TWI724897B - 應變量測方法及應變量測裝置 - Google Patents

應變量測方法及應變量測裝置 Download PDF

Info

Publication number
TWI724897B
TWI724897B TW109116033A TW109116033A TWI724897B TW I724897 B TWI724897 B TW I724897B TW 109116033 A TW109116033 A TW 109116033A TW 109116033 A TW109116033 A TW 109116033A TW I724897 B TWI724897 B TW I724897B
Authority
TW
Taiwan
Prior art keywords
measured
image
measuring device
dimensional
camera module
Prior art date
Application number
TW109116033A
Other languages
English (en)
Other versions
TW202142834A (zh
Inventor
江奕宏
柯宏憲
潘正達
許祐霖
曾國華
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW109116033A priority Critical patent/TWI724897B/zh
Priority to US16/937,592 priority patent/US11204240B2/en
Application granted granted Critical
Publication of TWI724897B publication Critical patent/TWI724897B/zh
Publication of TW202142834A publication Critical patent/TW202142834A/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0091Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by using electromagnetic excitation or detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8803Visual inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/254Analysis of motion involving subtraction of images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/52Combining or merging partially overlapping images to an overall image
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8854Grading and classifying of flaws
    • G01N2021/8867Grading and classifying of flaws using sequentially two or more inspection runs, e.g. coarse and fine, or detecting then analysing
    • G01N2021/887Grading and classifying of flaws using sequentially two or more inspection runs, e.g. coarse and fine, or detecting then analysing the measurements made in two or more directions, angles, positions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8854Grading and classifying of flaws
    • G01N2021/8877Proximity analysis, local statistics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • G01N2203/0647Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/04Indexing scheme for image data processing or generation, in general involving 3D image data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30181Earth observation
    • G06T2207/30184Infrastructure

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Quality & Reliability (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一種應變量測方法,其包括配置三維相機模組於第一測量位置;使用三維相機模組對位於第一待測位置的待測物擷取第一三維影像;對位於第一待測位置的待測物擷取第二三維影像;及拼接第一三維影像與第二三維影像以獲取初始三維影像。本方法還包括:從第一測量位置中移動三維相機模組至第二測量位置;使用三維相機模組對位於第二待測位置的待測物擷取第三三維影像;對位於第二待測位置的待測物擷取第四三維影像;及拼接第三三維影像與第四三維影像以獲取變形後三維影像。本方法更包括比較初始三維影像和變形後三維影像以輸出三維變形資訊。

Description

應變量測方法及應變量測裝置
本揭露是有關於一種應變量測方法及應變量測裝置。
應變量測已應用於橋梁、道路、建築物,以監控因時間變化產生的變形、裂縫。此外,應變量測也被應用於大面積織物設計、儀器作動路徑設計等。目前市面上的大範圍應變量測方式主要是使用光學式裝置,例如使用數位影像相關係數(digital image correlation, DIC)法的應變量測裝置。
此類裝置可辨識的最小尺寸會受到量測範圍的影響。在相機解析度固定的情況下,因為網格等於量測範圍除以相機解析度,小於網格的特徵是無法被辨識的,因此當量測範圍越大(即,觀測範圍變大或物體移動距離變大)時,辨識度會降低。然而,依照目前相機解析度的技術,難以達到大範圍移動或大面積的高辨識度應變量測。如何在現有相機技術下,達到大範圍移動或大面積的應變量測,是此領域技術人員致力的目標。
本揭露的範例實施例提供一種應變量測方法及應變量測裝置,其能夠在有限的相機解析度下,達到大範圍移動或大面積的應變量測。
根據本揭露的一範例實施例,提供一種應變量測方法,其包括配置三維相機模組於第一測量位置;使用三維相機模組對位於第一待測位置的待測物擷取第一三維影像;對位於第一待測位置的待測物擷取第二三維影像;及拼接第一三維影像與第二三維影像以獲取初始三維影像。本方法還包括:從第一測量位置中移動三維相機模組至第二測量位置;使用三維相機模組對位於第二待測位置的待測物擷取第三三維影像;對位於第二待測位置的待測物擷取第四三維影像;及拼接第三三維影像與第四三維影像以獲取變形後三維影像。本方法更包括比較初始三維影像和變形後三維影像以輸出三維變形資訊。
根據本揭露的一範例實施例,提供一種應變量測裝置,其包括測量裝置、控制器及影像處理器。測量裝置具有三維相機模組。控制器耦接至測量裝置,用以控制測量裝置的移動與操作三維相機模組。影像處理器耦接至測量裝置。該控制器控制該三維相機模組於第一測量位置對位於第一待測位置的待測物擷取第一三維影像,且控制測量裝置對位於第一待測位置的待測物擷取第二三維影像。影像處理器拼接第一三維影像與第二三維影像以獲取初始三維影像。控制器控制測量裝置以從第一測量位置中移動三維相機模組至第二測量位置,控制三維相機模組對位於第二待測位置的待測物擷取第三三維影像,且控制測量裝置對位於第二待測位置的待測物擷取第四三維影像。影像處理器拼接第三三維影像與第四三維影像以獲取變形後三維影像,並且比較初始三維影像和變形後三維影像以輸出三維變形資訊。
圖1是根據本揭露的一範例實施例所繪示的應變量測裝置的方塊圖。
請參照圖1,應變量測裝置100包括測量裝置102、控制器104、影像處理器106、儲存裝置108與顯示裝置110。
測量裝置102具有三維相機模組102a與三維相機模組102b。三維相機模組102a與三維相機模組102b用以獲取拍攝物的三維影像。例如,三維相機模組102a或三維相機模組102b配置有2個鏡頭,以從2個角度同時拍攝兩個畫面,並且此兩個畫面會被合成以產生三維影像。
控制器104是耦接至測量裝置102,並且用以控制測量裝置102。特別是,控制器104可以根據待測物的位置控制測量裝置102的移動,以調整三維相機模組102a與三維相機模組102b的拍攝位置。並且,在控制三維相機模組102a與三維相機模組102b於測量位置時,啟動三維相機模組102a與三維相機模組102b來獲取待測物的三維影像。
圖2是根據本揭露的一範例實施例所繪示控制測量裝置移動的示意圖。
請參照圖2,控制器104會控制測量裝置102,以使三維相機模組102a與三維相機模組102b的拍攝範圍能夠涵蓋整個待測物(例如,布料)。
之後,當布料縮短並且水平移動時,控制器104會控制測量裝置102跟著布料移動。並且,當布料縮更短並向景深方向移動時,控制器104亦會控制測量裝置102跟著布料移動。
請再參照圖1,影像處理器106耦接至測量裝置102,並且用以處理測量裝置102所獲取的三維影像。影像處理器106例如可以是一般用途處理器、特殊用途處理器、傳統的處理器、數位訊號處理器、多個微處理器(microprocessor)、一個或多個結合數位訊號處理器核心的微處理器、控制器、微控制器、特殊應用集成電路(Application Specific Integrated Circuit,ASIC)、場可程式閘陣列電路(Field Programmable Gate Array,FPGA)、任何其他種類的積體電路、狀態機、基於進階精簡指令集機器(Advanced RISC Machine,ARM)的處理器以及類似品。
儲存裝置108耦接至測量裝置102與影像處理器106,並且用以儲存測量裝置102所獲取的三維影像以及影像處理器106處理後的三維影像。儲存裝置108例如可以是任意型式的固定式或可移動式隨機存取記憶體(Random Access Memory,RAM)、唯讀記憶體(Read-Only Memory,ROM)、快閃記憶體(Flash memory)、硬碟或其他類似裝置或這些裝置的組合。
顯示裝置110耦接至影像處理器106,並且用以顯示三維影像以及經過影像處理器106處理後的資訊。例如,顯示裝置110可以是LED顯示器、OLED顯示器、液晶顯示器、透明顯示器、軟性顯示器或其他適用的顯示器類型等。
在本範例實施例中,三維相機模組102a與三維相機模組102b對待測物進行拍攝以獲取兩個三維影像後,影像處理器106會將所獲得的兩個三維影像進行拼接,以獲取大範圍的三維影像。如上所述,三維相機模組102a與三維相機模組102b的觀測範圍越大,辨識度會越低,因此,在本範例實施例中,控制器104會控制測量裝置102以降低每個三維相機模組的量測範圍,並且影像處理器106是將多個三維相機模組所獲取的三維影像進行拼接來增加整體量測範圍,由此增加待測物的可辨識範圍。
在本範例實施例,影像處理器106會對三維相機模組102a與三維相機模組102b所拍攝的三維影像執行特徵點描述、影像匹配與影像拼接融合等操作來拼接三維影像。
例如,在特徵點描述操作中,影像處理器106可使用BRISK演算法來找出三維影像的特徵點。然而本揭露不限於此,在另一範例實施例中,影像處理器106亦可使用Harris演算法、SIFT演算法、SURF演算法來找出三維影像的特徵點。
例如,在影像匹配操作中,影像處理器106是使用次近鄰居法,以將三維影像中的特徵點置入另一張三維影像中尋找匹配時,除了計算最近的距 離(Closest Neighbor), 也去計算次近的距離(Second-Closest Neighbor),若是這兩個距離的比例大於0.8時,則表示此組的匹配太過類似而把這組匹配剔除掉。相反地,若這兩個距離的比例小於 0.8時,則表示此組的匹配夠獨特且有區別性(discriminative),而被保留。必須了解的是,本揭露不限於此,在另一範例實施例中,影像處理器106亦可使用彩色碼比對法、仿射匹配法、交互關連法來進行影像匹配。
例如,在影像拼接融合操作中,影像處理器106是使用幾何校正方法,來將影像匹配操作得到的特徵點計算均方根誤差值,挑選出誤差小的特徵點作為幾何校正轉換模型的參數,再將特徵點代入多項式幾何校正模型以將單張三維影像進行坐標轉換,並且將不同三維影像校正至同一坐標系來拼接影像。同樣地,必須了解的是,本揭露不限於此,在另一範例實施例中,影像處理器106亦可使用互補影像融合法、多重帶混合法來拼接影像。
在本範例實施例中,影像處理器106會將拼接後的三維影像儲存在儲存裝置108中,並且比對在不同時間所拼接的三維影像來判斷待測物的變形。具體來說,影像處理器106會使用數位影像相關係數(digital image correlation, DIC)法來獲取待測物表面個子區域變形前後的三維空間座標移動,進而得到物理表面形貌及三維變形資訊。
例如,假設物體變形前表面子區域中心點為(x 0,y 0),子區域內部某點變形前為(x,y),變形後為(x’,y’),則變形前後相對位置如下式,其中u(x, y)與v(x, y)分別為物體變形水平向與垂直向位移:
Figure 02_image001
將上式泰勒展開後並省略二階以上高階項(因子區域甚小)後得下式,其中dx=x-x 0,dy=y-y 0
Figure 02_image003
基此,影像處理器106求解6個數位影像相關係數法的參數,即(u 0,v 0
Figure 02_image006
Figure 02_image008
Figure 02_image010
Figure 02_image012
),就可獲得待測物的變形資訊,其中(u 0,v 0)是位移參數,(
Figure 02_image006
Figure 02_image008
Figure 02_image010
Figure 02_image012
)是位移梯度參數並可用數值方法(例如,粗-細法或牛頓-拉森福法)求出最佳解。
在本範例實施例中,在獲取待測物的三維變形資訊後,影像處理器106會將此資訊輸出至顯示裝置110,以提醒使用者待測物產生變形情況。
圖3是根據本揭露的一範例實施例所繪示的偵測待測物的示意圖。
請參照圖3,在時間點T1,待測物位於第一待測位置時,控制器104會控制測量裝置102的三維相機模組102a於第一測量位置對待測物300擷取第一三維影像,並且控制測量裝置102的三維相機模組102b於第三測量位置對待測物300擷取第二三維影像。
從測量裝置102中接收到所獲取的第一三維影像與第二三維影像後,影像處理器106會拼接第一三維影像與第二三維影像,以產生待測物在時間點T1的三維影像(以下稱為初始三維影像)。
在本範例實施例中,控制器104會控制測量裝置102對應待測物300的移動而移動。
例如,在本揭露一範例實施例中,應變量測裝置100可更包括光學雷達以及機器手臂。光學雷達會持續偵測待測物300的位移並且將此信息反饋給控制器104。控制器104會根據所接收的信息,控制機器手臂以對應地移動測量裝置102,以維持測量裝置102與待測物300之間的一固定距離。
必須了解的是,使用光學雷達以及機器手臂對應地移動測量裝置102僅唯一個範例,本揭露不限於此。在另一範例實施例中,應變量測裝置100可更包括位置偵測裝置來偵測待測物300的位移,並且控制器104會根據位置偵測裝置的偵測來控制測量裝置102的移動,以保持測量裝置102與待測物300之間的固定距離。再者,在另一範例實施例中,亦可將測量裝置102固定於與待測物之維持一固定距離的剛性固定件上,並且當待測物300移動時測量裝置102可以與待測物300維持一固定距離。又或者可由使用者手持測量裝置102,並目視待測物而對應地移動測量裝置102。
在時間點T2,待測物移動至第二待測位置時,控制器104會控制測量裝置102的三維相機模組102a於第二測量位置對待測物300擷取第三三維影像,並且控制測量裝置102的三維相機模組102b於第四測量位置對待測物300擷取第四三維影像。
從測量裝置102接收到所獲取的第三三維影像與第四三維影像後,影像處理器106會拼接第三三維影像與第四三維影像,以產生待測物在時間點T2的三維影像(以下稱為變形後三維影像)。
此外,影像處理器106會比對初始三維影像與變形後三維影像,以輸出三維變形資訊。
必須了解的是,在本範例實施例中,是在測量裝置102中配置多個三維相機模組的實施例來進行說明,然而本揭露不限於此,在另一範例實施例中,亦可僅使用單一三維相機模組。
圖4是根據本揭露另一範例實施例所繪示的偵測待測物的示意圖。
請參照圖4,在時間點T1,待測物位於第一待測位置時,控制器104會控制測量裝置102的三維相機模組400於第一測量位置對待測物300擷取第一三維影像,並且調整三維相機模組400至第三測量位置對待測物300擷取第二三維影像。類似地,影像處理器106會拼接第一三維影像與第二三維影像,以產生待測物在時間點T1的初始三維影像。
隨著待測物300的移動,控制器104會控制測量裝置102對應地的移動。
在時間點T2,待測物300移動至第二待測位置時,控制器104會控制三維相機模組400於第二測量位置對待測物300擷取第三三維影像,並且調整三維相機模組400至第四測量位置對待測物300擷取第四三維影像。同樣地,影像處理器106會拼接第三三維影像與第四三維影像,以產生待測物在時間點T2的變形後三維影像。基此,影像處理器106可比對初始三維影像與變形後三維影像,以輸出三維變形資訊。
圖5是根據本揭露的一範例實施例所繪示的應變量測方法的流程圖。
請參照圖5,在步驟S501中,配置三維相機模組於第一測量位置,並且在步驟S503中,使用三維相機模組對位於第一待測位置的待測物擷取第一三維影像。
接著,在步驟S505中,對位於第一待測位置的待測物擷取第二三維影像。如上所述,待測物於同一待測位置的涵蓋大範圍的多個三維影像可以使用單一三維相機模組藉由調整不同位置來擷取,或者亦可配置多個三維相機模組來擷取。
在步驟S507中,拼接所擷取的第一三維影像與第二三維影像以獲取初始三維影像。
在步驟S509中,從第一測量位置中移動三維相機模組至第二測量位置,並且使用三維相機模組對位於第二待測位置的待測物擷取第三三維影像。
接著,在步驟S511中,對位於該第二待測位置的該待測物擷取第四三維影像,並且在步驟S513中,拼接第三三維影像與第四三維影像以獲取變形後三維影像。
最後,在步驟S515中,比較初始三維影像和變形後三維影像以輸出三維變形資訊。
綜上所述,本揭露實施例的應變量測裝置與方法,是藉由改變三維相機模組的位置進行動態地量測,並且拼接於不同量測位置所擷取的三維影像,由此在不影響可辨識範圍的情況下擴大觀測範圍。此外,本揭露實施例的應變量測裝置與方法使用多個三維相機模組並根據待測物的位移動態地移動與量測,由此能夠避免待測物晃動而造成拼接錯誤,並且可以解決景深方向位移而無法拼接的問題。
100:應變量測裝置 102:測量裝置 104:控制器 106:影像處理器 108:儲存裝置 110:顯示裝置 102a:三維相機模組 102b:三維相機模組 300:待測物 400:三維相機模組 S501、S503、S505、S507、S509、S511、S513、S515:應變量測方法的步驟
圖1是根據本揭露的一範例實施例所繪示的應變量測裝置的方塊圖。 圖2是根據本揭露的一範例實施例所繪示控制測量裝置移動的示意圖。 圖3是根據本揭露的一範例實施例所繪示的偵測待測物的示意圖。 圖4是根據本揭露的另一範例實施例所繪示的偵測待測物的示意圖。 圖5是根據本揭露的一範例實施例所繪示的應變量測方法的流程圖。
S501、S503、S505、S507、S509、S511、S513、S515:應變量測方法的步驟

Claims (18)

  1. 一種應變量測方法,包括: 配置一三維相機模組於一第一測量位置; 使用該三維相機模組對位於一第一待測位置的一待測物擷取一第一三維影像; 對位於該第一待測位置的該待測物擷取一第二三維影像; 拼接該第一三維影像與該第二三維影像以獲取一初始三維影像; 從該第一測量位置中移動該三維相機模組至一第二測量位置; 使用該三維相機模組對位於一第二待測位置的該待測物擷取一第三三維影像; 對位於該第二待測位置的該待測物擷取一第四三維影像; 拼接該第三三維影像與該第四三維影像以獲取一變形後三維影像;以及 比較該初始三維影像和該變形後三維影像以輸出一三維變形資訊。
  2. 如請求項1所述的應變量測方法,其中對位於該第一待測位置的該待測物擷取該第二三維影像的步驟包括: 將該三維相機模組從該第一測量位置調整至一第三測量位置,並且使用該三維相機模組對位於該第一待測位置的該待測物擷取該第二三維影像。
  3. 如請求項2所述的應變量測方法,其中對位於該第二待測位置的該待測物擷取該第四三維影像的步驟包括: 將該三維相機模組從該第二測量位置調整至一第四測量位置,並且使用該三維相機模組對位於該第二待測位置的該待測物擷取該第四三維影像。
  4. 如請求項1所述的應變量測方法,其中對位於該第一待測位置的該待測物擷取該第二三維影像的步驟包括: 配置一另一三維相機模組於一第三測量位置,並使用該另一三維相機模組對位於該第一待測位置的該待測物擷取該第二第三維影像。
  5. 如請求項4所述的應變量測方法,其中對位於該第二待測位置的該待測物擷取該第四三維影像的步驟包括: 從該第三測量位置中移動該另一三維相機模組至一第四測量位置;以及 使用該另一三維相機模組對位於該第二待測位置的該待測物擷取該第四三維影像。
  6. 如請求項1所述的應變量測方法,更包括: 使用一光學雷達偵測該待測物的一位移, 使用一機器手臂根據該待測物的該位移對應地移動該測量裝置,以維持該測量裝置與該待測物之間的一固定距離。
  7. 如請求項1所述的應變量測方法,更包括: 使用一位置偵測裝置偵測該待測物的一位移;以及 根據該待測物的該位移對應地移動該測量裝置,以維持該測量裝置與該待測物之間的一固定距離。
  8. 如請求項1所述的應變量測方法,更包括: 將該三維相機模組安裝於一剛性固定件上,其中該剛性固定件與該待測物之間維持一固定距離。
  9. 一種應變量測裝置,包括: 一測量裝置,具有一三維相機模組; 一控制器,耦接至該測量裝置,用以控制該測量裝置的移動與操作該三維相機模組;以及 一影像處理器,耦接至該測量裝置, 其中該控制器控制該三維相機模組於一第一測量位置對位於一第一待測位置的一待測物擷取一第一三維影像, 該控制器控制該測量裝置對位於該第一待測位置的該待測物擷取一第二三維影像, 該影像處理器拼接該第一三維影像與該第二三維影像以獲取一初始三維影像, 該控制器控制該測量裝置以從該第一測量位置中移動該三維相機模組至一第二測量位置, 該控制器控制該三維相機模組對位於一第二待測位置的該待測物擷取一第三三維影像, 該控制器控制該測量裝置對位於該第二待測位置的該待測物擷取一第四三維影像, 該影像處理器拼接該第三三維影像與該第四三維影像以獲取一變形後三維影像, 該影像處理器比較該初始三維影像和該變形後三維影像以輸出一三維變形資訊。
  10. 如請求項9所述的應變量測裝置,其中 該控制器控制該測量裝置的該三維相機模組從該第一測量位置調整至一第三測量位置,並且控制該三維相機模組對位於該第一待測位置的該待測物擷取該第二三維影像。
  11. 如請求項10所述的應變量測裝置,其中 該控制器控制該測量裝置的該三維相機模組從該第二測量位置調整至一第四測量位置,並且控制該三維相機模組對位於該第二待測位置的該待測物擷取該第四三維影像。
  12. 如請求項9所述的應變量測裝置,其中該測量裝置更包括一另一三維相機模組, 該控制器控制該另一三維相機模組於一第三測量位置,對位於該第一待測位置的該待測物擷取該第二第三維影像。
  13. 如請求項12所述的應變量測裝置,其中 該控制器控制該測量裝置以從該第三測量位置移動該另一三維相機模組至一第四測量位置,並且控制該另一三維相機模組對位於該第二待測位置的該待測物擷取該第四三維影像。
  14. 如請求項9所述的應變量測裝置,更包括: 一光學雷達,耦接該控制器且用以偵測該待測物的一位移;以及 一機器手臂,接該控制器, 其中該控制器根據該待測物的該位移,控制該機器手臂對應地移動該測量裝置,以維持該測量裝置與該待測物之間的一固定距離。
  15. 如請求項9所述的應變量測裝置,更包括: 一位置偵測裝置,耦接該控制器且偵測該待測物的一位移, 其中該控制器根據該待測物的該位移對應地移動該測量裝置,以維持該測量裝置與該待測物之間的一固定距離。
  16. 如請求項9所述的應變量測裝置,更包括: 一剛性固定件,用以固定該測量裝置,其中該剛性固定件與該待測物之間維持一固定距離。
  17. 如請求項9所述的應變量測裝置,更包括: 一儲存裝置,耦接至該測量裝置,用以儲存該初始三維影像與該變形後三維影像。
  18. 如請求項9所述的應變量測裝置,更包括: 一顯示裝置,耦接至該影像處理器,用以顯示該三維變形資訊。
TW109116033A 2020-05-14 2020-05-14 應變量測方法及應變量測裝置 TWI724897B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW109116033A TWI724897B (zh) 2020-05-14 2020-05-14 應變量測方法及應變量測裝置
US16/937,592 US11204240B2 (en) 2020-05-14 2020-07-24 Strain measurement method and strain measurement apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109116033A TWI724897B (zh) 2020-05-14 2020-05-14 應變量測方法及應變量測裝置

Publications (2)

Publication Number Publication Date
TWI724897B true TWI724897B (zh) 2021-04-11
TW202142834A TW202142834A (zh) 2021-11-16

Family

ID=76604878

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109116033A TWI724897B (zh) 2020-05-14 2020-05-14 應變量測方法及應變量測裝置

Country Status (2)

Country Link
US (1) US11204240B2 (zh)
TW (1) TWI724897B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2618524A (en) * 2022-05-02 2023-11-15 Imetrum Ltd Non-contact deformation monitoring system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9046353B2 (en) * 2011-08-02 2015-06-02 The United States Of America As Represented By The Secretary Of The Navy System and method for remote full field three-dimensional displacement and strain measurements
CN109410199A (zh) * 2018-10-26 2019-03-01 龙口味美思环保科技有限公司 一种不锈钢饭盒板料冲压成形应变检测方法
WO2019053249A1 (en) * 2017-09-15 2019-03-21 Technische Universiteit Eindhoven CARTOGRAPHY OF TWO-DIMENSIONAL AND THREE-DIMENSIONAL DEPRESSIONS FOR UTERINE CONTRACTIONS

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19940217C5 (de) * 1999-08-25 2006-08-10 Zwick Gmbh & Co Verfahren zur berührungslosen Messung der Veränderung der räumlichen Gestalt einer Meßprobe, insbesondere zur Messung der Längenänderung der einer äußeren Kraft unterliegenden Meßprobe und Vorrichtung zur Durchführung des Verfahrens
US7344498B1 (en) * 2007-01-23 2008-03-18 The Gillette Company Optical measurement method of skin strain during shaving
US8600147B2 (en) * 2009-06-03 2013-12-03 The United States of America as represented by the Secreatary of the Navy System and method for remote measurement of displacement and strain fields
US8803943B2 (en) * 2011-09-21 2014-08-12 National Applied Research Laboratories Formation apparatus using digital image correlation
US10555697B2 (en) * 2011-10-17 2020-02-11 Massachusetts Institute Of Technology Digital image correlation for measuring skin strain and deformation
WO2013158933A1 (en) 2012-04-18 2013-10-24 Drexel University Integration of digital image correlation with acoustic emissions
TWI438399B (zh) 2012-06-08 2014-05-21 Nat Applied Res Laboratories 表面重建、表面內外位移及應變分佈計算系統
US9262840B2 (en) * 2012-06-08 2016-02-16 Correlated Solutions, Inc. Optical non-contacting apparatus for shape and deformation measurement of vibrating objects using image analysis methodology
US9311566B2 (en) * 2012-08-03 2016-04-12 George Mason Research Foundation, Inc. Method and system for direct strain imaging
EP3059547B1 (en) * 2013-10-18 2021-11-10 Saga University Cracking detection method
DE102014108643B3 (de) * 2014-06-19 2015-06-25 Lavision Gmbh Verfahren zur Ermittlung eines räumlichen Verschiebungsvektorfeldes
US10330465B2 (en) * 2014-08-08 2019-06-25 Applied Research Associates, Inc. Systems, methods, and apparatuses for measuring deformation of a surface
JP6741409B2 (ja) * 2015-09-16 2020-08-19 スリーエム イノベイティブ プロパティズ カンパニー 変形量測定方法、プログラム、サーバ装置、およびシステム
CN105547834B (zh) 2016-01-13 2018-06-29 南京航空航天大学 基于双目视觉的快速应力应变曲线测量系统的测量方法
EP3455606A2 (en) * 2016-05-13 2019-03-20 SABIC Global Technologies B.V. Evaluation of applications using digital image correlation techniques
WO2017205061A1 (en) * 2016-05-24 2017-11-30 Illinois Tool Works Inc. Three-dimensional calibration tools and methods
CN107454373B (zh) * 2016-05-31 2019-06-14 财团法人工业技术研究院 投影系统及其非平面自动校正方法与自动校正处理装置
US10215674B2 (en) 2016-07-15 2019-02-26 The Boeing Company Device for measuring the dynamic stress/strain response of ductile materials
US10796425B1 (en) * 2016-09-06 2020-10-06 Amazon Technologies, Inc. Imagery-based member deformation gauge
JP6322817B1 (ja) * 2017-01-25 2018-05-16 パナソニックIpマネジメント株式会社 剛性測定装置および剛性測定方法
US10504761B2 (en) * 2017-02-08 2019-12-10 Semiconductor Technologies & Instruments Pte. Ltd. Method system for generating 3D composite images of objects and determining object properties based thereon
US10451519B2 (en) * 2017-02-27 2019-10-22 Pile Dynamics, Inc. Non-contact strain measurement system and method for using the same
WO2019075661A1 (zh) * 2017-10-18 2019-04-25 苏州汇才土水工程科技有限公司 基于亚像素角点识别的试样表面变形数字图像测量装置及方法
US10845187B2 (en) * 2018-03-02 2020-11-24 Drexel University Multiscale deformation measurements leveraging tailorable and multispectral speckle patterns
US11410324B2 (en) * 2018-06-19 2022-08-09 Kettering University System and method for determining operating deflection shapes of a structure using optical techniques

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9046353B2 (en) * 2011-08-02 2015-06-02 The United States Of America As Represented By The Secretary Of The Navy System and method for remote full field three-dimensional displacement and strain measurements
WO2019053249A1 (en) * 2017-09-15 2019-03-21 Technische Universiteit Eindhoven CARTOGRAPHY OF TWO-DIMENSIONAL AND THREE-DIMENSIONAL DEPRESSIONS FOR UTERINE CONTRACTIONS
CN109410199A (zh) * 2018-10-26 2019-03-01 龙口味美思环保科技有限公司 一种不锈钢饭盒板料冲压成形应变检测方法

Also Published As

Publication number Publication date
US11204240B2 (en) 2021-12-21
US20210356403A1 (en) 2021-11-18
TW202142834A (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
US9672630B2 (en) Contour line measurement apparatus and robot system
US10621753B2 (en) Extrinsic calibration of camera systems
TWI555379B (zh) 一種全景魚眼相機影像校正、合成與景深重建方法與其系統
CN107492127B (zh) 光场相机参数标定方法、装置、存储介质和计算机设备
CN109658457B (zh) 一种激光与相机任意相对位姿关系的标定方法
JP4986679B2 (ja) 非静止物体の三次元画像計測装置、三次元画像計測方法および三次元画像計測プログラム
KR101600769B1 (ko) 대상의 형상에 대한 멀티프레임 표면 측정을 위한 시스템 및 방법
CN108830906B (zh) 一种基于虚拟双目视觉原理的摄像机参数自动标定方法
EP3421930B1 (en) Three-dimensional shape data and texture information generation system, photographing control program, and three-dimensional shape data and texture information generation method
CN107941153B (zh) 一种激光测距优化标定的视觉系统
US11562478B2 (en) Method and system for testing field of view
WO2019172351A1 (ja) 物体同定装置、物体同定システム、物体同定方法およびプログラム記憶媒体
TWI724897B (zh) 應變量測方法及應變量測裝置
US11637948B2 (en) Image capturing apparatus, image processing apparatus, image processing method, image capturing apparatus calibration method, robot apparatus, method for manufacturing article using robot apparatus, and recording medium
JP5222430B1 (ja) 寸法計測装置、寸法計測方法及び寸法計測装置用のプログラム
CN114577135B (zh) 基于单镜头的芯片引脚翘曲的3d检测方法及系统
WO2019087253A1 (ja) ステレオカメラのキャリブレーション方法
Morel et al. Calibration of catadioptric sensors by polarization imaging
TWI762951B (zh) 溫度測量裝置以及溫度測量方法
CN112686960B (zh) 一种基于光线追迹的相机入瞳中心及视线方向的标定方法
CN112509035A (zh) 一种光学镜头和热成像镜头的双镜头图像像素点匹配方法
CN113899528A (zh) 一种基于3d-dic原理的液面动态波高测量方法
TWI604261B (zh) 一種多維視覺圖像的獲取方法及系統
KR20160082659A (ko) 다채널 연속 촬영 영상을 이용한 구조물의 입체적인 진동 자동 측정 방법
JP2020067511A (ja) カメラシステム、その制御方法およびプログラム