TWI722027B - Epoxy-based reactive diluent and epoxy resin composition containing the same - Google Patents

Epoxy-based reactive diluent and epoxy resin composition containing the same Download PDF

Info

Publication number
TWI722027B
TWI722027B TW105133548A TW105133548A TWI722027B TW I722027 B TWI722027 B TW I722027B TW 105133548 A TW105133548 A TW 105133548A TW 105133548 A TW105133548 A TW 105133548A TW I722027 B TWI722027 B TW I722027B
Authority
TW
Taiwan
Prior art keywords
epoxy resin
formula
epoxy
group
resin composition
Prior art date
Application number
TW105133548A
Other languages
Chinese (zh)
Other versions
TW201731830A (en
Inventor
上田祐揮
遠藤勇樹
諏訪剛史
Original Assignee
日商日產化學工業有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日產化學工業有限公司 filed Critical 日商日產化學工業有限公司
Publication of TW201731830A publication Critical patent/TW201731830A/en
Application granted granted Critical
Publication of TWI722027B publication Critical patent/TWI722027B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/16Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by esterified hydroxyl radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/687Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Abstract

本發明提供一種含有儘可能不使硬化物之耐熱性或硬化性等物性降低、進而可賦予降低介電常數之效果之低揮發性之環氧樹脂用反應性稀釋劑的環氧樹脂組合物。 本發明係一種含有式[1]所表示之至少一種環氧化合物及環氧樹脂之環氧樹脂組合物、以及含有該樹脂組合物與硬化劑或酸產生劑之硬化性組合物。 [化1]

Figure 01_image002
(式中,R1 及R2 表示碳原子數2至27之烷基、R3 表示氫原子或碳原子數1至25之烷基,其中,-CR1 R2 R3 基之碳原子數之合計為10至30,X表示*-C(=O)O-、*-CH2 O-或*-CH2 OC(=O)-,L表示單鍵、或可包含醚鍵之碳原子數1至8之伸烷基,E表示式[2]或式[3]所表示之基) [化2]
Figure 01_image003
(式中,R4 至R15 表示氫原子或碳原子數1至10之烷基)The present invention provides an epoxy resin composition containing a reactive diluent for an epoxy resin with low volatility that does not reduce the heat resistance or curability of the cured product as much as possible, and can further impart the effect of lowering the dielectric constant. The present invention is an epoxy resin composition containing at least one epoxy compound represented by the formula [1] and an epoxy resin, and a curable composition containing the resin composition and a curing agent or an acid generator. [化1]
Figure 01_image002
(In the formula, R 1 and R 2 represent an alkyl group with 2 to 27 carbon atoms, R 3 represents a hydrogen atom or an alkyl group with 1 to 25 carbon atoms, and the number of carbon atoms in the -CR 1 R 2 R 3 group The total is 10 to 30, X represents *-C(=O)O-, *-CH 2 O- or *-CH 2 OC(=O)-, L represents a single bond, or a carbon atom that may contain an ether bond The alkylene group of the number 1 to 8, E represents the group represented by the formula [2] or the formula [3]) [化2]
Figure 01_image003
(In the formula, R 4 to R 15 represent a hydrogen atom or an alkyl group with 1 to 10 carbon atoms)

Description

環氧系反應性稀釋劑及含有其之環氧樹脂組合物Epoxy-based reactive diluent and epoxy resin composition containing the same

本發明係關於一種環氧系反應性稀釋劑及含有其之環氧樹脂組合物。The present invention relates to an epoxy-based reactive diluent and an epoxy resin composition containing the same.

先前,環氧樹脂作為與硬化劑或酸產生劑組合而成之環氧樹脂組合物,被廣泛應用於塗料、接著劑、密封劑、成形材料、澆鑄材料等作為土木-建築用、電氣-電子零件用、輸送機用材料之各種領域。並且,根據該等應用領域或應用部位而採用各種環氧樹脂。 於鑄造成形等液狀成形中,採用以雙酚A型環氧樹脂為代表之液狀環氧樹脂。然而,絕大部分之此種液狀環氧樹脂黏度較高,難言作業性良好,因此,為了調整黏度,業界廣泛採用環氧樹脂用反應性稀釋劑。 作為此種反應性稀釋劑之代表例,可列舉丁基縮水甘油醚或2-乙基己基縮水甘油醚等烷基縮水甘油醚類,例如亦提出有適於電子零件等實現對應其用途之製法等(例如專利文獻1)。 另一方面,於電氣-電子零件材料之技術領域中,近年來不斷推進各種電子機器之信號之高速化、高頻率化,伴隨於此,謀求實現低介電常數之材料。 作為低介電常數材料之一例,提出有含有具有多分支之高級烷基之(甲基)丙烯酸烷基酯的(甲基)丙烯酸系聚合物(專利文獻2)。然而,一般而言,認為丙烯酸系樹脂其耐熱性或密接性劣於環氧樹脂。 [先前技術文獻] [專利文獻] [專利文獻1]日本專利特開2002-293755號公報 [專利文獻2]日本專利特開2012-246477號公報Previously, epoxy resin as an epoxy resin composition combined with a hardener or an acid generator was widely used in coatings, adhesives, sealants, molding materials, casting materials, etc. as civil-construction, electrical-electronics Various fields of materials for parts and conveyors. In addition, various epoxy resins are used according to these application fields or application locations. In liquid molding such as casting molding, liquid epoxy resin represented by bisphenol A epoxy resin is used. However, most of such liquid epoxy resins have a high viscosity, and it is hard to say that they have good workability. Therefore, in order to adjust the viscosity, the industry widely uses reactive diluents for epoxy resins. As a representative example of such a reactive diluent, alkyl glycidyl ethers such as butyl glycidyl ether or 2-ethylhexyl glycidyl ether can be cited. For example, a production method suitable for electronic parts and the like to meet their applications has also been proposed. Etc. (for example, Patent Document 1). On the other hand, in the technical field of electrical-electronic parts materials, in recent years, the speed and frequency of signals of various electronic devices have been continuously promoted, and with this, materials with low dielectric constant have been sought. As an example of a low dielectric constant material, a (meth)acrylic polymer containing an alkyl (meth)acrylate having a multi-branched higher alkyl group is proposed (Patent Document 2). However, in general, it is considered that acrylic resin is inferior to epoxy resin in heat resistance or adhesion. [Prior Art Document] [Patent Document] [Patent Document 1] Japanese Patent Laid-Open No. 2002-293755 [Patent Document 2] Japanese Patent Laid-Open No. 2012-246477

[發明所欲解決之問題] 上述包含烷基縮水甘油醚類之反應性稀釋劑由於沸點較低,故而揮發性較高,根據環氧樹脂之硬化時或樹脂之熔融成形時之加熱條件,存在稀釋劑本身會揮發之問題、或將該等反應性稀釋劑添加至環氧樹脂之情形時,硬化物之耐熱性或硬化性大幅降低等問題。 另一方面,隨著各種電子機器之高性能化,對其構成材料除謀求耐熱性等自先前以來之要求性以外,亦逐漸謀求可實現更低之介電常數之方面。一般而言,環氧樹脂雖藉由每分子之環氧基之增加而使耐熱性或強度提高,但另一方面,極性較高之環氧基之增加有導致介電常數增加之傾向。 本發明之目的在於提供一種含有儘可能不使其硬化物之耐熱性或硬化性等物性降低、進而可賦予降低介電常數之效果之低揮發性之環氧樹脂用反應性稀釋劑的環氧樹脂組合物。 [解決問題之技術手段] 本發明者等人為了達成上述目的進行了努力研究,結果發現,具有分支之烷基部位之單官能環氧酯或醚化合物於迄今為止之液狀環氧化合物中為黏度極低之液狀化合物,另外,與先前之環氧樹脂之相溶性亦優異,根據該結果,發現作為環氧化合物之反應性稀釋劑較為有用,另外,與先前市售之反應性稀釋劑(烷基縮水甘油醚類)相比,為低揮發性。並且,關於將上述具有分支之烷基部位之單官能環氧化合物與環氧樹脂調配而得之環氧樹脂組合物,對其調配硬化劑或硬化觸媒而製成硬化性組合物,使其硬化而獲得硬化物,所獲得之硬化物較原先之環氧樹脂之硬化物,可降低介電常數並且可維持吸水率亦較低之狀態,從而完成了本發明。 即,關於本發明,第1觀點係關於一種包含式[1]所表示之至少一種環氧化合物、及環氧樹脂之環氧樹脂組合物。 [化1]

Figure 02_image006
(式中,R1 及R2 分別獨立表示碳原子數2至27之烷基,R3 表示氫原子或碳原子數1至25之烷基,其中,-CR1 R2 R3 基之碳原子數之合計為10至30,X表示*-C(=O)O-、*-CH2 O-或*-CH2 OC(=O)-(此處,*表示與-CR1 R2 R3 基鍵結之端)、L表示單鍵、或可包含醚鍵之碳原子數1至8之伸烷基,E表示式[2]或式[3]所表示之基) [化2]
Figure 02_image008
(式中,R4 至R15 分別獨立表示氫原子或碳原子數1至10之烷基) 第2觀點係關於如第1觀點記載之環氧樹脂組合物,其中上述-CR1 R2 R3 基為碳原子數14至26之基。 第3觀點係關於如第2觀點記載之環氧樹脂組合物,其中上述-CR1 R2 R3 基為碳原子數14至20之基。 第4觀點係關於如第1觀點至第3觀點中任一項記載之環氧樹脂組合物,其中上述X為*-C(=O)O-。 第5觀點係關於如第1觀點至第3觀點中任一項記載之環氧樹脂組合物,其中上述X為*-CH2 O-。 第6觀點係關於如第1觀點至第5觀點中任一項記載之環氧樹脂組合物,其中上述E為式[2]所表示之基。 第7觀點係關於如第1觀點至第6觀點中任一項記載之環氧樹脂組合物,其中上述L為單鍵或亞甲基。 第8觀點係關於一種硬化性組合物,其含有(a)如第1觀點至第7觀點中任一項記載之環氧樹脂組合物、及(b)硬化劑。 第9觀點係關於如第8觀點記載之硬化性組合物,其中上述(b)硬化劑係選自由酸酐、胺、酚樹脂、聚醯胺樹脂、咪唑類、及聚硫醇所組成之群中之至少一種。 第10觀點係關於如第8觀點或第9觀點記載之硬化性組合物,其中相對於上述(a)環氧樹脂組合物之環氧基1當量,含有0.5~1.5當量之上述(b)硬化劑。 第11觀點係關於一種硬化性組合物,其含有(a)如第1觀點至第7觀點中任一項記載之環氧樹脂組合物、及包含(c1)酸產生劑及/或(c2)鹼產生劑之(c)硬化觸媒。 第12觀點係關於如第11觀點記載之硬化性組合物,其中上述(c)硬化觸媒為(c1)酸產生劑。 第13觀點係關於如第12觀點記載之硬化性組合物,其中上述(c1)酸產生劑係選自由光酸產生劑、及熱酸產生劑所組成之群中之至少一種。 第14觀點係關於如第13觀點記載之硬化性組合物,其中上述(c1)酸產生劑為鎓鹽。 第15觀點係關於如第14觀點記載之硬化性組合物,其中上述(c1)酸產生劑為鋶鹽或錪鹽。 第16觀點係關於如第12觀點至第15觀點中任一項記載之硬化性組合物,其中相對於上述(a)環氧樹脂組合物100質量份,含有上述(c1)酸產生劑0.1~20質量份。 第17觀點係關於一種式[1]所表示之至少一種環氧化合物之用途,其於環氧樹脂組合物中用作反應性稀釋劑。 [化3]
Figure 02_image010
(式中,R1 及R2 分別獨立表示碳原子數2至27之烷基,R3 表示氫原子或碳原子數1至25之烷基,其中,-CR1 R2 R3 基之碳原子數之合計為10至30,X表示*-C(=O)O-、*-CH2 O-或*-CH2 OC(=O)-(此處,*表示與-CR1 R2 R3 基鍵結之端)、L表示單鍵、或可包含醚鍵之碳原子數1至8之伸烷基,E表示式[2]或式[3]所表示之基) [化4]
Figure 02_image012
(式中,R4 至R15 分別獨立表示氫原子或碳原子數1至10之烷基) 第18觀點係關於一種式[1a]所表示之環氧化合物。 [化5]
Figure 02_image014
(式中,R1 及R2 分別獨立表示碳原子數2至27之烷基,R3 表示氫原子或碳原子數1至25之烷基,其中,-CR1 R2 R3 基之碳原子數為10至30,R4 至R6 分別獨立表示氫原子或碳原子數1至10之烷基,L表示可包含醚鍵之碳原子數1至8之伸烷基) [發明之效果] 本發明之環氧樹脂組合物藉由調配環氧樹脂與作為反應性稀釋劑之具有分支之烷基部位之單官能環氧化合物,可製成相溶性及操作性優異之組合物,不僅如此,與使用先前之環氧系反應性稀釋劑之組合物相比,可製作具有高耐熱性之硬化物。又,對本發明之環氧樹脂組合物調配硬化劑或硬化觸媒而製成硬化性組合物,使其硬化而獲得硬化物,所獲得之硬化物與由未調配上述具有分支之烷基部位之單官能環氧化合物(反應性稀釋劑)之組合物所製作之硬化物相比,可製作具有低介電常數並且低吸水率之硬化物。 又,上述具有分支之烷基部位之單官能環氧化合物於液狀環氧化合物中亦為黏度極低之環氧化合物(約100 mPa·s以下),又,與先前市售之環氧系反應性稀釋劑相比,為低揮發性之化合物,且與其他液狀環氧樹脂之相溶性亦優異。進而,調配該環氧化合物製作之環氧硬化性組合物可製作低介電常數之硬化物。因此,上述具有分支之烷基部位之單官能環氧化合物可較佳地用作環氧樹脂組合物之反應性稀釋劑,並且,藉此不僅實現環氧樹脂組合物之操作性及硬化性之提高,而且使用該組合物製作之硬化物可賦予耐熱性、進而低介電特性。 本發明之環氧系反應性稀釋劑及含有其之環氧樹脂組合物可作為半導體密封材料、透明密封劑、電子材料用接著劑、光學用接著劑、印刷配線基板材料、層間絕緣膜材料、纖維強化塑膠、光造形用墨水、塗料用墨水、撥水性塗佈材料、滑水性塗佈材料、親油性塗佈材料、自修復性材料、生物親和性材料、雙折射控制材料、顏料分散劑、填料分散劑、橡膠改質劑等各種材料之主劑、交聯劑、稀釋劑、調平劑、相溶劑而較佳地使用。[Problem to be solved by the invention] The above-mentioned reactive diluents containing alkyl glycidyl ethers have relatively high volatility due to their low boiling point. Depending on the heating conditions during the curing of the epoxy resin or the melting and molding of the resin, there are The problem that the diluent itself volatilizes, or when the reactive diluent is added to the epoxy resin, the heat resistance or curability of the cured product is greatly reduced. On the other hand, with the advancement of various electronic devices, in addition to the requirements that have been required from the past, such as heat resistance, for their constituent materials, they are also gradually seeking to achieve a lower dielectric constant. Generally speaking, although epoxy resins increase heat resistance or strength through the increase of epoxy groups per molecule, on the other hand, the increase of epoxy groups with higher polarity tends to increase the dielectric constant. The object of the present invention is to provide an epoxy containing a reactive diluent for epoxy resins with low volatility that does not reduce the heat resistance or curability of the cured product as much as possible, and furthermore can impart the effect of reducing the dielectric constant. Resin composition. [Technical Means for Solving the Problem] The inventors of the present invention conducted diligent studies to achieve the above-mentioned object, and found that monofunctional epoxy ester or ether compounds with branched alkyl moieties are among the liquid epoxy compounds hitherto A liquid compound with extremely low viscosity and excellent compatibility with previous epoxy resins. According to this result, it has been found that it is useful as a reactive diluent for epoxy compounds. In addition, it is compatible with previous commercially available reactive diluents. (Alkyl glycidyl ethers) has lower volatility compared to it. In addition, regarding the epoxy resin composition obtained by blending the above-mentioned monofunctional epoxy compound having a branched alkyl moiety with an epoxy resin, a curing agent or a curing catalyst is blended to form a curable composition. Hardened to obtain a hardened product. Compared with the original hardened epoxy resin, the obtained hardened product can lower the dielectric constant and can maintain a state of low water absorption, thus completing the present invention. That is, regarding the present invention, the first viewpoint relates to an epoxy resin composition containing at least one epoxy compound represented by the formula [1] and an epoxy resin. [化1]
Figure 02_image006
(In the formula, R 1 and R 2 each independently represent an alkyl group with 2 to 27 carbon atoms, R 3 represents a hydrogen atom or an alkyl group with 1 to 25 carbon atoms, wherein the carbon of the -CR 1 R 2 R 3 group The total number of atoms is 10 to 30, X means *-C(=O)O-, *-CH 2 O- or *-CH 2 OC(=O)- (here, * means the same as -CR 1 R 2 R 3 group at the end of the bond), L represents a single bond, or an alkylene group with 1 to 8 carbon atoms that may contain an ether bond, E represents a group represented by formula [2] or formula [3]) [化2 ]
Figure 02_image008
(In the formula, R 4 to R 15 each independently represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms) The second aspect relates to the epoxy resin composition as described in the first aspect, wherein the above -CR 1 R 2 R The 3 -group is a group having 14 to 26 carbon atoms. The third aspect relates to the epoxy resin composition as described in the second aspect, wherein the -CR 1 R 2 R 3 group is a group having 14 to 20 carbon atoms. The fourth viewpoint relates to the epoxy resin composition as described in any one of the first viewpoint to the third viewpoint, wherein the above-mentioned X is *-C(=O)O-. The fifth viewpoint relates to the epoxy resin composition as described in any one of the first viewpoint to the third viewpoint, wherein the above-mentioned X is *-CH 2 O-. The sixth viewpoint relates to the epoxy resin composition as described in any one of the first viewpoint to the fifth viewpoint, wherein the above-mentioned E is a group represented by the formula [2]. The seventh viewpoint relates to the epoxy resin composition as described in any one of the first viewpoint to the sixth viewpoint, wherein the above-mentioned L is a single bond or a methylene group. The eighth viewpoint relates to a curable composition containing (a) the epoxy resin composition described in any one of the first viewpoint to the seventh viewpoint, and (b) a curing agent. The ninth aspect relates to the curable composition as described in the eighth aspect, wherein the (b) curing agent is selected from the group consisting of acid anhydrides, amines, phenol resins, polyamide resins, imidazoles, and polythiols At least one of them. The tenth viewpoint relates to the curable composition as described in the eighth viewpoint or the ninth viewpoint, which contains 0.5 to 1.5 equivalents of the above-mentioned (b) curing relative to 1 equivalent of the epoxy group of the above-mentioned (a) epoxy resin composition Agent. The eleventh viewpoint relates to a curable composition containing (a) the epoxy resin composition described in any one of the first viewpoint to the seventh viewpoint, and (c1) an acid generator and/or (c2) (C) Hardening catalyst of alkali generator. The twelfth aspect relates to the curable composition as described in the eleventh aspect, wherein the (c) curing catalyst is (c1) an acid generator. The 13th viewpoint relates to the curable composition according to the 12th viewpoint, wherein the acid generator (c1) is at least one selected from the group consisting of photoacid generators and thermal acid generators. The 14th viewpoint relates to the curable composition as described in the 13th viewpoint, wherein the acid generator (c1) is an onium salt. The 15th viewpoint relates to the curable composition as described in the 14th viewpoint, wherein the acid generator (c1) is a sulphur salt or an iodonium salt. The 16th viewpoint relates to the curable composition as described in any one of the 12th viewpoint to the 15th viewpoint, which contains 0.1 to the (c1) acid generator with respect to 100 parts by mass of the (a) epoxy resin composition. 20 parts by mass. The 17th viewpoint relates to the use of at least one epoxy compound represented by formula [1] as a reactive diluent in an epoxy resin composition. [化3]
Figure 02_image010
(In the formula, R 1 and R 2 each independently represent an alkyl group with 2 to 27 carbon atoms, R 3 represents a hydrogen atom or an alkyl group with 1 to 25 carbon atoms, wherein the carbon of the -CR 1 R 2 R 3 group The total number of atoms is 10 to 30, X means *-C(=O)O-, *-CH 2 O- or *-CH 2 OC(=O)- (here, * means the same as -CR 1 R 2 R 3 group at the end of the bond), L represents a single bond, or an alkylene group with 1 to 8 carbon atoms that may contain an ether bond, E represents a group represented by formula [2] or formula [3]) [化4 ]
Figure 02_image012
(In the formula, R 4 to R 15 each independently represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms) The 18th viewpoint relates to an epoxy compound represented by the formula [1a]. [化5]
Figure 02_image014
(In the formula, R 1 and R 2 each independently represent an alkyl group with 2 to 27 carbon atoms, R 3 represents a hydrogen atom or an alkyl group with 1 to 25 carbon atoms, wherein the carbon of the -CR 1 R 2 R 3 group The number of atoms is 10 to 30, R 4 to R 6 each independently represent a hydrogen atom or an alkyl group with 1 to 10 carbon atoms, and L represents an alkylene group with 1 to 8 carbon atoms that may contain an ether bond) [Effects of the invention ] The epoxy resin composition of the present invention can be made into a composition with excellent compatibility and operability by blending an epoxy resin and a monofunctional epoxy compound having a branched alkyl moiety as a reactive diluent. , Compared with the composition using the previous epoxy-based reactive diluent, the cured product with high heat resistance can be made. Furthermore, the epoxy resin composition of the present invention is mixed with a curing agent or a curing catalyst to prepare a curable composition, which is cured to obtain a cured product. Compared with the cured product made of the composition of the monofunctional epoxy compound (reactive diluent), the cured product can be made with a low dielectric constant and low water absorption. In addition, the above-mentioned monofunctional epoxy compounds with branched alkyl moieties are also epoxy compounds with extremely low viscosity (below about 100 mPa·s) in liquid epoxy compounds, and are similar to previously commercially available epoxy compounds. Compared with reactive diluents, it is a compound with lower volatility and has excellent compatibility with other liquid epoxy resins. Furthermore, the epoxy curable composition prepared by blending the epoxy compound can produce a cured product with a low dielectric constant. Therefore, the above-mentioned monofunctional epoxy compound with branched alkyl moiety can be preferably used as a reactive diluent for epoxy resin composition, and thereby not only realizes the workability and curability of epoxy resin composition It is improved, and the hardened product made by using the composition can impart heat resistance and low dielectric properties. The epoxy-based reactive diluent of the present invention and the epoxy resin composition containing the same can be used as semiconductor sealing materials, transparent sealing agents, adhesives for electronic materials, adhesives for optics, printed wiring board materials, interlayer insulating film materials, Fiber-reinforced plastics, photo-forming inks, paint inks, water-repellent coating materials, water-slip coating materials, lipophilic coating materials, self-healing materials, bio-affinity materials, birefringence control materials, pigment dispersants, It is preferably used as the main agent of various materials such as filler dispersant and rubber modifier, crosslinking agent, diluent, leveling agent, and phase solvent.

[(a)環氧樹脂組合物] 本發明係關於含有下述式[1]所表示之至少一種環氧化合物及環氧樹脂之環氧樹脂組合物,又,本發明之對象亦為下述式[1]所表示之環氧化合物於環氧樹脂組合物中作為反應性稀釋劑之用途。 <環氧化合物> 本發明之環氧樹脂組合物所包含之環氧化合物係以下述式[1]表示。 [化6]

Figure 02_image016
上述式中,R1 及R2 分別獨立表示碳原子數2至27之烷基,R3 表示氫原子或碳原子數1至25之烷基,其中,-CR1 R2 R3 基之碳原子數之合計為10至30,X表示*-C(=O)O-、*-CH2 O-或*-CH2 OC(=O)-(此處,*表示與-CR1 R2 R3 基鍵結之端)、L表示單鍵、或可包含醚鍵之碳原子數1至8之伸烷基,E表示式[2]或式[3]所表示之基。 [化7]
Figure 02_image018
上述式中,R4 至R15 分別獨立表示氫原子或碳原子數1至10之烷基。 作為上述R1 及R2 中之碳原子數2至27之烷基,不僅可具有直鏈結構,而且亦可具有分支結構、環狀結構。 具體而言,可列舉:乙基、丙基、丁基、戊基(amyl)、己基、庚基、辛基、壬基、癸基、十一烷基、十二烷基(月桂基)、十三烷基、十四烷基(肉豆蔻基)、十五烷基、十六烷基(棕櫚基)、十七烷基(珠光脂基)、十八烷基(硬脂基)、十九烷基、二十烷基(花生基)、二十一烷基、二十二烷基(山崳基)、二十三烷基、二十四烷基(木蠟基)、二十五烷基、二十六烷基、二十七烷基等直鏈狀烷基;異丙基、異丁基、第二丁基、第三丁基、異戊基、新戊基、第三戊基、第二異戊基、異己基、2,3-二甲基-2-丁基(thexyl)、4-甲基己基、5-甲基己基、2-乙基戊基、庚烷-3-基、庚烷-4-基、4-甲基己烷-2-基、3-甲基己烷-3-基、2,3-二甲基戊烷-2-基、2,4-二甲基戊烷-2-基、4,4-二甲基戊烷-2-基、6-甲基庚基、2-乙基己基、辛烷-2-基、6-甲基庚烷-2-基、6-甲基辛基、3,5,5-三甲基己基、壬烷-4-基、2,6-二甲基庚烷-3-基、3,6-二甲基庚烷-3-基、3-乙基庚烷-3-基、3,7-二甲基辛基、8-甲基壬基、3-甲基壬烷-3-基、4-乙基辛烷-4-基、9-甲基癸基、十一烷-5-基、3-乙基壬烷-3-基、5-乙基壬烷-5-基、2,2,4,5,5-五甲基己烷-4-基、10-甲基十一烷基、11-甲基十二烷基、十三烷-6-基、十三烷-7-基、7-乙基十一烷-2-基、3-乙基十一烷-3-基、5-乙基十一烷-5-基、12-甲基十三烷基、13-甲基十四烷基、十五烷-7-基、十五烷-8-基、14-甲基十五烷基、15-甲基十六烷基、十七烷-8-基、十七烷-9-基、3,13-二甲基十五烷-7-基、2,2,4,8,10,10-六甲基十一烷-5-基、16-甲基十七烷基、17-甲基十八烷基、十九烷-9-基、十九烷-10-基、2,6,10,14-四甲基十五烷-7-基、18-甲基十九烷基、19-甲基二十烷基、二十一烷-10-基、20-甲基二十一烷基、21-甲基二十二烷基、二十三烷-11-基、22-甲基二十三烷基、23-甲基二十四烷基、二十五烷-12-基、二十五烷-13-基、2,22-二甲基二十三烷-11-基、3,21-二甲基二十三烷-11-基、9,15-二甲基二十三烷-11-基、24-甲基二十五烷基、25-甲基二十六烷基、二十七烷-13-基等支鏈狀烷基;環丙基、環丁基、環戊基、環己基、4-第三丁基環己基、1,6-二甲基環己基、䓝基、環庚基、環辛基、雙環[2.2.1]庚烷-2-基、
Figure 105133548-A0304-03-0013-01
基、異
Figure 105133548-A0304-03-0013-01
基、1-金剛烷基、2-金剛烷基、三環[5.2.1.02,6 ]癸烷-4-基、三環[5.2.1.02,6 ]癸烷-8-基、環十二烷基等脂環式烷基。 上述R1 及R2 分別獨立,較佳為碳原子數4至16之烷基,更佳為碳原子數6至10之烷基。 其中,R1 及R2 分別獨立,較佳為支鏈狀之烷基,更佳為碳原子數4至16之支鏈狀烷基,進而較佳為碳原子數6至10之支鏈狀烷基。 具體而言,R1 及R2 分別獨立,尤佳為己基、庚基、辛基、壬基、4,4-二甲基戊烷-2-基、6-甲基庚烷-2-基、6-甲基辛基、3,5,5-三甲基己基、3,7-二甲基辛基。 作為上述R3 中之碳原子數1至25之烷基,不僅可具有直鏈結構,而且亦可具有分支結構、環狀結構。 作為此種碳原子數1至25之烷基,可列舉:甲基、乙基、丙基、丁基、戊基(amyl)、己基、庚基、辛基、壬基、癸基、十一烷基、十二烷基(月桂基)、十三烷基、十四烷基(肉豆蔻基)、十五烷基、十六烷基(棕櫚基)、十七烷基(珠光脂基)、十八烷基(硬脂基)、十九烷基、二十烷基(花生基)、二十一烷基、二十二烷基(山崳基)、二十三烷基、二十四烷基(木蠟基)、二十五烷基等直鏈狀烷基;異丙基、異丁基、第二丁基、第三丁基、異戊基、新戊基、第三戊基、第二異戊基、異己基、2,3-二甲基-2-丁基、4-甲基己基、5-甲基己基、2-乙基戊基、庚烷-3-基、庚烷-4-基、4-甲基己烷-2-基、3-甲基己烷-3-基、2,3-二甲基戊烷-2-基、2,4-二甲基戊烷-2-基、4,4-二甲基戊烷-2-基、6-甲基庚基、2-乙基己基、辛烷-2-基、6-甲基庚烷-2-基、6-甲基辛基、3,5,5-三甲基己基、壬烷-4-基、2,6-二甲基庚烷-3-基、3,6-二甲基庚烷-3-基、3-乙基庚烷-3-基、3,7-二甲基辛基、8-甲基壬基、3-甲基壬烷-3-基、4-乙基辛烷-4-基、9-甲基癸基、十一烷-5-基、3-乙基壬烷-3-基、5-乙基壬烷-5-基、2,2,4,5,5-五甲基己烷-4-基、10-甲基十一烷基、11-甲基十二烷基、十三烷-6-基、十三烷-7-基、7-乙基十一烷-2-基、3-乙基十一烷-3-基、5-乙基十一烷-5-基、12-甲基十三烷基、13-甲基十四烷基、十五烷-7-基、十五烷-8-基、14-甲基十五烷基、15-甲基十六烷基、十七烷-8-基、十七烷-9-基、3,13-二甲基十五烷-7-基、2,2,4,8,10,10-六甲基十一烷-5-基、16-甲基十七烷基、17-甲基十八烷基、十九烷-9-基、十九烷-10-基、2,6,10,14-四甲基十五烷-7-基、18-甲基十九烷基、19-甲基二十烷基、二十一烷-10-基、20-甲基二十一烷基、21-甲基二十二烷基、二十三烷-11-基、22-甲基二十三烷基、23-甲基二十四烷基、二十五烷-12-基、二十五烷-13-基、2,22-二甲基二十三烷-11-基、3,21-二甲基二十三烷-11-基、9,15-二甲基二十三烷-11-基等支鏈狀烷基;環丙基、環丁基、環戊基、環己基、4-第三丁基環己基、1,6-二甲基環己基、䓝基、環庚基、環辛基、雙環[2.2.1]庚烷-2-基、
Figure 105133548-A0304-03-0013-01
基、異
Figure 105133548-A0304-03-0013-01
基、1-金剛烷基、2-金剛烷基、三環[5.2.1.02,6 ]癸烷-4-基、三環[5.2.1.02,6 ]癸烷-8-基、環十二烷基等脂環式烷基。 其中,R3 較佳為氫原子。 具有上述R1 、R2 及R3 之基、即-CR1 R2 R3 基其碳原子數之合計為10至30,較佳為碳原子數14至26之基,尤佳為碳原子數14至20之基。 作為上述-CR1 R2 R3 基之具體例,可列舉:3-甲基壬烷-3-基、4-乙基辛烷-4-基、十一烷-5-基、3-乙基壬烷-3-基、5-乙基壬烷-5-基、2,2,4,5,5-五甲基己烷-4-基、十三烷-6-基、十三烷-7-基、7-乙基十一烷-2-基、3-乙基十一烷-3-基、5-乙基十一烷-5-基、十五烷-7-基、十五烷-8-基、十七烷-8-基、十七烷-9-基、3,13-二甲基十五烷-7-基、2,2,4,8,10,10-六甲基十一烷-5-基、十九烷-9-基、十九烷-10-基、2,6,10,14-四甲基十五烷-7-基、二十一烷-10-基、二十三烷-11-基、二十五烷-12-基、二十五烷-13-基、2,22-二甲基二十三烷-11-基、3,21-二甲基二十三烷-11-基、9,15-二甲基二十三烷-11-基、二十七烷-13-基、二十九烷-14-基等。 其中,上述X較佳為*-C(=O)O-或*-CH2 O-基,尤佳為*-C(=O)O-基。 作為上述L中之可包含醚鍵之碳原子數1至8之伸烷基,可列舉:亞甲基、伸乙基、三亞甲基、甲基伸乙基、四亞甲基、1-甲基三亞甲基、五亞甲基、2,2-二甲基三亞甲基、六亞甲基、七亞甲基、八亞甲基、2-氧雜四亞甲基、2,5-二氧雜七亞甲基、2,5,8-三氧雜十亞甲基、2-氧雜-3-甲基四亞甲基、2,5-二氧雜-3,6-二甲基七亞甲基等。 作為上述L,較佳為列舉:亞甲基、三亞甲基、六亞甲基、2-氧雜四亞甲基,更佳為列舉亞甲基。 上述式[1]中之E即式[2]或式[3]所表示之基為含環氧基之基。 作為式[2]或式[3]中之R4 至R15 中之碳原子數1至10之烷基,可列舉:甲基、乙基、丙基、異丙基、環丙基、丁基、異丁基、第二丁基、第三丁基、環丁基、戊基(amyl)、異戊基、新戊基、第三戊基、第二異戊基、環戊基、己基、異己基、環己基、庚基、辛基、2-乙基己基、壬基、癸基等。 其中,R4 至R15 較佳為氫原子。 再者,上述式[1]所表示之環氧化合物中,下述式[1a]所表示之化合物亦為發明之對象。 [化8]
Figure 02_image020
式中,R1 及R2 分別獨立表示碳原子數2至27之烷基,R3 表示氫原子或碳原子數1至25之烷基,其中,-CR1 R2 R3 基之碳原子數為10至30,R4 至R6 分別獨立表示氫原子或碳原子數1至10之烷基,L表示可包含醚鍵之碳原子數1至8之伸烷基。 上述R1 至R6 、及L之具體之基如上所述。 上述式[1]所表示之化合物能夠以羧酸類或醇類作為起始原料,藉由先前公知(例如記載於國際公開2012/128325號說明書、日本專利特開2012-25688號公報等)之環氧化物之合成方法而製造。 例如,於X表示*-C(=O)-O-基之酯化合物之情形時,作為一例,可藉由如下方法製造:使R1 R2 R3 C-COOH所表示之羧酸或其活化體(醯鹵化物、酸酐、醯基疊氮、活性酯等)與烯丙基鹵化物或具有烯丙基之醇反應而形成具有不飽和鍵之酯化合物(中間物),然後使該中間物與過氧化物反應而使不飽和鍵環氧化。又,亦可藉由使R1 R2 R3 C-COOH所表示之羧酸與表氯醇反應進行閉環之方法而製造。作為一例,以下示出E為式[2]所表示之基之情形之合成流程。 [化9]
Figure 02_image022
又,於上述式[1]中X表示*-CH2- O-基之醚化合物之情形時,例如可藉由如下方法進行製造:使R1 R2 R3 C-CH2 OH所表示之醇與烯丙基鹵化物反應而形成具有不飽和鍵之醚化合物(中間物),然後使該中間物與過氧化物反應而使不飽和鍵環氧化。 上述R1 R2 R3 C-COOH所表示之羧酸及R1 R2 R3 C-CH2 OH所表示之醇可使用市售品,例如作為上述R1 R2 R3 C-COOH所表示之化合物,可列舉:日產化學工業(股)製造之Fine Oxocol(註冊商標)異棕櫚酸、Fine Oxocol(註冊商標)異硬脂酸、Fine Oxocol(註冊商標)異硬脂酸N、Fine Oxocol(註冊商標)異硬脂酸T、及Fine Oxocol(註冊商標)異花生酸。又,作為上述R1 R2 R3 C-CH2 OH所表示之化合物,可列舉:日產化學工業(股)製造之Fine Oxocol(註冊商標)1600、Fine Oxocol 180、Fine Oxocol 180N、Fine Oxocol 180T、及Fine Oxocol 2000等。 <環氧樹脂> 本發明之環氧樹脂組合物所包含之環氧樹脂通常係指分子內具有至少2個環氧基之環氧化合物,於本發明中並無特別限定,可使用包含市售品在內之各種環氧樹脂。 於本發明之環氧樹脂組合物中,就操作作業上之觀點而言,較佳為理想上使用液狀之環氧樹脂。再者,於該環氧樹脂為固體、或黏度非常高之情形時,為了實現操作作業上之方便,可溶解於溶劑中,或如下所述般於環氧樹脂組合物之製備時以硬化反應不會進行之程度進行加熱。但是,溶劑之添加有因溶劑之蒸發產生硬化物之密度降低或因孔隙之產生導致強度降低、耐水性之降低之虞。因此,較佳為採用該環氧樹脂本身於常溫、常壓下為液狀者。 作為本發明中可使用之環氧樹脂,可列舉:1,4-丁二醇二縮水甘油醚、1,6-己二醇二縮水甘油醚、(聚)乙二醇二縮水甘油醚、(聚)丙二醇二縮水甘油醚、三羥甲基乙烷三縮水甘油醚、三羥甲基丙烷三縮水甘油醚、1,4-環己烷二甲醇二縮水甘油醚、1,2-環氧基-4-(環氧乙基)環己烷、甘油三縮水甘油醚、二甘油聚二縮水甘油醚、2,6-二縮水甘油基苯基縮水甘油醚、1,1,3-三(4-縮水甘油氧基苯基)丙烷、1,2-環己烷二羧酸二縮水甘油酯、4,4'-亞甲基雙(N,N-二縮水甘油基苯胺)、3,4-環氧環己烷羧酸3',4'-環氧環己基甲酯、三縮水甘油基對胺基苯酚、四縮水甘油基間苯二甲胺、四縮水甘油基二胺基二苯基甲烷、四縮水甘油基-1,3-雙胺基甲基環己烷、雙酚A二縮水甘油醚、雙酚S二縮水甘油醚、四溴雙酚A二縮水甘油醚、氫化雙酚A二縮水甘油醚、季戊四醇二縮水甘油醚、季戊四醇四縮水甘油醚、季戊四醇聚縮水甘油醚、間苯二酚二縮水甘油醚、鄰苯二甲酸二縮水甘油酯、四氫鄰苯二甲酸二縮水甘油酯、新戊二醇二縮水甘油醚、雙酚六氟丙酮二縮水甘油醚、異氰尿酸三縮水甘油酯、異氰尿酸三(3,4-環氧丁基)酯、異氰尿酸三(4,5-環氧戊基)酯、異氰尿酸三(5,6-環氧己基)酯、異氰尿酸三(7,8-環氧辛基)酯、異氰尿酸三(2-縮水甘油氧基乙基)酯、異氰尿酸單烯丙酯二縮水甘油酯、N,N'-二縮水甘油基N''-(2,3-二丙醯氧基丙基)異氰尿酸酯、N,N'-雙(2,3-二丙醯氧基丙基)N''-縮水甘油基異氰尿酸酯、三(2,2-雙(縮水甘油氧基甲基)丁基)3,3',3''-(2,4,6-三側氧基-1,3,5-三𠯤-1,3,5-三基)三丙酸酯、山梨糖醇聚縮水甘油醚、己二酸二縮水甘油酯、鄰苯二甲酸二縮水甘油酯、二溴苯基縮水甘油醚、1,2,7,8-二環氧辛烷、1,6-二羥甲基全氟己烷二縮水甘油醚、4-(螺[3,4-環氧環己烷-1,5'-[1,3]二㗁烷]-2'-基)-1,2-環氧環己烷、1,2-雙(3,4-環氧環己基甲氧基)乙烷、4,5-環氧基-2-甲基環己烷羧酸4',5'-環氧基-2'-甲基環己基甲酯、乙二醇雙(3,4-環氧環己烷羧酸酯)、己二酸雙(3,4-環氧環己基甲基)酯、雙(2,3-環氧環戊基)醚等,但並不限定於該等。 該等環氧樹脂可單獨使用或以兩種以上之混合物之形式使用。 再者,作為上述環氧樹脂之一例,可列舉以下之市售品。 作為固體環氧樹脂,可列舉:TEPIC(註冊商標)-G、TEPIC-S、TEPIC-L、TEPIC-HP[均為日產化學工業(股)製造]等。 又,作為液狀環氧樹脂,可列舉:TEPIC(註冊商標)-PAS B22、TEPIC-PAS B26、TEPIC-PAS B26L、TEPIC-VL、TEPIC-UC、TEPIC-FL[均為日產化學工業(股)製造]、jER 828、jER YX8000[均為三菱化學(股)製造]、Ricaresin(註冊商標)DME100[新日本理化(股)製造]、Celloxide 2021P[Daicel(股)製造]等。 於本發明之環氧樹脂組合物中,式[1]所表示之環氧化合物與環氧樹脂之調配比率較佳為以質量比計,設為式[1]所表示之環氧化合物:環氧樹脂=3:97~60:40之範圍,更佳為設為5:95~40:60之範圍。藉由將式[1]所表示之環氧化合物之調配量設為上述比率以上,可獲得充分之黏度降低效果,又,使所獲得之樹脂組合物充分地降低介電常數。又,藉由將式[1]所表示之環氧化合物之調配量設為上述比率以下,可抑制交聯密度之降低,維持其後獲得之硬化物之耐熱性或機械物性。 本發明之環氧樹脂組合物可藉由將上述式[1]所表示之環氧化合物及上述環氧樹脂混合而製造,該混合只要能夠均勻地混合,則並無特別限定,例如可藉由使用混合機或混練機,又,可考慮黏度而視需要於加熱下實施,例如可於10~150℃之溫度下混合0.5~10小時左右而製備。 [(b)硬化劑及含有其之硬化性組合物] 本發明將含有上述環氧樹脂組合物、及(b)硬化劑之硬化性組合物設為對象。本硬化性組合物中除(b)硬化劑以外,亦可併用硬化促進劑。 作為硬化劑,可使用酸酐、胺、酚樹脂、聚醯胺樹脂、咪唑類、或聚硫醇。該等之中,尤佳為酸酐及胺。該等硬化劑即便為固體,亦可藉由溶解於溶劑而使用。然而,因溶劑之蒸發產生硬化物之密度降低或因孔隙之產生導致強度降低、耐水性之降低,因此,較佳為硬化劑本身於常溫、常壓下為液狀者。 硬化劑可以相對於(a)環氧樹脂組合物、即上述式[1]所表示之環氧化合物及環氧樹脂之整體中之環氧基1當量為0.5~1.5當量、較佳為0.8~1.2當量之比率含有。硬化劑相對於環氧化合物之當量係以硬化劑之硬化性基相對於環氧基之當量比表示。 作為酸酐,較佳為一分子中具有複數個羧基之化合物之酸酐。作為該等酸酐,例如可列舉:鄰苯二甲酸酐、偏苯三甲酸酐、均苯四甲酸酐、二苯甲酮四羧酸酐、乙二醇雙偏苯三酸酯、甘油三偏苯三酸酯、順丁烯二酸酐、四氫鄰苯二甲酸酐、甲基四氫鄰苯二甲酸酐、內亞甲基四氫鄰苯二甲酸酐、甲基內亞甲基四氫鄰苯二甲酸酐、甲基丁烯基四氫鄰苯二甲酸酐、十二烯基琥珀酸酐、六氫鄰苯二甲酸酐、甲基六氫鄰苯二甲酸酐、琥珀酸酐、甲基環己烯二羧酸酐、氯橋酸酐等。 該等之中,較佳為常溫、常壓下為液狀之甲基四氫鄰苯二甲酸酐、甲基-5-降
Figure 105133548-A0304-03-0013-01
烯-2,3-二羧酸酐(甲基耐地酸酐、甲基雙環庚烯二甲酸酐)、氫化甲基耐地酸酐、甲基丁烯基四氫鄰苯二甲酸酐、十二烯基琥珀酸酐、甲基六氫鄰苯二甲酸酐、甲基六氫鄰苯二甲酸酐與六氫鄰苯二甲酸酐之混合物。該等液狀之酸酐之黏度於25℃下之測定中為10~1,000 mPa·s左右。酸酐基中,1個酸酐基被計算為1當量。 作為胺,例如可列舉:哌啶、N,N-二甲基哌𠯤、三伸乙基二胺、2,4,6-三(二甲基胺基甲基)苯酚、苄基二甲基胺、2-(二甲基胺基甲基)苯酚、二伸乙基三胺、三伸乙基四胺、四伸乙基五胺、二乙基胺基丙基胺、N-胺基乙基哌𠯤、二(1-甲基-2-胺基環己基)甲烷、薄荷烷二胺、異佛爾酮二胺、二胺基二環己基甲烷、1,3-雙(胺基甲基)環己烷、苯二甲胺、間苯二胺、二胺基二苯基甲烷、二胺基二苯基碸等。該等之中,可較佳地使用液狀之二伸乙基三胺、三伸乙基四胺、四伸乙基五胺、二乙基胺基丙基胺、N-胺基乙基哌𠯤、雙(1-甲基-2-胺基環己基)甲烷、薄荷烷二胺、異佛爾酮二胺、二胺基二環己基甲烷等。 作為酚樹脂,例如可列舉:苯酚酚醛清漆樹脂、甲酚酚醛清漆樹脂等。 聚醯胺樹脂係藉由二聚酸與聚胺之縮合而生成者,且分子中具有一級胺與二級胺之聚醯胺胺。 作為咪唑類,例如可列舉:2-甲基咪唑、2-乙基-4-甲基咪唑、1-氰乙基-2-十一烷基咪唑鎓偏苯三酸酯、環氧樹脂-咪唑加成物等。 聚硫醇例如係於聚丙二醇鏈之末端存在硫醇基者、或於聚乙二醇鏈之末端存在硫醇基者,較佳為液狀者。 又,於由本發明之硬化性組合物獲得硬化物時,亦可適當地併用硬化促進劑(亦稱為硬化助劑)。 作為硬化促進劑,可列舉:三苯基膦、三丁基膦等有機磷化合物;溴化乙基三苯基鏻、四丁基鏻O,O-二乙基二硫代磷酸鹽等四級鏻鹽;1,8-二氮雜雙環[5.4.0]十一烯-7、1,8-二氮雜雙環[5.4.0]十一烯-7與辛酸之鹽、辛酸鋅、溴化四丁基銨等四級銨鹽等。又,上述作為硬化劑列舉之2-甲基咪唑、2-乙基-4-甲基咪唑等咪唑類、或2,4,6-三(二甲基胺基甲基)苯酚、苄基二甲基胺等胺類亦可作為針對其他種類之硬化劑的硬化促進劑來使用。 該等硬化促進劑可以相對於硬化劑1質量份為0.001~0.1質量份之比率使用。 於本發明中,藉由於含有上述式[1]所表示之環氧化合物及環氧樹脂之環氧樹脂組合物中混合上述(b)硬化劑及視需要之硬化促進劑,可獲得硬化性組合物。 該等成分之混合只要能夠均勻地混合,則並無特別限定,例如較佳為使用反應燒瓶與攪拌翼或混合機等,或者使用混練機,例如較佳為於藉由自轉公轉式攪拌機獲得之充分之攪拌下進行。 混合係考慮到黏度而視需要於加熱下進行,於10~100℃之溫度下進行0.5~1小時。於環氧樹脂組合物之黏度較高而未迅速地進行均勻之混合之情形時,藉由以硬化反應不會進行之程度進行加熱,而使黏度降低,操作性提高。 又,於如上述般作為環氧化合物使用溶解於溶劑中之環氧化合物、或於硬化劑中含有溶劑之情形時,於所獲得之硬化性組合物中亦有可能包含上述溶劑,但該溶劑因其蒸發而有可能成為產生硬化物之各種性能降低之要因,因此,較佳為於硬化性組合物之製備過程中或製備後藉由進行減壓或加熱處理,而於形成硬化物前將溶劑自硬化性組合物去除。 所獲得之硬化性組合物具有例如用作液狀密封材之適宜之黏度。本發明之硬化性組合物能夠調整為任意之黏度,藉由鑄造法、灌注法、分注法、印刷法等用作LED等之透明密封材,因此可於其任意部位進行局部密封。將硬化性組合物利用上述方法以液狀直接安裝於LED等後進行乾燥、硬化,藉此獲得環氧樹脂硬化物。 由上述硬化性組合物獲得之硬化物係藉由將該硬化性組合物塗佈於基材、或將該硬化性組合物注入至塗佈有脫模劑之澆鑄板,於100~120℃之溫度下進行預硬化,然後於120~200℃之溫度下進行正式硬化(後硬化)而獲得。 加熱時間為1~12小時,例如預硬化及正式硬化分別均為2~5小時左右。 由本發明之硬化性組合物獲得之塗膜之厚度可根據硬化物之用途,自0.01 μm~10 mm左右之範圍內進行選擇。 [(c)硬化觸媒及含有其之硬化性組合物] 本發明亦將含有上述環氧樹脂組合物、及(c)硬化觸媒之硬化性組合物作為對象。(c)硬化觸媒包含(c1)酸產生劑及/或(c2)鹼產生劑。 <(c1)酸產生劑> 作為(c1)酸產生劑,可使用光酸產生劑或熱酸產生劑,該等只要為藉由光照射或加熱而直接或間接生成酸(路易斯酸或布忍斯特酸)者,則並無特別限定。 作為光酸產生劑之具體例,可列舉:錪鹽、鋶鹽、鏻鹽、硒鹽等鎓鹽;茂金屬錯合物、鐵-芳烴錯合物、二碸系化合物、磺酸衍生物化合物、三𠯤系化合物、苯乙酮衍生物化合物、重氮甲烷系化合物等。 上述鎓鹽中,作為錪鹽,例如可列舉:二苯基錪、4,4'-二氯二苯基錪、4,4'-二甲氧基二苯基錪、4,4'-二第三丁基二苯基錪、4-甲基苯基(4-(2-甲基丙基)苯基)錪、3,3'-二硝基苯基錪、4-(1-乙氧基羰基乙氧基)苯基(2,4,6-三甲基苯基)錪、4-甲氧基苯基(苯基)錪等錪之氯化物、溴化物、甲磺酸鹽、甲苯磺酸鹽、三氟甲磺酸鹽、四氟硼酸鹽、四(五氟苯基)硼酸鹽、六氟磷酸鹽、六氟砷酸鹽、六氟銻酸鹽等二芳基錪鹽。 作為上述鋶鹽,例如可列舉:三苯基鋶、二苯基(4-第三丁基苯基)鋶、三(4-第三丁基苯基)鋶、二苯基(4-甲氧基苯基)鋶、三(4-甲基苯基)鋶、三(4-甲氧基苯基)鋶、三(4-乙氧基苯基)鋶、二苯基(4-(苯硫基)苯基)鋶、三(4-(苯硫基)苯基)鋶等鋶之氯化物、溴化物、三氟甲烷磺酸鹽、四氟硼酸鹽、六氟磷酸鹽、六氟砷酸鹽、六氟銻酸鹽等三芳基鋶鹽。 作為上述鏻鹽,例如可列舉:四苯基鏻、乙基三苯基鏻、四(對甲氧基苯基)鏻、乙基三(對甲氧基苯基)鏻、苄基三苯基鏻等鏻之氯化物、溴化物、四氟硼酸鹽、六氟磷酸鹽、六氟銻酸鹽等芳基鏻鹽。 作為上述硒鹽,可列舉三苯基硒六氟磷酸鹽等三芳基硒鹽。 作為上述鐵-芳烴錯合物,例如可列舉雙(η5 -環戊二烯基)(η6 -異丙基苯)鐵(II)六氟磷酸鹽等。 該等光酸產生劑可單獨使用或組合兩種以上使用。 作為熱酸產生劑,可列舉鋶鹽及鏻鹽,作為該等之例示化合物,可列舉於上述光酸產生劑中作為各種鎓鹽之例示所列舉之化合物。又,可較佳地使用苄基(4-羥基苯基)(甲基)鋶六氟銻酸鹽等。 該等熱酸產生劑可單獨使用或組合兩種以上使用。 該等之中,作為(c1)酸產生劑,較佳為鋶鹽化合物或錪鹽化合物,例如較佳為表現強酸性之六氟磷酸鹽或六氟銻酸鹽等具有陰離子種之化合物。 (c1)酸產生劑可以相對於(a)環氧樹脂組合物100質量份為0.1~20質量份、較佳為0.1~10質量份、進而較佳為0.5~10質量份之比率含有。 <(c2)鹼產生劑> 作為(c2)鹼產生劑,可使用光鹼產生劑或熱鹼產生劑,該等只要為藉由光照射或加熱而直接或間接生成鹼(路易斯鹼或布忍斯特酸鹼)者,則並無特別限定。 作為光鹼產生劑,例如可列舉:N,N-二乙基胺基甲酸9-蒽基甲基酯等烷基胺系光鹼產生劑;N,N-二環己基胺基甲酸9-蒽基酯、N,N-二環己基胺基甲酸1-(9,10-蒽醌-2-基)乙酯、二環己基銨2-(3-苯甲醯基苯基)丙酸鹽、N-環己基胺基甲酸9-蒽基酯、N-環己基胺基甲酸1-(9,10-蒽醌-2-基)乙酯、環己基銨2-(3-苯甲醯基苯基)丙酸鹽、(E)-N-環己基-3-(2-羥基苯基)丙烯醯胺等環烷基胺系光鹼產生劑;哌啶-1-羧酸9-蒽基甲基酯、(E)-1-哌啶基-3-(2-羥基苯基)-2-丙烯-1-酮、4-羥基哌啶-1-羧酸(2-硝基苯基)甲酯、4-(甲基丙烯醯氧基)哌啶-1-羧酸(2-硝基苯基)甲酯等哌啶系光鹼產生劑;胍鎓2-(3-苯甲醯基苯基)丙酸鹽、1,2-二異丙基-3-(雙(二甲基胺基)亞甲基)胍鎓2-(3-苯甲醯基苯基)丙酸鹽、1,2-二環己基-4,4,5,5-四甲基雙胍鎓N-丁基三苯基硼酸鹽、1,5,7-三氮雜雙環[4.4.0]癸-5-烯鎓2-(9-側氧基𠮿
Figure 105133548-A0304-12-0019-3
-2-基)丙酸鹽等胍系光鹼產生劑;咪唑-1-羧酸1-(9,10-蒽醌-2-基)乙酯等咪唑系光鹼產生劑等。 該等光鹼產生劑可單獨使用一種或組合兩種以上使用。 又,光鹼產生劑可以市售品之形式獲得,例如可較佳地使用和光純藥工業(股)製造之光鹼產生劑WPBG系列(WPBG-018、WPBG-027、WPBG-082、WPBG-140、WPBG-266、WPBG-300等)等。 作為熱鹼產生劑,例如可列舉:1-甲基-1-(4-聯苯基)乙基胺基甲酸酯、2-氰基-1,1-二甲基乙基胺基甲酸酯等胺基甲酸酯類;脲、N,N-二甲基-N'-甲基脲等脲類;三氯乙酸胍、苯基磺醯基乙酸胍、苯基丙炔酸胍等胍類;1,4-二氫菸鹼醯胺等二氫吡啶類;N-(異丙氧基羰基)-2,6-二甲基哌啶、N-(第三丁氧基羰基)-2,6-二甲基哌啶、N-(苄氧基羰基)-2,6-二甲基哌啶等二甲基哌啶類;苯基磺醯基乙酸四甲基銨、苯基丙炔酸四甲基銨等四級銨鹽;雙氰胺等。又,可列舉作為1,8-二氮雜雙環[5.4.0]十一烯-7(DBU)之鹽的U-CAT(註冊商標)SA810、U-CAT SA831、U-CAT SA841、U-CAT SA851[以上為San-Apro(股)製造]等。 該等熱鹼產生劑可單獨使用一種或組合兩種以上使用。 (c2)鹼產生劑可以相對於(a)環氧樹脂組合物100質量份為0.1~20質量份、較佳為0.1~10質量份、進而較佳為0.5~10質量份之比率含有。 於本發明中,藉由於含有上述式[1]所表示之環氧化合物及環氧樹脂之環氧樹脂組合物中混合上述(c)硬化觸媒,從而可獲得硬化性組合物。用以獲得該硬化性組合物之混合之操作條件如上所述。 於本發明中,藉由將含有上述環氧樹脂組合物與(c)硬化觸媒之硬化性組合物塗佈於基板上並進行光照射或加熱,從而可進行硬化。又,於光照射之前後亦可進一步進行加熱。 作為將本發明之硬化性組合物塗佈於基板上之方法,例如可列舉:流塗法、旋轉塗佈法、噴塗法、網版印刷法、軟版印刷法、噴墨印刷法、澆鑄法、棒式塗佈法、淋幕式塗佈法、輥塗法、凹版塗佈法、浸漬法、狹縫式塗佈法等。 由本發明之硬化性組合物形成之塗膜之厚度可根據硬化物之用途,自0.01 μm~10 mm左右之範圍內進行選擇,例如於使用於光阻之情形時,可設為0.05~10 μm(尤其是0.1~5 μm)左右,於使用於印刷配線基板之情形時,可設為10 μm~5 mm(尤其是100 μm~1 mm)左右,於使用於光學薄膜之情形時,可設為0.1~100 μm(尤其是0.3~50 μm)左右。 於含有(c)硬化觸媒之硬化性組合物中,作為使用光酸產生劑或光鹼產生劑之情形時進行照射或曝光之光,例如可列舉γ射線、X射線、紫外線、可見光等,通常大多使用可見光或紫外線、尤其是紫外線。 光之波長例如為150~800 nm,較佳為150~600 nm,進而較佳為200~400 nm,尤其是300~400 nm左右。 曝光量根據塗膜之厚度而不同,例如可設為2~20,000 mJ/cm2 、較佳為5~5,000 mJ/cm2 左右。 作為光源,可根據進行曝光之光線之種類加以選擇,例如於紫外線之情形時可使用低壓水銀燈、高壓水銀燈、超高壓水銀燈、氘燈、鹵素燈、雷射光(氦-鎘雷射、準分子雷射等)、UV-LED等。藉由此種光照射,使上述組合物之硬化反應進行。 於含有(c)硬化觸媒之硬化性組合物中,於使用熱酸產生劑或熱鹼產生劑之情形、或使用光酸產生劑或光鹼產生劑並進行光照射後視需要實施之塗膜之加熱例如於室溫(約23℃)~250℃左右下進行。加熱時間可自3秒以上(例如3秒~5小時左右)之範圍內進行選擇,例如為5秒~2小時左右。 進而,於形成圖案或圖像之情形時(例如製造印刷配線基板等之情形),亦可對形成於基材上之塗膜進行圖案曝光。該圖案曝光可藉由雷射光之掃描進行,亦可藉由介隔光罩進行光照射而進行。將藉由此種圖案曝光所產生之非照射區域(未曝光部)利用顯影液顯影(或溶解),藉此可形成圖案或圖像。 作為顯影液,可使用鹼性水溶液或有機溶劑。 作為鹼性水溶液,例如可列舉:氫氧化鉀、氫氧化鈉、碳酸鉀、碳酸鈉等鹼金屬氫氧化物之水溶液;氫氧化四甲基銨、氫氧化四乙基銨、膽鹼等氫氧化四級銨之水溶液;乙醇胺、丙胺、乙二胺等之胺水溶液等。 上述鹼顯影液通常為10質量%以下之水溶液,較佳為使用0.1~3質量%之水溶液等。進而,亦可於上述顯影液中添加醇類或界面活性劑而使用,該等之添加量分別為相對於顯影液100質量份,較佳為0.05~10質量份。具體而言,可使用0.1~2.38質量%之氫氧化四甲基銨水溶液等。 又,作為顯影液之有機溶劑能夠使用通常之有機溶劑,例如可列舉:甲苯等芳香族烴類;乳酸乙酯、丙二醇單甲醚乙酸酯(PGMEA)、丙二醇單乙醚乙酸酯、丙二醇單丙醚乙酸酯、丙二醇單丁醚乙酸酯等酯類;N,N-二甲基甲醯胺(DMF)等醯胺類;乙腈等腈類;丙酮、環己酮等酮類;甲醇、乙醇、2-丙醇、丙二醇單甲醚(PGME)、丙二醇單乙醚、丙二醇單丙醚、丙二醇單丁醚等醇類等。該等可單獨使用或以兩種以上之混合物之形式使用。 其中,可較佳地使用乳酸乙酯、丙二醇單甲醚乙酸酯(PGMEA)、丙二醇單甲醚(PGME)等。 [溶劑] 上述含有環氧樹脂組合物及(b)硬化劑之硬化性組合物、以及含有環氧樹脂組合物及(c)硬化觸媒之硬化性組合物可視需要含有溶劑。 於本發明之(a)環氧樹脂組合物中,式[1]所表示之環氧化合物發揮作為反應性稀釋劑之作用,對該環氧化合物混合上述(b)硬化劑或(c)硬化觸媒而獲得本發明之硬化性組合物,因此,基本上使用溶劑之必要性較低,但可視需要添加溶劑。 例如,於上述(b)硬化劑為固體之情形時亦同樣,(c)硬化觸媒為固體,可將硬化觸媒溶解於碳酸丙二酯等溶劑中,與液狀環氧樹脂混合而製造硬化性組合物。又,於使酸產生劑等溶解於(a)環氧樹脂組合物之情形時,為了對所獲得之硬化性組合物之黏度進行調整,亦可添加一般之溶劑。 作為溶劑,例如可列舉:甲苯、二甲苯等芳香族烴類;乙酸甲酯、乙酸乙酯、乙酸丙酯、乙酸丁酯等酯類;羥基乙酸甲酯、羥基乙酸乙酯、羥基乙酸丁酯、乳酸甲酯、乳酸乙酯、乳酸丙酯、乳酸丁酯、3-羥基丙酸甲酯、3-羥基丙酸乙酯、3-羥基丙酸丙酯、3-羥基丙酸丁酯、2-羥基-2-甲基丙酸甲酯、2-羥基-2-甲基丙酸乙酯、2-羥基-3-甲基丁酸甲酯等羥基酯類;甲氧基乙酸甲酯、甲氧基乙酸乙酯、甲氧基乙酸丙酯、甲氧基乙酸丁酯、乙氧基乙酸甲酯、乙氧基乙酸乙酯、乙氧基乙酸丙酯、乙氧基乙酸丁酯、丙氧基乙酸甲酯、丙氧基乙酸乙酯、丙氧基乙酸丙酯、丙氧基乙酸丁酯、丁氧基乙酸甲酯、丁氧基乙酸乙酯、丁氧基乙酸丙酯、丁氧基乙酸丁酯、2-甲氧基丙酸甲酯、2-甲氧基丙酸乙酯、2-甲氧基丙酸丙酯、2-甲氧基丙酸丁酯、2-乙氧基丙酸甲酯、2-乙氧基丙酸乙酯、2-乙氧基丙酸丙酯、2-乙氧基丙酸丁酯、2-丁氧基丙酸甲酯、2-丁氧基丙酸乙酯、2-丁氧基丙酸丙酯、2-丁氧基丙酸丁酯、3-甲氧基丙酸甲酯、3-甲氧基丙酸乙酯、3-甲氧基丙酸丙酯、3-甲氧基丙酸丁酯、3-乙氧基丙酸甲酯、3-乙氧基丙酸乙酯、3-乙氧基丙酸丙酯、3-乙氧基丙酸丁酯、3-丙氧基丙酸甲酯、3-丙氧基丙酸乙酯、3-丙氧基丙酸丙酯、3-丙氧基丙酸丁酯、3-丁氧基丙酸甲酯、3-丁氧基丙酸乙酯、3-丁氧基丙酸丙酯、3-丁氧基丙酸丁酯、甲基溶纖劑乙酸酯、乙基溶纖劑乙酸酯、丙二醇單甲醚乙酸酯(PGMEA)、丙二醇單乙醚乙酸酯、丙二醇單丙醚乙酸酯、丙二醇單丁醚乙酸酯、丙二醇單甲醚丙酸酯、丙二醇單乙醚丙酸酯、丙二醇單丙醚丙酸酯、丙二醇單丁醚丙酸酯等醚酯類;甲基乙基酮(MEK)、4-羥基-4-甲基-2-戊酮、環己酮等酮類;乙二醇單甲醚、乙二醇單乙醚、二乙二醇單甲醚、二乙二醇單乙醚、丙二醇單甲醚(PGME)、丙二醇單乙醚、丙二醇單丙醚、丙二醇單丁醚等醇類;四氫呋喃(THF)、二乙二醇二甲醚、二乙二醇二乙醚、二乙二醇乙基甲醚等醚類等。 於本發明之硬化性組合物中調配有溶劑之情形時之固形物成分比率可設為1~100質量%、或5~100質量%、或50~100質量%、或80~100質量%。固形物成分係指將溶劑自硬化性組合物去除後之殘餘成分之比率。 [其他硬化性單體] 於上述本發明之硬化性組合物中,為了調整黏度或提高硬化性,亦可調配作為環氧樹脂以外之陽離子硬化性單體的含乙烯基之化合物、含氧雜環丁基之化合物等。 作為含乙烯基之化合物,只要為具有乙烯基之化合物則並無特別限定,例如可列舉:2-羥基乙基乙烯基醚(HEVE)、二乙二醇單乙烯基醚(DEGV)、2-羥基丁基乙烯基醚(HBVE)、三乙二醇二乙烯基醚等乙烯基醚化合物等。又,亦可使用於α位及/或β位具有烷基、烯丙基等取代基之乙烯基化合物。又,可使用含有環氧基及/或氧雜環丁基等環狀醚基之乙烯基醚化合物,例如可列舉氧基降
Figure 105133548-A0304-03-0013-01
烯二乙烯基醚、3,3-二甲醇氧雜環丁烷二乙烯基醚等。 又,可使用具有乙烯基與(甲基)丙烯酸基之化合物,例如可列舉(甲基)丙烯酸2-(2-乙烯氧基乙氧基)乙酯等。 該等含乙烯基之化合物可單獨使用或組合兩種以上使用。 作為含氧雜環丁基之化合物,只要為具有氧雜環丁基之化合物則並無特別限定,可列舉:3-乙基-3-(羥基甲基)氧雜環丁烷(OXA)、3-乙基-3-(苯氧基甲基)氧雜環丁烷(POX)、雙((3-乙基-3-氧雜環丁基)甲基)醚(DOX)、1,4-雙(((3-乙基-3-氧雜環丁基)甲氧基)甲基)苯(XDO)、3-乙基-3-(2-乙基己氧基甲基)氧雜環丁烷(EHOX)、3-乙基-3-((3-三乙氧基矽烷基丙氧基)甲基)氧雜環丁烷(TESOX)、氧雜環丁基倍半矽氧烷(OX-SQ)、苯酚酚醛清漆氧雜環丁烷(PNOX-1009)等氧雜環丁烷化合物等。 又,可使用具有氧雜環丁基與(甲基)丙烯酸基之化合物,例如可列舉(甲基)丙烯酸(3-乙基-3-氧雜環丁基)甲酯等。 該等含氧雜環丁基之化合物可單獨使用或組合兩種以上使用。 [其他成分] 上述含有環氧樹脂組合物及(b)硬化劑之硬化性組合物、以及含有環氧樹脂組合物及(c)硬化觸媒之硬化性組合物亦可視需要含有慣用之添加劑。作為此種添加劑,例如可列舉:顏料、著色劑、增黏劑、酸產生劑、消泡劑、調平劑、塗佈性改良劑、潤滑劑、穩定劑(抗氧化劑、熱穩定劑、耐光穩定劑等)、塑化劑、界面活性劑、密接促進劑、溶解促進劑、填充劑、抗靜電劑、硬化劑等。該等添加劑可單獨使用或組合兩種以上。 例如於本發明之硬化性組合物中,為了使塗佈性提高而亦可添加界面活性劑。此種界面活性劑可列舉氟系界面活性劑、聚矽氧系界面活性劑、非離子系界面活性劑等,但並非特別限定於該等。上述界面活性劑可單獨使用或組合兩種以上使用。 於該等界面活性劑中,就塗佈性改善效果較高之方面而言,較佳為氟系界面活性劑。作為氟系界面活性劑之具體例,例如可列舉:Eftop(註冊商標)EF-301、Eftop EF-303、Eftop EF-352[均為三菱材料電子化成(股)製造]、Megafac(註冊商標)F-171、Megafac F-173、Megafac F-482、Megafac R-08、Megafac R-30、Megafac R-90、Megafac BL-20[均為DIC(股)製造]、Fluorad FC-430、Fluorad FC-431[均為3M Japan(股)製造]、AsahiGuard(註冊商標)AG-710[旭硝子(股)製造]、Surflon S-382、Surflon SC-101、Surflon SC-102、Surflon SC-103、Surflon SC-104、Surflon SC-105、Surflon SC-106[均為AGCSeimi Chemical(股)製造]等,但並不限定於該等。 於本發明之硬化性組合物中之界面活性劑之添加量基於該硬化性組合物之固形物成分(溶劑除外之全部成分)之質量,為0.01~5質量%,較佳為0.01~3質量%,更佳為0.01~2質量%。 又,於本發明之硬化性組合物中,為了使與顯影後之基板之密接性提高,可添加密接促進劑。作為該等密接促進劑,例如可列舉:氯三甲基矽烷、三氯(乙烯基)矽烷、氯(二甲基)(乙烯基)矽烷、氯(甲基)(二苯基)矽烷、氯(氯甲基)(二甲基)矽烷等氯矽烷類;甲氧基三甲基矽烷、二甲氧基二甲基矽烷、二乙氧基二甲基矽烷、乙氧基(二甲基)(乙烯基)矽烷、二甲氧基二苯基矽烷、三乙氧基(苯基)矽烷、3-氯丙基三甲氧基矽烷、3-胺基丙基三乙氧基矽烷、3-(甲基)丙烯醯氧基丙基三甲氧基矽烷、3-縮水甘油氧基丙基三甲氧基矽烷、三甲氧基(3-(N-哌啶基)丙基)矽烷等烷氧基矽烷類;六甲基二矽氮烷、N,N'-雙(三甲基矽烷基)脲、二甲基(三甲基矽烷基)胺、三甲基矽烷基咪唑等矽氮烷類;咪唑、吲唑、苯并咪唑、苯并三唑、巰基咪唑、巰基嘧啶2-巰基苯并咪唑、2-巰基苯并㗁唑、2-巰基苯并噻唑、脲唑、硫尿嘧啶等含氮雜環化合物;1,1-二甲基脲、1,3-二甲基脲等脲類或硫脲類等。該等密接促進劑可單獨使用或組合兩種以上使用。 於本發明之硬化性組合物中之密接促進劑之添加量基於該硬化性組合物之固形物成分(溶劑除外之全部成分)之質量,通常為20質量%以下,較佳為0.01~10質量%,更佳為0.05~5質量%。 進而,本發明之硬化性組合物亦可含有增感劑。作為可使用之增感劑,可例示:蒽、吩噻𠯤、苝、9-氧硫𠮿
Figure 105133548-A0304-12-0019-3
、二苯甲酮9-氧硫𠮿
Figure 105133548-A0304-12-0019-3
等。進而,作為增感色素,可例示:噻喃鎓鹽系色素、部花青系色素、喹啉系色素、苯乙烯基喹啉系色素、酮香豆素系色素、硫𠮿
Figure 105133548-A0304-12-0019-3
系色素、𠮿
Figure 105133548-A0304-12-0019-3
系色素、氧喏系色素、花青系色素、若丹明系色素、吡喃鎓鹽系色素等。尤佳為蒽系增感劑,藉由與陽離子硬化觸媒(輻射敏感性陽離子聚合起始劑)併用,可使感度飛躍性地提高並且亦具有自由基聚合起始功能,例如於採用將陽離子硬化系統與自由基硬化系統併用之混合型之情形時,可使觸媒種類簡化。作為具體之蒽之化合物,有效的是二丁氧基蒽、二丙氧基蒽醌等。 又,作為於使用鹼產生劑作為硬化觸媒之情形時之增感劑,例如可列舉:苯乙酮類、安息香類、二苯甲酮類、蒽醌類、𠮿酮類、9-氧硫𠮿
Figure 105133548-A0304-12-0019-3
類、縮酮類、三級胺類等。 於本發明之硬化性組合物中之增感劑之添加量基於該硬化性組合物之固形物成分(溶劑除外之全部成分)之質量,為0.01~20質量%,較佳為0.01~10質量%。 [實施例] 以下,列舉實施例更具體地說明本發明,但本發明並不限定於下述實施例。 再者,實施例中,試樣之製備及物性之分析所使用之裝置及條件如下所述。 (1)1 H NMR圖譜(300 MHz) 裝置:JEOL RESONANCE(股)製造之JNM-ECX300 基準:四甲基矽烷(0.00 ppm) (2)1 H NMR圖譜(400 MHz) 裝置:Varian公司製造之INOVA-400 基準:四甲基矽烷(0.00 ppm) (3)GC(氣相層析) 裝置:島津製作所(股)製造之GC-2010 Plus 檢測器:FID(Flame Ionization Detector,火焰游離偵測器) 管柱:Agilent-Technology(股)製造之Agilent J&W GC管柱 HP-5(長度30 m、內徑0.32 mm、膜厚0.25 μm) 注入量:1.0 μL 注入口溫度:250℃ 管柱溫度:40℃(5分鐘),以20℃/分鐘升溫至300℃,300℃(12分鐘) (4)GC-MS(氣相層析質譜分析) 裝置:島津製作所(股)製造之GCMS-QP2010 Ultra 管柱:Agilent-Technology(股)製造之Agilent J&W GC管柱 HP-5(長度30 m、內徑0.32 mm、膜厚0.25 μm) 注入量:2.0 μL 注入口溫度:250℃ 管柱溫度:40℃(5分鐘),以20℃/分鐘升溫至300℃,300℃(12分鐘) (5)黏度 裝置:東機產業(股)製造之TVE-22L、TVE-25H (6)熔點 裝置:NETZSCH公司製造之DSC 204 F1 Phoenix (7)環氧當量 裝置:京都電子工業(股)製造之電位差自動滴定裝置AT-510 (8)5%重量減少溫度(Td5% ) 裝置:Rigaku(股)製造之Thermo plus EVO/TG-DTA TG8120 (9)比介電常數 裝置:Keysight-Technologies公司製造之E4980A Precision LCR儀 試樣架:日本東陽技術(股)製造之12962型室溫試樣架 (10)玻璃轉移點(Tg) 裝置:TA Instruments Japan(股)製造之熱機械測定裝置Q400 變形模式:膨脹 荷重:0.05 N 升溫速度:5℃/分鐘 (11)攪拌消泡 裝置:Thinky(股)製造之自轉公轉混合機 去泡攪拌太郎(註冊商標)ARE-310 (12)烘箱 裝置:Yamato Scientific(股)製造之送風低溫恆溫器DNF400 (13)加熱板 裝置:Yamato Scientific(股)製造之送風低溫恆溫器DNF400 (14)UV曝光 裝置:EYE GRAPHICS(股)製造之US5-0201 燈:EYE GRAPHICS(股)製造之H02-L41 又,簡稱表示以下之含義。 IAA:5,9-二甲基-2-(1,5-二甲基己基)癸酸[日產化學工業(股)製造之Fine Oxocol(註冊商標)異花生酸] IPA:2-己基癸酸[日產化學工業(股)製造之Fine Oxocol(註冊商標)異棕櫚酸] ISA:2-(4,4-二甲基戊烷-2-基)-5,7,7-三甲基辛酸[日產化學工業(股)製造之Fine Oxocol(註冊商標)異硬脂酸] ISAN:8-甲基-2-(4-甲基己基)癸酸[日產化學工業(股)製造之Fine Oxocol(註冊商標)異硬脂酸N] ISAT:2-辛基癸酸[日產化學工業(股)製造之Fine Oxocol(註冊商標)異硬脂酸T] ISOL:2-(4,4-二甲基戊烷-2-基)-5,7,7-三甲基辛烷-1-醇[日產化學工業(股)製造之Fine Oxocol(註冊商標)180] PA:棕櫚酸[東京化成工業(股)製造] ωIPA:14-甲基十五烷酸[Aldrich公司製造] ωISA:16-甲基十七烷酸[Aldrich公司製造] AllBr:烯丙基溴[關東化學(股)製造] CHMA:3-環己烯基甲醇[Aldrich公司製造] ECH:表氯醇[東京化成工業(股)製造] EGMAE:乙二醇單烯丙醚[東京化成工業(股)製造] OEO:7-辛烯-1-醇[Kuraray(股)製造,純度95%] PEO:4-戊烯-1-醇[東京化成工業(股)製造] DMAP:4-二甲基胺基吡啶[和光純藥工業(股)製造] EDC:1-乙基-3-(3-(二甲基胺基)丙基)碳二醯亞胺鹽酸鹽[東京化成工業(股)製造] TMAC:氯化四甲基銨[東京化成工業(股)製造] mCPBA:間氯過苯甲酸[和光純藥工業(股)製造,純度70%] BGE:丁基縮水甘油醚[東京化成工業(股)製造] EHGE:2-乙基己基縮水甘油醚[東京化成工業(股)製造] SGEs:硬脂酸縮水甘油酯[東京化成工業(股)製造] BPA:雙酚A型環氧樹脂[三菱化學(股)製造之jER(註冊商標)828] CEL:3,4-環氧環己烷羧酸(3,4-環氧環己基)甲酯[Daicel(股)製造之Celloxide 2021P] TEPIC:異氰尿酸三縮水甘油酯[日產化學工業(股)製造之TEPIC(註冊商標)-L] DOX:雙((3-乙基-3-氧雜環丁基)甲基)醚[東亞合成(股)製造之Aron Oxetane(註冊商標)OXT-221] MH700:4-甲基六氫鄰苯二甲酸酐/六氫鄰苯二甲酸酐混合物(莫耳比70:30)[新日本理化(股)製造之Rikacid(註冊商標)MH-700] PX4ET:四丁基鏻O,O-二乙基二硫代磷酸鹽[日本化學工業(股)製造之Hishicolin(註冊商標)PX-4ET] C101A:二苯基(4-(苯硫基)苯基)鋶六氟銻酸鹽(V)/50質量%碳酸丙二酯溶液[San-Apro(股)製造之CPI(註冊商標)-101A] SI100:苄基(4-羥基苯基)(甲基)鋶六氟銻酸鹽(V)[三新化學工業(股)製造之Sanaid SI-100] 2EHA:2-乙基己酸[純正化學(股)製造] NMP:N-甲基-2-吡咯啶酮 THF:四氫呋喃 [實施例1] 2-己基癸酸縮水甘油酯(IPGEs)之製造 向反應燒瓶中添加IPA 30.0 g(117 mmol)、AllBr 17.0 g(141 mmol)、碳酸鉀19.4 g(140 mmol)及NMP 300 g。將其於70℃下攪拌1小時。對反應液進行過濾而去除不溶物。向該濾液中加入甲苯260 g,利用水300 g進行洗淨後,將溶劑蒸餾去除。將所獲得之殘渣利用矽膠層析法(己烷:乙酸乙酯=95:5(體積比))精製,藉此,以無色透明液體之形式獲得2-己基癸酸烯丙酯(IPAEs)33.6 g。1 H NMR(300MHz, CDCl3 ): δ = 5.96~5.86 (m, 1H), 5.34~5.20 (m, 2H), 4.59~4.57 (m, 2H), 2.32 (m, 1H), 1.56~1.26 (m, 24H), 0.88 (t, J = 7.2Hz, 6H)(ppm) GC-MS(CI):m/z=297(M+1) 向反應燒瓶中添加上述IPAEs 33.2 g(112 mmol)及氯仿740 g。一面攪拌一面向該溶液中添加mCPBA 55.2 g(淨重224 mmol),於室溫(約23℃)下攪拌4天。向該反應液中加入10質量%硫代硫酸鈉水溶液300 mL,將mCPBA分解。將該有機層利用5質量%碳酸氫鈉水溶液及水洗淨後,將溶劑蒸餾去除。將所獲得之殘渣利用矽膠層析法(己烷:乙酸乙酯=95:5(體積比))精製,藉此,以無色透明液體之形式獲得作為目標物之2-己基癸酸縮水甘油酯(IPGEs)30.7 g。所獲得之IPGEs之黏度為11 mPa·s(25℃),基於JIS K7236:2009測得之環氧當量為315。1 H NMR(300MHz, CDCl3 ): δ = 4.43~4.38 (m, 1H), 3.96~3.90 (m, 1H), 3.21~3.18 (m, 1H), 2.85~2.82 (m, 1H), 2.65~2.63 (m, 1H), 2.41~2.35 (m, 1H), 1.60~0.85 (m, 30H)(ppm) GC-MS(CI):m/z=313(M+1) [實施例2]2-辛基癸酸縮水甘油酯(ISTGEs)之製造 向反應燒瓶中添加ISAT 30.0 g(105 mmol)、AllBr 15.2 g(126 mmol)、碳酸鉀17.4 g(126 mmol)及NMP 300 g。將其於70℃下攪拌3小時。對反應液進行過濾而去除不溶物。向該濾液中加入甲苯260 g,利用水300 g進行洗淨後,將溶劑蒸餾去除。將所獲得之殘渣利用矽膠層析法(己烷:乙酸乙酯=95:5(體積比))精製,藉此,以無色透明液體之形式獲得2-辛基癸酸烯丙酯(ISTAEs)33.3 g。1 H NMR(300MHz, CDCl3 ): δ = 5.97~5.86 (m, 1H), 5.35~5.21 (m, 2H), 4.60~4.57 (m, 2H), 2.35 (m, 1H), 1.57~1.25 (m, 28H), 0.88 (t, J = 6.9Hz, 6H)(ppm) GC-MS(CI):m/z=325(M+1) 向反應燒瓶中添加上述ISTAEs 32.9 g(101 mmol)及氯仿740 g。一面攪拌一面向該溶液中添加mCPBA 62.4 g(淨重253 mmol),於室溫(約23℃)下攪拌4天。向該反應液中加入10質量%硫代硫酸鈉水溶液300 mL,將mCPBA分解。將該有機層利用5質量%碳酸氫鈉水溶液及水洗淨後,將溶劑蒸餾去除。將所獲得之殘渣利用矽膠層析法(己烷:乙酸乙酯=95:5(體積比))精製,藉此,以無色透明液體之形式獲得作為目標物之2-辛基癸酸縮水甘油酯(ISTGEs)30.0 g。所獲得之ISTGEs之黏度為14 mPa·s(25℃),環氧當量為341。1 H NMR(300MHz, CDCl3 ): δ = 4.43~4.38 (m, 1H), 3.96~3.90 (m, 1H), 3.20 (m, 1H), 2.85~2.82 (m, 1H), 2.65~2.63 (m, 1H), 2.38 (m, 1H), 1.57~0.85 (m, 34H)(ppm) GC-MS(CI):m/z=341(M+1) [實施例3]8-甲基-2-(4-甲基己基)癸酸縮水甘油酯(ISNGEs)之製造 向反應燒瓶中添加ISAN 30.0 g(105 mmol)、AllBr 15.2 g(126 mmol)、碳酸鉀17.4 g(126 mmol)及NMP 300 g。將其於70℃下攪拌3.5小時。對反應液進行過濾而去除不溶物。向該濾液中加入甲苯260 g,利用水300 g進行洗淨後,將溶劑蒸餾去除。將所獲得之殘渣利用矽膠層析法(己烷:乙酸乙酯=95:5(體積比))精製,藉此,以無色透明液體之形式獲得8-甲基-2-(4-甲基己基)癸酸烯丙酯(ISNAEs)33.9 g。1 H NMR(300MHz, CDCl3 ): δ = 5.99~5.86 (m, 1H), 5.35~5.21 (m, 2H), 4.58 (d, J = 2.7Hz, 2H), 2.36 (m, 1H), 1.58~0.71 (m, 34H)(ppm) GC-MS(CI):m/z=325(M+1) 向反應燒瓶中添加上述ISNAEs 33.4 g(103 mmol)及氯仿740 g。一面攪拌一面向該溶液中添加mCPBA 48.3 g(淨重253 mmol),於室溫(約23℃)下攪拌5天。向該反應液中加入10質量%硫代硫酸鈉水溶液300 mL,將mCPBA分解。將該有機層利用5質量%碳酸氫鈉水溶液及水洗淨後,將溶劑蒸餾去除。將所獲得之殘渣利用矽膠層析法(己烷:乙酸乙酯=95:5(體積比))精製,藉此,以無色透明液體之形式獲得作為目標物之8-甲基-2-(4-甲基己基)癸酸縮水甘油酯(ISNGEs)28.4 g。所獲得之ISNGEs之黏度為18 mPa·s(25℃),環氧當量為340。1 H NMR(300MHz, CDCl3 ): δ = 4.41 (m, 1H), 3.96~3.89 (m, 1H), 3.22~3.18 (m, 1H), 2.85~2.83 (m, 1H), 2.66~2.64 (m, 1H), 2.54~2.33 (m, 1H), 1.60~0.72 (m, 34H)(ppm) GC-MS(CI):m/z=341(M+1) [實施例4]2-(4,4-二甲基戊烷-2-基)-5,7,7-三甲基辛酸縮水甘油酯(ISGEs)之製造 向反應燒瓶中添加ISA 28.4 g(100 mmol)、ECH 62.5 g(676 mmol)及TMAC 0.3 g(2.7 mmol)。將其於100℃下攪拌2小時後,冷卻至室溫(約23℃)。向其中加入48質量%氫氧化鈉水溶液25.0 g(mmol),於室溫(約23℃)下攪拌24小時。向該反應液中加入10質量%磷酸二氫鈉水溶液20 mL而將氫氧化鈉中和。將該有機層利用水洗淨後,蒸餾去除ECH。將所獲得之殘渣利用矽膠層析法(己烷:乙酸乙酯=90:10(體積比))精製,藉此,以無色透明液體之形式獲得作為目標物之2-(4,4-二甲基戊烷-2-基)-5,7,7-三甲基辛酸縮水甘油酯(ISGEs)30.0 g。所獲得之ISGEs之黏度為41 mPa·s(25℃),環氧當量為334。1 H NMR(300MHz, CDCl3 ): δ = 4.45~4.34 (m, 1H), 4.39~3.94 (m, 1H), 3.20 (m, 1H), 2.86~2.83 (m, 1H), 2.66~2.65 (m, 1H), 2.19 (m, 1H), 1.75~0.88 (m, 34H)(ppm) GC-MS(CI):m/z=341(M+1) [實施例5]5,9-二甲基-2-(1,5-二甲基己基)癸酸縮水甘油酯(IAGEs)之製造 向反應燒瓶中添加IAA 30.0 g(96 mmol)、AllBr 13.9 g(115 mmol)、碳酸鉀21.0 g(152 mmol)及NMP 300 g。將其於70℃下攪拌1小時。對反應液進行過濾而去除不溶物。向該濾液中加入甲苯260 g,利用水300 g進行洗淨後,將溶劑蒸餾去除。將所獲得之殘渣利用矽膠層析法(己烷:乙酸乙酯=95:5(體積比))精製,藉此,以無色透明液體之形式獲得5,9-二甲基-2-(1,5-二甲基己基)癸酸烯丙酯(IAAEs)33.0 g。1 H NMR(300MHz, CDCl3 ): δ = 5.97~5.86 (m, 1H), 5.35~5.21 (m, 2H), 4.58 (m, 2H), 2.36 (m, 1H), 1.56~0.73 (m, 38H)(ppm) GC-MS(CI):m/z=353(M+1) 向反應燒瓶中添加上述IAAEs 32.6 g(93 mmol)及氯仿740 g。一面攪拌一面向該溶液中添加mCPBA 52.4 g(淨重213 mmol),於室溫(約23℃)下攪拌6天。向該反應液中加入10質量%硫代硫酸鈉水溶液300 mL,將mCPBA分解。將該有機層利用5質量%碳酸氫鈉水溶液及水洗淨後,將溶劑蒸餾去除。將所獲得之殘渣利用矽膠層析法(己烷:乙酸乙酯=95:5(體積比))精製,藉此,以無色透明液體之形式獲得作為目標物之5,9-二甲基-2-(1,5-二甲基己基)癸酸縮水甘油酯(IAGEs)28.4 g。所獲得之IAGEs之黏度為32 mPa·s(25℃),環氧當量為371。1 H NMR(300MHz, CDCl3 ): δ = 4.40 (m, 1H), 3.95 (m, 1H), 3.19 (m, 1H), 2.85~2.82 (m, 1H), 2.64 (m, 1H), 2.35 (m, 1H), 0.87~0.75 (m, 38H)(ppm) GC-MS(CI):m/z=369(M+1) [實施例6]2-(4,4-二甲基戊烷-2-基)-5,7,7-三甲基辛酸4,5-環氧戊基酯(ISEPEs)之製造 向反應燒瓶中添加ISA 30.0 g(105 mmol)、PEO 10.0 g(116 mmol)及二氯甲烷800 g。一面攪拌一面向該溶液中添加DMAP 15.4 g(126 mmol)及EDC 24.2 g(126 mmol),於室溫(約23℃)下攪拌3天。將該反應液利用1 N鹽酸及5質量%食鹽水洗淨後,將溶劑蒸餾去除,藉此,獲得2-(4,4-二甲基戊烷-2-基)-5,7,7-三甲基辛酸5-戊烯基酯(ISPEs)之粗產物。 使所獲得之粗產物溶解於氯仿440 g。一面攪拌一面向該溶液中添加mCPBA 12.7 g(淨重52 mmol),於室溫(約23℃)下攪拌5天。向該反應液中加入10質量%硫代硫酸鈉水溶液300 mL,將mCPBA分解。將該有機層利用5質量%碳酸氫鈉水溶液及水洗淨後,將溶劑蒸餾去除。將所獲得之殘渣利用矽膠層析法(溶劑梯度,己烷:乙酸乙酯=99:1至95:5(體積比))精製,藉此,以無色透明液體之形式獲得作為目標物之2-(4,4-二甲基戊烷-2-基)-5,7,7-三甲基辛酸4,5-環氧戊基酯(ISEPEs)13.1 g。所獲得之ISEPEs之黏度為44 mPa·s(25℃),環氧當量為366。1 H NMR(300MHz, CDCl3 ): δ = 4.11 (t, J = 6.3Hz, 2H), 2.95 (m, 1H), 2.76~2.79 (m, 1H), 2.48~2.50 (m, 1H), 2.13 (m, 1H), 1.84~0.88 (m, 38H)(ppm) GC-MS(CI):m/z=369(M+1) [實施例7]2-(4,4-二甲基戊烷-2-基)-5,7,7-三甲基辛酸7,8-環氧辛基酯(ISEOEs)之製造 向反應燒瓶中添加ISA 30.0 g(105 mmol)、OEO 15.7 g(淨重116 mmol)及二氯甲烷800 g。一面攪拌一面向該溶液中添加DMAP 15.4 g(126 mmol)及EDC 24.2 g(126 mmol),於室溫(約23℃)下攪拌4天。將該反應液利用1 N鹽酸及5質量%食鹽水洗淨後,將溶劑蒸餾去除。將所獲得之殘渣利用矽膠層析法(己烷:乙酸乙酯=95:5(體積比))精製,藉此,以無色透明液體之形式獲得2-(4,4-二甲基戊烷-2-基)-5,7,7-三甲基辛酸7-辛烯基酯(ISOEs)33.8 g。1 H NMR(300MHz, CDCl3 ): δ = 5.87~5.73 (m, 1H), 5.02~4.92 (m, 2H), 4.09~4.03 (m, 2H), 2.11~0.82 (m, 45H)(ppm) GC-MS(CI):m/z=395(M+1) 向反應燒瓶中添加上述ISOEs 33.3 g(84 mmol)及氯仿740 g。一面攪拌一面向該溶液中添加mCPBA 27.1 g(淨重110 mmol),於室溫(約23℃)下攪拌2天。向該反應液中加入10質量%硫代硫酸鈉水溶液300 mL,將mCPBA分解。將該有機層利用5質量%碳酸氫鈉水溶液及水洗淨後,將溶劑蒸餾去除。將所獲得之殘渣利用矽膠層析法(溶劑梯度,己烷:乙酸乙酯=99:1至95:5(體積比))精製,藉此,以無色透明液體之形式獲得作為目標物之2-(4,4-二甲基戊烷-2-基)-5,7,7-三甲基辛酸7,8-環氧辛基酯(ISEOEs)20.8 g。所獲得之ISEOEs之黏度為51 mPa·s(25℃),環氧當量為408。1 H NMR(300MHz, CDCl3 ): δ = 4.07~4.03 (m, 2H), 2.90 (m, 1H), 2.76~2.73 (m, 1H), 2.47~2.45 (m, 1H), 2.11 (m, 1H), 1.63~0.88 (m, 44H)(ppm) GC-MS(CI):m/z=411(M+1) [實施例8]2-(4,4-二甲基戊烷-2-基)-5,7,7-三甲基辛酸2-縮水甘油氧基乙酯(ISGEEs)之製造 向反應燒瓶中添加ISA 30.0 g(105 mmol)、EGMAE 11.9 g(117 mmol)及二氯甲烷400 g。一面攪拌一面向該溶液中添加DMAP 15.5 g(127 mmol)及EDC 24.3 g(127 mmol),於室溫(約23℃)下攪拌4天。將該反應液利用1 N鹽酸及5質量%食鹽水洗淨後,將溶劑蒸餾去除。將所獲得之殘渣利用矽膠層析法(溶劑梯度,己烷:乙酸乙酯=99:1至95:5(體積比))精製,藉此,以無色透明液體之形式獲得2-(4,4-二甲基戊烷-2-基)-5,7,7-三甲基辛酸2-烯丙氧基乙酯(ISAEEs)19.1 g。1 H NMR(300MHz, CDCl3 ): δ = 5.94~5.87 (m, 1H), 5.31~5.12 (m, 2H), 4.31~4.17 (m, 2H), 4.03 (m, 2H), 3.65~3.63 (m, 2H), 2.21~2.16 (m, 1H), 1.85~0.83 (m, 34H)(ppm) GC-MS(CI):m/z=369(M+1) 向反應燒瓶中添加上述ISAEEs 19.0 g(52 mmol)及氯仿440 g。一面攪拌一面向該溶液中添加mCPBA 15.6 g(淨重63 mmol),於室溫(約23℃)下攪拌5天。向該反應液中加入10質量%硫代硫酸鈉水溶液200 mL,將mCPBA分解。將該有機層利用5質量%碳酸氫鈉水溶液及水洗淨後,將溶劑蒸餾去除。將所獲得之殘渣利用矽膠層析法(己烷:乙酸乙酯=90:10(體積比))精製,藉此,以無色透明液體之形式獲得作為目標物之2-(4,4-二甲基戊烷-2-基)-5,7,7-三甲基辛酸2-縮水甘油氧基乙酯(ISGEEs)16.9 g。所獲得之ISGEEs之黏度為47 mPa·s(25℃),環氧當量為382。1 H NMR(300MHz, CDCl3 ): δ = 4.24 (m, 2H), 3.81~3.71 (m, 3H), 3.47~3.41 (m, 1H), 3.14 (m, 1H), 2.79 (m, 1H), 2.62 (m, 1H), 2.17 (m, 1H), 1.86~0.89 (m, 34H)(ppm) GC-MS(CI):m/z=385(M+1) [合成例1]2-(4,4-二甲基戊烷-2-基)-5,7,7-三甲基辛酸3,4-環氧環己基甲酯(ISECHEs)之製造 向反應燒瓶中添加ISA 30.0 g(105 mmol)、CHMA 13.0 g(116 mmol)及二氯甲烷800 g。一面攪拌一面向該溶液中添加DMAP 15.4 g(126 mmol)及EDC 24.2 g(126 mmol),於室溫(約23℃)下攪拌2天。將該反應液利用1 N鹽酸及5質量%食鹽水洗淨後,將溶劑蒸餾去除。將所獲得之殘渣利用矽膠層析法(己烷:乙酸乙酯=90:10(體積比))精製,藉此,以無色透明液體之形式獲得2-(4,4-二甲基戊烷-2-基)-5,7,7-三甲基辛酸3-環己烯基甲酯(ISCHEs)30.0 g。1 H NMR(300MHz, CDCl3 ): δ = 5.67 (m, 2H), 4.01~3.97 (m, 2H), 2.15~0.88 (m, 42H)(ppm) GC-MS(CI):m/z=379(M+1) 向反應燒瓶中添加上述ISCHEs 29.5 g(78 mmol)及氯仿740 g。一面攪拌一面向該溶液中添加mCPBA 23.1 g(淨重94 mmol),於室溫(約23℃)下攪拌17小時。向該反應液中加入10質量%硫代硫酸鈉水溶液300 mL,將mCPBA分解。將該有機層利用5質量%碳酸氫鈉水溶液及水洗淨後,將溶劑蒸餾去除。將所獲得之殘渣利用矽膠層析法(己烷:乙酸乙酯=95:5(體積比))精製,藉此,以無色透明液體之形式獲得作為目標物之2-(4,4-二甲基戊烷-2-基)-5,7,7-三甲基辛酸3,4-環氧環己基甲酯(ISECHEs)28.4 g。所獲得之ISECHEs之黏度為92 mPa·s(25℃),環氧當量為413。1 H NMR(300MHz, CDCl3 ): δ = 3.87~3.83 (m, 2H), 3.17~3.14 (m, 2H), 2.20~0.88 (m, 42H)(ppm) GC-MS(CI):m/z=395(M+1) [合成例2]2-(4,4-二甲基戊烷-2-基)-5,7,7-三甲基辛基縮水甘油醚(ISGE)之製造 向反應燒瓶中添加ISOL 30.0 g(111 mmol)、AllBr 24.2 g(200 mmol)、氫化鈉11.3 g(471 mmol)及THF 270 g。將其於70℃下攪拌29小時。將該反應液利用水600 g進行洗淨後,將溶劑蒸餾去除。將所獲得之殘渣利用矽膠層析法(己烷:乙酸乙酯=95:5(體積比))精製,藉此,以無色透明液體之形式獲得2-(4,4-二甲基戊烷-2-基)-5,7,7-三甲基辛基烯丙醚(ISAE)33.4 g。1 H NMR(400MHz, CDCl3 ): δ = 5.97~5.87 (m, 1H), 5.30~5.24 (m, 1H), 5.18~5.14 (m, 1H), 3.96~3.37 (m, 1H), 3.37~3.22 (m, 2H), 1.82~1.71 (m, 1H), 1.56~0.83 (m, 36H)(ppm) GC-MS(CI):m/z=311(M+1) 向反應燒瓶中添加上述ISAE 33.1 g(107 mmol)及氯仿440 g。一面攪拌一面向該溶液中添加mCPBA 52.5 g(淨重213 mmol),於室溫(約23℃)下攪拌3天。向該反應液中加入10質量%硫代硫酸鈉水溶液300 mL,將mCPBA分解。將該有機層利用5質量%碳酸氫鈉水溶液及水洗淨後,將溶劑蒸餾去除。將所獲得之殘渣利用矽膠層析法(己烷:乙酸乙酯=90:10(體積比))精製,藉此,以無色透明液體之形式獲得作為目標物之2-(4,4-二甲基戊烷-2-基)-5,7,7-三甲基辛基縮水甘油醚(ISGE)30.5 g。所獲得之ISGEEs之黏度為18 mPa·s(25℃),環氧當量為366。1 H NMR(400MHz, CDCl3 ): δ = 3.67~3.64 (m, 1H), 3.41~3.23 (m, 3H), 3.13 (m, 1H), 2.80~2.77 (m, 1H), 2.61~2.59 (m, 1H), 1.80~0.82 (m, 35H)(ppm) GC-MS(CI):m/z=327(M+1) [合成例3]棕櫚酸縮水甘油酯(PGEs)之製造 向反應燒瓶中添加PA 30.0 g(96 mmol)、AllBr 17.0 g(141 mmol)、碳酸鉀19.3 g(140 mmol)及NMP 300 g。將其於70℃下攪拌1小時。對反應液進行過濾而去除不溶物。向該濾液中加入甲苯260 g,利用水300 g進行洗淨後,將溶劑蒸餾去除。將所獲得之殘渣利用矽膠層析法(己烷:乙酸乙酯=90:10(體積比))精製,藉此,以白色固體之形式獲得棕櫚酸烯丙酯(PAEs)34.4 g。1 H NMR(400MHz, CDCl3 ): δ = 5.96~5.89 (m, 1H), 5.34~5.22 (m, 2H), 4.59~4.57 (m, 2H), 2.33 (t, J = 7.6Hz, 2H), 1.65~1.61 (m, 2H), 1.32~1.25 (m, 24H), 0.88 (t, J = 6.8Hz, 3H)(ppm) GC-MS(CI):m/z=297(M+1) 向反應燒瓶中添加上述PAEs 34.1 g(115 mmol)及氯仿440 g。一面攪拌一面向該溶液中添加mCPBA 56.6 g(淨重230 mmol),於室溫(約23℃)下攪拌4天。向該反應液中加入10質量%硫代硫酸鈉水溶液300 mL,將mCPBA分解。將該有機層利用5質量%碳酸氫鈉水溶液及水洗淨後,將溶劑蒸餾去除。將所獲得之殘渣利用矽膠層析法(己烷:乙酸乙酯=90:10(體積比))精製,藉此,以白色固體之形式獲得作為目標物之棕櫚酸縮水甘油酯(PGEs)29.8 g。所獲得之PGEs之熔點為47℃,環氧當量為309。1 H NMR(400MHz, CDCl3 ): δ = 4.44~4.40 (m, 1H), 3.94~3.89 (m, 1H), 3.23~3.19 (m, 1H), 2.86~2.84 (m, 1H), 2.66~2.64 (m, 1H), 2.35 (t, J = 7.6Hz, 2H), 1.66~1.62 (m, 2H), 1.33~1.25 (m, 24H), 0.90~0.86 (m, 3H)(ppm) GC-MS(CI):m/z=313(M+1) [合成例4]14-甲基十五烷酸縮水甘油酯(ωIPGEs)之製造 向反應燒瓶中添加ωIPA 295 mg(1.2 mmol)、AllBr 167 mg(1.4 mmol)、碳酸鉀191 mg(1.4 mmol)及NMP 5 g。將其於70℃下攪拌4小時。對反應液進行過濾而去除不溶物。向該濾液中加入甲苯26 g,利用水30 g進行洗淨後,將溶劑蒸餾去除,藉此獲得14-甲基十五烷酸烯丙酯(ωIPAEs)之粗產物。 使所獲得之粗產物溶解於氯仿7 g。一面攪拌一面向該溶液中添加mCPBA 536 mg(淨重2.2 mmol),於室溫(約23℃)下攪拌2天。向該反應液中加入10質量%硫代硫酸鈉水溶液10 mL,將mCPBA分解。將該有機層利用5質量%碳酸氫鈉水溶液及水洗淨後,將溶劑蒸餾去除。將所獲得之殘渣利用矽膠層析法(己烷:乙酸乙酯=95:5(體積比))精製,藉此,以白色固體之形式獲得作為目標物之14-甲基十五烷酸縮水甘油酯(ωIPGEs)258 mg。所獲得之ωIPGEs之熔點為39℃,環氧當量為316。1 H NMR(400MHz, CDCl3 ): δ = 4.44~4.40 (m, 1H), 3.93~3.89 (m, 1H), 3.23~3.19 (m, 1H), 2.86~2.84 (m, 1H), 2.66~2.64 (m, 1H), 2.37~2.33 (m, 2H), 1.65~1.14 (m, 23H), 0.87~0.85 (m, 6H)(ppm) GC-MS(CI):m/z=313(M+1) [合成例5]16-甲基十七烷酸縮水甘油酯(ωISGEs)之製造 向反應燒瓶中添加ωISA 275 mg(1.0 mmol)、AllBr 140 mg(1.2 mmol)、碳酸鉀160 mg(1.2 mmol)及NMP 5 g。將其於70℃下攪拌2小時。對反應液進行過濾而去除不溶物。向該濾液中加入甲苯26 g,利用水30 g進行洗淨後,將溶劑蒸餾去除,藉此獲得14-甲基十五烷酸烯丙酯(ωISAEs)之粗產物。 使所獲得之粗產物溶解於氯仿7 g。一面攪拌一面向該溶液中添加mCPBA 861 mg(淨重3.5 mmol),於室溫(約23℃)下攪拌2天。向該反應液中加入10質量%硫代硫酸鈉水溶液10 mL,將mCPBA分解。將該有機層利用5質量%碳酸氫鈉水溶液及水洗淨後,將溶劑蒸餾去除。將所獲得之殘渣利用矽膠層析法(己烷:乙酸乙酯=95:5(體積比))精製,藉此,以白色固體之形式獲得作為目標物之16-甲基十七烷酸縮水甘油酯(ωISGEs)235 mg。所獲得之ωISGEs之熔點為47℃,環氧當量為334。1 H NMR(400MHz, CDCl3 ): δ = 4.44~4.40 (m, 1H), 3.94~3.89 (m, 1H), 3.22~3.20 (m, 1H), 2.86~2.84 (m, 1H), 2.66~2.64 (m, 1H), 2.37~2.33 (m, 2H), 1.65~1.14 (m, 27H), 0.87~0.85 (m, 6H)(ppm) GC-MS(CI):m/z=341(M+1) [實施例9、比較例1]與雙酚A型環氧樹脂之相溶性及揮發性 關於表1中記載之各環氧化合物(反應性稀釋劑),對與作為雙酚A型環氧樹脂之BPA之相溶性進行評價。 將各環氧化合物以其濃度成為10質量%之方式與BPA進行混合,而製備環氧樹脂組合物。將該混合物於室溫(約23℃)下攪拌5分鐘後,利用目視確認混合狀態,根據以下之基準進行評價。又,對相溶者測定該組合物於25℃下之黏度。將結果一併示於表1。 進而,作為揮發性之評價,將各環氧化合物之5%重量減少溫度(Td5% )一併示於表1。 [相溶性評價基準] A:均勻地相溶,透明 B:略白濁 C:有不溶物,固液分離   [表1]   表1
Figure 105133548-A0304-0001
如表1所示,本發明中使用之環氧化合物(反應性稀釋劑)與作為通用之環氧樹脂的BPA相溶。又,BPA具有約12,000 mPa·s之黏度,相對於此,於BPA中以成為10質量%之方式混合環氧化合物而成之本發明之樹脂組合物其黏度降低至2,000~6,200 mPa·s。進而,確認出本發明所使用之環氧化合物之5%重量減少溫度非常高,為低揮發性。 另一方面,即便-CR1 R2 R3 基之碳原子數為相同程度,而R1 及R2 均不為碳原子數2以上之烷基之環氧化合物亦不與BPA相溶。又,即便R1 及R2 分別為碳原子數2以上之烷基,而-CR1 R2 R3 基之碳原子數為7之環氧化合物其5%重量減少溫度亦非常低,揮發性較高。 根據上述內容,提示出本發明所使用之環氧化合物可作為優異之反應性稀釋劑使用。 [實施例10~17、比較例2~4]硬化物之製作 向表2中記載之環氧樹脂組合物100質量份中添加與環氧化合物之環氧基為等莫耳量之作為硬化劑之MH700、及作為硬化促進劑之PX4ET 1質量份。藉由將該混合物於減壓下、室溫(約23℃)下攪拌30分鐘而消泡,從而製備硬化性組合物1至11。 將各組合物與厚度3 mm之聚矽氧橡膠製造之コ字形間隔件一起夾入至預先經OPTOOL(註冊商標)DSX[大金工業(股)製造]進行了脫模處理之2片玻璃基板。將其於100℃之烘箱中加熱(預硬化)2小時,其後升溫至150℃,進行5小時加熱(正式硬化)。緩慢冷卻後去除玻璃基板,獲得厚度3 mm之各硬化物。 針對所獲得之硬化物,對吸水率、比介電常數及玻璃轉移點(Tg)進行評價。再者,各物性值係根據以下之順序進行測定。將結果一併示於表2。 [吸水率] 根據JIS K-6911:2006進行測定。具體而言,首先,作為預處理,將試片於經油浴保持為50℃之玻璃容器中乾燥24小時。將該試片於乾燥器內冷卻至20℃,測定其質量(W1 [g])。繼而,將該試片於沸騰之蒸餾水中浸漬100小時後取出,於20℃之流水中冷卻30分鐘並將水分擦除,然後立即測量吸水後之質量(W2 [g])。根據該等值,藉由以下之式算出吸水率。 吸水率[%]=(W2 -W1 )÷W1 ×100 [比介電常數] 對夾入至支架之電極間之試片施加1 V、1 MHz之電壓,對此時之靜電電容Cp進行測定,並除以相同條件測得之空氣之靜電電容CO ,算出比介電常數εr 。又,藉由以下之式,算出相對於由未添加反應性稀釋劑之組合物獲得之硬化物之比介電常數εr0 的降低率。 降低率[%]=(εr0 -εr )÷εr0 ×100 [玻璃轉移點] 測定試片之TMA,於所獲得之TMA曲線之前後之曲線畫切線,自該切線之交點求出Tg。 [表2]   表2
Figure 105133548-A0304-0002
[份]:質量份   如表2所示,確認出本發明之環氧樹脂組合物(實施例10~17)與不含反應性稀釋劑之情形(比較例4)相比,比介電常數大幅降低。另一方面,包含先前公知之反應性稀釋劑之環氧樹脂組合物之比介電常數之降低率較低(比較例2、3)。 [實施例18~21、比較例5]硬化物之製作 向表3中記載之環氧樹脂組合物100質量份中添加與環氧化合物之環氧基等莫耳量之作為硬化劑之MH700。將該混合物於90℃下攪拌混合30分鐘後,冷卻至室溫(約23℃)。向其中添加作為硬化促進劑之PX4ET 1質量份。藉由將該混合物於室溫(約23℃)下攪拌5分鐘而消泡,從而製備硬化性組合物12至16。 使用所獲得之各組合物,除此以外,以與實施例10相同之方式製作厚度3 mm之硬化物並進行評價。將結果一併示於表3。 [表3]   表3
Figure 105133548-A0304-0003
[份]:質量份   如表3所示,確認出本發明之環氧樹脂組合物(實施例18~21)與不含反應性稀釋劑之情形相比(比較例5),比介電常數及吸水率大幅降低。 [實施例22, 23、比較例6~8]熱陽離子硬化物之製作 向表4中記載之環氧樹脂組合物100質量份中加入作為熱酸產生劑之預先溶解於碳酸丙二酯1質量份中之SI100 1質量份。將該混合物進行攪拌消泡(2,000 rpm、4分鐘,進而1,000 rpm、4分鐘),而製備硬化性組合物17至21。 將各組合物與厚度200 μm之聚矽氧橡膠製造之間隔件一起夾入至預先經OPTOOL(註冊商標)DSX[大金工業(股)製造]進行了脫模處理之2片玻璃基板。將其利用100℃之加熱板加熱(預硬化)1小時,其後升溫至150℃,進行1小時加熱(正式硬化)。緩慢冷卻後去除玻璃基板,獲得厚度200 μm之各硬化物。 以與實施例10相同之方式對所獲得之硬化物評價比介電常數。將結果一併示於表4。 [表4]   表4
Figure 105133548-A0304-0004
[份]:質量份   如表4所示,確認出本發明之環氧樹脂組合物(實施例22、23)與不含反應性稀釋劑之情形(比較例8)相比,比介電常數大幅降低。另一方面,包含先前公知之反應性稀釋劑之環氧樹脂組合物之比介電常數之降低率較低(比較例6, 7)。 [實施例24, 25、比較例9~11]光陽離子硬化物之製作 向表5中記載之環氧樹脂組合物100質量份中添加作為光酸產生劑之C101A 1質量份(有效成分換算)。將該混合物進行攪拌消泡(2,000 rpm、4分鐘,進而1,000 rpm、4分鐘),而製備硬化性組合物22至26。 將各組合物與厚度200 μm之聚矽氧橡膠製造之間隔件一起夾入至預先經OPTOOL(註冊商標)DSX[大金工業(股)製造]進行了脫模處理之2片石英玻璃基板。將該夾入之組合物於空氣環境下以照度20 mW/cm2 (波長365 nm)進行150秒UV曝光,進而,利用100℃之加熱板進行1小時加熱(後硬化處理)。緩慢冷卻後去除石英玻璃基板,獲得厚度200 μm之各硬化物。 以與實施例10相同之方式對所獲得之硬化物評價比介電常數。將結果一併示於表5。 [表5]   表5
Figure 105133548-A0304-0005
[份]:質量份   如表5所示,確認出本發明之環氧樹脂組合物(實施例24、25)與不含反應性稀釋劑之情形(比較例11)相比,比介電常數大幅降低。另一方面,包含先前公知之反應性稀釋劑之環氧樹脂組合物之比介電常數之降低率較低(比較例9、10)。 [參考例1~3]反應性評價 關於ISGEs、ISECHEs及ISGE,將表6中記載之量之2EHA及二甲苯進行混合,於140℃下攪拌8小時。藉由GC,測定各反應混合物之環氧基之轉化率。將結果一併示於表6。 [表6]   表6
Figure 105133548-A0304-0006
如表6所示,確認出:作為環氧部位,環氧乙基(包含上述式[2]所表示之基之情形)之反應性高於3,4-環氧環己基(包含上述式[3]所表示之基之情形)(參考例1, 2),又,作為上述式[1]之X,酯鍵之反應性高於醚鍵(參考例1、3)。[(a) Epoxy resin composition] The present invention relates to an epoxy resin composition containing at least one epoxy compound represented by the following formula [1] and an epoxy resin, and the object of the present invention is also the following The epoxy compound represented by the formula [1] is used as a reactive diluent in an epoxy resin composition. <Epoxy compound> The epoxy compound contained in the epoxy resin composition of this invention is represented by following formula [1]. [化6]
Figure 02_image016
In the above formula, R 1 and R 2 each independently represent an alkyl group having 2 to 27 carbon atoms, R 3 represents a hydrogen atom or an alkyl group having 1 to 25 carbon atoms, and the carbon of the -CR 1 R 2 R 3 group The total number of atoms is 10 to 30, X means *-C(=O)O-, *-CH 2 O- or *-CH 2 OC(=O)- (here, * means the same as -CR 1 R 2 The end where the R 3 group is bonded), L represents a single bond, or an alkylene group having 1 to 8 carbon atoms that may include an ether bond, and E represents a group represented by formula [2] or formula [3]. [化7]
Figure 02_image018
In the above formula, R 4 to R 15 each independently represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. The alkyl group having 2 to 27 carbon atoms in R 1 and R 2 may not only have a linear structure, but also a branched structure or a cyclic structure. Specifically, examples include ethyl, propyl, butyl, amyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl (lauryl), Tridecyl, tetradecyl (myristyl), pentadecyl, hexadecyl (palmityl), heptadecyl (pearl base), octadecyl (stearyl), ten Nonayl, eicosyl (arachidyl), icosyl, behenyl (behenyl), tricosyl, tetracosyl (wood wax), pentadecyl Straight-chain alkyl groups such as alkyl, hexadecyl, and heptadecyl; isopropyl, isobutyl, second butyl, tertiary butyl, isopentyl, neopentyl, tertiary pentyl Base, second isopentyl, isohexyl, 2,3-dimethyl-2-butyl (thexyl), 4-methylhexyl, 5-methylhexyl, 2-ethylpentyl, heptane-3 -Base, heptane-4-yl, 4-methylhexane-2-yl, 3-methylhexane-3-yl, 2,3-dimethylpentane-2-yl, 2,4- Dimethylpentane-2-yl, 4,4-Dimethylpentane-2-yl, 6-methylheptyl, 2-ethylhexyl, octane-2-yl, 6-methylheptane -2-yl, 6-methyloctyl, 3,5,5-trimethylhexyl, nonane-4-yl, 2,6-dimethylheptan-3-yl, 3,6-dimethyl Heptan-3-yl, 3-ethylheptan-3-yl, 3,7-dimethyloctyl, 8-methylnonyl, 3-methylnonan-3-yl, 4-ethyl Octan-4-yl, 9-methyldecyl, undecyl-5-yl, 3-ethylnonane-3-yl, 5-ethylnonane-5-yl, 2,2,4 ,5,5-Pentamethylhexane-4-yl, 10-methylundecyl, 11-methyldodecyl, tridecane-6-yl, tridecane-7-yl, 7 -Ethylundecane-2-yl, 3-ethylundecyl-3-yl, 5-ethylundecyl-5-yl, 12-methyltridecyl, 13-methyltetradecyl Alkyl, pentadecane-7-yl, pentadecane-8-yl, 14-methylpentadecyl, 15-methylhexadecyl, heptadecane-8-yl, heptadecane-9 -Base, 3,13-dimethylpentadecane-7-yl, 2,2,4,8,10,10-hexamethylundecane-5-yl, 16-methylheptadecanyl, 17-methyloctadecyl, nonadecan-9-yl, nonadecan-10-yl, 2,6,10,14-tetramethylpentadecane-7-yl, 18-methylnonadecane Alkyl, 19-methyleicosyl, icosan-10-yl, 20-methyldocosyl, 21-methyldocosyl, tricosane-11-yl, 22-methyl tetracosyl, 23-methyl tetracosyl, pentacosyl-12-yl, pentacosyl-13-yl, 2,22-dimethyl tetracosyl- 11-yl, 3,21-dimethyltricosane-11-yl, 9,15-dimethyltricosane-11-yl, 24-methylpentadecyl, 25-methyl Branched-chain alkyl groups such as hexadecyl and heptadecane-13-yl; cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, 4-tert-butylcyclohexyl , 1,6-Dimethylcyclohexyl, trimethyl, cycloheptyl, cyclooctyl, bicyclo[2.2.1]heptan-2-yl,
Figure 105133548-A0304-03-0013-01
Base, different
Figure 105133548-A0304-03-0013-01
Group, 1-adamantyl group, 2-adamantyl group, tricyclo[5.2.1.0 2,6 ]decane-4-yl, tricyclo[5.2.1.0 2,6 ]decane-8-yl, cyclodecane Alicyclic alkyl groups such as dialkyl groups. The above-mentioned R 1 and R 2 are independent of each other, and are preferably an alkyl group having 4 to 16 carbon atoms, more preferably an alkyl group having 6 to 10 carbon atoms. Among them, R 1 and R 2 are independent of each other, preferably a branched alkyl group, more preferably a branched alkyl group with 4 to 16 carbon atoms, and still more preferably a branched chain with 6 to 10 carbon atoms alkyl. Specifically, R 1 and R 2 are independent of each other, particularly preferably hexyl, heptyl, octyl, nonyl, 4,4-dimethylpentan-2-yl, and 6-methylheptan-2-yl , 6-methyloctyl, 3,5,5-trimethylhexyl, 3,7-dimethyloctyl. The alkyl group having 1 to 25 carbon atoms in the above R 3 may not only have a linear structure, but also a branched structure or a cyclic structure. Examples of such alkyl groups having 1 to 25 carbon atoms include methyl, ethyl, propyl, butyl, amyl, hexyl, heptyl, octyl, nonyl, decyl, and undecyl groups. Alkyl, dodecyl (lauryl), tridecyl, tetradecyl (myristyl), pentadecyl, hexadecyl (palmityl), heptadecyl (pearl base) , Octadecyl (stearyl), nonadecyl, eicosyl (arachidyl), behenyl, behenyl (behenyl), tricosyl, arachidyl Straight-chain alkyl groups such as tetraalkyl (wood wax group) and pentadecyl; isopropyl, isobutyl, second butyl, tertiary butyl, isopentyl, neopentyl, tertiary pentyl Yl, second isopentyl, isohexyl, 2,3-dimethyl-2-butyl, 4-methylhexyl, 5-methylhexyl, 2-ethylpentyl, heptane-3-yl, Heptane-4-yl, 4-methylhexane-2-yl, 3-methylhexane-3-yl, 2,3-dimethylpentane-2-yl, 2,4-dimethyl Pentane-2-yl, 4,4-dimethylpentane-2-yl, 6-methylheptyl, 2-ethylhexyl, octane-2-yl, 6-methylheptane-2- Yl, 6-methyloctyl, 3,5,5-trimethylhexyl, nonane-4-yl, 2,6-dimethylheptan-3-yl, 3,6-dimethylheptane -3-yl, 3-ethylheptan-3-yl, 3,7-dimethyloctyl, 8-methylnonyl, 3-methylnonan-3-yl, 4-ethyloctane -4-yl, 9-methyldecyl, undecyl-5-yl, 3-ethylnonane-3-yl, 5-ethylnonane-5-yl, 2,2,4,5, 5-Pentamethylhexane-4-yl, 10-methylundecyl, 11-methyldodecyl, tridecane-6-yl, tridecane-7-yl, 7-ethyl Undecyl-2-yl, 3-ethylundecyl-3-yl, 5-ethylundecyl-5-yl, 12-methyltridecyl, 13-methyltetradecyl, Pentadecane-7-yl, pentadecane-8-yl, 14-methylpentadecyl, 15-methylhexadecyl, heptadecane-8-yl, heptadecane-9-yl, 3,13-Dimethylpentadecane-7-yl, 2,2,4,8,10,10-hexamethylundecane-5-yl, 16-methylheptadecanyl, 17-methyl Octadecyl, nonadecan-9-yl, nonadecyl-10-yl, 2,6,10,14-tetramethylpentadecane-7-yl, 18-methylnonadecanyl, 19-methyleicosyl, eicosan-10-yl, 20-methyldocosyl, 21-methyldocosyl, tricosane-11-yl, 22-methyl Tricosyl, 23-methyltetracosyl, pentacosyl-12-yl, pentacosyl-13-yl, 2,22-dimethyltetracosyl-11-yl , 3,21-Dimethyltricosane-11-yl, 9,15-Dimethyltricosane-11-yl and other branched chain alkyl groups; cyclopropyl, cyclobutyl, cyclopentyl , Cyclohexyl, 4-tertiary butylcyclohexyl, 1,6-dimethylcyclohexyl, trisyl, cycloheptyl, cyclooctyl, bicyclo[2.2.1]heptan-2-yl ,
Figure 105133548-A0304-03-0013-01
Base, different
Figure 105133548-A0304-03-0013-01
Group, 1-adamantyl group, 2-adamantyl group, tricyclo[5.2.1.0 2,6 ]decane-4-yl, tricyclo[5.2.1.0 2,6 ]decane-8-yl, cyclodecane Alicyclic alkyl groups such as dialkyl groups. Among them, R 3 is preferably a hydrogen atom. The group having the above-mentioned R 1 , R 2 and R 3 , namely the -CR 1 R 2 R 3 group, has a total number of carbon atoms of 10 to 30, preferably a group having 14 to 26 carbon atoms, and particularly preferably a carbon atom The base number is 14 to 20. Specific examples of the aforementioned -CR 1 R 2 R 3 group include: 3-methylnonane-3-yl, 4-ethyloctane-4-yl, undecyl-5-yl, 3-ethyl Nonan-3-yl, 5-ethylnonan-5-yl, 2,2,4,5,5-pentamethylhexane-4-yl, tridecane-6-yl, tridecane -7-yl, 7-ethylundecane-2-yl, 3-ethylundecane-3-yl, 5-ethylundecane-5-yl, pentadecane-7-yl, ten Pentadec-8-yl, heptadecane-8-yl, heptadecane-9-yl, 3,13-dimethylpentadecane-7-yl, 2,2,4,8,10,10- Hexamethylundecane-5-yl, nonadecan-9-yl, nonadecan-10-yl, 2,6,10,14-tetramethylpentadecane-7-yl, icosane -10-yl, tricosane-11-yl, pentacosane-12-yl, pentacosane-13-yl, 2,22-dimethyl tricosane-11-yl, 3, 21-Dimethyltricosane-11-yl, 9,15-Dimethyltricosane-11-yl, heptadecane-13-yl, nonacontan-14-yl and the like. Among them, the above-mentioned X is preferably *-C(=O)O- or *-CH 2 O- group, particularly preferably *-C(=O)O- group. Examples of the alkylene group having 1 to 8 carbon atoms that may contain an ether bond in the above L include: methylene, ethylene, trimethylene, methylethylene, tetramethylene, 1-methyl Trimethylene, Pentamethylene, 2,2-Dimethyltrimethylene, Hexamethylene, Heptamethylene, Octamethylene, 2-oxatetramethylene, 2,5-Di Oxaheptamethylene, 2,5,8-trioxadecamethylene, 2-oxa-3-methyltetramethylene, 2,5-dioxa-3,6-dimethyl Heptamethylene and so on. As said L, it is preferable to cite a methylene group, trimethylene group, a hexamethylene group, and a 2-oxatetramethylene group, and a methylene group is more preferable. E in the above formula [1], that is, the group represented by the formula [2] or the formula [3], is an epoxy group-containing group. Examples of the alkyl group having 1 to 10 carbon atoms in R 4 to R 15 in formula [2] or formula [3] include: methyl, ethyl, propyl, isopropyl, cyclopropyl, butyl Base, isobutyl, second butyl, tertiary butyl, cyclobutyl, amyl, isopentyl, neopentyl, tertiary pentyl, second isopentyl, cyclopentyl, hexyl , Isohexyl, cyclohexyl, heptyl, octyl, 2-ethylhexyl, nonyl, decyl, etc. Among them, R 4 to R 15 are preferably hydrogen atoms. Furthermore, among the epoxy compounds represented by the above formula [1], the compound represented by the following formula [1a] is also the object of the invention. [化8]
Figure 02_image020
In the formula, R 1 and R 2 each independently represent an alkyl group with 2 to 27 carbon atoms, R 3 represents a hydrogen atom or an alkyl group with 1 to 25 carbon atoms, and the carbon atom of the -CR 1 R 2 R 3 group The number is 10 to 30, R 4 to R 6 each independently represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and L represents an alkylene group having 1 to 8 carbon atoms that may contain an ether bond. The specific groups of R 1 to R 6 and L are as described above. The compound represented by the above-mentioned formula [1] can use carboxylic acids or alcohols as starting materials, and is based on previously known (for example, described in International Publication No. 2012/128325, Japanese Patent Laid-Open No. 2012-25688, etc.) Manufactured by the method of synthesizing oxides. For example, when X represents an ester compound of *-C(=O)-O- group, as an example, it can be produced by the following method: the carboxylic acid represented by R 1 R 2 R 3 C-COOH or its Activated body (acid halide, acid anhydride, acyl azide, active ester, etc.) reacts with allyl halide or allyl alcohol to form an ester compound with unsaturated bond (intermediate), and then make the intermediate The compound reacts with peroxide to epoxidize the unsaturated bond. Moreover, it can also be manufactured by the method of making a carboxylic acid represented by R 1 R 2 R 3 C-COOH react with epichlorohydrin and ring-closing. As an example, the following shows the synthesis process in the case where E is the base represented by formula [2]. [化9]
Figure 02_image022
In addition, when X in the above formula [1] represents an ether compound of *-CH 2- O-, it can be produced, for example, by the following method: R 1 R 2 R 3 C-CH 2 OH is represented by The alcohol reacts with the allyl halide to form an ether compound (intermediate) having an unsaturated bond, and then the intermediate is reacted with a peroxide to epoxidize the unsaturated bond. The carboxylic acid represented by R 1 R 2 R 3 C-COOH and the alcohol represented by R 1 R 2 R 3 C-CH 2 OH can be commercially available products, for example, as the above R 1 R 2 R 3 C-COOH The indicated compounds include: Fine Oxocol (registered trademark) isopalmitic acid, Fine Oxocol (registered trademark) isostearic acid, Fine Oxocol (registered trademark) isostearic acid N, Fine Oxocol manufactured by Nissan Chemical Industry Co., Ltd. (Registered trademark) isostearic acid T, and Fine Oxocol (registered trademark) isoarachidic acid. In addition, as the compound represented by the above R 1 R 2 R 3 C-CH 2 OH, Fine Oxocol (registered trademark) 1600 manufactured by Nissan Chemical Industry Co., Ltd., Fine Oxocol 180, Fine Oxocol 180N, Fine Oxocol 180T , And Fine Oxocol 2000, etc. <Epoxy resin> The epoxy resin contained in the epoxy resin composition of the present invention generally refers to an epoxy compound having at least two epoxy groups in the molecule, and is not particularly limited in the present invention. Commercially available ones can be used. Various epoxy resins including products. In the epoxy resin composition of the present invention, it is preferable to ideally use a liquid epoxy resin from the viewpoint of operation. Furthermore, when the epoxy resin is solid or has a very high viscosity, it can be dissolved in a solvent in order to facilitate the operation, or it can be used for curing reaction during the preparation of the epoxy resin composition as described below. Heating is performed to the extent that it will not proceed. However, the addition of the solvent may reduce the density of the hardened product due to the evaporation of the solvent, or may reduce the strength and water resistance due to the generation of pores. Therefore, it is preferable to use the epoxy resin itself which is liquid at normal temperature and normal pressure. Examples of epoxy resins that can be used in the present invention include: 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, (poly)ethylene glycol diglycidyl ether, ( Poly) propylene glycol diglycidyl ether, trimethylolethane triglycidyl ether, trimethylolpropane triglycidyl ether, 1,4-cyclohexane dimethanol diglycidyl ether, 1,2-epoxy -4-(Ethoxyethyl) cyclohexane, glycerol triglycidyl ether, diglycerol polydiglycidyl ether, 2,6-diglycidylphenyl glycidyl ether, 1,1,3-tri(4 -Glycidyloxyphenyl)propane, 1,2-cyclohexanedicarboxylic acid diglycidyl ester, 4,4'-methylenebis(N,N-diglycidylaniline), 3,4- Epoxycyclohexane carboxylic acid 3',4'-epoxycyclohexyl methyl ester, triglycidyl p-aminophenol, tetraglycidyl metaxylylenediamine, tetraglycidyl diaminodiphenylmethane , Tetraglycidyl-1,3-diaminomethylcyclohexane, bisphenol A diglycidyl ether, bisphenol S diglycidyl ether, tetrabromobisphenol A diglycidyl ether, hydrogenated bisphenol A two Glycidyl ether, pentaerythritol diglycidyl ether, pentaerythritol tetraglycidyl ether, pentaerythritol polyglycidyl ether, resorcinol diglycidyl ether, diglycidyl phthalate, diglycidyl tetrahydrophthalate , Neopentyl glycol diglycidyl ether, bisphenol hexafluoroacetone diglycidyl ether, triglycidyl isocyanurate, tris(3,4-epoxybutyl) isocyanurate, tris(4 ,5-epoxypentyl) ester, tris(5,6-epoxyhexyl)isocyanurate, tris(7,8-epoxyoctyl)isocyanurate, tris(2-glycidyl)isocyanurate Oxyethyl) ester, monoallyl isocyanurate diglycidyl ester, N,N'-diglycidyl N''-(2,3-dipropionyloxypropyl) isocyanurate , N,N'-bis(2,3-dipropionyloxypropyl)N''-glycidyl isocyanurate, tris(2,2-bis(glycidyloxymethyl)butyl )3,3',3''-(2,4,6-trilateral oxy-1,3,5-tris-1,3,5-triyl) tripropionate, sorbitol polycondensation Glyceryl ether, diglycidyl adipate, diglycidyl phthalate, dibromophenyl glycidyl ether, 1,2,7,8-diepoxyoctane, 1,6-dimethylol Perfluorohexane diglycidyl ether, 4-(spiro[3,4-epoxycyclohexane-1,5'-[1,3]dioxane]-2'-yl)-1,2-ring Oxycyclohexane, 1,2-bis(3,4-epoxycyclohexylmethoxy)ethane, 4,5-epoxy-2-methylcyclohexanecarboxylic acid 4',5'-ring Oxy-2'-methylcyclohexyl methyl ester, ethylene glycol bis(3,4-epoxycyclohexane carboxylate), adipic acid bis(3,4-epoxycyclohexylmethyl) ester, Bis(2,3-epoxycyclopentyl) ether etc. are not limited to these. These epoxy resins can be used alone or in the form of a mixture of two or more. Furthermore, as an example of the epoxy resin mentioned above, the following commercially available products can be mentioned. Examples of solid epoxy resins include TEPIC (registered trademark)-G, TEPIC-S, TEPIC-L, TEPIC-HP [all manufactured by Nissan Chemical Industry Co., Ltd.] and the like. Also, as liquid epoxy resins, TEPIC (registered trademark)-PAS B22, TEPIC-PAS B26, TEPIC-PAS B26L, TEPIC-VL, TEPIC-UC, TEPIC-FL [all are Nissan Chemical Industries (stocks) ) Manufacturing], jER 828, jER YX8000 [all manufactured by Mitsubishi Chemical Co., Ltd.], Ricaresin (registered trademark) DME100 [manufactured by New Japan Physical and Chemical Co., Ltd.], Celloxide 2021P [manufactured by Daicel (Stock)], etc. In the epoxy resin composition of the present invention, the blending ratio of the epoxy compound represented by the formula [1] and the epoxy resin is preferably in terms of mass ratio, as the epoxy compound represented by the formula [1]: ring Oxygen resin = the range of 3:97 to 60:40, more preferably the range of 5:95 to 40:60. By setting the blending amount of the epoxy compound represented by the formula [1] to be more than the above ratio, a sufficient viscosity reduction effect can be obtained, and the obtained resin composition can be sufficiently reduced in dielectric constant. In addition, by setting the blending amount of the epoxy compound represented by the formula [1] to be equal to or less than the above ratio, it is possible to suppress the decrease in the crosslinking density and maintain the heat resistance or mechanical properties of the cured product obtained thereafter. The epoxy resin composition of the present invention can be produced by mixing the epoxy compound represented by the above formula [1] and the above epoxy resin, and the mixing is not particularly limited as long as the mixing can be uniformly mixed, for example, A mixer or a kneader is used, and the viscosity can be taken into consideration and it can be implemented under heating as necessary. For example, it can be prepared by mixing at a temperature of 10 to 150°C for about 0.5 to 10 hours. [(b) Curing agent and curable composition containing the same] The present invention targets a curable composition containing the above-mentioned epoxy resin composition and (b) a curing agent. In addition to the (b) curing agent, a curing accelerator may be used in combination in the curable composition. As the hardener, acid anhydrides, amines, phenol resins, polyamide resins, imidazoles, or polythiols can be used. Among these, acid anhydrides and amines are particularly preferred. Even if these hardeners are solid, they can be used by being dissolved in a solvent. However, the density of the hardened product is reduced due to the evaporation of the solvent or the strength and water resistance are reduced due to the generation of pores. Therefore, it is preferable that the hardening agent itself is liquid at normal temperature and pressure. The curing agent may be 0.5 to 1.5 equivalents, preferably 0.8 to 1 equivalent of epoxy group in the entire epoxy compound represented by the above formula [1] and the epoxy resin in (a) the epoxy resin composition. Contained in the ratio of 1.2 equivalents. The equivalent of the curing agent to the epoxy compound is expressed by the equivalent ratio of the curing group of the curing agent to the epoxy group. The acid anhydride is preferably an acid anhydride of a compound having a plurality of carboxyl groups in one molecule. Examples of these acid anhydrides include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, ethylene glycol bis trimellitate, and glycerol trimellitic acid. Esters, maleic anhydride, tetrahydrophthalic anhydride, methyl tetrahydrophthalic anhydride, endomethylene tetrahydrophthalic anhydride, methyl endomethylene tetrahydrophthalic anhydride Acid anhydride, methylbutenyltetrahydrophthalic anhydride, dodecenylsuccinic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, succinic anhydride, methylcyclohexenedicarboxylate Acid anhydride, chloro bridge acid anhydride, etc. Among them, methyl tetrahydrophthalic anhydride, methyl -5- phthalic anhydride, which is liquid under normal temperature and pressure, are preferred.
Figure 105133548-A0304-03-0013-01
Alkene-2,3-dicarboxylic anhydride (methyl-resistant acid anhydride, methylbicycloheptene dicarboxylic acid anhydride), hydrogenated methyl-resistant acid anhydride, methyl butenyl tetrahydrophthalic anhydride, dodecenyl Succinic anhydride, methylhexahydrophthalic anhydride, a mixture of methylhexahydrophthalic anhydride and hexahydrophthalic anhydride. The viscosity of these liquid acid anhydrides is about 10 to 1,000 mPa·s when measured at 25°C. Among the acid anhydride groups, one acid anhydride group is calculated as 1 equivalent. Examples of amines include piperidine, N,N-dimethylpiperidin, triethylenediamine, 2,4,6-tris(dimethylaminomethyl)phenol, and benzyldimethyl Amine, 2-(dimethylaminomethyl)phenol, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, diethylaminopropylamine, N-aminoethyl Piperidine, bis (1-methyl-2-aminocyclohexyl) methane, menthane diamine, isophorone diamine, diamino dicyclohexyl methane, 1,3-bis (amino methyl ) Cyclohexane, xylylenediamine, m-phenylenediamine, diaminodiphenylmethane, diaminodiphenylmethane, etc. Among these, liquid diethylenetriamine, triethylenetetramine, tetraethylenepentamine, diethylaminopropylamine, N-aminoethylpiper 𠯤, bis(1-methyl-2-aminocyclohexyl) methane, menthane diamine, isophorone diamine, diamino dicyclohexyl methane, etc. As a phenol resin, a phenol novolak resin, a cresol novolak resin, etc. are mentioned, for example. The polyamide resin is produced by the condensation of a dimer acid and a polyamine, and the polyamide resin has a primary amine and a secondary amine in the molecule. Examples of imidazoles include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, epoxy resin-imidazole Additions, etc. The polythiol is, for example, a thiol group at the end of the polypropylene glycol chain or a thiol group at the end of the polyethylene glycol chain, and it is preferably a liquid. In addition, when obtaining a cured product from the curable composition of the present invention, a curing accelerator (also referred to as a curing aid) may be appropriately used in combination. Examples of hardening accelerators include organophosphorus compounds such as triphenylphosphine and tributylphosphine; quaternary grades such as ethyltriphenylphosphonium bromide and tetrabutylphosphonium O,O-diethyldithiophosphate. Phosphonium salt; salt of 1,8-diazabicyclo[5.4.0]undecene-7, 1,8-diazabicyclo[5.4.0]undecene-7 and caprylic acid, zinc octoate, bromide Quaternary ammonium salts such as tetrabutylammonium, etc. In addition, the above-mentioned hardeners include imidazoles such as 2-methylimidazole and 2-ethyl-4-methylimidazole, or 2,4,6-tris(dimethylaminomethyl)phenol, benzyl two Amines such as methylamine can also be used as hardening accelerators for other kinds of hardeners. These hardening accelerators can be used at a ratio of 0.001 to 0.1 parts by mass relative to 1 part by mass of the hardener. In the present invention, since the epoxy resin composition containing the epoxy compound represented by the above formula [1] and the epoxy resin is mixed with the above (b) curing agent and optionally a curing accelerator, a curable combination can be obtained Things. The mixing of these components is not particularly limited as long as they can be mixed uniformly. For example, it is preferable to use a reaction flask and a stirring blade or a mixer, etc., or a kneader, for example, it is preferable to use a rotation and revolution type mixer. Carry out with full agitation. The mixing is carried out under heating as necessary in consideration of viscosity, and is carried out at a temperature of 10-100°C for 0.5-1 hour. When the viscosity of the epoxy resin composition is high and the uniform mixing is not carried out quickly, heating is performed to the extent that the hardening reaction does not proceed, so that the viscosity is lowered and the workability is improved. In addition, when the epoxy compound dissolved in a solvent is used as the epoxy compound as described above, or the curing agent contains a solvent, the obtained curable composition may also contain the above solvent, but the solvent Due to its evaporation, it may become the main cause of various performance degradations of the hardened product. Therefore, it is preferable to perform a pressure reduction or heating treatment during or after the preparation of the hardenable composition, and to remove the hardened product before forming the hardened product. The solvent is removed from the curable composition. The obtained curable composition has suitable viscosity for use as a liquid sealing material, for example. The curable composition of the present invention can be adjusted to any viscosity, and is used as a transparent sealing material for LEDs and the like by casting, pouring, dispensing, printing, etc., so it can be partially sealed at any part. The curable composition is directly attached to an LED or the like in a liquid form by the above-mentioned method, and then dried and cured to obtain a cured epoxy resin. The cured product obtained from the above-mentioned curable composition is obtained by applying the curable composition to a substrate or injecting the curable composition into a cast plate coated with a mold release agent at a temperature of 100 to 120°C. It is obtained by pre-curing at a temperature, and then formal curing (post-curing) at a temperature of 120 to 200°C. The heating time is 1 to 12 hours, for example, the pre-curing and the full-curing are each about 2 to 5 hours. The thickness of the coating film obtained from the curable composition of the present invention can be selected from the range of about 0.01 μm to 10 mm according to the application of the cured product. [(c) Curing catalyst and curable composition containing the same] The present invention also targets a curable composition containing the above-mentioned epoxy resin composition and (c) a curing catalyst. (c) The hardening catalyst contains (c1) an acid generator and/or (c2) an alkali generator. <(c1) Acid Generator> As the acid generator (c1), a photoacid generator or a thermal acid generator can be used, as long as these are directly or indirectly generated by light irradiation or heating (Lewis acid or Bruins (Special acid), there is no particular limitation. Specific examples of photoacid generators include: onium salts such as iodonium salts, sulfonium salts, phosphonium salts, and selenium salts; metallocene complexes, iron-arene complexes, disulfonic acid-based compounds, and sulfonic acid derivative compounds , Three 𠯤 series compounds, acetophenone derivative compounds, diazomethane series compounds, etc. Among the above-mentioned onium salts, examples of the iodonium salt include diphenyl iodonium, 4,4'-dichlorodiphenyl iodonium, 4,4'-dimethoxydiphenyl iodonium, 4,4'-di Tertiary butyl diphenyl iodonium, 4-methylphenyl (4-(2-methylpropyl) phenyl) iodonium, 3,3'-dinitrophenyl iodonium, 4-(1-ethoxy Chloride, bromide, methanesulfonate, toluene such as carbonyl ethoxy) phenyl (2,4,6-trimethylphenyl) iodonium, 4-methoxyphenyl (phenyl) iodonium, etc. Diaryl iodonium salts such as sulfonate, trifluoromethanesulfonate, tetrafluoroborate, tetra(pentafluorophenyl) borate, hexafluorophosphate, hexafluoroarsenate, and hexafluoroantimonate. As the above-mentioned sulfonium salt, for example, triphenyl sulfonium, diphenyl (4-tertiary butyl phenyl) sulfonium, tris (4-tertiary butyl phenyl) sulfonium, and diphenyl (4-methoxy Phenyl) sulfonium, tris(4-methylphenyl) sulfonium, tris(4-methoxyphenyl) sulfonium, tris(4-ethoxyphenyl) sulfonium, diphenyl(4-(phenylsulfide) Chloride, bromide, trifluoromethanesulfonate, tetrafluoroborate, hexafluorophosphate, hexafluoroarsenic acid, etc. Salt, hexafluoroantimonate and other triaryl alumium salts. Examples of the above-mentioned phosphonium salt include tetraphenylphosphonium, ethyltriphenylphosphonium, tetra(p-methoxyphenyl)phosphonium, ethyltris(p-methoxyphenyl)phosphonium, and benzyltriphenylphosphonium. Phosphonium and other phosphonium chlorides, bromides, tetrafluoroborate, hexafluorophosphate, hexafluoroantimonate and other arylphosphonium salts. As said selenium salt, triaryl selenium salts, such as triphenylselenyl hexafluorophosphate, are mentioned. Examples of the iron-arene complexes include bis(η 5 -cyclopentadienyl) (η 6 -cumene) iron (II) hexafluorophosphate and the like. These photoacid generators can be used alone or in combination of two or more kinds. Examples of thermal acid generators include sulfonium salts and phosphonium salts, and examples of these compounds include those listed as examples of various onium salts among the photoacid generators. In addition, benzyl (4-hydroxyphenyl) (methyl) hexafluoroantimonate and the like can be preferably used. These thermal acid generators can be used alone or in combination of two or more. Among them, the (c1) acid generator is preferably a sulfonate compound or an iodonium salt compound, for example, a compound having an anionic species such as hexafluorophosphate or hexafluoroantimonate, which exhibits strong acidity. (c1) The acid generator can be contained in a ratio of 0.1 to 20 parts by mass, preferably 0.1 to 10 parts by mass, and more preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the epoxy resin composition (a). <(c2) Alkali generator> As the (c2) alkali generator, a photobase generator or a thermal base generator can be used, as long as they are directly or indirectly generated by light irradiation or heating (Lewis base or Bruins There are no particular restrictions on those with special acids and bases. Examples of photobase generators include alkylamine photobase generators such as N,N-diethylaminocarboxylic acid 9-anthrylmethyl ester; N,N-dicyclohexylaminocarboxylic acid 9-anthracene Base ester, N,N-dicyclohexylaminocarboxylic acid 1-(9,10-anthraquinone-2-yl) ethyl ester, dicyclohexylammonium 2-(3-benzylphenyl) propionate, N-cyclohexylaminocarboxylic acid 9-anthryl ester, N-cyclohexylaminocarboxylic acid 1-(9,10-anthraquinone-2-yl)ethyl ester, cyclohexylammonium 2-(3-benzylbenzene Yl)propionate, (E)-N-cyclohexyl-3-(2-hydroxyphenyl)acrylamide and other cycloalkylamine photobase generators; piperidine-1-carboxylic acid 9-anthrylmethyl Base ester, (E)-1-piperidinyl-3-(2-hydroxyphenyl)-2-propen-1-one, 4-hydroxypiperidine-1-carboxylic acid (2-nitrophenyl) methyl Esters, piperidine-based photobase generators such as 4-(methacryloxy)piperidine-1-carboxylic acid (2-nitrophenyl) methyl ester; guanidinium 2-(3-benzylbenzene Base) propionate, 1,2-diisopropyl-3-(bis(dimethylamino)methylene)guanidinium 2-(3-benzylphenyl) propionate, 1, 2-Dicyclohexyl-4,4,5,5-tetramethylbiguanidinium N-butyltriphenylborate, 1,5,7-triazabicyclo[4.4.0]dec-5-enium 2-(9-Pendant Oxygen 𠮿
Figure 105133548-A0304-12-0019-3
-2-yl) guanidine-based photobase generators such as propionate; imidazole-based photobase generators such as 1-(9,10-anthraquinone-2-yl)ethyl imidazole-1-carboxylic acid, etc. These photobase generators can be used alone or in combination of two or more. In addition, photobase generators can be obtained in the form of commercially available products. For example, WPBG series of photobase generators manufactured by Wako Pure Chemical Industries, Ltd. (WPBG-018, WPBG-027, WPBG-082, WPBG- 140, WPBG-266, WPBG-300, etc.) etc. As the thermal base generator, for example, 1-methyl-1-(4-biphenyl)ethylcarbamate, 2-cyano-1,1-dimethylethylaminocarboxylic acid Carbamates such as esters; ureas such as urea and N,N-dimethyl-N'-methylurea; guanidines such as guanidine trichloroacetate, guanidine phenylsulfonate and guanidine phenylpropiolate ; 1,4-Dihydronicotinamide and other dihydropyridines; N-(isopropoxycarbonyl)-2,6-dimethylpiperidine, N-(tertiary butoxycarbonyl)-2, Dimethylpiperidines such as 6-dimethylpiperidine, N-(benzyloxycarbonyl)-2,6-dimethylpiperidine; tetramethylammonium phenylsulfonyl acetate, phenylpropioic acid Quaternary ammonium salts such as tetramethylammonium; dicyandiamide, etc. In addition, U-CAT (registered trademark) SA810, U-CAT SA831, U-CAT SA841, U-CAT SA841, U-CAT (registered trademark) SA810, U-CAT SA831, U-CAT SA841, and U-CAT (registered trademark) as the salt of 1,8-diazabicyclo[5.4.0]undecene-7 (DBU) CAT SA851 [The above is made by San-Apro (stock)] etc. These thermal alkali generators can be used singly or in combination of two or more. (c2) The alkali generator can be contained in a ratio of 0.1 to 20 parts by mass, preferably 0.1 to 10 parts by mass, and more preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the epoxy resin composition (a). In the present invention, a curable composition can be obtained by mixing the above-mentioned (c) curing catalyst in an epoxy resin composition containing the epoxy compound represented by the above-mentioned formula [1] and an epoxy resin. The operating conditions for mixing to obtain the curable composition are as described above. In the present invention, curing can be performed by applying a curable composition containing the epoxy resin composition and (c) a curing catalyst on a substrate and irradiating with light or heating. In addition, heating may be further performed before and after light irradiation. As a method of applying the curable composition of the present invention to a substrate, for example, flow coating method, spin coating method, spraying method, screen printing method, flexographic printing method, inkjet printing method, and casting method can be cited. , Bar coating method, curtain coating method, roll coating method, gravure coating method, dipping method, slit coating method, etc. The thickness of the coating film formed from the curable composition of the present invention can be selected from the range of about 0.01 μm to 10 mm according to the application of the cured product. For example, when used in photoresist, it can be set to 0.05 to 10 μm. (Especially 0.1~5 μm). When used in printed wiring boards, it can be set to about 10 μm~5 mm (especially 100 μm~1 mm). When used in optical films, it can be set It is about 0.1-100 μm (especially 0.3-50 μm). In the curable composition containing (c) a curing catalyst, as the light to be irradiated or exposed when a photoacid generator or a photobase generator is used, for example, gamma rays, X-rays, ultraviolet rays, visible light, etc. can be cited. Usually, visible light or ultraviolet light, especially ultraviolet light, is mostly used. The wavelength of light is, for example, 150-800 nm, preferably 150-600 nm, more preferably 200-400 nm, especially about 300-400 nm. The amount of exposure varies depending on the thickness of the coating film. For example, it can be set to about 2 to 20,000 mJ/cm 2 , preferably about 5 to 5,000 mJ/cm 2 . As the light source, it can be selected according to the type of light to be exposed. For example, in the case of ultraviolet light, low-pressure mercury lamp, high-pressure mercury lamp, ultra-high pressure mercury lamp, deuterium lamp, halogen lamp, laser light (helium-cadmium laser, excimer laser) can be used. Radiation, etc.), UV-LED, etc. By such light irradiation, the curing reaction of the above composition proceeds. In a curable composition containing (c) a hardening catalyst, in the case of using a thermal acid generator or a thermal base generator, or using a photoacid generator or a photobase generator and performing light irradiation, it may be applied as necessary. The heating of the film is performed at room temperature (about 23°C) to about 250°C, for example. The heating time can be selected from the range of 3 seconds or more (for example, about 3 seconds to about 5 hours), for example, about 5 seconds to about 2 hours. Furthermore, in the case of forming a pattern or image (for example, in the case of manufacturing a printed wiring board, etc.), pattern exposure of the coating film formed on the substrate may also be performed. The pattern exposure can be performed by scanning laser light, or by light irradiation through a photomask. The non-irradiated area (unexposed area) generated by such pattern exposure is developed (or dissolved) with a developer, thereby forming a pattern or image. As the developer, an alkaline aqueous solution or an organic solvent can be used. Examples of alkaline aqueous solutions include aqueous solutions of alkali metal hydroxides such as potassium hydroxide, sodium hydroxide, potassium carbonate, and sodium carbonate; and hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, and choline. Aqueous solutions of quaternary ammonium; amine aqueous solutions of ethanolamine, propylamine, ethylenediamine, etc. The alkali developer is usually an aqueous solution of 10% by mass or less, and preferably an aqueous solution of 0.1 to 3% by mass or the like is used. Furthermore, it is also possible to add alcohols or surfactants to the above-mentioned developer, and these addition amounts are each with respect to 100 parts by mass of the developer, and preferably 0.05 to 10 parts by mass. Specifically, 0.1 to 2.38% by mass of tetramethylammonium hydroxide aqueous solution or the like can be used. In addition, as the organic solvent of the developer, ordinary organic solvents can be used, for example, aromatic hydrocarbons such as toluene; ethyl lactate, propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monoethyl ether acetate, propylene glycol mono Esters such as propyl ether acetate and propylene glycol monobutyl ether acetate; amines such as N,N-dimethylformamide (DMF); nitriles such as acetonitrile; ketones such as acetone and cyclohexanone; methanol , Ethanol, 2-propanol, propylene glycol monomethyl ether (PGME), propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether and other alcohols. These can be used alone or in the form of a mixture of two or more. Among them, ethyl lactate, propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monomethyl ether (PGME) and the like can be preferably used. [Solvent] The above-mentioned curable composition containing the epoxy resin composition and (b) curing agent, and the curable composition containing the epoxy resin composition and (c) curing catalyst may optionally contain a solvent. In the (a) epoxy resin composition of the present invention, the epoxy compound represented by formula [1] functions as a reactive diluent, and the epoxy compound is mixed with the above-mentioned (b) hardener or (c) hardened A catalyst is used to obtain the curable composition of the present invention. Therefore, the necessity of using a solvent is basically low, but a solvent may be added as needed. For example, in the case of (b) the hardening agent is solid, (c) the hardening catalyst is solid. The hardening catalyst can be dissolved in a solvent such as propylene carbonate and mixed with liquid epoxy resin to produce Hardening composition. Moreover, when dissolving an acid generator etc. in (a) epoxy resin composition, in order to adjust the viscosity of the curable composition obtained, you may add a general solvent. Examples of solvents include aromatic hydrocarbons such as toluene and xylene; esters such as methyl acetate, ethyl acetate, propyl acetate, and butyl acetate; methyl glycolate, ethyl glycolate, and butyl glycolate. , Methyl lactate, ethyl lactate, propyl lactate, butyl lactate, methyl 3-hydroxypropionate, ethyl 3-hydroxypropionate, propyl 3-hydroxypropionate, butyl 3-hydroxypropionate, 2 -Methyl hydroxy-2-methylpropionate, ethyl 2-hydroxy-2-methylpropionate, methyl 2-hydroxy-3-methylbutanoate and other hydroxy esters; methyl methoxyacetate, methyl Ethyl oxyacetate, propyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate, propyl ethoxyacetate, butyl ethoxyacetate, propoxy Methyl butoxyacetate, ethyl propoxyacetate, propyl propoxyacetate, butyl propoxyacetate, methyl butoxyacetate, ethyl butoxyacetate, propyl butoxyacetate, butoxy Butyl acetate, methyl 2-methoxypropionate, ethyl 2-methoxypropionate, propyl 2-methoxypropionate, butyl 2-methoxypropionate, 2-ethoxypropionate Methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate, propyl 2-ethoxypropionate, butyl 2-ethoxypropionate, methyl 2-butoxypropionate, 2-butoxypropionate Ethyl acrylate, 2-butoxy propyl propionate, 2-butoxy butyl propionate, 3-methoxy propionate methyl ester, 3-methoxy propionate ethyl ester, 3-methoxy propionate Propyl acrylate, butyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, propyl 3-ethoxypropionate, 3-ethoxypropionate Butyl ester, 3-propoxy methyl propionate, 3-propoxy ethyl propionate, 3-propoxy propyl propionate, 3-propoxy butyl propionate, 3-butoxy propionate Methyl 3-butoxypropionate, ethyl 3-butoxypropionate, propyl 3-butoxypropionate, butyl 3-butoxypropionate, methyl cellosolve acetate, ethyl cellosolve acetic acid Ester, propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, propylene glycol monobutyl ether acetate, propylene glycol monomethyl ether propionate, propylene glycol monoethyl ether propionate , Propylene glycol monopropyl ether propionate, propylene glycol monobutyl ether propionate and other ether esters; methyl ethyl ketone (MEK), 4-hydroxy-4-methyl-2-pentanone, cyclohexanone and other ketones ; Ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether (PGME), propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether Alcohols such as tetrahydrofuran (THF), diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol ethyl methyl ether and other ethers. When a solvent is blended in the curable composition of the present invention, the solid content ratio can be set to 1 to 100% by mass, or 5 to 100% by mass, or 50 to 100% by mass, or 80 to 100% by mass. The solid content refers to the ratio of the remaining components after the solvent is removed from the curable composition. [Other curable monomers] In the curable composition of the present invention described above, in order to adjust the viscosity or improve the curability, a vinyl-containing compound and an oxygen-containing hetero compound, which are cationic curable monomers other than epoxy resins, may be blended. Cyclobutyl compounds, etc. The vinyl group-containing compound is not particularly limited as long as it is a compound having a vinyl group. Examples include 2-hydroxyethyl vinyl ether (HEVE), diethylene glycol monovinyl ether (DEGV), 2-hydroxyethyl vinyl ether (HEVE), and 2-hydroxyethyl vinyl ether (HEVE). Vinyl ether compounds such as hydroxybutyl vinyl ether (HBVE) and triethylene glycol divinyl ether. In addition, vinyl compounds having substituents such as an alkyl group and an allyl group at the α-position and/or β-position can also be used. In addition, vinyl ether compounds containing cyclic ether groups such as epoxy groups and/or oxetanyl groups can be used.
Figure 105133548-A0304-03-0013-01
Divinyl ether, 3,3-dimethanol oxetane divinyl ether, etc. In addition, a compound having a vinyl group and a (meth)acrylic group can be used, for example, 2-(2-vinyloxyethoxy)ethyl (meth)acrylate and the like can be mentioned. These vinyl-containing compounds can be used alone or in combination of two or more. The oxetanyl-containing compound is not particularly limited as long as it is a compound having an oxetanyl group, and examples include 3-ethyl-3-(hydroxymethyl)oxetane (OXA), 3-Ethyl-3-(phenoxymethyl)oxetane (POX), bis((3-ethyl-3-oxetanyl)methyl)ether (DOX), 1,4 -Bis(((3-ethyl-3-oxetanyl)methoxy)methyl)benzene (XDO), 3-ethyl-3-(2-ethylhexyloxymethyl)oxa Cyclobutane (EHOX), 3-ethyl-3-((3-triethoxysilylpropoxy)methyl)oxetane (TESOX), oxetanyl silsesquioxane (OX-SQ), oxetane compounds such as phenol novolac oxetane (PNOX-1009), etc. In addition, a compound having an oxetanyl group and a (meth)acrylic group can be used, and examples thereof include (3-ethyl-3-oxetanyl) methyl (meth)acrylate. These oxetanyl-containing compounds can be used alone or in combination of two or more. [Other components] The above-mentioned curable composition containing an epoxy resin composition and (b) a curing agent, and a curable composition containing an epoxy resin composition and (c) a curing catalyst may also contain customary additives as needed. Examples of such additives include: pigments, colorants, tackifiers, acid generators, defoamers, levelers, coatability improvers, lubricants, stabilizers (antioxidants, heat stabilizers, light resistance Stabilizers, etc.), plasticizers, surfactants, adhesion promoters, dissolution promoters, fillers, antistatic agents, hardeners, etc. These additives can be used alone or in combination of two or more. For example, in the curable composition of the present invention, a surfactant may be added in order to improve coatability. Examples of such surfactants include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants, but are not particularly limited to these. The above-mentioned surfactants can be used alone or in combination of two or more kinds. Among these surfactants, a fluorine-based surfactant is preferable in terms of a higher coating property improvement effect. Specific examples of fluorine-based surfactants include, for example, Eftop (registered trademark) EF-301, Eftop EF-303, Eftop EF-352 [all manufactured by Mitsubishi Materials Electronics Co., Ltd.], Megafac (registered trademark) F-171, Megafac F-173, Megafac F-482, Megafac R-08, Megafac R-30, Megafac R-90, Megafac BL-20 [all manufactured by DIC (shares)], Fluorad FC-430, Fluorad FC -431 [all manufactured by 3M Japan], AsahiGuard (registered trademark) AG-710 [manufactured by Asahi Glass Co., Ltd.], Surflon S-382, Surflon SC-101, Surflon SC-102, Surflon SC-103, Surflon SC-104, Surflon SC-105, Surflon SC-106 [all manufactured by AGCSeimi Chemical Co., Ltd.], etc., but are not limited to these. The addition amount of the surfactant in the curable composition of the present invention is based on the mass of the solid components of the curable composition (all components except the solvent), and is 0.01-5 mass%, preferably 0.01-3 mass% %, more preferably 0.01 to 2% by mass. In addition, in the curable composition of the present invention, in order to improve the adhesion with the substrate after development, an adhesion promoter may be added. Examples of such adhesion promoters include: chlorotrimethylsilane, trichloro(vinyl)silane, chloro(dimethyl)(vinyl)silane, chloro(methyl)(diphenyl)silane, chlorine (Chloromethyl) (dimethyl) silane and other chlorosilanes; methoxy trimethyl silane, dimethoxy dimethyl silane, diethoxy dimethyl silane, ethoxy (dimethyl) (Vinyl) Silane, Dimethoxydiphenyl Silane, Triethoxy (Phenyl) Silane, 3-Chloropropyl Trimethoxy Silane, 3-Aminopropyl Triethoxy Silane, 3-( Alkoxysilanes such as meth)acryloxypropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, trimethoxy(3-(N-piperidinyl)propyl)silane, etc. ; Silazanes such as hexamethyldisilazane, N,N'-bis(trimethylsilyl)urea, dimethyl(trimethylsilyl)amine, trimethylsilylimidazole; imidazole, Indazole, benzimidazole, benzotriazole, mercaptoimidazole, mercaptopyrimidine 2-mercaptobenzimidazole, 2-mercaptobenzoxazole, 2-mercaptobenzothiazole, urea azole, thiouracil and other nitrogen-containing heterocycles Compounds; ureas such as 1,1-dimethylurea and 1,3-dimethylurea or thioureas, etc. These adhesion promoters can be used alone or in combination of two or more. The addition amount of the adhesion promoter in the curable composition of the present invention is based on the mass of the solid components (all components except the solvent) of the curable composition, and is usually 20% by mass or less, preferably 0.01-10% by mass %, more preferably 0.05 to 5% by mass. Furthermore, the curable composition of this invention may contain a sensitizer. Examples of sensitizers that can be used include: anthracene, phenothionine, perylene, and 9-oxysulfur.
Figure 105133548-A0304-12-0019-3
, Benzophenone 9-oxysulfur 𠮿
Figure 105133548-A0304-12-0019-3
Wait. Furthermore, as sensitizing pigments, exemplified are thiopyrylium-based pigments, merocyanine-based pigments, quinoline-based pigments, styrylquinoline-based pigments, ketocoumarin-based pigments, and sulfur
Figure 105133548-A0304-12-0019-3
Department of Pigment, 𠮿
Figure 105133548-A0304-12-0019-3
Pigments, oxygen-based pigments, cyanine-based pigments, rhodamine-based pigments, pyrylium-based pigments, etc. An anthracene-based sensitizer is particularly preferred. By using it together with a cationic hardening catalyst (radiation-sensitive cationic polymerization initiator), the sensitivity can be dramatically improved and it also has the function of initiating radical polymerization. When the hardening system and the free radical hardening system are used together, the type of catalyst can be simplified. As specific anthracene compounds, dibutoxyanthracene, dipropoxyanthraquinone and the like are effective. In addition, as a sensitizer when an alkali generator is used as a hardening catalyst, for example, acetophenones, benzoin, benzophenones, anthraquinones, ketones, 9-oxysulfur 𠮿
Figure 105133548-A0304-12-0019-3
Classes, ketals, tertiary amines, etc. The addition amount of the sensitizer in the curable composition of the present invention is based on the mass of the solid components (all components except the solvent) of the curable composition, and is 0.01-20% by mass, preferably 0.01-10% by mass %. [Examples] Hereinafter, the present invention will be explained more specifically with examples, but the present invention is not limited to the following examples. Furthermore, in the examples, the equipment and conditions used for sample preparation and physical property analysis are as follows. (1) 1 H NMR spectrum (300 MHz) Device: JNM-ECX300 manufactured by JEOL RESONANCE Co., Ltd. Benchmark: Tetramethylsilane (0.00 ppm) (2) 1 H NMR spectrum (400 MHz) Device: manufactured by Varian INOVA-400 Standard: Tetramethylsilane (0.00 ppm) (3) GC (Gas Chromatography) Device: GC-2010 Plus manufactured by Shimadzu Corporation. Detector: FID (Flame Ionization Detector) ) Column: Agilent J&W GC column HP-5 manufactured by Agilent-Technology (stock) (length 30 m, inner diameter 0.32 mm, film thickness 0.25 μm) Injection volume: 1.0 μL Injection inlet temperature: 250℃ Column temperature: 40°C (5 minutes), heating at 20°C/min to 300°C, 300°C (12 minutes) (4) GC-MS (Gas Chromatography Mass Spectrometry) Device: GCMS-QP2010 Ultra manufactured by Shimadzu Corporation Column: Agilent J&W GC column HP-5 manufactured by Agilent-Technology (stock) (length 30 m, inner diameter 0.32 mm, film thickness 0.25 μm) Injection volume: 2.0 μL Injection inlet temperature: 250℃ Column temperature: 40 ℃ (5 minutes), heating at 20℃/min to 300℃, 300℃ (12 minutes) (5) Viscosity device: TVE-22L, TVE-25H manufactured by Toki Sangyo Co., Ltd. (6) Melting point device: NETZSCH DSC 204 F1 Phoenix (7) Epoxy equivalent device manufactured by the company: Potentiometric automatic titration device AT-510 manufactured by Kyoto Electronics Co., Ltd. (8) 5% weight reduction temperature (Td5 % ) Device: manufactured by Rigaku Co., Ltd. Thermo plus EVO/TG-DTA TG8120 (9) Specific permittivity device: E4980A Precision LCR meter manufactured by Keysight-Technologies. Sample holder: 12962 room temperature sample holder (10) glass manufactured by Toyo Technology Co., Ltd. Transition point (Tg) Device: Thermomechanical measuring device Q400 manufactured by TA Instruments Japan (Stock) Deformation mode: Expansion load: 0.05 N Heating rate: 5°C/min (11) Stirring and defoaming device: Rotation manufactured by Thinky (Stock) Revolving mixer defoaming and stirring Taro (registered trademark) ARE-310 (12) Oven device: Air supply cryostat DNF400 manufactured by Yamato Scientific (13) Heating plate device: Air supply cryostat DNF400 manufactured by Yamato Scientific (14) UV exposure device: US5-0201 manufactured by EYE GRAPHICS (Stock) Lamp: H02-L41 manufactured by EYE GRAPHICS (Stock) Also, the abbreviation means the following. IAA: 5,9-Dimethyl-2-(1,5-dimethylhexyl)decanoic acid [Fine Oxocol (registered trademark) isoarachidic acid manufactured by Nissan Chemical Industry Co., Ltd.] IPA: 2-hexyldecanoic acid [Fine Oxocol (registered trademark) isopalmitic acid manufactured by Nissan Chemical Industry Co., Ltd.] ISA: 2-(4,4-dimethylpentane-2-yl)-5,7,7-trimethyloctanoic acid [ Fine Oxocol (registered trademark) isostearic acid manufactured by Nissan Chemical Industry Co., Ltd.] ISAN: 8-Methyl-2-(4-methylhexyl)decanoic acid [Fine Oxocol (registered trademark) manufactured by Nissan Chemical Industry Co., Ltd. Trademark) Isostearic acid N] ISAT: 2-octyldecanoic acid [Fine Oxocol (registered trademark) Isostearic acid T manufactured by Nissan Chemical Industry Co., Ltd.] ISOL: 2-(4,4-Dimethylpentane Alk-2-yl)-5,7,7-trimethyloctane-1-ol [Fine Oxocol (registered trademark) 180 manufactured by Nissan Chemical Industry Co., Ltd.] PA: Palmitic acid [Tokyo Chemical Industry Co., Ltd. Manufacturing] ωIPA: 14-methylpentadecanoic acid [manufactured by Aldrich Co., Ltd.] ωISA: 16-methylhexadecanoic acid [manufactured by Aldrich Co., Ltd.] AllBr: allyl bromide [manufactured by Kanto Chemical Co., Ltd.] CHMA: 3- Cyclohexenyl methanol [manufactured by Aldrich Corporation] ECH: epichlorohydrin [manufactured by Tokyo Chemical Industry Co., Ltd.] EGMAE: ethylene glycol monoallyl ether [manufactured by Tokyo Chemical Industry Co., Ltd.] OEO: 7-octene-1 -Alcohol [manufactured by Kuraray Co., Ltd., purity 95%] PEO: 4-penten-1-ol [manufactured by Tokyo Chemical Industry Co., Ltd.] DMAP: 4-dimethylaminopyridine [Wako Pure Chemical Industries, Ltd.] Manufacturing] EDC: 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide hydrochloride [manufactured by Tokyo Chemical Industry Co., Ltd.] TMAC: tetramethylammonium chloride [ MCPBA: m-chloroperbenzoic acid [manufactured by Wako Pure Chemical Industries, Ltd., purity 70%] BGE: butyl glycidyl ether [manufactured by Tokyo Chemical Industry Co., Ltd.] EHGE: 2-B Glycidyl Ether [manufactured by Tokyo Chemical Industry Co., Ltd.] SGEs: glycidyl stearate [manufactured by Tokyo Chemical Industry Co., Ltd.] BPA: Bisphenol A epoxy resin [manufactured by Mitsubishi Chemical Co., Ltd.] Registered trademark) 828] CEL: 3,4-epoxycyclohexanecarboxylic acid (3,4-epoxycyclohexyl) methyl ester [Celloxide 2021P manufactured by Daicel (stock)] TEPIC: triglycidyl isocyanurate [ TEPIC (registered trademark)-L] DOX: Bis((3-ethyl-3-oxetanyl)methyl)ether [Aron Oxetane (registered) manufactured by Toagosei Co., Ltd. Trademark) OXT-2 21] MH700: 4-Methylhexahydrophthalic anhydride/hexahydrophthalic anhydride mixture (mole ratio 70:30) [Rikacid (registered trademark) MH-700 manufactured by New Japan Physical and Chemical Co., Ltd.] PX4ET: Tetrabutylphosphonium O,O-diethyl dithiophosphate [Hishicolin (registered trademark) PX-4ET manufactured by Japan Chemical Industry Co., Ltd.] C101A: Diphenyl(4-(phenylthio)benzene Base) hexafluoroantimonate (V)/50% by mass propylene carbonate solution [CPI (registered trademark)-101A manufactured by San-Apro (Stock)] SI100: Benzyl (4-hydroxyphenyl) (former Base) hexafluoroantimonate (V) [Sanaid SI-100 manufactured by Sanxin Chemical Industry Co., Ltd.] 2EHA: 2-Ethylhexanoic acid [manufactured by Pure Chemical Co., Ltd.] NMP: N-methyl-2 -Pyrolidone THF: Tetrahydrofuran [Example 1] Production of 2-hexyl decanoate glycidyl esters (IPGEs) To the reaction flask was added IPA 30.0 g (117 mmol), AllBr 17.0 g (141 mmol), and potassium carbonate 19.4 g (140 mmol) and NMP 300 g. This was stirred at 70°C for 1 hour. The reaction liquid was filtered to remove insoluble matter. After adding 260 g of toluene to this filtrate and washing with 300 g of water, the solvent was distilled off. The obtained residue was purified by silica gel chromatography (hexane: ethyl acetate = 95: 5 (volume ratio)), thereby obtaining allyl 2-hexyl decanoate (IPAEs) 33.6 as a colorless and transparent liquid g. 1 H NMR(300MHz, CDCl 3 ): δ = 5.96~5.86 (m, 1H), 5.34~5.20 (m, 2H), 4.59~4.57 (m, 2H), 2.32 (m, 1H), 1.56~1.26 ( m, 24H), 0.88 (t, J = 7.2Hz, 6H)(ppm) GC-MS(CI): m/z=297(M+1) Add the above IPAEs 33.2 g (112 mmol) and chloroform 740 to the reaction flask g. While stirring, 55.2 g of mCPBA (net weight 224 mmol) was added to the solution, and the mixture was stirred at room temperature (about 23°C) for 4 days. 300 mL of a 10% by mass sodium thiosulfate aqueous solution was added to this reaction liquid to decompose mCPBA. After washing this organic layer with a 5 mass% sodium hydrogen carbonate aqueous solution and water, the solvent was distilled off. The obtained residue was purified by silica gel chromatography (hexane: ethyl acetate = 95: 5 (volume ratio)), thereby obtaining the target 2-hexyl decanoate glycidyl ester as a colorless and transparent liquid (IPGEs) 30.7 g. The viscosity of the obtained IPGEs was 11 mPa·s (25° C.), and the epoxy equivalent measured based on JIS K7236:2009 was 315. 1 H NMR(300MHz, CDCl 3 ): δ = 4.43~4.38 (m, 1H), 3.96~3.90 (m, 1H), 3.21~3.18 (m, 1H), 2.85~2.82 (m, 1H), 2.65~ 2.63 (m, 1H), 2.41~2.35 (m, 1H), 1.60~0.85 (m, 30H)(ppm) GC-MS(CI): m/z=313(M+1) [Example 2] 2-octane Production of Glycidyl Decanoate (ISTGEs) To the reaction flask, ISAT 30.0 g (105 mmol), AllBr 15.2 g (126 mmol), potassium carbonate 17.4 g (126 mmol) and NMP 300 g were added. This was stirred at 70°C for 3 hours. The reaction liquid was filtered to remove insoluble matter. After adding 260 g of toluene to this filtrate and washing with 300 g of water, the solvent was distilled off. The obtained residue was purified by silica gel chromatography (hexane:ethyl acetate=95:5 (volume ratio)), thereby obtaining allyl 2-octyldecanoate (ISTAEs) as a colorless and transparent liquid 33.3 g. 1 H NMR(300MHz, CDCl 3 ): δ = 5.97~5.86 (m, 1H), 5.35~5.21 (m, 2H), 4.60~4.57 (m, 2H), 2.35 (m, 1H), 1.57~1.25 ( m, 28H), 0.88 (t, J = 6.9 Hz, 6H) (ppm) GC-MS (CI): m/z = 325 (M + 1) Add 32.9 g (101 mmol) of the above ISTAEs and chloroform 740 to the reaction flask g. While stirring, 62.4 g of mCPBA (net weight 253 mmol) was added to the solution, and the mixture was stirred at room temperature (about 23°C) for 4 days. 300 mL of a 10% by mass sodium thiosulfate aqueous solution was added to this reaction liquid to decompose mCPBA. After washing this organic layer with a 5 mass% sodium hydrogen carbonate aqueous solution and water, the solvent was distilled off. The obtained residue was purified by silica gel chromatography (hexane:ethyl acetate=95:5 (volume ratio)), thereby obtaining the target 2-octyldecanoic acid glycidol as a colorless and transparent liquid Esters (ISTGEs) 30.0 g. The obtained ISTGEs had a viscosity of 14 mPa·s (25°C) and an epoxy equivalent of 341. 1 H NMR(300MHz, CDCl 3 ): δ = 4.43~4.38 (m, 1H), 3.96~3.90 (m, 1H), 3.20 (m, 1H), 2.85~2.82 (m, 1H), 2.65~2.63 ( m, 1H), 2.38 (m, 1H), 1.57~0.85 (m, 34H)(ppm) GC-MS(CI): m/z=341(M+1) [Example 3] 8-methyl-2- (4-Methylhexyl) glycidyl caprate (ISNGEs) was added to the reaction flask ISAN 30.0 g (105 mmol), AllBr 15.2 g (126 mmol), potassium carbonate 17.4 g (126 mmol) and NMP 300 g . This was stirred at 70°C for 3.5 hours. The reaction liquid was filtered to remove insoluble matter. After adding 260 g of toluene to this filtrate and washing with 300 g of water, the solvent was distilled off. The obtained residue was purified by silica gel chromatography (hexane: ethyl acetate = 95: 5 (volume ratio)), thereby obtaining 8-methyl-2-(4-methyl) as a colorless transparent liquid Allyl hexyl)decanoate (ISNAEs) 33.9 g. 1 H NMR(300MHz, CDCl 3 ): δ = 5.99~5.86 (m, 1H), 5.35~5.21 (m, 2H), 4.58 (d, J = 2.7Hz, 2H), 2.36 (m, 1H), 1.58 ~0.71 (m, 34H)(ppm) GC-MS(CI): m/z=325(M+1) To the reaction flask, 33.4 g (103 mmol) of the above-mentioned ISNAEs and 740 g of chloroform were added. While stirring, 48.3 g of mCPBA (net weight 253 mmol) was added to the solution, and the mixture was stirred at room temperature (about 23° C.) for 5 days. 300 mL of a 10% by mass sodium thiosulfate aqueous solution was added to this reaction liquid to decompose mCPBA. After washing this organic layer with a 5 mass% sodium hydrogen carbonate aqueous solution and water, the solvent was distilled off. The obtained residue was purified by silica gel chromatography (hexane: ethyl acetate = 95: 5 (volume ratio)), thereby obtaining the target 8-methyl-2-( Glycidyl 4-methylhexyl) decanoate (ISNGEs) 28.4 g. The obtained ISNGEs had a viscosity of 18 mPa·s (25°C) and an epoxy equivalent of 340. 1 H NMR(300MHz, CDCl 3 ): δ = 4.41 (m, 1H), 3.96~3.89 (m, 1H), 3.22~3.18 (m, 1H), 2.85~2.83 (m, 1H), 2.66~2.64 ( m, 1H), 2.54~2.33 (m, 1H), 1.60~0.72 (m, 34H)(ppm) GC-MS(CI): m/z=341(M+1) [Example 4]2-(4, Manufacture of 4-dimethylpentan-2-yl)-5,7,7-trimethylcaprylic acid glycidyl esters (ISGEs)Add ISA 28.4 g (100 mmol), ECH 62.5 g (676 mmol) to the reaction flask ) And TMAC 0.3 g (2.7 mmol). After stirring this at 100°C for 2 hours, it was cooled to room temperature (about 23°C). 25.0 g (mmol) of a 48% by mass aqueous sodium hydroxide solution was added thereto, and the mixture was stirred at room temperature (about 23°C) for 24 hours. To this reaction liquid, 20 mL of a 10% by mass sodium dihydrogen phosphate aqueous solution was added to neutralize sodium hydroxide. After washing this organic layer with water, ECH was distilled off. The obtained residue was purified by silica gel chromatography (hexane:ethyl acetate=90:10 (volume ratio)), thereby obtaining 2-(4,4-bis) as a colorless transparent liquid. Methylpentane-2-yl)-5,7,7-trimethylcaprylic acid glycidyl esters (ISGEs) 30.0 g. The viscosity of the obtained ISGEs was 41 mPa·s (25°C), and the epoxy equivalent was 334. 1 H NMR(300MHz, CDCl 3 ): δ = 4.45~4.34 (m, 1H), 4.39~3.94 (m, 1H), 3.20 (m, 1H), 2.86~2.83 (m, 1H), 2.66~2.65 ( m, 1H), 2.19 (m, 1H), 1.75~0.88 (m, 34H)(ppm) GC-MS(CI): m/z=341(M+1) [Example 5] 5,9-dimethyl -2-(1,5-Dimethylhexyl) glycidyl decanoate (IAGEs) was added to the reaction flask with IAA 30.0 g (96 mmol), AllBr 13.9 g (115 mmol), potassium carbonate 21.0 g (152 mmol) and NMP 300 g. This was stirred at 70°C for 1 hour. The reaction liquid was filtered to remove insoluble matter. After adding 260 g of toluene to this filtrate and washing with 300 g of water, the solvent was distilled off. The obtained residue was purified by silica gel chromatography (hexane: ethyl acetate = 95: 5 (volume ratio)), thereby obtaining 5,9-dimethyl-2-(1) as a colorless transparent liquid ,5-Dimethylhexyl) allyl decanoate (IAAEs) 33.0 g. 1 H NMR(300MHz, CDCl 3 ): δ = 5.97~5.86 (m, 1H), 5.35~5.21 (m, 2H), 4.58 (m, 2H), 2.36 (m, 1H), 1.56~0.73 (m, 38H) (ppm) GC-MS (CI): m/z=353 (M+1) 32.6 g (93 mmol) of the above IAAEs and 740 g of chloroform were added to the reaction flask. While stirring, 52.4 g of mCPBA (net weight 213 mmol) was added to the solution, and the mixture was stirred at room temperature (about 23°C) for 6 days. 300 mL of a 10% by mass sodium thiosulfate aqueous solution was added to this reaction liquid to decompose mCPBA. After washing this organic layer with a 5 mass% sodium hydrogen carbonate aqueous solution and water, the solvent was distilled off. The obtained residue was purified by silica gel chromatography (hexane:ethyl acetate=95:5 (volume ratio)), thereby obtaining the target 5,9-dimethyl- in the form of a colorless and transparent liquid 2-(1,5-Dimethylhexyl) glycidyl decanoate (IAGEs) 28.4 g. The obtained IAGEs had a viscosity of 32 mPa·s (25°C) and an epoxy equivalent of 371. 1 H NMR(300MHz, CDCl 3 ): δ = 4.40 (m, 1H), 3.95 (m, 1H), 3.19 (m, 1H), 2.85~2.82 (m, 1H), 2.64 (m, 1H), 2.35 (m, 1H), 0.87~0.75 (m, 38H)(ppm) GC-MS(CI): m/z=369(M+1) [Example 6] 2-(4,4-Dimethylpentane- Production of 2-yl)-5,7,7-trimethyloctanoic acid 4,5-epoxypentyl esters (ISEPEs)Add ISA 30.0 g (105 mmol), PEO 10.0 g (116 mmol) and Dichloromethane 800 g. While stirring, 15.4 g (126 mmol) of DMAP and 24.2 g (126 mmol) of EDC were added to the solution, and the mixture was stirred at room temperature (about 23° C.) for 3 days. After the reaction liquid was washed with 1 N hydrochloric acid and 5 mass% saline, the solvent was distilled off to obtain 2-(4,4-dimethylpentane-2-yl)-5,7,7 -Crude product of 5-pentenyl trimethyloctanoate (ISPEs). The obtained crude product was dissolved in 440 g of chloroform. While stirring, 12.7 g of mCPBA (net weight 52 mmol) was added to the solution, and the mixture was stirred at room temperature (about 23° C.) for 5 days. 300 mL of a 10% by mass sodium thiosulfate aqueous solution was added to this reaction liquid to decompose mCPBA. After washing this organic layer with a 5 mass% sodium hydrogen carbonate aqueous solution and water, the solvent was distilled off. The obtained residue was purified by silica gel chromatography (solvent gradient, hexane:ethyl acetate=99:1 to 95:5 (volume ratio)), thereby obtaining the target product 2 in the form of a colorless transparent liquid -(4,4-Dimethylpentan-2-yl)-5,7,7-trimethyloctanoic acid 4,5-epoxypentyl ester (ISEPEs) 13.1 g. The obtained ISEPEs had a viscosity of 44 mPa·s (25°C) and an epoxy equivalent of 366. 1 H NMR(300MHz, CDCl 3 ): δ = 4.11 (t, J = 6.3Hz, 2H), 2.95 (m, 1H), 2.76~2.79 (m, 1H), 2.48~2.50 (m, 1H), 2.13 (m, 1H), 1.84~0.88 (m, 38H)(ppm) GC-MS(CI): m/z=369(M+1) [Example 7] 2-(4,4-Dimethylpentane- Production of 7,8-epoxyoctyl 2-yl)-5,7,7-trimethyloctanoic acid (ISEOEs)Add ISA 30.0 g (105 mmol), OEO 15.7 g (net weight 116 mmol) to the reaction flask And dichloromethane 800 g. While stirring, 15.4 g (126 mmol) of DMAP and 24.2 g (126 mmol) of EDC were added to the solution, and the mixture was stirred at room temperature (about 23° C.) for 4 days. After washing this reaction liquid with 1 N hydrochloric acid and 5 mass% saline, the solvent was distilled off. The obtained residue was purified by silica gel chromatography (hexane:ethyl acetate=95:5 (volume ratio)), thereby obtaining 2-(4,4-dimethylpentane) as a colorless and transparent liquid -2-yl)-5,7,7-trimethyloctanoic acid 7-octenyl ester (ISOEs) 33.8 g. 1 H NMR(300MHz, CDCl 3 ): δ = 5.87~5.73 (m, 1H), 5.02~4.92 (m, 2H), 4.09~4.03 (m, 2H), 2.11~0.82 (m, 45H)(ppm) GC-MS (CI): m/z=395 (M+1) 33.3 g (84 mmol) of the above ISOEs and 740 g of chloroform were added to the reaction flask. While stirring, 27.1 g of mCPBA (net weight 110 mmol) was added to the solution, and the mixture was stirred at room temperature (about 23°C) for 2 days. 300 mL of a 10% by mass sodium thiosulfate aqueous solution was added to this reaction liquid to decompose mCPBA. After washing this organic layer with a 5 mass% sodium hydrogen carbonate aqueous solution and water, the solvent was distilled off. The obtained residue was purified by silica gel chromatography (solvent gradient, hexane:ethyl acetate=99:1 to 95:5 (volume ratio)), thereby obtaining the target product 2 in the form of a colorless transparent liquid -(4,4-Dimethylpentan-2-yl)-5,7,7-trimethyloctanoic acid 7,8-epoxyoctyl ester (ISEOEs) 20.8 g. The obtained ISEOEs had a viscosity of 51 mPa·s (25°C) and an epoxy equivalent of 408. 1 H NMR(300MHz, CDCl 3 ): δ = 4.07~4.03 (m, 2H), 2.90 (m, 1H), 2.76~2.73 (m, 1H), 2.47~2.45 (m, 1H), 2.11 (m, 1H), 1.63~0.88 (m, 44H)(ppm) GC-MS(CI): m/z=411(M+1) [Example 8] 2-(4,4-Dimethylpentane-2-yl) )-5,7,7-Trimethylcaprylic acid 2-glycidoxyethyl ester (ISGEEs) was added to the reaction flask with ISA 30.0 g (105 mmol), EGMAE 11.9 g (117 mmol) and dichloromethane 400 g. While stirring, 15.5 g (127 mmol) of DMAP and 24.3 g (127 mmol) of EDC were added to the solution, and the mixture was stirred at room temperature (about 23° C.) for 4 days. After washing this reaction liquid with 1 N hydrochloric acid and 5 mass% saline, the solvent was distilled off. The obtained residue was purified by silica gel chromatography (solvent gradient, hexane:ethyl acetate=99:1 to 95:5 (volume ratio)), thereby obtaining 2-(4, 4-Dimethylpentan-2-yl)-5,7,7-trimethyloctanoic acid 2-allyloxyethyl ester (ISAEEs) 19.1 g. 1 H NMR(300MHz, CDCl 3 ): δ = 5.94~5.87 (m, 1H), 5.31~5.12 (m, 2H), 4.31~4.17 (m, 2H), 4.03 (m, 2H), 3.65~3.63 ( m, 2H), 2.21~2.16 (m, 1H), 1.85~0.83 (m, 34H)(ppm) GC-MS(CI): m/z=369(M+1) Add the above ISAEEs 19.0 g( 52 mmol) and 440 g of chloroform. While stirring, 15.6 g of mCPBA (net weight 63 mmol) was added to the solution, and the mixture was stirred at room temperature (about 23°C) for 5 days. 200 mL of a 10% by mass sodium thiosulfate aqueous solution was added to this reaction liquid to decompose mCPBA. After washing this organic layer with a 5 mass% sodium hydrogen carbonate aqueous solution and water, the solvent was distilled off. The obtained residue was purified by silica gel chromatography (hexane:ethyl acetate=90:10 (volume ratio)), thereby obtaining 2-(4,4-bis) as a colorless transparent liquid. Methylpentan-2-yl)-5,7,7-trimethylcaprylic acid 2-glycidoxyethyl ester (ISGEEs) 16.9 g. The obtained ISGEEs had a viscosity of 47 mPa·s (25°C) and an epoxy equivalent of 382. 1 H NMR(300MHz, CDCl 3 ): δ = 4.24 (m, 2H), 3.81~3.71 (m, 3H), 3.47~3.41 (m, 1H), 3.14 (m, 1H), 2.79 (m, 1H) , 2.62 (m, 1H), 2.17 (m, 1H), 1.86~0.89 (m, 34H)(ppm) GC-MS(CI): m/z=385(M+1) [Synthesis example 1]2-(4 ,4-Dimethylpentan-2-yl)-5,7,7-trimethyloctanoic acid 3,4-epoxycyclohexyl methyl ester (ISECHEs) was added to the reaction flask 30.0 g (105 mmol ), CHMA 13.0 g (116 mmol) and dichloromethane 800 g. While stirring, 15.4 g (126 mmol) of DMAP and 24.2 g (126 mmol) of EDC were added to the solution, and the mixture was stirred at room temperature (about 23° C.) for 2 days. After washing this reaction liquid with 1 N hydrochloric acid and 5 mass% saline, the solvent was distilled off. The obtained residue was purified by silica gel chromatography (hexane:ethyl acetate=90:10 (volume ratio)), thereby obtaining 2-(4,4-dimethylpentane) as a colorless transparent liquid -2-yl)-5,7,7-trimethyloctanoic acid 3-cyclohexenyl methyl ester (ISCHEs) 30.0 g. 1 H NMR(300MHz, CDCl 3 ): δ = 5.67 (m, 2H), 4.01~3.97 (m, 2H), 2.15~0.88 (m, 42H)(ppm) GC-MS(CI): m/z= 379(M+1) 29.5 g (78 mmol) of ISCHEs and 740 g of chloroform were added to the reaction flask. While stirring, 23.1 g of mCPBA (net weight 94 mmol) was added to the solution, and the mixture was stirred at room temperature (about 23°C) for 17 hours. 300 mL of a 10% by mass sodium thiosulfate aqueous solution was added to this reaction liquid to decompose mCPBA. After washing this organic layer with a 5 mass% sodium hydrogen carbonate aqueous solution and water, the solvent was distilled off. The obtained residue was purified by silica gel chromatography (hexane: ethyl acetate = 95: 5 (volume ratio)), thereby obtaining the target 2-(4,4-bis) as a colorless and transparent liquid. Methylpentan-2-yl)-5,7,7-trimethyloctanoic acid 3,4-epoxycyclohexyl methyl ester (ISECHEs) 28.4 g. The obtained ISECHEs had a viscosity of 92 mPa·s (25°C) and an epoxy equivalent of 413. 1 H NMR(300MHz, CDCl 3 ): δ = 3.87~3.83 (m, 2H), 3.17~3.14 (m, 2H), 2.20~0.88 (m, 42H)(ppm) GC-MS(CI): m/ z=395(M+1) [Synthesis example 2] 2-(4,4-Dimethylpentane-2-yl)-5,7,7-trimethyloctyl glycidyl ether (ISGE) production direction reaction ISOL 30.0 g (111 mmol), AllBr 24.2 g (200 mmol), sodium hydride 11.3 g (471 mmol), and 270 g of THF were added to the flask. This was stirred at 70°C for 29 hours. After this reaction liquid was washed with 600 g of water, the solvent was distilled off. The obtained residue was purified by silica gel chromatography (hexane:ethyl acetate=95:5 (volume ratio)), thereby obtaining 2-(4,4-dimethylpentane) as a colorless and transparent liquid -2-yl)-5,7,7-trimethyloctylallyl ether (ISAE) 33.4 g. 1 H NMR(400MHz, CDCl 3 ): δ = 5.97~5.87 (m, 1H), 5.30~5.24 (m, 1H), 5.18~5.14 (m, 1H), 3.96~3.37 (m, 1H), 3.37~ 3.22 (m, 2H), 1.82~1.71 (m, 1H), 1.56~0.83 (m, 36H)(ppm) GC-MS(CI): m/z=311(M+1) Add the above ISAE 33.1 to the reaction flask g (107 mmol) and 440 g of chloroform. While stirring, 52.5 g of mCPBA (net weight 213 mmol) was added to the solution, and the mixture was stirred at room temperature (about 23° C.) for 3 days. 300 mL of a 10% by mass sodium thiosulfate aqueous solution was added to this reaction liquid to decompose mCPBA. After washing this organic layer with a 5 mass% sodium hydrogen carbonate aqueous solution and water, the solvent was distilled off. The obtained residue was purified by silica gel chromatography (hexane:ethyl acetate=90:10 (volume ratio)), thereby obtaining 2-(4,4-bis) as a colorless transparent liquid. Methylpentane-2-yl)-5,7,7-trimethyloctyl glycidyl ether (ISGE) 30.5 g. The obtained ISGEEs had a viscosity of 18 mPa·s (25°C) and an epoxy equivalent of 366. 1 H NMR(400MHz, CDCl 3 ): δ = 3.67~3.64 (m, 1H), 3.41~3.23 (m, 3H), 3.13 (m, 1H), 2.80~2.77 (m, 1H), 2.61~2.59 ( m, 1H), 1.80~0.82 (m, 35H)(ppm) GC-MS(CI): m/z=327(M+1) [Synthesis example 3] Production of glycidyl palmitate (PGEs) into the reaction flask Add PA 30.0 g (96 mmol), AllBr 17.0 g (141 mmol), potassium carbonate 19.3 g (140 mmol) and NMP 300 g. This was stirred at 70°C for 1 hour. The reaction liquid was filtered to remove insoluble matter. After adding 260 g of toluene to this filtrate and washing with 300 g of water, the solvent was distilled off. The obtained residue was purified by silica gel chromatography (hexane:ethyl acetate=90:10 (volume ratio)), thereby obtaining 34.4 g of allyl palmitate (PAEs) as a white solid. 1 H NMR(400MHz, CDCl 3 ): δ = 5.96~5.89 (m, 1H), 5.34~5.22 (m, 2H), 4.59~4.57 (m, 2H), 2.33 (t, J = 7.6Hz, 2H) , 1.65~1.61 (m, 2H), 1.32~1.25 (m, 24H), 0.88 (t, J = 6.8Hz, 3H)(ppm) GC-MS(CI): m/z=297(M+1) Direction reaction 34.1 g (115 mmol) of the aforementioned PAEs and 440 g of chloroform were added to the flask. While stirring, 56.6 g (net weight: 230 mmol) of mCPBA was added to the solution, and the mixture was stirred at room temperature (about 23°C) for 4 days. 300 mL of a 10% by mass sodium thiosulfate aqueous solution was added to this reaction liquid to decompose mCPBA. After washing this organic layer with a 5 mass% sodium hydrogen carbonate aqueous solution and water, the solvent was distilled off. The obtained residue was purified by silica gel chromatography (hexane:ethyl acetate=90:10 (volume ratio)), thereby obtaining the target glycidyl palmitate (PGEs) 29.8 as a white solid g. The obtained PGEs had a melting point of 47°C and an epoxy equivalent of 309. 1 H NMR(400MHz, CDCl 3 ): δ = 4.44~4.40 (m, 1H), 3.94~3.89 (m, 1H), 3.23~3.19 (m, 1H), 2.86~2.84 (m, 1H), 2.66~ 2.64 (m, 1H), 2.35 (t, J = 7.6Hz, 2H), 1.66~1.62 (m, 2H), 1.33~1.25 (m, 24H), 0.90~0.86 (m, 3H)(ppm) GC- MS(CI): m/z=313(M+1) [Synthesis Example 4] Production of 14-methylpentadecanoic acid glycidyl esters (ωIPGEs) Add ωIPA 295 mg (1.2 mmol) and AllBr 167 mg to the reaction flask (1.4 mmol), potassium carbonate 191 mg (1.4 mmol) and NMP 5 g. This was stirred at 70°C for 4 hours. The reaction liquid was filtered to remove insoluble matter. 26 g of toluene was added to the filtrate, and after washing with 30 g of water, the solvent was distilled off to obtain a crude product of allyl 14-methylpentadecanoate (ωIPAEs). The obtained crude product was dissolved in 7 g of chloroform. While stirring, add 536 mg of mCPBA (net weight 2.2 mmol) to the solution, and stir at room temperature (about 23°C) for 2 days. To this reaction liquid, 10 mL of a 10% by mass sodium thiosulfate aqueous solution was added to decompose mCPBA. After washing this organic layer with a 5 mass% sodium hydrogen carbonate aqueous solution and water, the solvent was distilled off. The obtained residue was purified by silica gel chromatography (hexane:ethyl acetate=95:5 (volume ratio)), thereby obtaining the target 14-methylpentadecanoic acid as a white solid. Glycerides (ωIPGEs) 258 mg. The obtained ωIPGEs had a melting point of 39°C and an epoxy equivalent of 316. 1 H NMR(400MHz, CDCl 3 ): δ = 4.44~4.40 (m, 1H), 3.93~3.89 (m, 1H), 3.23~3.19 (m, 1H), 2.86~2.84 (m, 1H), 2.66~ 2.64 (m, 1H), 2.37~2.33 (m, 2H), 1.65~1.14 (m, 23H), 0.87~0.85 (m, 6H)(ppm) GC-MS(CI): m/z=313(M+1 ) [Synthesis Example 5] Manufacture of 16-methyl heptadecanoic acid glycidyl esters (ωISGEs) To the reaction flask was added ωISA 275 mg (1.0 mmol), AllBr 140 mg (1.2 mmol), and potassium carbonate 160 mg (1.2 mmol) ) And NMP 5 g. This was stirred at 70°C for 2 hours. The reaction liquid was filtered to remove insoluble matter. 26 g of toluene was added to the filtrate, and after washing with 30 g of water, the solvent was distilled off to obtain a crude product of allyl 14-methylpentadecanoate (ωISAEs). The obtained crude product was dissolved in 7 g of chloroform. While stirring, add mCPBA 861 mg (net weight 3.5 mmol) to the solution, and stir at room temperature (about 23°C) for 2 days. To this reaction liquid, 10 mL of a 10% by mass sodium thiosulfate aqueous solution was added to decompose mCPBA. After washing this organic layer with a 5 mass% sodium hydrogen carbonate aqueous solution and water, the solvent was distilled off. The obtained residue was purified by silica gel chromatography (hexane: ethyl acetate = 95: 5 (volume ratio)), thereby obtaining the target 16-methyl heptadecanoic acid as a white solid. Glycerides (ωISGEs) 235 mg. The obtained ωISGEs had a melting point of 47°C and an epoxy equivalent of 334. 1 H NMR(400MHz, CDCl 3 ): δ = 4.44~4.40 (m, 1H), 3.94~3.89 (m, 1H), 3.22~3.20 (m, 1H), 2.86~2.84 (m, 1H), 2.66~ 2.64 (m, 1H), 2.37~2.33 (m, 2H), 1.65~1.14 (m, 27H), 0.87~0.85 (m, 6H)(ppm) GC-MS(CI): m/z=341(M+1 ) [Example 9, Comparative Example 1] Compatibility and volatility with bisphenol A epoxy resin. Regarding each epoxy compound (reactive diluent) described in Table 1, it was used as a bisphenol A epoxy resin. The compatibility of the resin with BPA was evaluated. Each epoxy compound was mixed with BPA so that its concentration became 10 mass %, and the epoxy resin composition was prepared. After stirring the mixture at room temperature (approximately 23°C) for 5 minutes, the mixed state was visually confirmed, and the evaluation was made based on the following criteria. In addition, the viscosity of the composition at 25°C was measured for the compatible ones. The results are shown in Table 1. Furthermore, as an evaluation of volatility, the 5% weight reduction temperature (Td 5% ) of each epoxy compound is shown in Table 1 together. [Compatibility Evaluation Criteria] A: Uniformly miscible, transparent B: Slightly cloudy C: Insoluble matter exists, solid-liquid separation [Table 1] Table 1
Figure 105133548-A0304-0001
As shown in Table 1, the epoxy compound (reactive diluent) used in the present invention is compatible with BPA, which is a general-purpose epoxy resin. In addition, BPA has a viscosity of about 12,000 mPa·s. In contrast, the resin composition of the present invention in which an epoxy compound is mixed with BPA to become 10% by mass has a viscosity reduced to 2,000-6,200 mPa·s. Furthermore, it was confirmed that the 5% weight reduction temperature of the epoxy compound used in the present invention is very high and has low volatility. On the other hand, even if the number of carbon atoms of the -CR 1 R 2 R 3 group is the same degree, and neither R 1 nor R 2 is an alkyl group with 2 or more carbon atoms, the epoxy compound is not compatible with BPA. Moreover, even if R 1 and R 2 are each an alkyl group with 2 or more carbon atoms, and the epoxy compound with 7 carbon atoms in the -CR 1 R 2 R 3 group, the 5% weight loss temperature is very low, and the volatility Higher. Based on the foregoing, it is suggested that the epoxy compound used in the present invention can be used as an excellent reactive diluent. [Examples 10 to 17, Comparative Examples 2 to 4] Preparation of hardened products To 100 parts by mass of the epoxy resin composition described in Table 2, the epoxy group of the epoxy compound is added in an equal molar amount as a hardening agent 1 part by mass of MH700 and PX4ET as a hardening accelerator. The mixture was stirred at room temperature (about 23° C.) under reduced pressure for 30 minutes to defoam, and curable compositions 1 to 11 were prepared. Clamp each composition together with a U-shaped spacer made of silicone rubber with a thickness of 3 mm to two glass substrates that have been previously demolded by OPTOOL (registered trademark) DSX (manufactured by Daikin Industrial Co., Ltd.) . This was heated in an oven at 100°C (pre-curing) for 2 hours, then the temperature was raised to 150°C, and heating was performed for 5 hours (main curing). After cooling slowly, remove the glass substrate to obtain each hardened product with a thickness of 3 mm. The water absorption, specific permittivity, and glass transition point (Tg) of the obtained cured product were evaluated. In addition, each physical property value is measured according to the following procedures. The results are shown in Table 2. [Water Absorption] Measured in accordance with JIS K-6911:2006. Specifically, first, as a pretreatment, the test piece was dried in a glass container maintained at 50° C. in an oil bath for 24 hours. The test piece was cooled to 20°C in a desiccator, and its mass (W 1 [g]) was measured. Then, the test piece was immersed in boiling distilled water for 100 hours and then taken out, cooled in 20°C running water for 30 minutes and the moisture was wiped off, and then the mass after water absorption (W 2 [g]) was immediately measured. Based on these values, the water absorption rate is calculated by the following formula. Water absorption rate [%]=(W 2 -W 1 )÷W 1 ×100 [Specific permittivity] Apply a voltage of 1 V, 1 MHz to the test piece sandwiched between the electrodes of the holder, and the electrostatic capacitance at this time Cp is measured and divided by the air capacitance C O measured under the same conditions to calculate the specific permittivity ε r . In addition, the rate of decrease in the specific permittivity ε r0 relative to the cured product obtained from the composition without the reactive diluent was calculated by the following formula. Decrease rate [%]=(ε r0r )÷ε r0 ×100 [Glass transition point] Measure the TMA of the test piece, draw a tangent to the curve before and after the obtained TMA curve, and find the Tg from the intersection of the tangent . [Table 2] Table 2
Figure 105133548-A0304-0002
[Parts]: As shown in Table 2, it was confirmed that the epoxy resin composition of the present invention (Examples 10-17) has a specific dielectric constant compared with the case without a reactive diluent (Comparative Example 4) significantly reduce. On the other hand, the epoxy resin composition containing the previously known reactive diluent has a low rate of decrease in specific dielectric constant (Comparative Examples 2 and 3). [Examples 18-21, Comparative Example 5] Preparation of hardened product To 100 parts by mass of the epoxy resin composition described in Table 3, MH700 was added as a hardening agent in molar amounts such as epoxy groups of the epoxy compound. After the mixture was stirred and mixed at 90°C for 30 minutes, it was cooled to room temperature (about 23°C). 1 part by mass of PX4ET as a hardening accelerator is added to it. The mixture was stirred at room temperature (about 23° C.) for 5 minutes to defoam, and curable compositions 12 to 16 were prepared. Except for using the obtained compositions, a cured product with a thickness of 3 mm was produced in the same manner as in Example 10 and evaluated. The results are shown in Table 3. [Table 3] Table 3
Figure 105133548-A0304-0003
[Parts]: As shown in Table 3, it is confirmed that the epoxy resin composition of the present invention (Examples 18-21) has a specific dielectric constant compared with the case without a reactive diluent (Comparative Example 5) And the water absorption rate is greatly reduced. [Examples 22, 23, Comparative Examples 6-8] Preparation of Thermal Cationic Cured Material To 100 parts by mass of the epoxy resin composition described in Table 4, 1 mass of propylene carbonate was pre-dissolved as a thermal acid generator. SI100 in parts is 1 part by mass. The mixture was stirred and defoamed (2,000 rpm, 4 minutes, and 1,000 rpm, 4 minutes) to prepare curable compositions 17-21. Each composition and a spacer made of silicone rubber with a thickness of 200 μm were sandwiched into two glass substrates that had been demolded by OPTOOL (registered trademark) DSX [manufactured by Daikin Industrial Co., Ltd.] in advance. This was heated (pre-curing) with a hot plate at 100°C for 1 hour, then heated to 150°C, and heated for 1 hour (main curing). After slowly cooling, the glass substrate was removed, and each hardened product with a thickness of 200 μm was obtained. The specific dielectric constant of the obtained cured product was evaluated in the same manner as in Example 10. The results are shown in Table 4. [Table 4] Table 4
Figure 105133548-A0304-0004
[Parts]: As shown in Table 4, it was confirmed that the epoxy resin composition of the present invention (Examples 22 and 23) has a specific dielectric constant compared with the case without a reactive diluent (Comparative Example 8) significantly reduce. On the other hand, the epoxy resin composition containing the previously known reactive diluent has a lower rate of decrease in specific dielectric constant (Comparative Examples 6, 7). [Examples 24, 25, Comparative Examples 9 to 11] Preparation of photocationic hardened material To 100 parts by mass of the epoxy resin composition described in Table 5, 1 part by mass of C101A as a photoacid generator was added (converted as an effective ingredient) . This mixture was stirred and defoamed (2,000 rpm, 4 minutes, and 1,000 rpm, 4 minutes) to prepare curable compositions 22 to 26. Each composition and a spacer made of silicone rubber with a thickness of 200 μm were sandwiched into two quartz glass substrates that had been demolded by OPTOOL (registered trademark) DSX [manufactured by Daikin Industrial Co., Ltd.]. The sandwiched composition was exposed to UV exposure for 150 seconds at an illuminance of 20 mW/cm 2 (wavelength 365 nm) in an air environment, and then heated with a hot plate at 100° C. for 1 hour (post-curing treatment). After slowly cooling, the quartz glass substrate was removed, and each hardened product with a thickness of 200 μm was obtained. The specific dielectric constant of the obtained cured product was evaluated in the same manner as in Example 10. The results are shown in Table 5. [Table 5] Table 5
Figure 105133548-A0304-0005
[Parts]: Parts by mass are shown in Table 5. It is confirmed that the epoxy resin composition of the present invention (Examples 24 and 25) has a specific dielectric constant compared with the case without a reactive diluent (Comparative Example 11) significantly reduce. On the other hand, the epoxy resin composition containing the previously known reactive diluent has a lower rate of decrease in specific dielectric constant (Comparative Examples 9, 10). [Reference Examples 1 to 3] Evaluation of Reactivity Regarding ISGEs, ISECHEs, and ISGEs, 2EHA and xylene in the amounts described in Table 6 were mixed and stirred at 140°C for 8 hours. Measure the conversion rate of epoxy groups in each reaction mixture by GC. The results are shown in Table 6. [Table 6] Table 6
Figure 105133548-A0304-0006
As shown in Table 6, it was confirmed that as an epoxy moiety, the reactivity of epoxy ethyl (in the case of including the group represented by the above formula [2]) is higher than that of 3,4-epoxycyclohexyl (including the above formula [ 3] In the case of the group represented) (Reference Examples 1, 2), and as X in the above formula [1], the reactivity of an ester bond is higher than that of an ether bond (Reference Examples 1, 3).

Figure 105133548-A0304-11-0002-1
Figure 105133548-A0304-11-0002-1

Claims (12)

一種環氧樹脂組合物,其含有式[1']所表示之環氧化合物及環氧樹脂,
Figure 105133548-A0305-02-0057-1
(式中,R1表示3,5,5-三甲基己基,R2表示4,4-二甲基戊烷-2-基,R3表示氫原子,X表示*-C(=O)O-(此處,*表示與-CR1R2R3基鍵結之端)、L表示亞甲基,E表示式[2']所表示之基(此處,式[2']中之**表示與L鍵結之端))
Figure 105133548-A0305-02-0057-2
(式中,R4至R6表示氫原子)。
An epoxy resin composition containing an epoxy compound represented by formula [1'] and an epoxy resin,
Figure 105133548-A0305-02-0057-1
(In the formula, R 1 represents 3,5,5-trimethylhexyl, R 2 represents 4,4-dimethylpentan-2-yl, R 3 represents a hydrogen atom, and X represents *-C(=O) O- (here, * represents the end bonded to the -CR 1 R 2 R 3 group), L represents a methylene group, and E represents the group represented by the formula [2'] (here, in the formula [2']之** means the end of the bond with L))
Figure 105133548-A0305-02-0057-2
(In the formula, R 4 to R 6 represent a hydrogen atom).
一種硬化性組合物,其含有(a)如請求項1之環氧樹脂組合物、及(b)硬化劑。 A curable composition containing (a) the epoxy resin composition according to claim 1, and (b) a hardener. 如請求項2之硬化性組合物,其中上述(b)硬化劑係選自由酸酐、胺、酚樹脂、聚醯胺樹脂、咪唑類、及聚硫醇所組成之群中之至少一種。 The curable composition according to claim 2, wherein the (b) hardener is at least one selected from the group consisting of acid anhydrides, amines, phenol resins, polyamide resins, imidazoles, and polythiols. 如請求項2或3之硬化性組合物,其中相對於上述(a)環氧樹脂組合物之環氧基1當量,含有0.5~1.5當量之上述(b)硬化劑。 The curable composition of claim 2 or 3, which contains 0.5 to 1.5 equivalents of the above-mentioned (b) hardener relative to 1 equivalent of the epoxy group of the above-mentioned (a) epoxy resin composition. 一種硬化性組合物,其含有(a)如請求項1之環氧樹脂組合物、及包含(c1)酸產生劑及/或(c2)鹼產生劑之(c)硬化觸媒。 A curable composition containing (a) the epoxy resin composition according to claim 1, and (c) a curing catalyst containing (c1) an acid generator and/or (c2) an alkali generator. 如請求項5之硬化性組合物,其中上述(c)硬化觸媒為(c1)酸產生劑。 The curable composition according to claim 5, wherein the (c) curing catalyst is (c1) an acid generator. 如請求項6之硬化性組合物,其中上述(c1)酸產生劑係選自由光酸產生劑、及熱酸產生劑所組成之群中之至少一種。 The curable composition according to claim 6, wherein the acid generator (c1) is at least one selected from the group consisting of photoacid generators and thermal acid generators. 如請求項7之硬化性組合物,其中上述(c1)酸產生劑為鎓鹽。 The curable composition according to claim 7, wherein the acid generator (c1) is an onium salt. 如請求項8之硬化性組合物,其中上述(c1)酸產生劑為鋶鹽或錪鹽。 The sclerosing composition according to claim 8, wherein the acid generator (c1) is a sulphur salt or an iodonium salt. 如請求項6至9中任一項之硬化性組合物,其中相對於上述(a)環氧樹脂組合物100質量份,含有上述(c1)酸產生劑0.1~20質量份。 The curable composition according to any one of claims 6 to 9, which contains 0.1 to 20 parts by mass of the acid generator (c1) with respect to 100 parts by mass of the (a) epoxy resin composition. 一種式[1']所表示之環氧化合物之用途,其於環氧樹脂組合物中用作反應性稀釋劑,
Figure 105133548-A0305-02-0058-3
(式中,R1表示3,5,5-三甲基己基,R2表示4,4-二甲基戊烷-2-基,R3表示氫原子,X表示*-C(=O)O-(此處,*表示與-CR1R2R3基鍵結之端)、L表示亞甲基,E表示式[2']所表示之基(此處,式[2']中之**表示與L鍵結之端))
Figure 105133548-A0305-02-0059-4
(式中,R4至R6表示氫原子)。
A use of the epoxy compound represented by the formula [1'], which is used as a reactive diluent in an epoxy resin composition,
Figure 105133548-A0305-02-0058-3
(In the formula, R 1 represents 3,5,5-trimethylhexyl, R 2 represents 4,4-dimethylpentan-2-yl, R 3 represents a hydrogen atom, and X represents *-C(=O) O- (here, * represents the end bonded to the -CR 1 R 2 R 3 group), L represents a methylene group, and E represents the group represented by the formula [2'] (here, in the formula [2']之** means the end of the bond with L))
Figure 105133548-A0305-02-0059-4
(In the formula, R 4 to R 6 represent a hydrogen atom).
一種式[1a']所表示之環氧化合物,
Figure 105133548-A0305-02-0059-5
(式中,R1表示3,5,5-三甲基己基,R2表示4,4-二甲基戊烷-2-基,R3表示氫原子,R4至R6表示氫原子,L表示亞甲基)。
An epoxy compound represented by the formula [1a'],
Figure 105133548-A0305-02-0059-5
(In the formula, R 1 represents 3,5,5-trimethylhexyl, R 2 represents 4,4-dimethylpentan-2-yl, R 3 represents a hydrogen atom, R 4 to R 6 represent a hydrogen atom, L represents methylene).
TW105133548A 2015-11-05 2016-10-18 Epoxy-based reactive diluent and epoxy resin composition containing the same TWI722027B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015217866 2015-11-05
JP??2015-217866 2015-11-05

Publications (2)

Publication Number Publication Date
TW201731830A TW201731830A (en) 2017-09-16
TWI722027B true TWI722027B (en) 2021-03-21

Family

ID=58662525

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105133548A TWI722027B (en) 2015-11-05 2016-10-18 Epoxy-based reactive diluent and epoxy resin composition containing the same

Country Status (5)

Country Link
JP (1) JP6823294B2 (en)
KR (1) KR102629442B1 (en)
CN (1) CN108350252B (en)
TW (1) TWI722027B (en)
WO (1) WO2017077846A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110662740A (en) * 2017-05-09 2020-01-07 日产化学株式会社 Method for producing epoxy compound
TWI647265B (en) * 2018-02-05 2019-01-11 Taiwan Union Technology Corporation Resin composition, and prepreg, metal foil laminate, and printed circuit board prepared using the same
KR102253501B1 (en) * 2018-09-28 2021-05-18 주식회사 엘지화학 Encapsulating composition
JP7241389B2 (en) * 2019-02-21 2023-03-17 ナミックス株式会社 Liquid epoxy resin composition and cured product obtained by curing it
JP7421297B2 (en) * 2019-09-26 2024-01-24 積水化学工業株式会社 Photocurable resin composition for electronic devices
KR102110817B1 (en) * 2020-02-12 2020-05-13 주식회사다원시스템 Water tank with excellent corrosion and thermal resistance
JPWO2021261071A1 (en) * 2020-06-22 2021-12-30
WO2022249966A1 (en) * 2021-05-24 2022-12-01 東レ・ファインケミカル株式会社 Polymer composition, epoxy resin composition, curing agent for epoxy resin, and fast-curing adhesive

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW455584B (en) * 1998-09-23 2001-09-21 Shell Int Research Process for the preparation of glycidylesters of branched carboxylic acids
TW201418236A (en) * 2012-08-30 2014-05-16 Daicel Corp Alicyclic epoxy compound and method for producing same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026087B2 (en) * 1978-06-15 1985-06-21 カネボウ株式会社 cosmetics
JPS603392B2 (en) * 1980-02-01 1985-01-28 花王株式会社 Manufacturing method of glycidyl ether
JP2744280B2 (en) * 1989-03-15 1998-04-28 株式会社クラレ Nitrogen-containing hydroxy ethers and cerebral function improving agents containing the same as active ingredients
JPH03169873A (en) * 1989-11-28 1991-07-23 Idemitsu Petrochem Co Ltd Production of aliphatic tertiary carboxylic acid glycidyl ester
JPH04314797A (en) * 1991-04-12 1992-11-05 Nippon Oil & Fats Co Ltd Ester composition
JP2002293755A (en) 2001-03-30 2002-10-09 Yokkaichi Chem Co Ltd METHOD FOR PRODUCING beta-ALKYLHALOHYDRIN ETHER
US7459014B2 (en) 2005-01-14 2008-12-02 Xerox Corporation Radiation curable inks containing curable gelator additives
JP2006232888A (en) * 2005-02-22 2006-09-07 Konica Minolta Medical & Graphic Inc Active radiation-curing composition, active radiation-curing ink, image-forming method using the same and inkjet recording apparatus
CN102408396B (en) * 2010-09-26 2014-09-10 西南化工研究设计院 Method for preparing versatate glycidyl
CN103429632B (en) * 2011-03-23 2016-07-06 日产化学工业株式会社 Multi-functional epoxy compound
JP5469194B2 (en) 2011-05-02 2014-04-09 日東電工株式会社 Adhesive, adhesive layer, and adhesive sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW455584B (en) * 1998-09-23 2001-09-21 Shell Int Research Process for the preparation of glycidylesters of branched carboxylic acids
TW201418236A (en) * 2012-08-30 2014-05-16 Daicel Corp Alicyclic epoxy compound and method for producing same

Also Published As

Publication number Publication date
CN108350252A (en) 2018-07-31
KR102629442B1 (en) 2024-01-25
KR20180080200A (en) 2018-07-11
WO2017077846A1 (en) 2017-05-11
JP6823294B2 (en) 2021-02-03
CN108350252B (en) 2021-04-09
JPWO2017077846A1 (en) 2018-08-23
TW201731830A (en) 2017-09-16

Similar Documents

Publication Publication Date Title
TWI722027B (en) Epoxy-based reactive diluent and epoxy resin composition containing the same
TWI743055B (en) Polyfunctional epoxy compound and curable composition containing the same
KR101913603B1 (en) Epoxy resin composition, cured product thereof, and curable resin composition
TW202144451A (en) Curable composition and cured product obtained by curing the same
JP6893921B2 (en) Epoxy compounds, curable compositions containing them, and cured products obtained by curing curable compositions.
KR101926076B1 (en) Polyfunctional epoxy compound
TWI715664B (en) Long chain alkylene group-containing epoxy resin composition
TWI753959B (en) Epoxy resin composition for forming printed wiring board
WO2014014037A1 (en) Curing agent for episulfide compounds, curable composition, cured product of episulfide compound, and method for curing episulfide compound
JP6954898B2 (en) Epoxy compounds, curable compositions containing them, and cured products obtained by curing curable compositions.
WO2014112537A1 (en) Epoxy resin, curable resin composition and cured material