad. Chemically etched the silver layer exposes the edge of the silver layer to the environment, thereby deteriorating it. Therefore, in most cases, the metal dielectric color filter in the CFA is patterned by only adjusting the thickness of the dielectric layer to select different color passbands for the metal dielectric color filter. In other words, different types of metal dielectric color filters with different color passbands are required to have the same number of silver layers and the same thickness of each other. Unfortunately, these requirements severely limit the possible optical designs for metal dielectric color filters. The present invention provides metal dielectric optical filters that do not have these requirements. They are particularly suitable for image sensors and other sensor devices, such as ambient light sensors, proximity sensors, hue sensors, and UV sensor.

據此,本發明係關於一種安置於一基板上之光學濾光器,其包括:一或多個介電層;及一或多個金屬層,其等係在基板上與該一或多個介電層交替堆疊,其中該一或多個金屬層之各者具有一錐形邊緣,該錐形邊緣在光學濾光器之一周邊處沿著該金屬層之一整個周邊延伸且沿著該金屬層之該整個周邊被該一或多個介電層之至少一者保護性地覆蓋。 本發明亦係關於一種感測器裝置,其包括:一或多個感測器元件;及一或多個光學濾光器,其等安置於該一或多個感測器元件上,其中該一或多個光學濾光器之各者包含:一或多個介電層;及一或多個金屬層,其等係與該一或多個介電層交替堆疊,其中該一或多個金屬層之各者具有一錐形邊緣,該錐形邊緣在光學濾光器之一周邊處沿著該金屬層之一整個周邊延伸且沿著該金屬層之該整個周邊被該一或多個介電層之至少一者保護性地覆蓋。 本發明進一步係關於一種製造一光學濾光器之方法,該方法包括:提供一基板;將一光阻層塗覆至基板上;圖案化光阻層以使基板之一濾光器區露出,藉此在濾光器區周圍的圖案化光阻層中形成一懸伸部;將一多層堆疊沈積至圖案化光阻層及基板之濾光器區上,該多層堆疊包含與一或多個介電層交替堆疊之一或多個金屬層;移除圖案化光阻層及圖案化光阻層上之多層堆疊之一部分,使得留在基板之濾光器區上的多層堆疊之一部分形成光學濾光器,其中光學濾光器中之一或多個金屬層之各者具有一錐形邊緣,該錐形邊緣在光學濾光器之一周邊處沿著該金屬層之一整個周邊延伸且沿著該金屬層該整個周邊被該一或多個介電層之至少一者保護性地覆蓋。Accordingly, the present invention relates to an optical filter arranged on a substrate, which includes: one or more dielectric layers; and one or more metal layers, etc., on the substrate and the one or more The dielectric layers are alternately stacked, wherein each of the one or more metal layers has a tapered edge extending along the entire periphery of one of the metal layers at a periphery of the optical filter and along the The entire periphery of the metal layer is protectively covered by at least one of the one or more dielectric layers. The present invention also relates to a sensor device, which includes: one or more sensor elements; and one or more optical filters arranged on the one or more sensor elements, wherein the Each of the one or more optical filters includes: one or more dielectric layers; and one or more metal layers, which are alternately stacked with the one or more dielectric layers, wherein the one or more Each of the metal layers has a tapered edge that extends along an entire periphery of the metal layer at a periphery of the optical filter and is surrounded by the one or more At least one of the dielectric layers is protectively covered. The present invention further relates to a method of manufacturing an optical filter, the method comprising: providing a substrate; coating a photoresist layer on the substrate; patterning the photoresist layer to expose a filter region of the substrate, Thereby, an overhang is formed in the patterned photoresist layer around the filter area; a multilayer stack is deposited on the patterned photoresist layer and the filter area of the substrate, the multilayer stack includes and one or more A dielectric layer is alternately stacked with one or more metal layers; the patterned photoresist layer and part of the multilayer stack on the patterned photoresist layer are removed, so that a part of the multilayer stack remaining on the filter area of the substrate is formed An optical filter, wherein each of the one or more metal layers in the optical filter has a tapered edge extending along the entire periphery of one of the metal layers at a periphery of the optical filter And along the entire periphery of the metal layer is protectively covered by at least one of the one or more dielectric layers.

本發明提供一種具有受保護金屬層之金屬介電光學濾光器,其尤其適用於一感測器裝置,諸如一影像感測器、一環境光感測器、一近接感測器、一色相感測器或一紫外線(UV)感測器。光學濾光器包含交替堆疊之一或多個介電層及一或多個金屬層。金屬層係固有地受介電層保護。特定言之,金屬層具有被該等介電層之一或多者保護性地覆蓋的錐形邊緣。據此,金屬層具有增加之抗環境降解性,從而導致一在環境中更耐用的光學濾光器。 在一些實施例中,一或多個介電層及一或多個金屬層堆疊而無任何中間層。參考圖1A,安置於一基板110上之光學濾光器100之一第一實施例包含交替堆疊之三個介電層120及兩個金屬層130。金屬層130各安置於兩個介電層120之間且相鄰於其,且藉此免受環境之害。介電層120及金屬層130係不具有形成於其中之任何微結構之連續層。 金屬層130在光學濾光器100之一周邊101處具有錐形邊緣131。換言之,金屬層130之厚度貫穿光學濾光器100之一中心部分102係實質上均勻,但在光學濾光器100之周邊101處厚度逐漸減小。錐形邊緣131在光學濾光器100之周邊101處沿金屬層130之整個周邊延伸。同樣地,介電層120之厚度貫穿光學濾光器100之中心部分102係實質上均勻,但在光學濾光器100之周邊101處厚度逐漸減小。據此,光學濾光器100之中心部分102之高度係實質上均勻,然而光學濾光器100之周邊101係傾斜的。換言之,光學濾光器100具有一實質上平坦的頂部及傾斜側面。通常,光學濾光器100之側面係以小於約45°之一角度自水平面傾斜。較佳地,光學濾光器100之側面係以小於約20°之一角度自水平面傾斜,更佳地以小於約10°之一角度自水平面傾斜。 有利地,金屬層130之錐形邊緣131不暴露於環境。相反,金屬層130之錐形邊緣131係沿金屬層130之整個周邊被介電層120之一或多者保護性地覆蓋。一或多個介電層120藉由阻止硫及水擴散至金屬層130中而抑制金屬層130之環境降解,例如腐蝕。較佳地,金屬層130實質上被介電層120囊封。更佳地,金屬層130之錐形邊緣131被相鄰介電層120保護性地覆蓋,且金屬層130實質上被相鄰介電層120囊封。在一些例項中,一頂部介電層120 (即,光學濾光器100頂部處之一介電層120)保護性地覆蓋下方所有金屬層130之錐形邊緣131。 參考圖1B至圖1G,可藉由一剝離製程製造光學濾光器100之第一實施例。特別參考圖1B,在一第一步驟中,提供基板110。特別參考圖1C,在一第二步驟中,將一光阻層140塗覆至基板110上。通常,光阻層140係藉由旋塗或噴塗而塗覆。 特別參考圖1D,在一第三步驟中,光阻層140經圖案化以使其中待安置光學濾光器100之基板110之一區(即,一濾光器區)露出。基板110之其他區保持被圖案化光阻層140覆蓋。通常,光阻層140係藉由首先透過一遮罩將覆蓋基板110之濾光器區之光阻層140之一區暴露於UV光且接著藉由使用一合適顯影劑或溶劑使光阻層140之暴露區顯影(即,蝕刻其)而圖案化。 光阻層140係以一懸伸部141(即,一底切)形成於濾光器區周圍的圖案化光阻層140中之一方式圖案化。通常,懸伸部141係藉由例如藉使用一合適溶劑使光阻層140之一頂部部分化學改質使得頂部部分顯影比光阻層140之一底部部分慢而形成。替代地,懸伸部141可藉由將一雙層光阻層140(其由顯影較慢之一頂層及顯影較快之一底層組成)塗覆至基板100而形成。 懸伸部141應足夠大以確保隨後沈積於圖案化光阻層140及基板110上之塗層(即,多層堆疊103)自基板110至圖案化光阻層140係不連續的,如圖1E中所示。懸伸部141通常大於2 μm,較佳地大於4 μm。一般言之,塗層應不覆蓋圖案化光阻層140之側面。 參考圖9A及圖9B,當塗層903在基板910及圖案化光阻層940上係連續時,在光阻層940與其上塗層903之部分之後續剝離期間,塗層903在圖案化光阻層940之底部邊緣處破裂,從而將由塗層903形成之光學濾光器之邊緣(特定言之光學濾光器之金屬層之邊緣)暴露於環境。不幸的是,對於一含銀之光學濾光器900而言,暴露邊緣易受環境攻擊之影響(例如,當暴露於高濕度及高溫時),從而導致腐蝕,如圖9C中所示。 參考圖10,在提供一非連續塗層1003之一實施例中,光阻層具有一雙層結構,且包含一頂層1042及一底層1043。頂層1042係光敏的且可藉由選擇性地暴露於UV光而圖案化。底層1043通常係非光敏的且充當一釋放層。光阻劑之合適實例包含用於頂部光敏層1042之AZ電子材料nLOF 2020及用於底部釋放層1043之Microchem Corp. LOR 10 B。 當光阻層顯影時,懸伸部1041之幅度受顯影時間控制。在圖10中,顯影時間經選擇以提供約3 μm之一懸伸部1041。較佳地,底部釋放層1043之厚度大於約500 nm,且懸伸部1041大於約2 μm。為了確保乾淨的剝離(即,沈積塗層1003不破裂之剝離),塗層1003之厚度通常應小於底部釋放層1043之厚度之約70%。在圖10中,底部釋放層1043之厚度係約800 nm,頂部光敏層1042之厚度係約2 μm,且塗層之厚度係約500 nm。懸伸部1041下方的光學濾光器1000之側面係以約10°之一角度傾斜。 參考圖11,在一些例項中,使用一較厚的底部釋放層1143,且一較大的懸伸部1141係藉由使用一較長的顯影時間(例如對於一些製程,約80 s至約100 s)而產生。此等特徵係藉由減小光學濾光器1100之側面之斜度及增大光學濾光器1100之周邊處的頂部介電層1121之厚度而改良邊緣耐用性。在圖11中,顯影時間經選擇以提供約6 μm之一懸伸部1141。較佳地,底部釋放層1143之厚度大於約2 μm,且懸伸部1141大於約4 μm。塗層1103之厚度通常應小於底部釋放層1143之厚度之約30%。在圖11中,底部釋放層1143之厚度係約2.6 μm,頂部光敏層1142之厚度係約2 μm,且塗層1103之厚度係約500 nm。懸伸部1141下方的光學濾光器1100之側面係以約5°之一角度傾斜。 特別參考圖1E,在一第四步驟中,一多層堆疊103係作為一非連續塗層沈積至圖案化光阻層140及基板110之濾光器區上。安置於基板110之濾光器區上之多層堆疊103之一部分形成光學濾光器100。對應於光學濾光器100之層之多層堆疊103之層可藉由使用多種沈積技術(諸如:蒸鍍,例如熱蒸鍍、電子束蒸鍍、電漿輔助蒸鍍或反應離子蒸鍍;濺鍍,例如磁控濺鍍、反應濺鍍、交流(AC)濺鍍、直流(DC)濺鍍、脈衝式DC濺鍍或離子束濺鍍;化學氣相沈積,例如電漿增強型化學氣相沈積;及原子層沈積)而沈積。此外,不同層可藉由使用不同沈積技術而沈積。例如,金屬層130可藉由濺鍍一金屬靶而沈積,且介電層120可藉由在氧存在下反應濺鍍一金屬靶而沈積。 由於懸伸部141遮擋基板110之濾光器區之一周邊,故沈積層之厚度朝光學濾光器100之周邊101逐漸減小。懸伸部141朝光學濾光器100之周邊101產生塗層之一軟滾離。當一介電層120被沈積至一金屬層130上時,介電層120不僅覆蓋金屬層130之頂面,而且覆蓋金屬層130之錐形邊緣131,藉此使金屬層130免受環境之害。此外,頂部介電層120通常用作下方金屬層130之一保護層。例如,在圖11之實施例中,具有約100 nm之一厚度之一頂部介電層1121延及下方較不耐用的金屬層(特定言之,金屬層之錐形邊緣)且保護性地覆蓋其,如圖11A中所示。 特別參考圖1F,在一第五步驟中,移除(即,剝離)圖案化光阻層140上之多層堆疊103之一部分與光阻層140。通常,光阻層140係藉由使用一合適剝離劑或溶劑而剝離。留在基板110之濾光器區上的多層堆疊103之一部分形成光學濾光器100。基板110可例如係一習知感測器元件。 應注意圖1B至圖1F之剝離製程亦可用來在基板110上同時形成相同類型(即,具有相同光學設計)的複數個光學濾光器100。此外,剝離製程可經重複以隨後在相同基板110上形成一不同類型(即,具有一不同光學設計)的一或多個光學濾光器。在一些例項中,在環境中更耐用的一或多個光學濾光器可隨後藉由使用一剝離製程或在一些例項中藉由使用一乾式或濕式蝕刻製程而形成於基板110上,使得其等與在環境中較不耐用的一或多個光學濾光器100部分重疊,如後文更詳細說明。藉此,一光學濾波陣列可形成於基板110上。基板110可例如係一習知感測器陣列。 特別參考圖1G,在一選用的第六步驟中,將一額外保護塗層150沈積至光學濾光器100上。保護塗層150可藉由使用前述沈積技術之一者而沈積。保護塗層150覆蓋光學濾光器100之中心部分102及周邊101兩者(即,光學濾光器100之所有暴露部分),藉此使光學濾光器100免受環境之害。 在其他實施例中,光學濾光器包含安置於介電層與金屬層之間之複數個腐蝕抑制層,其進一步保護金屬層。參考圖2,安置於一基板210上之光學濾光器200之一第二實施例類似於光學濾光器100之第一實施例,但進一步包含插入三個介電層220與兩個金屬層230之間的四個腐蝕抑制層260。 金屬層230各安置於兩個腐蝕抑制層260之間且相鄰於其,並藉此進一步免受環境之害。腐蝕抑制層260主要係在沈積製程期間抑制金屬層230之腐蝕。特定言之,腐蝕抑制層260保護光學路徑中之金屬層230之部分,從而阻止金屬層230之光學性質降級。較佳地,金屬層230之錐形邊緣231被相鄰腐蝕抑制層260以及最近的介電層220保護性地覆蓋。因此,金屬層230較佳地被相鄰腐蝕抑制層260以及最近的介電層220實質囊封。 可藉由與用來製造光學濾光器100之第一實施例之一剝離製程類似的一剝離製程而製造光學濾光器200之第二實施例。然而,第四步驟中沈積之多層堆疊之層對應於光學濾光器200之層。特定言之,腐蝕抑制層260係在各金屬層230之前及之後沈積。有利地,腐蝕抑制層260在介電層220之沈積期間抑制金屬層230之腐蝕(即,氧化)。腐蝕抑制層260在金屬層230包含銀或鋁時尤其有用。在此等實施例中,腐蝕抑制層260抑制來自金屬層230之銀或鋁與來自介電層220之氧之間形成氧化銀或氧化鋁的反應。 腐蝕抑制層260可藉由使用前述沈積技術之一者(例如,反應濺鍍)而沈積成金屬化合物(例如,金屬氮化物或金屬氧化物)層。替代地,腐蝕抑制層260可藉由首先憑藉使用前述沈積技術之一者沈積合適金屬層且隨後使金屬層氧化而形成。較佳地,金屬層230頂部上之腐蝕抑制層260各藉由首先沈積一合適金屬層、使該金屬層氧化且接著沈積一金屬氧化物層而形成。例如,此等腐蝕抑制層260可藉由濺鍍一合適金屬靶、接著進行氧化、接著在氧存在下反應濺鍍一合適金屬靶而形成。形成腐蝕抑制層之方法之進一步細節在後文提供,且在美國專利第7,133,197號中揭示。 本發明之光學濾光器可具有多種光學設計。後文將更詳細描述例示性光學濾光器之光學設計。一般言之,光學濾光器之光學設計係針對一特定通帶藉由選擇合適層號、材料及/或厚度而最佳化。 光學濾光器包含至少一金屬層及至少一介電層。通常,光學濾光器包含複數個金屬層及複數個介電層。通常,光學濾光器包含2至6個金屬層、3至7個介電層及視情況4至12個腐蝕抑制層。一般言之,增加金屬層之數目提供具有更陡峭的邊緣但具有一更低的頻帶內透射率之一通帶。 光學設計中之第一層或底層(即,沈積於基板上之第一層)可係一金屬層或一介電層。光學設計中之最後一層或頂層(即,沈積於基板上之最後一層)通常係一介電層。當底層係一金屬層時,光學濾光器可由以一序列(M/D)n 堆疊之n個金屬層(M)及n個介電層(D)組成,其中n ≥ 1。替代地,光學濾光器可由以一序列(C/M/C/D)n 堆疊之n個金屬層(M)及n個介電層(D)及2n個腐蝕抑制層(C)組成,其中n ≥ 1。當底層係一介電層時,光學濾光器可由以一序列D(M/D)n 堆疊之n個金屬層(M)及n + 1個介電層(D)組成,其中n ≥ 1。替代地,光學濾光器可由以一序列D(C/M/C/D)n 堆疊之n個金屬層(M)、n + 1個介電層(D)及2n個腐蝕抑制層(C)組成,其中n ≥ 1。 金屬層各由金屬或合金組成。在一些實施例中,金屬層各由銀組成。替代地,金屬層可各由銀合金組成。例如,本質上由約0.5 wt%金、約0.5 wt%錫組成之銀合金可提供改良之抗腐蝕性。在其他實施例中,金屬層各由鋁組成。金屬或合金之選擇取決於應用。銀通常較佳用於具有可見光譜區中之一通帶之光學濾光器,且鋁通常較佳用於具有UV光譜區中之一通帶之光學濾光器,但有時可在通帶係以大於約350 nm之一波長為中心時使用銀。 金屬層通常但無需由相同金屬或合金組成,但具有不同厚度。通常,金屬層各具有介於約5 nm與約50 nm之間較佳介於約10 nm與約35 nm之間的一實體厚度。 介電層各由在光學濾光器之通帶中係透明之一介電材料組成。 對於具有可見光譜區中之一通帶之光學濾光器,介電層通常各由在550 nm下折射率大於約1.65且在可見光譜區中係透明之一高折射率介電材料組成。此等濾光器之高折射率介電材料之合適實例包含二氧化鈦(TiO2 )、二氧化鋯(ZrO2 )、二氧化鉿(HfO2 )、五氧化二鈮(Nb2 O5 )、五氧化二鉭(Ta2 O5 )及其等混合物。較佳地,此等濾光器之高折射率介電材料亦吸收UV,即,在近UV光譜區中吸收UV。例如,包含TiO2 及/或Nb2 O5 或由其組成之一高折射率介電材料可提供增強型UV阻斷,即,在近UV光譜區中具有較低的頻帶外透射率。較佳地,高折射率介電材料之折射率在550 nm下大於約2.0,更佳地在550 nm下大於約2.35。通常可期望一較高折射率。然而,當前可用之透明的高折射率介電材料之折射率通常在550 nm下小於約2.7。 對於具有UV光譜區中之一通帶之濾光器,介電層通常各由在300 nm下折射率介於約1.4與1.65之間之一中間折射率介電材料或較佳地在300 nm下折射率大於約1.65、更佳地在300 nm下大於約2.2且在UV光譜區中係透明之一高折射率介電材料組成。用於具有UV光譜區中之一通帶之濾光器之中間折射率及高折射率介電材料之合適實例包含Ta2 O5 、二氧化鉿(HfO2 )、三氧化二鋁(Al2 O3 )、二氧化矽(SiO2 )、三氧化鈧(ScO3 )、三氧化二釔(Y2 O3 )、ZrO2 、氧化鎂(MgO2 )、氟化鎂(MgF2 )、其他氟化物及其等混合物。例如,對於以大於約340 nm之波長為中心之通帶,Ta2 O5 可用作一高折射率介電材料,且對於以小於約400 nm之波長為中心之通帶HfO2 可用作一高折射率介電材料。 介電層通常但無需由相同介電材料組成,但具有不同厚度。通常,介電層各具有介於約20 nm與約300 nm之間的一實體厚度。較佳地,頂部介電層具有大於約40 nm、更佳地大於約100 nm之一實體厚度,以使頂部介電層用作下方金屬層之一保護層。各介電層之實體厚度經選擇以與一光學設計所需之一四分之一波長光學厚度(QWOT)對應。QWOT被定義成4nt,其中n係介電材料之折射率且t係實體厚度。通常,介電層各具有介於約200 nm與約2400 nm之間的一QWOT。 選用腐蝕抑制層各由一腐蝕抑制材料組成。通常,腐蝕抑制層係由一腐蝕抑制介電材料組成。合適的腐蝕抑制介電材料之實例包含氮化矽(Si3 N4 )、TiO2 、Nb2 O5 、氧化鋅(ZnO)及其等混合物。較佳地,腐蝕抑制介電材料係具有高於金屬層之金屬或合金之一電蝕電位之化合物,例如氮化物或氧化物。 在一些例項中,金屬層下方之腐蝕抑制層係由ZnO組成,而金屬層上方之腐蝕抑制層包含由鋅組成之一非常薄的層(例如,具有小於1 nm之一厚度)及由ZnO組成之一薄層。鋅層係沈積於金屬層上,且接著經氧化後用於防止光學吸收。金屬層下方及上方之ZnO層通常係藉由反應濺鍍而沈積。有利地,在沈積ZnO層之前將鋅層沈積於金屬層上防止金屬層暴露於在反應濺鍍期間產生之活化的離子化氧物種。鋅層較佳吸收氧,從而抑制金屬層之氧化。 腐蝕抑制層通常係適當的薄以實質上避免尤其在其於可見光譜區中吸收時影響光學濾光器之光學設計。通常,腐蝕抑制層各具有介於約0.1 nm與約10 nm之間、較佳介於約1 nm與約5 nm之間的一實體厚度。合適的腐蝕抑制層之進一步詳情在美國專利第7,133,197號中揭示。 選用保護塗層通常係由一介電材料組成。保護塗層可由與介電層相同的介電材料組成且可具有與介電層相同的厚度範圍。通常,保護塗層係由與頂部介電層相同的介電材料組成且具有為頂部介電層之設計厚度(即,光學設計所需之厚度)之一部分之一厚度。換言之,光學設計之頂部介電層係在一介電層與一介電保護塗層之間分離。替代地,保護塗層可由有機材料(例如,環氧樹脂)組成。 參考圖3,光學濾光器300通常具有小於1 µm較佳小於0.6 µm之一濾光器高度h,即,光學濾光器300之中心部分距基板310之一高度。應注意濾光器高度通常對應於前述沈積塗層之厚度。當用於一影像感測器時,光學濾光器300通常具有小於2 µm較佳小於1 µm之一濾光器寬度w,即,光學濾光器300之中心部分之一寬度。有利地,相對小的濾光器高度允許在藉由一剝離製程形成複數個光學濾光器300時具有一較小的濾光器間隔。通常,一影像感測器中之光學濾光器300具有小於2 µm較佳小於1 µm之一濾光器間隔d,即,最近的光學濾光器300之中心部分之間的一間隔。當用於具有較大像素大小之其他感測器裝置時,濾光器寬度可係自約50 µm至約100 µm。 光學濾光器係具有一高頻帶內透射率及一低頻帶外透射率之一金屬介電帶通濾光器,即,一誘導透射濾光器。在一些實施例中,光學濾光器係在可見光譜區中具有一相對窄的彩色通帶之一彩色濾光器。例如,光學濾光器可係一紅色、綠色、藍色、青色、黃色或品紅色濾光器。在其他實施例中,光學濾光器係在可見光譜區中具有一適光通帶(即,匹配模仿人眼對相對較亮的光之光譜回應之適光發光度效率功能之一通帶)之一適光濾光器。在又其他實施例中,光學濾光器係在可見光譜區中具有一相對寬的通帶之一IR阻斷濾光器。 在此等實施例中,光學濾光器通常具有大於約50%之一最大頻帶內透射率、在約300 nm與約400 nm之間(即,在近UV光譜區中)小於約2%之一平均頻帶外透射率,及在約750 nm與約1100 nm之間(即,在紅外線(IR)光譜區中)小於約0.3%之一平均頻帶外透射率。相比之下,習知的全介電彩色濾光器及適光濾光器通常不是固有地IR阻斷。通常,在此等實施例中,光學濾光器亦具有一低角度偏移,即,入射角自0º變化之中心波長偏移。通常,光學濾光器具有成60º之一入射角且振幅小於以600 nm為中心之一光學濾光器之約5%或小於約30 nm之一角度偏移。相比之下,習知的全介電彩色濾光器及適光濾光器通常係極具角度敏感性。 用於例示性紅色、綠色及藍色濾光器(即,一例示性RGB濾光器集)之光學設計(即,層號、材料及厚度)分別在圖4A、圖4B及圖4C中製成表格。一例示性適光濾光器之一光學設計在圖4D中製成表格。各光學設計之層係自沈積於基板上之第一層或底層開始編號。 金屬層各由銀組成,且具有介於約13 nm與約34 nm之間的實體厚度。介電層各由一高折射率介電材料(H)組成,且具有介於約240 nm與約2090 nm之間的QWOT。例如,高折射率介電材料可係Nb2 O5 及TiO2 之混合物,在550 nm下具有約2.43之一折射率。腐蝕抑制層各由ZnO組成且各具有約2 nm之一實體厚度。 當高折射率介電材料在550 nm下具有約2.43之一折射率時,紅色濾光器之濾光器高度係606 nm,綠色濾光器之濾光器高度係531 nm,藍色濾光器之濾光器高度係252 nm,且適光濾光器之高度係522 nm。此等濾光器高度遠小於習知的全介電彩色濾光器及適光濾光器之濾光器高度。 圖5A及圖5B中分別繪製例示性紅色、綠色及藍色濾光器之透射光譜570、571及572。例示性紅色濾光器之透射光譜570包含以約620 nm為中心之一紅色通帶,例示性綠色濾光器之透射光譜571包含以約530 nm為中心之一綠色通帶,且例示性藍色濾光器之透射光譜572包含以約445 nm為中心之一藍色通帶。 圖5C中繪製成0º至60º之入射角之例示性適光濾光器之透射光譜573 (0º)及574 (60º)。成0º之一入射角之例示性適光濾光器之透射光譜573包含以約555 nm為中心之一適光通帶。在成60º之一入射角之例示性適光濾光器之透射光譜574中,適光通帶係以約520 nm為中心。換言之,成60º之一入射角之例示性適光濾光器之角度偏移係約-25 nm。有利地,例示性適光濾光器之角度偏移遠小於一習知的全介電適光濾光器之角度偏移。 例示性彩色濾光器及適光濾光器各具有大於約60%之一最大頻帶內透射率。有利地,相對於習知的基於染料的彩色濾光器及全介電彩色濾光器及適光濾光器,例示性彩色濾光器及適光濾光器提供改良之IR阻斷,從而減小由IR洩漏引起之雜訊。具體言之,例示性彩色濾光器及適光濾光器在約750 nm與約1100 nm之間(即,在IR光譜區中)各具有小於約0.3%之一平均頻帶外透射率。相對於一些習知的金屬介電彩色濾光器,例示性彩色濾光器及適光濾光器(尤其係例示性紅色濾光器)亦提供改良之UV阻斷,從而減小由UV洩漏引起之雜訊。具體言之,例示性彩色濾光器及適光濾光器在約300 nm與約400 nm之間(即,在近UV光譜區中)各具有小於約2%之一平均頻帶外透射率。 圖6A中之一CIE xy色度圖上繪製例示性RGB濾光器集之一色域680與一習知的基於染料的RGB濾光器集之一色域681以供比較。有利地,例示性RGB濾光器集之色域680遠大於習知的基於染料的RGB濾光器集之色域681。 圖6B中之一CIE xy色度圖上繪製成0º至60º之入射角之例示性紅色濾光器之一色軌682與成0º至60º之入射角之一習知的全介電紅色濾光器之一色軌683。圖6C中之一CIE xy色度圖上繪製成0º至60º之入射角之例示性適光濾光器之一色軌684。有利地,例示性紅色濾光器及適光濾光器之角度偏移遠小於習知的全介電紅色濾光器及適光濾光器之角度偏移。 在一些實施例中,光學濾光器係在UV光譜區中(例如,在約180 nm與約420 nm之間)具有一相對窄的通帶之一UV濾光器。例如,光學濾光器可係一紫外線A (UVA)或紫外線B (UVB)濾光器。在此等實施例中,光學濾光器通常具有大於約5%、較佳大於約15%之一最大頻帶內透射率,及在約420 nm與約1100 nm之間(即,在可見及IR光譜區中)小於約0.3%之一平均頻帶外透射率。相比之下,習知的全介電UV濾光器通常不是固有地IR阻斷。通常,在此等實施例中,光學濾光器亦具有一低角度偏移,即,入射角自0º變化之中心波長偏移。通常,光學濾光器具有成60º之一入射角且振幅小於以300 nm為中心之一光學濾光器之約5%或小於約15 nm之一角度偏移。相比之下,習知的全介電UV濾光器通常係極具敏感性。 圖12中概述例示性UVA、UVB及220 nm中心濾光器之光學設計,即,層號、材料及厚度。金屬層各由鋁組成,且具有介於約10 nm與約20 nm之間的實體厚度。介電層各由一高折射率介電材料(即,用於UVA濾光器之Ta2 O5 以及用於UVB濾光器及220 nm中心濾光器之HfO2 )組成,且具有介於約40 nm與約60 nm之間的實體厚度。例示性UV濾光器不包含腐蝕抑制層,因為當金屬層係由鋁組成時腐蝕抑制層提供之額外保護通常係不必要的。 UVA濾光器之濾光器高度係350 nm,UVB濾光器之濾光器高度係398 nm,且220 nm中心濾光器之濾光器高度係277 nm。此等濾光器高度遠小於習知的全介電UV濾光器之濾光器高度。 圖13A中繪製成0º至60º之入射角之例示性UVA濾光器之透射光譜1370 (0º)及1371 (60º),圖13B中繪製成0º至60º之入射角之例示性UVB濾光器之透射光譜1372 (0º)及1373 (60º),且圖13C中繪製以0º至60º之入射角之例示性220nm中心濾光器之透射光譜1374 (0º)及1375 (60º)。成0º之一入射角之例示性UVA濾光器之透射光譜1370包含以約355 nm為中心之一UVA通帶,成0º之一入射角之例示性UVB濾光器之透射光譜1372包含以約295 nm為中心之一UVB通帶,且成0º之一入射角之220 nm中心濾光器之透射光譜1374包含以約220 nm為中心之一通帶。成60º之一入射角之例示性UV濾光器之角度偏移之振幅小於約15 nm。有利地,例示性UV濾光器之角度偏移遠小於習知的全介電UV濾光器之角度偏移。 例示性UV濾光器各具有大於約10%之一最大頻帶內透射率。特定言之,UVA及UVB濾光器各具有大於約20%之一最大頻帶內透射率。有利地,相對於習知的全介電UV濾光器,例示性UV濾光器提供改良之IR阻斷,從而減小由IR洩露引起之雜訊。具體言之,例示性UV濾光器在約420 nm與約1100 nm之間(即,在可見及IR光譜區中)各具有小於約0.3%之一平均頻帶外透射率。 本發明之光學濾光器在作為一感測器裝置或其他作用元件之部件包含在內時尤其有用。感測器裝置可係任何類型的感測器裝置,除包含根據本發明之一或多個光學濾光器外,亦包含一或多個感測器元件。在一些例項中,感測器裝置亦可包含一或多個習知的光學濾光器。例如,感測器裝置可係一影像感測器、一環境光感測器、一近接感測器、一色相感測器、一UV感測器或其等之一組合。一或多個感測器元件可係任何類型的習知感測器元件。通常,一或多個感測器元件係光電偵測器,諸如光電二極體、電荷耦合裝置(CCD)感測器元件、互補金氧半導體(CMOS)感測器元件、矽偵測器或專用UV敏感偵測器。一或多個感測器元件可係前照式或背照式。該等感測器元件可由任何典型的感測器材料(如矽、砷化銦鎵(IN1-x Gax As)、砷化鎵(GaAs)、鍺、硫化鉛(PbS)、或氮化鎵(GaN))所形成。 一或多個光學濾光器係安置於一或多個感測器元件上,使得一或多個光學濾光器過濾提供至一或多個感測器元件之光。通常,各光學濾光器係安置於一感測器元件上。換言之,感測器裝置之各像素通常包含一光學濾光器及一感測器元件。較佳地,一或多個光學濾光器係直接安置於一或多個感測器元件上,例如於一或多個感測器元件之一鈍化層上。例如,一或多個光學濾光器可藉由一剝離製程而形成於一或多個感測器元件上。然而,在一些例項中,可存在安置於一或多個光學濾光器與一或多個感測器元件之間的一或多個塗層。在一些例項中,一或多個光學濾光器可與一或多個感測器元件整合。 在一些實施例中,感測器裝置包含一單一感測器元件及根據本發明安置於感測器元件上之一單一光學濾光器。參考圖7,感測器裝置790之一第一實施例包含一感測器元件711及安置於感測器元件711上之一光學濾光器700。例如,感測器裝置790可係一環境光感測器,感測器元件711可係一光電二極體,且光學濾光器700可係一適光濾光器,諸如圖4D之例示性適光濾光器或一IR阻斷濾光器。對於另一實例,感測器裝置790可係一UV感測器,感測器元件711可係一光電二極體,且光學濾光器700可係一UV濾光器,諸如圖12之例示性UVA、UVB或220 nm中心濾光器。 在一環境光感測器之一例示性實施例中,根據本發明之一適光濾光器係與一光電二極體整合。適光濾光器係安置於光電二極體上,通常於例如光電二極體之由Si3 N4 組成之一平面化鈍化層上。例如由環氧樹脂組成之一選用保護塗層或囊封層可安置於適光濾光器及光電二極體上。適光濾光器之光學設計係藉由考量鈍化層及(當存在時)囊封層而最佳化。 圖14中繪製成0º至60º之入射角之經最佳化以與一光電二極體整合之一例示性適光濾光器之透射光譜1470 (0º)及1471 (60º)與一正規化適光回應曲線1472。透射光譜1470及1471係與一Si3 N4 鈍化層及一環氧樹脂囊封層匹配。成0º之一入射角之例示性適光濾光器之透射光譜1470包含以約555 nm為中心之一適光通帶。例示性適光濾光器之透射光譜1470係以0º至40º之入射角相當好地遵循正規化適光回應曲線1472。此外,例示性適光濾光器阻斷成0º至60º之入射角之UR光及IR光兩者,且具有一低角度偏移。有利地,例示性適光濾光器亦在環境中耐用,例如在125 °C之一溫度下及100%之一相對濕度下達96個小時。 在其他實施例中,感測器裝置包含複數個感測器元件及根據本發明安置於複數個感測器元件上之複數個光學濾光器。通常,感測器元件安置成一陣列。換言之,感測器元件形成一感測器陣列,諸如一光電二極體陣列、一CCD陣列、一CMOS陣列或任何其他類型的習知感測器陣列。光學濾光器通常亦安置成一陣列。換言之,光學濾光器形成一光學濾光器陣列,諸如一彩色濾光器陣列(CFA)。較佳地,感測器陣列及光學濾光器陣列係對應的二維陣列,即馬賽克。例如,陣列可係具有列及行之矩形陣列。 通常,在此等實施例中,光學濾光器實質上彼此分離。換言之,光學濾光器之周邊通常彼此不接觸。然而,在一些例項中,光學濾光器之介電層可無意地接觸,同時金屬層尤其係錐形邊緣保持彼此分離。 通常,複數個光學濾光器包含彼此具有不同通帶之不同類型的光學濾光器。例如,複數個光學濾光器可包含彩色濾光器(諸如紅色、綠色、藍色、青色、黃色及/或品紅色濾光器)、適光濾光器、IR阻斷濾光器、UV濾光器或其等之一組合。在一些實施例中,複數個光學濾光器包含形成一CFA之不同類型的彩色濾光器。例如,複數個光學濾光器可包含形成一RGB濾光器陣列(諸如一拜耳(Bayer)濾光器陣列)之紅色、綠色及藍色濾光器,諸如圖4A至圖4C之例示性紅色、綠色及藍色濾光器。對於另一實例,複數個光學濾光器可包含形成一CMY濾光器陣列之青色、品紅色及黃色濾光器。 有利地,不同類型的光學濾光器可具有彼此數目不同的金屬層及/或厚度不同的金屬層。在一些實施例中,不同類型的光學濾光器之至少兩者包含彼此數目不同的金屬層。在相同或其他實施例中,不同類型的光學濾光器之至少兩者具有彼此不同的金屬層厚度。例如,圖4C之例示性藍色濾光器具有與圖4A及圖4B之例示性紅色及綠色濾光器數目不同的金屬層。此外,圖4A至圖4C之例示性紅色、綠色及藍色濾光器之所有具有彼此不同的金屬層厚度。 參考圖8,感測器裝置890之一第二實施例包含複數個感測器元件811及安置於複數個感測器元件811上之複數個光學濾光器800及804。複數個光學濾光器800及804包含具有一第一通帶之一第一類型的光學濾光器800及具有與第一通帶不同的一第二通帶之一第二類型的光學濾光器804。例如,感測器裝置890可係一影像感測器,複數個感測器元件811可形成一CCD陣列,且複數個光學濾光器800及804可形成一拜耳濾光器陣列,其中僅圖解一列之一部分。第一類型的光學濾光器800可係一綠色濾光器,諸如圖4B之例示性綠色濾光器,且第二類型的光學濾光器804可係一紅色濾光器(諸如圖4A之例示性紅色濾光器),或一藍色濾光器(諸如圖4C之例示性藍色濾光器)。 前文描述之感測器裝置之實施例之任何者可與在環境中更耐用之一或多個額外光學濾光器及一或多個額外感測器元件組合。 據此,在一些實施例中,感測器裝置除包含根據本發明安置於一或多個第一感測器元件上之一或多個第一光學濾光器外,亦包含安置於一或多個第二感測器元件上之一或多個第二光學濾光器。一或多個第二光學濾光器係比一或多個第一光學濾光器在環境中更耐用。例如,一或多個第一光學濾光器可係根據本發明之銀介電光學濾光器,其中金屬層係由銀或銀合金組成。一或多個第二光學濾光器可係根據本發明之一鋁介電光學濾光器,其中金屬層係由鋁組成。替代地,一或多個第二光學濾光器可係習知光學濾光器,諸如全介電、矽介電或氫化矽介電光學濾光器。 在此等實施例中,一或多個第二光學濾光器與一或多個第一光學濾光器部分重疊,使得在環境中更耐用的一或多個第二光學濾光器保護性地覆蓋在環境中較不耐用的一或多個第一光學濾光器之周邊。有利地,此覆蓋佈局對一或多個第一光學濾光器尤其係金屬層之錐形邊緣提供額外保護使其免受環境降解(諸如腐蝕)之害。歸因於濾光器側面之小斜度及一或多個第一光學濾光器之小濾光器高度,一或多個第二光學濾光器在安置於一或多個第一光學濾光器之周邊處之傾斜側面及基板上時保形,從而於一或多個第二光學濾光器中提供連續層。 一或多個第二光學濾光器較佳沿一或多個第一光學濾光器之整個周邊延及一或多個第一光學濾光器之周邊處之傾斜側面,包含金屬層之錐形邊緣。較佳地,一或多個第二光學濾光器完全覆蓋一或多個第一光學濾光器之周邊處之傾斜側面。然而,一或多個第二光學濾光器不覆蓋或阻隔該一或多個第一感測器元件。 通常,一或多個第一光學濾光器及一或多個第二光學濾光器具有彼此不同的通帶。例如,一或多個第一光學濾光器可係彩色濾光器(諸如紅色、綠色、藍色、青色、黃色或品紅色濾光器)、適光濾光器、IR阻斷濾光器、或其等之一組合。特定言之,一或多個第一光學濾光器可係銀介電彩色濾光器(諸如圖4A至圖4C之例示性紅色、綠色及/或藍色濾光器)、銀介電適光濾光器(諸如圖4D之例示性適光濾光器)或銀介電IR阻斷濾光器。 一或多個第二光學濾光器可例如係UV濾光器或近IR濾光器或其等之一組合。特定言之,一或多個第二光學濾光器可係鋁介電UV濾光器(諸如圖12之例示性UVA、UVB及/或220 nm中心濾光器)或全介電UV濾光器。替代地,一或多個第二光學濾光器可係矽介電或氫化矽介電近IR濾光器(諸如2014年1月16日公開之Hendrix等人之美國專利申請公開案第2014/0014838號中描述之光學濾光器。 通常,在此等實施例中,感測器裝置係多功能的且組合具有主要由一或多個第一光學濾光器及一或多個第二光學濾光器之通帶判定之不同功能之不同類型的光學感測器。一或多個第一光學濾光器及一或多個第一感測器元件形成一第一類型的光學感測器,且一或多個第二光學濾光器及一或多個第二感測器元件形成一第二類型的光學感測器。例如,第一類型的光學感測器可係包含一適光濾光器或一IR阻斷濾光器之一環境光感測器、包含一或多個不同類型的彩色濾光器之一色相感測器、或包含複數個不同類型的彩色濾光器之一影像感測器。第二類型的光學感測器可例如係包含一UV濾光器之一UV感測器或包含一近IR濾光器之一近接感測器。 參考圖15,一感測器裝置1590之一第三實施例包含一第一感測器元件1511及根據本發明安置於第一感測器元件1511上之一第一光學濾光器1500,從而形成一第一類型的光學感測器。感測器裝置1590進一步包含一第二感測器元件1512及安置於第二感測器元件1512上在環境中更耐用之一第二光學濾光器1505,從而形成一第二類型的光學感測器。 例如,第一類型的光學感測器可係一環境光感測器,且第一光學濾光器1500可係一銀介電適光濾光器(諸如圖4D之例示性適光濾光器)或一銀介電IR阻斷濾光器。第二類型的光學感測器可例如係一UV感測器,且第二光學濾光器1505可係一鋁介電UV濾光器(諸如圖12之例示性UVA、UVB或220 nm中心濾光器)或一全介電UV濾光器。替代地,第二類型的光學感測器可係一近接感測器,且第二光學濾光器1505可係一近IR濾光器,諸如一全介電、矽介電或氫化矽介電近IR濾光器。第一感測器元件1511及第二感測器元件1512可係光電二極體。 特別參考圖15A,第二光學濾光器1505沿第一光學濾光器1500之整個周邊延及第一光學濾光器1500之傾斜側面。藉此,第二光學濾光器1505保護性地覆蓋第一光學濾光器1500之周邊,包含金屬層之錐形邊緣。 特別參考圖15B及圖15C,第一光學濾光器1500覆蓋及過濾提供至第一感測器元件1511之光。第二光學濾光器1505覆蓋及過濾提供至第二感測器元件1512之光,且環繞但不覆蓋第一感測器元件1511。在圖15B中圖解之佈局中,第一感測器元件1511及第二感測器元件1512係以一列安置於接合墊1513之列之間。在圖15C中圖解之一替代佈局中,第二感測器元件1512係環形的且環繞第一感測器元件1511。 參考圖16,一感測器裝置1690之一第四實施例包含複數個第一感測器元件1611及根據本發明安置於複數個第一感測器元件1611上之複數個第一光學濾光器1600、1604及1606,從而形成一第一類型的光學感測器。感測器裝置1690進一步包含一第二感測器元件1612及安置於第二感測器元件1612上之一第二光學濾光器1605,從而形成一第二類型的光學感測器。 例如,第一類型的光學感測器可係一影像感測器或一色相感測器,且複數個第一光學濾光器1600、1604及1606可係不同類型的彩色濾光器,諸如圖4A至圖4C之例示性銀介電紅色、綠色及藍色濾光器。第二類型的光學感測器可例如係一UV感測器,且第二光學濾光器1605可係一UV濾光器,諸如圖12之例示性鋁介電UVA、UVB或220 nm中心濾光器。替代地,第二類型的光學感測器可係一近接感測器,且第二光學濾光器1605可係一近IR濾光器,諸如一全介電、矽介電或氫化矽介電近IR濾光器。複數個第一感測器元件1611及第二感測器元件1612可形成一光電二極體陣列。The present invention provides a metal dielectric optical filter with a protected metal layer, which is particularly suitable for a sensor device, such as an image sensor, an ambient light sensor, a proximity sensor, and a hue The sensor or an ultraviolet (UV) sensor. The optical filter includes alternately stacking one or more dielectric layers and one or more metal layers. The metal layer is inherently protected by the dielectric layer. In particular, the metal layer has a tapered edge protectively covered by one or more of the dielectric layers. Accordingly, the metal layer has increased resistance to environmental degradation, resulting in a more durable optical filter in the environment. In some embodiments, one or more dielectric layers and one or more metal layers are stacked without any intermediate layers. 1A, a first embodiment of an optical filter 100 disposed on a substrate 110 includes three dielectric layers 120 and two metal layers 130 alternately stacked. The metal layers 130 are each disposed between and adjacent to the two dielectric layers 120, thereby protecting them from the environment. The dielectric layer 120 and the metal layer 130 are continuous layers without any microstructures formed therein. The metal layer 130 has a tapered edge 131 at one of the periphery 101 of the optical filter 100. In other words, the thickness of the metal layer 130 is substantially uniform throughout a central portion 102 of the optical filter 100, but the thickness gradually decreases at the periphery 101 of the optical filter 100. The tapered edge 131 extends along the entire periphery of the metal layer 130 at the periphery 101 of the optical filter 100. Similarly, the thickness of the dielectric layer 120 is substantially uniform throughout the central portion 102 of the optical filter 100, but the thickness gradually decreases at the periphery 101 of the optical filter 100. Accordingly, the height of the central portion 102 of the optical filter 100 is substantially uniform, but the periphery 101 of the optical filter 100 is inclined. In other words, the optical filter 100 has a substantially flat top and inclined sides. Generally, the side surface of the optical filter 100 is inclined from the horizontal at an angle less than about 45°. Preferably, the side surface of the optical filter 100 is inclined from the horizontal plane at an angle of less than about 20°, and more preferably, is inclined from the horizontal plane at an angle of less than about 10°. Advantageously, the tapered edge 131 of the metal layer 130 is not exposed to the environment. In contrast, the tapered edge 131 of the metal layer 130 is protectively covered by one or more of the dielectric layers 120 along the entire periphery of the metal layer 130. The one or more dielectric layers 120 inhibit the environmental degradation of the metal layer 130, such as corrosion, by preventing sulfur and water from diffusing into the metal layer 130. Preferably, the metal layer 130 is substantially encapsulated by the dielectric layer 120. More preferably, the tapered edge 131 of the metal layer 130 is protectively covered by the adjacent dielectric layer 120, and the metal layer 130 is substantially encapsulated by the adjacent dielectric layer 120. In some examples, a top dielectric layer 120 (ie, a dielectric layer 120 at the top of the optical filter 100) protectively covers the tapered edges 131 of all the metal layers 130 below. Referring to FIGS. 1B to 1G, the first embodiment of the optical filter 100 can be manufactured by a lift-off process. With particular reference to FIG. 1B, in a first step, a substrate 110 is provided. With particular reference to FIG. 1C, in a second step, a photoresist layer 140 is coated on the substrate 110. Generally, the photoresist layer 140 is applied by spin coating or spray coating. With particular reference to FIG. 1D, in a third step, the photoresist layer 140 is patterned to expose a region (ie, a filter region) of the substrate 110 in which the optical filter 100 is to be placed. The other areas of the substrate 110 remain covered by the patterned photoresist layer 140. Generally, the photoresist layer 140 is first exposed to UV light through a mask covering a region of the photoresist layer 140 covering the filter region of the substrate 110, and then the photoresist layer is made by using a suitable developer or solvent. The exposed area of 140 is developed (ie, etched) and patterned. The photoresist layer 140 is patterned in a manner in which an overhang 141 (ie, an undercut) is formed in the patterned photoresist layer 140 around the filter area. Generally, the overhang 141 is formed by, for example, chemically modifying a top part of the photoresist layer 140 by using a suitable solvent so that the top part develops more slowly than a bottom part of the photoresist layer 140. Alternatively, the overhang 141 may be formed by coating a double-layer photoresist layer 140 (which is composed of a top layer that develops slower and a bottom layer that develops faster) to the substrate 100. The overhang 141 should be large enough to ensure that the coating (ie, the multilayer stack 103) subsequently deposited on the patterned photoresist layer 140 and the substrate 110 is discontinuous from the substrate 110 to the patterned photoresist layer 140, as shown in FIG. 1E Shown in. The overhang 141 is generally larger than 2 μm, preferably larger than 4 μm. Generally speaking, the coating should not cover the side surface of the patterned photoresist layer 140. 9A and 9B, when the coating 903 is continuous on the substrate 910 and the patterned photoresist layer 940, during the subsequent peeling of the photoresist layer 940 and the portion of the upper coating 903, the coating 903 is in the patterned light The bottom edge of the barrier layer 940 is broken, thereby exposing the edge of the optical filter formed by the coating 903 (in particular, the edge of the metal layer of the optical filter) to the environment. Unfortunately, for a silver-containing optical filter 900, the exposed edge is susceptible to environmental attacks (for example, when exposed to high humidity and high temperature), resulting in corrosion, as shown in FIG. 9C. Referring to FIG. 10, in an embodiment of providing a discontinuous coating 1003, the photoresist layer has a double-layer structure and includes a top layer 1042 and a bottom layer 1043. The top layer 1042 is photosensitive and can be patterned by selective exposure to UV light. The bottom layer 1043 is generally non-photosensitive and serves as a release layer. Suitable examples of photoresists include AZ electronic material nLOF 2020 for the top photosensitive layer 1042 and Microchem Corp. LOR 10 B for the bottom release layer 1043. When the photoresist layer is developed, the extent of the overhang 1041 is controlled by the development time. In FIG. 10, the development time is selected to provide an overhang 1041 of about 3 μm. Preferably, the thickness of the bottom release layer 1043 is greater than about 500 nm, and the overhang 1041 is greater than about 2 μm. In order to ensure clean peeling (ie, peeling without cracking of the deposited coating 1003), the thickness of the coating 1003 should generally be less than about 70% of the thickness of the bottom release layer 1043. In FIG. 10, the thickness of the bottom release layer 1043 is about 800 nm, the thickness of the top photosensitive layer 1042 is about 2 μm, and the thickness of the coating is about 500 nm. The side surface of the optical filter 1000 below the overhang 1041 is inclined at an angle of about 10°. Referring to Figure 11, in some cases, a thicker bottom release layer 1143 is used, and a larger overhang 1141 is achieved by using a longer development time (for example, for some processes, about 80 s to about 100 s). These features improve the edge durability by reducing the slope of the side of the optical filter 1100 and increasing the thickness of the top dielectric layer 1121 at the periphery of the optical filter 1100. In FIG. 11, the development time is selected to provide an overhang 1141 of about 6 μm. Preferably, the thickness of the bottom release layer 1143 is greater than about 2 μm, and the overhanging portion 1141 is greater than about 4 μm. The thickness of the coating 1103 should generally be less than about 30% of the thickness of the bottom release layer 1143. In FIG. 11, the thickness of the bottom release layer 1143 is about 2.6 μm, the thickness of the top photosensitive layer 1142 is about 2 μm, and the thickness of the coating 1103 is about 500 nm. The side surface of the optical filter 1100 below the overhanging portion 1141 is inclined at an angle of about 5°. With particular reference to FIG. 1E, in a fourth step, a multilayer stack 103 is deposited as a discontinuous coating on the patterned photoresist layer 140 and the filter area of the substrate 110. A portion of the multilayer stack 103 disposed on the filter area of the substrate 110 forms the optical filter 100. The layers of the multilayer stack 103 corresponding to the layers of the optical filter 100 can be deposited by using various deposition techniques (such as: evaporation, such as thermal evaporation, electron beam evaporation, plasma assisted evaporation, or reactive ion evaporation; sputtering) Plating, such as magnetron sputtering, reactive sputtering, alternating current (AC) sputtering, direct current (DC) sputtering, pulsed DC sputtering or ion beam sputtering; chemical vapor deposition, such as plasma enhanced chemical vapor Deposition; and atomic layer deposition) and deposition. In addition, different layers can be deposited by using different deposition techniques. For example, the metal layer 130 can be deposited by sputtering a metal target, and the dielectric layer 120 can be deposited by reactive sputtering a metal target in the presence of oxygen. Since the overhang 141 covers the periphery of one of the filter regions of the substrate 110, the thickness of the deposited layer gradually decreases toward the periphery 101 of the optical filter 100. The overhang 141 generates a soft roll-off of the coating toward the periphery 101 of the optical filter 100. When a dielectric layer 120 is deposited on a metal layer 130, the dielectric layer 120 not only covers the top surface of the metal layer 130, but also covers the tapered edge 131 of the metal layer 130, thereby protecting the metal layer 130 from the environment. harm. In addition, the top dielectric layer 120 is usually used as a protective layer of the lower metal layer 130. For example, in the embodiment of FIG. 11, a top dielectric layer 1121 with a thickness of about 100 nm extends to the less durable metal layer (specifically, the tapered edge of the metal layer) and protectively covers It is as shown in Figure 11A. 1F, in a fifth step, a part of the multilayer stack 103 on the patterned photoresist layer 140 and the photoresist layer 140 are removed (ie, peeled off). Generally, the photoresist layer 140 is peeled off by using a suitable peeling agent or solvent. A portion of the multilayer stack 103 remaining on the filter area of the substrate 110 forms the optical filter 100. The substrate 110 may be, for example, a conventional sensor device. It should be noted that the peeling process of FIGS. 1B to 1F can also be used to simultaneously form a plurality of optical filters 100 of the same type (ie, having the same optical design) on the substrate 110. In addition, the lift-off process can be repeated to subsequently form one or more optical filters of a different type (ie, having a different optical design) on the same substrate 110. In some cases, one or more optical filters that are more durable in the environment may be subsequently formed on the substrate 110 by using a lift-off process or in some cases by using a dry or wet etching process , So that it partially overlaps with one or more optical filters 100 that are less durable in the environment, as described in more detail later. In this way, an optical filter array can be formed on the substrate 110. The substrate 110 may be, for example, a conventional sensor array. With particular reference to FIG. 1G, in an optional sixth step, an additional protective coating 150 is deposited on the optical filter 100. The protective coating 150 may be deposited by using one of the aforementioned deposition techniques. The protective coating 150 covers both the central portion 102 and the periphery 101 of the optical filter 100 (ie, all exposed portions of the optical filter 100), thereby protecting the optical filter 100 from environmental damage. In other embodiments, the optical filter includes a plurality of corrosion inhibiting layers disposed between the dielectric layer and the metal layer, which further protect the metal layer. Referring to FIG. 2, a second embodiment of an optical filter 200 disposed on a substrate 210 is similar to the first embodiment of the optical filter 100, but further includes inserting three dielectric layers 220 and two metal layers 230 between four corrosion inhibiting layers 260. The metal layers 230 are each disposed between and adjacent to the two corrosion-inhibiting layers 260, thereby further protecting against environmental damage. The corrosion inhibiting layer 260 mainly inhibits the corrosion of the metal layer 230 during the deposition process. In particular, the corrosion inhibiting layer 260 protects the part of the metal layer 230 in the optical path, thereby preventing the optical properties of the metal layer 230 from degrading. Preferably, the tapered edge 231 of the metal layer 230 is protectively covered by the adjacent corrosion inhibiting layer 260 and the nearest dielectric layer 220. Therefore, the metal layer 230 is preferably substantially encapsulated by the adjacent corrosion inhibiting layer 260 and the nearest dielectric layer 220. The second embodiment of the optical filter 200 can be manufactured by a lift-off process similar to one of the lift-off processes used to manufacture the first embodiment of the optical filter 100. However, the layers of the multilayer stack deposited in the fourth step correspond to the layers of the optical filter 200. In particular, the corrosion inhibiting layer 260 is deposited before and after each metal layer 230. Advantageously, the corrosion inhibiting layer 260 inhibits corrosion (ie, oxidation) of the metal layer 230 during the deposition of the dielectric layer 220. The corrosion inhibiting layer 260 is particularly useful when the metal layer 230 contains silver or aluminum. In these embodiments, the corrosion inhibiting layer 260 inhibits the reaction between the silver or aluminum from the metal layer 230 and the oxygen from the dielectric layer 220 to form silver oxide or aluminum oxide. The corrosion inhibiting layer 260 may be deposited as a metal compound (for example, metal nitride or metal oxide) layer by using one of the aforementioned deposition techniques (for example, reactive sputtering). Alternatively, the corrosion inhibiting layer 260 may be formed by first depositing a suitable metal layer by using one of the aforementioned deposition techniques and then oxidizing the metal layer. Preferably, the corrosion inhibiting layer 260 on top of the metal layer 230 is each formed by first depositing a suitable metal layer, oxidizing the metal layer, and then depositing a metal oxide layer. For example, the corrosion inhibiting layer 260 can be formed by sputtering a suitable metal target, then oxidizing, and then reactively sputtering a suitable metal target in the presence of oxygen. Further details of the method of forming the corrosion inhibiting layer are provided later, and are disclosed in US Patent No. 7,133,197. The optical filter of the present invention can have various optical designs. The optical design of the exemplary optical filter will be described in more detail later. Generally speaking, the optical design of an optical filter is optimized for a specific passband by selecting an appropriate layer number, material, and/or thickness. The optical filter includes at least one metal layer and at least one dielectric layer. Generally, an optical filter includes a plurality of metal layers and a plurality of dielectric layers. Generally, an optical filter includes 2 to 6 metal layers, 3 to 7 dielectric layers, and optionally 4 to 12 corrosion inhibiting layers. Generally speaking, increasing the number of metal layers provides a passband with steeper edges but a lower transmittance in the frequency band. The first layer or bottom layer in the optical design (ie, the first layer deposited on the substrate) can be a metal layer or a dielectric layer. The last layer or top layer (ie, the last layer deposited on the substrate) in an optical design is usually a dielectric layer. When the bottom layer is a metal layer, the optical filter can be composed of n metal layers (M) and n dielectric layers (D) stacked in a sequence (M/D) n, where n ≥ 1. Alternatively, the optical filter may be composed of n metal layers (M) and n dielectric layers (D) and 2n corrosion inhibiting layers (C) stacked in a sequence (C/M/C/D) n, Where n ≥ 1. When the bottom layer is a dielectric layer, the optical filter can be composed of n metal layers (M) and n + 1 dielectric layers (D) stacked in a sequence of D (M/D) n, where n ≥ 1 . Alternatively, the optical filter may be composed of n metal layers (M), n + 1 dielectric layers (D), and 2n corrosion inhibiting layers (C) stacked in a sequence of D (C/M/C/D) n ) Composition, where n ≥ 1. The metal layers are each composed of metal or alloy. In some embodiments, the metal layers each consist of silver. Alternatively, the metal layers may each consist of a silver alloy. For example, a silver alloy essentially composed of about 0.5 wt% gold and about 0.5 wt% tin can provide improved corrosion resistance. In other embodiments, the metal layers are each composed of aluminum. The choice of metal or alloy depends on the application. Silver is generally preferred for optical filters with a pass band in the visible spectral region, and aluminum is generally preferred for optical filters with a pass band in the UV spectral region, but sometimes it can be used in the pass band. Silver is used when a wavelength greater than about 350 nm is the center. The metal layers are usually but not necessarily composed of the same metal or alloy, but have different thicknesses. Generally, the metal layers each have a physical thickness between about 5 nm and about 50 nm, preferably between about 10 nm and about 35 nm. The dielectric layers are each composed of a dielectric material that is transparent in the passband of the optical filter. For optical filters with a pass band in the visible spectrum, the dielectric layers are usually composed of a high refractive index dielectric material with a refractive index greater than about 1.65 at 550 nm and transparent in the visible spectrum. Suitable examples of high refractive index dielectric materials for these filters include titanium dioxide (TiO 2 ), zirconium dioxide (ZrO 2 ), hafnium dioxide (HfO 2 ), niobium pentoxide (Nb 2 O 5 ), five Tantalum oxide (Ta 2 O 5 ) and other mixtures thereof. Preferably, the high refractive index dielectric materials of these filters also absorb UV, that is, absorb UV in the near UV spectral region. For example, a high refractive index dielectric material containing or consisting of TiO 2 and/or Nb 2 O 5 can provide enhanced UV blocking, that is, having a lower out-of-band transmittance in the near UV spectral region. Preferably, the refractive index of the high refractive index dielectric material is greater than about 2.0 at 550 nm, and more preferably greater than about 2.35 at 550 nm. Usually a higher refractive index can be expected. However, the refractive index of currently available transparent high refractive index dielectric materials is generally less than about 2.7 at 550 nm. For filters with a pass band in the UV spectral region, the dielectric layers are usually each made of an intermediate refractive index dielectric material with a refractive index between about 1.4 and 1.65 at 300 nm, or preferably at 300 nm The refractive index is greater than about 1.65, more preferably greater than about 2.2 at 300 nm, and is composed of a high refractive index dielectric material that is transparent in the UV spectral region. Suitable examples of intermediate refractive index and high refractive index dielectric materials for filters having a pass band in the UV spectral region include Ta 2 O 5 , hafnium dioxide (HfO 2 ), aluminum oxide (Al 2 O 3 ), silicon dioxide (SiO 2 ), scandium trioxide (ScO 3 ), yttrium trioxide (Y 2 O 3 ), ZrO 2 , magnesium oxide (MgO 2 ), magnesium fluoride (MgF 2 ), other fluorine Compounds and other mixtures. For example, for a passband centered at a wavelength greater than about 340 nm, Ta 2 O 5 can be used as a high refractive index dielectric material, and for a passband centered at a wavelength less than about 400 nm, HfO 2 can be used as A high refractive index dielectric material. The dielectric layers are usually but not necessarily composed of the same dielectric material, but have different thicknesses. Generally, the dielectric layers each have a physical thickness between about 20 nm and about 300 nm. Preferably, the top dielectric layer has a physical thickness greater than about 40 nm, more preferably greater than about 100 nm, so that the top dielectric layer serves as a protective layer of the underlying metal layer. The physical thickness of each dielectric layer is selected to correspond to a quarter-wavelength optical thickness (QWOT) required for an optical design. QWOT is defined as 4nt, where n is the refractive index of the dielectric material and t is the physical thickness. Generally, the dielectric layers each have a QWOT between about 200 nm and about 2400 nm. The corrosion-inhibiting layers are each composed of a corrosion-inhibiting material. Generally, the corrosion-inhibiting layer is composed of a corrosion-inhibiting dielectric material. Examples of suitable corrosion inhibiting dielectric materials include silicon nitride (Si 3 N 4 ), TiO 2 , Nb 2 O 5 , zinc oxide (ZnO), and mixtures thereof. Preferably, the corrosion-inhibiting dielectric material is a compound having an electric corrosion potential higher than that of the metal or alloy of the metal layer, such as nitride or oxide. In some cases, the corrosion-inhibiting layer below the metal layer is composed of ZnO, and the corrosion-inhibiting layer above the metal layer includes a very thin layer composed of zinc (for example, having a thickness of less than 1 nm) and composed of ZnO It is composed of a thin layer. The zinc layer is deposited on the metal layer and then oxidized to prevent optical absorption. The ZnO layer below and above the metal layer is usually deposited by reactive sputtering. Advantageously, depositing a zinc layer on the metal layer before depositing the ZnO layer prevents the metal layer from being exposed to the activated ionized oxygen species generated during reactive sputtering. The zinc layer preferably absorbs oxygen, thereby inhibiting the oxidation of the metal layer. The corrosion-inhibiting layer is usually suitably thin to substantially avoid affecting the optical design of the optical filter especially when it absorbs in the visible spectral region. Generally, the corrosion-inhibiting layers each have a physical thickness between about 0.1 nm and about 10 nm, preferably between about 1 nm and about 5 nm. Further details of suitable corrosion inhibiting layers are disclosed in U.S. Patent No. 7,133,197. The protective coating used is usually composed of a dielectric material. The protective coating may be composed of the same dielectric material as the dielectric layer and may have the same thickness range as the dielectric layer. Generally, the protective coating is composed of the same dielectric material as the top dielectric layer and has a thickness that is a part of the design thickness of the top dielectric layer (that is, the thickness required for optical design). In other words, the top dielectric layer of the optical design is separated between a dielectric layer and a dielectric protective coating. Alternatively, the protective coating may be composed of an organic material (e.g., epoxy resin). 3, the optical filter 300 generally has a filter height h that is less than 1 µm and preferably less than 0.6 µm, that is, a height of the center portion of the optical filter 300 from the substrate 310. It should be noted that the height of the filter usually corresponds to the thickness of the aforementioned deposited coating. When used in an image sensor, the optical filter 300 generally has a filter width w that is less than 2 µm and preferably less than 1 µm, that is, a width of the central portion of the optical filter 300. Advantageously, the relatively small filter height allows a smaller filter interval when forming a plurality of optical filters 300 by a lift-off process. Generally, the optical filter 300 in an image sensor has a filter interval d of less than 2 µm and preferably less than 1 µm, that is, an interval between the center portions of the closest optical filter 300. When used in other sensor devices with larger pixel sizes, the filter width can be from about 50 µm to about 100 µm. The optical filter is a metal dielectric bandpass filter having a high-frequency band transmittance and a low-frequency band transmittance, that is, an induced transmission filter. In some embodiments, the optical filter is a color filter having a relatively narrow color passband in the visible spectrum. For example, the optical filter can be a red, green, blue, cyan, yellow, or magenta filter. In other embodiments, the optical filter has a light-appropriate passband in the visible spectral region (ie, a passband that matches a light-appropriate luminous efficiency function that mimics the spectral response of the human eye to relatively bright light) An optical filter. In still other embodiments, the optical filter is an IR blocking filter having a relatively wide passband in the visible spectrum. In these embodiments, the optical filter generally has a transmittance of greater than about 50% in one of the maximum frequency bands, and between about 300 nm and about 400 nm (ie, in the near UV spectral region) less than about 2%. An average out-of-band transmittance, and an average out-of-band transmittance between about 750 nm and about 1100 nm (ie, in the infrared (IR) spectral region) less than about 0.3%. In contrast, conventional all-dielectric color filters and photopic filters are generally not inherently IR blocking. Generally, in these embodiments, the optical filter also has a low angular offset, that is, the central wavelength offset of the incident angle from 0° changes. Generally, an optical filter has an incident angle of 60° and an amplitude less than about 5% of an optical filter centered at 600 nm or an angular offset of less than about 30 nm. In contrast, the conventional all-dielectric color filters and photo-optical filters are usually highly angle sensitive. The optical design (ie, layer number, material, and thickness) for the exemplary red, green, and blue filters (ie, an exemplary set of RGB filters) are made in FIGS. 4A, 4B, and 4C, respectively Into a table. The optical design of an exemplary optical filter is tabulated in Figure 4D. The layers of each optical design are numbered from the first layer or bottom layer deposited on the substrate. The metal layers are each composed of silver and have a physical thickness between about 13 nm and about 34 nm. The dielectric layers are each composed of a high refractive index dielectric material (H), and have a QWOT between about 240 nm and about 2090 nm. For example, the high refractive index dielectric material may be a mixture of Nb 2 O 5 and TiO 2 and has a refractive index of about 2.43 at 550 nm. The corrosion-inhibiting layers are each composed of ZnO and each have a physical thickness of about 2 nm. When the high refractive index dielectric material has a refractive index of about 2.43 at 550 nm, the filter height of the red filter is 606 nm, the filter height of the green filter is 531 nm, and the blue filter is The height of the filter is 252 nm, and the height of the optical filter is 522 nm. The height of these filters is much smaller than that of the conventional all-dielectric color filters and photo-optical filters. The transmission spectra 570, 571, and 572 of exemplary red, green, and blue filters are plotted in FIGS. 5A and 5B, respectively. The transmission spectrum 570 of the exemplary red filter includes a red pass band centered at about 620 nm, the transmission spectrum 571 of the exemplary green filter includes a green pass band centered at about 530 nm, and the exemplary blue The transmission spectrum 572 of the color filter contains a blue passband centered at about 445 nm. In Figure 5C, the transmission spectra 573 (0º) and 574 (60º) of an exemplary optical filter plotted at an incident angle of 0º to 60º. The transmission spectrum 573 of the exemplary optical filter at an angle of incidence of 0° includes an optical pass band centered at about 555 nm. In the transmission spectrum 574 of the exemplary optical filter with an incident angle of 60°, the optical pass band is centered at about 520 nm. In other words, the angular deviation of the exemplary optical filter with an incident angle of 60° is about -25 nm. Advantageously, the angular deviation of the exemplary photo-optical filter is much smaller than that of a conventional all-dielectric photo-optical filter. The exemplary color filter and the optical filter each have a transmittance in one of the maximum frequency bands greater than about 60%. Advantageously, with respect to conventional dye-based color filters and full dielectric color filters and photo filters, the exemplary color filters and photo filters provide improved IR blocking, thereby Reduce noise caused by IR leakage. Specifically, the exemplary color filter and the optical filter each have an average out-of-band transmittance of less than about 0.3% between about 750 nm and about 1100 nm (ie, in the IR spectral region). Compared with some conventional metal dielectric color filters, exemplary color filters and photo-optical filters (especially exemplary red filters) also provide improved UV blocking, thereby reducing UV leakage The noise caused. Specifically, the exemplary color filter and the photo-optical filter each have an average out-of-band transmittance of less than about 2% between about 300 nm and about 400 nm (ie, in the near UV spectral region). A color gamut 680 of an exemplary RGB filter set and a color gamut 681 of a conventional dye-based RGB filter set are drawn on a CIE xy chromaticity diagram in FIG. 6A for comparison. Advantageously, the color gamut 680 of the exemplary RGB filter set is much larger than the color gamut 681 of the conventional dye-based RGB filter set. An exemplary red filter drawn on a CIE xy chromaticity diagram in Fig. 6B with an incident angle of 0º to 60º, a color track 682 and a conventional all-dielectric red filter at an incident angle of 0º to 60º One of the color tracks 683. A color track 684 of an exemplary optical filter with an incident angle of 0° to 60° drawn on a CIE xy chromaticity diagram in FIG. 6C. Advantageously, the angular deviation of the exemplary red filter and the photometric filter is much smaller than the angular deviation of the conventional all-dielectric red filter and the photometric filter. In some embodiments, the optical filter is a UV filter having a relatively narrow passband in the UV spectral region (for example, between about 180 nm and about 420 nm). For example, the optical filter can be an ultraviolet A (UVA) or ultraviolet B (UVB) filter. In these embodiments, the optical filter generally has a transmittance in one of the maximum frequency bands of greater than about 5%, preferably greater than about 15%, and between about 420 nm and about 1100 nm (ie, in visible and IR The average out-of-band transmittance in the spectral region is less than about 0.3%. In contrast, conventional all-dielectric UV filters are generally not inherently IR blocking. Generally, in these embodiments, the optical filter also has a low angular offset, that is, the central wavelength offset of the incident angle from 0° changes. Generally, an optical filter has an incident angle of 60° and an amplitude less than about 5% of an optical filter centered at 300 nm or an angular offset of less than about 15 nm. In contrast, conventional all-dielectric UV filters are usually very sensitive. The optical design of exemplary UVA, UVB, and 220 nm center filters, namely, layer number, material, and thickness are summarized in FIG. 12. The metal layers are each composed of aluminum and have a physical thickness between about 10 nm and about 20 nm. The dielectric layers are each composed of a high refractive index dielectric material (that is, Ta 2 O 5 for UVA filters and HfO 2 for UVB filters and 220 nm center filters), and have a range between Physical thickness between about 40 nm and about 60 nm. The exemplary UV filter does not include a corrosion inhibiting layer because the additional protection provided by the corrosion inhibiting layer is generally unnecessary when the metal layer is composed of aluminum. The filter height of the UVA filter is 350 nm, the filter height of the UVB filter is 398 nm, and the filter height of the 220 nm center filter is 277 nm. The height of these filters is much smaller than that of conventional all-dielectric UV filters. The transmission spectra of the exemplary UVA filter 1370 (0º) and 1371 (60º) plotted in Fig. 13A at an incident angle of 0º to 60º, and the exemplary UVB filter plotted at an incident angle of 0º to 60º in Fig. 13B The transmission spectra are 1372 (0º) and 1373 (60º), and the transmission spectra of an exemplary 220nm central filter with an incident angle of 0º to 60º are plotted in Figure 13C, 1374 (0º) and 1375 (60º). The transmission spectrum 1370 of the exemplary UVA filter at an incident angle of 0º includes a UVA passband centered at about 355 nm, and the transmission spectrum 1372 of the exemplary UVB filter at an incident angle of 0º includes approximately The transmission spectrum 1374 of the 220 nm central filter with a UVB passband centered at 295 nm and an incident angle of 0º includes a passband centered at approximately 220 nm. The amplitude of the angular offset of the exemplary UV filter at an incident angle of 60° is less than about 15 nm. Advantageously, the angular deviation of the exemplary UV filter is much smaller than that of the conventional all-dielectric UV filter. The exemplary UV filters each have a transmittance greater than about 10% in one of the maximum frequency bands. In particular, the UVA and UVB filters each have a transmittance in one of the maximum frequency bands greater than about 20%. Advantageously, relative to the conventional all-dielectric UV filters, the exemplary UV filters provide improved IR blocking, thereby reducing noise caused by IR leakage. Specifically, the exemplary UV filter has an average out-of-band transmittance between about 420 nm and about 1100 nm (ie, in the visible and IR spectral regions), each having an average out-of-band transmittance of less than about 0.3%. The optical filter of the present invention is particularly useful when included as a part of a sensor device or other active element. The sensor device can be any type of sensor device, including one or more sensor elements in addition to one or more optical filters according to the present invention. In some examples, the sensor device may also include one or more conventional optical filters. For example, the sensor device can be an image sensor, an ambient light sensor, a proximity sensor, a hue sensor, a UV sensor, or a combination thereof. The one or more sensor elements can be any type of conventional sensor elements. Generally, one or more sensor elements are photodetectors, such as photodiodes, charge coupled device (CCD) sensor elements, complementary metal oxide semiconductor (CMOS) sensor elements, silicon detectors, or Dedicated UV sensitive detector. One or more sensor elements can be front-illuminated or back-illuminated. The sensor components can be made of any typical sensor material (such as silicon, indium gallium arsenide (IN 1-x Ga x As), gallium arsenide (GaAs), germanium, lead sulfide (PbS), or nitride Gallium (GaN)) is formed. One or more optical filters are disposed on the one or more sensor elements, so that the one or more optical filters filter the light provided to the one or more sensor elements. Generally, each optical filter is arranged on a sensor element. In other words, each pixel of the sensor device usually includes an optical filter and a sensor element. Preferably, the one or more optical filters are directly disposed on the one or more sensor elements, for example on a passivation layer of the one or more sensor elements. For example, one or more optical filters can be formed on one or more sensor elements by a lift-off process. However, in some examples, there may be one or more coatings disposed between the one or more optical filters and the one or more sensor elements. In some examples, one or more optical filters may be integrated with one or more sensor elements. In some embodiments, the sensor device includes a single sensor element and a single optical filter disposed on the sensor element according to the present invention. Referring to FIG. 7, a first embodiment of the sensor device 790 includes a sensor element 711 and an optical filter 700 disposed on the sensor element 711. For example, the sensor device 790 may be an ambient light sensor, the sensor element 711 may be a photodiode, and the optical filter 700 may be a photo-optical filter, such as the example shown in FIG. 4D Optic filter or an IR blocking filter. For another example, the sensor device 790 may be a UV sensor, the sensor element 711 may be a photodiode, and the optical filter 700 may be a UV filter, such as the example shown in FIG. 12 UVA, UVB or 220 nm center filter. In an exemplary embodiment of an ambient light sensor, an optical filter according to the present invention is integrated with a photodiode. The photo-optical filter is arranged on the photodiode, usually on a planar passivation layer composed of Si 3 N 4 such as the photodiode. For example, a protective coating or an encapsulating layer composed of epoxy resin can be placed on the photoelectric filter and the photodiode. The optical design of the photo-optical filter is optimized by considering the passivation layer and (when present) the encapsulation layer. The transmission spectra of an exemplary optical filter of 1470 (0º) and 1471 (60º) and a normalized photodiode optimized to integrate with a photodiode are plotted in Fig. 14 as the incident angle Light response curve 1472. The transmission spectra of 1470 and 1471 are matched with a Si 3 N 4 passivation layer and an epoxy resin encapsulation layer. The transmission spectrum 1470 of the exemplary optical filter at an angle of incidence of 0° includes an optical pass band centered at about 555 nm. The transmission spectrum 1470 of the exemplary optical filter follows the normalized optical response curve 1472 quite well at an incident angle of 0º to 40º. In addition, the exemplary optical filter blocks both UR light and IR light at an incident angle of 0° to 60°, and has a low angular offset. Advantageously, the exemplary optical filter is also durable in environments, such as 96 hours at a temperature of 125°C and a relative humidity of 100%. In other embodiments, the sensor device includes a plurality of sensor elements and a plurality of optical filters arranged on the plurality of sensor elements according to the present invention. Generally, the sensor elements are arranged in an array. In other words, the sensor elements form a sensor array, such as a photodiode array, a CCD array, a CMOS array, or any other type of conventional sensor array. Optical filters are usually also arranged in an array. In other words, the optical filter forms an optical filter array, such as a color filter array (CFA). Preferably, the sensor array and the optical filter array are corresponding two-dimensional arrays, namely mosaics. For example, the array may be a rectangular array with columns and rows. Generally, in these embodiments, the optical filters are substantially separated from each other. In other words, the peripheries of the optical filter usually do not touch each other. However, in some cases, the dielectric layer of the optical filter may unintentionally contact, while the metal layers, especially the tapered edges, remain separated from each other. Generally, a plurality of optical filters include different types of optical filters having different passbands from each other. For example, the plurality of optical filters may include color filters (such as red, green, blue, cyan, yellow, and/or magenta filters), optical filters, IR blocking filters, UV Optical filter or a combination of the like. In some embodiments, the plurality of optical filters include different types of color filters forming a CFA. For example, a plurality of optical filters may include red, green, and blue filters forming an RGB filter array (such as a Bayer filter array), such as the exemplary red in FIGS. 4A to 4C , Green and blue filters. For another example, the plurality of optical filters may include cyan, magenta, and yellow filters forming a CMY filter array. Advantageously, different types of optical filters may have different numbers of metal layers and/or different thicknesses of metal layers. In some embodiments, at least two of the different types of optical filters include different numbers of metal layers from each other. In the same or other embodiments, at least two of the different types of optical filters have different metal layer thicknesses from each other. For example, the exemplary blue filter of FIG. 4C has a different number of metal layers from the exemplary red and green filters of FIGS. 4A and 4B. In addition, all of the exemplary red, green, and blue filters of FIGS. 4A to 4C have different metal layer thicknesses from each other. Referring to FIG. 8, a second embodiment of the sensor device 890 includes a plurality of sensor elements 811 and a plurality of optical filters 800 and 804 disposed on the plurality of sensor elements 811. The plurality of optical filters 800 and 804 include a first type optical filter 800 having a first passband and a second type optical filter having a second passband different from the first passband器804. For example, the sensor device 890 may be an image sensor, a plurality of sensor elements 811 may form a CCD array, and a plurality of optical filters 800 and 804 may form a Bayer filter array, of which only the illustration Part of a column. The first type of optical filter 800 may be a green filter, such as the exemplary green filter of FIG. 4B, and the second type of optical filter 804 may be a red filter (such as the example of FIG. 4A Exemplary red filter), or a blue filter (such as the exemplary blue filter of FIG. 4C). Any of the aforementioned sensor device embodiments can be combined with one or more additional optical filters and one or more additional sensor elements that are more durable in the environment. Accordingly, in some embodiments, the sensor device includes one or more first optical filters arranged on one or more first sensor elements according to the present invention, and also includes one or more first optical filters arranged on one or more One or more second optical filters on the plurality of second sensor elements. The one or more second optical filters are more durable in the environment than the one or more first optical filters. For example, one or more first optical filters may be silver dielectric optical filters according to the present invention, wherein the metal layer is composed of silver or a silver alloy. The one or more second optical filters may be an aluminum dielectric optical filter according to the present invention, wherein the metal layer is composed of aluminum. Alternatively, the one or more second optical filters may be conventional optical filters, such as all-dielectric, silicon-dielectric or hydrogenated silicon-dielectric optical filters. In these embodiments, the one or more second optical filters partially overlap the one or more first optical filters, making the one or more second optical filters more durable in the environment protective Ground covers the periphery of one or more first optical filters that are less durable in the environment. Advantageously, this covering layout provides additional protection for the tapered edges of the one or more first optical filters, especially the metal layer, from environmental degradation (such as corrosion). Due to the small slope of the side of the filter and the small filter height of one or more first optical filters, one or more second optical filters are placed on one or more first optical filters. The oblique sides at the periphery of the optical device and the substrate are conformal, thereby providing a continuous layer in one or more second optical filters. The one or more second optical filters preferably extend along the entire periphery of the one or more first optical filters to the oblique side surface at the periphery of the one or more first optical filters, including the cone of the metal layer形边。 Shaped edges. Preferably, the one or more second optical filters completely cover the oblique side surface at the periphery of the one or more first optical filters. However, the one or more second optical filters do not cover or block the one or more first sensor elements. Generally, one or more first optical filters and one or more second optical filters have different passbands from each other. For example, the one or more first optical filters may be color filters (such as red, green, blue, cyan, yellow, or magenta filters), optical filters, IR blocking filters , Or a combination thereof. In particular, the one or more first optical filters may be silver dielectric color filters (such as the exemplary red, green and/or blue filters shown in FIGS. 4A to 4C), silver dielectric color filters, and/or silver dielectric color filters. An optical filter (such as the exemplary optical filter of FIG. 4D) or a silver dielectric IR blocking filter. The one or more second optical filters can be, for example, UV filters or near IR filters, or a combination thereof. In particular, the one or more second optical filters may be aluminum dielectric UV filters (such as the exemplary UVA, UVB, and/or 220 nm center filters in FIG. 12) or all-dielectric UV filters Device. Alternatively, the one or more second optical filters may be silicon dielectric or hydrogenated silicon dielectric near-IR filters (such as Hendrix et al., U.S. Patent Application Publication No. 2014/ The optical filter described in No. 0014838. Generally, in these embodiments, the sensor device is multifunctional and the combination is mainly composed of one or more first optical filters and one or more second optical filters. Different types of optical sensors with different functions to determine the passband of the filter. One or more first optical filters and one or more first sensor elements form a first type of optical sensor , And one or more second optical filters and one or more second sensor elements form a second type of optical sensor. For example, the first type of optical sensor may include an optical sensor A filter or an IR blocking filter, an ambient light sensor, a hue sensor including one or more different types of color filters, or one of a plurality of different types of color filters An image sensor. The second type of optical sensor can be, for example, a UV sensor including a UV filter or a proximity sensor including a near IR filter. Referring to FIG. 15, a sensor A third embodiment of the sensor device 1590 includes a first sensor element 1511 and a first optical filter 1500 arranged on the first sensor element 1511 according to the present invention, thereby forming a first type Optical sensor. The sensor device 1590 further includes a second sensor element 1512 and a second optical filter 1505 which is arranged on the second sensor element 1512 and is more durable in the environment, thereby forming a second sensor element 1512. Two types of optical sensors. For example, the first type of optical sensor may be an ambient light sensor, and the first optical filter 1500 may be a silver dielectric photoelectric filter (such as FIG. 4D The exemplary optical filter) or a silver dielectric IR blocking filter. The second type of optical sensor can be, for example, a UV sensor, and the second optical filter 1505 can be an aluminum A dielectric UV filter (such as the exemplary UVA, UVB, or 220 nm center filter of FIG. 12) or a fully dielectric UV filter. Alternatively, the second type of optical sensor may be a proximity sensor The sensor, and the second optical filter 1505 can be a near IR filter, such as a full dielectric, silicon dielectric or hydrogenated silicon dielectric near IR filter. The first sensor element 1511 and the second sensor element 1511 The sensor element 1512 may be a photodiode. With particular reference to Fig. 15A, the second optical filter 1505 extends along the entire periphery of the first optical filter 1500 to the inclined side surface of the first optical filter 1500. Thereby. , The second optical filter 1505 protectively covers the periphery of the first optical filter 1500, including the tapered edge of the metal layer. With particular reference to FIGS. 15B and 15C, the first optical filter 1500 covers and filters The light of the first sensor element 1511. The second optical filter 1505 covers and filters the light provided to the second sensor element 1512, and surrounds but does not cover the first sensor器Component 1511. In the layout illustrated in FIG. 15B, the first sensor element 1511 and the second sensor element 1512 are arranged in a row between the rows of the bonding pads 1513. In an alternative layout illustrated in FIG. 15C, the second sensor element 1512 is ring-shaped and surrounds the first sensor element 1511. Referring to FIG. 16, a fourth embodiment of a sensor device 1690 includes a plurality of first sensor elements 1611 and a plurality of first optical filters arranged on the plurality of first sensor elements 1611 according to the present invention The sensors 1600, 1604, and 1606 form a first type of optical sensor. The sensor device 1690 further includes a second sensor element 1612 and a second optical filter 1605 disposed on the second sensor element 1612, thereby forming a second type of optical sensor. For example, the first type of optical sensor may be an image sensor or a hue sensor, and the plurality of first optical filters 1600, 1604, and 1606 may be different types of color filters, such as The exemplary silver dielectric red, green, and blue filters of 4A to 4C. The second type of optical sensor can be, for example, a UV sensor, and the second optical filter 1605 can be a UV filter, such as the exemplary aluminum dielectric UVA, UVB, or 220 nm center filter of FIG. 12 Optical device. Alternatively, the second type of optical sensor may be a proximity sensor, and the second optical filter 1605 may be a near IR filter, such as a full dielectric, silicon dielectric, or hydrogenated silicon dielectric Near IR filter. A plurality of first sensor elements 1611 and second sensor elements 1612 can form a photodiode array.

100‧‧‧光學濾光器 101‧‧‧光學濾光器之周邊 102‧‧‧光學濾光器之中心部分 103‧‧‧多層堆疊 110‧‧‧基板 120‧‧‧介電層 130‧‧‧金屬層 131‧‧‧錐形邊緣 140‧‧‧光阻層 141‧‧‧懸伸部 150‧‧‧保護塗層 200‧‧‧光學濾光器 210‧‧‧基板 220‧‧‧介電層 230‧‧‧金屬層 231‧‧‧錐形邊緣 260‧‧‧腐蝕抑制層 300‧‧‧光學濾光器 310‧‧‧基板 570‧‧‧紅色濾光器之透射光譜 571‧‧‧綠色濾光器之透射光譜 572‧‧‧藍色濾光器之透射光譜 573‧‧‧適光濾光器之透射光譜 574‧‧‧適光濾光器之透射光譜 680‧‧‧RGB濾光器集之色域 681‧‧‧基於染料的RGB濾光器集之色域 682‧‧‧紅色濾光器之色軌 683‧‧‧全介電紅色濾光器之色軌 684‧‧‧適光濾光器之色軌 700‧‧‧光學濾光器 711‧‧‧感測器元件 790‧‧‧感測器裝置 800‧‧‧光學濾光器 804‧‧‧光學濾光器 811‧‧‧感測器元件 890‧‧‧感測器裝置 900‧‧‧光學濾光器 903‧‧‧塗層 910‧‧‧基板 940‧‧‧光阻層 1000‧‧‧光學濾光器 1003‧‧‧非連續塗層 1041‧‧‧懸伸部 1042‧‧‧頂層/頂部光敏層 1043‧‧‧底層/底部釋放層 1100‧‧‧光學濾光器 1103‧‧‧塗層 1121‧‧‧頂部介電層 1141‧‧‧懸伸部 1142‧‧‧頂部光敏層 1143‧‧‧底層/底部釋放層 1370‧‧‧UVA濾光器之透射光譜 1371‧‧‧UVA濾光器之透射光譜 1372‧‧‧UVB濾光器之透射光譜 1373‧‧‧UVB濾光器之透射光譜 1374‧‧‧220nm中心濾光器之透射光譜 1375‧‧‧220nm中心濾光器之透射光譜 1470‧‧‧適光濾光器之透射光譜 1471‧‧‧適光濾光器之透射光譜 1472‧‧‧適光回應曲線 1500‧‧‧第一光學濾光器 1505‧‧‧第二光學濾光器 1511‧‧‧第一感測器元件 1512‧‧‧第二感測器元件 1513‧‧‧接合墊 1590‧‧‧感測器裝置 1600‧‧‧光學濾光器 1604‧‧‧光學濾光器 1605‧‧‧第二光學濾光器 1606‧‧‧第一光學濾光器 1611‧‧‧第一感測器元件 1612‧‧‧第二感測器元件 1690‧‧‧感測器裝置 d‧‧‧濾光器間隔 h‧‧‧濾光器高度 w‧‧‧濾光器寬度100‧‧‧Optical filter 101‧‧‧The periphery of the optical filter 102‧‧‧The central part of the optical filter 103‧‧‧Multi-layer stacking 110‧‧‧Substrate 120‧‧‧Dielectric layer 130‧‧‧Metal layer 131‧‧‧Tapered edge 140‧‧‧Photoresist layer 141‧‧‧Overhang 150‧‧‧Protective coating 200‧‧‧Optical filter 210‧‧‧Substrate 220‧‧‧Dielectric layer 230‧‧‧Metal layer 231‧‧‧ tapered edge 260‧‧‧Corrosion Inhibition Layer 300‧‧‧Optical Filter 310‧‧‧Substrate 570‧‧‧Transmission spectrum of red filter 571‧‧‧Transmission spectrum of green filter 572‧‧‧Transmission spectrum of blue filter 573‧‧‧Optical filter transmission spectrum 574‧‧‧Optical filter transmission spectrum 680‧‧‧Color gamut of RGB filter set 681‧‧‧Color gamut of dye-based RGB filter set 682‧‧‧Color track with red filter 683‧‧‧Full dielectric red filter color track 684‧‧‧Optical filter color track 700‧‧‧Optical filter 711‧‧‧Sensor components 790‧‧‧Sensor device 800‧‧‧Optical filter 804‧‧‧Optical filter 811‧‧‧Sensor components 890‧‧‧Sensor device 900‧‧‧Optical filter 903‧‧‧Coating 910‧‧‧Substrate 940‧‧‧Photoresist layer 1000‧‧‧Optical filter 1003‧‧‧Discontinuous coating 1041‧‧‧Overhang 1042‧‧‧Top/top photosensitive layer 1043‧‧‧Bottom layer/Bottom release layer 1100‧‧‧Optical Filter 1103‧‧‧Coating 1121‧‧‧Top Dielectric Layer 1141‧‧‧Overhang 1142‧‧‧Top photosensitive layer 1143‧‧‧Bottom layer/bottom release layer Transmission spectrum of 1370‧‧‧UVA filter 1371‧‧‧Transmission spectrum of UVA filter 1372‧‧‧UVB filter transmission spectrum 1373‧‧‧UVB filter transmission spectrum Transmission spectrum of 1374‧‧‧220nm center filter Transmission spectrum of 1375‧‧‧220nm center filter 1470‧‧‧Optical filter transmission spectrum 1471‧‧‧Optical filter transmission spectrum 1472‧‧‧Optical response curve 1500‧‧‧First optical filter 1505‧‧‧Second optical filter 1511‧‧‧First sensor element 1512‧‧‧Second sensor element 1513‧‧‧Joint pad 1590‧‧‧Sensor device 1600‧‧‧Optical filter 1604‧‧‧Optical filter 1605‧‧‧Second optical filter 1606‧‧‧First optical filter 1611‧‧‧First sensor element 1612‧‧‧Second sensor element 1690‧‧‧Sensor device d‧‧‧Filter interval h‧‧‧Filter height w‧‧‧Filter width

將參考隨附圖式更詳細描述本發明,其中: 圖1A係一光學濾光器之一第一實施例之一橫截面之一示意圖; 圖1B至圖1G係製造圖1A之光學濾光器之一方法中之步驟之示意圖; 圖2係一光學濾光器之一第二實施例之一橫截面之一示意圖; 圖3係複數個光學濾光器之一橫截面之一示意圖; 圖4A係一例示性紅色濾光器之層號、材料及厚度之一表格; 圖4B係一例示性綠色濾光器之層號、材料及厚度之一表格; 圖4C係一例示性藍色濾光器之層號、材料及厚度之一表格; 圖4D係一例示性適光濾光器之層號、材料及厚度之一表格; 圖5A及圖5B係圖4A至圖4C之例示性紅色、綠色及藍色濾光器之透射光譜之圖; 圖5C係圖4D之例示性適光濾光器之成0º至60º之入射角之透射光譜之一圖; 圖6A係圖4A至圖4C之例示性紅色、綠色及藍色(RGB)濾光器集及一習知的基於染料的RGB濾光器集之色域之一圖; 圖6B係圖4A之例示性紅色濾光器及一習知的全介電紅色濾光器之成0º至60º之入射角之色軌之一圖; 圖6C係圖4D之例示性適光濾光器之成0º至60º之入射角之一色軌之一圖; 圖7係一感測器裝置之一第一實施例之一橫截面之一示意圖; 圖8係一感測器裝置之一第二實施例之一橫截面之一示意圖; 圖9A及圖9B係沈積於一圖案化光阻層及一基板上之一連續塗層之一橫截面之掃描電子顯微照片; 圖9C係由圖9A及圖9B之連續塗層形成之一光學濾光器之一俯視圖之一光學顯微照片,其展示在暴露於高濕度及高溫之後之腐蝕; 圖10係沈積於一圖案化光阻層及一基板上之一非連續塗層之一橫截面之一掃描電子顯微照片; 圖11A及圖11B係沈積於一圖案化光阻層及一基板上之一非連續塗層之一橫截面之掃描電子顯微照片,該圖案化光阻層具有一較厚的底部釋放層及一較大的懸伸部; 圖12係例示性紫外線A (UVA)、紫外線B (UVB)及220 nm中心濾光器之層號、材料及厚度之一表格; 圖13A係圖12之例示性UVA濾光器之成0º至60º之入射角之透射光譜之一圖; 圖13B係圖12之例示性UVB濾光器之成0º至60º之入射角之透射光譜之一圖; 圖13C係圖12之例示性220 nm中心濾光器之成0º至60º之入射角之透射光譜之一圖; 圖14係一例示性適光濾光器之成0º至60º之入射角之透射光譜之一圖; 圖15A係一感測器裝置之一第三實施例之一橫截面之一示意圖; 圖15B係圖15A之感測器裝置之一俯視圖之一示意圖; 圖15C係圖15A之感測器裝置之一替代佈局之一俯視圖之一示意圖;及 圖16係一感測器裝置之一第四實施例之一俯視圖之一示意圖。The present invention will be described in more detail with reference to the accompanying drawings, in which: 1A is a schematic diagram of a cross section of a first embodiment of an optical filter; 1B to 1G are schematic diagrams of steps in a method of manufacturing the optical filter of FIG. 1A; 2 is a schematic diagram of a cross section of a second embodiment of an optical filter; Fig. 3 is a schematic diagram of a cross section of a plurality of optical filters; Fig. 4A is a table of the layer number, material and thickness of an exemplary red filter; Fig. 4B is a table of layer numbers, materials and thicknesses of an exemplary green filter; Fig. 4C is a table of layer numbers, materials and thicknesses of an exemplary blue filter; Fig. 4D is a table of layer numbers, materials and thicknesses of an exemplary optical filter; 5A and 5B are diagrams of the transmission spectra of the exemplary red, green, and blue filters of FIGS. 4A to 4C; Fig. 5C is a diagram of the transmission spectrum of the exemplary optical filter of Fig. 4D at an incident angle of 0º to 60º; 6A is a diagram of the color gamut of the exemplary red, green, and blue (RGB) filter set of FIGS. 4A to 4C and a conventional dye-based RGB filter set; Fig. 6B is a diagram of the color trajectory of the exemplary red filter of Fig. 4A and a conventional all-dielectric red filter forming an incident angle of 0º to 60º; Fig. 6C is a diagram of a color track with an incident angle of 0º to 60º for the exemplary optical filter of Fig. 4D; Fig. 7 is a schematic diagram of a cross section of a first embodiment of a sensor device; Fig. 8 is a schematic diagram of a cross section of a second embodiment of a sensor device; 9A and 9B are scanning electron micrographs of a cross-section of a continuous coating deposited on a patterned photoresist layer and a substrate; 9C is an optical micrograph of a top view of an optical filter formed by the continuous coating of FIGS. 9A and 9B, which shows corrosion after exposure to high humidity and high temperature; Figure 10 is a scanning electron micrograph of a cross section of a discontinuous coating deposited on a patterned photoresist layer and a substrate; Figures 11A and 11B are scanning electron micrographs of a cross-section of a discontinuous coating deposited on a patterned photoresist layer and a substrate, the patterned photoresist layer having a thicker bottom release layer and A larger overhang; Figure 12 is a table of the layer numbers, materials and thicknesses of exemplary ultraviolet A (UVA), ultraviolet B (UVB) and 220 nm central filters; Fig. 13A is a diagram of the transmission spectrum of the exemplary UVA filter of Fig. 12 at an incident angle of 0º to 60º; Fig. 13B is a diagram of the transmission spectrum of the exemplary UVB filter of Fig. 12 at an incident angle of 0º to 60º; Fig. 13C is a diagram of the transmission spectrum of the exemplary 220 nm central filter of Fig. 12 at an incident angle of 0º to 60º; Figure 14 is a diagram of the transmission spectrum of an exemplary optical filter at an incident angle of 0º to 60º; 15A is a schematic diagram of a cross section of a third embodiment of a sensor device; 15B is a schematic diagram of a top view of the sensor device of FIG. 15A; 15C is a schematic diagram of a top view of an alternative layout of the sensor device of FIG. 15A; and FIG. 16 is a schematic diagram of a top view of a fourth embodiment of a sensor device.

1000‧‧‧光學濾光器 1000‧‧‧Optical filter

1003‧‧‧非連續塗層 1003‧‧‧Discontinuous coating

1041‧‧‧懸伸部 1041‧‧‧Overhang

1042‧‧‧頂層/頂部光敏層 1042‧‧‧Top/top photosensitive layer

1043‧‧‧底層/底部釋放層 1043‧‧‧Bottom layer/Bottom release layer

Claims (20)

一種感測器裝置,其包括:一第一感測器元件;一第一光學濾光器,其設置於該第一感測器元件上;一第二感測器元件;及一第二光學濾光器,其設置於該第二感測器元件上,該第二光學濾光器以保護性地覆蓋該第一光學濾光器之一周邊之方式延伸於該第一光學濾光器之一傾斜側上方。 A sensor device comprising: a first sensor element; a first optical filter arranged on the first sensor element; a second sensor element; and a second optical filter An optical filter is arranged on the second sensor element, and the second optical filter extends over the first optical filter in a manner of protectively covering a periphery of the first optical filter One inclined side above. 如請求項1之感測器裝置,其中該第二光學濾光器較該第一光學濾光器具有更高的環境耐受度。 The sensor device of claim 1, wherein the second optical filter has a higher environmental tolerance than the first optical filter. 如請求項1之感測器裝置,其中該第二光學濾光器進一步延伸於該第一光學濾光器之一不同傾斜側上方。 The sensor device of claim 1, wherein the second optical filter further extends above a different oblique side of the first optical filter. 如請求項1之感測器裝置,其中該第一感測器元件及該第一光學濾光器形成一第一類型光學感測器,且其中該第二感測器元件與該第二光學濾光器形成一第二類型光學感測器。 The sensor device of claim 1, wherein the first sensor element and the first optical filter form a first type optical sensor, and wherein the second sensor element and the second optical filter The filter forms a second type optical sensor. 如請求項1之感測器裝置,其中該第一感測器元件與該第一光學濾光 器形成一環境光感測器(ambient light sensor)。 The sensor device of claim 1, wherein the first sensor element and the first optical filter The device forms an ambient light sensor. 如請求項1之感測器裝置,其中該第一光學濾光器係一銀介電適光濾光器(silver-dielectric photopic filter)或一銀介電紅外線(IR)阻斷濾光器。 The sensor device of claim 1, wherein the first optical filter is a silver-dielectric photopic filter or a silver-dielectric infrared (IR) blocking filter. 如請求項1之感測器裝置,其中該第二感測器元件與該第二光學濾光器形成一紫外線(UV)感測器。 The sensor device of claim 1, wherein the second sensor element and the second optical filter form an ultraviolet (UV) sensor. 如請求項1之感測器裝置,其中該第二光學濾光器係一鋁介電紫外光濾光器、一220nm中心濾光器或一全介電濾光器。 The sensor device of claim 1, wherein the second optical filter is an aluminum dielectric ultraviolet filter, a 220nm center filter, or a full dielectric filter. 如請求項1之感測器裝置,其中該第二感測器與該第二光學濾光器形成一近接感測器(proximity sensor)。 Such as the sensor device of claim 1, wherein the second sensor and the second optical filter form a proximity sensor. 如請求項1之感測器裝置,其中該第二光學濾光器係一近IR濾光器。 The sensor device of claim 1, wherein the second optical filter is a near-IR filter. 如請求項1之感測器裝置,其中該第一感測器元件與該第二感測器元件係光電二極體。 The sensor device of claim 1, wherein the first sensor element and the second sensor element are photodiodes. 如請求項1之感測器裝置,其中該第一光學濾光器之該周邊包含一金屬層之一錐形邊緣。 The sensor device of claim 1, wherein the periphery of the first optical filter includes a tapered edge of a metal layer. 一種感測器裝置,其包括一第一感測器元件;一第一光學濾光器,其覆蓋該第一感測器元件;一第二感測器元件;及一第二光學濾光器,其覆蓋該第二感測器元件且環繞該第一感測器元件。 A sensor device comprising a first sensor element; a first optical filter covering the first sensor element; a second sensor element; and a second optical filter , Which covers the second sensor element and surrounds the first sensor element. 如請求項13之感測器裝置,其中該第二光學濾光器並未覆蓋該第一感測器元件。 Such as the sensor device of claim 13, wherein the second optical filter does not cover the first sensor element. 如請求項13之感測器裝置,其中該第一光學濾光器過濾提供至該第一感測器元件之光,且其中該第二光學濾光器過濾提供至該第二感測器元件之光。 The sensor device of claim 13, wherein the first optical filter filters the light provided to the first sensor element, and wherein the second optical filter filters the light provided to the second sensor element Light. 如請求項13之感測器裝置,其進一步包括:一第一列接合墊;及一第二列接合墊。 Such as the sensor device of claim 13, which further includes: a first row of bonding pads; and a second row of bonding pads. 如請求項16之感測器裝置,其中該第一感測器元件與該第二感測器元件經設置於該第一列接合墊與該第二列接合墊之間。 The sensor device of claim 16, wherein the first sensor element and the second sensor element are disposed between the first row of bonding pads and the second row of bonding pads. 如請求項13之感測器裝置,其中該第二感測器元件係環形的。 Such as the sensor device of claim 13, wherein the second sensor element is ring-shaped. 如請求項13之感測器裝置,其中該第二感測器元件環繞該第一感測器元件。 The sensor device of claim 13, wherein the second sensor element surrounds the first sensor element. 一種感測器裝置,其包括:複數個第一感測器元件;複數個第一光學濾光器,該複數個第一感測器元件與該複數個第一光學濾光器形成一第一類型光學感測器,且該複數個第一光學濾光器包含銀介電(silver-dielectric)紅色、綠色及藍色濾光器;一第二感測器元件;及一第二光學濾光器,其設置於該第二感測器元件上,該第二感測器元件與該第二光學濾光器形成一第二類型光學感測器。A sensor device, comprising: a plurality of first sensor elements; a plurality of first optical filters, the plurality of first sensor elements and the plurality of first optical filters form a first Type optical sensor, and the plurality of first optical filters include silver-dielectric red, green, and blue filters; a second sensor element; and a second optical filter The device is arranged on the second sensor element, and the second sensor element and the second optical filter form a second type optical sensor.
TW108121126A 2014-06-18 2014-06-18 Metal-dielectric optical filter, sensor device, and fabrication method TWI725449B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108121126A TWI725449B (en) 2014-06-18 2014-06-18 Metal-dielectric optical filter, sensor device, and fabrication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108121126A TWI725449B (en) 2014-06-18 2014-06-18 Metal-dielectric optical filter, sensor device, and fabrication method

Publications (2)

Publication Number Publication Date
TW201937208A TW201937208A (en) 2019-09-16
TWI725449B true TWI725449B (en) 2021-04-21

Family

ID=68618609

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108121126A TWI725449B (en) 2014-06-18 2014-06-18 Metal-dielectric optical filter, sensor device, and fabrication method

Country Status (1)

Country Link
TW (1) TWI725449B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211555889U (en) * 2019-09-23 2020-09-22 神盾股份有限公司 Image sensing module
US20220302186A1 (en) * 2021-03-19 2022-09-22 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor with high quantam efficiency

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7042662B2 (en) * 2002-12-26 2006-05-09 Canon Kabushiki Kaisha Light amount adjusting device, and optical device using the light amount adjusting device
TWI307814B (en) * 2005-04-07 2009-03-21 Samsung Electro Mech Nonadjustable focusing type camera module
TW201013168A (en) * 2008-09-19 2010-04-01 Htc Corp Electronic device capable of detecting operating environment to switch operating states of peripheral components and method thereof
TWI388054B (en) * 2010-02-12 2013-03-01 Everlight Electronics Co Ltd Proximity sensor package structure and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7042662B2 (en) * 2002-12-26 2006-05-09 Canon Kabushiki Kaisha Light amount adjusting device, and optical device using the light amount adjusting device
TWI307814B (en) * 2005-04-07 2009-03-21 Samsung Electro Mech Nonadjustable focusing type camera module
TW201013168A (en) * 2008-09-19 2010-04-01 Htc Corp Electronic device capable of detecting operating environment to switch operating states of peripheral components and method thereof
TWI388054B (en) * 2010-02-12 2013-03-01 Everlight Electronics Co Ltd Proximity sensor package structure and manufacturing method thereof

Also Published As

Publication number Publication date
TW201937208A (en) 2019-09-16

Similar Documents

Publication Publication Date Title
KR102106624B1 (en) Sensor device including one or more metal-dielectric optical filters
KR102240253B1 (en) Metal-dielectric optical filter, sensor device, and fabrication method
US10928570B2 (en) Metal-dielectric optical filter, sensor device, and fabrication method
JP7127962B2 (en) optical filter array
TWI725449B (en) Metal-dielectric optical filter, sensor device, and fabrication method
TWI700518B (en) Metal-dielectric optical filter, sensor device, and fabrication method
JP6847996B2 (en) Metallic dielectric optical filters, sensor devices, and manufacturing methods
TWI776471B (en) Method for fabricating an optical filter and optical device