TWI725333B - 流體輸配管線網路內感測元件的布建決策裝置及其方法 - Google Patents
流體輸配管線網路內感測元件的布建決策裝置及其方法 Download PDFInfo
- Publication number
- TWI725333B TWI725333B TW107127498A TW107127498A TWI725333B TW I725333 B TWI725333 B TW I725333B TW 107127498 A TW107127498 A TW 107127498A TW 107127498 A TW107127498 A TW 107127498A TW I725333 B TWI725333 B TW I725333B
- Authority
- TW
- Taiwan
- Prior art keywords
- sensing element
- fluid
- pipeline
- variable
- deployment
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Pipeline Systems (AREA)
Abstract
一種流體輸配管線網路內感測元件的布建決策裝置及其方法。而此方法包括下列步驟。建立流體管網模型,且流體管網模型包括至少一條流體管路。在這些流體管路中設置至少一個感測元件。模擬流體管路所發生洩漏或阻塞、置換、位移、變形或變質等至少一狀態,並據以取得各感測元件的模擬讀值。基於這些感測元件的模擬讀值,透過機器學習的收斂機制來評估感測元件的真實布建設定。藉此,可快速、簡單且方便地找出感測元件的最佳布建位置、類型及數量,更適合用於管路查漏、溯源或阻塞偵測等情形,且可更加迅速定位以及有效排除問題。
Description
本發明是有關於一種機器學習技術及管線網路之問題定位估測查察技術,且特別是有關於一種流體輸配管線網路內感測元件的布建決策裝置及其方法。
水、油、氣等流體管線網路的規劃與建設,是現代文明進步的象徵,也是城市發展的重要基礎。這些水、油、氣等各種能源不僅促使工商業的繁榮進步,更與民眾每天的食衣住行育樂息息相關。因此,這些流體物質的供應、傳輸、分配、查測、管理對於政府或業者來說,一直是非常重要的議題。而此等液態或氣態的流體物質,會經由經複雜布建的管線網路,而在各供給的源頭、中繼點、轉接點、儲存站或用戶端間被傳輸與分配。一般而言,業者每年都會投入龐大的經費,以在管線網路中布建許多精密且昂貴的量表、壓力計、流量計、質量計等感測元件,從而作為供應、輸配的監測與管理之用。除了希望能在有限的資源下達成最高效率的分配、利用、及有效的管理外,業者也希望在管路發生問題時,能及早因應處理及障礙排除,以降低因為施工不良、管材老化、管壓異常等種種原因造成管網的漏損、阻塞、變因或變質等現象,而帶來龐大的經濟損失及造成生活上的不便。
然而,傳統上,這些感測元件的布建多無明確的原則或參考依據,業者經常只憑經驗在管線網路的源頭或終端隨意建置。同時,業者在測試感測元件的建置位置是否適合時,不僅須進行施工從而耗費時間與金錢,也可能對既有管線網路造成破壞而產生不良的影響。此外,建置的感測元件也常常會因為其數量不足而無法量測出管線網路中應有的流動狀態。或者,業者多建置了一些不必要的設備,而造成浪費,更無法保證額外的設備帶來更佳的量測效果。由此可見,上述習用方式仍有諸多缺失,實非一良善之設計,而亟待加以改良。
有鑑於此,本發明提供一種流體輸配管線網路內感測元件的布建決策裝置及其方法,其基於機器學習的收斂機制來判斷各管路是否收斂,以作為實際管線網路中感測元件的布建依據。
本發明的流體輸配管線網路內感測元件的布建決策方法,其包括下列步驟。建立流體管網模型,而流體管網模型包括至少一條流體管路。在這些流體管路中設置至少一個感測元件。模擬流體管路的至少一種狀態,並據以取得各感測元件的模擬讀值。基於這些感測元件的模擬讀值決定感測元件的布建設定。
另一方面,本發明的流體輸配管線網路內感測元件的布建決策裝置,其包括儲存器及處理器。儲存器記錄多個模組。處理器耦接此儲存器,並存取且載入此儲存器所記錄的那些模組。而那些模組包括模型建立模組、感測元件管理模組、狀態管理模組及決策模組。模型建立模組建立流體管網模型,而此流體管網模型包括至少一條流體管路。感測元件管理模組在這些流體管路中設置至少一個感測元件。狀態管理模組模擬這些流體管路的至少一種狀態,並據以取得各感測元件的模擬讀值。決策模組基於感測元件的模擬讀值決定感測元件的布建設定。
基於上述,本發明實施例的流體輸配管線網路內感測元件的布建決策裝置及其方法,利用管網模擬分析軟體建立流體管網模型,再分別於此流體管網模型中各段管路的間隔位置輪流加入洩漏或阻塞等可改變管網狀態之管路變因之模型或參數後進行模擬計算。接著,在各種管路變因發生在各段管路、不同位置的模擬過程中,本發明實施例取得預先建置的壓力計、流量計等感測元件的模擬讀值。這些模擬讀值會分段導入至機器學習演算,從而對變因估測模型訓練,並對各段管路分別進行狀態變因發生位置之估測。而這些估測逼近期望值的收斂結果,可決定是否完成學習訓練。完成學習訓練之布建設定(收斂結果達到收斂標準)即可作為實際管線網路在布建感測元件的依據,從而得到最佳的布建位置。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
圖1是依據本發明一實施例之布建決策裝置1的元件方塊圖。請參照圖1,布建決策裝置1至少包括但不僅限於儲存器11及處理器13。布建決策裝置1可以是智慧型手機、平板電腦、桌上型電腦、筆記型電腦、伺服器等運算裝置。
儲存器11可以是任何型態的固定或可移動隨機存取記憶體(Radom Access Memory,RAM)、唯讀記憶體(Read Only Memory,ROM)、快閃記憶體(flash memory)、傳統硬碟(Hard Disk Drive,HDD)、固態硬碟(Solid-State Drive,SSD)或類似元件,並用以記錄程式碼、軟體模組(例如,模型建立模組111、狀態管理模組113、感測元件管理模組115、決策模組117等)、流體管網模型、模擬讀值、機器學習演算軟體、布建設定(包括設置位置、數量及類型等)及其他資料或檔案,其詳細內容待後續實施例詳述。
處理器13耦接儲存器11,處理器13並可以是中央處理器(Central Processing Unit,CPU)、微控制器、可程式化控制器、特殊應用積體電路、晶片或其他類似元件或上述元件的組合。於本實施例中,處理器13執行布建決策裝置1的所有操作,處理器13並可存取並載入儲存器11所記錄的那些軟體模組。
為了方便理解本發明實施例的操作流程,以下將舉諸多實施例詳細說明本發明實施例中針對流體輸配管線網路內感測元件的布建決策流程。下文中,將搭配布建決策裝置1中的各項裝置、元件及模組說明本發明實施例所述之方法。本方法的各個流程可依照實施情形而隨之調整,且並不僅限於此。
圖2是依據本發明一實施例之布建決策方法的流程圖。請參照圖2,首先,模型建立模組111依據實際流體輸配管線網路狀態數值資訊而建立流體管網模型(步驟S210),而此流體管網模型包括一條或更多條流體管路。具體而言,由於理論的發展及科技的進步,現今的流體管線網路分析與管理已可採用管網模擬分析軟體先在電腦系統上建立管網模型。例如,美國環保署(EPA)為輔助公用事業與顧問人員對供水系統之維護管理與水質改善,開發的供水管網水力及水質模擬分析軟體EPANET。此工具經常被作為水利管網分析之計算引擎。而氣體管網之分析可採用如PIPEFLOW等多款商業管網分析軟體。換句而言,本實施例的模型建立模組111即是藉由軟體模擬方式來生成一個流體管網模型,此流體管網模型可能與實際管線網路相同或可依據實際需求而變動。
舉例而言,圖3是流體管網模型的範例。請參照圖3,複數個供水輸配管路301,用以連接從複數個水源303,經由供水連接點或輸出節點302、供水壓力控制設備304與供水流量或流向控制設備305,且最後輸配至蓄水設施306。
接著,在訓練數據產生階段(步驟S230),狀態管理模組113在流體管路間隔位置輪流加入洩漏、阻塞、置換、位移、變形或變質等管路問題而使狀態變化以製造或產生管路變因,從而模擬流體管路的至少一種狀態(步驟S231)(各狀態可能包括單一或多種類型管路變因,且各管路變因的參數(例如,位置、大小、強度、類型等)可被調整),並取得諸如水錶、水量計、水壓計、差壓計、流量計、流速計、水質計、溫度計、瓦斯錶、油錶或其他作為量測氣體或液體流動狀態之感測元件的模擬讀值(步驟S233)。以圖3為例,狀態管理模組113可在供水管路間隔位置上加入漏水點模型311,並經由管網模擬分析軟體演算後可擷取於供水管網上已建置的複數個已建置水流量感測元件207及已建置水壓力感測元件208之模擬讀值。
接著,決策模組117將各段流體管路分別進行機器學習訓練(步驟S250)。機器學習是人工智慧的一種技術,其是利用數學的優化方法及電腦的高速演算,從既有經驗中自動分析獲得規律,並對未知資料進行預測的電腦演算方法。機器學習的訓練流程,主要是利用演算方法來通過自動改變機器學習模型中的參數值,使得估測值趨近期望值的一個過程。此外,藉由模型的估測值與期望值之間的誤差收斂數值(即,收斂結果),即可判斷學習訓練是否已經完成(收斂結果未小於收斂標準即完成;收斂結果小於收連標準即未完成)。
而感測元件建置的目的,是為了有效偵測出流體管線網路的狀態與變化。因此,當有任一段管路在預定的感測元件布建條件下,將管路變因的實際位置作為期望輸出,而其對應感測元件模擬讀值將輸入到針對變因位置之機器學習模型來對變因位置進行估測,卻無法滿足所設定的收斂標準時,即表示在預定的感測元件布建條件下,此段管路所設置感測元件布建設定(或配置)不良,使監測資料無法被有效運用。當有任一段管路的學習訓練在指定學習訓練次數或時間條件下仍無法滿足收斂標準時(估測各管路的估測變因位置的時間或次數超過門檻值),則可變更感測元件位置或部署新感測元件。換句而言,感測元件管理模組115可對這些管網模型中感測元件的布建位置調整、增加新感測元件或改變類型(即,改變或調整感測元件的布建設定)(步驟S270)。各段管路(如圖3以節點302作為區分相鄰段管路301的中間點)將重新加入管路變因及重新模擬計算以取得感測元件變動後的新模擬讀值。接著,決策模組117會將這些新模擬讀值重新導入機器學習演算軟體進行學習訓練並據以調整感測元件的布建設定,直到全部流體管路的變因位置估測均達到機器學習訓練的收斂標準為止(例如,收斂結果大於收斂標準,而收斂結果是基於管路變因的實際位置與估測變因位置之間的差異來決定)(步驟S270)。此時,管網模型的感測元件位置,即可作為實際的流體輸配管線網路中感測元件建置部署之決策依據(步驟S290)。換言之,決策模組117透過機器學習的收斂機制而基於那些感測元件的模擬讀值來決定感測元件的布建設定。
以圖3為例,決策模組117將各個漏水點模型311之位置及其對應的感測元件307, 308讀值數據,作為下一階段的機器學習訓練與變因位置估測的輸入資訊。決策模組117接著依據此判機器學習的學習訓練收斂數值(或收斂結果),新增或異動複數個擬建置的感測元件(例如,擬建置水流量感測元件209及擬建置水壓力感測元件210,即調整感測元件的布建設定)。而基於感測元件經調整後的布建設置,決定模組117將重新透過管網模擬分析軟體演算,以取得重新布建感測元件後供水管網中的感測元件之新模擬讀值,並繼續後續學習訓練流程,直到每一段管路的漏水點位置(管路變因的位置)估測之機器學習訓練數值皆達收斂標準,則可將此時的感測元件種類、數量、位置(即,布建設定)作為布建的決策依據。
更進一步來說,在管線網路中某一段流體管路在進行機器學習估測洩漏點位置(即,估測變因位置)之學習訓練時,其均方誤差(MSE)收斂值約10^-1就不易再收斂,因而未能達到所設定小於 10^-3的訓練收斂標準(可依據實際需求而調整)。前述結果是因為利用既有建置的壓力計與流量計等感測元件不足以感測到此段管路中的洩漏點位置。因此,感測元件管理115可在此段管路末端新增部署一台流量計,並重新將新增與既有的感測元件量測值重新導入機器學習軟體進行洩漏點估測的學習與訓練。若此時全部管路均可滿足訓練合格的MSE小於 10^-3之收斂標準,即代表當前對於感測元件布建位置均能有效感測出管線網路的狀態變化,並適合作為實際管線網路中感測元件的實際布建位置。
圖4所示為機器學習演算法中之一種類神經網路演算法的示意圖。請同時參照圖3及圖4。決策模組117先將上一階段讀取之複數個已建置感測元件306的模擬讀值、與複數個擬建置感測元件307的模擬讀值輸入至類神經網路之輸入層神經元401,接著經過加權值鏈結404。決策模組117可將擬建感測器元件模擬讀數407的數值經由加權後傳遞至隱藏層神經元402及輸出層神經元403,且神經元可經由偏權值405製造偏差數值。而類神經網路學習訓練乃透過優化方法透過不斷重複迭代調整加權值鏈結404及偏權值405的數值(收斂結果未收斂即依據收斂結果而被調整)以縮小估測值輸出408逼近期望的輸出值而對應輸入之變因位置。而決策模組117可採用估測與期望輸出的均方差(MSE, Mean squared error)小於某一指定數值作為學習訓練的收斂標準。
綜上所述,本發明實施例採用管網模擬及機器學習的收斂機制,從而可智慧地、快速地且有效地找出流體管線網路中感測元件的最佳布建種類、數量與位置。此外,本發明實施例可有效減少壓力計、流量計等感測元件的布建數量,以降低實體設備的建置成本。本發明實施例亦不會對實際流體輸配管線網路造成破壞或產生任何不良影響,並且可同時作為管線網路查漏、溯源或阻塞偵測等問題排除之用。本發明實施例可作為水、油、氣等流體管線網路查漏、溯源或阻塞偵測等問題排除之用,以達成時效、節約、追蹤、維運、管理之效益。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
1‧‧‧布建決策裝置11‧‧‧儲存器111‧‧‧模型建立模組113‧‧‧狀態管理模組115‧‧‧感測元件管理模組117‧‧‧決策模組13‧‧‧處理器S210~S290‧‧‧步驟301‧‧‧管路302‧‧‧節點303‧‧‧水庫、水源304‧‧‧水泵305‧‧‧水閥306‧‧‧水塔、水槽307‧‧‧已建置流量計308‧‧‧已建置水壓計309‧‧‧擬建置流量計310‧‧‧擬建置流量計311‧‧‧漏水點模型401‧‧‧輸入層神經元402‧‧‧隱藏層神經元403‧‧‧輸入層神經元404‧‧‧加權值鏈結405‧‧‧偏權值406‧‧‧已建置感測元件模擬讀值輸入407‧‧‧擬建置感測元件模擬讀值輸入408‧‧‧估測值輸出
圖1是依據本發明一實施例之布建決策裝置的元件方塊圖。 圖2是依據本發明一實施例之布建決策方法的流程圖。 圖3是一範例說明流體管網模型。 圖4是依據本發明一實施例之機器學習-類神經網路演算法的示意圖。
S210~S290‧‧‧步驟
Claims (10)
- 一種流體輸配管線網路內感測元件的布建決策方法,包括:建立一流體管網模型,其中該流體管網模型包括至少一流體管路;在該至少一流體管路中設置至少一感測元件;模擬該至少一流體管路的至少一狀態,並據以取得該至少一感測元件的模擬讀值;以及基於該至少一感測元件的模擬讀值決定該至少一感測元件的布建設定,其中該布建設定包括該至少一感測元件的設置位置、數量及類型。
- 如申請專利範圍第1項所述的流體輸配管線網路內感測元件的布建決策方法,其中該些狀態是源自於至少一管路變因,而基於該至少一感測元件的模擬讀值決定該至少一感測元件的布建設定的步驟包括:將該至少一管路變因的實際位置作為期望輸出,且對應將該至少一感測元件的模擬讀值作為輸入,並透過機器學習演算法的一變因估測模型來估測該至少一管路變因的估測變因位置;依據該至少一管路變因的實際位置與該至少一估測變因位置判斷收斂結果;以及判斷該收斂結果是否收斂以調整該至少一感測元件的布建設定。
- 如申請專利範圍第2項所述流體輸配管線網路內感測元件的布建決策方法,其中該至少一流體管路包括多個該流體管路,而判斷該收斂結果是否收斂以調整該變因估測模型的步驟之後,更包括:若每一該流體管路的收斂結果皆收斂,則將當前該至少一感測元件的布建設定作為實際管線網路的布建依據,其中該布建設定包括設置位置、數量及類型。
- 如申請專利範圍第2項所述流體輸配管線網路內感測元件的布建決策方法,其中調整該至少一感測元件的布建設定的步驟之後,更包括:若估測該至少一估測變因位置的時間或次數超過門檻值但仍無法收斂,則改變該至少一感測元件的布建設定。
- 如申請專利範圍第2項所述流體輸配管線網路內感測元件的布建決策方法,其中模擬該至少一流體管路的該至少一狀態的步驟,包括:透過管網分析軟體在該至少一流體管路中加入洩漏、阻塞、置換、位移、變形或變質中至少一該變因。
- 一種流體輸配管線網路內感測元件的布建決策裝置,包括:一儲存器,記錄多個模組;以及一處理器,耦接該儲存器,並存取且載入該儲存器所記錄的該些模組,而該些模組包括: 一模型建立模組,建立一流體管網模型,其中該流體管網模型包括至少一流體管路;一感測元件管理模組,在該至少一流體管路中設置至少一感測元件;一狀態管理模組,模擬該至少一流體管路的至少一狀態,並據以取得該至少一感測元件的模擬讀值;以及一決策模組,基於該至少一感測元件的模擬讀值決定該至少一感測元件的布建設定,其中該布建設定包括該至少一感測元件的設置位置、數量及類型。
- 如申請專利範圍第6項所述的流體輸配管線網路內感測元件的布建決策裝置,其中該些狀態是源自於至少一管路變因,而該決策模組將該至少一管路變因的實際位置作為期望輸出,且對應將該至少一感測元件的模擬讀值作為輸入,並透過基於機器學習演算法訓練的一變因估測模型來估測該至少一管路變因的估測變因位置,該決策模組依據該至少一管路變因的實際位置與該至少一估測變因位置判斷收斂結果,該決策模組並判斷該收斂結果是否收斂以調整該至少一感測元件的布建設定。
- 如申請專利範圍第7項所述的流體輸配管線網路內感測元件的布建決策裝置,其中該至少一流體管路包括多個該流體管路,而若每一該流體管路的收斂結果皆收斂,則該決策模組將當前該至少一感測元件的布建設定作為實際管線網路的布建依據,其中該布建設定包括設置位置、數量及類型。
- 如申請專利範圍第7項所述的流體輸配管線網路內感測元件的布建決策裝置,其中若估測該至少一估測變因位置的時間或次數超過門檻值但仍無法收斂,則該感測元件管理模組改變該至少一感測元件的布建設定。
- 如申請專利範圍第7項所述的流體輸配管線網路內感測元件的布建決策裝置,其中該模型建立模組透過管網分析軟體在該至少一流體管路中加入洩漏、阻塞、置換、位移、變形或變質中至少一該變因。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107127498A TWI725333B (zh) | 2018-08-07 | 2018-08-07 | 流體輸配管線網路內感測元件的布建決策裝置及其方法 |
CN201811109211.3A CN110866323A (zh) | 2018-08-07 | 2018-09-21 | 流体输配管线网络内感测元件的布建决策装置及其方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107127498A TWI725333B (zh) | 2018-08-07 | 2018-08-07 | 流體輸配管線網路內感測元件的布建決策裝置及其方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202008280A TW202008280A (zh) | 2020-02-16 |
TWI725333B true TWI725333B (zh) | 2021-04-21 |
Family
ID=69651896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107127498A TWI725333B (zh) | 2018-08-07 | 2018-08-07 | 流體輸配管線網路內感測元件的布建決策裝置及其方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110866323A (zh) |
TW (1) | TWI725333B (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101710353A (zh) * | 2009-12-03 | 2010-05-19 | 深圳先进技术研究院 | 基于三维虚拟城市的地下管网布设方法 |
TW201321314A (zh) * | 2011-07-26 | 2013-06-01 | Gen Electric | 廢水處理廠之線上監視及控制 |
CN103839190A (zh) * | 2014-02-19 | 2014-06-04 | 清华大学深圳研究生院 | 基于压力监测的管网节点流量计量与调度方法 |
US20160357888A1 (en) * | 2014-11-20 | 2016-12-08 | Guangzhou Institute Of Energy Conversion, Chinese Academy Of Sciences | Simulation experiment system and simulation method of entire natural gas hydrate exploitation process |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2900473T3 (es) * | 2016-07-08 | 2022-03-17 | Suez Groupe | Procedimiento y sistema mejorados para estimar los flujos de agua en los límites de una subred de una red de distribución de agua |
CN106740457A (zh) * | 2016-12-07 | 2017-05-31 | 镇江市高等专科学校 | 基于bp神经网络模型的车辆换道决策方法 |
CN107145723B (zh) * | 2017-04-25 | 2020-07-28 | 四川省肿瘤医院 | 基于人工神经网络的医院流程管理系统 |
-
2018
- 2018-08-07 TW TW107127498A patent/TWI725333B/zh active
- 2018-09-21 CN CN201811109211.3A patent/CN110866323A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101710353A (zh) * | 2009-12-03 | 2010-05-19 | 深圳先进技术研究院 | 基于三维虚拟城市的地下管网布设方法 |
TW201321314A (zh) * | 2011-07-26 | 2013-06-01 | Gen Electric | 廢水處理廠之線上監視及控制 |
CN103839190A (zh) * | 2014-02-19 | 2014-06-04 | 清华大学深圳研究生院 | 基于压力监测的管网节点流量计量与调度方法 |
US20160357888A1 (en) * | 2014-11-20 | 2016-12-08 | Guangzhou Institute Of Energy Conversion, Chinese Academy Of Sciences | Simulation experiment system and simulation method of entire natural gas hydrate exploitation process |
Also Published As
Publication number | Publication date |
---|---|
CN110866323A (zh) | 2020-03-06 |
TW202008280A (zh) | 2020-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hu et al. | Review of model-based and data-driven approaches for leak detection and location in water distribution systems | |
US20210216852A1 (en) | Leak detection with artificial intelligence | |
Wan et al. | Literature review of data analytics for leak detection in water distribution networks: A focus on pressure and flow smart sensors | |
Sanz et al. | Sensitivity analysis for sampling design and demand calibration in water distribution networks using the singular value decomposition | |
Shoeibi Omrani et al. | Improving the accuracy of virtual flow metering and back-allocation through machine learning | |
CN103983453A (zh) | 一种航空发动机的执行机构和传感器故障诊断的区分方法 | |
EP3800323A1 (en) | Virtual flow meter method and system for monitoring flow of an oil well in an industrial environment | |
CN102968529B (zh) | 一种供水管网模型计算结果不确定性区间的量化方法 | |
CN111664823B (zh) | 基于介质热传导系数差异的均压电极垢层厚度检测方法 | |
Vrachimis et al. | Leakage detection and localization in water distribution systems: A model invalidation approach | |
Bohorquez et al. | Merging fluid transient waves and artificial neural networks for burst detection and identification in pipelines | |
CN103246279B (zh) | 一种存在执行阀粘滞特性的化工过程的控制性能评估方法 | |
US20220083083A1 (en) | Pressure control in a supply grid | |
Fallahi et al. | Leakage detection in water distribution networks using hybrid feedforward artificial neural networks | |
CN103617563B (zh) | 一种基于地统计空间分析理论的供水管网无监测节点压力确定方法 | |
Shravani et al. | A machine learning approach to water leak localization | |
CN113486950A (zh) | 一种智能管网漏水检测方法及系统 | |
Wang et al. | Dynamic heat supply prediction using support vector regression optimized by particle swarm optimization algorithm | |
TWI725333B (zh) | 流體輸配管線網路內感測元件的布建決策裝置及其方法 | |
Preis et al. | Online hydraulic state prediction for water distribution systems | |
US20220196512A1 (en) | Detection of a leakage in a supply grid | |
Kemba et al. | Leakage detection in Tsumeb east water distribution network using EPANET and support vector regression | |
CN116484219A (zh) | 一种基于门控图神经网络的供水管网水质异常污染源识别方法 | |
Lyu et al. | Interval prediction of remaining useful life based on convolutional auto-encode and lower upper bound estimation | |
CN110705186B (zh) | 通过rbf粒子群优化算法即时在线仪表校验和诊断方法 |