TWI724777B - Power control circuit - Google Patents

Power control circuit Download PDF

Info

Publication number
TWI724777B
TWI724777B TW109103379A TW109103379A TWI724777B TW I724777 B TWI724777 B TW I724777B TW 109103379 A TW109103379 A TW 109103379A TW 109103379 A TW109103379 A TW 109103379A TW I724777 B TWI724777 B TW I724777B
Authority
TW
Taiwan
Prior art keywords
terminal
coupled
control circuit
capacitor
valley
Prior art date
Application number
TW109103379A
Other languages
Chinese (zh)
Other versions
TW202131612A (en
Inventor
許哲瑋
余文隆
Original Assignee
晶豪科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶豪科技股份有限公司 filed Critical 晶豪科技股份有限公司
Priority to TW109103379A priority Critical patent/TWI724777B/en
Application granted granted Critical
Publication of TWI724777B publication Critical patent/TWI724777B/en
Publication of TW202131612A publication Critical patent/TW202131612A/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Rectifiers (AREA)

Abstract

A power control circuit includes an alternating current (AC) power source, a rectifier and a valley-fill circuit. The AC power source is configured to receive an AC voltage. The rectifier is configured to convert the AC voltage into a rectified voltage. The valley-fill circuit includes: an inductor, having a first terminal coupled to the rectifier, and a second terminal; a first resistor, having a first terminal coupled to the second terminal of the inductor, and a second terminal; a diode, having a cathode coupled to the second terminal of the inductor, and an anode; and a first capacitor, having a first terminal coupled to the second terminal of the first resistor and the anode of the diode, and a second terminal coupled to ground.

Description

電源控制電路 Power control circuit

本發明係關於一被動式填谷式(valley-fill)功率因子校正(power factor correction,PFC)架構,其將交流電壓轉換為一直流電壓,尤其關於開關模式電源(switching-mode power supply,SMPS)在電磁干擾(electromagnetic interference,EMI)上的改良。 The present invention relates to a passive valley-fill (valley-fill) power factor correction (PFC) architecture, which converts AC voltage to DC voltage, especially regarding switching-mode power supply (SMPS) Improvements in electromagnetic interference (EMI).

功率因子對於判斷電子產品是否有效地工作而言是很重要的,功率因子可透過將實功率(real power)與視在功率(apparent power)進行比較來計算。實功率係用來表示工作的有效性,並且僅包括交流電源的實部成份,而視在功率則是電流與電壓的平均乘積,包括交流電源的實部分量以及虛部分量。 The power factor is very important for judging whether the electronic product works effectively. The power factor can be calculated by comparing the real power with the apparent power. Real power is used to express the effectiveness of work and only includes the real component of AC power, while apparent power is the average product of current and voltage, including the real and imaginary components of AC power.

在產生相同大小的可用電源的情況下,具有較低功率因子的電源系統會比具有較高功率因子的電源系統消耗更多的循環電流(circulating current),這是因為返回到負載的電源較大,導致增加分配系統(distribution system)整體的電源損耗。換言之,較低的功率因子代表著操作效率也隨之較低,這導致裝置需要更大的容量以及更多的導體。根據能源之星規範(ENERGY STAR Lamps V2.1 Final Specification),對於總輸出功率小於5瓦特(watts)的照明產品的規定是功率因子必須大於0.5,且對於總輸出功率大於5瓦特的照明產品的規定是功率 因子必須大於0.7。 In the case of generating usable power of the same size, a power system with a lower power factor will consume more circulating current than a power system with a higher power factor, because the power returned to the load is larger , Resulting in an increase in the overall power loss of the distribution system. In other words, a lower power factor means that the operating efficiency is also lower, which causes the device to require a larger capacity and more conductors. According to the ENERGY STAR Lamps V2.1 Final Specification, for lighting products with a total output power of less than 5 watts (watts), the power factor must be greater than 0.5, and for lighting products with a total output power greater than 5 watts The rule is power The factor must be greater than 0.7.

填谷式電路對於調整產品的功率因子扮演著重要的角色,其係為一種被動式功率因子校正(power factor correction,PFC)電路。請參考第1A圖,其係為習知的功率因子控制電路100的示意圖,如第1A圖所示,功率因子控制電路100包含交流電源10、二極體-橋式整流器(diode-bridge rectifier)15、EMI模組20、填谷式電路30、開關模式電源(switching-mode power supply,SMPS)40以及LED陣列50。EMI模組20係耦接於交流電源10,並且用來降低EMI排放。填谷式電路30係耦接於EMI模組20,並且用來改善功率因子控制電路100的功率因子。然而,功率因子控制電路100中設置有許多被動式元件,故需要填谷式電路30以及EMI模組20以分別改善功率因子以及降低EMI排放。 The valley-fill circuit plays an important role in adjusting the power factor of the product, and it is a passive power factor correction (PFC) circuit. Please refer to Figure 1A, which is a schematic diagram of a conventional power factor control circuit 100. As shown in Figure 1A, the power factor control circuit 100 includes an AC power supply 10 and a diode-bridge rectifier. 15. EMI module 20, valley filling circuit 30, switching-mode power supply (SMPS) 40, and LED array 50. The EMI module 20 is coupled to the AC power supply 10 and is used to reduce EMI emissions. The valley filling circuit 30 is coupled to the EMI module 20 and used to improve the power factor of the power factor control circuit 100. However, there are many passive components in the power factor control circuit 100, so the valley-filling circuit 30 and the EMI module 20 are required to improve the power factor and reduce EMI emissions, respectively.

此外,將交流電壓應用至功率因子控制電路100時,整流電壓會透過D2、Rv來對多個電容器(例如電容器CV1、CV2)進行充電,直到充至將近線電壓峰值的一半(參考第1A圖中的虛線箭頭所示的充電方向)。若是操作在谷相位(valley phase)則代表線電壓降至低於電壓峰值,此時CV1以及CV2會放電至負載(參考第1B圖中虛線箭頭所示的放電方向)。進一步而言,功率因子控制電路100係以串聯的方式充電並且以並聯的方式來放電,如此造成電流的不對稱性,可能導致更嚴重的總諧波失真(total harmonic distortions,THD)。綜上所述,實有需要一種新穎的方法以及架構來改善應用於電子裝置(諸如照明裝置)的SMPS驅動器的整體功率因子。 In addition, when AC voltage is applied to the power factor control circuit 100, the rectified voltage will charge multiple capacitors (such as capacitors C V1 , C V2 ) through D2 and Rv until it is charged to half of the peak value of the near-line voltage (see section The charging direction shown by the dotted arrow in Figure 1A). If it is operating in the valley phase, it means that the line voltage drops below the voltage peak value. At this time, C V1 and C V2 will be discharged to the load (refer to the discharge direction shown by the dashed arrow in Figure 1B). Furthermore, the power factor control circuit 100 is charged in series and discharged in parallel, which causes current asymmetry, which may lead to more serious total harmonic distortions (THD). In summary, there is a need for a novel method and architecture to improve the overall power factor of SMPS drivers applied to electronic devices (such as lighting devices).

本發明的一實施例提供一種電源控制電路,其包含有交流電源 (alternating current,AC)、整流器以及填谷式電路(valley-fill circuit)。該交流電源用以接收一交流電壓;該整流器用以將該交流電壓轉換為一整流的電壓;以及該填谷式電路包含有:一電感器,具有一第一端點,其耦接於該整流器,以及具有一第二端點;一第一電阻器,具有一第一端點,其耦接於該電感器的該第二端點,以及具有一第二端點;一二極體,具有一陰極,其耦接於該電感器的該第二端點,以及具有一陽極;以及一第一電容器,具有一第一端點,其耦接於該第一電阻器的該第二端點以及該二極體的該陽極,以及具有一第二端點,其耦接於地端。 An embodiment of the present invention provides a power control circuit, which includes an AC power supply (alternating current, AC), rectifier and valley-fill circuit. The AC power supply is used for receiving an AC voltage; the rectifier is used for converting the AC voltage into a rectified voltage; and the valley-filling circuit includes: an inductor having a first terminal coupled to the Rectifier, and has a second terminal; a first resistor, has a first terminal, which is coupled to the second terminal of the inductor, and has a second terminal; a diode, Having a cathode coupled to the second end of the inductor and having an anode; and a first capacitor having a first end coupled to the second end of the first resistor Point and the anode of the diode, and have a second terminal, which is coupled to the ground terminal.

100,200,300,500:功率因子控制電路 100, 200, 300, 500: power factor control circuit

10:交流電源 10: AC power

15:二極體-橋式整流器 15: Diode-bridge rectifier

20:EMI模組 20: EMI module

30:填谷式電路 30: Valley-filling circuit

40:開關模式電源 40: switch mode power supply

50:LED陣列 50: LED array

D,D1,D2,D3:二極體 D, D1, D2, D3: Diode

Rv,RF:電阻器 Rv, R F : resistor

CV,CV1,CV2,CF1,CF2:電容器 C V , C V1 , C V2 , C F1 , C F2 : Capacitor

VOUT:輸出電壓 V OUT : output voltage

Vrec:電壓節點 V rec : voltage node

L:電感器 L: Inductor

D:二極體 D: Diode

210:交流電流源 210: AC current source

220:保險絲 220: fuse

230:金氧壓敏電阻單元 230: Metal Oxygen Varistor Unit

240:整流電路 240: rectifier circuit

250:開關模式電源 250: switch mode power supply

260:LED陣列 260: LED array

270,370,570:填谷式電路 270,370,570: Valley-filling circuit

Vm:電壓峰值 Vm: peak voltage

V1,V2,VLED_max:電壓值 V1, V2, V LED_max : voltage value

t1,t2:時間點 t1, t2: time point

第1A圖係為習知的功率因子控制電路的示意圖。 Figure 1A is a schematic diagram of a conventional power factor control circuit.

第1B圖係為第1A圖中所示習知的功率因子控制電路的放電操作的示意圖。 FIG. 1B is a schematic diagram of the discharge operation of the conventional power factor control circuit shown in FIG. 1A.

第2圖係為根據本發明一實施例的功率因子控制電路的示意圖。 FIG. 2 is a schematic diagram of a power factor control circuit according to an embodiment of the invention.

第3圖係為根據本發明另一實施例的功率因子控制電路的示意圖。 FIG. 3 is a schematic diagram of a power factor control circuit according to another embodiment of the invention.

第4圖係為第3圖中所示的填谷式電路的輸出的示意圖。 Figure 4 is a schematic diagram of the output of the valley filling circuit shown in Figure 3.

第5圖係為根據本發明另一實施例的功率因子控制電路的示意圖。 Fig. 5 is a schematic diagram of a power factor control circuit according to another embodiment of the present invention.

在說明書及後續的申請專利範圍當中使用了某些詞彙來指稱特定的元件。所屬領域中具有通常知識者應可理解,硬體製造商可能會用不同的名詞來稱呼同樣的元件。本說明書及後續的申請專利範圍並不以名稱的差異來作為區分元件的方式,而是以元件在功能上的差異來作為區分的準則。在通篇說明書及後續的請求項當中所提及的「包含」係為一開放式的用語,故應解釋成「包 含但不限定於」。另外,「耦接」一詞在此係包含任何直接及間接的電氣連接手段。因此,若文中描述一第一裝置耦接於一第二裝置,則代表該第一裝置可直接電氣連接於該第二裝置,或透過其他裝置或連接手段間接地電氣連接至該第二裝置。 In the specification and subsequent patent applications, certain words are used to refer to specific elements. Those with general knowledge in the field should understand that hardware manufacturers may use different terms to refer to the same components. The scope of this specification and subsequent patent applications does not use differences in names as a way of distinguishing elements, but uses differences in functions of elements as a criterion for distinguishing. The "include" mentioned in the entire manual and subsequent requests is an open term, so it should be interpreted as "includes Including but not limited to". In addition, the term "coupling" here includes any direct and indirect electrical connection means. Therefore, if it is described that a first device is coupled to a second device, it means that the first device can be directly electrically connected to the second device, or indirectly electrically connected to the second device through other devices or connection means.

上述習知技術的解決方案(或習知技術的解決方案)係在提高成本、提高設計複雜度、增加被動元件數量(會相應地需要更大的電路面積)等等的情況下達到所需的功率控制能力,而本發明實施例所提供的新穎電路設計其具有降低的成本以及簡化的複雜度。 The above-mentioned conventional technology solution (or conventional technology solution) is to achieve the required under the condition of increasing cost, increasing design complexity, increasing the number of passive components (which will correspondingly require larger circuit area), etc. Power control capability, and the novel circuit design provided by the embodiments of the present invention has reduced cost and simplified complexity.

請參考第2圖,第2圖係為根據本發明一實施例的功率因子控制電路200的示意圖。如圖2所示,電感器L、二極體D、電阻器RV以及電容器CV可被共同視為一整合的EMI填谷式電路(即填谷式電路270),用以在不具前述缺點的情況下仍能夠提供理想的技術效果。除了填谷式電路270,功率因子控制電路200還包含交流電流源210、保險絲220、金氧壓敏電阻(metal-oxide varistor,MOV)單元230、整流電路240、開關模式電源(switching-mode power supply,SMPS)250以及LED陣列260。只要能夠達到相同/相仿的技術效果,第2圖中所描繪的一些元件可視實際設計需求予以省略。 Please refer to FIG. 2, which is a schematic diagram of a power factor control circuit 200 according to an embodiment of the present invention. As shown in Figure 2, the inductor L, the diode D, the resistor R V, and the capacitor C V can be collectively regarded as an integrated EMI valley-filling circuit (that is, valley-filling circuit 270). In the case of shortcomings, the ideal technical effect can still be provided. In addition to the valley filling circuit 270, the power factor control circuit 200 also includes an AC current source 210, a fuse 220, a metal-oxide varistor (MOV) unit 230, a rectifier circuit 240, and a switching-mode power supply (switching-mode power supply). supply, SMPS) 250 and LED array 260. As long as the same/similar technical effects can be achieved, some elements depicted in Figure 2 may be omitted based on actual design requirements.

金氧壓敏電阻230係為具有電阻值的電子元件,其電阻值會隨著所施加的電壓不同而變化。金氧壓敏電阻230又被稱為壓敏電阻(voltage-dependent resistor,VDR),其具有非線性(nonlinear)、非歐姆性(non-ohmic)的電流-電壓特性,故相似於二極體。與二極管相反,壓敏電阻在兩個橫向電流方向上具有相同的特性。金氧壓敏電阻230可使用作為功率因子控制電路200中的控制或 補償元件,以提供優化的操作條件或對於過大的瞬態電壓(transient voltage)提供防治。 The gold-oxygen varistor 230 is an electronic component with a resistance value, and its resistance value will vary with the applied voltage. The gold-oxygen varistor 230 is also called a voltage-dependent resistor (VDR), which has non-linear and non-ohmic current-voltage characteristics, so it is similar to a diode . In contrast to diodes, varistors have the same characteristics in both lateral current directions. The gold-oxygen varistor 230 can be used as a control or in the power factor control circuit 200 Compensation components to provide optimized operating conditions or provide protection against excessive transient voltages.

整流電路240可為二極體-橋式整流器(或稱為橋式整流器),舉例而言(但不用以限定),二極體橋式整流器係為四個二極體所構成的橋式電路配置,其對輸出端提供了與輸入端相同的極性。橋式整流器被廣泛地應用於將交流電流輸入轉換為直流電流輸出。 The rectifier circuit 240 can be a diode-bridge rectifier (or called a bridge rectifier). For example (but not to be limited), the diode bridge rectifier is a bridge circuit composed of four diodes. Configuration, which provides the same polarity to the output terminal as the input terminal. Bridge rectifiers are widely used to convert AC current input into DC current output.

開關模式電源250透過頻繁地對開關裝置進行開/關操作來轉換電源,並且於開關裝置處於非導通的狀態下利用儲存元件(諸如電感器或電容器)來進行供電。SMPS可用來對許多設備進行供電,諸如電腦設備、敏感的電子設備、仰賴電池供電的裝置,以及其他需要高效能供電的設備。 The switch-mode power supply 250 switches the power by frequently turning on/off the switching device, and uses a storage element (such as an inductor or a capacitor) to supply power when the switching device is in a non-conducting state. SMPS can be used to power many devices, such as computer equipment, sensitive electronic devices, devices that rely on battery power, and other devices that require high-efficiency power supplies.

進一步而言,電感器L以及電容器CV的配置可為功率因子控制電路200提供EMI抑制功能(EMI-suppressing ability),而二極體D、電阻器RV以及電容器CV的配置可為功率因子控制電路200提供填谷功能,其中二極體D、電阻器RV以及電容器CV的組合可提供近似於第1圖中所示RV、電容器CV以及二極體D3的功能。相較於第1A圖/第1B圖所示的充/放電方式,第2圖所示的充/放電方式可進一步改善對稱性(symmetry)的表現,因而解決習知術所面臨的技術問題。 Furthermore, the configuration of the inductor L and the capacitor C V can provide the power factor control circuit 200 with EMI suppression (EMI-suppressing ability), and the configuration of the diode D, the resistor R V and the capacitor C V can be power The factor control circuit 200 provides a valley filling function, wherein the combination of the diode D, the resistor R V and the capacitor C V can provide a function similar to that of the R V , the capacitor C V and the diode D3 shown in FIG. 1. Compared with the charging/discharging method shown in FIG. 1A/FIG. 1B, the charging/discharging method shown in FIG. 2 can further improve the symmetry performance, thereby solving the technical problems faced by the conventional art.

請參考第3圖,第3圖係為根據本發明另一實施例的功率因子控制電路300的示意圖。功率因子控制電路300與功率因子控制電路200的差別在於,功率因子控制電路300中的填谷式電路370另包含電阻器RF以及電容器CF1。電容器 CF1、電感器L以及電容器CV的組合構成了一π型EMI電路,其可提供較佳的EMI抑制特性。 Please refer to FIG. 3, which is a schematic diagram of a power factor control circuit 300 according to another embodiment of the present invention. The difference between the power factor control circuit 300 and the power factor control circuit 200 is that the valley filling circuit 370 in the power factor control circuit 300 further includes a resistor R F and a capacitor C F1 . The combination of capacitor C F1 , inductor L and capacitor C V constitutes a π-type EMI circuit, which can provide better EMI suppression characteristics.

為了確保開關模式電源250接收到優化後的輸入電壓,諸如第4圖中所示由填谷式電路370所輸出的整流後的正弦波,電容器CV的電容值應被進一步設計為符合特定條件,以第4圖為例,水平的虛線表示提供給LED陣列260的電壓,其大小為VLED_max。鋸齒狀虛線的上升部份表示一充電期間,而鋸齒狀虛線的下降部份表示維持期間(holding period)。VLED_max近乎恆定的能夠提供仔細設計的C V 值(其中斜體的C V 表示電容器CV的電容值),其中C V 值可從以下方程式推導:

Figure 109103379-A0305-02-0008-1
In order to ensure that the switched-mode power supply 250 receives the optimized input voltage, such as the rectified sine wave output by the valley-fill circuit 370 shown in Figure 4, the capacitance value of the capacitor C V should be further designed to meet specific conditions Taking Figure 4 as an example, the horizontal dashed line represents the voltage supplied to the LED array 260, and its magnitude is V LED_max . The rising part of the zigzag dashed line represents a charging period, and the falling part of the zigzag dashed line represents the holding period. The nearly constant V LED_max can provide a carefully designed C V value (where C V in italics represents the capacitance value of the capacitor C V ), where the C V value can be derived from the following equation:
Figure 109103379-A0305-02-0008-1

Figure 109103379-A0305-02-0008-2
Figure 109103379-A0305-02-0008-2

Figure 109103379-A0305-02-0008-3
Figure 109103379-A0305-02-0008-3

Figure 109103379-A0305-02-0008-4
Figure 109103379-A0305-02-0008-4

Figure 109103379-A0305-02-0008-5
Figure 109103379-A0305-02-0008-5

Figure 109103379-A0305-02-0008-6
Figure 109103379-A0305-02-0008-6

Figure 109103379-A0305-02-0008-7
Figure 109103379-A0305-02-0008-7

請參考方程式1,C V 必須大於或等於給定值,以使LED陣列260能獲得所需的電源電壓,其中△VC代表V C 的電壓變化,Iload,max代表輸出負載的最大電流,Vm,min代表電壓振幅Vm的峰值的最小值,以及tHold代表電容器放電時間,其 可通過方程式2來計算。在方程式3中,電容器充電時間tchg可藉由自週期1/2f減去tHold來得到。Ichg係於方程式4中定義,且方程式6中的結果可簡單由方程式4以及方程式5來推得。此外,Ichg代表充電電流,以及R V 代表電阻器RV的電阻值。最後,方程式7中的結果可藉由將方程式6帶入方程式1來得到。 Please refer to Equation 1. C V must be greater than or equal to a given value to enable the LED array 260 to obtain the required power supply voltage, where △V C represents the voltage change of V C , and I load,max represents the maximum current of the output load. V m,min represents the minimum value of the peak value of the voltage amplitude V m , and t Hold represents the capacitor discharge time, which can be calculated by Equation 2. In Equation 3, the capacitor charging time t chg can be obtained by subtracting t Hold from the period 1/2f. I chg is defined in Equation 4, and the result in Equation 6 can be simply derived from Equation 4 and Equation 5. In addition, I chg represents the charging current, and R V represents the resistance value of the resistor R V. Finally, the result in Equation 7 can be obtained by substituting Equation 6 into Equation 1.

第5圖係為根據本發明另一實施例的功率因子控制電路500的示意圖,功率因子控制電路300與功率因子控制電路500的差別在於,在功率因子控制電路500中,填谷式電路570還包含電容器CF2,其有助於進一步提供優化的輸出。本實施例中一些元件係相同或相仿於以上實施例中的元件,為簡潔之故,詳細說明在此省略。 Figure 5 is a schematic diagram of a power factor control circuit 500 according to another embodiment of the present invention. The difference between the power factor control circuit 300 and the power factor control circuit 500 is that in the power factor control circuit 500, the valley filling circuit 570 also A capacitor C F2 is included, which helps to further provide an optimized output. Some components in this embodiment are the same or similar to those in the above embodiments, and for the sake of brevity, detailed descriptions are omitted here.

如上所述,本發明的實施例可在具有降低的成本以及簡化的複雜度的情況下改善電源控制電路的整體功率因子,以及提供EMI抑制能力。舉例來說,本發明的實施例採用了整合式EMI填谷電路的設計,其僅需要較少元件且不影響所欲達到的技術效果(相較於第1A、1B圖中習知技術的解決方案)。 As described above, the embodiments of the present invention can improve the overall power factor of the power supply control circuit and provide EMI suppression capabilities with reduced cost and simplified complexity. For example, the embodiment of the present invention adopts the design of an integrated EMI valley-filling circuit, which only requires fewer components and does not affect the desired technical effect (compared to the solution of the prior art in Figures 1A and 1B) Program).

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The foregoing descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made in accordance with the scope of the patent application of the present invention should fall within the scope of the present invention.

200:功率因子控制電路 200: Power factor control circuit

D:二極體 D: Diode

Rv:電阻器 Rv: resistor

CV:電容器 C V : Capacitor

VOUT:輸出電壓 V OUT : output voltage

Vrec:電壓節點 V rec : voltage node

L:電感器 L: Inductor

D:二極體 D: Diode

210:交流電流源 210: AC current source

220:保險絲 220: fuse

230:金氧壓敏電阻單元 230: Metal Oxygen Varistor Unit

240:整流電路 240: rectifier circuit

250:開關模式電源 250: switch mode power supply

260:LED陣列 260: LED array

270:填谷式電路 270: Valley Filling Circuit

Claims (10)

一種電源控制電路,包含有:一交流(alternating current,AC)電源,配置以接收一交流電壓;一整流器,配置以將該交流電壓轉換為一整流的電壓;一填谷式電路(valley-fill circuit),包含有:一電感器,具有一第一端點,其耦接於該整流器,以及具有一第二端點;一第一電阻器,具有一第一端點,其耦接於該電感器的該第二端點,以及具有一第二端點;一二極體,具有一陰極,其耦接於該電感器的該第二端點,以及具有一陽極;以及一第一電容器,具有一第一端點,其耦接於該第一電阻器的該第二端點以及該二極體的該陽極,以及具有一第二端點,其耦接於地端。 A power supply control circuit includes: an alternating current (AC) power supply configured to receive an AC voltage; a rectifier configured to convert the AC voltage into a rectified voltage; and a valley-fill circuit (valley-fill) circuit), including: an inductor with a first terminal coupled to the rectifier and a second terminal; a first resistor with a first terminal coupled to the rectifier The second terminal of the inductor has a second terminal; a diode has a cathode coupled to the second terminal of the inductor and has an anode; and a first capacitor , Having a first terminal coupled to the second terminal of the first resistor and the anode of the diode, and a second terminal coupled to the ground terminal. 如請求項1所述之電源控制電路,其中該整流器係為一二極體-橋式(diode-bridge)整流器。 The power control circuit according to claim 1, wherein the rectifier is a diode-bridge rectifier. 如請求項1所述之電源控制電路,其中該填谷式電路係另耦接於一直流對直流(DC-to-DC)轉換器,以對一LED驅動電路提供一恆定電流輸出或一恆定電流輸出。 The power control circuit according to claim 1, wherein the valley-filling circuit is additionally coupled to a DC-to-DC converter to provide a constant current output or a constant current output to an LED driving circuit Current output. 如請求項3所述之電源控制電路,其中一開關模式電源(switching-mode power supply,SMPS)係耦接於該填谷式電路與該LED 驅動電路之間。 The power control circuit according to claim 3, wherein a switching-mode power supply (SMPS) is coupled to the valley-fill circuit and the LED Between the drive circuits. 如請求項1所述之電源控制電路,另包含有:一金氧壓敏電阻(metal-oxide varistor,MOV)單元,耦接於該交流電源與該整流器之間;以及一保險絲,耦接於該交流電源以及該MOV單元之間。 The power control circuit according to claim 1, further comprising: a metal-oxide varistor (MOV) unit, coupled between the AC power source and the rectifier; and a fuse, coupled to Between the AC power supply and the MOV unit. 如請求項1所述之電源控制電路,其中該填谷式電路另包含:一第二電阻器,具有一第一端點,其耦接於該電感器的該第一端點,以及具有一第二端點,其耦接於該第一電阻器的該第一端點;以及一第二電容器,,具有一第一端點,其耦接於該第二電阻器的該第一端點,以及具有一第二端點,其耦接於地端。 The power control circuit according to claim 1, wherein the valley-filling circuit further comprises: a second resistor having a first terminal, which is coupled to the first terminal of the inductor, and having a A second terminal coupled to the first terminal of the first resistor; and a second capacitor having a first terminal coupled to the first terminal of the second resistor , And has a second terminal, which is coupled to the ground terminal. 如請求項6所述之電源控制電路,其中該填谷式電路另包含:一第三電容器,具有一第一端點,其耦接於該第一電阻器的該第一端點,以及具有一第二端點,其耦接於地端。 The power control circuit according to claim 6, wherein the valley-filling circuit further comprises: a third capacitor having a first terminal, which is coupled to the first terminal of the first resistor, and having A second terminal, which is coupled to the ground terminal. 如請求項1所述之電源控制電路,其中該填谷式電路的輸出係為整流的正弦波的形式。 The power control circuit according to claim 1, wherein the output of the valley-filling circuit is in the form of a rectified sine wave. 如請求項8所述之電源控制電路,其中該第一電容器的電容值滿足以下方程式:
Figure 109103379-A0305-02-0012-8
Figure 109103379-A0305-02-0013-9
其中C V 代表該第一電容器的電容值,△VC代表電容值V C 的電壓變化,Iload,max代表輸出負載端上的最大電流值,Vm,min代表電壓振幅Vm的峰值的最小值,tHold代表該電容器的放電時間,tchg代表該電容器的充電時間,Ichg代表充電電流,以及R V 代表該第一電阻器的電阻值。
The power supply control circuit according to claim 8, wherein the capacitance value of the first capacitor satisfies the following equation:
Figure 109103379-A0305-02-0012-8
Figure 109103379-A0305-02-0013-9
Where C V represents the capacitance value of the first capacitor, △V C represents the voltage change of the capacitance value V C , I load,max represents the maximum current value on the output load terminal, and V m,min represents the peak value of the voltage amplitude V m At the minimum value, t Hold represents the discharge time of the capacitor, t chg represents the charging time of the capacitor, I chg represents the charging current, and R V represents the resistance value of the first resistor.
如請求項1所述之電源控制電路,其中該第一電容器係透過該電感器以及該第一電阻器來充電,以及該第一電容器係透過該二極體來放電。 The power control circuit according to claim 1, wherein the first capacitor is charged through the inductor and the first resistor, and the first capacitor is discharged through the diode.
TW109103379A 2020-02-04 2020-02-04 Power control circuit TWI724777B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109103379A TWI724777B (en) 2020-02-04 2020-02-04 Power control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109103379A TWI724777B (en) 2020-02-04 2020-02-04 Power control circuit

Publications (2)

Publication Number Publication Date
TWI724777B true TWI724777B (en) 2021-04-11
TW202131612A TW202131612A (en) 2021-08-16

Family

ID=76604927

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109103379A TWI724777B (en) 2020-02-04 2020-02-04 Power control circuit

Country Status (1)

Country Link
TW (1) TWI724777B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130207567A1 (en) * 2012-02-14 2013-08-15 Alexander Mednik Boost converter assisted valley-fill power factor correction circuit
TWM477112U (en) * 2013-06-19 2014-04-21 Wintek Corp Illumination device power control module
CN103762868A (en) * 2014-02-12 2014-04-30 魏其萃 High-power factor active valley-fill type alternating current and direct current converter
CN104079185A (en) * 2014-06-18 2014-10-01 广州金升阳科技有限公司 Valley fill circuit with protection function
US9572206B2 (en) * 2013-05-14 2017-02-14 Atmel Corporation Active valley fill power factor correction
TW201838479A (en) * 2017-04-05 2018-10-16 晶元光電股份有限公司 Led driver

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130207567A1 (en) * 2012-02-14 2013-08-15 Alexander Mednik Boost converter assisted valley-fill power factor correction circuit
US9572206B2 (en) * 2013-05-14 2017-02-14 Atmel Corporation Active valley fill power factor correction
TWM477112U (en) * 2013-06-19 2014-04-21 Wintek Corp Illumination device power control module
CN103762868A (en) * 2014-02-12 2014-04-30 魏其萃 High-power factor active valley-fill type alternating current and direct current converter
CN104079185A (en) * 2014-06-18 2014-10-01 广州金升阳科技有限公司 Valley fill circuit with protection function
TW201838479A (en) * 2017-04-05 2018-10-16 晶元光電股份有限公司 Led driver

Also Published As

Publication number Publication date
TW202131612A (en) 2021-08-16

Similar Documents

Publication Publication Date Title
US8736238B2 (en) Buck and buck/boost converter systems having auxiliary circuits and method thereof
US9621068B2 (en) Load driving circuit and method thereof
US9899910B2 (en) Bridgeless PFC power converter with reduced EMI noise
US9263939B2 (en) Capacitor discharging circuit and converter
US9007730B2 (en) Surge protection circuit
US8953347B2 (en) Capacitor discharging circuit and power converter
US8345450B2 (en) Resonant converter having over-current protection apparatus and controlling method thereof
US10333422B2 (en) Constant inrush current circuit for AC input power supply unit
KR102070095B1 (en) Light Source Driving Apparatus and Light Emitting Apparatus Including the Same
EP2385750B1 (en) Power supply device having current control circuit capable of correcting power factor
KR20080110376A (en) Multi output adapter
US7710087B2 (en) Power converter and power converting method
US6396724B1 (en) Charge-pumped DC bias supply
TWI737177B (en) Bridgeless step-up and step-down ac-to-dc converter
TWI724777B (en) Power control circuit
KR102011110B1 (en) LED Converter Using Solid Capacitor
CN114070105A (en) Forward constant-current control device, switching power supply, control method and chip
US6819575B1 (en) AC/DC switch mode power supply with power factor correction using direct energy transfer concept
KR20140096948A (en) Single Power Stage Power Factor Correction Circuit
US10056831B2 (en) Filter and method for direct rectification grid-powered power supplies
US11063511B1 (en) Valley-fill PFC circuit with EMI protection
Sokal et al. A capacitor-fed, voltage-step-down, single-phase, nonisolated rectifier
CN210949200U (en) Fan suitable for ultra-wide voltage range
CN113381601A (en) Valley-filling type power factor correction circuit with EMI protection function
US11682965B2 (en) Power supply with lightning protection