TWI724982B - Installing method and installing system for open ultra-high-speed optical transport network - Google Patents
Installing method and installing system for open ultra-high-speed optical transport network Download PDFInfo
- Publication number
- TWI724982B TWI724982B TW109137444A TW109137444A TWI724982B TW I724982 B TWI724982 B TW I724982B TW 109137444 A TW109137444 A TW 109137444A TW 109137444 A TW109137444 A TW 109137444A TW I724982 B TWI724982 B TW I724982B
- Authority
- TW
- Taiwan
- Prior art keywords
- optical transmission
- transmission network
- wavelength width
- optical
- wavelength
- Prior art date
Links
Images
Landscapes
- Optical Communication System (AREA)
Abstract
Description
本發明是有關於一種傳輸網路的供裝方法及供裝系統,且特別是有關於一種開放式超高速光傳輸網路的供裝方法及供裝系統。The present invention relates to a supplying method and a supplying system of a transmission network, and particularly relates to a supplying method and a supplying system of an open ultra-high-speed optical transmission network.
傳統光傳輸網路(Optical Transport Network,OTN)的網路架構通常是基於廠商自有軟體控制的封閉系統,由廠商自有軟體來規劃、管理和維護。客戶每次選定了某個廠商的OTN,就意味著需對廠商自有的硬體和軟體進行測試,然後將其整合到網路中,整合週期很長,大大降低了競爭和創新速度。開放式(Open)架構項目的目標就是通過開放和解構,引入更多的競爭和更快的創新,結合硬體的彈性和軟體控制,來解決當前傳統OTN系統的不足。Open架構就是用解構的方式,將OTN根據功能模塊進行拆解,而不同的功能模塊可以有不同的廠商來提供,各廠商提供的不同功能模塊提供開放接口,可以由傳輸體定義網路(T-SDN)控制器來統一調度供裝。Open架構的核心概念和價值,首先是開放的硬體,支持NetConf/YANG應用程式介面,將網路和功能解構,實現多廠商互通;其次是軟體控制,透過T-SDN控制器的智能,實現頻寬的自動檢測和調整、故障的偵測和自動恢復,以及對光性能的感知,實時準確地優化網路性能。The traditional optical transport network (Optical Transport Network, OTN) network architecture is usually based on a closed system controlled by the manufacturer's own software, which is planned, managed, and maintained by the manufacturer's own software. Every time a customer selects a certain manufacturer’s OTN, it means that the manufacturer’s own hardware and software must be tested and then integrated into the network. The integration cycle is very long, which greatly reduces the speed of competition and innovation. The goal of the Open Architecture project is to introduce more competition and faster innovation through openness and deconstruction, combined with hardware flexibility and software control, to solve the current shortcomings of traditional OTN systems. The Open architecture uses a deconstruction method to disassemble OTN according to functional modules. Different functional modules can be provided by different manufacturers. The different functional modules provided by each manufacturer provide open interfaces, and the transmission body can define the network (T -SDN) controller for unified scheduling and installation. The core concepts and values of the Open architecture are firstly the open hardware, which supports the NetConf/YANG application interface, deconstructs the network and functions, and realizes multi-vendor interoperability; secondly, software control, which is realized through the intelligence of the T-SDN controller Automatic detection and adjustment of bandwidth, detection and automatic recovery of faults, and perception of optical performance can accurately optimize network performance in real time.
目前 OTN Open架構比較成熟的作法,是將OTN網路解構成開放式線路系統(Open LINE System)(其由光多工段(Optical Multiplex Section,OMS)所組成)及開放式應答器(Open Transponder)兩部分,然後選定1至2家開放式線路系統搭配多家應答器,但開放式應答器其光波長寬度和頻寬不一,且相對應開放式線路系統的 OMS路由必須提供相同的光波長值及光波長寬度,這在供裝管理上非常複雜及困難,如果沒有規劃好,將有可能常常找不到OMS路由相同的光波長值及光波長寬度,必須新增OMS路由來提供相同的光波長值及光波長寬度,造成開放式線路系統資源浪費。At present, the more mature method of OTN Open architecture is to decompose OTN network into Open LINE System (which is composed of Optical Multiplex Section (OMS)) and Open Transponder. Two parts, and then select 1 to 2 open circuit systems with multiple transponders, but the optical wavelength width and bandwidth of the open transponders are different, and the OMS routing corresponding to the open circuit system must provide the same optical wavelength It is very complicated and difficult in the supply and installation management. If you do not plan well, you will often not find the same optical wavelength value and optical wavelength width of the OMS route. You must add an OMS route to provide the same The value of the optical wavelength and the width of the optical wavelength cause a waste of resources in the open circuit system.
有鑑於此,本發明提供一種開放式超高速光傳輸網路的供裝方法及供裝系統,其可用於解決上述技術問題。In view of this, the present invention provides an open ultra-high-speed optical transmission network supply method and supply system, which can be used to solve the above technical problems.
本發明提供一種開放式超高速光傳輸網路的供裝方法,適於管理一光傳輸網路的一供裝系統,所述方法包括:取得多個光多工段的一波長起點、一波長終點及一總波長寬度,其中前述光多工段連接於屬於一光傳輸網路的多個光傳輸網路端點之間,各光傳輸網路端點連接有多個開放式應答器,各開放式應答器對應於多個預設波長寬度的其中之一;取得對應於各預設波長寬度的前述開放式應答器的一應答器數量;依據對應於各預設波長寬度的應答器數量、波長起點、波長終點及總波長寬度決定前述光多工段上對應於各預設波長寬度的多個波道;取得一供裝需求,其中供裝需求包括一頻寬需求及前述光傳輸網路端點中的一第一光傳輸網路端點及一第二光傳輸網路端點;基於頻寬需求在前述預設波長寬度中選定一特定波長寬度,並找出對應於特定波長寬度的一第一開放式應答器及一第二開放式應答器,其中第一開放式應答器及第二開放式應答器分別連接於第一光傳輸網路端點及一第二光傳輸網路端點;在前述光多工段中找出連接於第一光傳輸網路端點及第二光傳輸網路端點之間的至少一特定光多工段,並找出至少一特定光多工段提供的對應於特定波長寬度的多個特定波道;在前述特定波道中找出至少一空波道,並據以在第一光傳輸網路端點及第二光傳輸網路端點供裝對應於供裝需求的一高速電路。The present invention provides a method for supplying and installing an open ultra-high-speed optical transmission network, which is suitable for managing a supplying system of an optical transmission network. The method includes: obtaining a wavelength start point and a wavelength end point of a plurality of optical multiplexing sections. And a total wavelength width, wherein the aforementioned optical multiplexing section is connected between a plurality of optical transmission network endpoints belonging to an optical transmission network, and each optical transmission network endpoint is connected with a plurality of open transponders, each of which is open The transponder corresponds to one of a plurality of preset wavelength widths; obtains the number of a transponder corresponding to the aforementioned open transponders of each preset wavelength width; according to the number of transponders corresponding to each preset wavelength width and the wavelength starting point , The wavelength end point and the total wavelength width determine the multiple channels corresponding to each preset wavelength width on the aforementioned optical multiplexing section; obtain a supply demand, where the supply demand includes a bandwidth demand and the aforementioned optical transmission network endpoint A first optical transmission network end point and a second optical transmission network end point; based on bandwidth requirements, a specific wavelength width is selected from the aforementioned preset wavelength widths, and a first corresponding to the specific wavelength width is found Open transponder and a second open transponder, wherein the first open transponder and the second open transponder are respectively connected to the first optical transmission network end point and a second optical transmission network end point; In the foregoing optical multiplexing section, at least one specific optical multiplexing section connected between the first optical transmission network end point and the second optical transmission network end point is found, and at least one specific optical multiplexing section provided corresponding to the specific Multiple specific channels with a wavelength width; find at least one empty channel among the aforementioned specific channels, and supply them at the end of the first optical transmission network and the end of the second optical transmission network according to the supply requirements A high-speed circuit.
本發明提供一種供裝系統,其包括儲存電路及處理器。儲存電路儲存多個模組。處理器耦接儲存電路,存取前述模組以執行以下步驟:取得多個光多工段的一波長起點、一波長終點及一總波長寬度,其中前述光多工段連接於屬於一光傳輸網路的多個光傳輸網路端點之間,各光傳輸網路端點連接有多個開放式應答器,各開放式應答器對應於多個預設波長寬度的其中之一;取得對應於各預設波長寬度的前述開放式應答器的一應答器數量;依據對應於各預設波長寬度的應答器數量、波長起點、波長終點及總波長寬度決定前述光多工段上對應於各預設波長寬度的多個波道;取得一供裝需求,其中供裝需求包括一頻寬需求及前述光傳輸網路端點中的一第一光傳輸網路端點及一第二光傳輸網路端點;基於頻寬需求在前述預設波長寬度中選定一特定波長寬度,並找出對應於特定波長寬度的一第一開放式應答器及一第二開放式應答器,其中第一開放式應答器及第二開放式應答器分別連接於第一光傳輸網路端點及一第二光傳輸網路端點;在前述光多工段中找出連接於第一光傳輸網路端點及第二光傳輸網路端點之間的至少一特定光多工段,並找出至少一特定光多工段提供的對應於特定波長寬度的多個特定波道;在前述特定波道中找出至少一空波道,並據以在第一光傳輸網路端點及第二光傳輸網路端點供裝對應於供裝需求的一高速電路。The invention provides an assembling system, which includes a storage circuit and a processor. The storage circuit stores multiple modules. The processor is coupled to the storage circuit and accesses the aforementioned module to perform the following steps: obtain a wavelength start point, a wavelength end point, and a total wavelength width of a plurality of optical multiplexing sections, wherein the optical multiplexing sections are connected to an optical transmission network Between multiple optical transmission network endpoints, each optical transmission network endpoint is connected with multiple open transponders, and each open transponder corresponds to one of the multiple preset wavelength widths; the obtained corresponding to each The number of a transponder of the aforementioned open transponder with a preset wavelength width; according to the number of transponders corresponding to each preset wavelength width, the wavelength start point, the wavelength end point, and the total wavelength width to determine the optical multiplexing section corresponding to each preset wavelength Multiple channels of width; obtain a supply requirement, where the supply requirement includes a bandwidth requirement and a first optical transmission network endpoint and a second optical transmission network endpoint among the aforementioned optical transmission network endpoints Point; based on bandwidth requirements, select a specific wavelength width among the aforementioned preset wavelength widths, and find a first open transponder and a second open transponder corresponding to the specific wavelength width, where the first open response And the second open transponder are respectively connected to the first optical transmission network end point and a second optical transmission network end point; in the aforementioned optical multiplexing section, the first optical transmission network end point and the second optical transmission network end point are found At least one specific optical multiplexing section between two optical transmission network endpoints, and finding a plurality of specific channels corresponding to a specific wavelength width provided by at least one specific optical multiplexing section; finding at least one null wave among the aforementioned specific channels According to the first optical transmission network endpoint and the second optical transmission network endpoint, a high-speed circuit corresponding to the supply requirement is installed.
請參照圖1,其是依據本發明之一實施例繪示的供裝系統及光傳輸網路的示意圖。如圖1所示,供裝系統100例如是開放式超高速光傳輸網路的供裝系統,其可包括儲存電路102及處理器104。儲存電路102例如是任意型式的固定式或可移動式隨機存取記憶體(Random Access Memory,RAM)、唯讀記憶體(Read-Only Memory,ROM)、快閃記憶體(Flash memory)、硬碟或其他類似裝置或這些裝置的組合,而可用以記錄多個程式碼或模組。Please refer to FIG. 1, which is a schematic diagram of a supply system and an optical transmission network according to an embodiment of the present invention. As shown in FIG. 1, the
處理器104耦接於儲存電路102,並可為一般用途處理器、特殊用途處理器、傳統的處理器、數位訊號處理器、多個微處理器(microprocessor)、一個或多個結合數位訊號處理器核心的微處理器、控制器、微控制器、特殊應用積體電路(Application Specific Integrated Circuit,ASIC)、現場可程式閘陣列電路(Field Programmable Gate Array,FPGA)、任何其他種類的積體電路、狀態機、基於進階精簡指令集機器(Advanced RISC Machine,ARM)的處理器以及類似品。The
另外,如圖1所示,由供裝系統100管理的光傳輸網路10例如可包括T-SDN控制器11、多個開放式應答器、多個OTN端點及開放式線路系統。In addition, as shown in FIG. 1, the
在本發明的實施例中,處理器104可存取儲存電路102中記錄的模組、程式碼來實現本發明提出的開放式超高速光傳輸網路的供裝方法,以在光傳輸網路10中供裝開放式光傳輸網路高速電路,其細節詳述如下。In the embodiment of the present invention, the
請參照圖2,其是依據本發明之一實施例繪示的開放式超高速光傳輸網路的供裝方法流程圖。本實施例的方法可由圖1的供裝系統100執行,以下即搭配圖1所示的元件說明圖2各步驟的細節。此外,為便於理解本發明的概念,以下將另輔以圖3作進一步說明,其中圖3是依據本發明第一實施例繪示的應用情境圖。Please refer to FIG. 2, which is a flowchart of a method for supplying an open ultra-high-speed optical transmission network according to an embodiment of the present invention. The method of this embodiment can be executed by the
首先,在步驟S210中,處理器104可取得多個光多工段311~314的波長起點、波長終點及總波長寬度,其中光多工段311~314可連接於屬於光傳輸網路300的多個光傳輸網路端點321~324之間,各光傳輸網路端點321~324連接有多個開放式應答器(例如分別連接於光傳輸網路端點321及323的開放式應答器331及332),各開放式應答器對應於多個預設波長寬度的其中之一。First, in step S210, the
在圖3中,光多工段311~314的波長起點(以下以X代稱)及波長終點(以下以Y代稱)分別例如是193.9THz及196.1THz,而總波長寬度(以下以Z代稱)則可經計算為2.2THz(即Y-X),但本發明可不限於此。In Figure 3, the wavelength start point (hereinafter referred to as X) and wavelength end point (hereinafter referred to as Y) of the
在本發明的實施例中,上述預設波長寬度例如可包括第一預設波長寬度(以下以
代稱)、第二預設波長寬度(以下以
代稱)及第三預設波長寬度(以下以
代稱),而其分別例如是75GHz、62.5GHz及50GHz,但可不限於此。換言之,各光傳輸網路端點321~324所連接的各開放式應答器可個別對應於上述預設波長寬度之一。舉例而言,開放式應答器331及332可皆對應於75GHz,但可不限於此。
In the embodiment of the present invention, the foregoing predetermined wavelength width may include, for example, a first predetermined wavelength width (hereinafter referred to as Code name), the second preset wavelength width (hereinafter referred to as Code name) and the third preset wavelength width (hereinafter referred to as Code name), and they are, for example, 75 GHz, 62.5 GHz, and 50 GHz, but they are not limited to this. In other words, the open transponders connected to the optical
接著,在步驟S220中,處理器104可取得對應於各預設波長寬度的開放式應答器的應答器數量。舉例而言,處理器104可將光傳輸網路300中對應於75GHz的開放式應答器的目前數量與未來待新增的數量的總品作為對應於75GHz的開放式應答器的應答器數量(以下以A表示),但可不限於此。例如,假設光傳輸網路300中現有的對應於75GHz的開放式應答器數量為a1,而未來可能新增至光傳輸網路300中的對應於75GHz的開放式應答器的數量為a2,則對應於75GHz的開放式應答器的應答器數量可經計算為a1與a2的總和,但可不限於此。Then, in step S220, the
同理,對應於60GHz及50GHz的開放式應答器的應答器數量亦可基於上述原則而分別計算為B與C,但本發明可不限於此。在第一實施例中,A、B、C分別可經統計為25、50及25,但本發明可不限於此。In the same way, the number of transponders corresponding to 60GHz and 50GHz open transponders can also be calculated as B and C respectively based on the above principles, but the present invention is not limited to this. In the first embodiment, A, B, and C can be counted as 25, 50, and 25, respectively, but the present invention may not be limited thereto.
在步驟S230中,處理器104可依據對應於各預設波長寬度的應答器數量、波長起點、波長終點及總波長寬度決定光多工段上對應於各預設波長寬度的多個波道。In step S230, the
在一實施例中,處理器104可依據對應於各預設波長寬度的應答器數量及總波長寬度決定分別對應於第一預設波長寬度、第二預設波長寬度及第三預設波長寬度的第一波道數量、第二波道數量及第三波道數量。在一實施例中,第一波道數量例如可表徵為
,第二波道數量例如可表徵為
,第三波道數量例如可表徵為
,其中
為無條件捨去運算子,D為A、B、C的總和。在第一實施例中,對應於75GHz的第一波道數量例如可經計算為5,對應於62.5GHz的第二波道數量例如可經計算為17,而對應於50GHz的第三波道數量例如可經計算為11,如圖3所示。
In an embodiment, the
之後,處理器104可決定對應於第一預設波長寬度的多個第一波道,其中前述第一波道中的第i個第一波道的光波長值可表徵為
,且i大於等於1並小於等於第一波道數量。
After that, the
並且,處理器104可決定對應於第二預設波長寬度的多個第二波道,其中前述第二波道中的第j個第二波道的光波長值可表徵為
,j大於等於1並小於等於第二波道數量。
In addition, the
另外,處理器104可決定對應於第三預設波長寬度的多個第三波道,其中前述第三波道中的第k個第三波道的光波長值可表徵為
,其中k大於等於1並小於等於第三波道數量。
In addition, the
之後,在步驟S240中,處理器104可取得供裝需求,其例如是一開放式超高速光傳輸網路的供裝需求,並可包括頻寬需求及光傳輸網路端點321~323中的第一光傳輸網路端點及第二光傳輸網路端點,但可不限於此。After that, in step S240, the
在第一實施例中,假設上述供裝需求中指定的頻寬需求為400GE,且第一光傳輸網路端點及第二光傳輸網路端點分別是光傳輸網路端點321及323,但可不限於此。相應地,處理器104即可據以執行步驟S250~S270以供裝對應於此供裝需求的高速電路。In the first embodiment, it is assumed that the bandwidth requirement specified in the above-mentioned supply requirements is 400GE, and the first optical transmission network endpoint and the second optical transmission network endpoint are optical
具體而言,在步驟S250中,處理器104可基於頻寬需求在預設波長寬度中選定特定波長寬度,並找出對應於特定波長寬度的第一開放式應答器及第二開放式應答器,其中第一開放式應答器及第二開放式應答器分別連接於第一光傳輸網路端點及一第二光傳輸網路端點。在一實施例中,處理器104可基於設計者的經驗而依據頻寬需求在上述預設波長寬度中選定所需的特定波長寬度。舉例而言,設計者可預先定義不同的頻寬需求應對應於不定的特定波長寬度。在一實施例中,設計者可預先定義75GHz、62.5GHz及50GHz可分別對應於400GE、200GE及100GE的頻寬需求。基此,在第一實施例中,由於頻寬需求假設為400GE,故處理器104例如可選定75GHz作為特定波長寬度,但可不限於此。Specifically, in step S250, the
此外,如先前所提及的,由於連接於光傳輸網路端點321的開放式應答器331及連接於光傳輸網路端點323的開放式應答器332皆對應於75GHz,故處理器104例如可選定開放式應答器331及332作為上述第一開放式應答器及第二開放式應答器,但可不限於此。In addition, as mentioned earlier, since the
之後,在步驟S260中,處理器104可在前述光多工段311~314中找出連接於第一光傳輸網路端點及第二光傳輸網路端點之間的特定光多工段,並找出特定光多工段提供的對應於特定波長寬度的多個特定波道。After that, in step S260, the
在圖3中,連接於光傳輸網路端點321及323之間的光多工段例如是光多工段311及312,故處理器104例如可將光多工段311及312視為上述特定光多工段,但可不限於此。之後,處理器104可找出光多工段311及312提供的對應於特定波長𡪨度的多個特定波道。In FIG. 3, the optical multiplexing sections connected between the optical
依先前的教示,光多工段311及312的對應於75GHz、62.5GHz及50GHz的多個波道(繪示為空格)可如圖3所例示。具體而言,光多工段311及312個別例如可具有5個75GHz的波道C1~C5,17個62.5GHz的波道及11個50GHz的波道,其中經標示為深色的波道例如是已被佔用的波道,而標示為空白的波道則例如是未被佔用的波道(即,空波道)。因此,處理器104例如可將圖3中的5個75GHz的波道C1~C5視為上述特定波道,但可不限於此。According to the previous teaching, the multiple channels (shown as blanks) of the
之後,在步驟S270中,處理器104可在前述特定波道中找出空波道,並據以在第一光傳輸網路端點及第二光傳輸網路端點供裝對應於供裝需求的高速電路。After that, in step S270, the
在圖3的波道C1~C5(即,特定波道)中,處理器104例如可找出波道C3(即,空波道),並據以在第一光傳輸網路端點及第二光傳輸網路端點供裝對應於供裝需求的高速電路。In the channels C1 to C5 (ie, specific channels) in FIG. 3, the
在一實施例中,處理器104例如可依據空波道(例如波道C3)的光波長值、特定波長寬度(例如75GHz)及頻寬需求設定第一開放式應答器及第二開放式應答器。在第一實施例中,波道C3的光波長值例如可依先前教示的「
」(i為3)而計算為194.125(即,193.9+0.075x3)。之後,處理器104可依據空波道(例如波道C3)的光波長值(例如,194.125)及特定波長寬度設定特定光多工段(例如光多工段311及312),並創建對應於上述供裝需求的光通道(optical channel,OCH)電路。並且,處理器104可透過T-SDN控制器11創建第一開放式應答器(例如開放式應答器331)及第二開放式應答器(例如開放式應答器332)與上述光通道電路之間的實體鏈路(link),以形成高速電路。上述創建OCH電路及創建特定鍵路的細節可參照相關的現有技術,於此不另贅述。
In an embodiment, the
請參照圖4,其是依據本發明第二實施例繪示的應用情境圖。在第二實施例中,光多工段311~314的波長起點(即X)及波長終點(即Y)分別例如是193.9THz及196.1THz,而總波長寬度(即Z)則可經計算為2.2THz(即Y-X),但本發明可不限於此。Please refer to FIG. 4, which is an application scenario diagram drawn according to the second embodiment of the present invention. In the second embodiment, the wavelength start point (ie X) and wavelength end point (ie Y) of the
此外,在第二實施例中,上述預設波長寬度例如可包括第一預設波長寬度(即 )、第二預設波長寬度(即 )及第三預設波長寬度(即 ),而其分別例如是75GHz、62.5GHz及50GHz,但可不限於此。另外,在第二實施例中,A、B、C分別可經統計為20、20及60,但本發明可不限於此。 In addition, in the second embodiment, the foregoing predetermined wavelength width may include, for example, the first predetermined wavelength width (ie ), the second preset wavelength width (ie ) And the third preset wavelength width (ie ), and they are, for example, 75 GHz, 62.5 GHz, and 50 GHz, but they may not be limited thereto. In addition, in the second embodiment, A, B, and C may be counted as 20, 20, and 60, respectively, but the present invention may not be limited thereto.
依據先前實施例中的教示,第二實施例中對應於75GHz的第一波道數量例如可經計算為4,對應於62.5GHz的第二波道數量例如可經計算為7,而對應於50GHz的第三波道數量例如可經計算為26,如圖4所示。According to the teaching in the previous embodiment, the number of first channels corresponding to 75 GHz in the second embodiment can be calculated as 4, for example, and the number of second channels corresponding to 62.5 GHz can be calculated as 7, for example, which corresponds to 50 GHz. The number of third channels can be calculated as 26, for example, as shown in FIG. 4.
此外,處理器104亦可依據先前的教示而決定對應於第一預設波長寬度的多個第一波道,對應於第二預設波長寬度的多個第二波道,及對應於第三預設波長寬度的多個第三波道,其細節可參照先前的說明,於此不另贅述。In addition, the
在第二實施例中,假設所取得的供裝需求中指定的頻寬需求為100GE,且第一光傳輸網路端點及第二光傳輸網路端點分別是光傳輸網路端點321及323,但可不限於此。相應地,處理器104即可據以執行步驟S250~S270以供裝對應於此供裝需求的高速電路。In the second embodiment, it is assumed that the bandwidth requirement specified in the obtained installation requirement is 100GE, and the first optical transmission network endpoint and the second optical transmission network endpoint are the optical
具體而言,在步驟S250中,處理器104可基於頻寬需求在預設波長寬度中選定特定波長寬度,並找出對應於特定波長寬度的第一開放式應答器及第二開放式應答器,其中第一開放式應答器及第二開放式應答器分別連接於第一光傳輸網路端點及一第二光傳輸網路端點。在第二實施例中,由於頻寬需求假設為100GE,故處理器104例如可依先前的教示而選定50GHz作為特定波長寬度,但可不限於此。Specifically, in step S250, the
在本實施例中,假設連接於光傳輸網路端點321的開放式應答器333及連接於光傳輸網路端點323的開放式應答器334皆對應於50GHz,則處理器104例如可選定開放式應答器333及334作為上述第一開放式應答器及第二開放式應答器,但可不限於此。In this embodiment, assuming that the
之後,在步驟S260中,處理器104可在前述光多工段311~314中找出連接於第一光傳輸網路端點及第二光傳輸網路端點之間的特定光多工段,並找出特定光多工段提供的對應於特定波長寬度的多個特定波道。After that, in step S260, the
在圖3中,連接於光傳輸網路端點321及323之間的光多工段例如是光多工段313及314,故處理器104例如可將光多工段313及314視為上述特定光多工段,但可不限於此。之後,處理器104可找出光多工段313及314提供的對應於特定波長𡪨度的多個特定波道。In FIG. 3, the optical multiplexing sections connected between the optical
依先前的教示,光多工段313及314的對應於75GHz、62.5GHz及50GHz的多個波道(繪示為空格)可如圖4所例示。具體而言,在第二實施例中,光多工段313及314個別例如可具有4個75GHz的波道,7個62.5GHz的波道及26個50GHz的波道,其中經標示為深色的波道例如是已被佔用的波道,而標示為空白的波道則例如是未被佔用的波道(即,空波道)。因此,處理器104例如可將圖4中的26個50GHz的波道視為上述特定波道,但可不限於此。According to the previous teaching, the multiple channels (shown as blanks) of the
之後,在步驟S270中,處理器104可在前述特定波道中找出空波道,並據以在第一光傳輸網路端點及第二光傳輸網路端點供裝對應於供裝需求的高速電路。After that, in step S270, the
在圖4的26個50GHz的波道(即,特定波道)中,處理器104例如可找出波道C8(即,空波道),並據以在第一光傳輸網路端點及第二光傳輸網路端點供裝對應於供裝需求的高速電路。Among the 26 50 GHz channels (ie, specific channels) in FIG. 4, the
在一實施例中,處理器104例如可依據空波道(例如波道C8)的光波長值、特定波長寬度(例如50GHz)及頻寬需求設定第一開放式應答器及第二開放式應答器。在第一實施例中,波道C8的光波長值例如可依先前教示的「
」(k為8)而計算為195.0375(即,193.9+4x0.075+7x0.0625+0.05x8)。之後,處理器104可依據空波道(例如波道C8)的光波長值(例如,195.0375)及特定波長寬度設定特定光多工段(例如光多工段313及314),並創建對應於上述供裝需求的OCH電路。並且,處理器104可透過T-SDN控制器11創建第一開放式應答器(例如開放式應答器333)及第二開放式應答器(例如開放式應答器334)與上述光通道電路之間的實體鏈路(link),以形成高速電路。上述創建OCH電路及創建特定鍵路的細節可參照相關的現有技術,於此不另贅述。
In an embodiment, the
綜上所述,本發明至少具備以下特點:(1)善用既有之OTN T-SDN與OTN網路設備功能:透過T-SDN控制器進行開放式線路系統及開放式應答器供裝,不需要另外安裝或者更新或者升級其他的功能;(2)依據開放式應答器光波長寬度數量規劃開放式線路系統之OMS光波長:依據開放式應答器光波長寬度數量規劃開放式線路系統之OMS光波長,可提高其供裝成功率,也可提升頻寬使用率;(3)提供多家廠商開放式應答器及開放式線路系統光波長值計算方法:本發明在複雜開放式線路系統中迅速找出空的光波道並計算光波長值,並透過T-SDN快速供裝開放式線路系統及開放式應答器。In summary, the present invention has at least the following features: (1) Make good use of the existing OTN T-SDN and OTN network equipment functions: open line system and open transponder supply through the T-SDN controller, There is no need to install or update or upgrade other functions; (2) Planning the OMS optical wavelength of the open line system based on the number of open transponder optical wavelength widths: Planning the OMS of the open line system based on the number of open transponder optical wavelength widths Optical wavelength can increase the success rate of its installation and increase the utilization rate of bandwidth; (3) Provide open transponders and open line systems from multiple manufacturers with optical wavelength value calculation methods: the present invention is used in complex open line systems Quickly find the empty optical channel and calculate the optical wavelength value, and quickly install the open circuit system and open transponder through T-SDN.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the relevant technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be determined by the scope of the attached patent application.
100:供裝系統
102:儲存電路
104:處理器
11:T-SDN控制器
311~314:光多工段
321~324:光傳輸網路端點
331~334:開放式應答器
C1~C5,C8:波道
S210~S270:步驟100: Supply system
102: storage circuit
104: processor
11: T-
圖1是依據本發明之一實施例繪示的供裝系統及光傳輸網路的示意圖。 圖2是依據本發明之一實施例繪示的開放式超高速光傳輸網路的供裝方法流程圖。 圖3是依據本發明第一實施例繪示的應用情境圖。 圖4是依據本發明第二實施例繪示的應用情境圖。 FIG. 1 is a schematic diagram of an installation system and an optical transmission network according to an embodiment of the present invention. FIG. 2 is a flowchart of a method for supplying and installing an open ultra-high-speed optical transmission network according to an embodiment of the present invention. Fig. 3 is an application scenario diagram drawn according to the first embodiment of the present invention. Fig. 4 is an application scenario diagram drawn according to a second embodiment of the present invention.
S210~S270:步驟 S210~S270: steps
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109137444A TWI724982B (en) | 2020-10-28 | 2020-10-28 | Installing method and installing system for open ultra-high-speed optical transport network |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109137444A TWI724982B (en) | 2020-10-28 | 2020-10-28 | Installing method and installing system for open ultra-high-speed optical transport network |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI724982B true TWI724982B (en) | 2021-04-11 |
TW202218356A TW202218356A (en) | 2022-05-01 |
Family
ID=76604928
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109137444A TWI724982B (en) | 2020-10-28 | 2020-10-28 | Installing method and installing system for open ultra-high-speed optical transport network |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI724982B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150117860A1 (en) * | 2012-05-04 | 2015-04-30 | Deutsche Telekom Ag | Method and device for setting up and operating a modular, highly scalable, very simple, cost-efficient and enduring transparent optically routed network for network capacities of greater than 1 petabit/s |
US20180351652A1 (en) * | 2016-08-05 | 2018-12-06 | Nxgen Partners Ip, Llc | System and method providing network optimization for broadband networks |
TW201916624A (en) * | 2017-09-30 | 2019-04-16 | 中華電信股份有限公司 | Optical wavelength resource modification apparatus and optical wavelength resource modification method thereof |
TWI707552B (en) * | 2019-12-09 | 2020-10-11 | 中華電信股份有限公司 | Method and server for establishing a protecting optical channel circuit |
-
2020
- 2020-10-28 TW TW109137444A patent/TWI724982B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150117860A1 (en) * | 2012-05-04 | 2015-04-30 | Deutsche Telekom Ag | Method and device for setting up and operating a modular, highly scalable, very simple, cost-efficient and enduring transparent optically routed network for network capacities of greater than 1 petabit/s |
US20180351652A1 (en) * | 2016-08-05 | 2018-12-06 | Nxgen Partners Ip, Llc | System and method providing network optimization for broadband networks |
TW201916624A (en) * | 2017-09-30 | 2019-04-16 | 中華電信股份有限公司 | Optical wavelength resource modification apparatus and optical wavelength resource modification method thereof |
TWI707552B (en) * | 2019-12-09 | 2020-10-11 | 中華電信股份有限公司 | Method and server for establishing a protecting optical channel circuit |
Also Published As
Publication number | Publication date |
---|---|
TW202218356A (en) | 2022-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7110333B2 (en) | TOPOLOGY PROCESSING METHOD, APPARATUS AND SYSTEM | |
EP3101842B1 (en) | Method, system and computer readable medium for network management automation | |
CN107210927A (en) | Abnormality detection in protocol processes | |
US11329751B2 (en) | Network switch and optical transponder connectivity verification for wavelength division multiplexing network | |
DK1593240T3 (en) | Method and apparatus for rapidly reconfiguring a network topology | |
US9391842B2 (en) | Self-configuring transport network | |
US11552858B2 (en) | Reinforcement learning for optical network re-grooming | |
US20230308177A1 (en) | Autonomous, zero touch provisioning of optical channels in optical line systems | |
EP1368733B1 (en) | Method for optimizing software distribution in large communication networks | |
Ishii et al. | Optical network resource management supporting physical layer reconfiguration | |
TWI724982B (en) | Installing method and installing system for open ultra-high-speed optical transport network | |
Portela et al. | An extended software defined optical networks slicing architecture | |
CN114666221A (en) | Network slice subnet operation and maintenance management method, device, system, equipment and medium | |
CN104486105B (en) | Transmission network business collocation method and system | |
CN114726434B (en) | Millisecond-level rapid path-finding method suitable for large-scale optical network | |
GB2574102A (en) | Optimised network deployment | |
Kozdrowski et al. | Resource optimization in fully flexible optical node architectures | |
CN105263069A (en) | Method and device for establishing optical channel routing in dense wavelength division network | |
CN107689840A (en) | The control method and optical module of a kind of optical module in optical network, optical network unit | |
US11405281B2 (en) | Dynamic network adaptation | |
CN113411819B (en) | 5G NFV slice reconfiguration method, system and wireless communication system | |
CN111327357B (en) | Method, terminal and controller for opening service | |
EP3240208A1 (en) | Optical fibre monitoring method and apparatus and optical fibre adapter | |
CN118337628A (en) | Virtual network topology configuration service providing method, system and storage medium based on MAML and transfer learning | |
CN1937524A (en) | Method and system for webmaster to processing TRAP message |