TWI722352B - Detective molecule, kit and method for predicting fragrance production in an orchid - Google Patents

Detective molecule, kit and method for predicting fragrance production in an orchid Download PDF

Info

Publication number
TWI722352B
TWI722352B TW107145432A TW107145432A TWI722352B TW I722352 B TWI722352 B TW I722352B TW 107145432 A TW107145432 A TW 107145432A TW 107145432 A TW107145432 A TW 107145432A TW I722352 B TWI722352 B TW I722352B
Authority
TW
Taiwan
Prior art keywords
molecule
nucleic acid
seq
nucleotide sequence
target molecule
Prior art date
Application number
TW107145432A
Other languages
Chinese (zh)
Other versions
TW202024118A (en
Inventor
陳虹樺
莊育禎
蔡文杰
洪逸筑
陳文輝
許綺育
葉顓銘
光田展隆
高木優
Original Assignee
國立成功大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立成功大學 filed Critical 國立成功大學
Priority to TW107145432A priority Critical patent/TWI722352B/en
Publication of TW202024118A publication Critical patent/TW202024118A/en
Application granted granted Critical
Publication of TWI722352B publication Critical patent/TWI722352B/en

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention relates to a detective molecule, and more particularly to a detective molecule and a kit for detecting a target molecule, a method for predicting fragrance production in an orchid, and a method for breeding a scented orchid.

Description

預測蘭花香味生產之偵測分子、套組及方法Detection molecules, kits and methods for predicting orchid fragrance production

本發明係關於一種偵測分子,特別係關於用於偵測一目標分子之一種偵測分子及一種套組,一種預測蘭花香味生產之方法,及一種具香味之蘭花的育種方法。 The present invention relates to a detection molecule, in particular to a detection molecule and a kit for detecting a target molecule, a method for predicting the production of orchid fragrance, and a method for breeding orchids with fragrance.

蝴蝶蘭種屬(Phalaenopsis species)廣泛分佈於亞洲熱帶地區,且包括約56種原生種(native species)(Christenson,2001,Phalaenopsis:A Monograph.Portland,OR:Timber Press.)。經由育種,已獲得諸多具有不同花色之蝴蝶蘭栽培品種,並且其由於出色的花色表現及長壽而廣受歡迎(Hsiao等人,2011,Plant Cell Physiol.52,1467-1486)。另外,在花卉市場上,一些具有宜人香味之蝴蝶蘭栽培品種更提高了其觀賞價值。然而,在傳統育種下,與其他有利性狀相比,培育有香味的蘭花栽培品種更為困難(Yeh等人,2014,Agric.Policy Agric.Situation 267,97),其培育瓶頸包括較長的世代時間(Hsiao等人,2011,Plant Cell Physiol.52,1467-1486),因種屬間基因組大小及染色體大小差異所致之雜交不親和性(Hsiao等人,2011,Plant Cell Physiol.52,1467-1486;Hsiao等人,2011,Orchid Biotechnology II,編輯W.H.Chen及H.H.Chen(Singapore:World Scientific),145-180;Yeh等人,2014,Agric.Policy Agric.Situation 267,97.),及花香味與其他有利性狀之間的負相關(Hsiao等人,2011,Orchid Biotechnology II,編輯W.H.Chen及H.H.Chen(Singapore:World Scientific),145-180),其亦發生在其他現代花卉品種中(Vainstein等人,2001,Plant Physiol.127,1383-1389.;Dudareva及Negre,2005,Curr.Opin.Plant Biol.8,113-118)。在該等情形下,尚須開發其他替代方法,以促進具香味的蘭花育種。 Phalaenopsis species are widely distributed in tropical Asia and include about 56 native species (Christenson, 2001, Phalaenopsis: A Monograph. Portland, OR: Timber Press.). Through breeding, many Phalaenopsis cultivars with different flower colors have been obtained, and they are widely popular due to their excellent flower color performance and longevity (Hsiao et al., 2011, Plant Cell Physiol. 52, 1467-1486). In addition, in the flower market, some Phalaenopsis cultivars with a pleasant fragrance have increased their ornamental value. However, under traditional breeding, it is more difficult to cultivate scented orchid cultivars than other advantageous traits (Yeh et al., 2014, Agric.Policy Agric.Situation 267,97), and the bottleneck of breeding includes longer generations. Time (Hsiao et al., 2011, Plant Cell Physiol. 52, 1467-1486), hybrid incompatibility due to differences in genome size and chromosome size between species (Hsiao et al., 2011, Plant Cell Physiol. 52, 1467) -1486; Hsiao et al., 2011, Orchid Biotechnology II , edited by WHChen and HHChen (Singapore: World Scientific), 145-180; Yeh et al., 2014, Agric.Policy Agric.Situation 267,97.), and floral fragrance and The negative correlation between other favorable traits (Hsiao et al., 2011, Orchid Biotechnology II , editors WHChen and HHChen (Singapore: World Scientific), 145-180), which also occurs in other modern flower varieties (Vainstein et al., 2001 , Plant Physiol. 127, 1383-1389.; Dudareva and Negre, 2005, Curr. Opin. Plant Biol. 8, 113-118). Under these circumstances, other alternative methods must be developed to promote the breeding of fragranced orchids.

大多數蝴蝶蘭沒有香味,但有部分確實散發出具香味的揮發性有機化合物(volatile organic compounds,VOCs)(Kaiser,1993,The Scent of Orchids:Olfactory and Chemical Investigations.Amsterdam:Elsevier)。此等具香味之種屬已廣泛用作生產具香味栽培品種之育種親本,諸如安曼蝴蝶蘭(P.amboinensis)、婆羅洲紫紋蝴蝶蘭(P.bellina)、爪哇蝴蝶蘭(P.javanica)、菲律賓蝴蝶蘭(P.lueddemanniana)、斑葉蝴蝶蘭(P.schilleriana)、斯圖阿氏蝴蝶蘭(P.stuartiana)、多脈蝴蝶蘭(P.venosa)及紫花蝴蝶蘭(P.violace)(Hsiao等人,2011b,Orchid Biotechnology II,編輯W.H.Chen及H.H.Chen(Singapore:World Scientific),145-180.;Yeh等人,2014,Agric.Policy Agric.Situation 267,97)。婆羅洲紫紋蝴蝶蘭及紫花蝴蝶蘭為兩個非常接近的種屬,且皆常用於培育具香味的表型,兩者所散發之VOCs相似但具有區別。婆羅洲紫紋蝴蝶蘭主要散發出單萜類,包括香茅醇、香草醇、沉香醇、月桂烯、橙花醇及蘿艻萜(Hsiao等人,2006,BMC Plant Biol.6:14;2011,Orchid Biotechnology II,編輯W.H.Chen及H.H.Chen(Singapore:World Scientific),145-180),而紫花蝴蝶蘭散發出伴有苯丙素、桂皮醇之單萜類(Kaiser,1993,The Scent of Orchids: Olfactory and Chemical Investigations.Amsterdam:Elsevier)。斑葉蝴蝶蘭之花的VOCs亦含有單萜類,包括香茅醇、橙花醇及乙酸橙花酯(Awano等人,1997,Flav.Frag.J.12,341-344)。 Most Phalaenopsis have no fragrance, but some do emit volatile organic compounds (VOCs) (Kaiser, 1993, The Scent of Orchids: Olfactory and Chemical Investigations. Amsterdam: Elsevier). These scented species have been widely used as breeding parents for the production of scented cultivars, such as Amman Phalaenopsis ( P.amboinensis ), Borneo Purple Phalaenopsis ( P.bellina ), Java Phalaenopsis ( P.javanica) ), Philippine Phalaenopsis ( P.lueddemanniana ), Variegated Phalaenopsis (P.schilleriana ), Stuartiana ( P.stuartiana ), Multi-veined Phalaenopsis ( P.venosa ) and Purple Phalaenopsis ( P.violace) ) (Hsiao et al., 2011b, Orchid Biotechnology II , edited by WHChen and HHChen (Singapore: World Scientific), 145-180.; Yeh et al., 2014, Agric. Policy Agric. Situation 267, 97). Borneo purple phalaenopsis and purple phalaenopsis are two very close species, and both are commonly used to cultivate scented phenotypes. The VOCs emitted by the two are similar but different. Borneo purple phalaenopsis mainly emits monoterpenoids, including citronellol, vanillyl alcohol, linalool, myrcene, nerol and radix terpenes (Hsiao et al., 2006, BMC Plant Biol. 6: 14; 2011) , Orchid Biotechnology II , edited by WHChen and HHChen (Singapore: World Scientific), 145-180), while the purple phalaenopsis exudes monoterpenoids accompanied by phenylpropanol and cinnamyl alcohol (Kaiser, 1993, The Scent of Orchids: Olfactory and Chemical Investigations. Amsterdam: Elsevier). The VOCs of the flower of variegated phalaenopsis also contain monoterpenes, including citronellol, nerol and neryl acetate (Awano et al., 1997, Flav. Frag. J. 12, 341-344).

單萜類為揮發性萜類中最豐富的成分(Knudsen及Gershenzon,2006,Biology of Floral Scent,編輯N.Dudareva及E.Pichersky(Boca Raton,FL:CRC Press),27-52;Nagegowda等人,2010,The Chloroplast:Basics and Application,編輯C.A.Rebeiz、C.Benning、H.J.Bohnert、H.Daniell、J.K.Hoober、H.K.Lichtenthaler等人(Dordrecht:Springer),139-154),其會涉入與其他生物體及周圍環境的特定相互作用(Tholl,2015,Biotechnology of Isoprenoids,編輯J.Schrader及J.Bohlmann(Cham:Springer),63-106)。單萜類除了在自然界中之作用外,更由於其獨特及宜人的香味特性而被廣泛用於香料、化妝品及香水行業(Schwab等人,2008,Plant J.54,712-732)。 Monoterpenes are the most abundant components of volatile terpenes (Knudsen and Gershenzon, 2006, Biology of Floral Scent , editors N. Dudareva and E. Pichersky (Boca Raton, FL: CRC Press), 27-52; Nagegowda et al. , 2010, The Chloroplast: Basics and Application , edited by CARebeiz, C. Benning, HJ Bohnert, H. Daniell, JK Hoober, HKLichtenthaler, etc. (Dordrecht: Springer), 139-154), which will be involved in other organisms and the surrounding environment (Tholl, 2015, Biotechnology of Isoprenoids , editors J. Schrader and J. Bohlmann (Cham: Springer), 63-106). In addition to their role in nature, monoterpenoids are widely used in perfumery, cosmetics and perfume industries due to their unique and pleasant fragrance characteristics (Schwab et al., 2008, Plant J.54, 712-732).

單萜類之前驅體IDP及其異構體DMADP係由質體中的甲基丁四醇磷酸酯(methylerythritol phosphate,MEP)途徑產生。短鏈異戊烯基轉移酶GDPS負責IDP及DMADP之頭對尾(head-to-tail)縮合,以產生用於單萜合成酶之直接基質GDP(Dudareva等人,2004,Plant Physiol.135,1893-1902)。在蝴蝶蘭中,PbGDPS係為婆羅洲紫紋蝴蝶蘭的一種關鍵酶,其可提供用於單萜之生物合成的前驅體(Hsiao等人,2008,Plant J.55,719-733)。研究發現,重組PbGDPS具有雙重異戊烯基轉移酶活性,以分別用於生產單萜類之前驅物GDP及法呢基二磷酸(farnesyl diphosphate,FDP),以及倍半萜類(Hsiao等人,2008,Plant J.55,719-733)。在花發育期間,PbGDPS之表現與單萜類之散發相伴發生,並於開花後第5天(D+5) 達到頂峰(Hsiao等人,2008,Plant J.55,719-733)。因此,有必要研究影響GDPS基因表現之GDPS基因之啟動子。 The monoterpenoid precursor IDP and its isomer DMADP are produced by the methylerythritol phosphate (MEP) pathway in the plastids. The short-chain isopentenyl transferase GDPS is responsible for the head-to-tail condensation of IDP and DMADP to produce the direct substrate GDP for monoterpene synthase (Dudareva et al., 2004, Plant Physiol. 135, 1893-1902). In phalaenopsis, PbGDPS is a key enzyme of Borneo phalaenopsis phalaenopsis , which can provide a precursor for the biosynthesis of monoterpenes (Hsiao et al., 2008, Plant J. 55, 719-733). Studies have found that recombinant PbGDPS has dual isopentenyl transferase activity for the production of monoterpenoid precursors GDP and farnesyl diphosphate (FDP), as well as sesquiterpenes (Hsiao et al., 2008, Plant J. 55, 719-733). During flower development, the performance of PbGDPS occurs concurrently with the emission of monoterpenoids, and it peaks on day 5 (D+5) after flowering (Hsiao et al., 2008, Plant J. 55, 719-733). Therefore, it is necessary to study the effects of gene expression of the promoter GDPS GDPS gene.

本發明提供一種偵測分子、一種套組及一種預測蘭花香味生產之方法。 The invention provides a detection molecule, a kit and a method for predicting the production of orchid fragrance.

本發明之一目的係提供一種用於偵測一目標分子之偵測分子,其中該目標分子係選自由下列所組成之群組:(i)一核酸分子,其具有如SEQ ID NO:1所示之核苷酸序列;(ii)一核酸分子,其具有如SEQ ID NO:2所示之核苷酸序列;及(iii)一核酸分子,其具有與(i)或(ii)所定義之核酸分子之相似度為95%以上之核苷酸序列。 An object of the present invention is to provide a detection molecule for detecting a target molecule, wherein the target molecule is selected from the group consisting of: (i) a nucleic acid molecule, which has the structure shown in SEQ ID NO:1 (Ii) a nucleic acid molecule having the nucleotide sequence shown in SEQ ID NO: 2; and (iii) a nucleic acid molecule having the meaning defined in (i) or (ii) The similarity of the nucleic acid molecules is more than 95% of the nucleotide sequences.

本發明之另一目的係提供一種用於偵測一目標分子之套組,包含如前述之偵測分子。 Another object of the present invention is to provide a kit for detecting a target molecule, including the aforementioned detecting molecule.

本發明之又一目的係提供一種預測蘭花香味生產之方法,包含偵測一目標分子是否存在於該蘭花之基因組中,其中該目標分子係選自由下列所組成之群組:(i)一核酸分子,其具有如SEQ ID NO:1所示之核苷酸序列;(ii)一核酸分子,其具有如SEQ ID NO:2所示之核苷酸序列;及(iii)一核酸分子,其具有與(i)或(ii)所定義之核酸分子之相似度為95%以上之核苷酸序列。 Another object of the present invention is to provide a method for predicting orchid fragrance production, including detecting whether a target molecule exists in the orchid genome, wherein the target molecule is selected from the group consisting of: (i) a nucleic acid Molecule, which has the nucleotide sequence shown in SEQ ID NO: 1; (ii) a nucleic acid molecule, which has the nucleotide sequence shown in SEQ ID NO: 2; and (iii) a nucleic acid molecule, which A nucleotide sequence that has a similarity of more than 95% to the nucleic acid molecule defined in (i) or (ii).

本發明之再一目的係提供一種具香味之蘭花的育種方法,包含以前述之方法預測一蘭花中之香味生產。 Another object of the present invention is to provide a method for breeding scented orchids, which includes predicting the production of scent in an orchid by the aforementioned method.

圖1:GDPS之啟動子結構。藉由比較PbGDPSp、PaGDPSpA及PaGDPSpB之三個序列來揭示GDPS之啟動子結構。位於PbGDPSp之-859 bp至-710 bp處的兩個重複序列命名為R1及R2。基於位於R1中心之11-bp的缺失,將重複序列進一步切分為三個次單元。此11-bp之缺失稱為R1-b,且R1-b之前及之後的序列分別為R1-a及R1-c。R2中相應切分為R2-a、R2-b及R2-c。TSS指示轉譯起始位點(ATG)。PaGDPSpB中之黑色梯度指示其與PbGDPSp相比的諸多取代。 Figure 1: The promoter structure of GDPS. The promoter structure of GDPS was revealed by comparing the three sequences of PbGDPS p, PaGDPS pA and PaGDPS pB. The two repetitive sequences located at -859 bp to -710 bp in PbGDPS p are named R1 and R2. Based on the 11-bp deletion located in the center of R1, the repetitive sequence is further divided into three subunits. This 11-bp deletion is called R1-b, and the sequences before and after R1-b are R1-a and R1-c, respectively. R2 is divided into R2-a, R2-b and R2-c. TSS indicates the translation start site (ATG). The black gradient in PaGDPS pB indicates its many substitutions compared to PbGDPS p.

圖2:PbGDPSp、PaGDPSpA及PaGDPSpB之序列比對結果。雙重複序列之兩個單元R1以及R2以粗顏色條在比對結果上方標記。R1及R2之次單元用顏色線在比對結果下方標記。序列比對係以Clustal Omega生成,並以BOXSHADE顯示。 Figure 2: Sequence alignment results of PbGDPS p, PaGDPS pA and PaGDPS pB. The two units R1 and R2 of the double repeat sequence are marked with a thick color bar above the alignment result. The sub-units of R1 and R2 are marked with color lines below the comparison result. The sequence alignment was generated with Clustal Omega and displayed as BOXSHADE.

圖3:7種蝴蝶蘭中之花的揮發物及雙重複序列之分析。(A)花的揮發物之相對量以黑色梯度表示。帶有對角線之方塊指示在此蘭花中未鑑定出單萜類。(B)GDPS啟動子之雙重複序列結構。 Figure 3: Analysis of volatiles and double repeat sequences of flowers in 7 species of Phalaenopsis. (A) The relative amount of flower volatiles is indicated by a black gradient. A square with diagonal lines indicates that no monoterpenes have been identified in this orchid. (B) The double repeat structure of the GDPS promoter.

圖4:7種蝴蝶蘭之基因組DNA中GDPS基因、其1-kb啟動子片段及雙重複序列之PCR擴增結果,以肌動蛋白為對照組。1-kb啟動子及雙重複序列之擴增結果顯示其多態性。 Figure 4: PCR amplification results of GDPS gene, its 1-kb promoter fragment and double repeat sequence in the genomic DNA of 7 species of Phalaenopsis, with actin as the control group. The amplification results of 1-kb promoter and double repeat sequence showed its polymorphism.

圖5:經切分之PbGDPS啟動子的螢光素酶活性-藉由粒子轟擊使P.I-Hsin Venus中的PbGDPS啟動子帶有一系列的缺失,以分析假定的順式元素(cis-element)。以杜凱氏真實顯著性差異檢驗(Tukey's honestly significant difference test)在a=0.05下進行統計測試。 Figure 5: The cut points PbGDPS promoter luciferase activity - by particle bombardment P. PbGDPS promoter Venus in series with the I-Hsin deletion, to analyze putative cis elements (cis -element ). Tukey's honestly significant difference test (Tukey's honestly significant difference test) was used for statistical testing under a=0.05.

本發明之一目的係提供一種用於偵測一目標分子之偵測分子,其中該目標分子係選自由下列所組成之群組:(i)一核酸分子,其具有如SEQ ID NO:1所示之核苷酸序列;(ii)一核酸分子,其具有如SEQ ID NO:2所示之核苷酸序列;及(iii)一核酸分子,其具有與(i)或(ii)所定義之核酸分子之相似度為95%以上之核苷酸序列。 An object of the present invention is to provide a detection molecule for detecting a target molecule, wherein the target molecule is selected from the group consisting of: (i) a nucleic acid molecule, which has the structure shown in SEQ ID NO:1 (Ii) a nucleic acid molecule having the nucleotide sequence shown in SEQ ID NO: 2; and (iii) a nucleic acid molecule having the meaning defined in (i) or (ii) The similarity of the nucleic acid molecules is more than 95% of the nucleotide sequences.

於本文中所使用的以下術語,除非另有說明,否則應理解為具有以下含義: Unless otherwise specified, the following terms used in this article should be understood to have the following meanings:

本文中所使用之「聚核苷酸」係指長度至少10鹼基之單股或雙股之核酸聚合物。於某些態樣中,該聚核苷酸可為核糖核酸或去氧核糖核酸或其經修飾之形式。該等修飾包含:溴尿苷(bromouridine)及肌苷(inosine)衍生物、如2',3'-雙去氧核糖(2',3'-dideoxyribose)之核糖(ribose)修飾物、如磷化雙硒代酯(phosphorodiselenoate)、磷化苯胺硫醇酯(phosphoroanilothioate)、磷化苯胺酯(phosphoraniladate)或磷化酰胺(phosphoroamidate)之核苷酸間鍵結修飾物及其類似物。本文中所使用之「聚核苷酸」可包含單股或雙股之DNA形式。 As used herein, "polynucleotide" refers to a single-stranded or double-stranded nucleic acid polymer with a length of at least 10 bases. In some aspects, the polynucleotide may be ribonucleic acid or deoxyribonucleic acid or a modified form thereof. These modifications include: bromouridine and inosine derivatives, such as 2',3'-dideoxyribose (2',3'-dideoxyribose) ribose (ribose) modifications, such as phosphorus Internucleotide bond modifiers of phosphorodiselenoate, phosphoroanilothioate, phosphoranilatate or phosphoramidate and their analogs. "Polynucleotide" as used herein may include single-stranded or double-stranded DNA.

在本發明之一個較佳實施例中,(i)之目標分子為具有如SEQ ID NO:1所示之核苷酸序列的核酸分子,其為衍生自婆羅洲紫紋蝴蝶蘭(蘭科)之二磷酸香葉酯合成酶(geranyl diphosphate synthase,GDPS)基因啟動子的-859至-710之150-bp聚核苷酸。 In a preferred embodiment of the present invention, the target molecule of (i) is a nucleic acid molecule having a nucleotide sequence as shown in SEQ ID NO:1, which is derived from Borneo Purple Phalaenopsis (Orchidaceae) Geranyl diphosphate synthase (GDPS) gene promoter of -859 to -710 150-bp polynucleotide.

(i)中的目標分子為雙重複順式元素,亦即包括兩個具有相同核苷酸序列(亦即SEQ ID NO:2)之75-bp單元。第一及第二75-bp單元分別表示為「R1」及「R2」,且R1及R2單元之方向相同。 The target molecule in (i) is a double-repeat cis element, that is, it includes two 75-bp units with the same nucleotide sequence (ie, SEQ ID NO: 2). The first and second 75-bp units are denoted as "R1" and "R2" respectively, and the directions of the R1 and R2 units are the same.

因此,於本發明另一較佳實施例中,(ii)之目標分子為具有如SEQ ID NO:2所示之核苷酸序列的核酸分子,其為衍生自GDPS基因啟動子的-859至-785之75-bp聚核苷酸(R1單元),或為衍生自GDPS基因啟動子的-784至-710之75-bp聚核苷酸(R2單元)。 Therefore, in another preferred embodiment of the present invention, the target molecule of (ii) is a nucleic acid molecule having the nucleotide sequence shown in SEQ ID NO: 2, which is derived from the GDPS gene promoter from -859 to -785 75-bp polynucleotide (R1 unit), or -784 to -710 75-bp polynucleotide (R2 unit) derived from the GDPS gene promoter.

雖不願為任何理論所束縛,惟咸信R1及/或R2單元對蘭花中的GDPS啟動子活性至關重要。例如,含有R1及R2單元兩者之GDPS啟動子,其相較於僅含有R2單元之GDPS啟動子之活性增加約三倍,且其相較於不含R1及R2單元之GDPS啟動子之活性增加約五倍。 Although not wishing to be bound by any theory, it is believed that the R1 and/or R2 units are critical to the activity of the GDPS promoter in orchids. For example, a GDPS promoter containing both R1 and R2 units has an approximately three-fold increase in activity compared to a GDPS promoter containing only R2 units , and its activity is compared to GDPS promoters that do not contain R1 and R2 units. Increased by about five times.

於本發明一較佳實施例中,(iii)之目標分子為具有與(i)或(ii)所定義之核酸分子之相似度為95%以上之核苷酸序列的核酸分子。如本文所述,具有與一參考核酸分子(例如SEQ ID NO:1或2)之相似度為95%以上之核苷酸序列的核酸分子,係指一核酸分子因取代、刪除或插入而與該參考核酸分子不同。舉例而言,一或多個核酸殘基被其他核酸殘基取代。(iii)之核酸分子與一參考核酸分子(例如SEQ ID NO:1或2)之相似度可由任何已知的序列同一性算法測量,例如如FASTA、BLAST或Gap。 In a preferred embodiment of the present invention, the target molecule of (iii) is a nucleic acid molecule having a nucleotide sequence that is more than 95% similar to the nucleic acid molecule defined in (i) or (ii). As described herein, a nucleic acid molecule having a nucleotide sequence that is more than 95% similar to a reference nucleic acid molecule (such as SEQ ID NO: 1 or 2) refers to a nucleic acid molecule due to substitution, deletion, or insertion. The reference nucleic acid molecule is different. For example, one or more nucleic acid residues are replaced by other nucleic acid residues. The similarity between the nucleic acid molecule (iii) and a reference nucleic acid molecule (such as SEQ ID NO: 1 or 2) can be measured by any known sequence identity algorithm, such as FASTA, BLAST or Gap.

於本發明一較佳實施例中,(iii)之目標分子為具有與(i)或(ii)所定義之核酸分子之相似度為95%或99%以上之核苷酸序列的核酸分子。於本發明一更佳實施例中,(iii)之目標分子為具有與(i)或(ii)所定義之核酸分子之相似度為99%以上之核苷酸序列的核酸分子。 In a preferred embodiment of the present invention, the target molecule of (iii) is a nucleic acid molecule having a nucleotide sequence whose similarity to the nucleic acid molecule defined in (i) or (ii) is 95% or more. In a more preferred embodiment of the present invention, the target molecule of (iii) is a nucleic acid molecule having a nucleotide sequence that is more than 99% similar to the nucleic acid molecule defined in (i) or (ii).

於本發明一較佳實施例中,該目標分子係位於一蘭花中。較佳地,該蘭花係為蝴蝶蘭(Phalaenopsis spp.)。 In a preferred embodiment of the present invention, the target molecule is located in an orchid. Preferably, the orchid is Phalaenopsis spp.

於本發明一較佳實施例中,該目標分子係位於二磷酸香葉酯合成酶基因之啟動子中,例如GDPS基因之上游啟動子。 In a preferred embodiment of the present invention, the target molecule is located in the promoter of the geranyl diphosphate synthase gene, such as the upstream promoter of the GDPS gene.

於本發明一較佳實施例中,該偵測分子係為用於特異性擴增(specifically amplifying)該目標分子之引子。舉例而言,該引子可針對GDPS啟動子中R1及R2單元以外的一部份具有特異性。較佳地,該引子係選自一具有如SEQ ID NO:3所示之核苷酸序列(TTGCCTCGAGATTTGTTTCGGAGGATGGA)的順向引子及一具有如SEQ ID NO:4所示之核苷酸序列(ACCTAAGGATGCATGGGCCATACTAG)的反向引子。 In a preferred embodiment of the present invention, the detection molecule is a primer for specifically amplifying the target molecule. For example, the primer can be specific for a part of the GDPS promoter other than the R1 and R2 units. Preferably, the primer is selected from a forward primer having the nucleotide sequence shown in SEQ ID NO: 3 (TTGCCTCGAGATTTGTTTCGGAGGATGGA) and a nucleotide sequence shown in SEQ ID NO: 4 (ACCTAAGGATGCATGGGCCATACTAG) Back primer.

於本發明另一較佳實施例中,該偵測分子可為一核酸探針,其可與該目標分子雜交。 In another preferred embodiment of the present invention, the detection molecule can be a nucleic acid probe, which can hybridize with the target molecule.

本發明之另一目的係提供一種用於偵測一目標分子之套組,包含如前述之偵測分子。於本發明一較佳實施例中,該套組另包含去氧核苷三磷酸、DNA聚合酶及緩衝液。 Another object of the present invention is to provide a kit for detecting a target molecule, including the aforementioned detecting molecule. In a preferred embodiment of the present invention, the kit further includes deoxynucleoside triphosphate, DNA polymerase and buffer.

本發明之又一目的係提供一種預測一蘭花中之香味生產之方法,包含偵測一目標分子是否存在於該蘭花之基因組中,其中該目標分子係選自由下列所組成之群組:(i)一核酸分子,其具有如SEQ ID NO:1所示之核苷酸序列;(ii)一核酸分子,其具有如SEQ ID NO:2所示之核苷酸序列;及(iii)一核酸分子,其具有與(i)或(ii)所定義之核酸分子之相似度為95%以上之核苷酸序列。 Another object of the present invention is to provide a method for predicting fragrance production in an orchid, which includes detecting whether a target molecule exists in the genome of the orchid, wherein the target molecule is selected from the group consisting of: (i ) A nucleic acid molecule having the nucleotide sequence shown in SEQ ID NO: 1; (ii) a nucleic acid molecule having the nucleotide sequence shown in SEQ ID NO: 2; and (iii) a nucleic acid A molecule, which has a nucleotide sequence that is more than 95% similar to the nucleic acid molecule defined in (i) or (ii).

舉例而言,可藉由雜交、PCR擴增及/或DNA定序以偵測該目標分子。 For example, the target molecule can be detected by hybridization, PCR amplification and/or DNA sequencing.

於本發明一較佳實施例中,該蘭花係為蝴蝶蘭。 In a preferred embodiment of the present invention, the orchid is a Phalaenopsis.

於本發明一較佳實施例中,該方法包含偵測該目標分子是否存在於二磷酸香葉酯合成酶基因之啟動子中。 In a preferred embodiment of the present invention, the method includes detecting whether the target molecule is present in the promoter of the geranyl diphosphate synthase gene.

於本發明一較佳實施例中,該方法包含使用一偵測分子偵測該目標分子,例如使用前述之偵測分子。 In a preferred embodiment of the present invention, the method includes using a detection molecule to detect the target molecule, such as the aforementioned detection molecule.

於本發明一較佳實施例中,該方法包含下列步驟:(a)自該蘭花獲取一核酸片段;(b)以該核酸片段為模板進行擴增,以獲得包含該目標分子之產物;及(b)分析擴增之產物。 In a preferred embodiment of the present invention, the method includes the following steps: (a) obtaining a nucleic acid fragment from the orchid; (b) using the nucleic acid fragment as a template for amplification to obtain a product containing the target molecule; and (b) Analyze the amplified product.

該蘭花的基因組DNA可經由任何已知的方法萃取,例如藉由Plant Genomic DNA Purification Kit(Bio-GPD50,Biokit,Taiwan)萃取。而後,可藉由聚合酶連鎖反應(polymerase chain reaction,PCR)進行擴增。 The genomic DNA of the orchid can be extracted by any known method, for example, by the Plant Genomic DNA Purification Kit (Bio-GPD50, Biokit, Taiwan). Then, it can be amplified by polymerase chain reaction (PCR).

於本發明一較佳實施例中,步驟(b)包含以一引子進行聚合酶連鎖反應,該引子係選自一具有如SEQ ID NO:3所示之核苷酸序列的順向引子及一具有如SEQ ID NO:4所示之核苷酸序列的反向引子。 In a preferred embodiment of the present invention, step (b) includes performing a polymerase chain reaction with a primer selected from a forward primer having the nucleotide sequence shown in SEQ ID NO: 3 and a A reverse primer having the nucleotide sequence shown in SEQ ID NO:4.

於本發明一較佳實施例中,步驟(c)包含以凝膠電泳分析該擴增之產物。 In a preferred embodiment of the present invention, step (c) includes analyzing the amplified product by gel electrophoresis.

瓊脂糖凝膠電泳係於高度純化形式之瓊脂所組成之基質中,使DNA基於不同尺寸而分離。在電場存在下,核酸趨向於朝一個位置的末端定向,並以與鹼基對數目之log10數值成反比之速率遷移穿過凝膠基質。 Agarose gel electrophoresis is based on a highly purified form of agar in a matrix that separates DNA based on different sizes. In the presence of an electric field, nucleic acids tend to be oriented toward the end of a position and migrate through the gel matrix at a rate that is inversely proportional to the log10 value of the number of base pairs.

或者,步驟(c)包含定序該擴增之產物。 Alternatively, step (c) includes sequencing the amplified products.

例如,定序過程涉及確定四個主要核苷酸鹼基腺嘌呤(A)、胞嘧啶(C)、鳥嘌呤(G)及胸腺嘧啶(T)中之各者沿生物體之DNA分子的位置。DNA之短序列通常藉由創建嵌套的DNA片段集來確定,該等片段自一個獨特位點處開始,並於複數個由特定鹼基構成之位置處終止。然後根據分子大 小分離在四個天然核酸鹼基(A、T、G及C)中之各者處終止之片段,以便確定四個鹼基中之各者相對於獨特位點之位置。由在特定鹼基處終止之股所產生之片段長度的模式被稱為「定序階梯」。作為對DNA分子進行一次實驗之結果,對鹼基位置之解釋被稱為「讀取」。有不同的創建及分離嵌套的終止DNA分子集之方法。 For example, the sequencing process involves determining the position of each of the four main nucleotide bases adenine (A), cytosine (C), guanine (G), and thymine (T) along the organism’s DNA molecule . The short sequence of DNA is usually determined by creating nested sets of DNA fragments, which start at a unique site and terminate at a plurality of positions composed of specific bases. Then according to the molecular size The fragments that terminate at each of the four natural nucleic acid bases (A, T, G, and C) are small isolated to determine the position of each of the four bases relative to the unique site. The pattern of fragment length produced by strands that terminate at a specific base is called the "sequencing ladder". As a result of an experiment on DNA molecules, the interpretation of base positions is called "reading." There are different methods of creating and separating nested sets of terminated DNA molecules.

於一實例中,係以具有如SEQ ID NO:3所示之核苷酸序列的順向引子及具有如SEQ ID NO:4所示之核苷酸序列的反向引子進行擴增,以比較具香味的蘭花(例如婆羅洲紫紋蝴蝶蘭、菲律賓蝴蝶蘭、P.I-Hsin Venus及P.Meidarland Bellina Age)之基因組中的GDPS啟動子區域與無香味蘭花(例如安曼蝴蝶蘭、斑葉蝴蝶蘭及有角狀蝴蝶蘭(P.cornu-cervi))之基因組中的GDPS啟動子。如電泳結果(圖4)、示意圖(圖3B)及單萜類生產(圖3A)所示,單萜生產與蘭花基因組該目標分子之存在相關。 In one example, the forward primer having the nucleotide sequence shown in SEQ ID NO: 3 and the reverse primer having the nucleotide sequence shown in SEQ ID NO: 4 were used for amplification for comparison. The GDPS promoter region in the genome of scented orchids (such as Borneo purple phalaenopsis, Philippine phalaenopsis, P. I-Hsin Venus and P. Meidarland Bellina Age) and unscented orchids (such as Amman phalaenopsis, variegated leaf The GDPS promoter in the genome of Phalaenopsis and Horned Phalaenopsis (P. cornu-cervi). As shown in the electrophoresis results (Figure 4), schematic diagram (Figure 3B) and monoterpenoid production (Figure 3A), monoterpene production is related to the presence of the target molecule in the orchid genome.

此外,續研究目標分子對結構基因之表現的效應。在P.I-Hsin Venus花中,用雙螢光素酶檢測評估PbGp-859(含有R1及R2單元)、PbGp-784(R1單元缺失)及PbGp-710(R1及R2單元兩者均缺失)之活性。結果顯示,含有R1及R2單元兩者之GDPS啟動子,其相較於僅含有R2單元之GDPS啟動子之活性增加約三倍,且其相較於不含R1及R2單元之GDPS啟動子之活性增加約五倍(圖5)。 In addition, continue to study the effect of target molecules on the performance of structural genes. In P. I-Hsin Venus flowers, dual luciferase detection is used to evaluate PbG p-859 (containing R1 and R2 units), PbG p-784 (R1 unit is missing) and PbG p-710 (R1 and R2 units are two Those are missing) the activity. The results show that the GDPS promoter containing both R1 and R2 units has about three times the activity compared to the GDPS promoter containing only the R2 unit, and its activity is about three times higher than that of the GDPS promoter without R1 and R2 units. The activity increased approximately five-fold (Figure 5).

本發明之再一目的係提供一種具香味之蘭花的育種方法,包含以前述之方法預測一蘭花中之香味生產。 Another object of the present invention is to provide a method for breeding scented orchids, which includes predicting the production of scent in an orchid by the aforementioned method.

下列範例僅用於說明本發明,惟本發明之範圍並不以此為限。 The following examples are only used to illustrate the present invention, but the scope of the present invention is not limited thereto.

實例:Examples: 材料及方法Materials and methods

植物材料及生長條件Plant materials and growing conditions

本研究中使用五個原生及兩個栽培雜交品種,包括安曼蝴蝶蘭黃色變種(P.amboinensis var.yellow)(縮寫為安曼蝴蝶蘭)、婆羅洲紫紋蝴蝶蘭、有角狀蝴蝶蘭紅色變體(P.cornucervi var.red)(縮寫為有角狀蝴蝶蘭)、菲律賓蝴蝶蘭、斑葉蝴蝶蘭、P.I-Hsin Venus「KHM2212」(縮寫為P.I-Hsin Venus)及P.Meidarland Bellina Age「LM128」(縮寫為P.Meidarland Bellina Age)。此等個別植物係收集自台灣的各蘭園(詳情見下表1)。 Five native and two cultivated hybrids were used in this study, including P.amboinensis var. yellow (abbreviated as Amman Phalaenopsis), Borneo Purple Phalaenopsis, and Horned Phalaenopsis Red Var. body (P.cornucervi var. red) (abbreviated as there are angular Phalaenopsis), Philippines Phalaenopsis, the moth orchid leaf spot, P .I-Hsin Venus "KHM2212" (abbreviated as P .I-Hsin Venus) and P. Meidarland Bellina Age "LM128" (abbreviated as P. Meidarland Bellina Age). These individual plant lines were collected from various orchid gardens in Taiwan (see Table 1 below for details).

所有植物材料均在自然光及春、夏季27至30℃之環境溫度下,在75-85%濕度下,在國立成功大學的溫室中生長。 All plant materials are grown in the greenhouse of the National Cheng Kung University under natural light, an ambient temperature of 27 to 30°C in spring and summer, and a humidity of 75-85%.

Figure 107145432-A0305-02-0012-1
Figure 107145432-A0305-02-0012-1

花揮發物之氣相層析分析Gas chromatography analysis of flower volatiles

根據先前研究(Hsiao等人,2006,BMC Plant Biol.6:14;Chuang等人,2017,Bot.Stud.58:50),對7種蝴蝶蘭之花的VOCs進行分析。藉由使用如(Chuang等人,2017,Bot.Stud.58:50.)所描述之固相萃取系統(DSC-Si及DCS-18,Supelco,United States)在散發出最多香味期間(10:00至16:00)收集VOCs,然後在國立成功大學儀器中心使用氣相層析法/高分辨率質譜(GC/HRMS)鑑定化合物(Hsiao等人,2006,BMC Plant Biol. 6:14)。為了評估各化合物量,使用1mg肉豆蔻酸乙酯(ethyl myristate)為內標(Fluka,Honeywell,United States)。 According to previous studies (Hsiao et al., 2006, BMC Plant Biol. 6: 14; Chuang et al., 2017, Bot. Stud. 58: 50), the VOCs of 7 species of Phalaenopsis flowers were analyzed. By using the solid-phase extraction system (DSC-Si and DCS-18, Supelco, United States) as described in (Chuang et al., 2017, Bot.Stud.58:50.) during the period when the most fragrance is emitted (10: 00 to 16:00) collect VOCs, and then use gas chromatography/high resolution mass spectrometry (GC/HRMS) to identify compounds in the Instrument Center of National Cheng Kung University (Hsiao et al., 2006, BMC Plant Biol. 6:14). To evaluate the amount of each compound, 1 mg ethyl myristate was used as an internal standard (Fluka, Honeywell, United States).

7個蘭花基因組中GDPS基因序列、上游調節片段及雙重複區之偵測Detection of GDPS gene sequence, upstream regulatory fragments and double repeat regions in 7 orchid genomes

為了偵測GDPS基因及其上游調節片段,使用Plant Genomic DNA Purification Kit(Bio-GPD50,Biokit,Taiwan)萃取7種蝴蝶蘭之基因組DNA。由於PbGDPS為無內含子之基因(Hsiao等人,2008,Plant J.55,719-733),使用基於PbGDPS基因組序列而設計的引子(此處及其後所使用的所有引子均列於下表2中),以標準PCR擴增GDPS之N端區(~400-bp)。另使用基於婆羅洲紫紋蝴蝶蘭之基因組DNA而設計的引子,自7種蝴蝶蘭中分離GDPS之1-kb上游啟動子片段(Chuang等人,2017,Bot.Stud.58:50)。而後,利用ZeroBack Fast Ligation Kit(TIANGEN,China)來擴增並選殖雙重複區。隨機選擇六至八個群落以進行定序。使用PlantPAN(Chow等人,2015,Nucleic Acids Res.44,D1154-D1160)預測雙重複序列中順式元素之存在,其中以相似度評分100%作為預測結果。 In order to detect the GDPS gene and its upstream regulatory fragments, the Plant Genomic DNA Purification Kit (Bio-GPD50, Biokit, Taiwan) was used to extract the genomic DNA of 7 species of Phalaenopsis. Since PbGDPS is an intron-free gene (Hsiao et al., 2008, Plant J.55, 719-733), primers designed based on the PbGDPS genome sequence are used (all primers used here and thereafter are listed in Table 2 below) Middle), using standard PCR to amplify the N-terminal region (~400-bp) of GDPS. In addition, a primer designed based on the genomic DNA of Borneo purple phalaenopsis was used to isolate the 1-kb upstream promoter fragment of GDPS from 7 species of phalaenopsis (Chuang et al., 2017, Bot.Stud. 58:50). Then, the ZeroBack Fast Ligation Kit (TIANGEN, China) was used to amplify and select double repeat regions. Six to eight communities were randomly selected for sequencing. PlantPAN (Chow et al., 2015, Nucleic Acids Res. 44, D1154-D1160) was used to predict the presence of cis elements in the double repeat sequence, and the similarity score of 100% was used as the prediction result.

Figure 107145432-A0305-02-0013-2
Figure 107145432-A0305-02-0013-2
Figure 107145432-A0305-02-0014-3
Figure 107145432-A0305-02-0014-3

質體構建Plastid construction

自婆羅洲紫紋蝴蝶蘭之基因組DNA擴增PbGDPS轉譯起始位點上游啟動子片段的一系列缺失片段(PbGp-859、PbGp-784、PbGp-710)(圖5)。設計具有BamH I及Nco I之限制性核酸內切酶位點的特異性引子,以擴增此等截短片段。將擴增的片段用限制酶BamH I及Nco I雙重剪切,並選殖於pJD301(f)中之相應的酶剪切位點,以驅動螢火蟲(Photinus pyralis)之螢光素酶基因(Hsu等人,2014,PLoS One 9:e106033)。藉由DNA定序檢驗所有構建體。啟動子-LUC構建體示性地呈現於圖5中。 A series of deletion fragments (PbGp-859, PbGp-784, PbGp-710) (PbGp-859, PbGp-784, PbGp-710) of the promoter fragment upstream of the translation start site of PbGDPS were amplified from the genomic DNA of Borneo phalaenopsis phalaenopsis (Figure 5). Design specific primers with restriction endonuclease sites of BamH I and Nco I to amplify these truncated fragments. The amplified fragment was double-cut with restriction enzymes BamH I and Nco I, and cloned in the corresponding enzyme cutting site in pJD301(f) to drive the luciferase gene (Hsu) of the firefly (Photinus pyralis) Et al., 2014, PLoS One 9: e106033). All constructs were checked by DNA sequencing. The promoter-LUC construct is shown schematically in FIG. 5.

植物中PbGDPS啟動子片段之反轉活化檢測Detection of reversal activation of PbGDPS promoter fragments in plants

以轟擊法將啟動子-LUC構建體及內部對照質體pJD301(R)轉殖入P.I-Hsin Venus之花組織中,該內部對照質體pJD301(R)含有由花椰菜嵌紋病毒(CaMV)35S啟動子驅動之海腎(Renilla)螢光素酶基因。為了常態化,將報導構建體(reporter construct)之螢光素酶活性除以內部對照之螢光素酶活性。使用內部對照可降低由不同實驗群組中之差異轟擊效能及轉換效能所致的實驗變異性。報導質體及內部對照之量分別為10mg及0.1mg。 採用P.I-Hsin Venus之至少六朵單獨的花以進行重複實驗,量測各樣品之螢光素酶活性(Hsu等人,2014,PLoS One 9:e106033)。對於兩個群組之間的統計分析,藉由使用杜凱氏真實顯著性差異檢驗在a=0.05下進行成對比較。 The promoter-LUC construct and the internal control plastid pJD301(R) were transformed into the floral tissue of P. I-Hsin Venus by bombardment. The internal control plastid pJD301(R) contained the cauliflower mosaic virus (CaMV). ) Renilla luciferase gene driven by 35S promoter. For normalization, the luciferase activity of the reporter construct was divided by the luciferase activity of the internal control. The use of internal controls can reduce the experimental variability caused by the difference in bombardment efficiency and conversion efficiency in different experimental groups. The amounts of plastids and internal controls are reported to be 10 mg and 0.1 mg, respectively. At least six individual flowers of P. I-Hsin Venus were used for repeated experiments to measure the luciferase activity of each sample (Hsu et al., 2014, PLoS One 9: e106033). For the statistical analysis between the two groups, pairwise comparisons were made at a=0.05 by using Dukai’s true significance difference test.

結果result

GDPS上游啟動子中之雙重複序列之分離Separation of Double Repeats in the Upstream Promoter of GDPS

先前,已自無香味的白蝶蝴蝶蘭(P.Aphrodite)中分離出GDPS啟動子之兩個單獨的1-kb片段,即PaGDPSpA及PaGDPSpB。相較於具有香味的婆羅洲紫紋蝴蝶蘭(PbGDPSp)之GDPS啟動子,自白蝶蝴蝶蘭中鑑定出的兩個GDPS,亦即PaGDPSpA及PaGDPSpB啟動子分別含有11-bp缺失及75-bp缺失(圖1)。除了多個核苷酸取代外,PaGDPSpB亦具有兩個14-bp的插入。藉由在植物中進行螢光素酶啟動子檢測,無論在有香味的或無香味的花中,PaGDPSpA均表現出與PbGDPSp相似的啟動子活性,而即使在有香味的婆羅洲紫紋蝴蝶蘭花組織中PaGDPSpB亦展現出非常低的啟動子活性。此等結果指示,PaGDPSpB中缺少75-bp區域對其活性不利。對PbGDPS啟動子之進一步序列分析表明,第二75-bp重複序列出現在原來的75-bp重複序列之下游,並且形成由兩個75-bp單元組成之雙重複序列。續將第一及第二75-bp單元分別表示為「R1」及「R2」,其分別位於ATG上游-859至-710 nt處(圖1)。 Previously, two separate 1-kb fragments of the GDPS promoter, PaGDPS pA and PaGDPS pB, have been isolated from the fragrance-free white butterfly orchid ( P.Aphrodite). Compared with the GDPS promoter of the scented Borneo purple phalaenopsis (PbGDPS p) , the two GDPS identified from the white phalaenopsis phalaenopsis , namely the PaGDPS pA and PaGDPS pB promoters contain 11-bp deletion and 75 -bp deletion (Figure 1). In addition to multiple nucleotide substitutions, PaGDPS pB also has two 14-bp insertions. By detecting the luciferase promoter in plants, PaGDPS pA showed similar promoter activity to PbGDPS p in both scented and unscented flowers, and even in the scented Borneo purple pattern. PaGDPS pB in Phalaenopsis orchid tissue also exhibits very low promoter activity. These results indicate that the lack of the 75-bp region in PaGDPS pB is detrimental to its activity. Further sequence analysis of the PbGDPS promoter showed that the second 75-bp repeat sequence appeared downstream of the original 75-bp repeat sequence and formed a double repeat sequence composed of two 75-bp units. Continue to denote the first and second 75-bp units as "R1" and "R2" respectively, which are located at -859 to -710 nt upstream of the ATG (Figure 1).

PaGDPSpB缺少整個R1單元,並且PaGDPSpA在R1中央含有11-bp缺失,其被定義為R1-b次單元(圖1)。R1-b之前的區域(25-bp)表示為R1-a,之後的區域(39-bp)表示為R1-c,且R2中相應的部分表示為R2-a、R2-b及R2-c(圖1)。雙重複序列結構示性地表示於圖1中,且雙重複序列 之序列表示於圖2中。有香味的婆羅洲紫紋蝴蝶蘭與無香味的白蝶蝴蝶蘭的GDPS啟動子之間的差異存在於雙重複序列中,且其與單萜表型密切相關。 PaGDPS pB lacks the entire R1 unit, and PaGDPS pA contains an 11-bp deletion in the center of R1, which is defined as the R1-b subunit (Figure 1). The region before R1-b (25-bp) is denoted as R1-a, the region after (39-bp) is denoted as R1-c, and the corresponding parts in R2 are denoted as R2-a, R2-b, and R2-c (figure 1). The structure of the double repeat sequence is schematically shown in FIG. 1, and the sequence of the double repeat sequence is shown in FIG. 2. The difference between the GDPS promoter of scented Borneo purple phalaenopsis and unscented white phalaenopsis phalaenopsis lies in the double repeat sequence, and it is closely related to the monoterpene phenotype.

完整雙重複序列與單萜生產相伴Complete double repeat sequence accompanied by monoterpene production

根據來自有香味的及無香味的蝴蝶蘭之PaGDPSPbGDPS的啟動子分析結果,假定雙重複序列與單萜生產有關。為證實此點,使用7個常用的蝴蝶蘭育種親本(表1),以進行對雙重複序列與單萜生產之間的相關性分析。 According to the analysis results of the promoters of PaGDPS and PbGDPS from scented and unscented Phalaenopsis , it is assumed that the double repeat sequence is related to monoterpene production. To confirm this, seven commonly used Phalaenopsis breeding parents (Table 1) were used to analyze the correlation between double repeat sequences and monoterpene production.

首先檢測花的香味特徵,並發現四種蘭花散發出單萜類,包括P.Meidarland Bellina Age、婆羅洲紫紋蝴蝶蘭、P.I-Hsin Venus及菲律賓蝴蝶蘭。相較之下,安曼蝴蝶蘭之主要VOCs為倍半萜類及苯類。斑葉蝴蝶蘭散發出痕量的苯類。由於未偵測到有香味的化合物,因此認為有角狀蝴蝶蘭「無香味」。簡言之,自此等蝴蝶蘭散發出的單萜類之相對量在圖3A中用符號表示。 Firstly, the fragrance characteristics of the flowers were detected, and four kinds of orchids were found to emit monoterpenoids, including P. Meidarland Bellina Age, Borneo Purple Phalaenopsis, P. I-Hsin Venus and Philippine Phalaenopsis. In contrast, the main VOCs of Amman Phalaenopsis are sesquiterpenes and benzenes. Variegated Phalaenopsis emits trace amounts of benzene. Since no scented compounds were detected, the horn-shaped Phalaenopsis was considered to be "scentless". In short, the relative amounts of monoterpenes emitted from these Phalaenopsis are represented by symbols in Figure 3A.

而後,分析7種蝴蝶蘭中GDPS基因之存在及其啟動子序列(圖4)。有趣的是,GDPS基因存在於所有此等蘭花中,不管其為有香味表型或無香味表型(圖4)。於啟動子區域中存在缺陷似為合理的(GDPSp,圖4)。而後,擴增GDPSp上之雙重複序列,並且在7種蝴蝶蘭中偵測到雙重複序列片段長度之多態性(圖4)。四種帶有單萜生產之有香味的蘭花含有完整的雙重複序列(圖4,黑色箭頭)。相較之下,其他蘭花之擴增的雙重複序列片段以不同程度減小,並在雙重複序列區域中有各種缺失。對此等7個片段進行選殖及定序,在R1單元中偵測到雙重複序列之缺失,似乎因此導致無單萜生產之蘭花中GDPS啟動子活性的缺陷(圖3A、3B)。 Then, the existence of GDPS gene and its promoter sequence in 7 species of Phalaenopsis were analyzed (Figure 4). Interestingly, the GDPS gene is present in all these orchids, regardless of their fragranced or unscented phenotype (Figure 4). It seems reasonable to have a defect in the promoter region ( GDPS p, Figure 4). Then, the double-repeat sequence on GDPS p was amplified, and the polymorphism of the double-repeat fragment length was detected in 7 species of Phalaenopsis (Figure 4). The four scented orchids with monoterpene production contain complete double repeat sequences (Figure 4, black arrow). In contrast, the amplified double repeat fragments of other orchids are reduced to varying degrees, and there are various deletions in the double repeat region. These 7 fragments were selected and sequenced, and the deletion of the double repeat sequence was detected in the R1 unit, which seemed to lead to the defect of GDPS promoter activity in orchids without monoterpene production (Figure 3A, 3B).

綜而言之,可得出結論為GDPS啟動子中雙重複序列的完整性與其表現升高及因此而升高的單萜生產緊密相關。 In summary, it can be concluded that the integrity of the double repeat in the GDPS promoter is closely related to its increased performance and thus increased monoterpene production.

雙重複序列對GDPS啟動子活性至關重要。The double repeat sequence is essential for the activity of the GDPS promoter.

為了研究雙重複序列對於GDPS啟動子活性之作用,自PbGDPS起始位點上游分離出~2-kb啟動子片段(表示為PbGp-2010),並使其具有一系列的缺失。藉由粒子轟擊,以雙重螢光素酶檢測評估P.I-Hsin Venus花中PbGp-859(含R1及R2單元)、PbGp-784(R1單元缺失)及PbGp-710(R1及R2單元兩者均缺失)之活性。此外,本應檢驗原始種屬婆羅洲紫紋蝴蝶蘭中PBGDPS啟動子活性,惟由於婆羅洲紫紋蝴蝶蘭花通常每20天僅生產一朵花,其花之供應不足以達到實驗需求。因此,以散發出相似香味之婆羅洲紫紋蝴蝶蘭之後代P.I-Hsin Venus取代,在相同的遺傳背景下進行大量微繁殖,其有助於減少變異。 In order to study the effect of the double repeat sequence on the activity of the GDPS promoter, a ~2-kb promoter fragment (denoted as PbG p-2010) was isolated from the upstream of the PbGDPS start site, and it had a series of deletions. Pb Gp-859 (including R1 and R2 units), Pb Gp-784 (R1 unit missing) and Pb Gp-710 (R1 and R1 and R2 units are missing) in P. I-Hsin Venus flowers were evaluated by particle bombardment and dual luciferase detection. Both R2 units are missing) activity. In addition, the activity of the PBGDPS promoter in the original species of Borneo purple phalaenopsis should be tested, but because Borneo purple phalaenopsis usually produces only one flower every 20 days, the flower supply is not enough to meet the experimental needs. Therefore, replacing it with P. I-Hsin Venus, the descendant of Borneo Purple Phalaenopsis, which emits a similar scent, and carrying out a large number of micro-propagation under the same genetic background, which helps to reduce variation.

觀察顯示PbGp-859之螢光素酶活性最高,其相較於PbGp-784之螢光素酶活性提高約三倍,且相較於PbGp-710之螢光素酶活性提高五倍(圖5)。因此,導致高啟動子活性之順式元素位於核苷酸(nt)-859與nt-710(150-bp)之間,而雙重複序列位於其中。此等結果證實了雙重複序列對PbGDPS啟動子活性的關鍵作用。 Observation shows that Pb Gp-859 has the highest luciferase activity, which is about three times higher than that of Pb Gp-784 and five times higher than that of Pb Gp-710. (Figure 5). Therefore, the cis element leading to high promoter activity is located between nucleotides (nt)-859 and nt-710 (150-bp), and the double repeat sequence is located therein. These results confirmed the key role of the double repeat sequence on the PbGDPS promoter activity.

上述實施例僅為說明本發明之原理及其功效,而非限制本發明。因此,習於此技術之人士對上述實施例所做之修改及變化仍不違背本發明之精神。本發明之權利範圍應如後述之申請專利範圍所列。 The above-mentioned embodiments only illustrate the principles and effects of the present invention, but do not limit the present invention. Therefore, modifications and changes made by those skilled in the art to the above-mentioned embodiments still do not violate the spirit of the present invention. The scope of rights of the present invention should be listed in the scope of patent application described later.

<110> 國立成功大學 <110> National Cheng Kung University

<120> 預測蘭花香味生產之偵測分子、套組及方法 <120> Detection molecules, kits and methods for predicting orchid fragrance production

<140> 107145432 <140> 107145432

<141> 2018-12-17 <141> 2018-12-17

<160> 14 <160> 14

<170> PatentIn version 3.5 <170> PatentIn version 3.5

<210> 1 <210> 1

<211> 150 <211> 150

<212> DNA <212> DNA

<213> 婆羅洲紫紋蝴蝶蘭 <213> Borneo Purple Phalaenopsis

<400> 1

Figure 107145432-A0305-02-0018-4
Figure 107145432-A0305-02-0019-5
<400> 1
Figure 107145432-A0305-02-0018-4
Figure 107145432-A0305-02-0019-5

<210> 2 <210> 2

<211> 75 <211> 75

<212> DNA <212> DNA

<213> 婆羅洲紫紋蝴蝶蘭 <213> Borneo Purple Phalaenopsis

<400> 2

Figure 107145432-A0305-02-0019-6
<400> 2
Figure 107145432-A0305-02-0019-6

<210> 3 <210> 3

<211> 29 <211> 29

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 雙重複序列之順向引子 <223> Forward primer of double repeat sequence

<400> 3

Figure 107145432-A0305-02-0019-7
<400> 3
Figure 107145432-A0305-02-0019-7

<210> 4 <210> 4

<211> 26 <211> 26

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 雙重複序列之反向引子 <223> Reverse primer for double repeat sequence

<400> 4

Figure 107145432-A0305-02-0020-8
<400> 4
Figure 107145432-A0305-02-0020-8

<210> 5 <210> 5

<211> 35 <211> 35

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> GDPS基因之順向引子 <223> Forward primer of GDPS gene

<400> 5

Figure 107145432-A0305-02-0020-9
<400> 5
Figure 107145432-A0305-02-0020-9

<210> 6 <210> 6

<211> 19 <211> 19

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> GDPS基因之反向引子 <223> Reverse primer of GDPS gene

<400> 6

Figure 107145432-A0305-02-0021-10
<400> 6
Figure 107145432-A0305-02-0021-10

<210> 7 <210> 7

<211> 19 <211> 19

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 啟動子之順向引子 <223> Forward primer of promoter

<400> 7

Figure 107145432-A0305-02-0021-11
<400> 7
Figure 107145432-A0305-02-0021-11

<210> 8 <210> 8

<211> 29 <211> 29

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 啟動子之順向引子 <223> Forward primer of promoter

<400> 8

Figure 107145432-A0305-02-0022-12
<400> 8
Figure 107145432-A0305-02-0022-12

<210> 9 <210> 9

<211> 32 <211> 32

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> PbGp-859之順向引子 <223> Forward primer of PbGp-859

<400> 9

Figure 107145432-A0305-02-0022-13
<400> 9
Figure 107145432-A0305-02-0022-13

<210> 10 <210> 10

<211> 29 <211> 29

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> PbGp-859之反向引子 <223> PbGp-859 reverse primer

<400> 10

Figure 107145432-A0305-02-0023-14
<400> 10
Figure 107145432-A0305-02-0023-14

<210> 11 <210> 11

<211> 30 <211> 30

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> PbGp-784之順向引子 <223> Forward primer of PbGp-784

<400> 11

Figure 107145432-A0305-02-0023-15
<400> 11
Figure 107145432-A0305-02-0023-15

<210> 12 <210> 12

<211> 29 <211> 29

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> PbGp-784之反向引子 <223> PbGp-784 reverse primer

<400> 12

Figure 107145432-A0305-02-0024-16
<400> 12
Figure 107145432-A0305-02-0024-16

<210> 13 <210> 13

<211> 31 <211> 31

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> PbGp-710之順向引子 <223> Forward primer of PbGp-710

<400> 13

Figure 107145432-A0305-02-0024-17
<400> 13
Figure 107145432-A0305-02-0024-17

<210> 14 <210> 14

<211> 29 <211> 29

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> PbGp-710之反向引子 <223> PbGp-710 reverse primer

<400> 14

Figure 107145432-A0305-02-0025-18
<400> 14
Figure 107145432-A0305-02-0025-18

Claims (15)

一種用於偵測一目標分子之偵測分子,其中該目標分子係選自由下列所組成之群組:(i)一核酸分子,其具有如SEQ ID NO:1所示之核苷酸序列;(ii)一核酸分子,其具有如SEQ ID NO:2所示之核苷酸序列;及(iii)一核酸分子,其具有與(i)或(ii)所定義之核酸分子之相似度為95%以上之核苷酸序列;其中該偵測分子係為一核酸分子,其可與該目標分子雜交。 A detection molecule for detecting a target molecule, wherein the target molecule is selected from the group consisting of: (i) a nucleic acid molecule having the nucleotide sequence shown in SEQ ID NO:1; (ii) a nucleic acid molecule, which has the nucleotide sequence shown in SEQ ID NO: 2; and (iii) a nucleic acid molecule, which has the similarity to the nucleic acid molecule defined in (i) or (ii): More than 95% of the nucleotide sequence; wherein the detection molecule is a nucleic acid molecule that can hybridize with the target molecule. 如請求項1之偵測分子,其中該目標分子係位於一蘭花中。 Such as the detection molecule of claim 1, wherein the target molecule is located in an orchid. 如請求項1之偵測分子,其中該目標分子係位於二磷酸香葉酯合成酶(geranyl diphosphate synthase)基因之啟動子中。 Such as the detection molecule of claim 1, wherein the target molecule is located in the promoter of a geranyl diphosphate synthase gene. 如請求項1至3中任一項之偵測分子,其係為用於特異性擴增(specifically amplifying)該目標分子之引子。 Such as the detection molecule of any one of claims 1 to 3, which is a primer for specifically amplifying the target molecule. 如請求項4之偵測分子,其中該引子係選自一具有如SEQ ID NO:3所示之核苷酸序列的順向引子及一具有如SEQ ID NO:4所示之核苷酸序列的反向引子。 The detection molecule of claim 4, wherein the primer is selected from a forward primer having a nucleotide sequence as shown in SEQ ID NO: 3 and a nucleotide sequence as shown in SEQ ID NO: 4 Back primer. 一種預測蘭花香味生產之方法,包含偵測一目標分子是否存在於該蘭花之基因組中,其中該目標分子係選自由下列所組成之群組:(i)一核酸分子,其具有如SEQ ID NO:1所示之核苷酸序列;(ii)一核酸分子,其具有如SEQ ID NO:2所示之核苷酸序列;及(iii)一核酸分子,其具有與(i)或(ii)所定義之核酸分子之相似度為95%以上之核苷酸序列。 A method for predicting the production of orchid fragrance, comprising detecting whether a target molecule exists in the genome of the orchid, wherein the target molecule is selected from the group consisting of: (i) a nucleic acid molecule, which has SEQ ID NO :1; (ii) a nucleic acid molecule having the nucleotide sequence shown in SEQ ID NO: 2; and (iii) a nucleic acid molecule having the same as (i) or (ii) Nucleotide sequences whose similarity of nucleic acid molecules defined by) is more than 95%. 如請求項6之方法,其中該蘭花係為蝴蝶蘭(Phalaenopsis spp.)。 Such as the method of claim 6, wherein the orchid is Phalaenopsis spp. 如請求項6之方法,其包含偵測該目標分子是否存在於二磷酸香葉酯合成酶基因之啟動子中。 The method of claim 6, which comprises detecting whether the target molecule is present in the promoter of the geranyl diphosphate synthase gene. 如請求項6至8中任一項之方法,其包含使用一偵測分子偵測該目標分子。 Such as the method of any one of claims 6 to 8, which comprises using a detection molecule to detect the target molecule. 如請求項9之方法,其中該偵測分子包含用於特異性擴增(specifically amplifying)該目標分子之引子。 The method of claim 9, wherein the detection molecule includes a primer for specifically amplifying the target molecule. 如請求項10之方法,其中該引子係選自一具有如SEQ ID NO:3所示之核苷酸序列的順向引子及一具有如SEQ ID NO:4所示之核苷酸序列的反向引子。 The method of claim 10, wherein the primer is selected from a forward primer having the nucleotide sequence shown in SEQ ID NO: 3 and a reverse primer having the nucleotide sequence shown in SEQ ID NO: 4 Xiang Yinzi. 如請求項6之方法,其包含下列步驟: (a)自該蘭花獲取一核酸片段;(b)以該核酸片段為模板進行擴增,以獲得包含該目標分子之產物;及(c)分析擴增之產物。 Such as the method of claim 6, which includes the following steps: (a) Obtain a nucleic acid fragment from the orchid; (b) Amplify the nucleic acid fragment as a template to obtain a product containing the target molecule; and (c) analyze the amplified product. 如請求項12之方法,其中步驟(b)包含以一引子進行聚合酶連鎖反應,該引子係選自一具有如SEQ ID NO:3所示之核苷酸序列的順向引子及一具有如SEQ ID NO:4所示之核苷酸序列的反向引子。 The method of claim 12, wherein step (b) comprises performing a polymerase chain reaction with a primer selected from a forward primer having the nucleotide sequence shown in SEQ ID NO: 3 and a The reverse primer of the nucleotide sequence shown in SEQ ID NO:4. 如請求項12或13之方法,其中步驟(c)包含以凝膠電泳分析該擴增之產物。 The method of claim 12 or 13, wherein step (c) comprises analyzing the amplified product by gel electrophoresis. 如請求項12或13之方法,其中步驟(c)包含定序該擴增之產物。The method of claim 12 or 13, wherein step (c) comprises sequencing the amplified product.
TW107145432A 2018-12-17 2018-12-17 Detective molecule, kit and method for predicting fragrance production in an orchid TWI722352B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107145432A TWI722352B (en) 2018-12-17 2018-12-17 Detective molecule, kit and method for predicting fragrance production in an orchid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107145432A TWI722352B (en) 2018-12-17 2018-12-17 Detective molecule, kit and method for predicting fragrance production in an orchid

Publications (2)

Publication Number Publication Date
TW202024118A TW202024118A (en) 2020-07-01
TWI722352B true TWI722352B (en) 2021-03-21

Family

ID=73004832

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107145432A TWI722352B (en) 2018-12-17 2018-12-17 Detective molecule, kit and method for predicting fragrance production in an orchid

Country Status (1)

Country Link
TW (1) TWI722352B (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Yu-Chen Chuang et al:A Dual Repeat Cis-Element Determines Expression of GERANYL DIPHOSPHATE SYNTHASE for Monoterpene Production in Phalaenopsis Orchids. Frontiers in Plant Science. June 2018 | Volume 9 | Article 765. *

Also Published As

Publication number Publication date
TW202024118A (en) 2020-07-01

Similar Documents

Publication Publication Date Title
Sun et al. Analysis of sea-island cotton and upland cotton in response to Verticillium dahliae infection by RNA sequencing
Salmaso et al. A grapevine (Vitis vinifera L.) genetic map integrating the position of 139 expressed genes
Liu et al. Global transcriptome sequencing using the Illumina platform and the development of EST-SSR markers in autotetraploid alfalfa
Hu et al. Development and characterization of microsatellite markers in sweetpotato
Qi et al. Genomic and transcriptomic sequencing of Rosa hybrida provides microsatellite markers for breeding, flower trait improvement and taxonomy studies
Wu et al. Development of novel SSR markers for flax (Linum usitatissimum L.) using reduced-representation genome sequencing
Conart et al. Duplication and specialization of NUDX1 in Rosaceae led to geraniol production in rose petals
Takayama et al. A simple and cost‐effective approach for microsatellite isolation in non‐model plant species using small‐scale 454 pyrosequencing
Devran et al. Development of molecular markers tightly linked to Pvr4 gene in pepper using next-generation sequencing
Du et al. Identification of differentially expressed genes in flower, leaf and bulb scale of Lilium oriental hybrid ‘Sorbonne’and putative control network for scent genes
Lee et al. Sampling the waterhemp (Amaranthus tuberculatus) genome using pyrosequencing technology
Gawenda et al. Markers for ornamental traits in Phalaenopsis orchids: population structure, linkage disequilibrium and association mapping
MX2014000608A (en) Ssr markers for plants and uses thereof.
Stupar et al. Insights from the soybean (Glycine max and Glycine soja) genome: past, present, and future
Jia et al. Development and cross-species transferability of unigene-derived microsatellite markers in an edible oil woody plant, Camellia oleifera (Theaceae)
Lin et al. Characterization of the monoterpene synthase gene tps26, the ortholog of a gene induced by insect herbivory in maize
Song et al. Novel microsatellite markers for the oriental fruit moth Grapholita molesta (Lepidoptera: Tortricidae) and effects of null alleles on population genetics analyses
Riska et al. East Asian Passiflora distortion virus: a novel potyvirus species causing deformation of passionfruits in Japan
TWI722352B (en) Detective molecule, kit and method for predicting fragrance production in an orchid
US10988815B2 (en) Detective molecule, kit and method for predicting fragrance production in an orchid
Aabd et al. Genetic diversity of the endangered argan tree (Argania spinosa L.)(sapotaceae) revealed by ISSR analysis
Lee et al. Transcriptome-guided identification and functional characterization of key terpene synthases involved in constitutive and methyl jasmonate-inducible volatile terpene formation in Eremochloa ophiuroides (Munro) Hack
Wang et al. The complete chloroplast genome sequence of the Chinese endemic species Sorbus setschwanensis (Rosaceae) and its phylogenetic analysis
Chavan et al. Application of DNA marker (RADP) technology to study molecular diversity in Adenium obesum (Forssk), Roem and Schult
Seo et al. Genome shotgun sequencing and development of microsatellite markers for gerbera (Gerbera hybrida H.) by 454 GS-FLX