TWI722742B - Memory device and method for fabricating the same - Google Patents

Memory device and method for fabricating the same Download PDF

Info

Publication number
TWI722742B
TWI722742B TW108147915A TW108147915A TWI722742B TW I722742 B TWI722742 B TW I722742B TW 108147915 A TW108147915 A TW 108147915A TW 108147915 A TW108147915 A TW 108147915A TW I722742 B TWI722742 B TW I722742B
Authority
TW
Taiwan
Prior art keywords
layer
substrate
conductive
insulating layer
conductive layer
Prior art date
Application number
TW108147915A
Other languages
Chinese (zh)
Other versions
TW202125778A (en
Inventor
林威良
蔡文哲
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW108147915A priority Critical patent/TWI722742B/en
Application granted granted Critical
Publication of TWI722742B publication Critical patent/TWI722742B/en
Publication of TW202125778A publication Critical patent/TW202125778A/en

Links

Images

Abstract

A memory device includes a substrate having an upper surface; a stacked structure disposed on the upper surface of the substrate, wherein the stacked structure includes a first insulating layer, a first conductive layer, a second insulating layer, a second conductive layer and a third insulating layer sequentially stacked on the substrate; a plurality of channel structures penetrating the stacked structure and electrically connected to the substrate, wherein each of the channel structures includes an upper portion corresponding to the second conductive layer and a lower portion corresponding to the first conductive layer; a memory layer disposed between the second conductive layer and the upper portion; and a plurality of isolation structures penetrating the stacked structure to separate the stacked structure into a plurality of sub-stacks.

Description

記憶體元件及其製作方法 Memory element and manufacturing method thereof

本揭露係有關於一種半導體結構及其製作方法。本揭露更特別是有關於一種記憶體元件及其製作法。 This disclosure relates to a semiconductor structure and its manufacturing method. This disclosure more particularly relates to a memory device and its manufacturing method.

近來,快閃記憶體的使用需求日漸增加。快閃記憶裝置可分為反或閘(NOR)或反及閘(NAND)快閃記憶裝置。其中,反或閘記憶裝置藉由將每個記憶胞的一端連接至接地,另一端連接至位元線,典型地提供較快的程式化與讀取速度。一般而言,反或閘快閃記憶體係為二維型態,記憶胞存在於一基板的二維陣列中。然而,隨著現在的應用越來越多,二維結構的尺寸限制已不敷使用。因此,為提供更高之儲存容量的記憶體裝置,目前仍亟需研發一種具有更優異的電特性(例如是具有良好的資料保存可靠性和操作速度)的三維反或閘記憶體元件。 Recently, the demand for the use of flash memory has increased day by day. Flash memory devices can be divided into NOR or NAND flash memory devices. Among them, the NAND memory device typically provides faster programming and reading speed by connecting one end of each memory cell to the ground and the other end to the bit line. Generally speaking, the NAND flash memory system is a two-dimensional type, and the memory cells exist in a two-dimensional array of a substrate. However, with more and more applications nowadays, the size limit of the two-dimensional structure is no longer sufficient. Therefore, in order to provide a memory device with a higher storage capacity, there is still an urgent need to develop a three-dimensional inverter memory device with better electrical characteristics (for example, good data storage reliability and operating speed).

在本揭露中,提供一種記憶體元件及其製作方法, 以解決至少一部分上述問題。 In this disclosure, a memory device and a manufacturing method thereof are provided, To solve at least part of the above problems.

根據本發明之一實施例,記憶體元件包括一基板、一疊層結構、複數個通道結構、一記憶層以及複數個隔離結構。基板具有一上表面。疊層結構位於基板之上表面上,其中疊層結構包括依序堆疊於基板上的一第一絕緣層、一第一導電層、一第二絕緣層、一第二導電層以及一第三絕緣層。通道結構穿過疊層結構並電性連接於基板,其中各通道結構包括一上部部分及一下部部分,上部部分對應於第二導電層,下部部分對應於第一導電層。記憶層位於第二導電層與上部部分之間。隔離結構穿過疊層結構以將疊層結構分隔為複數個次堆疊。 According to an embodiment of the present invention, the memory device includes a substrate, a laminated structure, a plurality of channel structures, a memory layer, and a plurality of isolation structures. The substrate has an upper surface. The laminated structure is located on the upper surface of the substrate, wherein the laminated structure includes a first insulating layer, a first conductive layer, a second insulating layer, a second conductive layer, and a third insulating layer sequentially stacked on the substrate Floor. The channel structure passes through the laminated structure and is electrically connected to the substrate. Each channel structure includes an upper portion and a lower portion. The upper portion corresponds to the second conductive layer, and the lower portion corresponds to the first conductive layer. The memory layer is located between the second conductive layer and the upper part. The isolation structure passes through the stacked structure to separate the stacked structure into a plurality of sub-stacks.

根據本發明之一實施例,記憶體元件的製作方法包括下列步驟。首先,提供一基板,基板具有一上表面;接著,在基板之上表面上形成一疊層本體,其中疊層本體包括依序堆疊於基板之上表面上的一第一絕緣層、一第一導電層、一第二絕緣層、一上犧牲層以及一第三絕緣層;形成穿過疊層本體的複數個第一開口;形成複數個通道結構於第一開口中,且通道結構電性連接於基板,其中各個通道結構包括一上部部分及一下部部分,下部部分對應於第一導電層,上部部分位於下部部分的上方;形成對應於該上部部分的一記憶層;形成穿過疊層本體的複數個第二開口;移除上犧牲層並在上犧牲層被移除的位置形成一上部開口;填充一導電材料於上部開口中以形成一第二導電層,如此便形成包括第一絕緣層、第一導電層、第二絕緣層、第二導電層以及第三絕緣層的一疊層結構;此後,在第二開口中形成複數個隔離結構,隔離結構將疊層結構分隔為複數個次堆疊。 According to an embodiment of the present invention, the manufacturing method of the memory device includes the following steps. First, a substrate is provided, and the substrate has an upper surface; then, a laminated body is formed on the upper surface of the substrate, wherein the laminated body includes a first insulating layer and a first insulating layer sequentially stacked on the upper surface of the substrate. A conductive layer, a second insulating layer, an upper sacrificial layer, and a third insulating layer; forming a plurality of first openings passing through the laminated body; forming a plurality of channel structures in the first openings, and the channel structures are electrically connected On the substrate, each channel structure includes an upper part and a lower part, the lower part corresponds to the first conductive layer, and the upper part is located above the lower part; a memory layer corresponding to the upper part is formed; and a through-layer body is formed The upper sacrificial layer is removed and an upper opening is formed at the position where the upper sacrificial layer is removed; a conductive material is filled in the upper opening to form a second conductive layer, thus forming a first insulating layer Layer, a first conductive layer, a second insulating layer, a second conductive layer, and a third insulating layer; after that, a plurality of isolation structures are formed in the second opening, and the isolation structure divides the laminated structure into a plurality of Times stacked.

根據本發明之一實施例,記憶體元件的製作方法包括下列步驟。首先,提供一基板,基板具有一上表面;接著,在基板之上表面上形成一疊層本體,其中疊層本體包括依序堆疊於基板之上表面上的一第一絕緣層、一下犧牲層、一第二絕緣層、一上犧牲層以及一第三絕緣層;形成穿過疊層本體的複數個第一開口;形成複數個通道結構的複數個下部部分於第一開口中;在各個第一開口中形成對應於上犧牲層的一記憶層;形成通道結構的複數個上部部分於第一開口中,上部部分位於下部部分之上;形成穿過疊層本體的複數個第二開口;移除上犧牲層及下犧牲層,並分別在上犧牲層與下犧牲層被移除的位置形成一上部開口及一下部開口;填充一導電材料於上部開口與下部開口中以分別形成一第二導電層及一第一導電層,如此便形成包括第一絕緣層、第一導電層、第二絕緣層、第二導電層以及第三絕緣層的一疊層結構;此後,在第二開口中形成複數個隔離結構,隔離結構將疊層結構分隔為複數個次堆疊。 According to an embodiment of the present invention, the manufacturing method of the memory device includes the following steps. First, a substrate is provided, the substrate has an upper surface; then, a laminated body is formed on the upper surface of the substrate, wherein the laminated body includes a first insulating layer and a lower sacrificial layer sequentially stacked on the upper surface of the substrate , A second insulating layer, an upper sacrificial layer, and a third insulating layer; forming a plurality of first openings passing through the laminated body; forming a plurality of lower parts of a plurality of channel structures in the first opening; A memory layer corresponding to the upper sacrificial layer is formed in an opening; a plurality of upper parts forming a channel structure are in the first opening, and the upper part is located on the lower part; a plurality of second openings passing through the laminated body are formed; In addition to the upper sacrificial layer and the lower sacrificial layer, an upper opening and a lower opening are respectively formed at the positions where the upper sacrificial layer and the lower sacrificial layer are removed; a conductive material is filled in the upper opening and the lower opening to form a second A conductive layer and a first conductive layer, thus forming a laminated structure including a first insulating layer, a first conductive layer, a second insulating layer, a second conductive layer, and a third insulating layer; after that, in the second opening A plurality of isolation structures are formed, and the isolation structure separates the laminated structure into a plurality of sub-stacks.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式,作詳細說明如下。然而,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In order to have a better understanding of the above and other aspects of the present invention, the following specific examples are given in conjunction with the accompanying drawings to describe in detail as follows. However, the protection scope of the present invention shall be subject to those defined by the attached patent application scope.

100、200、300、400、500、600、700:記憶體元件 100, 200, 300, 400, 500, 600, 700: memory components

110、210、310、410、510、610、710:基板 110, 210, 310, 410, 510, 610, 710: substrate

110a、210a、310a、410a、510a、610a、710a:上表面 110a, 210a, 310a, 410a, 510a, 610a, 710a: upper surface

112、212、312、412、512、612、712:通道結構 112, 212, 312, 412, 512, 612, 712: channel structure

112a、212a、312a:下部部分 112a, 212a, 312a: lower part

112b、212b、312b:上部部分 112b, 212b, 312b: upper part

112c、212c、312c、412c、512c、612c、712c、118、218、318、418、518、618、718:摻雜區 112c, 212c, 312c, 412c, 512c, 612c, 712c, 118, 218, 318, 418, 518, 618, 718: doped regions

112t、172t:頂面 112t, 172t: top surface

122、222、322、422、522、622、722:第一絕緣層 122, 222, 322, 422, 522, 622, 722: first insulating layer

124、224、324、424、524、624、724:第二絕緣層 124, 224, 324, 424, 524, 624, 724: second insulating layer

126、226、326、426、526、626、726:第三絕緣層 126, 226, 326, 426, 526, 626, 726: third insulating layer

128、228、328:蓋層 128, 228, 328: cover layer

130、230、330、430、530、630、730:第一導電層 130, 230, 330, 430, 530, 630, 730: first conductive layer

132、232、332、432、532、632、GO4、GO5、GO6:熱氧化 層 132, 232, 332, 432, 532, 632, GO 4 , GO 5 , GO 6 : thermal oxide layer

132’、232’、332’、432’、532’、632’、732’:氧化物層 132’, 232’, 332’, 432’, 532’, 632’, 732’: oxide layer

140、240、340、440、540、640、740:上犧牲層 140, 240, 340, 440, 540, 640, 740: upper sacrificial layer

152、252、352、452、552、652、752:第一開口 152, 252, 352, 452, 552, 652, 752: first opening

154、254、354、454、554、654、754:第二開口 154, 254, 354, 454, 554, 654, 754: second opening

156、256、356、456、556、656、756:上部開口 156, 256, 356, 456, 556, 656, 756: upper opening

162、262、362、462、562、662、762:記憶層 162, 262, 362, 462, 562, 662, 762: memory layer

164、364、664:保護層 164, 364, 664: protective layer

166、266、366、566、666、766:介電材料 166, 266, 366, 566, 666, 766: dielectric materials

172、272、372、472、572、672、772:第二導電層 172, 272, 372, 472, 572, 672, 772: second conductive layer

172’、272’、372’、472’、572’、672’、772’:導電材料 172’, 272’, 372’, 472’, 572’, 672’, 772’: conductive material

174、274、374、474、574、674、774:隔離結構 174, 274, 374, 474, 574, 674, 774: isolation structure

176、276、376、476、576、676、776:導電連接結構 176, 276, 376, 476, 576, 676, 776: conductive connection structure

211:摻雜物 211: Adulterants

342、442、642、742:下犧牲層 342, 442, 642, 742: Lower sacrifice layer

259、459、559、759:垂直開口 259, 459, 559, 759: vertical opening

358、458、658:下部開口 358, 458, 658: lower opening

472’:導電材料 472’: Conductive material

A、A’:剖面線端點 A, A’: End of section line

BL、BL0、BL1、BL2:位元線 BL, BL0, BL1, BL2: bit lines

CL4、CL5、CL6、CL7:頂導電層 CL4, CL5, CL6, CL7: top conductive layer

CSL:共同源極線 CSL: Common Source Line

GSL0、GSL1、GSL2:接地選擇線 GSL0, GSL1, GSL2: Ground selection line

H1:第一高度 H 1 : first height

H2:第二高度 H 2 : second height

M、M1、M2、M3、M4、M5、M6、M7:記憶胞 M, M 1 , M 2 , M 3 , M 4 , M 5 , M 6 , M 7 : memory cell

OL4、OL5、OL6、OL7:頂絕緣層 OL4, OL5, OL6, OL7: top insulating layer

P1:頂部開口 P1: Top opening

S1、S2、S3、S4、S5、S6、S7:疊層結構 S1, S2, S3, S4, S5, S6, S7: laminated structure

S1’、S2’、S3’、S4’、S5’、S6’、S7’:疊層本體 S1’, S2’, S3’, S4’, S5’, S6’, S7’: laminated body

SLT1:第一溝槽 SLT1: The first groove

SLT2:第二溝槽 SLT2: second groove

SLT3:第三溝槽 SLT3: The third groove

SS1、SS2:次堆疊 SS1, SS2: secondary stack

T、T1、T2、T3、T4、T5、T6、T7、TS4、TS5、TS6、TS7:電晶體 T, T 1 , T 2 , T 3 , T 4 , T 5 , T 6 , T 7 , TS 4 , TS 5 , TS 6 , TS 7 : Transistor

UN、UN1、UN2、UN3、UN4、UN5、UN6、UN7、UNt:單元記憶胞 UN, UN 1 , UN 2 , UN 3 , UN 4 , UN 5 , UN 6 , UN 7 , UN t : unit cell

WL0、WL1、WL2:字元線 WL0, WL1, WL2: character line

第1A圖繪示根據本揭露之一實施例之記憶體元件的上視圖。 FIG. 1A is a top view of a memory device according to an embodiment of the disclosure.

第1B圖繪示沿第1圖之A-A’連線之根據本揭露之一實施例 之記憶體元件的剖面圖。 Figure 1B shows an embodiment according to the present disclosure along the line A-A' of Figure 1 The cross-sectional view of the memory device.

第1C圖繪示根據本揭露之另一實施例之記憶體元件的剖面圖。 FIG. 1C is a cross-sectional view of a memory device according to another embodiment of the disclosure.

第1D圖繪示根據本揭露之又一實施例之記憶體元件的剖面圖。 FIG. 1D is a cross-sectional view of a memory device according to another embodiment of the disclosure.

第1E圖繪示根據本揭露之又一實施例之記憶體元件的剖面圖。 FIG. 1E is a cross-sectional view of a memory device according to another embodiment of the disclosure.

第1F圖繪示根據本揭露之又一實施例之記憶體元件的剖面圖。 FIG. 1F is a cross-sectional view of a memory device according to another embodiment of the disclosure.

第1G圖繪示根據本揭露之又一實施例之記憶體元件的剖面圖。 FIG. 1G is a cross-sectional view of a memory device according to another embodiment of the disclosure.

第1H圖繪示根據本揭露之又一實施例之記憶體元件的剖面圖。 FIG. 1H is a cross-sectional view of a memory device according to another embodiment of the disclosure.

第2A圖至第2N圖繪示根據本揭露之一實施例之記憶體元件之形成方法的剖面圖。 2A to 2N are cross-sectional views of a method of forming a memory device according to an embodiment of the disclosure.

第3A圖至第3M圖繪示根據本揭露之另一實施例之記憶體元件之形成方法的剖面圖。 3A to 3M are cross-sectional views of a method of forming a memory device according to another embodiment of the disclosure.

第4A圖至第4L圖繪示根據本揭露之又一實施例之記憶體元件之形成方法的剖面圖。 4A to 4L are cross-sectional views of a method of forming a memory device according to another embodiment of the disclosure.

第5圖繪示根據本揭露之一實施例之記憶體元件的等效電路圖。 FIG. 5 is an equivalent circuit diagram of a memory device according to an embodiment of the disclosure.

第6A圖繪示根據本揭露之一實施例之藉由福勒-諾德漢注入(Fowler-Nordheim injection)進行編程操作之記憶體元件的等效電路圖。 FIG. 6A is an equivalent circuit diagram of a memory device programmed by Fowler-Nordheim injection according to an embodiment of the present disclosure.

第6B圖繪示根據本揭露之一實施例之藉由通道熱電子注入(channel-hot-electron injection)進行編程操作之記憶體元件的等效電路圖。 FIG. 6B is an equivalent circuit diagram of a memory device that performs a programming operation by channel-hot-electron injection according to an embodiment of the present disclosure.

第7A圖繪示根據本揭露之一實施例之藉由福勒-諾德漢注入進行抹除操作之記憶體元件的等效電路圖。 FIG. 7A is an equivalent circuit diagram of a memory device that is erased by Fowler-Nordham injection according to an embodiment of the present disclosure.

第7B圖繪示根據本揭露之一實施例之藉由帶對帶穿隧誘發熱電洞(band-to-band tunneling induced hot hole injection)進行抹除操作之記憶體元件的等效電路圖。 FIG. 7B shows an equivalent circuit diagram of a memory device using a band-to-band tunneling induced hot hole injection operation according to an embodiment of the present disclosure.

第8圖繪示根據本揭露之一實施例之讀取操作之記憶體元件的等效電路圖。 FIG. 8 is an equivalent circuit diagram of a memory device in a read operation according to an embodiment of the disclosure.

第9A圖至第9R圖繪示根據本揭露之又一實施例之記憶體元件之形成方法的剖面圖。 9A to 9R are cross-sectional views illustrating a method of forming a memory device according to another embodiment of the disclosure.

第10A圖至第10K圖繪示根據本揭露之又一實施例之記憶體元件之形成方法的剖面圖。 10A to 10K are cross-sectional views of a method of forming a memory device according to another embodiment of the disclosure.

第11A圖至第11M圖繪示根據本揭露之又一實施例之記憶體元件之形成方法的剖面圖。 11A to 11M are cross-sectional views illustrating a method of forming a memory device according to another embodiment of the disclosure.

第12A圖至第12K圖繪示根據本揭露之又一實施例之記憶體元件之形成方法的剖面圖。 12A to 12K are cross-sectional views of a method of forming a memory device according to another embodiment of the disclosure.

第13圖繪示根據本揭露之一實施例之藉由福勒-諾德漢注入(Fowler-Nordheim injection)進行編程操作之記憶體元件的等效電路圖。 FIG. 13 is an equivalent circuit diagram of a memory device programmed by Fowler-Nordheim injection according to an embodiment of the present disclosure.

第14A圖繪示根據本揭露之一實施例之藉由福勒-諾德漢注入進行抹除操作之記憶體元件的等效電路圖。 FIG. 14A is an equivalent circuit diagram of a memory device that is erased by Fowler-Nordham injection according to an embodiment of the present disclosure.

第14B圖繪示根據本揭露之一實施例之藉由帶對帶穿隧誘發 熱電洞進行抹除操作之記憶體元件的等效電路圖。 FIG. 14B illustrates the induction by band-to-band tunneling according to an embodiment of the present disclosure The equivalent circuit diagram of the memory device in which the thermal hole performs the erase operation.

第15圖繪示根據本揭露之一實施例之讀取操作之記憶體元件的等效電路圖。 FIG. 15 is an equivalent circuit diagram of a memory device in a read operation according to an embodiment of the disclosure.

在下文的詳細描述中,為了便於解釋,係提供各種的特定細節以整體理解本揭露之實施例。然而,應理解的是,一或多個實施例能夠在不採用這些特定細節的情況下實現。在其他情況下,為了簡化圖式,已知的結構及元件係以示意圖表示。 In the following detailed description, for the convenience of explanation, various specific details are provided to understand the embodiments of the present disclosure as a whole. However, it should be understood that one or more embodiments can be implemented without employing these specific details. In other cases, in order to simplify the drawings, the known structures and elements are shown in schematic diagrams.

第1A圖繪示根據本揭露之一實施例之記憶體元件100的上視圖;第1B圖繪示沿第1圖之A-A’連線之根據本揭露之一實施例之記憶體元件100的剖面圖。 FIG. 1A shows a top view of the memory device 100 according to an embodiment of the present disclosure; FIG. 1B shows the memory device 100 according to an embodiment of the present disclosure along the line A-A' of FIG. 1 Section view.

請參照第1A圖,多個位元線BL及共同源極線CSL位於疊層結構S1的上方,其中多個位元線BL及共同源極線CSL沿著平行於基板110之上表面110a(繪示於第1B圖)的第一方向(例如是Y軸方向)延伸,且多個位元線BL沿著垂直於第一方向的一第二方向(例如是X軸方向)排列且分開。位元線BL分別電性連接於對應的通道結構112。共同源極線CSL電性連接於對應的導電連接結構176。 Please refer to FIG. 1A, a plurality of bit lines BL and a common source line CSL are located above the laminated structure S1, wherein the plurality of bit lines BL and the common source line CSL are parallel to the upper surface 110a of the substrate 110 ( (Shown in FIG. 1B) extending in a first direction (for example, the Y-axis direction), and a plurality of bit lines BL are arranged and separated along a second direction (for example, the X-axis direction) perpendicular to the first direction. The bit lines BL are electrically connected to the corresponding channel structures 112 respectively. The common source line CSL is electrically connected to the corresponding conductive connection structure 176.

請同時參照第1A及1B圖,記憶體元件100包括一基板110、一疊層結構S1、一蓋層128、多個通道結構112、一熱氧化層132、一記憶層162、一介電材料166、多個隔離結構174以及多個導電連接結構176。疊層結構S1形成於基板110之上表面110a上。疊層結構S1包括依序(例如是沿著Z軸)堆疊於基板 110上的一第一絕緣層122、一第一導電層130、一第二絕緣層124、一第二導電層172以及一第三絕緣層126。蓋層128可覆蓋疊層結構S1,亦即是位於第三絕緣層126上。在一些實施例中,基板110可為矽基板或其他合適的基板。第一絕緣層122、第二絕緣層124、第三絕緣層126及蓋層128可由氧化物所形成,例如是二氧化矽(SiO2)。第一導電層130與第二導電層172可由導電材料所形成,此導電材料例如是鎢(W)、鋁(Al)、氮化鈦(TiN)、氮化鉭(TaN)、摻雜或未摻雜的多晶矽(poly-silicon)或其他合適的材料。在本實施例中,第一導電層130與第二導電層172是由不同的材料所形成,例如分別由n型摻雜的多晶矽及鎢所形成,然本發明並不以此為限,第一導電層130與第二導電層172可由相同的材料所形成。在一些實施例中,第一導電層130之厚度可為300Å~1000Å,可用於調整臨界電壓(Vt)。 Please refer to FIGS. 1A and 1B at the same time. The memory device 100 includes a substrate 110, a laminated structure S1, a cap layer 128, a plurality of channel structures 112, a thermal oxide layer 132, a memory layer 162, and a dielectric material. 166, a plurality of isolation structures 174, and a plurality of conductive connection structures 176. The stacked structure S1 is formed on the upper surface 110 a of the substrate 110. The laminated structure S1 includes a first insulating layer 122, a first conductive layer 130, a second insulating layer 124, a second conductive layer 172, and a The third insulating layer 126. The cap layer 128 may cover the laminated structure S1, that is, it is located on the third insulating layer 126. In some embodiments, the substrate 110 may be a silicon substrate or other suitable substrates. The first insulating layer 122, the second insulating layer 124, the third insulating layer 126, and the capping layer 128 may be formed of oxide, such as silicon dioxide (SiO 2 ). The first conductive layer 130 and the second conductive layer 172 may be formed of a conductive material, such as tungsten (W), aluminum (Al), titanium nitride (TiN), tantalum nitride (TaN), doped or not Doped poly-silicon or other suitable materials. In this embodiment, the first conductive layer 130 and the second conductive layer 172 are formed of different materials, such as n-type doped polysilicon and tungsten, respectively. However, the present invention is not limited thereto. The first conductive layer 130 and the second conductive layer 172 may be formed of the same material. In some embodiments, the thickness of the first conductive layer 130 can be 300 Å to 1000 Å, which can be used to adjust the threshold voltage (Vt).

通道結構112穿過(例如是沿著Z軸)疊層結構S1並電性連接於基板110,其中每個通道結構112包括一下部部分112a及一上部部分112b。上部部分112b位於下部部分112a的上方,且上部部分112b直接連結於下部部分112a。換言之,上部部分112b對應於第二導電層172,下部部分112a對應於第一導電層130。通道結構112之頂部區域可具有一摻雜區112c,例如是n型半導體的摻雜物,使得通道結構112可電性連接於位元線BL。在一些實施例中,通道結構112可為一磊晶成長層,例如是經由磊晶成長(Epitaxial Growth)製程所形成的單晶或多晶矽層或上述之任一組合,可以是未摻雜或輕微P型摻雜的磊晶成長層。通道結構112(亦即是磊晶成長層)的一頂面112t與基板110之上表面 110a之間具有一第一高度H1,第二導電層172的一頂面172t與基板110之上表面110a之間具有一第二高度H2,第一高度H1可大於第二高度H2。相較於通道結構僅部分包括磊晶成長層的比較例而言,由於本發明包括上部部分112b以及下部部分112a的通道結構112是由磊晶成長製程所形成,通道結構112可具有較低的電阻,具有較佳之導電性,記憶體元件100可具有較快的操作速度(例如是讀取、寫入的操作速度)。 The channel structure 112 passes through (for example, along the Z axis) the laminated structure S1 and is electrically connected to the substrate 110, wherein each channel structure 112 includes a lower portion 112a and an upper portion 112b. The upper portion 112b is located above the lower portion 112a, and the upper portion 112b is directly connected to the lower portion 112a. In other words, the upper portion 112b corresponds to the second conductive layer 172, and the lower portion 112a corresponds to the first conductive layer 130. The top region of the channel structure 112 may have a doped region 112c, such as an n-type semiconductor dopant, so that the channel structure 112 can be electrically connected to the bit line BL. In some embodiments, the channel structure 112 may be an epitaxial growth layer, such as a monocrystalline or polycrystalline silicon layer formed by an epitaxial growth process, or any combination of the above, and may be undoped or slightly P-type doped epitaxial growth layer. There is a first height H 1 between a top surface 112t of the channel structure 112 (that is, an epitaxial growth layer) and the upper surface 110a of the substrate 110, a top surface 172t of the second conductive layer 172 and the upper surface of the substrate 110 There is a second height H 2 between 110 a, and the first height H 1 may be greater than the second height H 2 . Compared with the comparative example in which the channel structure only partially includes the epitaxial growth layer, since the channel structure 112 including the upper portion 112b and the lower portion 112a of the present invention is formed by an epitaxial growth process, the channel structure 112 may have a lower The resistor has better conductivity, and the memory device 100 can have a faster operating speed (for example, the operating speed of reading and writing).

熱氧化層132位於第一導電層130與通道結構112之間。例如,熱氧化層132環繞至少一部份的通道結構112的下部部分112a。在一些實施例中,熱氧化層132係直接對第一導電層130進行一氧化製程所形成的一氧化物層,例如是二氧化矽(SiO2)。由於熱氧化層132是經由直接氧化導電層(例如是第一導電層130)所形成的氧化物層,而非是藉由沉積製程(例如是化學氣相沉積(CVD)、物理氣相沉積(PVD)或其他沉積製程)所形成的氧化物層,熱氧化層132之氧化物的純度是大於沉積法所形成的絕緣層(例如是第一絕緣層122、第二絕緣層124或第三絕緣層126)之氧化物的純度。相較於熱氧化層是經由沉積製程所形成之氧化物層的比較例而言,由於本發明的熱氧化層是直接對導電層進行氧化製程所形成的氧化物層,熱氧化層具有較高的氧化物純度及品質,可較佳地控制臨界電壓(Vt),故可在低功率的應用情形中有較低的臨界電壓,使記憶體元件100可具有較佳的可靠度。 The thermal oxide layer 132 is located between the first conductive layer 130 and the channel structure 112. For example, the thermal oxide layer 132 surrounds at least a portion of the lower portion 112 a of the channel structure 112. In some embodiments, the thermal oxide layer 132 is an oxide layer formed by directly performing an oxidation process on the first conductive layer 130, such as silicon dioxide (SiO 2 ). Since the thermal oxide layer 132 is an oxide layer formed by directly oxidizing the conductive layer (for example, the first conductive layer 130), rather than by a deposition process (for example, chemical vapor deposition (CVD), physical vapor deposition ( For the oxide layer formed by PVD or other deposition processes), the purity of the oxide of the thermal oxide layer 132 is greater than that of the insulating layer formed by the deposition method (for example, the first insulating layer 122, the second insulating layer 124 or the third insulating layer). The purity of the oxide of layer 126). Compared with the comparative example in which the thermal oxide layer is an oxide layer formed by a deposition process, since the thermal oxide layer of the present invention is an oxide layer formed by directly oxidizing the conductive layer, the thermal oxide layer has a higher The purity and quality of the oxide can better control the threshold voltage (Vt), so it can have a lower threshold voltage in low-power applications, so that the memory device 100 can have better reliability.

記憶層162位於第二導電層172與通道結構112的上部部分112b之間。舉例而言,記憶層162沿著Z軸方向延伸並環繞通道結構112的上部部分112b。記憶層162可以由包含氧 化矽(silicon oxide)層、氮化矽(silicon nitride)層和氧化矽層的複合層(即,ONO層)所構成。例如,記憶層162可包括穿隧層、捕捉層及阻擋層。穿隧層可包括二氧化矽(SiO2)、二氧化矽(SiO2)/氮氧化矽(SiON)所形成的雙層結構或其他合適的材料。捕捉層可包括氮化矽、多晶矽或其他合適的材料。阻擋層可包括二氧化矽(SiO2)或其他合適的材料。 The memory layer 162 is located between the second conductive layer 172 and the upper portion 112 b of the channel structure 112. For example, the memory layer 162 extends along the Z-axis direction and surrounds the upper portion 112b of the channel structure 112. The memory layer 162 may be composed of a composite layer (ie, an ONO layer) including a silicon oxide layer, a silicon nitride layer, and a silicon oxide layer. For example, the memory layer 162 may include a tunneling layer, a trapping layer, and a blocking layer. The tunnel layer may include silicon dioxide (SiO 2 ), a double-layer structure formed of silicon dioxide (SiO 2 )/silicon oxynitride (SiON), or other suitable materials. The capture layer may include silicon nitride, polysilicon, or other suitable materials. The barrier layer may include silicon dioxide (SiO 2 ) or other suitable materials.

介電材料166位於記憶層162與第二導電層172之間。部分的介電材料166可沿著基板110之上表面110a上的法線方向延伸,部分的介電材料166可沿著平行於基板110之上表面110a的方向延伸,介電材料166可包覆第二導電層172。在一些實施例中,介電材料166可包括一高介電常數材料(high k material),例如是氧化鋁(Al2O3)或其他合適的材料。介電材料166亦可作為阻擋層,以防止電荷側向散逸(lateral diffusion)。相較於沒有使用高介電常數材料作為介電材料的比較例而言,由於本案的介電材料166可使用高介電常數材料,不需使用太高的電壓即可進行記憶體元件的操作(例如是抹除與寫入),故可使記憶體元件的效能受到改善。 The dielectric material 166 is located between the memory layer 162 and the second conductive layer 172. Part of the dielectric material 166 may extend along the normal direction on the upper surface 110a of the substrate 110, part of the dielectric material 166 may extend in a direction parallel to the upper surface 110a of the substrate 110, and the dielectric material 166 may be covered The second conductive layer 172. In some embodiments, the dielectric material 166 may include a high k material, such as aluminum oxide (Al 2 O 3 ) or other suitable materials. The dielectric material 166 can also serve as a barrier layer to prevent lateral diffusion of charges. Compared with the comparative example that does not use high-permittivity material as the dielectric material, since the dielectric material 166 in this case can use high-permittivity material, the operation of the memory device can be performed without using too high voltage. (Such as erasing and writing), so the performance of the memory device can be improved.

隔離結構174可穿過疊層結構S1,而將疊層結構S1分隔為多個次堆疊SS1、SS2。本實施例僅示例性繪示2個次堆疊,然本發明並不以此為限,次堆疊的數量可大於2個。隔離結構174可由絕緣材料所形成,例如是氧化物或其他合適的材料。相鄰之次堆疊SS1、SS2中的第二導電層172之間可藉由隔離結構174物理性及電性隔離,因此不同次堆疊中的第二導電層172可獨立操作,例如是施加不同的電壓。 The isolation structure 174 may pass through the stacked structure S1 and divide the stacked structure S1 into a plurality of sub-stacks SS1 and SS2. This embodiment only illustrates two sub-stacks, but the present invention is not limited to this, and the number of sub-stacks may be greater than two. The isolation structure 174 may be formed of an insulating material, such as oxide or other suitable materials. The second conductive layers 172 in the adjacent sub-stacks SS1 and SS2 can be physically and electrically isolated by the isolation structure 174. Therefore, the second conductive layers 172 in different sub-stacks can be operated independently, for example, by applying different Voltage.

導電連接結構176可穿過疊層結構S1,並例如是透過摻雜區118電性連接於基板110。摻雜區118例如是藉由n型半導體的摻雜物所摻雜。導電連接結構176可電性連接於共同源極線CSL。 The conductive connection structure 176 may pass through the stacked structure S1, and is electrically connected to the substrate 110 through the doped region 118, for example. The doped region 118 is doped with n-type semiconductor dopants, for example. The conductive connection structure 176 may be electrically connected to the common source line CSL.

在一些實施例中,第一導電層130與熱氧化層132之間的每一重疊位置(intersection)可形成一電晶體T1,第二導電層172、介電材料166與記憶層162之間的每一重疊位置可形成一記憶胞M1。電晶體T1與記憶胞M1藉由通道結構112互相串連,並可共同形成一單元記憶胞(unit cell)UN1。第一導電層130可作為接地選擇線(ground select line),第二導電層172可作為字元線。 In some embodiments, each overlap position (intersection) between the first conductive layer 130 and the thermal oxide layer 132 can form a transistor T 1 , between the second conductive layer 172, the dielectric material 166 and the memory layer 162 Each overlapping position of, can form a memory cell M 1 . The transistor T 1 and the memory cell M 1 are connected in series through the channel structure 112 and can jointly form a unit cell UN 1 . The first conductive layer 130 can be used as a ground select line, and the second conductive layer 172 can be used as a word line.

第1C圖繪示根據本揭露之另一實施例之記憶體元件200的剖面圖,記憶體元件200與記憶體100具有類似的上視圖(例如是第1A圖),故第1C圖繪示類似於沿第1圖之A-A’連線之剖面圖。記憶體元件200具有類似於記憶體100的結構,其不同之處在於記憶層262的形狀有所不同。 FIG. 1C is a cross-sectional view of a memory device 200 according to another embodiment of the present disclosure. The memory device 200 and the memory 100 have a similar top view (for example, FIG. 1A), so FIG. 1C is similar In the cross-sectional view along the line A-A' in Figure 1. The memory device 200 has a structure similar to that of the memory 100, except that the shape of the memory layer 262 is different.

請參照第1C圖,記憶體元件200包括一基板210、一疊層結構S2、一蓋層228、多個通道結構212、一熱氧化層232、一記憶層262、一介電材料266、多個隔離結構274以及多個導電連接結構276。疊層結構S2形成於基板210之上表面210a上。疊層結構S2包括依序(例如是沿著Z軸)堆疊於基板210上的一第一絕緣層222、一第一導電層230、一第二絕緣層224、一第二導電層272以及一第三絕緣層226。蓋層228可覆蓋疊層結構S2,亦即是位於第三絕緣層226上。在本實施例中,第一導電層230 與第二導電層272是由不同的材料所形成,例如分別由n型摻雜的多晶矽及鎢(W)所形成,然本發明並不以此為限,第一導電層230與第二導電層272可由相同的材料所形成。在一些實施例中,第一導電層230之厚度可為300Å~1000A,可用於調整臨界電壓(Vt)。 1C, the memory device 200 includes a substrate 210, a stacked structure S2, a cap layer 228, a plurality of channel structures 212, a thermal oxide layer 232, a memory layer 262, a dielectric material 266, and more One isolation structure 274 and a plurality of conductive connection structures 276. The stacked structure S2 is formed on the upper surface 210 a of the substrate 210. The stacked structure S2 includes a first insulating layer 222, a first conductive layer 230, a second insulating layer 224, a second conductive layer 272, and a The third insulating layer 226. The cap layer 228 may cover the laminated structure S2, that is, it is located on the third insulating layer 226. In this embodiment, the first conductive layer 230 The second conductive layer 272 and the second conductive layer 272 are formed of different materials, such as n-type doped polysilicon and tungsten (W), respectively. However, the present invention is not limited to this. The first conductive layer 230 and the second conductive layer The layer 272 may be formed of the same material. In some embodiments, the thickness of the first conductive layer 230 can be 300 Å to 1000 A, which can be used to adjust the threshold voltage (Vt).

通道結構212(例如是沿著Z軸)穿過疊層結構S2並電性連接於基板210,其中每個通道結構212包括一上部部分212b及一下部部分212a。上部部分212b對應於第二導電層272,下部部分212a對應於第一導電層230。通道結構212之頂部區域可具有一摻雜區212c,例如是n型半導體的摻雜物,使得通道結構212可電性連接於位元線BL。在一些實施例中,通道結構212可為一磊晶成長層,例如是經由磊晶成長(Epitaxial Growth)製程所形成的單晶或多晶矽層或上述之任一組合,可以是未摻雜或輕微P型摻雜的磊晶成長層。相較於通道結構僅部分包括磊晶成長層的比較例而言,由於本發明包括上部部分212b以及下部部分212a的通道結構212是由磊晶成長製程所形成,通道結構212可具有較低的電阻,具有較佳之導電性,記憶體元件200可具有較快的操作速度(例如是讀取、寫入的操作速度)。 The channel structure 212 (for example, along the Z axis) passes through the laminated structure S2 and is electrically connected to the substrate 210, wherein each channel structure 212 includes an upper portion 212b and a lower portion 212a. The upper portion 212b corresponds to the second conductive layer 272, and the lower portion 212a corresponds to the first conductive layer 230. The top region of the channel structure 212 may have a doped region 212c, such as an n-type semiconductor dopant, so that the channel structure 212 can be electrically connected to the bit line BL. In some embodiments, the channel structure 212 may be an epitaxial growth layer, such as a monocrystalline or polycrystalline silicon layer formed by an epitaxial growth process or any combination of the above, and may be undoped or slightly P-type doped epitaxial growth layer. Compared with the comparative example in which the channel structure only partially includes the epitaxial growth layer, since the channel structure 212 including the upper portion 212b and the lower portion 212a of the present invention is formed by an epitaxial growth process, the channel structure 212 may have a lower The resistor has better conductivity, and the memory device 200 can have a faster operating speed (for example, the operating speed of reading and writing).

熱氧化層232位於第一導電層230與通道結構212之間。例如,熱氧化層232環繞至少一部份的通道結構212的下部部分212a。在一些實施例中,熱氧化層232係直接對第一導電層230進行一氧化製程所形成的一氧化物,例如是二氧化矽(SiO2)。由於熱氧化層232是經由直接氧化導電層(例如是第一導電層130)所形成的氧化物層,而非是藉由沉積製程(例如是化學氣相沉積 (CVD)、物理氣相沉積(PVD)或其他沉積製程)所形成的氧化物層,熱氧化層232之氧化物的純度是大於沉積法所形成的絕緣層(例如是第一絕緣層222、第二絕緣層224或第三絕緣層226)之氧化物的純度。相較於熱氧化層是經由沉積製程所形成之氧化物層的比較例而言,由於本發明的熱氧化層是直接對導電層進行氧化製程所形成的氧化物層,熱氧化層具有較高的氧化物純度及品質,可較佳地控制臨界電壓(Vt),故可在低功率的應用情形中有較低的臨界電壓,使記憶體元件200可具有較佳的可靠度。 The thermal oxide layer 232 is located between the first conductive layer 230 and the channel structure 212. For example, the thermal oxide layer 232 surrounds at least a portion of the lower portion 212a of the channel structure 212. In some embodiments, the thermal oxide layer 232 is an oxide formed by directly performing an oxidation process on the first conductive layer 230, such as silicon dioxide (SiO 2 ). Since the thermal oxide layer 232 is an oxide layer formed by directly oxidizing the conductive layer (for example, the first conductive layer 130), rather than by a deposition process (for example, chemical vapor deposition (CVD), physical vapor deposition ( For the oxide layer formed by PVD or other deposition processes), the purity of the oxide of the thermal oxide layer 232 is greater than that of the insulating layer formed by the deposition method (for example, the first insulating layer 222, the second insulating layer 224 or the third insulating layer) The purity of the oxide of layer 226). Compared with the comparative example in which the thermal oxide layer is an oxide layer formed by a deposition process, since the thermal oxide layer of the present invention is an oxide layer formed by directly oxidizing the conductive layer, the thermal oxide layer has a higher The purity and quality of the oxide can better control the threshold voltage (Vt), so it can have a lower threshold voltage in low-power applications, so that the memory device 200 can have better reliability.

記憶層262位於第二導電層272與通道結構212的上部部分212b之間。舉例而言,部分的記憶層262沿著基板210之上表面210a的法線方向(例如是Z軸方向)延伸,部分的記憶層262沿著平行於基板210之上表面210a的方向延伸。記憶層262可環繞通道結構212的上部部分212b並覆蓋第二導電層272。記憶層262可以由包含氧化矽(silicon oxide)層、氮化矽(silicon nitride)層和氧化矽層的複合層(即,ONO層)所構成。例如,記憶層262可包括穿隧層、捕捉層及阻擋層。穿隧層可包括二氧化矽(SiO2)、二氧化矽(SiO2)/氮氧化矽(SiON)所形成的雙層結構或其他合適的材料。捕捉層可包括氮化矽、多晶矽或其他合適的材料。阻擋層可包括二氧化矽(SiO2)或其他合適的材料。 The memory layer 262 is located between the second conductive layer 272 and the upper portion 212 b of the channel structure 212. For example, part of the memory layer 262 extends along the normal direction (for example, the Z-axis direction) of the upper surface 210 a of the substrate 210, and part of the memory layer 262 extends in a direction parallel to the upper surface 210 a of the substrate 210. The memory layer 262 may surround the upper portion 212 b of the channel structure 212 and cover the second conductive layer 272. The memory layer 262 may be composed of a composite layer (ie, an ONO layer) including a silicon oxide layer, a silicon nitride layer, and a silicon oxide layer. For example, the memory layer 262 may include a tunneling layer, a trapping layer, and a blocking layer. The tunnel layer may include silicon dioxide (SiO 2 ), a double-layer structure formed of silicon dioxide (SiO 2 )/silicon oxynitride (SiON), or other suitable materials. The capture layer may include silicon nitride, polysilicon, or other suitable materials. The barrier layer may include silicon dioxide (SiO 2 ) or other suitable materials.

介電材料266位於記憶層262與第二導電層272之間。部分的介電材料266可沿著基板210之上表面210a的法線方向延伸,部分的介電材料266可沿著平行於基板210之上表面210a的方向延伸,介電材料266可包覆第二導電層272。在一些實施例中,介電材料266可包括一高介電常數材料(high k material),例如是氧化鋁(Al2O3)或其他合適的材料。介電材料266亦可作為阻擋層,以防止電荷側向散逸(lateral diffusion)。相較於沒有使用高介電常數材料作為介電材料的比較例而言,由於本案的介電材料266可使用高介電常數材料,不需使用太高的電壓即可進行記憶體元件的操作(例如是抹除與寫入),故可使記憶體元件的效能受到改善。 The dielectric material 266 is located between the memory layer 262 and the second conductive layer 272. Part of the dielectric material 266 may extend along the normal direction of the upper surface 210a of the substrate 210, part of the dielectric material 266 may extend in a direction parallel to the upper surface 210a of the substrate 210, and the dielectric material 266 may cover the first surface 210a. Two conductive layer 272. In some embodiments, the dielectric material 266 may include a high k material, such as aluminum oxide (Al 2 O 3 ) or other suitable materials. The dielectric material 266 can also serve as a barrier layer to prevent lateral diffusion of charges. Compared with the comparative example that does not use high-permittivity material as the dielectric material, since the dielectric material 266 in this case can use high-permittivity material, the operation of the memory device can be performed without using too high voltage. (Such as erasing and writing), so the performance of the memory device can be improved.

隔離結構274可穿過疊層結構S2,而將疊層結構S2分隔為多個次堆疊。隔離結構274可由絕緣材料所形成,例如是氧化物或其他合適的材料。相鄰之次堆疊中的第二導電層272之間可藉由隔離結構274物理性及電性隔離,因此不同次堆疊中的第二導電層272可獨立操作,例如是施加不同的電壓。 The isolation structure 274 may pass through the stacked structure S2, and divide the stacked structure S2 into a plurality of sub-stacks. The isolation structure 274 may be formed of an insulating material, such as oxide or other suitable materials. The second conductive layers 272 in adjacent sub-stacks can be physically and electrically separated by the isolation structure 274. Therefore, the second conductive layers 272 in different sub-stacks can operate independently, for example, by applying different voltages.

導電連接結構276可穿過疊層結構S2,並例如是透過摻雜區218電性連接於基板210。摻雜區218例如是藉由n型半導體的摻雜物所摻雜。導電連接結構276可電性連接於共同源極線。 The conductive connection structure 276 may pass through the stacked structure S2, and is electrically connected to the substrate 210 through the doped region 218, for example. The doped region 218 is, for example, doped with n-type semiconductor dopants. The conductive connection structure 276 may be electrically connected to the common source line.

在一些實施例中,第一導電層230與熱氧化層232之間的每一重疊位置(intersection)可形成一電晶體T2,第二導電層272、介電材料266與記憶層262之間的每一重疊位置可形成一記憶胞M2。電晶體T2與記憶胞M2藉由通道結構212互相串連,並可共同形成一單元記憶胞(unit cell)UN2。第一導電層230可作為接地選擇線,第二導電層272可作為字元線。 In some embodiments, each overlap position (intersection) between the first conductive layer 230 and the thermal oxide layer 232 can form a transistor T 2 , between the second conductive layer 272, the dielectric material 266 and the memory layer 262 Each overlapping position of, can form a memory cell M 2 . The transistor T 2 and the memory cell M 2 are connected in series through the channel structure 212 and can jointly form a unit cell UN 2 . The first conductive layer 230 may serve as a ground selection line, and the second conductive layer 272 may serve as a word line.

相較於記憶元件100而言,由於記憶元件200的記憶層262是部分沿著基板210之上表面210a的法線方向延伸,另一部分是沿著平行於基板210之上表面210a的方向延伸,具有類 似U型的外型,可具有較佳之防止電荷側向擴散的能力,較不易影響臨界電壓。 Compared with the memory device 100, the memory layer 262 of the memory device 200 partially extends along the normal direction of the upper surface 210a of the substrate 210, and the other portion extends along the direction parallel to the upper surface 210a of the substrate 210. Has a class The U-shaped appearance has better ability to prevent the lateral spread of charges and is less likely to affect the threshold voltage.

第1D圖繪示根據本揭露之又一實施例之記憶體元件300的剖面圖,記憶體元件300與記憶體100具有類似的上視圖(例如是第1A圖),故第1D圖繪示類似於沿第1A圖之A-A’連線之剖面圖。記憶體元件300具有類似於記憶體100的結構,其不同之處在於第一導電層330的材料有所不同,以及介電材料366的分佈位置有所不同。 Figure 1D shows a cross-sectional view of a memory device 300 according to another embodiment of the present disclosure. The memory device 300 and the memory 100 have a similar top view (for example, Figure 1A), so Figure 1D is similar In the cross-sectional view along the line A-A' of Figure 1A. The memory device 300 has a structure similar to that of the memory 100, except that the material of the first conductive layer 330 is different, and the distribution position of the dielectric material 366 is different.

請參照第1D圖,記憶體元件300包括一基板310、一疊層結構S3、一蓋層328、多個通道結構312、一熱氧化層332、一記憶層362、一介電材料366、多個隔離結構374以及多個導電連接結構376。疊層結構S3形成於基板210之上表面210a上。疊層結構S3包括依序(例如是沿著Z軸)堆疊於基板310上的一第一絕緣層322、一第一導電層330、一第二絕緣層324、一第二導電層372以及一第三絕緣層326。蓋層328可覆蓋疊層結構S3,亦即是位於第三絕緣層326上。在一些實施例中,第一導電層330與第二導電層372是由相同的導電材料所形成,此導電材料例如是鎢(W)、鋁(Al)、氮化鈦(TiN)、氮化鉭(TaN)、多晶矽(poly-silicon)或其他合適的材料。在本實施例中,第一導電層330與第二導電層372皆由鎢所形成。在一些實施例中,第一導電層330之厚度可為300Å~1000Å,可用於調整臨界電壓(Vt)。 Referring to FIG. 1D, the memory device 300 includes a substrate 310, a stacked structure S3, a cap layer 328, a plurality of channel structures 312, a thermal oxide layer 332, a memory layer 362, a dielectric material 366, and more One isolation structure 374 and a plurality of conductive connection structures 376. The stacked structure S3 is formed on the upper surface 210 a of the substrate 210. The stacked structure S3 includes a first insulating layer 322, a first conductive layer 330, a second insulating layer 324, a second conductive layer 372, and a first insulating layer 322 stacked on the substrate 310 in sequence (for example, along the Z axis). The third insulating layer 326. The cap layer 328 can cover the laminated structure S3, that is, it is located on the third insulating layer 326. In some embodiments, the first conductive layer 330 and the second conductive layer 372 are formed of the same conductive material, such as tungsten (W), aluminum (Al), titanium nitride (TiN), and nitride. Tantalum (TaN), poly-silicon (poly-silicon) or other suitable materials. In this embodiment, both the first conductive layer 330 and the second conductive layer 372 are formed of tungsten. In some embodiments, the thickness of the first conductive layer 330 can be 300 Å to 1000 Å, which can be used to adjust the threshold voltage (Vt).

通道結構312穿過(例如是沿著Z軸)疊層結構S3並電性連接於基板310,其中每個通道結構312包括一上部部分312b及一下部部分312a。上部部分312b對應於第二導電層372, 下部部分312a對應於第一導電層330。通道結構312之頂部區域可具有一摻雜區312c,例如是n型半導體的摻雜物,使得通道結構312可電性連接於位元線BL。在一些實施例中,通道結構312可為一磊晶成長層,例如是經由磊晶成長(Epitaxial Growth)製程所形成的單晶或多晶矽層或上述之任一組合,可以是未摻雜或輕微P型摻雜的磊晶成長層。相較於通道結構僅部分包括磊晶成長層的比較例而言,由於本發明包括上部部分312b以及下部部分312a的通道結構312是由磊晶成長製程所形成,通道結構312可具有較低的電阻,具有較佳之導電性,記憶體元件300可具有較快的操作速度(例如是讀取、寫入的操作速度)。 The channel structure 312 passes through (for example, along the Z axis) the stacked structure S3 and is electrically connected to the substrate 310, wherein each channel structure 312 includes an upper portion 312b and a lower portion 312a. The upper portion 312b corresponds to the second conductive layer 372, The lower portion 312a corresponds to the first conductive layer 330. The top region of the channel structure 312 may have a doped region 312c, such as an n-type semiconductor dopant, so that the channel structure 312 can be electrically connected to the bit line BL. In some embodiments, the channel structure 312 may be an epitaxial growth layer, such as a monocrystalline or polycrystalline silicon layer formed by an epitaxial growth process or any combination of the above, and may be undoped or slightly P-type doped epitaxial growth layer. Compared with the comparative example in which the channel structure only partially includes the epitaxial growth layer, since the channel structure 312 including the upper portion 312b and the lower portion 312a of the present invention is formed by an epitaxial growth process, the channel structure 312 may have a lower The resistor has better conductivity, and the memory device 300 can have a faster operating speed (for example, the operating speed of reading and writing).

熱氧化層332位於第一導電層330與通道結構312之間。例如,熱氧化層332環繞至少一部份的通道結構312的下部部分312a。在一些實施例中,熱氧化層332係直接對通道結構312進行一氧化製程所形成的一氧化物,例如是二氧化矽(SiO2)。由於熱氧化層332是經由直接氧化導電層(例如是通道結構312)所形成的氧化物層,而非是藉由沉積製程(例如是化學氣相沉積(CVD)、物理氣相沉積(PVD)或其他沉積製程)所形成的氧化物層,熱氧化層332之氧化物的純度是大於沉積法所形成的絕緣層(例如是第一絕緣層322、第二絕緣層324或第三絕緣層326)之氧化物的純度。相較於熱氧化層是經由沉積製程所形成之氧化物層的比較例而言,由於本發明的熱氧化層是直接對導電層進行氧化製程所形成的氧化物層,熱氧化層具有較高的氧化物純度及品質,可較佳地控制臨界電壓(Vt),故可在低功率的應用情形中有較低的臨界電壓,使記憶體元件300可具有較佳的可靠度。 The thermal oxide layer 332 is located between the first conductive layer 330 and the channel structure 312. For example, the thermal oxide layer 332 surrounds at least a portion of the lower portion 312a of the channel structure 312. In some embodiments, the thermal oxide layer 332 is an oxide formed by directly performing an oxidation process on the channel structure 312, such as silicon dioxide (SiO 2 ). Since the thermal oxide layer 332 is an oxide layer formed by directly oxidizing the conductive layer (for example, the channel structure 312), rather than by a deposition process (for example, chemical vapor deposition (CVD), physical vapor deposition (PVD)) Or other deposition processes). The purity of the oxide of the thermal oxide layer 332 is greater than that of the insulating layer formed by the deposition method (for example, the first insulating layer 322, the second insulating layer 324, or the third insulating layer 326). ) The purity of the oxide. Compared with the comparative example in which the thermal oxide layer is an oxide layer formed by a deposition process, since the thermal oxide layer of the present invention is an oxide layer formed by directly oxidizing the conductive layer, the thermal oxide layer has a higher The purity and quality of the oxide can better control the threshold voltage (Vt), so it can have a lower threshold voltage in low-power applications, so that the memory device 300 can have better reliability.

記憶層362位於第二導電層372與通道結構312的上部部分312b之間。舉例而言,記憶層362沿著基板210之上表面210a的法線方向(例如是Z軸方向)延伸,可環繞通道結構312的上部部分312b。記憶層362可以由包含氧化矽(silicon oxide)層、氮化矽(silicon nitride)層和氧化矽層的複合層(即,ONO層)所構成。例如,記憶層362可包括穿隧層、捕捉層及阻擋層。穿隧層可包括二氧化矽(SiO2)、二氧化矽(SiO2)/氮氧化矽(SiON)所形成的雙層結構或其他合適的材料。捕捉層可包括氮化矽、多晶矽或其他合適的材料。阻擋層可包括二氧化矽(SiO2)或其他合適的材料。 The memory layer 362 is located between the second conductive layer 372 and the upper portion 312b of the channel structure 312. For example, the memory layer 362 extends along the normal direction (for example, the Z-axis direction) of the upper surface 210 a of the substrate 210 and may surround the upper portion 312 b of the channel structure 312. The memory layer 362 may be composed of a composite layer (ie, an ONO layer) including a silicon oxide layer, a silicon nitride layer, and a silicon oxide layer. For example, the memory layer 362 may include a tunnel layer, a capture layer, and a barrier layer. The tunnel layer may include silicon dioxide (SiO 2 ), a double-layer structure formed of silicon dioxide (SiO 2 )/silicon oxynitride (SiON), or other suitable materials. The capture layer may include silicon nitride, polysilicon, or other suitable materials. The barrier layer may include silicon dioxide (SiO 2 ) or other suitable materials.

介電材料366位於記憶層362與第二導電層372之間,且位於第一導電層330與熱氧化層332之間。部分的介電材料366可沿著基板310之上表面310a的法線方向延伸,部分的介電材料366可沿著平行於基板310之上表面310a的方向延伸,介電材料366可包覆第一導電層330以及第二導電層372。在一些實施例中,介電材料366可包括一高介電常數材料(high k material),例如是氧化鋁(Al2O3)或其他合適的材料。介電材料366亦可作為阻擋層,以防止電荷側向散逸(lateral diffusion)。相較於沒有使用高介電常數材料作為介電材料的比較例而言,由於本案的介電材料366可使用高介電常數材料,不需使用太高的電壓即可進行記憶體元件的操作(例如是抹除與寫入),故可使記憶體元件300的效能受到改善。 The dielectric material 366 is located between the memory layer 362 and the second conductive layer 372 and between the first conductive layer 330 and the thermal oxide layer 332. A part of the dielectric material 366 may extend along the normal direction of the upper surface 310a of the substrate 310, a part of the dielectric material 366 may extend in a direction parallel to the upper surface 310a of the substrate 310, and the dielectric material 366 may cover the first A conductive layer 330 and a second conductive layer 372. In some embodiments, the dielectric material 366 may include a high k material, such as aluminum oxide (Al 2 O 3 ) or other suitable materials. The dielectric material 366 can also serve as a barrier layer to prevent lateral diffusion of charges. Compared with the comparative example that does not use high-permittivity material as the dielectric material, since the dielectric material 366 in this case can use high-permittivity material, the operation of the memory device can be performed without using too high voltage. (For example, erasing and writing), so the performance of the memory device 300 can be improved.

隔離結構374可穿過疊層結構,而將疊層結構分隔為多個次堆疊。隔離結構374可由絕緣材料所形成,例如是氧化 物或其他合適的材料。相鄰之次堆疊中的第二導電層372之間可藉由隔離結構374物理性及電性隔離,因此不同次堆疊中的第二導電層372可獨立操作,例如是施加不同的電壓。 The isolation structure 374 may pass through the stacked structure to separate the stacked structure into a plurality of sub-stacks. The isolation structure 374 may be formed of an insulating material, such as oxide Objects or other suitable materials. The second conductive layers 372 in adjacent sub-stacks can be physically and electrically separated by the isolation structure 374. Therefore, the second conductive layers 372 in different sub-stacks can operate independently, for example, by applying different voltages.

導電連接結構376可穿過疊層結構,並例如是透過摻雜區318電性連接於基板310。摻雜區318例如是藉由n型半導體的摻雜物所摻雜。導電連接結構376可電性連接於共同源極線。 The conductive connection structure 376 can pass through the stacked structure, and is electrically connected to the substrate 310 through the doped region 318, for example. The doped region 318 is, for example, doped with n-type semiconductor dopants. The conductive connection structure 376 may be electrically connected to the common source line.

在一些實施例中,第一導電層330與熱氧化層332之間的重疊位置(intersection)可形成一電晶體T3,第二導電層372、介電材料366與記憶層362之間的重疊位置可形成一記憶胞M3。電晶體T3與記憶胞M3藉由通道結構312互相串連,並可共同形成一單元記憶胞(unit cell)UN3。第一導電層330可作為接地選擇線,第二導電層372可作為字元線。 In some embodiments, the overlap between the first conductive layer 330 and the thermal oxide layer 332 can form a transistor T 3 , and the overlap between the second conductive layer 372, the dielectric material 366 and the memory layer 362 The location can form a memory cell M 3 . The transistor T 3 and the memory cell M 3 are connected in series through the channel structure 312 and can jointly form a unit cell UN 3 . The first conductive layer 330 may serve as a ground selection line, and the second conductive layer 372 may serve as a word line.

本案的上述實施例提供一些具有2層導電層的記憶體元件100~300,然本發明並不限於此,導電層的數量亦可大於2。其中,下文中列舉一些具有3層導電層的記憶體元件400~700的實施例。記憶體元件400~700之中類似於記憶體元件100~300的元件係以類似的元件符號表示。相同的元件名稱可具有相同或類似的材料。 The above-mentioned embodiments of this case provide some memory devices 100-300 with two conductive layers, but the present invention is not limited to this, and the number of conductive layers can also be greater than two. Among them, some examples of memory devices 400-700 with three conductive layers are listed below. Among the memory devices 400-700, the components similar to the memory devices 100-300 are represented by similar component symbols. The same component names can have the same or similar materials.

第1E圖繪示根據本揭露之另一實施例之記憶體元件400的剖面圖,記憶體元件400與記憶體100具有類似的上視圖(例如是第1A圖),故第1E圖繪示類似於沿第1圖之A-A’連線之剖面圖。 FIG. 1E is a cross-sectional view of a memory device 400 according to another embodiment of the present disclosure. The memory device 400 and the memory 100 have a similar top view (for example, FIG. 1A), so FIG. 1E is similar. In the cross-sectional view along the line A-A' in Figure 1.

請參照第1E圖,記憶體元件400包括一基板410、 一第一絕緣層422、一第一導電層430、一第二絕緣層424、一第二導電層472、多個通道結構412、熱氧化層432及GO4、一記憶層462、一第三絕緣層426、一頂導電層CL4、一頂絕緣層OL4、多個隔離結構474以及多個導電連接結構476。 1E, the memory device 400 includes a substrate 410, a first insulating layer 422, a first conductive layer 430, a second insulating layer 424, a second conductive layer 472, a plurality of channel structures 412, thermal The oxide layer 432 and GO 4 , a memory layer 462, a third insulating layer 426, a top conductive layer CL4, a top insulating layer OL4, a plurality of isolation structures 474 and a plurality of conductive connection structures 476.

在本實施例中,第一導電層430與第二導電層472是由不同的材料所形成,例如分別由n型摻雜的多晶矽及鎢(W)所形成,然本發明並不以此為限,第一導電層430與第二導電層472可由相同的材料所形成。在一些實施例中,第一導電層430之厚度可為300Å~1000A,可用於調整臨界電壓(Vt)。 In this embodiment, the first conductive layer 430 and the second conductive layer 472 are formed of different materials, such as n-type doped polysilicon and tungsten (W), respectively. However, the present invention is not based on this. However, the first conductive layer 430 and the second conductive layer 472 can be formed of the same material. In some embodiments, the thickness of the first conductive layer 430 can be 300 Å to 1000 A, which can be used to adjust the threshold voltage (Vt).

通道結構412(例如是沿著Z軸)穿過疊層結構S4並電性連接於基板410。通道結構412之頂部區域可具有一摻雜區412c,例如是n型半導體的摻雜物,使得通道結構412可電性連接於位元線BL。在一些實施例中,通道結構412可為一磊晶成長層,例如是經由磊晶成長製程所形成的單晶或多晶矽層或上述之任一組合,可以是未摻雜或輕微P型摻雜的磊晶成長層。 The channel structure 412 (for example, along the Z axis) passes through the laminated structure S4 and is electrically connected to the substrate 410. The top region of the channel structure 412 may have a doped region 412c, such as an n-type semiconductor dopant, so that the channel structure 412 can be electrically connected to the bit line BL. In some embodiments, the channel structure 412 may be an epitaxial growth layer, such as a monocrystalline or polycrystalline silicon layer formed by an epitaxial growth process or any combination of the above, and may be undoped or slightly P-doped Epitaxial growth layer.

熱氧化層432及GO4分別位於第一導電層430與通道結構412之間,以及頂導電層CL4與通道結構412之間。例如,熱氧化層432環繞至少一部份的通道結構412的下部部分,熱氧化層GO4環繞至少一部份的通道結構412的上部部分。在一些實施例中,熱氧化層432及GO4係直接對通道結構412進行一氧化製程所形成的一氧化物,例如是二氧化矽(SiO2)。由於熱氧化層432及GO4是經由直接氧化通道結構412所形成的氧化物層,而非是藉由沉積製程(例如是化學氣相沉積(CVD)、物理氣相沉積(PVD)或其他沉積製程)所形成的氧化物層,熱氧化層432及GO4 之氧化物的純度是大於沉積法所形成的絕緣層(例如是第一絕緣層422、第二絕緣層424或第三絕緣層426)之氧化物的純度。相較於熱氧化層是經由沉積製程所形成之氧化物層的比較例而言,由於本發明的熱氧化層是直接對導電層進行氧化製程所形成的氧化物層,熱氧化層具有較高的氧化物純度及品質,可較佳地控制臨界電壓(Vt),故可在低功率的應用情形中有較低的臨界電壓,使記憶體元件400可具有較佳的可靠度。 The thermal oxide layer 432 and the GO 4 are respectively located between the first conductive layer 430 and the channel structure 412, and between the top conductive layer CL4 and the channel structure 412. For example, the thermal oxide layer 432 surrounds at least a part of the lower part of the channel structure 412, and the thermal oxide layer GO 4 surrounds at least a part of the upper part of the channel structure 412. In some embodiments, the thermal oxide layer 432 and GO 4 are an oxide formed by directly performing an oxidation process on the channel structure 412, such as silicon dioxide (SiO 2 ). Since the thermal oxide layer 432 and GO 4 is an oxide layer formed by directly oxidizing the channel structure 412, instead of a deposition process (such as chemical vapor deposition (CVD), physical vapor deposition (PVD)) or other deposition The purity of the oxide layer formed by the thermal oxide layer 432 and GO 4 is greater than that of the insulating layer formed by the deposition method (for example, the first insulating layer 422, the second insulating layer 424, or the third insulating layer 426). ) The purity of the oxide. Compared with the comparative example in which the thermal oxide layer is an oxide layer formed by a deposition process, since the thermal oxide layer of the present invention is an oxide layer formed by directly oxidizing the conductive layer, the thermal oxide layer has a higher The purity and quality of the oxide can better control the threshold voltage (Vt), so it can have a lower threshold voltage in low-power applications, so that the memory device 400 can have better reliability.

記憶層462位於第二導電層472與通道結構412之間。舉例而言,部分的記憶層462沿著基板410之上表面410a的法線方向(例如是Z軸方向)延伸,部分的記憶層462沿著平行於基板410之上表面410a的方向延伸。記憶層462可環繞通道結構412並覆蓋第二導電層472。記憶層462可以由包含氧化鋁(Al2O3,aluminium oxide)、氧化矽(silicon oxide)層、氮化矽(silicon nitride)層和氧化矽層的複合層(即,AONO層)所構成。例如,記憶層462可包括穿隧層、捕捉層及阻擋層。穿隧層可包括二氧化矽(SiO2)、二氧化矽(SiO2)/氮氧化矽(SiON)所形成的雙層結構或其他合適的材料。捕捉層可包括氮化矽、多晶矽或其他合適的材料。阻擋層可包括二氧化矽(SiO2)或其他合適的材料。 The memory layer 462 is located between the second conductive layer 472 and the channel structure 412. For example, part of the memory layer 462 extends along the normal direction of the upper surface 410a of the substrate 410 (for example, the Z-axis direction), and part of the memory layer 462 extends in a direction parallel to the upper surface 410a of the substrate 410. The memory layer 462 may surround the channel structure 412 and cover the second conductive layer 472. The memory layer 462 may be composed of a composite layer (ie, AONO layer) including aluminum oxide (Al 2 O 3 , silicon oxide), silicon oxide, silicon nitride, and silicon oxide. For example, the memory layer 462 may include a tunnel layer, a trap layer, and a barrier layer. The tunnel layer may include silicon dioxide (SiO 2 ), a double-layer structure formed of silicon dioxide (SiO 2 )/silicon oxynitride (SiON), or other suitable materials. The capture layer may include silicon nitride, polysilicon, or other suitable materials. The barrier layer may include silicon dioxide (SiO 2 ) or other suitable materials.

隔離結構474可穿過疊層結構S4,而將疊層結構S4分隔為多個次堆疊。隔離結構474可由絕緣材料所形成,例如是氧化物或其他合適的材料。相鄰之次堆疊中的第二導電層472之間可藉由隔離結構474物理性及電性隔離,因此不同次堆疊中的第二導電層472可獨立操作,例如是施加不同的電壓。 The isolation structure 474 may pass through the stacked structure S4, and divide the stacked structure S4 into a plurality of sub-stacks. The isolation structure 474 may be formed of an insulating material, such as oxide or other suitable materials. The second conductive layers 472 in adjacent sub-stacks can be physically and electrically separated by the isolation structure 474, so the second conductive layers 472 in different sub-stacks can operate independently, for example, by applying different voltages.

導電連接結構476可穿過疊層結構S4,並例如是透 過摻雜區418電性連接於基板410。摻雜區418例如是藉由n型半導體的摻雜物所摻雜。導電連接結構476可電性連接於共同源極線。 The conductive connection structure 476 can pass through the laminated structure S4, and is, for example, transparent The over-doped region 418 is electrically connected to the substrate 410. The doped region 418 is, for example, doped with n-type semiconductor dopants. The conductive connection structure 476 may be electrically connected to the common source line.

在一些實施例中第一導電層430與熱氧化層432之間的每一重疊位置(intersection)可形成一電晶體T4,頂導電層CL4與熱氧化層GO4之間的每一重疊位置可形成一電晶體TS4,第二導電層472與記憶層462之間的每一重疊位置可形成一記憶胞M4。電晶體T4、電晶體TS4與記憶胞M4藉由通道結構412互相串連,並可共同形成一單元記憶胞(unit cell)UN4,亦可稱作一記憶胞串列。第一導電層430可作為接地選擇線,第二導電層472可作為字元線,頂導電層CL4可作為串列選擇線。 In some embodiments, each overlap position (intersection) between the first conductive layer 430 and the thermal oxide layer 432 may form a transistor T 4 , and each overlap position between the top conductive layer CL4 and the thermal oxide layer GO 4 A transistor TS 4 can be formed, and each overlapping position between the second conductive layer 472 and the memory layer 462 can form a memory cell M 4 . The transistor T 4 , the transistor TS 4 and the memory cell M 4 are connected in series through the channel structure 412 and can jointly form a unit cell UN 4 , which can also be referred to as a memory cell series. The first conductive layer 430 can be used as a ground selection line, the second conductive layer 472 can be used as a word line, and the top conductive layer CL4 can be used as a series selection line.

第1F圖繪示根據本揭露之另一實施例之記憶體元件500的剖面圖,記憶體元件500與記憶體100具有類似的上視圖(例如是第1A圖),故第1F圖繪示類似於沿第1圖之A-A’連線之剖面圖。 Figure 1F is a cross-sectional view of a memory device 500 according to another embodiment of the present disclosure. The memory device 500 and the memory 100 have a similar top view (for example, Figure 1A), so Figure 1F is similar In the cross-sectional view along the line A-A' in Figure 1.

請參照第1F圖,記憶體元件500包括一基板510、一第一絕緣層522、一第一導電層530、一第二絕緣層524、一第二導電層572、多個通道結構512、熱氧化層532及GO5、一記憶層562、一第三絕緣層526、一頂導電層CL5、一頂絕緣層OL5、多個隔離結構574以及多個導電連接結構576。 1F, the memory device 500 includes a substrate 510, a first insulating layer 522, a first conductive layer 530, a second insulating layer 524, a second conductive layer 572, a plurality of channel structures 512, thermal Oxide layers 532 and GO 5 , a memory layer 562, a third insulating layer 526, a top conductive layer CL5, a top insulating layer OL5, a plurality of isolation structures 574, and a plurality of conductive connection structures 576.

在本實施例中,第一導電層530與第二導電層572是由不同的材料所形成,例如分別由n型摻雜的多晶矽及鎢(W)所形成,然本發明並不以此為限,第一導電層530與第二導電層572可由相同的材料所形成。在一些實施例中,第一導電層530 之厚度可為300Å~1000A,可用於調整臨界電壓(Vt)。 In this embodiment, the first conductive layer 530 and the second conductive layer 572 are formed of different materials, such as n-type doped polysilicon and tungsten (W), respectively. However, the present invention is not based on this. However, the first conductive layer 530 and the second conductive layer 572 can be formed of the same material. In some embodiments, the first conductive layer 530 The thickness can be 300Å~1000A, which can be used to adjust the threshold voltage (Vt).

通道結構512(例如是沿著Z軸)穿過疊層結構S5並電性連接於基板510。通道結構512之頂部區域可具有一摻雜區512c,例如是n型半導體的摻雜物,使得通道結構512可電性連接於位元線BL。在一些實施例中,通道結構512可為一磊晶成長層,例如是經由磊晶成長製程所形成的單晶或多晶矽層或上述之任一組合,可以是未摻雜或輕微P型摻雜的磊晶成長層。 The channel structure 512 (for example, along the Z axis) passes through the stacked structure S5 and is electrically connected to the substrate 510. The top region of the channel structure 512 may have a doped region 512c, such as an n-type semiconductor dopant, so that the channel structure 512 can be electrically connected to the bit line BL. In some embodiments, the channel structure 512 can be an epitaxial growth layer, such as a single crystal or polysilicon layer formed by an epitaxial growth process or any combination of the above, and can be undoped or slightly P-doped Epitaxial growth layer.

熱氧化層532及GO5分別位於第一導電層530與通道結構512之間,以及頂導電層CL5與通道結構512之間。例如,熱氧化層532環繞至少一部份的通道結構512的下部部分,熱氧化層GO5環繞至少一部份的通道結構512的上部部分。在一些實施例中,熱氧化層532及GO5係直接對通道結構512進行氧化製程所形成的一氧化物,例如是二氧化矽(SiO2)。由於熱氧化層532及GO5是經由直接氧化通道結構512所形成的氧化物層,而非是藉由沉積製程(例如是化學氣相沉積(CVD)、物理氣相沉積(PVD)或其他沉積製程)所形成的氧化物層,熱氧化層532及GO5之氧化物的純度是大於沉積法所形成的絕緣層(例如是第一絕緣層522、第二絕緣層524或第三絕緣層526)之氧化物的純度。相較於熱氧化層是經由沉積製程所形成之氧化物層的比較例而言,由於本發明的熱氧化層是直接對導電層進行氧化製程所形成的氧化物層,熱氧化層具有較高的氧化物純度及品質,可較佳地控制臨界電壓(Vt),故可在低功率的應用情形中有較低的臨界電壓,使記憶體元件500可具有較佳的可靠度。 The thermal oxide layer 532 and the GO 5 are located between the first conductive layer 530 and the channel structure 512, and between the top conductive layer CL5 and the channel structure 512, respectively. For example, the thermal oxide layer 532 surrounds at least a part of the lower part of the channel structure 512, and the thermal oxide layer GO 5 surrounds at least a part of the upper part of the channel structure 512. In some embodiments, the thermal oxide layer 532 and the GO 5 are oxides formed by directly oxidizing the channel structure 512, such as silicon dioxide (SiO 2 ). Since the thermal oxide layer 532 and the GO 5 are oxide layers formed by directly oxidizing the channel structure 512, rather than by a deposition process (such as chemical vapor deposition (CVD), physical vapor deposition (PVD)) or other deposition The purity of the oxide layer formed by the thermal oxide layer 532 and GO 5 is greater than that of the insulating layer formed by the deposition method (for example, the first insulating layer 522, the second insulating layer 524, or the third insulating layer 526). ) The purity of the oxide. Compared with the comparative example in which the thermal oxide layer is an oxide layer formed by a deposition process, since the thermal oxide layer of the present invention is an oxide layer formed by directly oxidizing the conductive layer, the thermal oxide layer has a higher The purity and quality of the oxide can better control the threshold voltage (Vt), so it can have a lower threshold voltage in low-power applications, so that the memory device 500 can have better reliability.

記憶層562位於第二導電層572與通道結構512之 間。舉例而言,部分的記憶層562沿著基板510之上表面510a的法線方向(例如是Z軸方向)延伸,部分的記憶層562沿著平行於基板510之上表面510a的方向延伸。記憶層562可環繞通道結構512並覆蓋第二導電層572。記憶層562可以由包含氧化矽(silicon oxide)層、氮化矽(silicon nitride)層和氧化矽層的複合層(即,ONO層)所構成。例如,記憶層562可包括穿隧層、捕捉層及阻擋層。穿隧層可包括二氧化矽(SiO2)、二氧化矽(SiO2)/氮氧化矽(SiON)所形成的雙層結構或其他合適的材料。捕捉層可包括氮化矽、多晶矽或其他合適的材料。阻擋層可包括二氧化矽(SiO2)或其他合適的材料。 The memory layer 562 is located between the second conductive layer 572 and the channel structure 512. For example, part of the memory layer 562 extends along the normal direction of the upper surface 510a of the substrate 510 (for example, the Z-axis direction), and part of the memory layer 562 extends in a direction parallel to the upper surface 510a of the substrate 510. The memory layer 562 may surround the channel structure 512 and cover the second conductive layer 572. The memory layer 562 may be composed of a composite layer (ie, an ONO layer) including a silicon oxide layer, a silicon nitride layer, and a silicon oxide layer. For example, the memory layer 562 may include a tunnel layer, a trap layer, and a barrier layer. The tunnel layer may include silicon dioxide (SiO 2 ), a double-layer structure formed of silicon dioxide (SiO 2 )/silicon oxynitride (SiON), or other suitable materials. The capture layer may include silicon nitride, polysilicon, or other suitable materials. The barrier layer may include silicon dioxide (SiO 2 ) or other suitable materials.

隔離結構574可穿過疊層結構S5,而將疊層結構S5分隔為多個次堆疊。隔離結構574可由絕緣材料所形成,例如是氧化物或其他合適的材料。相鄰之次堆疊中的第二導電層572之間可藉由隔離結構574物理性及電性隔離,因此不同次堆疊中的第二導電層572可獨立操作,例如是施加不同的電壓。 The isolation structure 574 may pass through the stacked structure S5, and divide the stacked structure S5 into a plurality of sub-stacks. The isolation structure 574 may be formed of an insulating material, such as oxide or other suitable materials. The second conductive layers 572 in adjacent sub-stacks can be physically and electrically separated by the isolation structure 574, so the second conductive layers 572 in different sub-stacks can operate independently, for example, by applying different voltages.

導電連接結構576可穿過疊層結構S5,並例如是透過摻雜區518電性連接於基板410。摻雜區518例如是藉由n型半導體的摻雜物所摻雜。導電連接結構576可電性連接於共同源極線。 The conductive connection structure 576 may pass through the stacked structure S5, and is electrically connected to the substrate 410 through the doped region 518, for example. The doped region 518 is, for example, doped with n-type semiconductor dopants. The conductive connection structure 576 can be electrically connected to the common source line.

在一些實施例中第一導電層530與熱氧化層532之間的每一重疊位置(intersection)可形成一電晶體T5,頂導電層CL5與熱氧化層GO5之間的每一重疊位置可形成一電晶體TS5,第二導電層572與記憶層562之間的每一重疊位置可形成一記憶胞M5。電晶體T5、電晶體TS5與記憶胞M5藉由通道結構512互相 串連,並可共同形成一單元記憶胞(unit cell)UN5,亦可稱作一記憶胞串列。第一導電層530可作為接地選擇線,第二導電層572可作為字元線,頂導電層CL5可作為串列選擇線。 In some embodiments, each overlap position (intersection) between the first conductive layer 530 and the thermal oxide layer 532 can form a transistor T 5 , and each overlap position between the top conductive layer CL5 and the thermal oxide layer GO 5 A transistor TS 5 can be formed, and each overlapping position between the second conductive layer 572 and the memory layer 562 can form a memory cell M 5 . The transistor T 5 , the transistor TS 5 and the memory cell M 5 are connected in series through the channel structure 512 and can jointly form a unit cell UN 5 , which can also be referred to as a memory cell series. The first conductive layer 530 can be used as a ground selection line, the second conductive layer 572 can be used as a word line, and the top conductive layer CL5 can be used as a series selection line.

第1G圖繪示根據本揭露之另一實施例之記憶體元件600的剖面圖,記憶體元件600與記憶體100具有類似的上視圖(例如是第1A圖),故第1F圖繪示類似於沿第1圖之A-A’連線之剖面圖。 FIG. 1G shows a cross-sectional view of a memory device 600 according to another embodiment of the present disclosure. The memory device 600 and the memory 100 have a similar top view (for example, FIG. 1A), so FIG. 1F is similar. In the cross-sectional view along the line A-A' in Figure 1.

請參照第1G圖,記憶體元件600包括一基板610、一第一絕緣層622、一第一導電層630、一第二絕緣層624、一第二導電層672、多個通道結構612、熱氧化層632及GO6、一記憶層662、一第三絕緣層626、一頂導電層CL6、一頂絕緣層OL6、多個隔離結構674以及多個導電連接結構676。 Please refer to Figure 1G, the memory device 600 includes a substrate 610, a first insulating layer 622, a first conductive layer 630, a second insulating layer 624, a second conductive layer 672, a plurality of channel structures 612, thermal The oxide layers 632 and GO 6 , a memory layer 662, a third insulating layer 626, a top conductive layer CL6, a top insulating layer OL6, a plurality of isolation structures 674 and a plurality of conductive connection structures 676.

通道結構612(例如是沿著Z軸)穿過疊層結構S6並電性連接於基板610。通道結構612之頂部區域可具有一摻雜區612c,例如是n型半導體的摻雜物,使得通道結構612可電性連接於位元線BL。在一些實施例中,通道結構612可為一磊晶成長層,例如是經由磊晶成長製程所形成的單晶或多晶矽層或上述之任一組合,可以是未摻雜或輕微P型摻雜的磊晶成長層。 The channel structure 612 (for example, along the Z axis) passes through the laminated structure S6 and is electrically connected to the substrate 610. The top region of the channel structure 612 may have a doped region 612c, such as an n-type semiconductor dopant, so that the channel structure 612 can be electrically connected to the bit line BL. In some embodiments, the channel structure 612 can be an epitaxial growth layer, such as a single crystal or polysilicon layer formed by an epitaxial growth process or any combination of the above, and can be undoped or slightly P-doped Epitaxial growth layer.

熱氧化層632及GO6分別位於第一導電層630與通道結構612之間,以及頂導電層CL6與通道結構612之間。例如,熱氧化層632環繞至少一部份的通道結構612的下部部分,熱氧化層GO6環繞至少一部份的通道結構612的上部部分。在一些實施例中,熱氧化層632及GO6係直接對通道結構612進行一氧化製程所形成的一氧化物,例如是二氧化矽(SiO2)。由於熱氧化層 632及GO6是經由直接氧化通道結構612所形成的氧化物層,而非是藉由沉積製程(例如是化學氣相沉積(CVD)、物理氣相沉積(PVD)或其他沉積製程)所形成的氧化物層,熱氧化層632及GO6之氧化物的純度是大於沉積法所形成的絕緣層(例如是第一絕緣層622、第二絕緣層624或第三絕緣層626)之氧化物的純度。相較於熱氧化層是經由沉積製程所形成之氧化物層的比較例而言,由於本發明的熱氧化層是直接對導電層進行氧化製程所形成的氧化物層,熱氧化層具有較高的氧化物純度及品質,可較佳地控制臨界電壓(Vt),故可在低功率的應用情形中有較低的臨界電壓,使記憶體元件600可具有較佳的可靠度。 The thermal oxide layer 632 and the GO 6 are located between the first conductive layer 630 and the channel structure 612, and between the top conductive layer CL6 and the channel structure 612, respectively. For example, the thermal oxide layer 632 surrounds at least a part of the lower part of the channel structure 612, and the thermal oxide layer GO 6 surrounds at least a part of the upper part of the channel structure 612. In some embodiments, the thermal oxide layer 632 and GO 6 are an oxide formed by directly performing an oxidation process on the channel structure 612, such as silicon dioxide (SiO 2 ). Since the thermal oxide layer 632 and GO 6 are oxide layers formed by directly oxidizing the channel structure 612, rather than by a deposition process (such as chemical vapor deposition (CVD), physical vapor deposition (PVD)) or other deposition The purity of the oxide layer formed by the thermal oxide layer 632 and the GO 6 oxide is greater than that of the insulating layer formed by the deposition method (for example, the first insulating layer 622, the second insulating layer 624, or the third insulating layer 626). ) The purity of the oxide. Compared with the comparative example in which the thermal oxide layer is an oxide layer formed by a deposition process, since the thermal oxide layer of the present invention is an oxide layer formed by directly oxidizing the conductive layer, the thermal oxide layer has a higher The purity and quality of the oxide can better control the threshold voltage (Vt), so it can have a lower threshold voltage in low-power applications, so that the memory device 600 can have better reliability.

記憶層662位於第二導電層672與通道結構612之間。舉例而言,記憶層662沿著基板610之上表面610a的法線方向(例如是Z軸方向)延伸。記憶層662可以由包含氧化矽(silicon oxide)層、氮化矽(silicon nitride)層和氧化矽層的複合層(即,ONO層)所構成。例如,記憶層662可包括穿隧層、捕捉層及阻擋層。穿隧層可包括二氧化矽(SiO2)、二氧化矽(SiO2)/氮氧化矽(SiON)所形成的雙層結構或其他合適的材料。捕捉層可包括氮化矽、多晶矽或其他合適的材料。阻擋層可包括二氧化矽(SiO2)或其他合適的材料。 The memory layer 662 is located between the second conductive layer 672 and the channel structure 612. For example, the memory layer 662 extends along the normal direction (for example, the Z-axis direction) of the upper surface 610a of the substrate 610. The memory layer 662 may be composed of a composite layer (ie, an ONO layer) including a silicon oxide layer, a silicon nitride layer, and a silicon oxide layer. For example, the memory layer 662 may include a tunnel layer, a trap layer, and a barrier layer. The tunnel layer may include silicon dioxide (SiO 2 ), a double-layer structure formed of silicon dioxide (SiO 2 )/silicon oxynitride (SiON), or other suitable materials. The capture layer may include silicon nitride, polysilicon, or other suitable materials. The barrier layer may include silicon dioxide (SiO 2 ) or other suitable materials.

隔離結構674可穿過疊層結構S6,而將疊層結構S6分隔為多個次堆疊。隔離結構674可由絕緣材料所形成,例如是氧化物或其他合適的材料。相鄰之次堆疊中的第二導電層672之間可藉由隔離結構674物理性及電性隔離,因此不同次堆疊中的第二導電層672可獨立操作,例如是施加不同的電壓。 The isolation structure 674 may pass through the stacked structure S6 and divide the stacked structure S6 into a plurality of sub-stacks. The isolation structure 674 may be formed of an insulating material, such as oxide or other suitable materials. The second conductive layers 672 in adjacent sub-stacks can be physically and electrically separated by the isolation structure 674. Therefore, the second conductive layers 672 in different sub-stacks can operate independently, for example, by applying different voltages.

導電連接結構676可穿過疊層結構S6,並例如是透過摻雜區618電性連接於基板610。摻雜區618例如是藉由n型半導體的摻雜物所摻雜。導電連接結構676可電性連接於共同源極線。 The conductive connection structure 676 can pass through the stacked structure S6, and is electrically connected to the substrate 610 through the doped region 618, for example. The doped region 618 is, for example, doped with n-type semiconductor dopants. The conductive connection structure 676 may be electrically connected to the common source line.

在一些實施例中第一導電層630與熱氧化層632之間的每一重疊位置(intersection)可形成一電晶體T6,頂導電層CL6與熱氧化層GO6之間的每一重疊位置可形成一電晶體TS6,第二導電層672與記憶層662之間的每一重疊位置可形成一記憶胞M6。電晶體T6、電晶體TS6與記憶胞M6藉由通道結構612互相串連,並可共同形成一單元記憶胞(unit cell)UN6,亦可稱作一記憶胞串列。第一導電層630可作為接地選擇線,第二導電層672可作為字元線,頂導電層CL6可作為串列選擇線。 In some embodiments, each overlap position (intersection) between the first conductive layer 630 and the thermal oxide layer 632 can form a transistor T 6 , and each overlap position between the top conductive layer CL6 and the thermal oxide layer GO 6 A transistor TS 6 can be formed, and each overlapping position between the second conductive layer 672 and the memory layer 662 can form a memory cell M 6 . The transistor T 6 , the transistor TS 6 and the memory cell M 6 are connected in series through the channel structure 612 and can jointly form a unit cell UN 6 , which can also be referred to as a memory cell series. The first conductive layer 630 can be used as a ground selection line, the second conductive layer 672 can be used as a word line, and the top conductive layer CL6 can be used as a series selection line.

第1H圖繪示根據本揭露之另一實施例之記憶體元件700的剖面圖,記憶體元件700與記憶體100具有類似的上視圖(例如是第1A圖),故第1H圖繪示類似於沿第1圖之A-A’連線之剖面圖。 Figure 1H shows a cross-sectional view of a memory device 700 according to another embodiment of the present disclosure. The memory device 700 and the memory 100 have a similar top view (for example, Figure 1A), so Figure 1H is similar In the cross-sectional view along the line A-A' in Figure 1.

請參照第1H圖,記憶體元件700包括一基板710、一第一絕緣層722、一第一導電層730、一第二絕緣層724、一第二導電層772、多個通道結構712、氧化物層732’、一記憶層762、一第三絕緣層726、一頂導電層CL7、一頂絕緣層OL7、多個隔離結構774以及多個導電連接結構776。在一些實施例中,第一絕緣層722、第二絕緣層724、氧化物層732’、第三絕緣層726及頂絕緣層OL7可由相同的材料所形成。 1H, the memory device 700 includes a substrate 710, a first insulating layer 722, a first conductive layer 730, a second insulating layer 724, a second conductive layer 772, a plurality of channel structures 712, oxide The material layer 732 ′, a memory layer 762, a third insulating layer 726, a top conductive layer CL7, a top insulating layer OL7, a plurality of isolation structures 774, and a plurality of conductive connection structures 776. In some embodiments, the first insulating layer 722, the second insulating layer 724, the oxide layer 732', the third insulating layer 726, and the top insulating layer OL7 may be formed of the same material.

通道結構712(例如是沿著Z軸)穿過疊層結構S7並 電性連接於基板710。通道結構712之頂部區域可具有一摻雜區712c,例如是n型半導體的摻雜物,使得通道結構712可電性連接於位元線BL。在一些實施例中,通道結構712可為一磊晶成長層,例如是經由磊晶成長製程所形成的單晶或多晶矽層或上述之任一組合,可以是未摻雜或輕微P型摻雜的磊晶成長層。 The channel structure 712 (e.g., along the Z axis) passes through the laminated structure S7 and It is electrically connected to the substrate 710. The top region of the channel structure 712 may have a doped region 712c, such as an n-type semiconductor dopant, so that the channel structure 712 can be electrically connected to the bit line BL. In some embodiments, the channel structure 712 may be an epitaxial growth layer, such as a monocrystalline or polycrystalline silicon layer formed by an epitaxial growth process or any combination of the above, and may be undoped or slightly P-doped Epitaxial growth layer.

氧化物層732’位於第一導電層730與通道結構712之間,以及頂導電層CL7與通道結構712之間。 The oxide layer 732' is located between the first conductive layer 730 and the channel structure 712, and between the top conductive layer CL7 and the channel structure 712.

記憶層762位於第二導電層772與通道結構712之間。舉例而言,一部分的記憶層762沿著基板710之上表面710a的法線方向(例如是Z軸方向)延伸,一部分的記憶層762沿著平行於基板710之上表面710a的方向延伸。記憶層762可以由包含氧化矽(silicon oxide)層、氮化矽(silicon nitride)層和氧化矽層的複合層所構成。例如,記憶層762可包括穿隧層、捕捉層及阻擋層。穿隧層可包括二氧化矽(SiO2)、二氧化矽(SiO2)/氮氧化矽(SiON)所形成的雙層結構或其他合適的材料。捕捉層可包括氮化矽、多晶矽或其他合適的材料。阻擋層可包括二氧化矽(SiO2)或其他合適的材料。 The memory layer 762 is located between the second conductive layer 772 and the channel structure 712. For example, a part of the memory layer 762 extends along the normal direction (for example, the Z-axis direction) of the upper surface 710a of the substrate 710, and a part of the memory layer 762 extends in a direction parallel to the upper surface 710a of the substrate 710. The memory layer 762 may be composed of a composite layer including a silicon oxide layer, a silicon nitride layer, and a silicon oxide layer. For example, the memory layer 762 may include a tunneling layer, a trapping layer, and a barrier layer. The tunnel layer may include silicon dioxide (SiO 2 ), a double-layer structure formed of silicon dioxide (SiO 2 )/silicon oxynitride (SiON), or other suitable materials. The capture layer may include silicon nitride, polysilicon, or other suitable materials. The barrier layer may include silicon dioxide (SiO 2 ) or other suitable materials.

隔離結構774可穿過疊層結構S7,而將疊層結構S7分隔為多個次堆疊。隔離結構774可由絕緣材料所形成,例如是氧化物或其他合適的材料。相鄰之次堆疊中的第二導電層772之間可藉由隔離結構774物理性及電性隔離,因此不同次堆疊中的第二導電層772可獨立操作,例如是施加不同的電壓。 The isolation structure 774 may pass through the stacked structure S7, and divide the stacked structure S7 into a plurality of sub-stacks. The isolation structure 774 may be formed of an insulating material, such as oxide or other suitable materials. The second conductive layers 772 in adjacent sub-stacks can be physically and electrically separated by the isolation structure 774. Therefore, the second conductive layers 772 in different sub-stacks can operate independently, for example, by applying different voltages.

導電連接結構776可穿過疊層結構S7,並例如是透過摻雜區718電性連接於基板710。摻雜區718例如是藉由n型 半導體的摻雜物所摻雜。導電連接結構776可電性連接於共同源極線。 The conductive connection structure 776 can pass through the stacked structure S7, and is electrically connected to the substrate 710 through the doped region 718, for example. The doped region 718 is, for example, an n-type Doped with semiconductor dopants. The conductive connection structure 776 can be electrically connected to the common source line.

在一些實施例中第一導電層730與氧化物層732’之間的每一重疊位置(intersection)可形成一電晶體T7,頂導電層CL7與氧化物層732’之間的每一重疊位置可形成一電晶體TS7,第二導電層772與記憶層762之間的每一重疊位置可形成一記憶胞M7。電晶體T7、電晶體TS7與記憶胞M7藉由通道結構712互相串連,並可共同形成一單元記憶胞(unit cell)UN7,亦可稱作一記憶胞串列。第一導電層730可作為接地選擇線,第二導電層772可作為字元線,頂導電層CL7可作為串列選擇線。 Each of the first conductive layer 732 overlaps with the oxide layer 730 in some embodiments, the 'overlap of each position (intersection) between the can 7, CL7 top conductive layer and the oxide layer 732 is formed a transistor T' between the The position can form a transistor TS 7 , and each overlapping position between the second conductive layer 772 and the memory layer 762 can form a memory cell M 7 . The transistor T 7 , the transistor TS 7 and the memory cell M 7 are connected in series through the channel structure 712 and can jointly form a unit cell UN 7 , which can also be referred to as a memory cell series. The first conductive layer 730 can be used as a ground selection line, the second conductive layer 772 can be used as a word line, and the top conductive layer CL7 can be used as a series selection line.

第2A圖至第2N圖繪示根據本揭露之一實施例之記憶體元件100之形成方法的剖面圖。 2A to 2N are cross-sectional views illustrating a method of forming the memory device 100 according to an embodiment of the disclosure.

請參照第2A圖,提供一基板110,並在基板110的上表面110a上形成一疊層本體S1’,疊層本體S1’包括依序(例如是藉由沉積製程)堆疊於基板110之上表面110a上的一第一絕緣層122、一第一導電層130、一第二絕緣層124、一上犧牲層140以及一第三絕緣層126。 Referring to FIG. 2A, a substrate 110 is provided, and a laminated body S1' is formed on the upper surface 110a of the substrate 110. The laminated body S1' includes sequentially (for example, by a deposition process) stacked on the substrate 110 A first insulating layer 122, a first conductive layer 130, a second insulating layer 124, an upper sacrificial layer 140, and a third insulating layer 126 on the surface 110a.

在一些實施例中,基板110可為矽基板或其他合適的基板。第一絕緣層122、第二絕緣層124及第三絕緣層126可由氧化物所形成,例如是二氧化矽。第一導電層130可由導電材料所形成,此導電材料例如是鎢(W)、鋁(Al)、氮化鈦(TiN)、氮化鉭(TaN)、摻雜或未摻雜的多晶矽(poly-silicon)或其他合適的材料。在一些實施例中,第一導電層130可為n型摻雜的多晶矽層。上犧牲層140可由氮化矽(SiN)所形成。 In some embodiments, the substrate 110 may be a silicon substrate or other suitable substrates. The first insulating layer 122, the second insulating layer 124, and the third insulating layer 126 may be formed of oxide, such as silicon dioxide. The first conductive layer 130 may be formed of a conductive material, such as tungsten (W), aluminum (Al), titanium nitride (TiN), tantalum nitride (TaN), doped or undoped polysilicon (poly -silicon) or other suitable materials. In some embodiments, the first conductive layer 130 may be an n-type doped polysilicon layer. The upper sacrificial layer 140 may be formed of silicon nitride (SiN).

請參照第2B圖,形成複數個第一開口152,每個第一開口152穿過疊層本體S1’將一部份基板110暴露於外。在一些實施例中,第一開口152可藉由蝕刻法所形成,例如是乾蝕刻法。在一些實施例中,基板110可受到過蝕刻(overetched),使第一開口152的底部低於基板110之上表面110a。 Referring to FIG. 2B, a plurality of first openings 152 are formed, and each first opening 152 passes through the laminated body S1' to expose a part of the substrate 110 to the outside. In some embodiments, the first opening 152 may be formed by an etching method, such as a dry etching method. In some embodiments, the substrate 110 may be overetched so that the bottom of the first opening 152 is lower than the upper surface 110 a of the substrate 110.

請參照第2C圖,藉由一氧化製程將由第一開口152所暴露出的第一導電層130的一側表面形成一部分的氧化物層132’,並將由第一開口152所暴露出的基板110的表面形成一部分的氧化物層132’。在一些實施例中,第一導電層130為n型摻雜的多晶矽層,基板110為矽基板,經由氧化製程及高溫,第一開口152所暴露出的第一導電層130的側表面形成包括二氧化矽的氧化物層132’,並將由第一開口152所暴露出的基板110的表面形成包括二氧化矽層的氧化物層132’。 Referring to FIG. 2C, a part of the oxide layer 132' is formed on the side surface of the first conductive layer 130 exposed by the first opening 152 by an oxidation process, and the substrate 110 exposed by the first opening 152 A part of the oxide layer 132' is formed on the surface. In some embodiments, the first conductive layer 130 is an n-type doped polysilicon layer, and the substrate 110 is a silicon substrate. After an oxidation process and high temperature, the side surface of the first conductive layer 130 exposed by the first opening 152 is formed including An oxide layer 132' of silicon dioxide, and an oxide layer 132' including a silicon dioxide layer is formed on the surface of the substrate 110 exposed by the first opening 152.

請參照第2D圖,移除第一開口152中之多餘的氧化物層132’,形成直接接觸於第一導電層130的熱氧化層132,並將基板110暴露出。在一些實施例中,第一開口152中之多餘的氧化物層132’是藉由浸泡一溶劑所移除,該溶劑例如是氫氟酸(HF)。由於熱氧化層132是經由直接氧化導電層(例如是第一導電層130)所形成的氧化物層,而非是藉由沉積製程(例如是化學氣相沉積(CVD)、物理氣相沉積(PVD)或其他沉積製程)所形成的氧化物層,熱氧化層132之氧化物的純度是大於沉積法所形成的絕緣層(例如是第一絕緣層122、第二絕緣層124或第三絕緣層126)之氧化物的純度。 Referring to FIG. 2D, the excess oxide layer 132' in the first opening 152 is removed to form a thermal oxide layer 132 directly in contact with the first conductive layer 130, and the substrate 110 is exposed. In some embodiments, the excess oxide layer 132' in the first opening 152 is removed by soaking in a solvent, such as hydrofluoric acid (HF). Since the thermal oxide layer 132 is an oxide layer formed by directly oxidizing a conductive layer (for example, the first conductive layer 130), rather than by a deposition process (for example, chemical vapor deposition (CVD), physical vapor deposition ( For the oxide layer formed by PVD or other deposition processes), the purity of the oxide of the thermal oxide layer 132 is greater than that of the insulating layer formed by the deposition method (for example, the first insulating layer 122, the second insulating layer 124 or the third insulating layer). The purity of the oxide of layer 126).

請參照第2E圖,藉由一第一磊晶成長製程形成覆 蓋熱氧化層132的通道結構的下部部分112a,熱氧化層132位於第一導電層130與通道結構的下部部分112a之間。亦即,通道結構的下部部分112a為矽的磊晶成長層。通道結構的下部部分112a的頂面的高度是大於第一導電層130的頂面的高度。 Please refer to Figure 2E, the coating is formed by a first epitaxial growth process The thermal oxide layer 132 covers the lower portion 112a of the channel structure, and the thermal oxide layer 132 is located between the first conductive layer 130 and the lower portion 112a of the channel structure. That is, the lower portion 112a of the channel structure is an epitaxial growth layer of silicon. The height of the top surface of the lower portion 112 a of the channel structure is greater than the height of the top surface of the first conductive layer 130.

此後,藉由一離子植佈將P型之摻雜物植入通道結構的下部部分112a之中。此P型之摻雜物有助於調整臨界電壓。 Thereafter, the P-type dopant is implanted into the lower portion 112a of the channel structure by an ion implantation. This P-type dopant helps to adjust the threshold voltage.

請參照第2F圖,形成覆蓋第一開口152之部分側壁及通道結構的下部部分112a的一記憶層162。記憶層162可以由包含氧化矽(silicon oxide)層、氮化矽(silicon nitride)層和氧化矽層的複合層(即,ONO層)所構成。例如,記憶層162可包括穿隧層、捕捉層及阻擋層。穿隧層可包括二氧化矽(SiO2)、二氧化矽(SiO2)/氮氧化矽(SiON)所形成的雙層結構或其他合適的材料。捕捉層可包括氮化矽、多晶矽或其他合適的材料。阻擋層可包括二氧化矽(SiO2)或其他合適的材料。 Referring to FIG. 2F, a memory layer 162 is formed to cover part of the sidewall of the first opening 152 and the lower portion 112a of the channel structure. The memory layer 162 may be composed of a composite layer (ie, an ONO layer) including a silicon oxide layer, a silicon nitride layer, and a silicon oxide layer. For example, the memory layer 162 may include a tunneling layer, a trapping layer, and a blocking layer. The tunnel layer may include silicon dioxide (SiO 2 ), a double-layer structure formed of silicon dioxide (SiO 2 )/silicon oxynitride (SiON), or other suitable materials. The capture layer may include silicon nitride, polysilicon, or other suitable materials. The barrier layer may include silicon dioxide (SiO 2 ) or other suitable materials.

接著,藉由一沉積製程成在記憶層162上形成一保護層164。保護層164可防止記憶層162在後續製程中受到破壞。保護層164例如是氮化矽、多晶矽或其他合適的材料。 Then, a protective layer 164 is formed on the memory layer 162 by a deposition process. The protective layer 164 can prevent the memory layer 162 from being damaged in the subsequent manufacturing process. The protective layer 164 is, for example, silicon nitride, polysilicon or other suitable materials.

請參照第2G圖,藉由一蝕刻製程移除部分的記憶層162及保護層164,以暴露出通道結構的下部部分112a。蝕刻製程可為乾蝕刻製程或濕蝕刻製程。 Referring to FIG. 2G, a portion of the memory layer 162 and the protective layer 164 are removed by an etching process to expose the lower portion 112a of the channel structure. The etching process can be a dry etching process or a wet etching process.

請參照第2H圖,藉由浸泡一溶劑移除保護層164,使記憶層162暴露出。此溶劑例如是熱磷酸(H3PO4),然本發明並不限於此,只要是可移除保護層164但不會破壞記憶層162的溶劑即可。 Referring to FIG. 2H, the protective layer 164 is removed by soaking in a solvent, so that the memory layer 162 is exposed. The solvent is, for example, hot phosphoric acid (H 3 PO 4 ), but the present invention is not limited to this, as long as it is a solvent that can remove the protective layer 164 but does not damage the memory layer 162.

請參照第2I圖,藉由一第二磊晶成長製程形成通道結構的上部部分112b,如此一來變形成包括下部部分112a及上部部分112b的通道結構112。在本實施例中,通道結構112為矽的磊晶成長層。 Referring to FIG. 21, the upper portion 112b of the channel structure is formed by a second epitaxial growth process, and thus the channel structure 112 including the lower portion 112a and the upper portion 112b is deformed. In this embodiment, the channel structure 112 is an epitaxial growth layer of silicon.

此後,藉由一離子植佈在通道結構112的頂部形成一摻雜區112c,摻雜區112c例如是n型半導體之重摻雜區。摻雜區112c可用於後續製程中形成接觸結構,以電性連接於位元線。 Thereafter, an ion implantation is used to form a doped region 112c on the top of the channel structure 112. The doped region 112c is, for example, a heavily doped region of an n-type semiconductor. The doped region 112c can be used to form a contact structure in a subsequent process to be electrically connected to the bit line.

請參照第2J圖,藉由一沉積製程形成覆蓋疊層本體S1’的一覆蓋層128,亦即是覆蓋層128覆蓋第三絕緣層126及通道結構112。 Referring to FIG. 2J, a cover layer 128 covering the laminated body S1' is formed by a deposition process, that is, the cover layer 128 covers the third insulating layer 126 and the channel structure 112.

此後,藉由一蝕刻製程形成穿過層疊本體S1’的第二開口154。此蝕刻製程例如是一乾蝕刻製程。之後,可藉由一離子植佈在對應於第二開口154的基板110上形成摻雜區118。摻雜區118例如是包括重摻雜的n型半導體。或者,形成摻雜區118的步驟可在移除上犧牲層140之後進行。 Thereafter, a second opening 154 passing through the laminated body S1' is formed by an etching process. The etching process is, for example, a dry etching process. After that, an ion implantation can be used to form the doped region 118 on the substrate 110 corresponding to the second opening 154. The doped region 118 includes, for example, a heavily doped n-type semiconductor. Alternatively, the step of forming the doped region 118 may be performed after the upper sacrificial layer 140 is removed.

請參照第2K圖,藉由一蝕刻製程從第二開口154移除上犧牲層140,以在上犧牲層140被移除的位置形成上部開口156。此蝕刻製程可以是一等向蝕刻(isotropic etching)(例如是溼蝕刻法),且可以是一高選擇性蝕刻,例如是選擇性蝕刻氮化矽而不蝕刻二氧化矽與多晶矽。 Referring to FIG. 2K, the upper sacrificial layer 140 is removed from the second opening 154 by an etching process to form an upper opening 156 where the upper sacrificial layer 140 is removed. The etching process may be isotropic etching (for example, wet etching), and may be a highly selective etching, for example, selective etching of silicon nitride instead of silicon dioxide and polysilicon.

接著,藉由一沉積製程,形成沿著第二開口154及上部開口156的側壁延伸且覆蓋覆蓋層128的一介電材料166。在一些實施例中,介電材料166可包括一高介電常數材料(high k material),例如是氧化鋁(Al2O3)或其他合適的材料。介電材料166亦可作為阻擋層,以防止電荷側向散逸(lateral diffusion)。 Then, by a deposition process, a dielectric material 166 extending along the sidewalls of the second opening 154 and the upper opening 156 and covering the cover layer 128 is formed. In some embodiments, the dielectric material 166 may include a high k material, such as aluminum oxide (Al 2 O 3 ) or other suitable materials. The dielectric material 166 can also serve as a barrier layer to prevent lateral diffusion of charges.

請參照第2L圖,藉由一沉積製程將導電材料172’填充於第二開口154及上部開口156之中。導電材料172’可包括鎢(W)、鋁(Al)、氮化鈦(TiN)、氮化鉭(TaN)或其他合適的材料。 Referring to FIG. 2L, the conductive material 172' is filled in the second opening 154 and the upper opening 156 by a deposition process. The conductive material 172' may include tungsten (W), aluminum (Al), titanium nitride (TiN), tantalum nitride (TaN), or other suitable materials.

請參照第2M圖,藉由一蝕刻製程移除位於第二開口154中的導電材料172’,形成位於上部開口156之中的第二導電層172。此蝕刻製程例如是一乾蝕刻製程。在一些實施例中,蝕刻製程可一併移除一部份位於上部開口156中的導電材料。第二導電層172可包括鎢(W)、鋁(Al)、氮化鈦(TiN)、氮化鉭(TaN)或其他合適的導電材料。在本實施例中,第二導電層172包括鎢(W)。藉此,便形成包括第一絕緣層122、第一導電層130、第二絕緣層124、第二導電層172及第三絕緣層126的疊層結構S1。 Referring to FIG. 2M, the conductive material 172' in the second opening 154 is removed by an etching process to form the second conductive layer 172 in the upper opening 156. The etching process is, for example, a dry etching process. In some embodiments, the etching process can remove part of the conductive material in the upper opening 156 at the same time. The second conductive layer 172 may include tungsten (W), aluminum (Al), titanium nitride (TiN), tantalum nitride (TaN), or other suitable conductive materials. In this embodiment, the second conductive layer 172 includes tungsten (W). Thereby, a stacked structure S1 including the first insulating layer 122, the first conductive layer 130, the second insulating layer 124, the second conductive layer 172, and the third insulating layer 126 is formed.

請參照第2N圖,藉由一沉積製程,將一絕緣材料填充於第二開口154中,以形成多個隔離結構174。隔離結構174可包括氧化物或其他合適的絕緣材料。 Referring to FIG. 2N, an insulating material is filled in the second opening 154 through a deposition process to form a plurality of isolation structures 174. The isolation structure 174 may include oxide or other suitable insulating materials.

此後,請回頭參照第1B圖,形成穿過隔離結構174並沿著基板110之上表面110a之法線方向延伸的多個垂直開口,再藉由一沉積製程填充一導電材料於這些垂直開口中,以形成多個導電連接結構176。導電連接結構176可包括鎢(W)、鋁(Al)、氮化鈦(TiN)或其他合適的導電材料。如此一來,便形成如第1B圖所示的記憶體元件100。 Thereafter, referring back to Figure 1B, a plurality of vertical openings passing through the isolation structure 174 and extending along the normal direction of the upper surface 110a of the substrate 110 are formed, and then a conductive material is filled in the vertical openings by a deposition process , To form a plurality of conductive connection structures 176. The conductive connection structure 176 may include tungsten (W), aluminum (Al), titanium nitride (TiN), or other suitable conductive materials. In this way, the memory device 100 as shown in FIG. 1B is formed.

第3A圖至第3M圖繪示根據本揭露之一實施例之記憶體元件200之形成方法的剖面圖。 3A to 3M are cross-sectional views illustrating a method of forming the memory device 200 according to an embodiment of the disclosure.

請參照第3A圖,提供一基板210,並在基板210的上表面210a上形成一疊層本體S2’,疊層本體S2’包括依序(例如是藉由沉積製程)堆疊於基板210之上表面210a上的一第一絕緣層222、一第一導電層230、一第二絕緣層224、一上犧牲層240以及一第三絕緣層226。 Referring to FIG. 3A, a substrate 210 is provided, and a laminated body S2' is formed on the upper surface 210a of the substrate 210. The laminated body S2' includes sequentially (for example, by a deposition process) stacked on the substrate 210 A first insulating layer 222, a first conductive layer 230, a second insulating layer 224, an upper sacrificial layer 240, and a third insulating layer 226 on the surface 210a.

在一些實施例中,基板202可為矽基板或其他合適的基板。第一絕緣層222、第二絕緣層224及第三絕緣層226可由氧化物所形成,例如是二氧化矽。第一導電層230可由導電材料所形成,此導電材料例如是鎢(W)、鋁(Al)、氮化鈦(TiN)、氮化鉭(TaN)、摻雜或未摻雜的多晶矽(poly-silicon)或其他合適的材料。在一些實施例中,第一導電層230可為n型摻雜的多晶矽層。上犧牲層240可由氮化矽(SiN)所形成。 In some embodiments, the substrate 202 may be a silicon substrate or other suitable substrates. The first insulating layer 222, the second insulating layer 224, and the third insulating layer 226 may be formed of oxide, such as silicon dioxide. The first conductive layer 230 may be formed of a conductive material, such as tungsten (W), aluminum (Al), titanium nitride (TiN), tantalum nitride (TaN), doped or undoped polysilicon (poly -silicon) or other suitable materials. In some embodiments, the first conductive layer 230 may be an n-type doped polysilicon layer. The upper sacrificial layer 240 may be formed of silicon nitride (SiN).

請參照第3B圖,形成複數個第一開口252,每個第一開口252穿過疊層本體S2’將一部份基板210暴露於外。在一些實施例中,第一開口252可藉由蝕刻法所形成,例如是乾蝕刻法。在一些實施例中,基板210可受到過蝕刻(overetched),使第一開口252的底部低於基板210之上表面210a。 Referring to FIG. 3B, a plurality of first openings 252 are formed, and each first opening 252 passes through the laminated body S2' to expose a part of the substrate 210 to the outside. In some embodiments, the first opening 252 may be formed by an etching method, such as a dry etching method. In some embodiments, the substrate 210 may be overetched, so that the bottom of the first opening 252 is lower than the upper surface 210 a of the substrate 210.

請參照第3C圖,藉由一離子佈植將一摻雜物211植入於對應於第一開口252的基板210中。摻雜物211例如是P型的摻雜物。摻雜物211有助於調整臨界電壓。 Referring to FIG. 3C, a dopant 211 is implanted in the substrate 210 corresponding to the first opening 252 by an ion implantation. The dopant 211 is, for example, a P-type dopant. The dopant 211 helps to adjust the threshold voltage.

請參照第3D圖,藉由一氧化製程將由第一開口252所暴露出的第一導電層230的一側表面形成一部分的氧化物層232’,並將由第一開口252所暴露出的基板210的表面形成一部分的氧化物層232’。在一些實施例中,第一導電層230為n型摻 雜的多晶矽層,基板210為矽基板,經由氧化製程及高溫,第一開口252所暴露出的第一導電層230的側表面形成包括二氧化矽的氧化物層232’,並將由第一開口252所暴露出的基板210的表面形成包括二氧化矽的氧化物層232’。 Referring to FIG. 3D, a portion of the oxide layer 232' is formed on the side surface of the first conductive layer 230 exposed by the first opening 252 by an oxidation process, and the substrate 210 exposed by the first opening 252 A part of the oxide layer 232' is formed on the surface. In some embodiments, the first conductive layer 230 is n-type doped The substrate 210 is a silicon substrate. After an oxidation process and high temperature, the side surface of the first conductive layer 230 exposed by the first opening 252 forms an oxide layer 232' including silicon dioxide. An oxide layer 232' including silicon dioxide is formed on the surface of the substrate 210 exposed by 252.

請參照第3E圖,移除第一開口252中之多餘的氧化物層232’,形成直接接觸於第一導電層230的熱氧化層232,並將基板210暴露出。在一些實施例中,第一開口252中之多餘的氧化物層232’是藉由浸泡一溶劑所移除,此溶劑例如是氫氟酸(HF)。由於熱氧化層232是經由直接氧化導電層(例如是第一導電層230)所形成的氧化物層,而非是藉由沉積製程(例如是化學氣相沉積(CVD)、物理氣相沉積(PVD)或其他沉積製程)所形成的氧化物層,熱氧化層232之氧化物的純度是大於沉積法所形成的絕緣層(例如是第一絕緣層222、第二絕緣層224或第三絕緣層226)之氧化物的純度。 Referring to FIG. 3E, the excess oxide layer 232' in the first opening 252 is removed to form a thermal oxide layer 232 directly in contact with the first conductive layer 230, and the substrate 210 is exposed. In some embodiments, the excess oxide layer 232' in the first opening 252 is removed by soaking in a solvent, such as hydrofluoric acid (HF). Since the thermal oxide layer 232 is an oxide layer formed by directly oxidizing the conductive layer (for example, the first conductive layer 230), rather than by a deposition process (for example, chemical vapor deposition (CVD), physical vapor deposition ( For the oxide layer formed by PVD or other deposition processes), the purity of the oxide of the thermal oxide layer 232 is greater than that of the insulating layer formed by the deposition method (for example, the first insulating layer 222, the second insulating layer 224 or the third insulating layer). The purity of the oxide of layer 226).

請參照第3F圖,藉由同一道第一磊晶成長製程形成通道結構212的下部部分212a以及上部部分212b。通道結構212的下部部分212a對應於第一導電層230。通道結構212的上部部分212b對應於上犧牲層240。通道結構212的下部部分212a覆蓋熱氧化層232,熱氧化層232位於第一導電層230與通道結構212的下部部分212a之間。在本實施例中,通道結構212的整體為矽的磊晶成長層。 Referring to FIG. 3F, the lower portion 212a and the upper portion 212b of the channel structure 212 are formed by the same first epitaxial growth process. The lower portion 212 a of the channel structure 212 corresponds to the first conductive layer 230. The upper portion 212 b of the channel structure 212 corresponds to the upper sacrificial layer 240. The lower portion 212 a of the channel structure 212 covers the thermal oxide layer 232, and the thermal oxide layer 232 is located between the first conductive layer 230 and the lower portion 212 a of the channel structure 212. In this embodiment, the entire channel structure 212 is an epitaxial growth layer of silicon.

此後,藉由一離子植佈在通道結構212的頂面形成一摻雜區212c。摻雜區212c例如是n型半導體之重摻雜區。摻雜區212c可用於後續製程中形成接觸結構,以電性連接於位元 線。 Thereafter, a doped region 212c is formed on the top surface of the channel structure 212 by an ion implantation. The doped region 212c is, for example, a heavily doped region of an n-type semiconductor. The doped region 212c can be used to form a contact structure in a subsequent process to be electrically connected to the bit line.

請參照第3G圖,藉由一沉積製程形成覆蓋疊層本體S2’的一覆蓋層228,亦即是覆蓋層228覆蓋第三絕緣層226及通道結構212。在本實施例中,可藉由一熱製程,使摻雜物211散逸至通道層212的下部部分212a。熱製程可活化摻雜物211。 Referring to FIG. 3G, a cover layer 228 covering the stacked body S2' is formed by a deposition process, that is, the cover layer 228 covers the third insulating layer 226 and the channel structure 212. In this embodiment, the dopant 211 can be dispersed to the lower portion 212a of the channel layer 212 by a thermal process. The thermal process can activate the dopant 211.

請參照第3H圖,藉由一蝕刻製程形成穿過層疊本體S2’的第二開口254。此蝕刻製程例如是一乾蝕刻製程。之後,可透過第二開口254在基板210上形成摻雜區218。摻雜區218例如是包括重摻雜的n型半導體。或者,形成摻雜區218的步驟可在移除上犧牲層240之後進行。 Referring to FIG. 3H, the second opening 254 passing through the laminated body S2' is formed by an etching process. The etching process is, for example, a dry etching process. After that, a doped region 218 can be formed on the substrate 210 through the second opening 254. The doped region 218 includes, for example, a heavily doped n-type semiconductor. Alternatively, the step of forming the doped region 218 may be performed after the upper sacrificial layer 240 is removed.

請參照第3I圖,藉由一蝕刻製程從第二開口254移除上犧牲層240,以在上犧牲層240被移除的位置形成上部開口256。此蝕刻製程可以是一等向蝕刻(isotropic etching)(例如是溼蝕刻法),且可以是一高選擇性蝕刻,例如是選擇性蝕刻氮化矽(SiN)而不蝕刻二氧化矽(SiO2)。 Referring to FIG. 31, the upper sacrificial layer 240 is removed from the second opening 254 by an etching process to form an upper opening 256 where the upper sacrificial layer 240 is removed. The etching process can be isotropic etching (for example, wet etching), and can be a highly selective etching, for example, selective etching of silicon nitride (SiN) without etching silicon dioxide (SiO 2 ).

接著,藉由沉積製程,依序形成沿著第二開口254之側壁、上部開口256之側壁、通道結構212之部分側壁延伸並且覆蓋覆蓋層128的一記憶層262與一介電材料266。記憶層262可以由包含氧化矽(silicon oxide)層、氮化矽(silicon nitride)層和氧化矽層的複合層(即,ONO層)所構成。例如,記憶層162可包括穿隧層、捕捉層及阻擋層。穿隧層可包括二氧化矽(SiO2)、二氧化矽(SiO2)/氮氧化矽(SiON)所形成的雙層結構或其他合適的材料。捕捉層可包括氮化矽、多晶矽或其他合適的材料。阻擋層可包括二氧化矽(SiO2)或其他合適的材料。在一些實施例中,介電 材料266可包括一高介電常數材料(high k material),例如是氧化鋁(Al2O3)或其他合適的材料。介電材料166亦可作為阻擋層,以防止電荷側向散逸(lateral diffusion)。 Then, by a deposition process, a memory layer 262 and a dielectric material 266 extending along the sidewalls of the second opening 254, the sidewalls of the upper opening 256, and part of the sidewalls of the channel structure 212 and covering the capping layer 128 are sequentially formed. The memory layer 262 may be composed of a composite layer (ie, an ONO layer) including a silicon oxide layer, a silicon nitride layer, and a silicon oxide layer. For example, the memory layer 162 may include a tunneling layer, a trapping layer, and a blocking layer. The tunnel layer may include silicon dioxide (SiO 2 ), a double-layer structure formed of silicon dioxide (SiO 2 )/silicon oxynitride (SiON), or other suitable materials. The capture layer may include silicon nitride, polysilicon, or other suitable materials. The barrier layer may include silicon dioxide (SiO 2 ) or other suitable materials. In some embodiments, the dielectric material 266 may include a high k material, such as aluminum oxide (Al 2 O 3 ) or other suitable materials. The dielectric material 166 can also serve as a barrier layer to prevent lateral diffusion of charges.

請參照第3J圖,藉由一沉積製程將導電材料272’填充於第二開口254及上部開口256之中。導電材料272’可包括是鎢(W)、鋁(Al)、氮化鈦(TiN)、氮化鉭(TaN)或其他合適的材料。 Referring to FIG. 3J, the conductive material 272' is filled in the second opening 254 and the upper opening 256 by a deposition process. The conductive material 272' may include tungsten (W), aluminum (Al), titanium nitride (TiN), tantalum nitride (TaN), or other suitable materials.

請參照第3K圖,藉由一蝕刻製程移除位於第二開口254中的導電材料272’,形成位於上部開口256之中的第二導電層272。此蝕刻製程例如是一乾蝕刻製程。在一些實施例中,蝕刻製程可一併移除一部份位於上部開口256中的導電材料。第二導電層272可包括鎢(W)、鋁(Al)、氮化鈦(TiN)、氮化鉭(TaN)或其他合適的導電材料。在本實施例中,第二導電層272包括鎢(W)。藉此,便形成包括第一絕緣層222、第一導電層230、第二絕緣層224、第二導電層272及第三絕緣層226的疊層結構S2。 Referring to FIG. 3K, the conductive material 272' in the second opening 254 is removed by an etching process to form the second conductive layer 272 in the upper opening 256. The etching process is, for example, a dry etching process. In some embodiments, the etching process can remove part of the conductive material in the upper opening 256 at the same time. The second conductive layer 272 may include tungsten (W), aluminum (Al), titanium nitride (TiN), tantalum nitride (TaN), or other suitable conductive materials. In this embodiment, the second conductive layer 272 includes tungsten (W). Thereby, a stacked structure S2 including the first insulating layer 222, the first conductive layer 230, the second insulating layer 224, the second conductive layer 272, and the third insulating layer 226 is formed.

請參照第3L圖,藉由一沉積製程,將一絕緣材料填充於第二開口254中,以形成多個隔離結構274。隔離結構274可包括氧化物或其他合適的絕緣材料。 Referring to FIG. 3L, an insulating material is filled in the second opening 254 by a deposition process to form a plurality of isolation structures 274. The isolation structure 274 may include oxide or other suitable insulating materials.

請參照第3M圖,形成穿過隔離結構274並沿著基板210之上表面210a之法線方向延伸的多個垂直開口259。 Referring to FIG. 3M, a plurality of vertical openings 259 passing through the isolation structure 274 and extending along the normal direction of the upper surface 210a of the substrate 210 are formed.

此後,請回頭參照第1C圖,藉由一沉積製程填充一導電材料於這些垂直開口259中,以形成多個導電連接結構276。導電連接結構276可包括鎢(W)、鋁(Al)、氮化鈦(TiN)或其他合適的導電材料。如此一來,便形成如第1C圖所示的記憶體元件200。 Thereafter, referring back to FIG. 1C, a conductive material is filled in the vertical openings 259 by a deposition process to form a plurality of conductive connection structures 276. The conductive connection structure 276 may include tungsten (W), aluminum (Al), titanium nitride (TiN), or other suitable conductive materials. In this way, the memory device 200 as shown in FIG. 1C is formed.

第4A圖至第4L圖繪示根據本揭露之一實施例之記憶體元件300之形成方法的剖面圖。 4A to 4L are cross-sectional views of a method of forming the memory device 300 according to an embodiment of the disclosure.

請參照第4A圖,提供一基板310,並在基板310的上表面310a上形成一疊層本體S3’,疊層本體S3’包括依序(例如是藉由沉積製程)堆疊於基板310之上表面310a上的一第一絕緣層322、一下犧牲層342、一第二絕緣層324、一上犧牲層340以及一第三絕緣層326。 Referring to FIG. 4A, a substrate 310 is provided, and a laminated body S3' is formed on the upper surface 310a of the substrate 310. The laminated body S3' includes stacking on the substrate 310 in sequence (for example, by a deposition process) A first insulating layer 322, a lower sacrificial layer 342, a second insulating layer 324, an upper sacrificial layer 340, and a third insulating layer 326 on the surface 310a.

在一些實施例中,基板310可為矽基板或其他合適的基板。第一絕緣層322、第二絕緣層324及第三絕緣層326可由氧化物所形成,例如是二氧化矽。下犧牲層342及上犧牲層340可由氮化矽(SiN)所形成。 In some embodiments, the substrate 310 may be a silicon substrate or other suitable substrates. The first insulating layer 322, the second insulating layer 324, and the third insulating layer 326 may be formed of oxide, such as silicon dioxide. The lower sacrificial layer 342 and the upper sacrificial layer 340 may be formed of silicon nitride (SiN).

請參照第4B圖,形成複數個第一開口352,每個第一開口352穿過疊層本體S3’將一部份基板310暴露於外。在一些實施例中,第一開口352可藉由蝕刻製程所形成,例如是乾蝕刻製程。在一些實施例中,基板310可受到過蝕刻(overetch),使第一開口352的底部低於基板310之上表面310a。 Referring to FIG. 4B, a plurality of first openings 352 are formed, and each first opening 352 passes through the laminated body S3' to expose a part of the substrate 310 to the outside. In some embodiments, the first opening 352 may be formed by an etching process, such as a dry etching process. In some embodiments, the substrate 310 may be overetched so that the bottom of the first opening 352 is lower than the upper surface 310 a of the substrate 310.

請參照第4C圖,藉由一第一磊晶成長製程形成通道結構的下部部分312a。亦即,通道結構的下部部分312a為矽的磊晶成長層。通道結構的下部部分312a的頂面的高度是大於下犧牲層342的頂面的高度。 Referring to FIG. 4C, the lower portion 312a of the channel structure is formed by a first epitaxial growth process. That is, the lower part 312a of the channel structure is an epitaxial growth layer of silicon. The height of the top surface of the lower part 312 a of the channel structure is greater than the height of the top surface of the lower sacrificial layer 342.

此後,藉由一離子植佈將P型之摻雜物植入通道結構的下部部分312a之中。此P型之摻雜物有助於調整臨界電壓。 Thereafter, the P-type dopant is implanted into the lower portion 312a of the channel structure by an ion implantation. This P-type dopant helps to adjust the threshold voltage.

請參照第4D圖,形成覆蓋第一開口352之部分側壁及通道結構的下部部分312a的一記憶層362。記憶層362可以 由包含氧化矽(silicon oxide)層、氮化矽(silicon nitride)層和氧化矽層的複合層(即,ONO層)所構成。例如,記憶層362可包括穿隧層、捕捉層及阻擋層。穿隧層可包括二氧化矽(SiO2)、二氧化矽(SiO2)/氮氧化矽(SiON)所形成的雙層結構或其他合適的材料。捕捉層可包括氮化矽、多晶矽或其他合適的材料。阻擋層可包括二氧化矽(SiO2)或其他合適的材料。 Referring to FIG. 4D, a memory layer 362 is formed to cover part of the sidewall of the first opening 352 and the lower part 312a of the channel structure. The memory layer 362 may be composed of a composite layer (ie, an ONO layer) including a silicon oxide layer, a silicon nitride layer, and a silicon oxide layer. For example, the memory layer 362 may include a tunnel layer, a capture layer, and a barrier layer. The tunnel layer may include silicon dioxide (SiO 2 ), a double-layer structure formed of silicon dioxide (SiO 2 )/silicon oxynitride (SiON), or other suitable materials. The capture layer may include silicon nitride, polysilicon, or other suitable materials. The barrier layer may include silicon dioxide (SiO 2 ) or other suitable materials.

接著,藉由一沉積製成在記憶層362上形成一保護層364。保護層364可防止記憶層362在後續製程中受到破壞。保護層364例如是氮化矽、多晶矽或其他合適的材料。 Then, a protective layer 364 is formed on the memory layer 362 by a deposition process. The protective layer 364 can prevent the memory layer 362 from being damaged in the subsequent manufacturing process. The protective layer 364 is, for example, silicon nitride, polysilicon or other suitable materials.

請參照第4E圖,藉由一蝕刻製程移除部分的記憶層362及保護層364,以暴露出通道結構的下部部分312a。蝕刻製程可為乾蝕刻製程或濕蝕刻製程。 Referring to FIG. 4E, a portion of the memory layer 362 and the protective layer 364 are removed by an etching process to expose the lower portion 312a of the channel structure. The etching process can be a dry etching process or a wet etching process.

請參照第4F圖,藉由浸泡一溶劑移除保護層364,使記憶層362暴露出。此溶劑例如是熱磷酸(H3PO4),然本發明並不限於此,只要是可移除保護層364但不會破壞記憶層362的溶劑即可。 Referring to FIG. 4F, the protective layer 364 is removed by soaking in a solvent, so that the memory layer 362 is exposed. The solvent is, for example, hot phosphoric acid (H 3 PO 4 ), but the present invention is not limited to this, as long as it is a solvent that can remove the protective layer 364 but does not damage the memory layer 362.

請參照第4G圖,藉由一第二磊晶成長製程形成通道結構的上部部分312b,如此一來變形成包括下部部分312a及上部部分312b的通道結構312。在本實施例中,通道結構312為矽的磊晶成長層。 Referring to FIG. 4G, the upper portion 312b of the channel structure is formed by a second epitaxial growth process, and thus the channel structure 312 including the lower portion 312a and the upper portion 312b is deformed. In this embodiment, the channel structure 312 is an epitaxial growth layer of silicon.

此後,藉由一離子植佈在通道結構312的頂部形成一摻雜區312c,摻雜區312c例如是n型半導體之重摻雜區。摻雜區312c可用於後續製程中形成接觸結構,以電性連接於位元線。 Thereafter, an ion implantation is used to form a doped region 312c on the top of the channel structure 312. The doped region 312c is, for example, a heavily doped region of an n-type semiconductor. The doped region 312c can be used to form a contact structure in a subsequent process to be electrically connected to the bit line.

接著,藉由一沉積製程形成覆蓋疊層本體S3’的一覆蓋層328,亦即是覆蓋層328覆蓋第三絕緣層326及通道結構312。 Then, a covering layer 328 covering the laminated body S3' is formed by a deposition process, that is, the covering layer 328 covers the third insulating layer 326 and the channel structure 312.

請參照第4H圖,藉由一蝕刻製程形成穿過層疊本體S3’的第二開口354。此蝕刻製程例如是一乾蝕刻製程。之後,可藉由一離子植佈在對應於第二開口354的基板310上形成摻雜區318。摻雜區318例如是包括重摻雜的n型半導體。或者,形成摻雜區318的步驟可在移除上犧牲層340與下犧牲層342之後進行。 Referring to FIG. 4H, the second opening 354 passing through the laminated body S3' is formed by an etching process. The etching process is, for example, a dry etching process. After that, an ion implantation can be used to form a doped region 318 on the substrate 310 corresponding to the second opening 354. The doped region 318 includes, for example, a heavily doped n-type semiconductor. Alternatively, the step of forming the doped region 318 may be performed after the upper sacrificial layer 340 and the lower sacrificial layer 342 are removed.

請參照第4I圖,藉由一蝕刻製程從第二開口354移除上犧牲層340與下犧牲層342,以分別在上犧牲層340與下犧牲層342被移除的位置形成上部開口356及下部開口358。此蝕刻製程可以是一等向蝕刻(isotropic etching)(例如是溼蝕刻法),且可以是一高選擇性蝕刻,例如是選擇性蝕刻氮化矽而不蝕刻二氧化矽。 Referring to FIG. 4I, the upper sacrificial layer 340 and the lower sacrificial layer 342 are removed from the second opening 354 by an etching process to form upper openings 356 and 342 at the positions where the upper sacrificial layer 340 and the lower sacrificial layer 342 are removed, respectively Lower opening 358. The etching process may be isotropic etching (for example, wet etching), and may be a highly selective etching, for example, selective etching of silicon nitride instead of silicon dioxide.

接著,藉由一氧化製程將由下部開口358所暴露出的通道結構312的一側表面形成熱氧化層332。在一些實施例中,通道結構312為矽的磊晶成長層,經由氧化製程及高溫,下部開口358所暴露出的通道結構312的側表面形成包括二氧化矽的熱氧化層332。 Then, a thermal oxide layer 332 is formed on the side surface of the channel structure 312 exposed by the lower opening 358 by an oxidation process. In some embodiments, the channel structure 312 is an epitaxial growth layer of silicon. After an oxidation process and high temperature, the side surface of the channel structure 312 exposed by the lower opening 358 forms a thermal oxide layer 332 including silicon dioxide.

此後,藉由一沉積製程,形成沿著第二開口354、下部開口358及上部開口356的側壁延伸且覆蓋覆蓋層328的一介電材料366。在一些實施例中,介電材料366可包括一高介電常數材料(high k material),例如是氧化鋁(Al2O3)或其他合適的材 料。介電材料366亦可作為阻擋層,以防止電荷側向散逸(lateral diffusion)。 Thereafter, by a deposition process, a dielectric material 366 extending along the sidewalls of the second opening 354, the lower opening 358 and the upper opening 356 and covering the cover layer 328 is formed. In some embodiments, the dielectric material 366 may include a high k material, such as aluminum oxide (Al 2 O 3 ) or other suitable materials. The dielectric material 366 can also serve as a barrier layer to prevent lateral diffusion of charges.

請參照第4J圖,藉由一沉積製程將導電材料372’填充於第二開口354、下部開口358及上部開口356之中。導電材料372’可包括是鎢(W)、鋁(Al)、氮化鈦(TiN)、氮化鉭(TaN)或其他合適的材料。 Referring to FIG. 4J, the conductive material 372' is filled in the second opening 354, the lower opening 358, and the upper opening 356 by a deposition process. The conductive material 372' may include tungsten (W), aluminum (Al), titanium nitride (TiN), tantalum nitride (TaN), or other suitable materials.

請參照第4K圖,藉由一蝕刻製程移除位於第二開口354中的導電材料372’,形成位於下部開口358之中的第一導電層330以及位於上部開口356之中的第二導電層372。此蝕刻製程例如是一乾蝕刻製程。在一些實施例中,蝕刻製程可一併移除一部份位於上部開口356與下部開口358中的導電材料372’。第一導電層330以及第二導電層372可分別包括鎢(W)、鋁(Al)、氮化鈦(TiN)、氮化鉭(TaN)或其他合適的導電材料。在本實施例中,第一導電層330及第二導電層372可包括相同的導電材料,例如是鎢(W)。藉此,便形成包括第一絕緣層322、第一導電層330、第二絕緣層324、第二導電層372及第三絕緣層326的疊層結構S3。 Referring to FIG. 4K, the conductive material 372' in the second opening 354 is removed by an etching process to form the first conductive layer 330 in the lower opening 358 and the second conductive layer in the upper opening 356 372. The etching process is, for example, a dry etching process. In some embodiments, the etching process can remove part of the conductive material 372' located in the upper opening 356 and the lower opening 358 at the same time. The first conductive layer 330 and the second conductive layer 372 may respectively include tungsten (W), aluminum (Al), titanium nitride (TiN), tantalum nitride (TaN), or other suitable conductive materials. In this embodiment, the first conductive layer 330 and the second conductive layer 372 may include the same conductive material, such as tungsten (W). Thereby, a stacked structure S3 including the first insulating layer 322, the first conductive layer 330, the second insulating layer 324, the second conductive layer 372, and the third insulating layer 326 is formed.

請參照第4L圖,藉由一沉積製程,將一絕緣材料填充於第二開口354中,以形成多個隔離結構374。隔離結構374可包括氧化物或其他合適的絕緣材料。 Referring to FIG. 4L, an insulating material is filled in the second opening 354 by a deposition process to form a plurality of isolation structures 374. The isolation structure 374 may include oxide or other suitable insulating materials.

此後,請回頭參照第1D圖,形成穿過隔離結構374並沿著基板310之上表面310a之法線方向延伸的多個垂直開口,再藉由一沉積製程填充一導電材料於這些垂直開口中,以形成多個導電連接結構376。導電連接結構376可包括鎢(W)、鋁(Al)、 氮化鈦(TiN)或其他合適的導電材料。如此一來,便形成如第1D圖所示的記憶體元件300。 After that, please refer back to Figure 1D to form a plurality of vertical openings passing through the isolation structure 374 and extending along the normal direction of the upper surface 310a of the substrate 310, and then a conductive material is filled in the vertical openings by a deposition process , To form a plurality of conductive connection structures 376. The conductive connection structure 376 may include tungsten (W), aluminum (Al), Titanium nitride (TiN) or other suitable conductive materials. In this way, the memory device 300 as shown in FIG. 1D is formed.

第5圖繪示根據本揭露之一實施例之記憶體元件100、200或300的等效電路圖。 FIG. 5 is an equivalent circuit diagram of the memory device 100, 200 or 300 according to an embodiment of the disclosure.

記憶體元件100、200或300可為三維反或閘(NOR)型記憶體元件。在記憶體元件100、200或300的陣列區中示例性繪示3條字元線WL0、WL1、WL2,3條位元線BL0、BL1、BL2以及3條接地選擇線GSL0、GSL1、GSL2。然而,本發明並不限於此,字元線、位元線及接地選擇線的數量可以分別大於3。每個字元線與通道結構的重疊位置形成記憶胞M,每個接地選擇線與通道結構的重疊位置形成電晶體T。記憶胞M位於電晶體T的上方,且通道結構串聯記憶胞M與電晶體T。一個記憶胞M與一個電晶體T可共同形成一單元記憶胞(unit cell)UN。每個電晶體T電性連接於共同源極線CSL。字元線(例如是WL0、WL1、WL2)之間可藉由隔離結構所電性隔離。 The memory device 100, 200, or 300 may be a three-dimensional NOR type memory device. In the array area of the memory device 100, 200, or 300, three word lines WL0, WL1, WL2, three bit lines BL0, BL1, BL2, and three ground selection lines GSL0, GSL1, GSL2 are exemplarily shown. However, the present invention is not limited to this, and the number of word lines, bit lines, and ground selection lines may be greater than three, respectively. The overlapping position of each character line and the channel structure forms a memory cell M, and the overlapping position of each ground selection line and the channel structure forms a transistor T. The memory cell M is located above the transistor T, and the channel structure connects the memory cell M and the transistor T in series. A memory cell M and a transistor T can jointly form a unit cell UN. Each transistor T is electrically connected to the common source line CSL. The word lines (such as WL0, WL1, WL2) can be electrically isolated by the isolation structure.

第6A圖繪示根據本揭露之一實施例之藉由福勒-諾德漢注入(Fowler-Nordheim injection)進行編程操作之記憶體元件的等效電路圖。 FIG. 6A is an equivalent circuit diagram of a memory device programmed by Fowler-Nordheim injection according to an embodiment of the present disclosure.

請參照第6A圖,欲對目標單元記憶胞UNt進行編程操作,字元線WL0及接地選擇線GSL0為選擇,字元線WL0施加編程電壓Vpgm1,接地選擇線GSL0施加0V。字元線WL1及接地選擇線GSL1為未選擇,施加0伏特(V)。共同源極線施加一共同源極電壓VCSL。位元線BL0施加0V。位元線BL1施加抑制電壓Vinhibit。耦接於位元線BL1的單元記憶胞則被抑制。 Please refer to FIG. 6A. To perform a programming operation on the target cell memory cell UN t , the word line WL0 and the ground selection line GSL0 are selected, the word line WL0 is applied with the programming voltage Vpgm1, and the ground selection line GSL0 is applied with 0V. The word line WL1 and the ground selection line GSL1 are not selected, and 0 volt (V) is applied. The common source line applies a common source voltage V CSL . 0V is applied to the bit line BL0. The bit line BL1 applies the inhibit voltage V inhibit . The cell memory cell coupled to the bit line BL1 is inhibited.

第6B圖繪示根據本揭露之一實施例之藉由通道熱電子注入(channel-hot-electron injection)進行編程操作之記憶體元件的等效電路圖。 FIG. 6B is an equivalent circuit diagram of a memory device that performs a programming operation by channel-hot-electron injection according to an embodiment of the present disclosure.

請參照第6B圖,欲對目標單元記憶胞UNt進行編程操作,字元線WL0及接地選擇線GSL0為選擇。字元線WL0施加編程電壓Vpgm1,接地選擇線GSL0施加編程電壓Vpgm2。字元線WL1及接地選擇線GSL1為未選擇,施加0伏特(V)。共同源極線CSL施加0V。位元線BL0施加汲極編程電壓Vdpgm。位元線BL1施加0V。編程電壓Vpgm2可小於編程電壓Vpgm1。在一些實施例中,編程電壓Vpgm1可為5~10V。汲極編程電壓Vdpgm可為4~10V。 Please refer to FIG. 6B. To program the target cell UN t , the word line WL0 and the ground selection line GSL0 are selected. The word line WL0 is applied with the programming voltage Vpgm1, and the ground selection line GSL0 is applied with the programming voltage Vpgm2. The word line WL1 and the ground selection line GSL1 are not selected, and 0 volt (V) is applied. 0V is applied to the common source line CSL. The bit line BL0 applies the drain programming voltage Vdpgm. 0V is applied to the bit line BL1. The programming voltage Vpgm2 may be less than the programming voltage Vpgm1. In some embodiments, the programming voltage Vpgm1 may be 5-10V. The drain programming voltage Vdpgm can be 4-10V.

第7A圖繪示根據本揭露之一實施例之藉由福勒-諾德漢注入進行抹除操作之記憶體元件的等效電路圖。 FIG. 7A is an equivalent circuit diagram of a memory device that is erased by Fowler-Nordham injection according to an embodiment of the present disclosure.

請參照第7A圖,欲對目標單元記憶胞UNt(例如是包括2個記憶胞與2個電晶體)進行抹除操作,字元線WL0及接地選擇線GSL0為選擇。字元線WL0施加0V。接地選擇線GSL0施加抹除電壓Vers2。字元線WL1及接地選擇線GSL1為未選擇,皆為浮接(floating)(亦即是沒有施加電壓)。共同源極線施加一共同源極電壓VCSL。P型井(p well)施加一P型井電壓VPWI。週邊電路施加一抹除電壓Vers1。位元線BL0與BL1為浮接。共同源極電壓VCSL可相同於抹除電壓Vers1及P型井電壓VPWIPlease refer to FIG. 7A. To erase the target cell UN t (for example, including 2 memory cells and 2 transistors), the word line WL0 and the ground selection line GSL0 are selected. 0V is applied to the word line WL0. The ground selection line GSL0 applies the erase voltage Vers2. The word line WL1 and the ground selection line GSL1 are not selected, and both are floating (that is, no voltage is applied). The common source line applies a common source voltage V CSL . P-type well (p well) applies a P-type well voltage V PWI . An erase voltage Vers1 is applied to the peripheral circuit. The bit lines BL0 and BL1 are floating. The common source voltage V CSL may be the same as the erase voltage Vers1 and the P-well voltage V PWI .

第7B圖繪示根據本揭露之一實施例之藉由帶對帶穿隧誘發熱電洞(band-to-band tunneling induced hot hole injection)進行抹除操作之記憶體元件的等效電路圖。 FIG. 7B shows an equivalent circuit diagram of a memory device using a band-to-band tunneling induced hot hole injection operation according to an embodiment of the present disclosure.

請參照第7B圖,欲對目標單元記憶胞UNt進行抹除操作,字元線WL0及接地選擇線GSL0為選擇。接地選擇線GSL0施加0V。字元線WL0施加一接地抹除電壓Vgers。接地抹除電壓Vgers可小於0。字元線WL1及接地選擇線GSL1為未選擇,施加0伏特(V)。位元線BL0可施加一汲極抹除電壓Vders。汲極抹除電壓Vders可大於0。位元線BL1可施加0V。共同源極線施加一共同源極電壓VCSL。使用位元線偏壓(BL bias)(抹除/抑制)(+Vders用於抹除,0V則非用於抑制)施加福勒-諾德漢抹除(Fowler-Nordheim erase),以進行位元線替代性的抹除操作(所有GSL(例如GSL0,GSL1...)=0V,CSL=+Vcs1)。 Please refer to FIG. 7B. To perform an erase operation on the target cell UN t , the word line WL0 and the ground selection line GSL0 are selected. 0V is applied to the ground selection line GSL0. The word line WL0 is applied with a ground erase voltage Vgers. The ground erase voltage Vgers can be less than zero. The word line WL1 and the ground selection line GSL1 are not selected, and 0 volt (V) is applied. The bit line BL0 can be applied with a drain erase voltage Vders. The drain erase voltage Vders can be greater than zero. 0V can be applied to the bit line BL1. The common source line applies a common source voltage V CSL . Use bit line bias (BL bias) (erase/inhibit) (+Vders is used for erasing, 0V is not used for suppression) to apply Fowler-Nordheim erase (Fowler-Nordheim erase) to perform bit Replacement of element line erasing operation (all GSL (such as GSL0, GSL1...)=0V, CSL=+Vcs1).

第8圖繪示根據本揭露之一實施例之讀取操作之記憶體元件的等效電路圖。 FIG. 8 is an equivalent circuit diagram of a memory device in a read operation according to an embodiment of the disclosure.

請參照第8圖,欲對目標單元記憶胞UNt(例如是包括2個記憶胞與2個電晶體)進行讀取操作,字元線WL0及接地選擇線GSL0為選擇。字元線WL0可施加0V。接地選擇線GSL0可施加一電源電壓VCC。字元線WL1及接地選擇線GSL1為未選擇,施加0伏特(V)。位元線BL0與BL1可施加一位元線讀取電壓Vblr。共同源極線施加一共同源極電壓VCSL。在本發明的記憶體元件中進行讀取操作時,所有施加於位元線、字元線、接地選擇線的電壓可等於或小於電源電壓VCC,故能夠降低功耗。 Please refer to FIG. 8. To perform a read operation on the target cell UN t (for example, including 2 memory cells and 2 transistors), the word line WL0 and the ground selection line GSL0 are selected. The word line WL0 can be applied with 0V. A power supply voltage V CC can be applied to the ground selection line GSL0. The word line WL1 and the ground selection line GSL1 are not selected, and 0 volt (V) is applied. The bit lines BL0 and BL1 can be applied with a bit line read voltage Vblr. The common source line applies a common source voltage V CSL . When performing a read operation in the memory device of the present invention, all voltages applied to the bit line, word line, and ground selection line can be equal to or less than the power supply voltage V CC , so power consumption can be reduced.

第9A圖至第9R圖繪示根據本揭露之一實施例之記憶體元件400之形成方法的剖面圖。 9A to 9R are cross-sectional views illustrating a method of forming a memory device 400 according to an embodiment of the present disclosure.

請參照第9A圖,提供一基板410,並在基板410的上表面410a上形成一疊層本體S4’,疊層本體S4’包括依序(例如 是藉由沉積製程)堆疊於基板410之上表面410a上的一下犧牲層442、一第二絕緣層424、一上犧牲層440、一第三絕緣層426、一頂犧牲層SF4以及一頂絕緣層OL4。 Please refer to FIG. 9A, a substrate 410 is provided, and a laminated body S4' is formed on the upper surface 410a of the substrate 410, and the laminated body S4' includes sequential (for example (By a deposition process), a lower sacrificial layer 442, a second insulating layer 424, an upper sacrificial layer 440, a third insulating layer 426, a top sacrificial layer SF4, and a top insulating layer are stacked on the upper surface 410a of the substrate 410 Layer OL4.

在一些實施例中,基板410可為矽基板或其他合適的基板。第二絕緣層424、第三絕緣層426及頂絕緣層OL4可由氧化物所形成,例如是二氧化矽。下犧牲層442、上犧牲層440及頂犧牲層SF4可由氮化矽(SiN)所形成。 In some embodiments, the substrate 410 may be a silicon substrate or other suitable substrates. The second insulating layer 424, the third insulating layer 426, and the top insulating layer OL4 may be formed of oxide, such as silicon dioxide. The lower sacrificial layer 442, the upper sacrificial layer 440, and the top sacrificial layer SF4 may be formed of silicon nitride (SiN).

請參照第9B圖,形成複數個第一開口452,每個第一開口452穿過疊層本體S4’將一部份基板410暴露於外。在一些實施例中,第一開口452可藉由蝕刻製程所形成,例如是乾蝕刻製程。在一些實施例中,基板410可受到過蝕刻(overetch),使第一開口452的底部低於基板410之上表面410a。 Referring to FIG. 9B, a plurality of first openings 452 are formed, and each of the first openings 452 passes through the laminated body S4' to expose a part of the substrate 410 to the outside. In some embodiments, the first opening 452 may be formed by an etching process, such as a dry etching process. In some embodiments, the substrate 410 may be overetched so that the bottom of the first opening 452 is lower than the upper surface 410a of the substrate 410.

請參照第9C圖,藉由一第一磊晶成長製程形成通道結構412。亦即,在本實施例中,通道結構412的整體(包括下部部分及上部部分)為矽的磊晶成長層。 Referring to FIG. 9C, the channel structure 412 is formed by a first epitaxial growth process. That is, in this embodiment, the entire channel structure 412 (including the lower part and the upper part) is an epitaxial growth layer of silicon.

請參照第9D圖,藉由一蝕刻製程形成穿過頂犧牲層SF4以及頂絕緣層OL4的多個第一溝槽SLT1。 Referring to FIG. 9D, a plurality of first trenches SLT1 passing through the top sacrificial layer SF4 and the top insulating layer OL4 are formed by an etching process.

請參照第9E圖,透過第一溝槽SLT1移除頂犧牲層SF4。頂犧牲層SF4被移除的空間形成一頂部開口460。接著藉由一氧化製程將暴露出的通道結構412的上部分的一側表面形成熱氧化層GO4。在一些實施例中,通道結構412為P型摻雜的多晶矽磊晶成長層,經由氧化製程及高溫,暴露出的通道結構412的側表面形成包括二氧化矽的熱氧化層GO4Referring to FIG. 9E, the top sacrificial layer SF4 is removed through the first trench SLT1. The space where the top sacrificial layer SF4 is removed forms a top opening 460. Then, a thermal oxide layer GO 4 is formed on one side surface of the upper portion of the exposed channel structure 412 by an oxidation process. In some embodiments, the channel structure 412 is a P-type doped polysilicon epitaxial growth layer. After an oxidation process and high temperature, the exposed side surface of the channel structure 412 forms a thermal oxide layer GO 4 including silicon dioxide.

請參照第9F圖,藉由一沉積製程在頂部開口460 及第一溝槽SLT1中沉積一導電材料CL4’。導電材料CL4’可包括鎢(W)、鋁(Al)、氮化鈦(TiN)、氮化鉭(TaN)、摻雜或未摻雜的多晶矽(poly-silicon)或其他合適的材料。 Please refer to Fig. 9F, through a deposition process in the top opening 460 And a conductive material CL4' is deposited in the first trench SLT1. The conductive material CL4' may include tungsten (W), aluminum (Al), titanium nitride (TiN), tantalum nitride (TaN), doped or undoped poly-silicon (poly-silicon) or other suitable materials.

請參照第9G圖,藉由一蝕刻製程移除部分的導電材料CL4’,形成一頂部開口P1,並在第三絕緣層426與頂絕緣層OL4之間形成頂導電層CL4。 Referring to FIG. 9G, a portion of the conductive material CL4' is removed by an etching process to form a top opening P1, and a top conductive layer CL4 is formed between the third insulating layer 426 and the top insulating layer OL4.

請參照第9H圖,藉由一沉積製程,將一絕緣材料填充於頂部開口P1中。 Referring to FIG. 9H, an insulating material is filled in the top opening P1 through a deposition process.

請參照第9I圖,藉由一蝕刻製程,形成穿過頂絕緣層OL4及第三絕緣層426的第二溝槽SLT2,接著移除上犧牲層440,形成上部開口456。此後,藉由一沉積製程,形成沿著第二溝槽SLT2及上部開口456延伸的記憶層462,記憶層462可以由包含氧化鋁(Al2O3,aluminium oxide)、氧化矽(silicon oxide)層、氮化矽(silicon nitride)層和氧化矽層的複合層(即,AONO層)所構成。 Referring to FIG. 9I, a second trench SLT2 passing through the top insulating layer OL4 and the third insulating layer 426 is formed by an etching process, and then the upper sacrificial layer 440 is removed to form an upper opening 456. Thereafter, by a deposition process, a memory layer 462 extending along the second trench SLT2 and the upper opening 456 is formed. The memory layer 462 may be made of aluminum oxide (Al 2 O 3 , aluminum oxide), silicon oxide (silicon oxide) Layer, a composite layer of a silicon nitride layer and a silicon oxide layer (ie, an AONO layer).

請參照第9J圖,藉由一沉積製程,沉積一導電材料472’於記憶層462上。導電材料472’可包括鎢(W)、鋁(Al)、氮化鈦(TiN)、氮化鉭(TaN)或其他合適的導電材料。亦即,導電材料472’填充於第二溝槽SLT2及上部開口456之中。 Referring to FIG. 9J, a conductive material 472' is deposited on the memory layer 462 through a deposition process. The conductive material 472' may include tungsten (W), aluminum (Al), titanium nitride (TiN), tantalum nitride (TaN), or other suitable conductive materials. That is, the conductive material 472' is filled in the second trench SLT2 and the upper opening 456.

請參照第9K圖,藉由一蝕刻製程移除部分的導電材料472’及記憶層462,形成第三溝槽SLT3,並留存位在第二絕緣層424與第三絕緣層426之間的第二導電層472及記憶層462。 Referring to FIG. 9K, a portion of the conductive material 472' and the memory layer 462 are removed by an etching process to form the third trench SLT3, and the third trench SLT3 is left between the second insulating layer 424 and the third insulating layer 426 Two conductive layers 472 and a memory layer 462.

請參照第9L圖,藉由一沉積製程,將一絕緣材料填充在第三溝槽SLT3中。 Referring to FIG. 9L, an insulating material is filled in the third trench SLT3 through a deposition process.

請參照第9M圖,藉由一蝕刻製程,形成穿過下犧牲層442、第二絕緣層424、第三絕緣層426及頂絕緣層OL4的第二開口454。此後,藉由一蝕刻製程從第二開口454移除下犧牲層442,以下犧牲層442被移除的位置形成下部開口458。 Referring to FIG. 9M, a second opening 454 is formed through the lower sacrificial layer 442, the second insulating layer 424, the third insulating layer 426, and the top insulating layer OL4 through an etching process. Thereafter, the lower sacrificial layer 442 is removed from the second opening 454 by an etching process, and a lower opening 458 is formed where the lower sacrificial layer 442 is removed.

請參照第9N圖,藉由一氧化製程將由下部開口458所暴露出的通道結構412的一側表面形成熱氧化層432,並將基板410所暴露出的上表面形成第一絕緣層422。例如,熱氧化層432及第一絕緣層422可分別包括二氧化矽。 Referring to FIG. 9N, a thermal oxide layer 432 is formed on one side surface of the channel structure 412 exposed by the lower opening 458 by an oxidation process, and a first insulating layer 422 is formed on the upper surface exposed by the substrate 410. For example, the thermal oxide layer 432 and the first insulating layer 422 may each include silicon dioxide.

請參照第9O圖,藉由一沉積製程將導電材料430’填充於第二開口454及下部開口458之中。導電材料430’可包括是多晶矽或其他合適的材料。 Referring to FIG. 90, the conductive material 430' is filled in the second opening 454 and the lower opening 458 by a deposition process. The conductive material 430' may include polysilicon or other suitable materials.

請參照第9P圖,藉由一蝕刻製程移除位於第二開口454中的導電材料430’,形成位於下部開口458之中的第一導電層430。在一些實施例中,蝕刻製程可一併移除一部份位於下部開口458中的導電材料。第一導電層430可包括多晶矽或其他合適的導電材料。藉此,便形成包括第一絕緣層422、第一導電層430、第二絕緣層424、第二導電層472、第三絕緣層426、頂導電層CL4及頂絕緣層OL4的疊層結構S4。在一些實施例中,可藉由一離子植佈在通道結構412的頂部及基板410之暴露於第二開口454的表面分別形成摻雜區412c及418,摻雜區412c及418例如是n型半導體之重摻雜區。摻雜412c及418可用於後續製程中形成接觸結構,以分別電性連接於位元線及共同源極線。 Referring to FIG. 9P, the conductive material 430' in the second opening 454 is removed by an etching process to form the first conductive layer 430 in the lower opening 458. In some embodiments, the etching process can remove part of the conductive material in the lower opening 458 at the same time. The first conductive layer 430 may include polysilicon or other suitable conductive materials. Thereby, a laminated structure including the first insulating layer 422, the first conductive layer 430, the second insulating layer 424, the second conductive layer 472, the third insulating layer 426, the top conductive layer CL4, and the top insulating layer OL 4 is formed S4. In some embodiments, doped regions 412c and 418 can be formed by implanting an ion on the top of the channel structure 412 and the surface of the substrate 410 exposed to the second opening 454, respectively. The doped regions 412c and 418 are, for example, n-type Heavily doped regions of semiconductors. The dopants 412c and 418 can be used to form contact structures in subsequent processes to be electrically connected to the bit line and the common source line, respectively.

請參照第9Q圖,藉由一沉積製程,將一絕緣材料填充於第二開口454中,以形成多個隔離結構474。隔離結構474 可包括氧化物或其他合適的絕緣材料。 Referring to FIG. 9Q, through a deposition process, an insulating material is filled in the second opening 454 to form a plurality of isolation structures 474. Isolation structure 474 It may include oxide or other suitable insulating materials.

請參照第9R圖,形成穿過隔離結構474並沿著基板410之上表面410a之法線方向延伸的多個垂直開口459。 Referring to FIG. 9R, a plurality of vertical openings 459 passing through the isolation structure 474 and extending along the normal direction of the upper surface 410a of the substrate 410 are formed.

此後,請回頭參照第1E圖,藉由一沉積製程填充一導電材料於這些垂直開口459中,以形成多個導電連接結構476。導電連接結構476可包括鎢(W)、鋁(Al)、氮化鈦(TiN)或其他合適的導電材料。如此一來,便形成如第1E圖所示的記憶體元件400。 Thereafter, referring back to FIG. 1E, a conductive material is filled in the vertical openings 459 by a deposition process to form a plurality of conductive connection structures 476. The conductive connection structure 476 may include tungsten (W), aluminum (Al), titanium nitride (TiN), or other suitable conductive materials. In this way, a memory device 400 as shown in FIG. 1E is formed.

第10A圖至第10K圖繪示根據本揭露之一實施例之記憶體元件500之形成方法的剖面圖。 10A to 10K are cross-sectional views illustrating a method of forming a memory device 500 according to an embodiment of the disclosure.

請參照第10A圖,提供一基板510,並在基板510的上表面510a上形成一疊層本體S5’,疊層本體S5’包括依序(例如是藉由沉積製程)堆疊於基板510之上表面510a上的一第一絕緣層522、一第一導電層530、一第二絕緣層524、一上犧牲層540、一第三絕緣層526、一頂導電層CL5以及一頂絕緣層OL5。 Referring to FIG. 10A, a substrate 510 is provided, and a laminated body S5' is formed on the upper surface 510a of the substrate 510. The laminated body S5' includes sequentially (for example, by a deposition process) stacked on the substrate 510 A first insulating layer 522, a first conductive layer 530, a second insulating layer 524, an upper sacrificial layer 540, a third insulating layer 526, a top conductive layer CL5, and a top insulating layer OL5 on the surface 510a.

在一些實施例中,基板510可為矽基板或其他合適的基板。一第一絕緣層522、第二絕緣層524、第三絕緣層526及頂絕緣層OL5可由氧化物所形成,例如是二氧化矽。上犧牲層540可由氮化矽(SiN)所形成。 In some embodiments, the substrate 510 may be a silicon substrate or other suitable substrates. A first insulating layer 522, a second insulating layer 524, a third insulating layer 526, and a top insulating layer OL5 may be formed of oxide, such as silicon dioxide. The upper sacrificial layer 540 may be formed of silicon nitride (SiN).

請參照第10B圖,形成複數個第一開口552,每個第一開口552穿過疊層本體S5’將一部份基板510暴露於外。在一些實施例中,第一開口552可藉由蝕刻製程所形成,例如是乾蝕刻製程。在一些實施例中,基板510可受到過蝕刻(overetch),使第一開口552的底部低於基板510之上表面510a。 Referring to FIG. 10B, a plurality of first openings 552 are formed, and each first opening 552 passes through the laminated body S5' to expose a part of the substrate 510 to the outside. In some embodiments, the first opening 552 may be formed by an etching process, such as a dry etching process. In some embodiments, the substrate 510 may be overetched so that the bottom of the first opening 552 is lower than the upper surface 510a of the substrate 510.

請參照第10C圖,藉由一氧化製程將由第一開口552所暴露出的第一導電層530的一側表面形成一部分的氧化物層532’,並將由第一開口552所暴露出的基板510的表面形成一部分的氧化物層532’,以及將頂導電層CL5的一側表面形成一氧化物層GO5。在一些實施例中,第一導電層530及頂導電層CL5分別為n型摻雜的多晶矽層,基板510為矽基板,經由氧化製程及高溫,第一開口552所暴露出的第一導電層530的側表面形成包括二氧化矽的氧化物層532’,並將由第一開口552所暴露出的基板510的表面形成包括二氧化矽層的氧化物層532’。 Referring to FIG. 10C, a portion of the oxide layer 532' is formed on the side surface of the first conductive layer 530 exposed by the first opening 552 by an oxidation process, and the substrate 510 exposed by the first opening 552 forming a portion of a surface of an oxide layer 532 ', and the side surface of the top conductive layer is formed of a CL5 oxide layer GO 5. In some embodiments, the first conductive layer 530 and the top conductive layer CL5 are respectively n-type doped polysilicon layers, and the substrate 510 is a silicon substrate. After an oxidation process and high temperature, the first conductive layer exposed by the first opening 552 An oxide layer 532' including silicon dioxide is formed on the side surface of 530, and an oxide layer 532' including a silicon dioxide layer is formed on the surface of the substrate 510 exposed by the first opening 552.

請參照第10D圖,移除第一開口552中之多餘的氧化物層532’,形成直接接觸於第一導電層530的熱氧化層532,並將基板510暴露出。由於熱氧化層532是經由直接氧化導電層(例如是第一導電層530)所形成的氧化物層,而非是藉由沉積製程(例如是化學氣相沉積(CVD)、物理氣相沉積(PVD)或其他沉積製程)所形成的氧化物層,熱氧化層532之氧化物的純度是大於沉積法所形成的絕緣層(例如是第一絕緣層522、第二絕緣層524或第三絕緣層526)之氧化物的純度。在一些實施例中,藉由一離子植佈將P型之摻雜物植入基板510之中。此P型之摻雜物有助於調整臨界電壓。 Referring to FIG. 10D, the excess oxide layer 532' in the first opening 552 is removed to form a thermal oxide layer 532 directly in contact with the first conductive layer 530, and the substrate 510 is exposed. Since the thermal oxide layer 532 is an oxide layer formed by directly oxidizing the conductive layer (for example, the first conductive layer 530), rather than by a deposition process (for example, chemical vapor deposition (CVD), physical vapor deposition ( For the oxide layer formed by PVD or other deposition processes), the purity of the oxide of the thermal oxide layer 532 is greater than that of the insulating layer formed by the deposition method (for example, the first insulating layer 522, the second insulating layer 524, or the third insulating layer). The purity of the oxide of layer 526). In some embodiments, the P-type dopant is implanted into the substrate 510 by an ion implantation. This P-type dopant helps to adjust the threshold voltage.

請參照第10E圖,藉由一第一磊晶成長製程形成覆蓋熱氧化層532及GO5的通道結構512,熱氧化層532位於第一導電層530與通道結構512之間,熱氧化層GO5位於頂導電層CL5與通道結構512之間。 Referring to FIG. 10E, the channel structure 512 covering the thermal oxide layer 532 and GO 5 is formed by a first epitaxial growth process. The thermal oxide layer 532 is located between the first conductive layer 530 and the channel structure 512, and the thermal oxide layer GO 5 is located between the top conductive layer CL5 and the channel structure 512.

請參照第10F圖,藉由一蝕刻製程形成穿過第一絕 緣層522、第一導電層530、第二絕緣層524、上犧牲層540、第三絕緣層526、頂導電層CL5及頂絕緣層OL5的第二開口554。接著,移除上犧牲層540,以在上犧牲層540被移除的位置形成上部開口556。接著,藉由一離子植佈在通道結構512的頂部及基板510之暴露於第二開口554的表面分別形成摻雜區512c及518,摻雜區512c及518例如是n型半導體之重摻雜區。摻雜512c及518可用於後續製程中形成接觸結構,以分別電性連接於位元線及共同源極線。 Please refer to Figure 10F, through an etching process to form through the first insulation The edge layer 522, the first conductive layer 530, the second insulating layer 524, the upper sacrificial layer 540, the third insulating layer 526, the top conductive layer CL5, and the second opening 554 of the top insulating layer OL5. Next, the upper sacrificial layer 540 is removed to form an upper opening 556 where the upper sacrificial layer 540 is removed. Then, an ion is implanted on the top of the channel structure 512 and the surface of the substrate 510 exposed to the second opening 554 to form doped regions 512c and 518, respectively. The doped regions 512c and 518 are, for example, heavily doped n-type semiconductors. Area. The doping 512c and 518 can be used to form a contact structure in the subsequent process to be electrically connected to the bit line and the common source line, respectively.

請參照第10G圖,藉由一沉積製程,依序形成沿著第二開口554及上部開口556的側壁延伸且覆蓋頂絕緣層OL5的一記憶層562及一介電材料566。記憶層562可以由包含氧化矽(silicon oxide)層、氮化矽(silicon nitride)層和氧化矽層的複合層(即,ONO層)所構成。例如,記憶層562可包括穿隧層、捕捉層及阻擋層。穿隧層可包括二氧化矽(SiO2)、二氧化矽(SiO2)/氮氧化矽(SiON)所形成的雙層結構或其他合適的材料。捕捉層可包括氮化矽、多晶矽或其他合適的材料。阻擋層可包括二氧化矽(SiO2)或其他合適的材料。在一些實施例中,介電材料566可包括一高介電常數材料(high k material),例如是氧化鋁(Al2O3)或其他合適的材料。介電材料566亦可作為阻擋層,以防止電荷側向散逸(lateral diffusion)。 Referring to FIG. 10G, by a deposition process, a memory layer 562 and a dielectric material 566 extending along the sidewalls of the second opening 554 and the upper opening 556 and covering the top insulating layer OL5 are sequentially formed. The memory layer 562 may be composed of a composite layer (ie, an ONO layer) including a silicon oxide layer, a silicon nitride layer, and a silicon oxide layer. For example, the memory layer 562 may include a tunnel layer, a trap layer, and a barrier layer. The tunnel layer may include silicon dioxide (SiO 2 ), a double-layer structure formed of silicon dioxide (SiO 2 )/silicon oxynitride (SiON), or other suitable materials. The capture layer may include silicon nitride, polysilicon, or other suitable materials. The barrier layer may include silicon dioxide (SiO 2 ) or other suitable materials. In some embodiments, the dielectric material 566 may include a high k material, such as aluminum oxide (Al 2 O 3 ) or other suitable materials. The dielectric material 566 can also be used as a barrier layer to prevent lateral diffusion of charges.

請參照第10H圖,藉由一沉積製程將導電材料572’填充於第二開口554及上部開口556之中。導電材料572’可包括鎢(W)、鋁(Al)、氮化鈦(TiN)、氮化鉭(TaN)或其他合適的材料。 Referring to FIG. 10H, the conductive material 572' is filled in the second opening 554 and the upper opening 556 by a deposition process. The conductive material 572' may include tungsten (W), aluminum (Al), titanium nitride (TiN), tantalum nitride (TaN), or other suitable materials.

請參照第10I圖,藉由一蝕刻製程移除位於第二開 口554中的導電材料572’,形成位於上部開口556之中的第二導電層572。此蝕刻製程例如是一乾蝕刻製程。在一些實施例中,蝕刻製程可一併移除一部份位於上部開口556中的導電材料。第二導電層572可包括鎢(W)、鋁(Al)、氮化鈦(TiN)、氮化鉭(TaN)或其他合適的導電材料。在本實施例中,第二導電層572包括鎢(W)。藉此,便形成包括第一絕緣層522、第一導電層530、第二絕緣層524、第二導電層572、第三絕緣層526、頂導電層CL5及頂絕緣層OL5的疊層結構S5。 Please refer to Figure 10I, by an etching process to remove the second opening The conductive material 572' in the opening 554 forms the second conductive layer 572 in the upper opening 556. The etching process is, for example, a dry etching process. In some embodiments, the etching process can also remove part of the conductive material located in the upper opening 556. The second conductive layer 572 may include tungsten (W), aluminum (Al), titanium nitride (TiN), tantalum nitride (TaN), or other suitable conductive materials. In this embodiment, the second conductive layer 572 includes tungsten (W). Thereby, a laminated structure S5 including the first insulating layer 522, the first conductive layer 530, the second insulating layer 524, the second conductive layer 572, the third insulating layer 526, the top conductive layer CL5, and the top insulating layer OL5 is formed. .

請參照第10J圖,藉由一沉積製程,將一絕緣材料填充於第二開口554中,以形成多個隔離結構574。隔離結構574可包括氧化物或其他合適的絕緣材料。 Referring to FIG. 10J, through a deposition process, an insulating material is filled in the second opening 554 to form a plurality of isolation structures 574. The isolation structure 574 may include oxide or other suitable insulating materials.

請參照第10K圖,形成穿過隔離結構574並沿著基板510之上表面510a之法線方向延伸的多個垂直開口559。 Referring to FIG. 10K, a plurality of vertical openings 559 passing through the isolation structure 574 and extending along the normal direction of the upper surface 510a of the substrate 510 are formed.

此後,請回頭參照第1F圖,藉由一沉積製程填充一導電材料於這些垂直開口559中,以形成多個導電連接結構576。導電連接結構576可包括鎢(W)、鋁(Al)、氮化鈦(TiN)或其他合適的導電材料。如此一來,便形成如第1F圖所示的記憶體元件500。 Thereafter, referring back to FIG. 1F, a conductive material is filled in the vertical openings 559 by a deposition process to form a plurality of conductive connection structures 576. The conductive connection structure 576 may include tungsten (W), aluminum (Al), titanium nitride (TiN), or other suitable conductive materials. In this way, a memory device 500 as shown in FIG. 1F is formed.

第11A圖至第11M圖繪示根據本揭露之一實施例之記憶體元件600之形成方法的剖面圖。 11A to 11M are cross-sectional views illustrating a method of forming the memory device 600 according to an embodiment of the disclosure.

請參照第11A圖,提供一基板610,並在基板610的上表面610a上形成一疊層本體S6’,疊層本體S6’包括依序(例如是藉由沉積製程)堆疊於基板610之上表面610a上的一下犧牲層642、一第二絕緣層624、一上犧牲層640、一第三絕緣層626、 一頂犧牲層SF6以及一頂絕緣層OL6。 Referring to FIG. 11A, a substrate 610 is provided, and a laminated body S6' is formed on the upper surface 610a of the substrate 610. The laminated body S6' includes sequentially (for example, by a deposition process) stacked on the substrate 610 On the surface 610a, a lower sacrificial layer 642, a second insulating layer 624, an upper sacrificial layer 640, a third insulating layer 626, A top sacrificial layer SF6 and a top insulating layer OL6.

在一些實施例中,基板610可為矽基板或其他合適的基板。第二絕緣層624、第三絕緣層626及頂絕緣層OL6可由氧化物所形成,例如是二氧化矽。下犧牲層642、上犧牲層640及頂犧牲SF6可由氮化矽(SiN)所形成。 In some embodiments, the substrate 610 may be a silicon substrate or other suitable substrates. The second insulating layer 624, the third insulating layer 626, and the top insulating layer OL6 may be formed of oxide, such as silicon dioxide. The lower sacrificial layer 642, the upper sacrificial layer 640, and the top sacrificial SF6 may be formed of silicon nitride (SiN).

請參照第11B圖,形成複數個第一開口652,每個第一開口652穿過疊層本體S6’將一部份基板610暴露於外。在一些實施例中,第一開口652可藉由蝕刻製程所形成,例如是乾蝕刻製程。在一些實施例中,基板610可受到過蝕刻(overetch),使第一開口652的底部低於基板610之上表面610a。 Referring to FIG. 11B, a plurality of first openings 652 are formed, and each of the first openings 652 passes through the laminated body S6' to expose a part of the substrate 610 to the outside. In some embodiments, the first opening 652 may be formed by an etching process, such as a dry etching process. In some embodiments, the substrate 610 may be overetched so that the bottom of the first opening 652 is lower than the upper surface 610a of the substrate 610.

請參照第11C圖,藉由一第一磊晶成長製程形成通道結構的下部部分612a。亦即,通道結構的下部部分612a為矽的磊晶成長層。通道結構的下部部分612a的頂面的高度是大於下犧牲層642的頂面的高度。 Referring to FIG. 11C, the lower portion 612a of the channel structure is formed by a first epitaxial growth process. That is, the lower part 612a of the channel structure is an epitaxial growth layer of silicon. The height of the top surface of the lower part 612 a of the channel structure is greater than the height of the top surface of the lower sacrificial layer 642.

此後,藉由一離子植佈將P型之摻雜物植入通道結構的下部部分612a之中。此P型之摻雜物有助於調整臨界電壓。 Thereafter, the P-type dopant is implanted into the lower portion 612a of the channel structure by an ion implantation. This P-type dopant helps to adjust the threshold voltage.

請參照第11D圖,形成覆蓋第一開口652之部分側壁及通道結構的下部部分612a的一記憶層662。記憶層662可以由包含氧化矽(silicon oxide)層、氮化矽(silicon nitride)層和氧化矽層的複合層(即,ONO層)所構成。例如,記憶層662可包括穿隧層、捕捉層及阻擋層。穿隧層可包括二氧化矽(SiO2)、二氧化矽(SiO2)/氮氧化矽(SiON)所形成的雙層結構或其他合適的材料。捕捉層可包括氮化矽、多晶矽或其他合適的材料。阻擋層可包括二氧化矽(SiO2)或其他合適的材料。 Referring to FIG. 11D, a memory layer 662 covering part of the sidewall of the first opening 652 and the lower part 612a of the channel structure is formed. The memory layer 662 may be composed of a composite layer (ie, an ONO layer) including a silicon oxide layer, a silicon nitride layer, and a silicon oxide layer. For example, the memory layer 662 may include a tunnel layer, a trap layer, and a barrier layer. The tunnel layer may include silicon dioxide (SiO 2 ), a double-layer structure formed of silicon dioxide (SiO 2 )/silicon oxynitride (SiON), or other suitable materials. The capture layer may include silicon nitride, polysilicon, or other suitable materials. The barrier layer may include silicon dioxide (SiO 2 ) or other suitable materials.

接著,藉由一沉積製成在記憶層662上形成一保護層664。保護層664可防止記憶層662在後續製程中受到破壞。保護層664例如是氮化矽、多晶矽或其他合適的材料。 Then, a protective layer 664 is formed on the memory layer 662 by a deposition process. The protective layer 664 can prevent the memory layer 662 from being damaged in the subsequent manufacturing process. The protective layer 664 is, for example, silicon nitride, polysilicon or other suitable materials.

請參照第11E圖,藉由一蝕刻製程移除部分的記憶層662及保護層664,以暴露出通道結構的下部部分612a。蝕刻製程可為乾蝕刻製程或濕蝕刻製程。 Referring to FIG. 11E, a portion of the memory layer 662 and the protective layer 664 are removed by an etching process to expose the lower portion 612a of the channel structure. The etching process can be a dry etching process or a wet etching process.

請參照第11F圖,藉由浸泡一溶劑移除保護層664,使記憶層662暴露出。此溶劑例如是熱磷酸(H3PO4),然本發明並不限於此,只要是可移除保護層664但不會破壞記憶層662的溶劑即可。 Referring to FIG. 11F, the protective layer 664 is removed by soaking in a solvent, so that the memory layer 662 is exposed. The solvent is, for example, hot phosphoric acid (H 3 PO 4 ), but the present invention is not limited to this, as long as it is a solvent that can remove the protective layer 664 but does not damage the memory layer 662.

請參照第11G圖,藉由一第二磊晶成長製程形成通道結構的上部部分612b’。 Referring to FIG. 11G, the upper portion 612b' of the channel structure is formed by a second epitaxial growth process.

請參照第11H圖,移除部分的上部部分612b’及記憶層662,形成穿過頂絕緣層OL6、頂犧牲層SF6及一部分之第三絕緣層626的垂直開口。此垂直開口的寬度可大於通道結構的下部部分612a的寬度。接著,藉由一第三磊晶成長製程形成通道結構的上部部分612b。 Referring to FIG. 11H, a portion of the upper portion 612b' and the memory layer 662 are removed to form a vertical opening through the top insulating layer OL6, the top sacrificial layer SF6, and a portion of the third insulating layer 626. The width of this vertical opening may be greater than the width of the lower portion 612a of the channel structure. Next, the upper portion 612b of the channel structure is formed by a third epitaxial growth process.

請參照第11I圖,藉由一蝕刻製程形成穿過層疊本體S6’的第二開口654。此蝕刻製程例如是一乾蝕刻製程。之後,可藉由一離子植佈在對應於第二開口654的基板610上形成摻雜區618,並在通道結構612的頂部形成一摻雜區612c。摻雜區612c及618例如是包括重摻雜的n型半導體。或者,形成摻雜區612c及618的步驟可在移除上犧牲層640與下犧牲層642之後進行。 Referring to FIG. 11I, the second opening 654 passing through the laminated body S6' is formed by an etching process. The etching process is, for example, a dry etching process. Afterwards, a doped region 618 can be formed on the substrate 610 corresponding to the second opening 654 by an ion implantation, and a doped region 612c can be formed on the top of the channel structure 612. The doped regions 612c and 618 include, for example, heavily doped n-type semiconductors. Alternatively, the step of forming the doped regions 612c and 618 may be performed after the upper sacrificial layer 640 and the lower sacrificial layer 642 are removed.

請參照第11J圖,藉由一蝕刻製程從第二開口654 移除頂犧牲層SF6、上犧牲層640與下犧牲層642,以分別在頂犧牲層SF6、上犧牲層640與下犧牲層642被移除的位置形成頂部開口660、上部開口656及下部開口658。此蝕刻製程可以是一等向蝕刻(isotropic etching)(例如是溼蝕刻法),且可以是一高選擇性蝕刻,例如是選擇性蝕刻氮化矽而不蝕刻二氧化矽。 Please refer to FIG. 11J, through an etching process from the second opening 654 The top sacrificial layer SF6, the upper sacrificial layer 640, and the lower sacrificial layer 642 are removed to form a top opening 660, an upper opening 656, and a lower opening at the positions where the top sacrificial layer SF6, the upper sacrificial layer 640, and the lower sacrificial layer 642 are removed, respectively 658. The etching process may be isotropic etching (for example, wet etching), and may be a highly selective etching, for example, selective etching of silicon nitride instead of silicon dioxide.

接著,藉由一氧化製程將由下部開口658所暴露出的通道結構612的一側表面形成熱氧化層632,將由下部開口658所暴露出的基板610的上表面610a形成第一絕緣層622,並將由頂部開口660所暴露出的通道結構612的一側表面形成熱氧化層GO6。在一些實施例中,通道結構612為矽的磊晶成長層,經由氧化製程及高溫,頂部開口660所暴露出的通道結構612的側表面及下部開口658所暴露出的通道結構612的側表面分別形成包括二氧化矽的熱氧化層GO6與632。 Next, a thermal oxidation layer 632 is formed on the side surface of the channel structure 612 exposed by the lower opening 658 by an oxidation process, and a first insulating layer 622 is formed on the upper surface 610a of the substrate 610 exposed by the lower opening 658, and A thermal oxide layer GO 6 is formed on the surface of one side of the channel structure 612 exposed by the top opening 660. In some embodiments, the channel structure 612 is an epitaxial growth layer of silicon. After an oxidation process and high temperature, the side surface of the channel structure 612 exposed by the top opening 660 and the side surface of the channel structure 612 exposed by the lower opening 658 Thermal oxide layers GO 6 and 632 including silicon dioxide are formed respectively.

此後,藉由一沉積製程,形成沿著第二開口654、下部開口658、上部開口656及頂部開口660的側壁延伸且覆蓋頂絕緣層OL6的一介電材料666。在一些實施例中,介電材料666可包括一高介電常數材料(high k material),例如是氧化鋁(Al2O3)或其他合適的材料。介電材料666亦可作為阻擋層,以防止電荷側向散逸(lateral diffusion)。 Thereafter, by a deposition process, a dielectric material 666 extending along the sidewalls of the second opening 654, the lower opening 658, the upper opening 656 and the top opening 660 and covering the top insulating layer OL6 is formed. In some embodiments, the dielectric material 666 may include a high k material, such as aluminum oxide (Al 2 O 3 ) or other suitable materials. The dielectric material 666 can also be used as a barrier layer to prevent lateral diffusion of charges.

請參照第11K圖,藉由一沉積製程將導電材料672’填充於第二開口654、頂部開口660、下部開口658及上部開口656之中。導電材料672’可包括是鎢(W)、鋁(Al)、氮化鈦(TiN)、氮化鉭(TaN)或其他合適的材料。 Referring to FIG. 11K, the conductive material 672' is filled in the second opening 654, the top opening 660, the lower opening 658, and the upper opening 656 by a deposition process. The conductive material 672' may include tungsten (W), aluminum (Al), titanium nitride (TiN), tantalum nitride (TaN), or other suitable materials.

請參照第11L圖,藉由一蝕刻製程移除位於第二開 口654中的導電材料672’,形成位於下部開口658之中的第一導電層630、位於上部開口656之中的第二導電層672以及位於頂部開口660之中的頂導電層CL6。此蝕刻製程例如是一乾蝕刻製程。在一些實施例中,蝕刻製程可一併移除一部份位於頂部開口660、上部開口656與下部開口658中的導電材料672’。第一導電層630、第二導電層672及頂導電層CL6可分別包括鎢(W)、鋁(Al)、氮化鈦(TiN)、氮化鉭(TaN)或其他合適的導電材料。在本實施例中,第一導電層630、第二導電層672及頂導電層CL6可包括相同的導電材料,例如是鎢(W)。藉此,便形成包括第一絕緣層622、第一導電層630、第二絕緣層624、第二導電層672、第三絕緣層626、頂導電層CL6及頂絕緣層OL6的疊層結構S6。 Please refer to Figure 11L, by an etching process to remove the second opening The conductive material 672' in the opening 654 forms the first conductive layer 630 in the lower opening 658, the second conductive layer 672 in the upper opening 656, and the top conductive layer CL6 in the top opening 660. The etching process is, for example, a dry etching process. In some embodiments, the etching process can remove part of the conductive material 672' in the top opening 660, the upper opening 656, and the lower opening 658 at the same time. The first conductive layer 630, the second conductive layer 672, and the top conductive layer CL6 may respectively include tungsten (W), aluminum (Al), titanium nitride (TiN), tantalum nitride (TaN) or other suitable conductive materials. In this embodiment, the first conductive layer 630, the second conductive layer 672, and the top conductive layer CL6 may include the same conductive material, such as tungsten (W). Thereby, a stacked structure S6 including the first insulating layer 622, the first conductive layer 630, the second insulating layer 624, the second conductive layer 672, the third insulating layer 626, the top conductive layer CL6, and the top insulating layer OL6 is formed. .

請參照第11M圖,藉由一沉積製程,將一絕緣材料填充於第二開口654中,以形成多個隔離結構674。隔離結構674可包括氧化物或其他合適的絕緣材料。 Referring to FIG. 11M, an insulating material is filled in the second opening 654 by a deposition process to form a plurality of isolation structures 674. The isolation structure 674 may include oxide or other suitable insulating materials.

此後,請回頭參照第1G圖,形成穿過隔離結構674並沿著基板610之上表面610a之法線方向延伸的多個垂直開口,再藉由一沉積製程填充一導電材料於這些垂直開口中,以形成多個導電連接結構676。導電連接結構676可包括鎢(W)、鋁(Al)、氮化鈦(TiN)或其他合適的導電材料。如此一來,便形成如第1G圖所示的記憶體元件600。 After that, please refer back to Figure 1G to form a plurality of vertical openings passing through the isolation structure 674 and extending along the normal direction of the upper surface 610a of the substrate 610, and then a conductive material is filled in the vertical openings by a deposition process , To form a plurality of conductive connection structures 676. The conductive connection structure 676 may include tungsten (W), aluminum (Al), titanium nitride (TiN), or other suitable conductive materials. In this way, a memory device 600 as shown in FIG. 1G is formed.

第12A圖至第12K圖繪示根據本揭露之一實施例之記憶體元件700之形成方法的剖面圖。 12A to 12K are cross-sectional views illustrating a method of forming a memory device 700 according to an embodiment of the disclosure.

請參照第12A圖,提供一基板710,並在基板710的上表面710a上形成一疊層本體S7’,疊層本體S7’包括依序(例 如是藉由沉積製程)堆疊於基板710之上表面710a上的一第一絕緣層722、一第一導電層730、一第二絕緣層724、一上犧牲層740、一第三絕緣層726、一頂導電層CL7以及一頂絕緣層OL7。 Please refer to FIG. 12A, a substrate 710 is provided, and a laminated body S7' is formed on the upper surface 710a of the substrate 710. The laminated body S7' includes sequential (for example (Such as by a deposition process) stacked on the upper surface 710a of the substrate 710, a first insulating layer 722, a first conductive layer 730, a second insulating layer 724, an upper sacrificial layer 740, a third insulating layer 726, A top conductive layer CL7 and a top insulating layer OL7.

在一些實施例中,基板710可為矽基板或其他合適的基板。一第一絕緣層722、第二絕緣層724、第三絕緣層726及頂絕緣層OL7可由氧化物所形成,例如是二氧化矽。下犧牲層742、上犧牲層740及頂絕緣層OL7可由氮化矽(SiN)所形成。 In some embodiments, the substrate 710 may be a silicon substrate or other suitable substrates. A first insulating layer 722, a second insulating layer 724, a third insulating layer 726, and a top insulating layer OL7 may be formed of oxide, such as silicon dioxide. The lower sacrificial layer 742, the upper sacrificial layer 740, and the top insulating layer OL7 may be formed of silicon nitride (SiN).

請參照第12B圖,形成複數個第一開口752,每個第一開口752穿過疊層本體S7’將一部份基板710暴露於外。在一些實施例中,第一開口752可藉由蝕刻製程所形成,例如是乾蝕刻製程。在一些實施例中,基板710可受到過蝕刻(overetch),使第一開口752的底部低於基板710之上表面710a。 Referring to FIG. 12B, a plurality of first openings 752 are formed, and each of the first openings 752 passes through the laminated body S7' to expose a part of the substrate 710 to the outside. In some embodiments, the first opening 752 may be formed by an etching process, such as a dry etching process. In some embodiments, the substrate 710 may be overetched so that the bottom of the first opening 752 is lower than the upper surface 710a of the substrate 710.

請參照第12C圖,藉由一沉積製程在第一開口752的側壁及底部上形成氧化物層732’。在一些實施例中,第一絕緣層722、第二絕緣層724、氧化物層732’、第三絕緣層726及頂絕緣層OL7可由相同的材料所形成。 Referring to FIG. 12C, an oxide layer 732' is formed on the sidewall and bottom of the first opening 752 by a deposition process. In some embodiments, the first insulating layer 722, the second insulating layer 724, the oxide layer 732', the third insulating layer 726, and the top insulating layer OL7 may be formed of the same material.

請參照第12D圖,移除第一開口752中之多餘的氧化物層732’,並將基板510暴露出。在一些實施例中,藉由一離子植佈將P型之摻雜物植入基板710之中。此P型之摻雜物有助於調整臨界電壓。 Referring to FIG. 12D, the excess oxide layer 732' in the first opening 752 is removed, and the substrate 510 is exposed. In some embodiments, the P-type dopant is implanted into the substrate 710 by an ion implantation. This P-type dopant helps to adjust the threshold voltage.

請參照第12E圖,藉由一第一磊晶成長製程形成覆蓋氧化物層732’的通道結構712。 Referring to FIG. 12E, the channel structure 712 covering the oxide layer 732' is formed by a first epitaxial growth process.

請參照第12F圖,藉由一蝕刻製程形成穿過第一絕緣層722、第一導電層730、第二絕緣層724、上犧牲層740、第 三絕緣層726、頂導電層CL7及頂絕緣層OL7的第二開口754。接著,移除上犧牲層740,以在上犧牲層740被移除的位置形成上部開口756。接著,藉由一離子植佈在通道結構712的頂部及基板710之暴露於第二開口754的表面分別形成摻雜區712c及718,摻雜區712c及718例如是n型半導體之重摻雜區。摻雜712c及718可用於後續製程中形成接觸結構,以分別電性連接於位元線及共同源極線。 Referring to FIG. 12F, the first insulating layer 722, the first conductive layer 730, the second insulating layer 724, the upper sacrificial layer 740, and the first insulating layer 722 are formed through an etching process. The third insulating layer 726, the top conductive layer CL7, and the second opening 754 of the top insulating layer OL7. Next, the upper sacrificial layer 740 is removed to form an upper opening 756 where the upper sacrificial layer 740 is removed. Then, an ion is implanted on the top of the channel structure 712 and the surface of the substrate 710 exposed to the second opening 754 to form doped regions 712c and 718, respectively. The doped regions 712c and 718 are, for example, heavily doped n-type semiconductors. Area. The dopants 712c and 718 can be used to form contact structures in the subsequent process to be electrically connected to the bit line and the common source line, respectively.

請參照第12G圖,移除對應於上部開口756的氧化物層732’(亦即是移除氧化物層732’的中間部分),此後藉由一沉積製程,依序形成沿著第二開口754及上部開口756的側壁延伸且覆蓋頂絕緣層OL7的一記憶層762及一介電材料766。記憶層762可以由包含氧化矽(silicon oxide)層、氮化矽(silicon nitride)層和氧化矽層的複合層(即,ONO層)所構成。例如,記憶層762可包括穿隧層、捕捉層及阻擋層。穿隧層可包括二氧化矽(SiO2)、二氧化矽(SiO2)/氮氧化矽(SiON)所形成的雙層結構或其他合適的材料。捕捉層可包括氮化矽、多晶矽或其他合適的材料。阻擋層可包括二氧化矽(SiO2)或其他合適的材料。在一些實施例中,介電材料766可包括一高介電常數材料(high k material),例如是氧化鋁(Al2O3)或其他合適的材料。介電材料766亦可作為阻擋層,以防止電荷側向散逸(lateral diffusion)。 Please refer to Figure 12G, remove the oxide layer 732' corresponding to the upper opening 756 (that is, remove the middle part of the oxide layer 732'), and then through a deposition process, sequentially form along the second opening The sidewalls of 754 and the upper opening 756 extend and cover a memory layer 762 and a dielectric material 766 of the top insulating layer OL7. The memory layer 762 may be composed of a composite layer (ie, an ONO layer) including a silicon oxide layer, a silicon nitride layer, and a silicon oxide layer. For example, the memory layer 762 may include a tunneling layer, a trapping layer, and a barrier layer. The tunnel layer may include silicon dioxide (SiO 2 ), a double-layer structure formed of silicon dioxide (SiO 2 )/silicon oxynitride (SiON), or other suitable materials. The capture layer may include silicon nitride, polysilicon, or other suitable materials. The barrier layer may include silicon dioxide (SiO 2 ) or other suitable materials. In some embodiments, the dielectric material 766 may include a high k material, such as aluminum oxide (Al 2 O 3 ) or other suitable materials. The dielectric material 766 can also serve as a barrier layer to prevent lateral diffusion of charges.

請參照第12H圖,藉由一沉積製程將導電材料772’填充於第二開口754及上部開口756之中。導電材料772’可包括鎢(W)、鋁(Al)、氮化鈦(TiN)、氮化鉭(TaN)或其他合適的材料。 Referring to FIG. 12H, the conductive material 772' is filled in the second opening 754 and the upper opening 756 by a deposition process. The conductive material 772' may include tungsten (W), aluminum (Al), titanium nitride (TiN), tantalum nitride (TaN), or other suitable materials.

請參照第12I圖,藉由一蝕刻製程移除位於第二開 口754中的導電材料772’,形成位於上部開口756之中的第二導電層772。此蝕刻製程例如是一乾蝕刻製程。在一些實施例中,蝕刻製程可一併移除一部份位於上部開口756中的導電材料。第二導電層772可包括鎢(W)、鋁(Al)、氮化鈦(TiN)、氮化鉭(TaN)或其他合適的導電材料。在本實施例中,第二導電層772包括鎢(W)。藉此,便形成包括第一絕緣層722、第一導電層730、第二絕緣層724、第二導電層772、第三絕緣層726、頂導電層CL7及頂絕緣層OL7的疊層結構S7。 Please refer to Figure 12I, the second opening is removed by an etching process The conductive material 772' in the opening 754 forms the second conductive layer 772 in the upper opening 756. The etching process is, for example, a dry etching process. In some embodiments, the etching process can remove part of the conductive material in the upper opening 756 at the same time. The second conductive layer 772 may include tungsten (W), aluminum (Al), titanium nitride (TiN), tantalum nitride (TaN), or other suitable conductive materials. In this embodiment, the second conductive layer 772 includes tungsten (W). Thereby, a laminated structure S7 including the first insulating layer 722, the first conductive layer 730, the second insulating layer 724, the second conductive layer 772, the third insulating layer 726, the top conductive layer CL7, and the top insulating layer OL7 is formed. .

請參照第12J圖,藉由一沉積製程,將一絕緣材料填充於第二開口754中,以形成多個隔離結構774。隔離結構774可包括氧化物或其他合適的絕緣材料。 Referring to FIG. 12J, through a deposition process, an insulating material is filled in the second opening 754 to form a plurality of isolation structures 774. The isolation structure 774 may include oxide or other suitable insulating materials.

請參照第12K圖,形成穿過隔離結構774並沿著基板710之上表面710a之法線方向延伸的多個垂直開口759。 Referring to FIG. 12K, a plurality of vertical openings 759 passing through the isolation structure 774 and extending along the normal direction of the upper surface 710a of the substrate 710 are formed.

此後,請回頭參照第1H圖,藉由一沉積製程填充一導電材料於這些垂直開口759中,以形成多個導電連接結構776。導電連接結構776可包括鎢(W)、鋁(Al)、氮化鈦(TiN)或其他合適的導電材料。如此一來,便形成如第1H圖所示的記憶體元件700。 After that, please refer back to FIG. 1H, and a conductive material is filled in the vertical openings 759 by a deposition process to form a plurality of conductive connection structures 776. The conductive connection structure 776 may include tungsten (W), aluminum (Al), titanium nitride (TiN), or other suitable conductive materials. In this way, a memory device 700 as shown in FIG. 1H is formed.

第13~15圖繪示根據本揭露之一實施例之操作記憶體元件400、500、600或700的等效電路圖。 13 to 15 are equivalent circuit diagrams of operating memory devices 400, 500, 600, or 700 according to an embodiment of the present disclosure.

記憶體元件400、500、600或700可為三維反或閘(NOR)型記憶體元件。在第13~15圖中,記憶體元件400、500、600或700的陣列區中示例性繪示2條串列選擇線SSL0、SSL1,2條字元線WL0、WL1,2條位元線BL0、BL1以及2條接地選 擇線GSL0、GSL1。然而,本發明並不限於此,串列選擇線、字元線、位元線及接地選擇線的數量可以分別大於2。每個字元線與通道結構的重疊位置形成記憶胞M,每個接地選擇線與通道結構的重疊位置形成電晶體T,每個串列選擇線與通道結構的重疊位置形成電晶體TS。記憶胞M位於電晶體T的上方,電晶體TS位於記憶胞M的上方,且通道結構串聯電晶體TS、記憶胞M與電晶體T。一個電晶體TS、一個記憶胞M與一個電晶體T可共同形成一單元記憶胞(unit cell)UN。每個電晶體T電性連接於共同源極線CSL。字元線(例如是WL0、WL1)之間可藉由隔離結構所電性隔離。 The memory device 400, 500, 600, or 700 may be a three-dimensional NOR-type memory device. In Figures 13-15, two serial selection lines SSL0, SSL1, two word lines WL0, WL1, and two bit lines are illustrated in the array area of the memory element 400, 500, 600, or 700. BL0, BL1 and 2 grounding options Select the lines GSL0, GSL1. However, the present invention is not limited to this, and the number of serial selection lines, word lines, bit lines, and ground selection lines may be greater than two, respectively. The overlapping position of each word line and the channel structure forms a memory cell M, the overlapping position of each ground selection line and the channel structure forms a transistor T, and the overlapping position of each serial selection line and the channel structure forms a transistor TS. The memory cell M is located above the transistor T, the transistor TS is located above the memory cell M, and the channel structure is connected in series with the transistor TS, the memory cell M, and the transistor T. A transistor TS, a memory cell M and a transistor T can jointly form a unit cell UN. Each transistor T is electrically connected to the common source line CSL. The word lines (such as WL0 and WL1) can be electrically isolated by the isolation structure.

第13圖繪示根據本揭露之一實施例之藉由福勒-諾德漢注入(Fowler-Nordheim injection)進行編程操作之記憶體元件的等效電路圖。 FIG. 13 is an equivalent circuit diagram of a memory device programmed by Fowler-Nordheim injection according to an embodiment of the present disclosure.

請參照第13圖,欲對目標單元記憶胞UNt進行編程操作,串列選擇線SSL0、字元線WL0及接地選擇線GSL0為選擇,串列選擇線SSL0施加導通電壓Vpass,字元線WL0施加編程電壓Vpgm1,接地選擇線GSL0施加0V。串列選擇線SSL1、字元線WL1及接地選擇線GSL1為未選擇,施加0伏特(V)。共同源極線施加一共同源極電壓VCSL。位元線BL0施加0V。位元線BL1施加抑制電壓Vinhibit。耦接於位元線BL1的單元記憶胞則被抑制。在一實施例中,導通電壓Vpass大於抑制電壓Vinhibit,以傳送抑制電壓Vinhibit至單元記憶胞中。在一實施例中,導通電壓Vpass等於抑制電壓Vinhibit,用於自我升壓(self-boosting),且可減輕編程的干擾。 Please refer to Figure 13. To program the target cell UN t , the serial selection line SSL0, the word line WL0 and the ground selection line GSL0 are selected, the serial selection line SSL0 is applied with the turn-on voltage Vpass, and the word line WL0 The programming voltage Vpgm1 is applied, and 0V is applied to the ground selection line GSL0. The serial selection line SSL1, the word line WL1, and the ground selection line GSL1 are not selected, and 0 volt (V) is applied. The common source line applies a common source voltage V CSL . 0V is applied to the bit line BL0. The bit line BL1 applies the inhibit voltage V inhibit . The cell memory cell coupled to the bit line BL1 is inhibited. In one embodiment, the turn-on voltage Vpass is greater than the inhibiting voltage V inhibit to transmit the inhibiting voltage V inhibit to the unit cell. In one embodiment, the turn-on voltage Vpass is equal to the inhibiting voltage V inhibit , which is used for self-boosting and can reduce programming interference.

第14A圖繪示根據本揭露之一實施例之藉由福勒-諾德漢注入進行抹除操作之記憶體元件的等效電路圖。 FIG. 14A is an equivalent circuit diagram of a memory device that is erased by Fowler-Nordham injection according to an embodiment of the present disclosure.

請參照第14A圖,欲對目標單元記憶胞UNt(例如是包括不同串列的2個記憶胞與4個電晶體)進行抹除操作,串列選擇線SSL0、字元線WL0及接地選擇線GSL0為選擇。串列選擇線SSL0施加抹除電壓Vers3或為浮接。字元線WL0施加0V。接地選擇線GSL0施加抹除電壓Vers2。串列選擇線SSL1、字元線WL1及接地選擇線GSL1為未選擇,皆為浮接。共同源極線施加一共同源極電壓VCSL。P型井(p well)施加一P型井電壓VPWI。週邊電路施加一抹除電壓Vers1。位元線BL0與BL1為浮接。共同源極電壓VCSL可相同於抹除電壓Vers1及P型井電壓VPWIPlease refer to Figure 14A. To erase the target cell UN t (for example, 2 memory cells and 4 transistors in different series), serial selection line SSL0, word line WL0 and ground selection The line GSL0 is selected. The serial selection line SSL0 applies the erase voltage Vers3 or is floating. 0V is applied to the word line WL0. The ground selection line GSL0 applies the erase voltage Vers2. The serial selection line SSL1, the word line WL1, and the ground selection line GSL1 are unselected and all floating. The common source line applies a common source voltage V CSL . P-type well (p well) applies a P-type well voltage V PWI . An erase voltage Vers1 is applied to the peripheral circuit. The bit lines BL0 and BL1 are floating. The common source voltage V CSL may be the same as the erase voltage Vers1 and the P-well voltage V PWI .

第14B圖繪示根據本揭露之一實施例之藉由帶對帶穿隧誘發熱電洞進行抹除操作之記憶體元件的等效電路圖。 FIG. 14B is an equivalent circuit diagram of a memory device in which the thermal holes induced by band tunneling are erased by band tunneling according to an embodiment of the present disclosure.

請參照第14B圖,欲對目標單元記憶胞UNt進行抹除操作,串列選擇線SSL0、字元線WL0及接地選擇線GSL0為選擇。串列選擇線SSL0施加導通電壓Vpass。接地選擇線GSL0施加0V。字元線WL0施加一接地抹除電壓Vgers。接地抹除電壓Vgers可小於0。串列選擇線SSL1、字元線WL1及接地選擇線GSL1為未選擇,施加0伏特(V)。位元線BL0可施加一汲極抹除電壓Vders。汲極抹除電壓Vders可大於0。位元線BL1可施加0V。共同源極線施加一共同源極電壓VCSLPlease refer to FIG. 14B. To perform an erase operation on the target cell UN t , the serial selection line SSL0, the word line WL0, and the ground selection line GSL0 are selected. The serial selection line SSL0 applies a turn-on voltage Vpass. 0V is applied to the ground selection line GSL0. The word line WL0 is applied with a ground erase voltage Vgers. The ground erase voltage Vgers can be less than zero. The serial selection line SSL1, the word line WL1, and the ground selection line GSL1 are not selected, and 0 volt (V) is applied. The bit line BL0 can be applied with a drain erase voltage Vders. The drain erase voltage Vders can be greater than zero. 0V can be applied to the bit line BL1. The common source line applies a common source voltage V CSL .

第15圖繪示根據本揭露之一實施例之讀取操作之記憶體元件的等效電路圖。 FIG. 15 is an equivalent circuit diagram of a memory device in a read operation according to an embodiment of the disclosure.

請參照第15圖,欲對目標單元記憶胞UNt(例如是 包括不同記憶體串列的2個記憶胞與4個電晶體)進行讀取操作,串列選擇線SSL0、字元線WL0及接地選擇線GSL0為選擇。串列選擇線SSL0可施加一電源電壓VCC。字元線WL0可施加0V。接地選擇線GSL0可施加一電源電壓VCC。串列選擇線SSL1、字元線WL1及接地選擇線GSL1為未選擇,施加0伏特(V)。位元線BL0與BL1可施加一位元線讀取電壓Vblr。共同源極線施加一共同源極電壓VCSL。在本發明的記憶體元件中進行讀取操作時,所有施加於位元線、字元線、接地選擇線的電壓可等於或小於電源電壓VCC,故能夠降低功耗。 Please refer to Figure 15. To perform a read operation on the target cell UN t (for example, 2 memory cells and 4 transistors including different memory series), the serial select line SSL0, the word line WL0 and The ground selection line GSL0 is selected. A power supply voltage V CC can be applied to the serial selection line SSL0. The word line WL0 can be applied with 0V. A power supply voltage V CC can be applied to the ground selection line GSL0. The serial selection line SSL1, the word line WL1, and the ground selection line GSL1 are not selected, and 0 volt (V) is applied. The bit lines BL0 and BL1 can be applied with a bit line read voltage Vblr. The common source line applies a common source voltage V CSL . When performing a read operation in the memory device of the present invention, all voltages applied to the bit line, word line, and ground selection line can be equal to or less than the power supply voltage V CC , so power consumption can be reduced.

本案提供一種記憶體元件、其之製作方法及其之操作方法。由於本案的記憶體元件為三維結構,可應用於反或閘記憶體元件,相較於一般二維的反或閘記憶體元件而言具有更小的單元記憶胞之面積。再者,本案的記憶體元件可使用高介電常數材料做為介電材料,可不需要太高的電壓即可進行記憶體元件之操作(例如是抹除、寫入、編程)。並且,根據本案之一實施例,通道結構為一磊晶成長層,相較於通道結構僅部分包括磊晶成長層或主要由多晶矽層所形成的比較例而言具有較佳的電特性,使得接地選擇線可獲得較佳的控制能力,臨界電壓可較為小且分布較為集中(tight distribution)。此外,本案的熱氧化層是藉由直接對於第一導電層或通道結構進行氧化製程所形成的氧化物,相較於一般藉由沉積法形成的熱氧化層而言,可具有較高的氧化物純度,故有利於臨界電壓之調控,可具有較小的臨界電壓。因此,本案之記憶體元件可具有較低之能耗,具備較佳之可靠度且效能亦可獲得改善。 This case provides a memory device, its manufacturing method and its operation method. Since the memory device of the present application has a three-dimensional structure, it can be applied to an inverted or gate memory device, and has a smaller unit memory cell area than a general two-dimensional inverted or gate memory device. Furthermore, the memory device of the present application can use a high dielectric constant material as the dielectric material, and the operation of the memory device (such as erasing, writing, and programming) can be performed without too high voltage. Moreover, according to an embodiment of the present case, the channel structure is an epitaxial growth layer, which has better electrical characteristics than the comparative example where the channel structure only partially includes an epitaxial growth layer or is mainly formed by a polysilicon layer, so that The ground selection line can obtain better control ability, the critical voltage can be smaller and the distribution is more concentrated (tight distribution). In addition, the thermal oxide layer in this case is an oxide formed by directly oxidizing the first conductive layer or the channel structure. Compared with the thermal oxide layer formed by the general deposition method, it can have higher oxidation. The purity of the material is beneficial to the regulation of the threshold voltage, and it can have a smaller threshold voltage. Therefore, the memory device of the present application can have lower energy consumption, better reliability, and performance can be improved.

綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 To sum up, although the present invention has been disclosed as above by embodiments, it is not intended to limit the present invention. Those with ordinary knowledge in the technical field to which the present invention belongs can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention shall be subject to those defined by the attached patent scope.

100:記憶體元件 100: memory components

110:基板 110: substrate

110a:上表面 110a: upper surface

112:通道結構 112: Channel structure

112a:下部部分 112a: lower part

112b:上部部分 112b: upper part

112c、118:摻雜區 112c, 118: doped area

112t、172t:頂面 112t, 172t: top surface

122:第一絕緣層 122: first insulating layer

124:第二絕緣層 124: second insulating layer

126:第三絕緣層 126: third insulating layer

128:蓋層 128: cap layer

130:第一導電層 130: first conductive layer

132:熱氧化層 132: Thermal oxide layer

162:記憶層 162: Memory Layer

166:介電材料 166: Dielectric materials

172:第二導電層 172: second conductive layer

174:隔離結構 174: Isolation structure

176:導電連接結構 176: Conductive connection structure

A、A’:剖面線端點 A, A’: End of section line

H1:第一高度 H 1 : first height

H2:第二高度 H 2 : second height

M1:記憶胞 M 1 : memory cell

S1:疊層結構 S1: laminated structure

T1:電晶體 T 1 : Transistor

UN1:單元記憶胞 UN 1 : unit memory cell

Claims (10)

一種記憶體元件,包括:一基板,具有一上表面;一疊層結構,位於該基板之該上表面上,其中該疊層結構包括依序堆疊於該基板上的一第一絕緣層、一第一導電層、一第二絕緣層、一第二導電層以及一第三絕緣層;複數個通道結構,穿過該疊層結構並電性連接於該基板,其中各該通道結構包括一上部部分及一下部部分,該上部部分對應於該第二導電層,該下部部分對應於該第一導電層;一記憶層,位於該第二導電層與該上部部分之間;以及複數個隔離結構,穿過該疊層結構以將該疊層結構分隔為複數個次堆疊;其中該些隔離結構是由絕緣材料所形成;其中各該隔離結構具有一第一側及相對於該第一側的一第二側,該第一側連接於該些次堆疊中的一第一次堆疊,該第二側連接於該些次堆疊中的一第二次堆疊,其中該通道結構的一頂面與該基板之該上表面之間具有一第一高度,該第二導電層的一頂面與該基板之該上表面之間具有一第二高度,該第一高度是大於該第二高度。 A memory device includes: a substrate having an upper surface; a laminated structure located on the upper surface of the substrate, wherein the laminated structure includes a first insulating layer and a first insulating layer sequentially stacked on the substrate A first conductive layer, a second insulating layer, a second conductive layer, and a third insulating layer; a plurality of channel structures passing through the laminated structure and electrically connected to the substrate, wherein each channel structure includes an upper portion Part and a lower part, the upper part corresponds to the second conductive layer, the lower part corresponds to the first conductive layer; a memory layer located between the second conductive layer and the upper part; and a plurality of isolation structures , Passing through the stacked structure to separate the stacked structure into a plurality of sub-stacks; wherein the isolation structures are formed of insulating materials; wherein each of the isolation structures has a first side and a side opposite to the first side A second side, the first side is connected to a first one of the sub-stacks, and the second side is connected to a second one of the sub-stacks, wherein a top surface of the channel structure and There is a first height between the upper surfaces of the substrate, a second height is between a top surface of the second conductive layer and the upper surface of the substrate, and the first height is greater than the second height. 如申請專利範圍第1項所述之記憶體元件,其中各該通道結構是一磊晶成長層。 In the memory device described in claim 1, wherein each of the channel structures is an epitaxial growth layer. 如申請專利範圍第1項所述之記憶體元件,更包括一 熱氧化層,位於該第一導電層與各該通道結構之間,其中該熱氧化層之氧化物的純度高於該第一絕緣層之氧化物的純度。 The memory device described in item 1 of the scope of patent application includes a The thermal oxide layer is located between the first conductive layer and each of the channel structures, wherein the purity of the oxide of the thermal oxide layer is higher than the purity of the oxide of the first insulating layer. 一種記憶體元件的製作方法,包括:提供一基板,該基板具有一上表面;在該基板之該上表面上形成一疊層本體,其中該疊層本體包括依序堆疊於該基板之該上表面上的一第一絕緣層、一第一導電層、一第二絕緣層、一上犧牲層以及一第三絕緣層;形成穿過該疊層本體的複數個第一開口;形成複數個通道結構於該些第一開口中,且該些通道結構電性連接於該基板,其中各該通道結構包括一上部部分及一下部部分,該下部部分對應於該第一導電層,該上部部分位於該下部部分的上方;形成對應於該上部部分的一記憶層;形成穿過該疊層本體的複數個第二開口;移除該上犧牲層並在該上犧牲層被移除的位置形成一上部開口;填充一導電材料於該上部開口中以形成一第二導電層,如此便形成包括該第一絕緣層、該第一導電層、該第二絕緣層、該第二導電層以及該第三絕緣層的一疊層結構;以及在該些第二開口中形成複數個隔離結構,該些隔離結構將該疊層結構分隔為複數個次堆疊。 A method for manufacturing a memory device includes: providing a substrate, the substrate having an upper surface; forming a laminated body on the upper surface of the substrate, wherein the laminated body includes the upper surface of the substrate sequentially stacked A first insulating layer, a first conductive layer, a second insulating layer, an upper sacrificial layer, and a third insulating layer on the surface; forming a plurality of first openings through the laminated body; forming a plurality of channels The structure is in the first openings, and the channel structures are electrically connected to the substrate. Each channel structure includes an upper portion and a lower portion. The lower portion corresponds to the first conductive layer, and the upper portion is located at Above the lower portion; forming a memory layer corresponding to the upper portion; forming a plurality of second openings through the laminated body; removing the upper sacrificial layer and forming a memory layer at the position where the upper sacrificial layer is removed Upper opening; filling a conductive material in the upper opening to form a second conductive layer, thus forming a first insulating layer, the first conductive layer, the second insulating layer, the second conductive layer and the first A stacked structure of three insulating layers; and a plurality of isolation structures are formed in the second openings, and the isolation structures separate the stacked structure into a plurality of sub-stacks. 如申請專利範圍第4項所述之記憶體元件的製作方法, 更包括:藉由一氧化製程將該第一導電層的一側表面形成一熱氧化層;藉由一第一磊晶成長製程形成覆蓋該熱氧化層的各該通道結構的該下部部分,該熱氧化層位於該第一導電層與各該通道結構的該下部部分之間,且該熱氧化層之氧化物的純度高於該第一絕緣層之氧化物的純度。 The manufacturing method of the memory device as described in item 4 of the scope of patent application, It further includes: forming a thermal oxide layer on one side surface of the first conductive layer by an oxidation process; forming the lower portion of each channel structure covering the thermal oxide layer by a first epitaxial growth process, the The thermal oxide layer is located between the first conductive layer and the lower portion of each of the channel structures, and the purity of the oxide of the thermal oxide layer is higher than the purity of the oxide of the first insulating layer. 如申請專利範圍第5項所述之記憶體元件的製作方法,其中各該通道結構的該上部部分以及該下部部分是藉由該第一磊晶成長製程。 According to the method for fabricating a memory device as described in claim 5, the upper part and the lower part of each of the channel structures are formed by the first epitaxial growth process. 如申請專利範圍第5項所述之記憶體元件的製作方法,其中在形成該下部部分的步驟之後,該記憶層是在形成該上部部分之前先形成於各該第一開口的側壁上,且該上部部分是藉由一第二磊晶成長製程所形成。 The method for fabricating a memory device as described in claim 5, wherein after the step of forming the lower portion, the memory layer is formed on the sidewall of each of the first openings before forming the upper portion, and The upper part is formed by a second epitaxial growth process. 一種記憶體元件的製作方法,包括:提供一基板,該基板具有一上表面;在該基板之該上表面上形成一疊層本體,其中該疊層本體包括依序堆疊於該基板之該上表面上的一第一絕緣層、一下犧牲層、一第二絕緣層、一上犧牲層以及一第三絕緣層;形成穿過該疊層本體的複數個第一開口;形成複數個通道結構的複數個下部部分於該些第一開口中; 在各該第一開口中形成對應於該上犧牲層的一記憶層;形成該些通道結構的複數個上部部分於該些第一開口中,該些上部部分位於該些下部部分之上;形成穿過該疊層本體的複數個第二開口;移除該上犧牲層及該下犧牲層,並分別在該上犧牲層與該下犧牲層被移除的位置形成一上部開口及一下部開口;填充一導電材料於該上部開口與該下部開口中以分別形成一第二導電層及一第一導電層,如此便形成包括該第一絕緣層、該第一導電層、該第二絕緣層、該第二導電層以及該第三絕緣層的一疊層結構;以及在該些第二開口中形成複數個隔離結構,該些隔離結構將該疊層結構分隔為複數個次堆疊。 A method for manufacturing a memory device includes: providing a substrate, the substrate having an upper surface; forming a laminated body on the upper surface of the substrate, wherein the laminated body includes the upper surface of the substrate sequentially stacked A first insulating layer, a lower sacrificial layer, a second insulating layer, an upper sacrificial layer, and a third insulating layer on the surface; forming a plurality of first openings through the laminated body; forming a plurality of channel structures A plurality of lower parts are in the first openings; A memory layer corresponding to the upper sacrificial layer is formed in each of the first openings; a plurality of upper parts forming the channel structures are in the first openings, and the upper parts are located on the lower parts; forming A plurality of second openings passing through the laminated body; removing the upper sacrificial layer and the lower sacrificial layer, and respectively forming an upper opening and a lower opening at the positions where the upper sacrificial layer and the lower sacrificial layer are removed ; Fill a conductive material in the upper opening and the lower opening to respectively form a second conductive layer and a first conductive layer, thus forming the first insulating layer, the first conductive layer, and the second insulating layer , A stacked structure of the second conductive layer and the third insulating layer; and a plurality of isolation structures are formed in the second openings, and the isolation structures separate the stacked structure into a plurality of sub-stacks. 如申請專利範圍第8項所述之記憶體元件的製作方法,其中在形成該些第一開口之後更包括:藉由一第一磊晶成長製程形成該些通道結構的該些下部部分;以及在形成該記憶層於該下部部分之上之後,藉由一第二磊晶成長製程形成該些通道結構的該些上部部分。 The manufacturing method of the memory device as described in claim 8, wherein after forming the first openings, it further comprises: forming the lower portions of the channel structures by a first epitaxial growth process; and After forming the memory layer on the lower part, the upper parts of the channel structures are formed by a second epitaxial growth process. 如申請專利範圍第8項所述之記憶體元件的製作方法,其中在形成該些第二開口的步驟之後,更包括:進行一氧化製程,以將該些下部部分的部分側面形成一熱氧化層,其中該熱氧化層之氧化物的純度高於該第一絕緣層之氧化 物的純度;以及沉積一介電材料於該上部開口之一側壁上及該下部開口之一側壁上。 The method for manufacturing a memory device as described in claim 8, wherein after the step of forming the second openings, it further comprises: performing an oxidation process to form a thermal oxidation on part of the side surfaces of the lower parts Layer, wherein the purity of the oxide of the thermal oxide layer is higher than that of the first insulating layer The purity of the material; and depositing a dielectric material on a side wall of the upper opening and a side wall of the lower opening.
TW108147915A 2019-12-26 2019-12-26 Memory device and method for fabricating the same TWI722742B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108147915A TWI722742B (en) 2019-12-26 2019-12-26 Memory device and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108147915A TWI722742B (en) 2019-12-26 2019-12-26 Memory device and method for fabricating the same

Publications (2)

Publication Number Publication Date
TWI722742B true TWI722742B (en) 2021-03-21
TW202125778A TW202125778A (en) 2021-07-01

Family

ID=76036087

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108147915A TWI722742B (en) 2019-12-26 2019-12-26 Memory device and method for fabricating the same

Country Status (1)

Country Link
TW (1) TWI722742B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11776925B2 (en) 2021-06-30 2023-10-03 Micron Technology, Inc. Methods of forming microelectronic devices, and related microelectronic devices and electronic systems
US11930634B2 (en) 2021-06-30 2024-03-12 Micron Technology, Inc. Methods of forming microelectronic devices
US11842990B2 (en) 2021-06-30 2023-12-12 Micron Technology, Inc. Microelectronic devices and electronic systems
US11810838B2 (en) 2021-06-30 2023-11-07 Micron Technology, Inc. Microelectronic devices, and related electronic systems and methods of forming microelectronic devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180114722A1 (en) * 2016-10-25 2018-04-26 Kwang Chul PARK Deposition apparatus including uv annealing unit and method for fabricating non-volatile memory device by using the deposition apparatus
TWI668846B (en) * 2019-01-14 2019-08-11 旺宏電子股份有限公司 Crenellated charge storage structures for 3d nand

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180114722A1 (en) * 2016-10-25 2018-04-26 Kwang Chul PARK Deposition apparatus including uv annealing unit and method for fabricating non-volatile memory device by using the deposition apparatus
TWI668846B (en) * 2019-01-14 2019-08-11 旺宏電子股份有限公司 Crenellated charge storage structures for 3d nand

Also Published As

Publication number Publication date
TW202125778A (en) 2021-07-01

Similar Documents

Publication Publication Date Title
TWI722742B (en) Memory device and method for fabricating the same
US8748966B2 (en) Three dimensional non-volatile memory device and method of manufacturing the same
US7910430B2 (en) NAND flash memory device and method of manufacturing the same
US9293204B2 (en) Non-volatile memory cell with self aligned floating and erase gates, and method of making same
US7256448B2 (en) Split gate type nonvolatile semiconductor memory device, and method of fabricating the same
US20190355744A1 (en) Semiconductor device and method of manufacturing the same
US7951671B2 (en) Method of fabricating non-volatile memory device having separate charge trap patterns
US9230971B2 (en) NAND string containing self-aligned control gate sidewall cladding
US11315946B2 (en) Vertical semiconductor device and method of fabricating the same
KR20100092666A (en) Nonvolatile memory cell and fabrication method thereof
CN112802856A (en) Semiconductor device with a plurality of transistors
CN102412132A (en) Eeprom cell
US20080171429A1 (en) Semiconductor device including a floating gate electrode having stacked structure
US7750393B2 (en) Non-volatile memory device with independent channel regions adjacent different sides of a common control gate
CN110767656A (en) 3D memory device and method of manufacturing the same
US20220165754A1 (en) Method for fabricating memory device
US10868023B2 (en) Non-volatile memory array
US20070262371A1 (en) Semiconductor device and manufacturing method thereof
US8017477B2 (en) Nonvolatile memory devices and methods of fabricating the same
US7602005B2 (en) Memory devices including spacer-shaped electrodes on pedestals and methods of manufacturing the same
CN104425386A (en) Flash memory and method for manufacturing same
US6833580B2 (en) Self-aligned dual-bit NVM cell and method for forming the same
KR20210015078A (en) Semiconductor devices and operating method for the same