TWI721936B - 用於在甲醇存在下增進還原當量之可得性及用於產生相關之1,4-丁二醇之微生物及方法 - Google Patents

用於在甲醇存在下增進還原當量之可得性及用於產生相關之1,4-丁二醇之微生物及方法 Download PDF

Info

Publication number
TWI721936B
TWI721936B TW102130678A TW102130678A TWI721936B TW I721936 B TWI721936 B TW I721936B TW 102130678 A TW102130678 A TW 102130678A TW 102130678 A TW102130678 A TW 102130678A TW I721936 B TWI721936 B TW I721936B
Authority
TW
Taiwan
Prior art keywords
mmp
bdo
sugar
bdop
organism
Prior art date
Application number
TW102130678A
Other languages
English (en)
Other versions
TW201422813A (zh
Inventor
安東尼P 柏賈德
羅賓E 歐斯特赫
狄恩 史帝芬J 凡
卡拉 安 崔西威爾
普利提 法基亞
史蒂芬 安德瑞
Original Assignee
美商奇諾麥提卡公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商奇諾麥提卡公司 filed Critical 美商奇諾麥提卡公司
Publication of TW201422813A publication Critical patent/TW201422813A/zh
Application granted granted Critical
Publication of TWI721936B publication Critical patent/TWI721936B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/10Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/12Oxygen or sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0026Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5)
    • C12N9/0028Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5) with NAD or NADP as acceptor (1.5.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1003Transferases (2.) transferring one-carbon groups (2.1)
    • C12N9/1007Methyltransferases (general) (2.1.1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01244Methanol dehydrogenase (1.1.1.244)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/02Oxidoreductases acting on the CH-OH group of donors (1.1) with a cytochrome as acceptor (1.1.2)
    • C12Y101/02007Methanol dehydrogenase (cytochrome c)(1.1.2.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y105/00Oxidoreductases acting on the CH-NH group of donors (1.5)
    • C12Y105/01Oxidoreductases acting on the CH-NH group of donors (1.5) with NAD+ or NADP+ as acceptor (1.5.1)
    • C12Y105/0102Methylenetetrahydrofolate reductase [NAD(P)H] (1.5.1.20)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y201/00Transferases transferring one-carbon groups (2.1)
    • C12Y201/01Methyltransferases (2.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01224Mannose-6-phosphate 6-reductase (1.1.1.224)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y201/00Transferases transferring one-carbon groups (2.1)
    • C12Y201/01Methyltransferases (2.1.1)
    • C12Y201/0109Methanol—corrinoid protein Co-methyltransferase (2.1.1.90)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本發明提供一種具有甲醇代謝路徑(methanol metabolic pathway;MMP)的非天然存在之微生物生物體,其可在甲醇存在下增進還原當量之可得性。該等還原當量可用以增加由微生物生物體所產生之有機化合物(諸如1,4-丁二醇(BDO))之產物產率。本發明亦提供使用該種生物體產生BDO之方法。

Description

用於在甲醇存在下增進還原當量之可得性及用於產生相關之1,4-丁二醇之微生物及方法 相關申請案之交叉引用
本申請案主張2013年8月26日申請之美國專利第13/975,678號、2013年2月19日申請之美國專利第61/766,609號及2012年8月27日申請之美國專利第61/693,683號之權益,其每一者均以全文引用的方式併入本文中。
本文中提供一般涉及代謝及生物合成過程之方法及能夠產生有機化合物之微生物生物體。特定言之,本文中提供一種具有甲醇代謝路徑(MMP)的非天然存在之微生物生物體(NNOMO),其可在甲醇存在下增進還原當量之可得性及/或將甲醇轉化為甲醛。該等NNOMO及還原當量可用以增加由微生物生物體產生之有機化合物(諸如1,4-丁二醇(BDO))之產物產率。本文中亦提供NNOMO及其產生最佳產率之BDO之方法。
在第一態樣中,本文中提供一種具有甲醇代謝路徑(MMP)之NNOMO,其中該生物體包含至少一個編碼MMP酶(MMPE)之外源核 酸,該MMP酶以足以在甲醇存在下增進還原當量之可得性之量表現。在某些實施例中,MMP包含一或多種選自由以下組成之群之酶:甲醇甲基轉移酶(EM1);亞甲基四氫葉酸還原酶(EM2);亞甲基四氫葉酸脫氫酶(EM3);次甲基四氫葉酸環水解酶(EM4);甲醯四氫葉酸脫甲醯酶(EM5);甲醯四氫葉酸合成酶(EM6);甲酸氫裂解酶(EM15);氫化酶(EM16);甲酸脫氫酶(EM8);甲醇脫氫酶(EM9);甲醛活化酶(EM10);甲醛脫氫酶(EM11);S-(羥甲基)麩胱甘肽合成酶(EM12);麩胱甘肽依賴性甲醛脫氫酶(EM13);及S-甲醯麩胱甘肽水解酶(EM14)。該等生物體可有利地使還原當量產生,其隨後會被生物體利用本文所提供之BDO路徑(BDOP)中任一者而產生BDO。
在一個實施例中,MMP包含EM9。在另一實施例中,MMP包含EM9及EM10。在其他實施例中,MMP包含EM1及EM2。在一個實施例中,MMP包含EM9、EM3、EM4及EM5。在另一實施例中,MMP包含EM9、EM3、EM4及EM6。在其他實施例中,MMP包含EM9及EM11。在另一實施例中,MMP包含EM9、EM12及EM13及EM14。在其他實施例中,MMP包含EM9、EM13及EM14。在一實施例中,MMP包含EM9、EM10、EM3、EM4及EM5。在另一實施例中,MMP包含EM9、EM10、EM3、EM4及EM6。在其他實施例中,MMP包含EM1、EM2、EM3及EM4及EM5。在一個實施例中,MMP包含EM1、EM2、EM3、EM4及EM6。在某些以上實施例中,MMP進一步包含EM8。在其他以上實施例中,MMP進一步包含EM15。在其他以上實施例中,MMP進一步包含EM16。在某些實施例中,生物體包含兩種、三種、四種、五種、六種或七種各自編碼MMPE之外源核酸。
在某些實施例中,生物體進一步包含1,4-BDO路徑(BDOP)。在某些實施例中,該生物體包含至少一種編碼BDOPE之外源核酸,該BDOPE以足以產生BDO之量表現。在某些實施例中,BDOPE係選自 由以下組成之群:琥珀醯CoA轉移酶(EB1)或琥珀醯CoA合成酶(EB2A)(或琥珀醯CoA連接酶);琥珀醯CoA還原酶(形成醛)(EB3);4-羥基丁酸(4-HB)脫氫酶(EB4);4-HB激酶(EB5);磷酸轉-4-羥基丁醯酶(EB6);4-羥基丁醯CoA還原酶(形成醛)(EB7);1,4-丁二醇脫氫酶(EB8);琥珀酸還原酶(EB9);琥珀醯CoA還原酶(形成醇)(EB10);4-羥基丁醯CoA轉移酶(EB11)或4-羥基丁醯CoA合成酶(EB12);4-HB還原酶(EB13);4-羥基丁醯磷酸還原酶(EB14);及4-羥基丁醯CoA還原酶(形成醇)(EB15)。
在一個實施例中,BDOP包含EB3、EB4、EB5、EB6、EB7及EB8。在一個實施例中,BDOP包含EB3、EB4、EB11或EB12、EB7及EB8。在一個實施例中,BDOP包含EB3、EB4、EB11或EB12及EB15。在一個實施例中,BDOP包含EB3、EB4、EB5、EB6及EB15。在一個實施例中,BDOP包含EB3、EB4、EB13及EB8。在一個實施例中,BDOP包含EB3、EB4、EB5、EB14及EB8。在一個實施例中,BDOP包含EB10、EB5、EB6、EB7及EB8。在一個實施例中,BDOP包含EB10、EB5、EB6及EB15。在一個實施例中,BDOP包含EB10、EB11或EB12、EB7及EB8。在一個實施例中,BDOP包含EB10、EB11或EB12及EB15。在一個實施例中,BDOP包含EB10、EB13及EB8。在一個實施例中,BDOP包含EB10、EB5、EB14及EB8。在一個實施例中,BDOP包含EB9、EB4、EB5、EB6、EB7及EB8。在一個實施例中,BDOP包含EB9、EB4、EB11或EB12、EB7及EB8。在一個實施例中,BDOP包含EB9、EB4、EB11或EB12及EB15。在一個實施例中,BDOP包含EB9、EB4、EB5、EB6及EB15。在一個實施例中,BDOP包含EB9、EB4、EB13及EB8。在一個實施例中,BDOP包含EB9、EB4、EB5、EB14及EB8。在某些以上實施例中,BDOP進一步包含EB1。在其他以上實施例中,BDOP進一步包含EB2A。在一些實施例 中,生物體包含四種、五種、六種或七種各自編碼BDOPE之外源核酸。
在其他實施例中,如本文中所提供之具有單獨或與BDOP組合的MMP之生物體進一步包含甲醛同化路徑(FAP),該路徑利用例如由甲醇氧化獲得的甲醛形成某些可用於例如形成生物質之主要代謝路徑之中間物。在某些實施例中,生物體進一步包含FAP,其中該生物體包含至少一種編碼甲醛同化路徑酶(FAPE)之外源核酸,該甲醛同化路徑酶以足以產生糖酵解及/或可用於形成生物質之代謝路徑的中間物之量表現。在一個實施例中,FAPE以足以產生糖酵解中間物之量表現。在另一實施例中,FAPE以足以產生可用於形成生物質之代謝路徑中間物之量表現。在一些實施例中,FAP包含己酮糖-6-磷酸(H6P)合成酶(EF1)、6-磷酸-3-己酮糖異構酶(EF2)、二羥基丙酮(DHA)合成酶(EF3)或DHA激酶(EF4)。在一個實施例中,FAP包含EF1及EF2。在一個實施例中,中間物為H6P、果糖-6-磷酸(F6P),或其組合。在其他實施例中,FAP包含EF3或EF4。在一個實施例中,中間物為DHA、磷酸DHA,或其組合。在某些實施例中,生物體包含兩種各自編碼FAPE之外源核酸。
在某些實施例中,本文中提供一種具有MMP之NNOMO,其中該生物體包含至少一種編碼EM9之外源核酸,該EM9以足以在甲醇存在下增進還原當量之可得性之量表現及/或以足以將甲醇轉化為甲醛之量表現。在一些實施例中,生物體包含至少一種編碼EM9之外源核酸,該EM9以足以在甲醇存在下增進還原當量之可得性之量表現。在其他實施例中,生物體包含至少一種編碼EM9之外源核酸,該EM9以足以將甲醇轉化為甲醛之量表現。在一些實施例中,微生物生物體進一步包含FAP。在某些實施例中,生物體進一步包含至少一種編碼FAPE之外源核酸,該FAPE以足以產生糖酵解中間物之量表現。在某 些實施例中,FAPE係選自由以下組成之群:EF1、EF2、EF3及EF4。
在某些實施例中,至少一種外源核酸為異源核酸。在一些實施例中,生物體在實質上缺氧的培養基中。在一些實施例中,微生物生物體為細菌、酵母或真菌。
在一些實施例中,生物體進一步包含一或多個基因破壞,該一或多個基因破壞出現在編碼參與該微生物生物體之乙醇、甘油、乙酸、乳酸、甲酸、CO2及/或胺基酸之天然產生之蛋白質或酶的一或多種內源基因中,其中該一或多個基因破壞使得該微生物生物體中BDO之產生增加。在一些實施例中,參與微生物生物體之乙醇、甘油、乙酸、乳酸、甲酸、CO2及/或胺基酸之天然產生之一或多種內源酶之酶活性或表現水平衰減。在某些實施例中,生物體包含一至二十五個基因破壞。在其他實施例中,生物體包含一至二十個基因破壞。在一些實施例中,生物體包含一至十五個基因破壞。在其他實施例中,生物體包含一至十個基因破壞。在一些實施例中,生物體包含一至五個基因破壞。在某些實施例中,生物體包含1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24或25個或25個以上基因破壞。
在另一態樣中,本文中提供一種產生甲醛之方法,其包含在產生甲醛之條件下且持續充足時間段培養本文中所提供之NNOMO。在某些實施例中,NNOMO包含編碼EM9之外源核酸。在某些實施例中,消耗甲醛以提供還原當量。在其他實施例中,消耗甲醛以併入BDO或另一目標產物中。
在另一態樣中,本文中提供一種產生糖酵解及/或可用於形成生物質之代謝路徑的中間物之方法,其包含在產生中間物之條件下且持續充足時間段培養本文中所提供之NNOMO。在某些實施例中,NNOMO包含編碼EM9之外源核酸。在某些實施例中,消耗甲醛以提 供還原當量。在其他實施例中,消耗甲醛以併入BDO或另一目標產物中。
在另一態樣中,本文中提供一種產生BDO之方法,其包含在產生BDO之條件下且持續充足時間段培養本文中所提供的包含MMP及BDOP之NNOMO中之任一者。在某些實施例中,生物體在實質上缺氧培養基中進行培養。
圖1展示使得能夠自甲醇提取還原當量之例示性代謝路徑。所示酶促轉化由以下酶進行:1A)甲醇甲基轉移酶(EM1);1B)亞甲基四氫葉酸還原酶(EM2);1C)亞甲基四氫葉酸脫氫酶(EM3);1D)次甲基四氫葉酸環水解酶(EM4);1E)甲醯四氫葉酸脫甲醯酶(EM5);1F)甲醯四氫葉酸合成酶(EM6);1G)甲酸氫裂解酶(EM15);1H)氫化酶(EM16);1I)甲酸脫氫酶(EM8);1J)甲醇脫氫酶(EM9);1K)甲醛活化酶(EM10);1L)甲醛脫氫酶(EM11);1M)S-(羥甲基)麩胱甘肽合成酶(EM12);1N)麩胱甘肽依賴性甲醛脫氫酶(EM13);及1O)S-甲醯麩胱甘肽水解酶(EM14)。在某些實施例中,步驟K及/或M為自發性的。
圖2展示例示性BDOP,其可用於在由本文中所提供之MMP產生之還原當量可得時增加自碳水化合物之BDO產率。BDO產生由以下酶進行:2A)琥珀醯CoA轉移酶(EB1)或琥珀醯CoA合成酶(EB2A);2B)琥珀醯CoA還原酶(形成醛)(EB3);2C)4-HB脫氫酶(EB4);2D)4-HB激酶(EB5);2E)磷酸轉-4-羥基丁醯酶(EB6);2F)4-羥基丁醯CoA還原酶(形成醛)(EB7);2G)1,4-丁二醇脫氫酶(EB8);2H)琥珀酸還原酶(EB9);2I)琥珀醯CoA還原酶(形成醇)(EB10);2J)4-羥基丁醯CoA轉移酶(EB11)或4-羥基丁醯CoA合成酶(EB12);2K)4-HB還原酶(EB13);2L)4-羥基丁醯磷酸還原酶(EB14);及2M)4-羥基丁醯CoA還原酶(形成醇)(EB15)。
圖3展示例示性FAP。酶促轉化由以下酶進行:3A)H6P合成酶(EF1);及3B)6-磷酸-3-己酮糖異構酶(EF2)。
圖4展示例示性FAP。酶促轉化由以下酶進行:4A)DHA合成酶(EF3);及4B)DHA激酶(EF4)。
1.定義
如本文中所用,術語「非天然存在」在關於本文中所提供之微生物生物體或微生物使用時欲意謂微生物生物體具有至少一個在所參考物種之天然存在菌株(包括所參考物種之野生型菌株)中並不常見之基因改變。基因改變包括例如引入編碼代謝多肽之可表現核酸的修飾、其他核酸添加、核酸缺失及/或微生物生物體遺傳物質之其他功能性破壞。該等修飾包括例如所參考物種之異源、同源或異源與同源多肽之編碼區及其功能片段。其他修飾包括例如修飾改變了基因或操縱子之表現的非編碼調節區。例示性代謝多肽包括BDO或4-HB生物合成路徑內之酶或蛋白質。
代謝修飾係指相較於其天然存在之狀態改變的生物化學反應。因此,NNOMO可具有針對編碼代謝多肽之核酸或其功能片段的基因修飾。本文中揭示例示性代謝修飾。
如本文中所用,術語「經分離」在關於微生物生物體使用時欲意謂生物體實質上不含所參考微生物生物體在自然界中所見之至少一種組分。該術語包括移除天然環境中所見之一些或所有組分的微生物生物體。該術語亦包括移除微生物生物體在非天然存在之環境中所見之一些或所有組分的微生物生物體。因此,經分離之微生物生物體與其在自然界中所見或其在非天然存在之環境中生長、儲存或生存之其他物質部分或完全分離。經分離之微生物生物體的特定實例包括部分純微生物、實質上純微生物及於非天然存在之培養基中培養之微生 物。
如本文中所用,術語「微生物的」、「微生物生物體」或「微生物」欲意謂包括於古菌、細菌或真核域內之以微觀細胞形式存在的任何生物體。因此,該術語欲涵蓋具有微觀尺寸之原核或真核細胞或生物體,且包括所有物種之細菌、古菌及真細菌以及真核微生物(諸如酵母及真菌)。該術語亦包括可經培養以便產生生物化學物質的任何物種之細胞培養物。
如本文中所用,術語「CoA」或「輔酶A」欲意謂有機輔因子或輔基(酶之非蛋白質部分),其存在為許多酶(脫輔基酶)之活性所需以形成活性酶系統。某些縮合酶中之輔酶A功能在乙醯基或其他醯基轉移中及在脂肪酸合成及氧化、丙酮酸氧化中及在其他乙醯化中起作用。
如本文中所用,術語「實質上缺氧」在關於培養或生長條件使用時欲意謂氧之量小於液體培養基中之溶解氧之飽和度的約10%。該術語亦欲包括維持具有小於約1%氧氣之氛圍的液體或固體培養基的密封腔室。
如本文中所用,術語「基因破壞」或其語法相等物欲意謂使得所編碼之基因產物無活性或衰減之基因改變。基因改變可為例如整個基因缺失、轉錄或轉譯所需之調節序列缺失、一部分基因缺失(產生截短基因產物)或使所編碼之基因產物不活化或衰減之各種突變策略中之任一者。一種尤其適用之基因破壞方法為完整基因缺失,此係因為其減少或消除了本文中所提供之NNOMO中基因逆轉之發生。基因破壞之表型作用可為剔除式突變,其可由許多類型之突變產生,該等突變包括不活化點突變、整個基因缺失及染色體片段或整個染色體缺失。特定反義核酸化合物及酶抑制劑(諸如抗生素)亦可產生剔除式突變表型,因此等效於基因破壞。
如本文中所用,當術語「生長耦合」用於關於生化產物生產時,係意欲指該引用生物化學產物之生物合成係在微生物生長期期間所產生。在一特定實施例中,生長耦合產生可以是強制性的,此意謂所該引用生化物質之生物合成是微生物生長期期間所產生的專性產物。當術語「生長耦合」用於關於生物化學物質消耗時,係意欲指該引用生化物質係在微生物生長期期間消耗掉。
如本文中所用,術語「衰減」或其語法相等物欲意謂減弱、降低或減小酶或蛋白質之活性或量。若酶或蛋白質之活性或量之衰減致使活性或量下降至既定路徑起作用所需之臨界水準以下,則該衰減可模擬完全破壞。然而,模擬一種路徑之完全破壞的酶或蛋白質之活性或量之衰減仍可足以使另一路徑繼續起作用。舉例而言,內源酶或蛋白質之衰減可足以模擬相同酶或蛋白質用於產生脂肪醇、脂肪醛或脂肪酸產物之完全破壞,但酶或蛋白質之剩餘活性或量仍可足以維持其他路徑,諸如對宿主微生物生物體存活、繁殖或生長關鍵之路徑。酶或蛋白質之衰減亦可以足以增加脂肪醇、脂肪醛或脂肪酸產率但不必模擬酶或蛋白質之完全破壞的量減弱、降低或減小酶或蛋白質之活性或量。
「外源」在本文中使用時欲意謂所參考分子或所參考活性係引入宿主微生物生物體中。分子可例如藉由以下步驟引入:將編碼核酸引入宿主遺傳物質中,諸如藉由整合於宿主染色體中或作為非染色體遺傳物質,諸如質體。因此,該術語在其關於編碼核酸之表現使用時係指將編碼核酸以可表現形式引入微生物生物體中。當關於生物合成活性使用時,該術語係指引入宿主參考生物體中之活性。來源可為例如在引入宿主微生物生物體中之後表現所參考活性之同源或異源編碼核酸。因此,術語「內源」係指存在於宿主中之所參考分子或活性。類似地,該術語在關於編碼核酸之表現使用時係指微生物生物體內所 含之編碼核酸的表現。術語「異源」係指源自不同於所參考物種之來源的分子或活性,而「同源」係指源自宿主微生物生物體之分子或活性。因此,編碼核酸之外源表現可利用異源或同源編碼核酸中之任一者或兩者。
應理解,當微生物生物體中包括一種以上外源核酸時,該一種以上外源核酸係指如上文所論述之所參考編碼核酸或生物合成活性。進一步應理解,如本文中所揭示,可將該一種以上外源核酸引入宿主微生物生物體中之各別核酸分子、多順反子核酸分子或其組合上,且仍視為一種以上外源核酸。舉例而言,如本文中所揭示,微生物生物體可經工程改造以表現編碼所要路徑酶或蛋白質之兩種或兩種以上外源核酸。在將編碼所要活性之兩種外源核酸引入宿主微生物生物體中之情況下,應理解該兩種外源核酸可以單一核酸形式引入例如於單一質體、各別質體上,可整合至宿主染色體中於單一位點或多個位點處,且仍視為兩種外源核酸。類似地,應理解可將兩種以上外源核酸以任何所要組合引入宿主生物體中,例如於單一質體上、於各別質體上,可整合至宿主染色體中於單一位點或多個位點處,且仍視為兩種或兩種以上外源核酸,例如三種外源核酸。因此,所參考外源核酸或生物合成活性之數目係指編碼核酸數目或生物合成活性數目,而非引入宿主生物體中之各別核酸數目。
本文中所提供之NNOMO可含有穩定基因改變,其係指可經培養超過五代而無改變損失之微生物。一般而言,穩定基因改變包括持續超過10代之修飾,特定言之穩定修飾將持續超過約25代,且更特定言之穩定基因修飾將持續超過50代,包括無限期。
熟習此項技術者將理解,包括本文中例示之代謝修飾的基因改變係參考適合宿主生物體(諸如大腸桿菌(E.coli))及其相應代謝反應或所要遺傳物質(諸如所要代謝路徑之基因)之適合來源生物體來描 述。然而,考慮到多種生物體之完整基因組定序及基因組學領域中之高技術水準,熟習此項技術者將能夠容易地將本文中所提供之教示及指導應用於基本上所有其他生物體。舉例而言,本文中例示之大腸桿菌代謝改變可藉由併有來自不同於所參考物種之物種的相同或類似編碼核酸容易地應用於其他物種。該等基因改變大體上包括例如物種同源物之基因改變,及尤其直系同源物、旁系同源物或非直系同源基因置換。
直系同源物為藉由垂直譜系傳遞(vertical descent)相關且在不同生物體中負責實質上相同或一致功能之基因。舉例而言,可將小鼠環氧化物水解酶與人類環氧化物水解酶視為環氧化物水解之生物功能的直系同源物。基因當例如其共有足量序列相似性以表明其為同源時藉由垂直譜系傳遞相關,或藉由自共同祖先進化而相關。基因若共有三維結構但未必共有足量序列相似性以表明其由共同祖先進化至一級序列相似性不可鑑別之程度,則其亦可視為直系同源物。直系同源基因可編碼具有約25%至100%胺基酸序列一致性之序列相似性的蛋白質。編碼共有小於25%之胺基酸相似性之蛋白質的基因若其三維結構亦顯示相似性,則其亦可視為藉由垂直譜系傳遞產生。酶之絲胺酸蛋白酶家族之成員(包括組織纖維蛋白溶酶原活化因子及彈性蛋白酶)被視為藉由垂直譜系傳遞自共同祖先產生。
直系同源物包括基因或其經編碼基因產物,其經由例如進化在結構或總體活性方面趨異。舉例而言,當一種物種編碼展現兩種功能之基因產物時且當該等功能已在第二物種中分離至不同基因中時,將該三種基因及其相應產物視為直系同源物。為了產生生物化學產物,熟習此項技術者將理解,應選擇含有待引入或破壞之代謝活性之直系同源基因來構築NNOMO。展現可分離活性之直系同源物之實例為不同活性已在兩種或兩種以上物種之間或在單一物種內分離至不同基因 產物中之情形。特定實例為將彈性蛋白酶蛋白分解與纖維蛋白溶酶原蛋白分解(即兩種類型之絲胺酸蛋白酶活性)分離至作為纖維蛋白溶酶原活化因子及彈性蛋白酶之不同分子中。第二實例為分離黴漿菌5'-3'核酸外切酶與果蠅(Drosophila)DNA聚合酶III活性。可將來自第一物種之DNA聚合酶視為來自第二物種之核酸外切酶或聚合酶中之任一者或兩者的直系同源物,且反之亦然。
相比之下,旁系同源物為藉由例如複製、隨後進化趨異而相關之同源物且具有相似或共同而非一致之功能。旁系同源物可起源或源自例如相同物種或不同物種。舉例而言,微粒體環氧化物水解酶(環氧化物水解酶I)與可溶環氧化物水解酶(環氧化物水解酶II)因為其代表兩種不同酶、由共同祖先共進化而來、在相同物種中催化不同反應且具有不同功能,所以可視為旁系同源物。旁系同源物為來自相同物種之蛋白質,彼此具有顯著序列相似性從而表明其同源,或為經由自共同祖先共進化而相關的蛋白質。旁系同源蛋白質家族之群包括HipA同源物、螢光素酶基因、肽酶及其他蛋白質。
非直系同源基因置換為來自一種物種之非直系同源基因,其可取代不同物種中之所參考基因功能。取代包括例如能夠在起源物種中執行與不同物種中的所參考功能相比實質上相同或相似之功能。儘管一般而言,非直系同源基因置換將因與編碼所參考功能之已知基因在結構上相關而可鑑別,但結構相關性較小而功能相似之基因及其相應基因產物仍將屬於該術語在本文中使用之含義內。功能相似性需要例如與編碼尋求取代之功能的基因相比在非直系同源基因產物之活性位點或結合區中之至少一定程度之結構相似性。因此,非直系同源基因包括例如旁系同源物或無關基因。
因此,在鑑別及構築具有BDO或4-HB生物合成能力的本文中所提供之NNOMO中,熟習此項技術者將理解,將本文中所提供之教示 及指導應用於特定物種時,代謝修飾之鑑別可包括直系同源物之鑑別及納入或不活化。就所參考微生物中存在編碼催化相似或實質上相似代謝反應之酶的旁系同源物及/或非直系同源基因置換而言,熟習此項技術者亦可利用此等進化上相關基因。
可藉由熟習此項技術者所熟知的方法測定直系同源物、旁系同源物及非直系同源基因置換。舉例而言,檢查兩個多肽之核酸或胺基酸序列將揭示所比較序列之間的序列一致性及相似性。基於此等相似性,熟習此項技術者可確定相似性是否足夠高以表明蛋白質經由自共同祖先進化而相關。熟習此項技術者熟知之演算法(諸如Align、BLAST、Clustal W及其他演算法)比較並測定原始序列相似性或一致性,以及測定序列中可賦予權重或評分之空隙的存在或顯著性。該等演算法亦為此項技術中已知且同樣可適用於測定核苷酸序列相似性或一致性。基於計算統計學相似性,或在隨機多肽中發現相似匹配之機率,及所測定匹配之顯著性之熟知方法計算足以確定相關性之相似性之參數。必要時亦可由熟習此項技術者在視覺上最佳化兩個或兩個以上序列之電腦比較。相關基因產物或蛋白質可預期具有高相似性,例如,25%至100%序列一致性。若掃描足夠尺寸之資料庫(約5%),則無關蛋白質可具有基本上與所預期偶然發生相同之一致性。5%與24%之間的序列可能代表或可能不代表足以推斷所比較序列相關之同源性。可進行其他統計分析以測定已知資料集尺寸時該等匹配之顯著性,從而測定此等序列之相關性。
使用例如BLAST演算法測定兩個或兩個以上序列之相關性之例示性參數可闡述如下。簡言之,胺基酸序列比對可使用BLASTP 2.0.8版(1999年1月05日)及以下參數進行:矩陣:0 BLOSUM62;空隙開口:11;空隙延伸:1;x_dropoff:50;預期值:10.0;字長:3;過濾器:開。核酸序列比對可使用BLASTN 2.0.6版(1998年9月16日)及 以下參數進行:匹配:1;錯配:-2;空隙開口:5;空隙延伸:2;x_dropoff:50;預期值:10.0;字長:11;過濾器:關。熟習此項技術者將知曉可對上述參數進行何種修改以例如提高或降低比較嚴格性及測定兩個或兩個以上序列之相關性。
2.利用藉由甲醇代謝所產生之還原當量的微生物有機體
本文中提供經工程改造以改良還原當量之可得性的MMP,該等還原當量可用於產生產物分子。例示性產物分子包括(但不限於)BDO及/或4HB,但考慮到本文中所提供之教示及指導,熟習此項技術者將認識到,在其產生過程中利用還原當量之任何產物分子均可經由本文中所提供之生物合成路徑展現產生增進。
甲醇為可經由催化源自合成氣體組分CO及H2的相對便宜之有機原料。甲醇可用作還原當量之來源以增加自碳水化合物獲得產物分子之莫耳產率。
BDO為用於產生高效能聚合物、溶劑及精細化學品之有價值化學品。其為產生其他高價值化學品(諸如四氫呋喃(THF)及γ-丁內酯(GBL))之基礎。價值鏈由包括以下之三個主要片段組成:(1)聚合物,(2)THF衍生物,及(3)GBL衍生物。在聚合物之情況下,BDO為用於聚對苯二甲酸伸丁酯(PBT)產生之共聚單體。PBT為用於汽車、電、水系統及小型電器應用中之中等效能工程改造熱塑性塑膠。轉化為THF隨後轉化為聚伸丁醚二醇(PTMEG)提供用以製造彈性人造纖維(spandex)產物(諸如LYCRA®纖維)之中間物。在特殊聚酯醚(COPE)之產生過程中PTMEG亦與BDO組合。COPE為具有極佳機械性質及油/環境抵抗性、使其可在高及低溫端值下操作之高模數彈性體。PTMEG及BDO亦使熱塑性聚胺基甲酸酯於標準熱塑性擠壓、壓光及模製設備上加工,且特徵為其出色的韌性及耐磨性。自BDO產生之GBL為製造吡咯啶酮以及服務農用化學市場提供原料。吡咯啶酮用作具有日漸增 多之用途(包括例如電子工業及醫藥製造中)之提取製程中之高效能溶劑。因此,本文中提供根據本文中所述之方法產生的生物衍生性BDO及包含生物衍生性BDO或使用生物衍生性BDO獲得的生物基產物。生物基產物可包含聚合物、THF或THF衍生物、或GBL或GBL衍生物;或生物基產物可包含聚合物、塑膠、彈性纖維、聚胺基甲酸酯、聚酯、聚羥基烷酸酯、聚-4-HB、聚-4-HB之共聚物、聚(伸丁醚)二醇、聚胺基甲酸酯-聚脲共聚物、彈性人造纖維、氨綸、LycraTM或耐綸;或生物基產物可包含聚對苯二甲酸伸丁酯(PBT)聚合物;或生物基產物可包含PBT聚合物,其包含樹脂、纖維、珠粒、顆粒、球粒、片粒、塑膠、聚酯、熱塑性聚酯、模製物品、射出模製物品、射出模製部件、汽車部件、擠出樹脂、電部件及套管,視情況其中生物基產物經加強或填充,例如經玻璃填充或礦物填充;或生物基產物為THF或THF衍生物,且THF衍生物為聚伸丁醚二醇(PTMEG)、聚酯醚(COPE)或熱塑性聚胺基甲酸酯或纖維;或生物基產物包含GBL或GBL衍生物,且GBL衍生物為吡咯啶酮。生物基產物可包含至少5%、至少10%、至少20%、至少30%、至少40%或至少50%生物衍生性BDO。生物基產物可包含該生物衍生性BDO之一部分作為重複單元。生物基產物可為藉由模製生物基產物而獲得之模製產物。
BDO藉由兩種主要石油化學途徑產生,在商業操作中亦有若干其他途徑。一種途徑涉及使乙炔與甲醛反應,隨後氫化。最近,已引入涉及丁烷或丁二烯氧化為順丁烯二酸酐、隨後氫化之BDO製程。BDO幾乎只用作合成其他化學品及聚合物的中間物。因此,需要開發有效產生商業量之BDO的方法。
在眾多工程改造路徑中,基於碳水化合物原料之最大產物產率之實現因還原當量不充足或因還原當量損失為副產物而受阻。甲醇為可用以藉由採用如圖1中所示之一或多種甲醇代謝酶產生還原當量的 相對便宜的有機原料。藉由甲醇經一或多種MMP代謝產生之還原當量可隨後用以為例如如圖2中所示之BDO產生路徑提供葡萄糖。
每C-mol合成還原醱酵產物(諸如BDO及4-HB)之微生物細胞受質的產物產率受碳水化合物原料中不充足還原當量限制。還原當量或電子可使用圖1中所述之一或多種酶自甲醇提取。還原當量隨後傳遞至受體(諸如氧化鐵氧化還原蛋白、氧化醌、氧化細胞色素、NAD(P)+、水或過氧化氫)以分別形成還原鐵氧化還原蛋白、還原醌、還原細胞色素、NAD(P)H、H2或水。還原鐵氧化還原蛋白、還原醌及NAD(P)H由於其可充當各種Wood-Ljungdahl路徑、還原TCA循環或產物路徑酶之氧化還原載體而尤其適用。
展示來自甲醇之額外氧化還原可得性可如何改良還原產物(諸如琥珀酸酯、4-HB及BDO)產率之特定實例。
經由補充有氧化TCA循環(例如檸檬酸合成酶、烏頭酸酶、異檸檬酸脫氫酶、α-酮戊二酸脫氫酶)反應的圖2中所示之路徑之BDO最大理論產率為1.09mol/mol。
1 C6H12O6→1.09 C4H10O2+1.64 CO2+0.55 H2O
當糖及甲醇之原料均可得時,甲醇可用以藉由採用圖1中所示之一或多種酶來產生還原當量。自甲醇產生之還原當量可用以為例如如圖2中所示之BDO產生路徑提供葡萄糖。理論上,葡萄糖中之所有碳均將保留,因此在如圖2中所示之有氧或缺氧條件下以每分子葡萄糖2mol BDO之最大理論產率自葡萄糖產生BDO: 10 CH3OH+3 C6H12O6=6 C4H10O2+8 H2O+4 CO2
以類似方式,使用圖1及2中所示之反應,琥珀酸酯及4-HB之最大理論產率可達至2mol/mol葡萄糖。
C6H12O6+0.667 CH3OH+1.333 CO2→2 C4H6O4+1.333 H2O
C6H12O6+2 CH3OH→2 C4H8O3+2 H2O
在第一態樣中,本文中提供一種具有MMP之NNOMO,其中該生物體包含至少一種編碼MMPE之外源核酸。在某些實施例中,MMPE以足以在甲醇存在下增進還原當量之可得性之量表現。在其他實施例中,MMPE以足以將甲醇轉化為甲醛之量表現。在某些實施例中,MMP包含一或多種選自由以下組成之群之酶:EM1、EM2、EM3、EM4、EM5、EM6、EM15、EM16、EM8、EM9、EM10、EM11、EM12、EM13及EM14。該等生物體有利地允許產生還原當量,該等還原當量可隨後由生物體用於使用本文中所提供之任一路徑產生BDO或4-HB。
在某些實施例中,MMP包含1A、1B、1C、1D、1E、1F、1G、1H、1I、1J、1K、1L、1M、1N或1O或其1A、1B、1C、1D、1E、1F、1G、1H、1I、1J、1K、1L、1M、1N及1O之任何組合,其中1A為EM1;1B為EM2;1C為EM3;1D為EM4;1E為EM5;1F為EM6;1G為EM15;1H為EM16;1I為EM8;1J為EM9;1K為EM10;1L為EM11;1M為EM12;1N為EM13;且1O為EM14。在一些實施例中,1K為自發性的。在其他實施例中,1K為EM10。在一些實施例中,1M為自發性的。在其他實施例中,1M為EM12。
在一個實施例中,MMP包含1A。在另一實施例中,MMP包含1B。在另一實施例中,MMP包含1C。在另一實施例中,MMP包含1D。在一個實施例中,MMP包含1E。在另一實施例中,MMP包含1F。在另一實施例中,MMP包含1G。在另一實施例中,MMP包含1H。在一個實施例中,MMP包含1I。在另一實施例中,MMP包含1J。在另一實施例中,MMP包含1K。在另一實施例中,MMP包含1L。在另一實施例中,MMP包含1M。在另一實施例中,MMP包含1N。在另一實施例中,MMP包含1O。亦涵蓋兩種、三種、四種、五種、六種、七種、八種、九種、十種、十一種、十二種、十三種、十 四種或十五種MMPE 1A、1B、1C、1D、1E、1F、1G、1H、1I、1J、1K、1L、1M、1N及1O之任何組合。
在一些實施例中,MMP為圖1中描繪之MMP。
在一個態樣中,本文中提供一種具有MMP之NNOMO,其中該生物體包含至少一種編碼MMPE之外源核酸,該MMPE以足以在甲醇存在下增進還原當量之可得性之量表現,其中該MMP包含:(i)1A及1B;(ii)1J;或(iii)1J及1K。在一個實施例中,MMP包含1A及1B。在另一實施例中,MMP包含1J。在一個實施例中,MMP包含1J及1K。在某些實施例中,MMP包含1A、1B、1C、1D及1E。在一些實施例中,MMP包含1A、1B、1C、1D及1F。在一些實施例中,MMP包含1J、1C、1D及1E。在一個實施例中,MMP包含1J、1C、1D及1F。在另一實施例中,MMP包含1J及1L。在另一實施例中,MMP包含1J、1M、1N及1O。在某些實施例中,MMP包含1J、1N及1O。在一些實施例中,MMP包含1J、1K、1C、1D及1E。在一個實施例中,MMP包含1J、1K、1C、1D及1F。在一些實施例中,1K為自發性的。在其他實施例中,1K為EM10。在一些實施例中,1M為自發性的。在其他實施例中,1M為EM12。
在某些實施例中,MMP包含1I。在某些實施例中,MMP包含1A、1B、1C、1D、1E及1I。在一些實施例中,MMP包含1A、1B、1C、1D、1F及1I。在一些實施例中,MMP包含1J、1C、1D、1E及1I。在一個實施例中,MMP包含1J、1C、1D、1F及1I。在另一實施例中,MMP包含1J、1L及1I。在另一實施例中,MMP包含1J、1M、1N、1O及1I。在某些實施例中,MMP包含1J、1N、1O及1I。在一些實施例中,MMP包含1J、1K、1C、1D、1E及1I。在一個實施例中,MMP包含1J、1K、1C、1D、1F及1I。在一些實施例中,1K為自發性的。在其他實施例中,1K為EM10。在一些實施例中,1M為自發性 的。在其他實施例中,1M為EM12。
在某些實施例中,MMP包含1G。在某些實施例中,MMP包含1A、1B、1C、1D、1E及1G。在一些實施例中,MMP包含1A、1B、1C、1D、1F及1G。在一些實施例中,MMP包含1J、1C、1D、1E及1G。在一個實施例中,MMP包含1J、1C、1D、1F及1G。在另一實施例中,MMP包含1J、1L及1G。在另一實施例中,MMP包含1J、1M、1N、1O及1G。在某些實施例中,MMP包含1J、1N、1O及1G。在一些實施例中,MMP包含1J、1K、1C、1D、1E及1G。在一個實施例中,MMP包含1J、1K、1C、1D、1F及1G。在一些實施例中,1K為自發性的。在其他實施例中,1K為EM10。在一些實施例中,1M為自發性的。在其他實施例中,1M為EM12。
在某些實施例中,MMP包含1G及1H。在某些實施例中,MMP包含1A、1B、1C、1D、1E、1G及1H。在一些實施例中,MMP包含1A、1B、1C、1D、1F、1G及1H。在一些實施例中,MMP包含1J、1C、1D、1E、1G及1H。在一個實施例中,MMP包含1J、1C、1D、1F、1G及1H。在另一實施例中,MMP包含1J、1L、1G及1H。在另一實施例中,MMP包含1J、1M、1N、1O、1G及1H。在某些實施例中,MMP包含1J、1N、1O、1G及1H。在一些實施例中,MMP包含1J、1K、1C、1D、1E、1G及1H。在一個實施例中,MMP包含1J、1K、1C、1D、1F、1G及1H。在一些實施例中,1K為自發性的。在其他實施例中,1K為EM10。在一些實施例中,1M為自發性的。在其他實施例中,1M為EM12。
在某些實施例中,自甲醛形成5-羥甲基麩胱甘肽為自發性的(參見例如圖1,步驟M)。在一些實施例中,自甲醛形成5-羥甲基麩胱甘肽由EM12催化(參見例如圖1,步驟M)。在某些實施例中,自甲醛形成亞甲基-THF為自發性的(參見例如圖1,步驟K)。在某些實施例中, 自甲醛形成亞甲基-THF由EM10催化(參見例如圖1,步驟K)。
在某些實施例中,生物體包含兩種、三種、四種、五種、六種或七種各自編碼MMPE之外源核酸。在某些實施例中,生物體包含兩種各自編碼MMPE之外源核酸。在某些實施例中,生物體包含三種各自編碼MMPE之外源核酸。在某些實施例中,生物體包含四種各自編碼MMPE之外源核酸。在某些實施例中,生物體包含五種各自編碼MMPE之外源核酸。在某些實施例中,生物體包含六種各自編碼MMPE之外源核酸。在某些實施例中,生物體包含七種各自編碼MMPE之外源核酸。
包含MMP且經工程改造以包含MMPE的任何非天然存在之真核生物體(諸如本文中所提供之生物體)可經工程改造以進一步包含一或多種BDOP酶(BDOPE)。
在某些實施例中,NNOMO進一步包含BDOP,其中該生物體包含至少一種編碼BDOPE之外源核酸,該BDOPE以足以產生BDO之量表現。在某些實施例中,BDOPE係選自由以下組成之群:EB1或EB2A;EB3;EB4;EB5;EB6;EB7;EB8;EB9;EB10;EB11或EB12;EB13;EB14;及EB15。
在一些實施例中,具有BDOP之NNOMO包括一組BDOPE。
用於將自琥珀酸酯及琥珀醯CoA至各種產物(諸如BDO)之路徑工程改造至微生物中的酶、基因及方法現於此項技術中已知(參見例如美國公開案第2011/0201089號)。一組BDOPE表示一組可如圖2中所示將琥珀酸酯轉化為BDO之酶。當利用碳水化合物基原料時,如本文中所揭示由MMP獲得之其他還原當量改良所有此等產物之產率。舉例而言,BDO可經由先前揭示之路徑自琥珀醯CoA產生(參見例如Burk等人,WO 2008/115840)。用於將琥珀醯CoA轉化為BDO之例示性酶包括EB3(圖2,步驟B)、EB4(圖2,步驟C)、EB5(圖2,步驟D)、 EB6(圖2,步驟E)、EB7(圖2,步驟F)、EB8(圖2,步驟G)、EB10(圖1,步驟I)、EB11(圖2,步驟J)、EB12(圖2,步驟J)、EB14(圖2,步驟L)、EB13(圖2,步驟K)及EB15(圖2,步驟M)。EB9(圖2,步驟H)可另外適用於將琥珀酸直接轉化為BDOP中間物琥珀酸半醛。
在另一態樣中,本文中提供一種NNOMO,其包含(1)MMP,其中該生物體包含至少一種編碼MMPE之外源核酸,該MMPE量足以在甲醇存在下增進還原當量之可得性;及(2)BDOP,其包含至少一種編碼BDOPE之外源核酸,該BDOPE以足以產生BDO之量表現。在一個實施例中,至少一種編碼MMPE之外源核酸以足以增加由非天然微生物生物體產生之BDO量之量在甲醇存在下增進還原當量之可得性。在一些實施例中,MMP包含上文或本文中別處所描述之MMPE之各種組合中的任一者。
在某些實施例中,(1)MMP包含:1A、1B、1C、1D、1E、1F、1G、1H、1I、1J、1K、1L、1M、1N或1O或其1A、1B、1C、1D、1E、1F、1G、1H、1I、1J、1K、1L、1M、1N或1O之任何組合,其中1A為EM1;1B為EM2;1C為EM3;1D為EM4;1E為EM5;1F為EM6;1G為EM15;1H為EM16;1I為EM8;1J為EM9;1K為自發性的或EM10;1L為EM11;1M為自發性的或EM12;1N為EM13;且1O為EM14;且(2)BDOP包含2A、2B、2C、2D、2E、2F、2G、2H、2I、2J、2K、2L或2M或2A、2B、2C、2D、2E、2F、2G、2H、2I、2J、2K、2L或2M之任何組合,其中2A為EB1或EB2A;2B為EB3;2C為EB4;2D為EB5;2E為EB6;2F為EB7;2G為EB8;2H為EB9;2I為EB10;2J為EB11或EB12;2K為EB13;2L為EB14;且2M為EB15。在一些實施例中,2A為EB1。在一些實施例中,2A為EB2A。在一些實施例中,2J為EB11。在一些實施例中,2J為EB12。在一些實施例中,1K為自發性的。在其他實施例中,1K為EM10。在一些實施例 中,1M為自發性的。在其他實施例中,1M為EM12。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在一個實施例中,BDOP包含2A。在另一實施例中,BDOP包含2B。在一實施例中,BDOP包含2C。在另一實施例中,BDOP包含2D。在一個實施例中,BDOP包含2E。在另一實施例中,BDOP包含2F。在一些實施例中,BDOP包含2G。在其他實施例中,BDOP包含2H。在另一實施例中,BDOP包含2I。在一個實施例中,BDOP包含2J。在一個實施例中,BDOP包含2K。在另一實施例中,BDOP包含2L。在一實施例中,BDOP包含2M。亦涵蓋兩種、三種、四種、五種、六種、七種、八種、九種、十種、十一種、十二種或十三種BDOPE 2A、2B、2C、2D、2E、2F、2G、2H、2I、2J、2K、2L及2M之任何組合。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在一些實施例中,MMP為圖1中描繪之MMP,且BDOP為圖2中描繪之BDOP。在某些實施例中,自甲醛形成5-羥甲基麩胱甘肽為自發性的(參見例如圖1,步驟M)。在一些實施例中,自甲醛形成5-羥甲基麩胱甘肽由EM12催化(參見例如圖1,步驟M)。在某些實施例中,自甲醛形成亞甲基-THF為自發性的(參見例如圖1,步驟K)。在某些實施例中,自甲醛形成亞甲基-THF由EM10催化(參見例如圖1,步驟K)。
根據圖2將琥珀酸轉化為BDO之例示性BDOPE組包括2A、2B、2C、2D、2E、2F及2G;2A、2B、2C、2J、2F及2G;2A、2B、2C、2J及2M;2A、2B、2C、2D、2E及2M;2A、2B、2C、2K及2G;2A、2B、2C、2D、2L及2G;2A、2I、2D、2E、2F及2G;2A、2I、2D、2E及2M;2A、2I、2J、2F及2G;2A、2I、2J及2M;2A、2I、2K及2G;2A、2I、2D、2L及2G;2H、2C、2D、2E、2F及2G;2H、 2C、2J、2F及2G;2H、2C、2J及2M;2H、2C、2D、2E及2M;2H、2C、2K及2G;及2H、2C、2D、2L及2G。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在一個實施例中,BDOP包含2B、2C、2D、2E、2F及2G。在另一實施例中,BDOP包含2B、2C、2J、2F及2G。在另一實施例中,BDOP包含2B、2C、2J及2M。在另一實施例中,BDOP包含2B、2C、2D、2E及2M。在一個實施例中,BDOP包含2B、2C、2K及2G。在另一實施例中,BDOP包含2B、2C、2D、2L及2G。在另一實施例中,BDOP包含2I、2D、2E、2F及2G。在另一實施例中,BDOP包含2I、2D、2E及2M。在一個實施例中,BDOP包含2I、2J、2F及2G。在另一實施例中,BDOP包含2I、2J及2M。在另一實施例中,BDOP包含2I、2K及2G。在一個實施例中,BDOP包含2I、2D、2L及2G。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在某些實施例中,BDOP進一步包含2A。在一個實施例中,BDOP包含2A、2B、2C、2D、2E、2F及2G。在另一實施例中,BDOP包含2A、2B、2C、2J、2F及2G。在另一實施例中,BDOP包含2A、2B、2C、2J及2M。在另一實施例中,BDOP包含2A、2B、2C、2D、2E及2M。在一個實施例中,BDOP包含2A、2B、2C、2K及2G。在另一實施例中,BDOP包含2A、2B、2C、2D、2L及2G。在另一實施例中,BDOP包含2A、2I、2D、2E、2F及2G。在另一實施例中,BDOP包含2A、2I、2D、2E及2M。在一個實施例中,BDOP包含2A、2I、2J、2F及2G。在另一實施例中,BDOP包含2A、2I、2J及2M。在另一實施例中,BDOP包含2A、2I、2K及2G。在一個實施例中,BDOP包含2A、2I、2D、2L及2G。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在另一實施例中,BDOP包含2H、2C、2D、2E、2F及2G。在另 一實施例中,BDOP包含2H、2C、2J、2F及2G。在另一實施例中,BDOP包含2H、2C、2J及2M。在一個實施例中,BDOP包含2H、2C、2D、2E及2M。在另一實施例中,BDOP包含2H、2C、2K及2G。在另一實施例中,BDOP包含2H、2C、2D、2L及2G。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在一個實施例中,(1)MMP包含:(i)1A及1B;(ii)1J;或(iii)1J及1K;且(2)BDOP包含(a)2B、2C、2D、2E、2F及2G;(b)2B、2C、2J、2F及2G;(c)2B、2C、2J及2M;(d)2B、2C、2D、2E及2M;(e)2B、2C、2K及2G;(f)2B、2C、2D、2L及2G;(g)2I、2D、2E、2F及2G;(h)2I、2D、2E及2M;(i)2I、2J、2F及2G;(j)2I、2J及2M;(k)2I、2K及2G;或(l)2I、2D、2L及2G。在一些實施例中,1K為自發性的。在其他實施例中,1K為EM10。在一些實施例中,1M為自發性的。在其他實施例中,1M為EM12。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在另一實施例中,(1)MMP包含:(i)1A及1B;(ii)1J;或(iii)1J及1K;且(2)BDOP包含(a)2A、2B、2C、2D、2E、2F及2G;(b)2A、2B、2C、2J、2F及2G;(c)2A、2B、2C、2J及2M;(d)2A、2B、2C、2D、2E及2M;(e)2A、2B、2C、2K及2G;(f)2A、2B、2C、2D、2L及2G;(g)2A、2I、2D、2E、2F及2G;(h)2A、2I、2D、2E及2M;(i)2A、2I、2J、2F及2G;(j)2A、2I、2J及2M;(k)2A、2I、2K及2G;(l)2A、2I、2D、2L及2G;(m)2H、2C、2D、2E、2F及2G;(n)2H、2C、2J、2F及2G;(o)2H、2C、2J及2M;(p)2H、2C、2D、2E及2M;(q)2H、2C、2K及2G;或(r)2H、2C、2D、2L及2G。在一些實施例中,1K為自發性的。在其他實施例中,1K為EM10。在一些實施例中,1M為自發性的。在其他實施例中,1M為EM12。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在一個實施例中,(1)MMP包含1A及1B;且(2)BDOP包含(a)2B、2C、2D、2E、2F及2G;(b)2B、2C、2J、2F及2G;(c)2B、2C、2J及2M;(d)2B、2C、2D、2E及2M;(e)2B、2C、2K及2G;(f)2B、2C、2D、2L及2G;(g)2I、2D、2E、2F及2G;(h)2I、2D、2E及2M;(i)2I、2J、2F及2G;(j)2I、2J及2M;(k)2I、2K及2G;或(l)2I、2D、2L及2G。在一些實施例中,1K為自發性的。在其他實施例中,1K為EM10。在一些實施例中,1M為自發性的。在其他實施例中,1M為EM12。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在另一實施例中,(1)MMP包含1A及1B;且(2)BDOP包含(a)2A、2B、2C、2D、2E、2F及2G;(b)2A、2B、2C、2J、2F及2G;(c)2A、2B、2C、2J及2M;(d)2A、2B、2C、2D、2E及2M;(e)2A、2B、2C、2K及2G;(f)2A、2B、2C、2D、2L及2G;(g)2A、2I、2D、2E、2F及2G;(h)2A、2I、2D、2E及2M;(i)2A、2I、2J、2F及2G;(j)2A、2I、2J及2M;(k)2A、2I、2K及2G;(l)2A、2I、2D、2L及2G;(m)2H、2C、2D、2E、2F及2G;(n)2H、2C、2J、2F及2G;(o)2H、2C、2J及2M;(p)2H、2C、2D、2E及2M;(q)2H、2C、2K及2G;或(r)2H、2C、2D、2L及2G。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在一個實施例中,(1)MMP包含1J;且(2)BDOP包含(a)2B、2C、2D、2E、2F及2G;(b)2B、2C、2J、2F及2G;(c)2B、2C、2J及2M;(d)2B、2C、2D、2E及2M;(e)2B、2C、2K及2G;(f)2B、2C、2D、2L及2G;(g)2I、2D、2E、2F及2G;(h)2I、2D、2E及2M;(i)2I、2J、2F及2G;(j)2I、2J及2M;(k)2I、2K及2G;或(l)2I、2D、2L及2G。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在另一實施例中,(1)MMP包含1J;且(2)BDOP包含(a)2A、2B、2C、2D、2E、2F及2G;(b)2A、2B、2C、2J、2F及2G;(c)2A、2B、2C、2J及2M;(d)2A、2B、2C、2D、2E及2M;(e)2A、2B、2C、2K及2G;(f)2A、2B、2C、2D、2L及2G;(g)2A、2I、2D、2E、2F及2G;(h)2A、2I、2D、2E及2M;(i)2A、2I、2J、2F及2G;(j)2A、2I、2J及2M;(k)2A、2I、2K及2G;(l)2A、2I、2D、2L及2G;(m)2H、2C、2D、2E、2F及2G;(n)2H、2C、2J、2F及2G;(o)2H、2C、2J及2M;(p)2H、2C、2D、2E及2M;(q)2H、2C、2K及2G;或(r)2H、2C、2D、2L及2G。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在一個實施例中,(1)MMP包含1J及1K;且(2)BDOP包含(a)2B、2C、2D、2E、2F及2G;(b)2B、2C、2J、2F及2G;(c)2B、2C、2J及2M;(d)2B、2C、2D、2E及2M;(e)2B、2C、2K及2G;(f)2B、2C、2D、2L及2G;(g)2I、2D、2E、2F及2G;(h)2I、2D、2E及2M;(i)2I、2J、2F及2G;(j)2I、2J及2M;(k)2I、2K及2G;或(l)2I、2D、2L及2G。在一些實施例中,1K為自發性的。在其他實施例中,1K為EM10。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在一個實施例中,(1)MMP包含1J及1K;且(2)BDOP包含(a)2A、2B、2C、2D、2E、2F及2G;(b)2A、2B、2C、2J、2F及2G;(c)2A、2B、2C、2J及2M;(d)2A、2B、2C、2D、2E及2M;(e)2A、2B、2C、2K及2G;(f)2A、2B、2C、2D、2L及2G;(g)2A、2I、2D、2E、2F及2G;(h)2A、2I、2D、2E及2M;(i)2A、2I、2J、2F及2G;(j)2A、2I、2J及2M;(k)2A、2I、2K及2G;(l)2A、2I、2D、2L及2G;(m)2H、2C、2D、2E、2F及2G;(n)2H、2C、2J、2F及2G;(o)2H、2C、2J及2M;(p)2H、2C、2D、2E及2M;(q)2H、 2C、2K及2G;或(r)2H、2C、2D、2L及2G。在一些實施例中,1K為自發性的。在其他實施例中,1K為EM10。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在某些實施例中,(1)MMP包含1A、1B、1C、1D及1E;且(2)BDOP包含(a)2B、2C、2D、2E、2F及2G;(b)2B、2C、2J、2F及2G;(c)2B、2C、2J及2M;(d)2B、2C、2D、2E及2M;(e)2B、2C、2K及2G;(f)2B、2C、2D、2L及2G;(g)2I、2D、2E、2F及2G;(h)2I、2D、2E及2M;(i)2I、2J、2F及2G;(j)2I、2J及2M;(k)2I、2K及2G;或(l)2I、2D、2L及2G。在某些實施例中,MMP進一步包含1I。在一些實施例中,MMP進一步包含1G。在其他實施例中,MMP進一步包含1G及1H。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在某些實施例中,(1)MMP包含1A、1B、1C、1D及1E;且(2)BDOP包含(a)2A、2B、2C、2D、2E、2F及2G;(b)2A、2B、2C、2J、2F及2G;(c)2A、2B、2C、2J及2M;(d)2A、2B、2C、2D、2E及2M;(e)2A、2B、2C、2K及2G;(f)2A、2B、2C、2D、2L及2G;(g)2A、2I、2D、2E、2F及2G;(h)2A、2I、2D、2E及2M;(i)2A、2I、2J、2F及2G;(j)2A、2I、2J及2M;(k)2A、2I、2K及2G;(l)2A、2I、2D、2L及2G;(m)2H、2C、2D、2E、2F及2G;(n)2H、2C、2J、2F及2G;(o)2H、2C、2J及2M;(p)2H、2C、2D、2E及2M;(q)2H、2C、2K及2G;或(r)2H、2C、2D、2L及2G。在某些實施例中,MMP進一步包含1I。在一些實施例中,MMP進一步包含1G。在其他實施例中,MMP進一步包含1G及1H。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在一些實施例中,(1)MMP包含1A、1B、1C、1D及1F;且(2)BDOP包含(a)2B、2C、2D、2E、2F及2G;(b)2B、2C、2J、2F及 2G;(c)2B、2C、2J及2M;(d)2B、2C、2D、2E及2M;(e)2B、2C、2K及2G;(f)2B、2C、2D、2L及2G;(g)2I、2D、2E、2F及2G;(h)2I、2D、2E及2M;(i)2I、2J、2F及2G;(j)2I、2J及2M;(k)2I、2K及2G;或(l)2I、2D、2L及2G。在某些實施例中,MMP進一步包含1I。在一些實施例中,MMP進一步包含IG。在其他實施例中,MMP進一步包含1G及1H。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在一些實施例中,(1)MMP包含1A、1B、1C、1D及1F;且(2)BDOP包含(a)2A、2B、2C、2D、2E、2F及2G;(b)2A、2B、2C、2J、2F及2G;(c)2A、2B、2C、2J及2M;(d)2A、2B、2C、2D、2E及2M;(e)2A、2B、2C、2K及2G;(f)2A、2B、2C、2D、2L及2G;(g)2A、2I、2D、2E、2F及2G;(h)2A、2I、2D、2E及2M;(i)2A、2I、2J、2F及2G;(j)2A、2I、2J及2M;(k)2A、2I、2K及2G;(l)2A、2I、2D、2L及2G;(m)2H、2C、2D、2E、2F及2G;(n)2H、2C、2J、2F及2G;(o)2H、2C、2J及2M;(p)2H、2C、2D、2E及2M;(q)2H、2C、2K及2G;或(r)2H、2C、2D、2L及2G。在某些實施例中,MMP進一步包含1I。在一些實施例中,MMP進一步包含IG。在其他實施例中,MMP進一步包含1G及1H。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在一些實施例中,(1)MMP包含1J、1C、1D及1E;且(2)BDOP包含(a)2B、2C、2D、2E、2F及2G;(b)2B、2C、2J、2F及2G;(c)2B、2C、2J及2M;(d)2B、2C、2D、2E及2M;(e)2B、2C、2K及2G;(f)2B、2C、2D、2L及2G;(g)2I、2D、2E、2F及2G;(h)2I、2D、2E及2M;(i)2I、2J、2F及2G;(j)2I、2J及2M;(k)2I、2K及2G;或(l)2I、2D、2L及2G。在某些實施例中,MMP進一步包含1I。在一些實施例中,MMP進一步包含IG。在其他實施例中,MMP進一 步包含1G及1H。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在一些實施例中,(1)MMP包含1J、1C、1D及1E;且(2)BDOP包含(a)2A、2B、2C、2D、2E、2F及2G;(b)2A、2B、2C、2J、2F及2G;(c)2A、2B、2C、2J及2M;(d)2A、2B、2C、2D、2E及2M;(e)2A、2B、2C、2K及2G;(f)2A、2B、2C、2D、2L及2G;(g)2A、2I、2D、2E、2F及2G;(h)2A、2I、2D、2E及2M;(i)2A、2I、2J、2F及2G;(j)2A、2I、2J及2M;(k)2A、2I、2K及2G;(l)2A、2I、2D、2L及2G;(m)2H、2C、2D、2E、2F及2G;(n)2H、2C、2J、2F及2G;(o)2H、2C、2J及2M;(p)2H、2C、2D、2E及2M;(q)2H、2C、2K及2G;或(r)2H、2C、2D、2L及2G。在某些實施例中,MMP進一步包含1I。在一些實施例中,MMP進一步包含IG。在其他實施例中,MMP進一步包含1G及1H。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在一個實施例中,(1)MMP包含1A、1B及1C;且(2)BDOP包含(a)2B、2C、2D、2E、2F及2G;(b)2B、2C、2J、2F及2G;(c)2B、2C、2J及2M;(d)2B、2C、2D、2E及2M;(e)2B、2C、2K及2G;(f)2B、2C、2D、2L及2G;(g)2I、2D、2E、2F及2G;(h)2I、2D、2E及2M;(i)2I、2J、2F及2G;(j)2I、2J及2M;(k)2I、2K及2G;或(l)2I、2D、2L及2G。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在一個實施例中,(1)MMP包含1A、1B及1C;且(2)BDOP包含(a)2A、2B、2C、2D、2E、2F及2G;(b)2A、2B、2C、2J、2F及2G;(c)2A、2B、2C、2J及2M;(d)2A、2B、2C、2D、2E及2M;(e)2A、2B、2C、2K及2G;(f)2A、2B、2C、2D、2L及2G;(g)2A、2I、2D、2E、2F及2G;(h)2A、2I、2D、2E及2M;(i)2A、2I、 2J、2F及2G;(j)2A、2I、2J及2M;(k)2A、2I、2K及2G;(l)2A、2I、2D、2L及2G;(m)2H、2C、2D、2E、2F及2G;(n)2H、2C、2J、2F及2G;(o)2H、2C、2J及2M;(p)2H、2C、2D、2E及2M;(q)2H、2C、2K及2G;或(r)2H、2C、2D、2L及2G。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在另一實施例中,(1)MMP包含1J、1M及1N;且(2)BDOP包含(a)2B、2C、2D、2E、2F及2G;(b)2B、2C、2J、2F及2G;(c)2B、2C、2J及2M;(d)2B、2C、2D、2E及2M;(e)2B、2C、2K及2G;(f)2B、2C、2D、2L及2G;(g)2I、2D、2E、2F及2G;(h)2I、2D、2E及2M;(i)2I、2J、2F及2G;(j)2I、2J及2M;(k)2I、2K及2G;或(l)2I、2D、2L及2G。在一些實施例中,1M為自發性的。在其他實施例中,1M為EM12。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在另一實施例中,(1)MMP包含1J、1M及1N;且(2)BDOP包含(a)2A、2B、2C、2D、2E、2F及2G;(b)2A、2B、2C、2J、2F及2G;(c)2A、2B、2C、2J及2M;(d)2A、2B、2C、2D、2E及2M;(e)2A、2B、2C、2K及2G;(f)2A、2B、2C、2D、2L及2G;(g)2A、2I、2D、2E、2F及2G;(h)2A、2I、2D、2E及2M;(i)2A、2I、2J、2F及2G;(j)2A、2I、2J及2M;(k)2A、2I、2K及2G;(l)2A、2I、2D、2L及2G;(m)2H、2C、2D、2E、2F及2G;(n)2H、2C、2J、2F及2G;(o)2H、2C、2J及2M;(p)2H、2C、2D、2E及2M;(q)2H、2C、2K及2G;或(r)2H、2C、2D、2L及2G。在一些實施例中,1M為自發性的。在其他實施例中,1M為EM12。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在一個實施例中,(1)MMP包含1J、1C、1D及1F;且(2)BDOP包含(a)2B、2C、2D、2E、2F及2G;(b)2B、2C、2J、2F及2G;(c) 2B、2C、2J及2M;(d)2B、2C、2D、2E及2M;(e)2B、2C、2K及2G;(f)2B、2C、2D、2L及2G;(g)2I、2D、2E、2F及2G;(h)2I、2D、2E及2M;(i)2I、2J、2F及2G;(j)2I、2J及2M;(k)2I、2K及2G;或(l)2I、2D、2L及2G。在某些實施例中,MMP進一步包含1I。在一些實施例中,MMP進一步包含IG。在其他實施例中,MMP進一步包含1G及1H。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在一個實施例中,(1)MMP包含1J、1C、1D及1F;且(2)BDOP包含(a)2A、2B、2C、2D、2E、2F及2G;(b)2A、2B、2C、2J、2F及2G;(c)2A、2B、2C、2J及2M;(d)2A、2B、2C、2D、2E及2M;(e)2A、2B、2C、2K及2G;(f)2A、2B、2C、2D、2L及2G;(g)2A、2I、2D、2E、2F及2G;(h)2A、2I、2D、2E及2M;(i)2A、2I、2J、2F及2G;(j)2A、2I、2J及2M;(k)2A、2I、2K及2G;(l)2A、2I、2D、2L及2G;(m)2H、2C、2D、2E、2F及2G;(n)2H、2C、2J、2F及2G;(o)2H、2C、2J及2M;(p)2H、2C、2D、2E及2M;(q)2H、2C、2K及2G;或(r)2H、2C、2D、2L及2G。在某些實施例中,MMP進一步包含1I。在一些實施例中,MMP進一步包含IG。在其他實施例中,MMP進一步包含1G及1H。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在另一實施例中,(1)MMP包含1J及1L;且(2)BDOP包含(a)2B、2C、2D、2E、2F及2G;(b)2B、2C、2J、2F及2G;(c)2B、2C、2J及2M;(d)2B、2C、2D、2E及2M;(e)2B、2C、2K及2G;(f)2B、2C、2D、2L及2G;(g)2I、2D、2E、2F及2G;(h)2I、2D、2E及2M;(i)2I、2J、2F及2G;(j)2I、2J及2M;(k)2I、2K及2G;或(l)2I、2D、2L及2G。在某些實施例中,MMP進一步包含1I。在一些實施例中,MMP進一步包含IG。在其他實施例中,MMP進一步包含1G 及1H。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在另一實施例中,(1)MMP包含1J及1L;且(2)BDOP包含(a)2A、2B、2C、2D、2E、2F及2G;(b)2A、2B、2C、2J、2F及2G;(c)2A、2B、2C、2J及2M;(d)2A、2B、2C、2D、2E及2M;(e)2A、2B、2C、2K及2G;(f)2A、2B、2C、2D、2L及2G;(g)2A、2I、2D、2E、2F及2G;(h)2A、2I、2D、2E及2M;(i)2A、2I、2J、2F及2G;(j)2A、2I、2J及2M;(k)2A、2I、2K及2G;(l)2A、2I、2D、2L及2G;(m)2H、2C、2D、2E、2F及2G;(n)2H、2C、2J、2F及2G;(o)2H、2C、2J及2M;(p)2H、2C、2D、2E及2M;(q)2H、2C、2K及2G;或(r)2H、2C、2D、2L及2G。在某些實施例中,MMP進一步包含1I。在一些實施例中,MMP進一步包含IG。在其他實施例中,MMP進一步包含1G及1H。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在另一實施例中,(1)MMP包含1J、1M、1N及1O;且(2)BDOP包含(a)2B、2C、2D、2E、2F及2G;(b)2B、2C、2J、2F及2G;(c)2B、2C、2J及2M;(d)2B、2C、2D、2E及2M;(e)2B、2C、2K及2G;(f)2B、2C、2D、2L及2G;(g)2I、2D、2E、2F及2G;(h)2I、2D、2E及2M;(i)2I、2J、2F及2G;(j)2I、2J及2M;(k)2I、2K及2G;或(l)2I、2D、2L及2G。在某些實施例中,MMP進一步包含1I。在一些實施例中,MMP進一步包含IG。在其他實施例中,MMP進一步包含1G及1H。在一些實施例中,1M為自發性的。在其他實施例中,1M為EM12。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在另一實施例中,(1)MMP包含1J、1M、1N及1O;且(2)BDOP包含(a)2A、2B、2C、2D、2E、2F及2G;(b)2A、2B、2C、2J、2F及2G;(c)2A、2B、2C、2J及2M;(d)2A、2B、2C、2D、2E及2M; (e)2A、2B、2C、2K及2G;(f)2A、2B、2C、2D、2L及2G;(g)2A、2I、2D、2E、2F及2G;(h)2A、2I、2D、2E及2M;(i)2A、2I、2J、2F及2G;(j)2A、2I、2J及2M;(k)2A、2I、2K及2G;(l)2A、2I、2D、2L及2G;(m)2H、2C、2D、2E、2F及2G;(n)2H、2C、2J、2F及2G;(o)2H、2C、2J及2M;(p)2H、2C、2D、2E及2M;(q)2H、2C、2K及2G;或(r)2H、2C、2D、2L及2G。在某些實施例中,MMP進一步包含1I。在一些實施例中,MMP進一步包含IG。在其他實施例中,MMP進一步包含1G及1H。在一些實施例中,1M為自發性的。在其他實施例中,1M為EM12。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在某些實施例中,(1)MMP包含1J、1N及1O;且(2)BDOP包含(a)2B、2C、2D、2E、2F及2G;(b)2B、2C、2J、2F及2G;(c)2B、2C、2J及2M;(d)2B、2C、2D、2E及2M;(e)2B、2C、2K及2G;(f)2B、2C、2D、2L及2G;(g)2I、2D、2E、2F及2G;(h)2I、2D、2E及2M;(i)2I、2J、2F及2G;(j)2I、2J及2M;(k)2I、2K及2G;或(l)2I、2D、2L及2G。在某些實施例中,MMP進一步包含1I。在一些實施例中,MMP進一步包含IG。在其他實施例中,MMP進一步包含1G及1H。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在某些實施例中,(1)MMP包含1J、1N及1O;且(2)BDOP包含(a)2A、2B、2C、2D、2E、2F及2G;(b)2A、2B、2C、2J、2F及2G;(c)2A、2B、2C、2J及2M;(d)2A、2B、2C、2D、2E及2M;(e)2A、2B、2C、2K及2G;(f)2A、2B、2C、2D、2L及2G;(g)2A、2I、2D、2E、2F及2G;(h)2A、2I、2D、2E及2M;(i)2A、2I、2J、2F及2G;(j)2A、2I、2J及2M;(k)2A、2I、2K及2G;(l)2A、2I、2D、2L及2G;(m)2H、2C、2D、2E、2F及2G;(n)2H、2C、2J、2F及2G;(o)2H、2C、2J及2M;(p)2H、2C、2D、2E及2M;(q) 2H、2C、2K及2G;或(r)2H、2C、2D、2L及2G。在某些實施例中,MMP進一步包含1I。在一些實施例中,MMP進一步包含IG。在其他實施例中,MMP進一步包含1G及1H。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在一些實施例中,(1)MMP包含1J、1K、1C、1D及1E;且(2)BDOP包含(a)2B、2C、2D、2E、2F及2G;(b)2B、2C、2J、2F及2G;(c)2B、2C、2J及2M;(d)2B、2C、2D、2E及2M;(e)2B、2C、2K及2G;(f)2B、2C、2D、2L及2G;(g)2I、2D、2E、2F及2G;(h)2I、2D、2E及2M;(i)2I、2J、2F及2G;(j)2I、2J及2M;(k)2I、2K及2G;或(l)2I、2D、2L及2G。在某些實施例中,MMP進一步包含1I。在一些實施例中,MMP進一步包含IG。在其他實施例中,MMP進一步包含1G及1H。在一些實施例中,1K為自發性的。在其他實施例中,1K為EM10。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在一些實施例中,(1)MMP包含1J、1K、1C、1D及1E;且(2)BDOP包含(a)2A、2B、2C、2D、2E、2F及2G;(b)2A、2B、2C、2J、2F及2G;(c)2A、2B、2C、2J及2M;(d)2A、2B、2C、2D、2E及2M;(e)2A、2B、2C、2K及2G;(f)2A、2B、2C、2D、2L及2G;(g)2A、2I、2D、2E、2F及2G;(h)2A、2I、2D、2E及2M;(i)2A、2I、2J、2F及2G;(j)2A、2I、2J及2M;(k)2A、2I、2K及2G;(l)2A、2I、2D、2L及2G;(m)2H、2C、2D、2E、2F及2G;(n)2H、2C、2J、2F及2G;(o)2H、2C、2J及2M;(p)2H、2C、2D、2E及2M;(q)2H、2C、2K及2G;或(r)2H、2C、2D、2L及2G。在某些實施例中,MMP進一步包含1I。在一些實施例中,MMP進一步包含IG。在其他實施例中,MMP進一步包含1G及1H。在一些實施例中,1K為自發性的。在其他實施例中,1K為EM10。在一個實施例中,2J 為EB11。在另一實施例中,2J為EB12。
在一個實施例中,(1)MMP包含1J、1K、1C、1D及1F;且(2)BDOP包含(a)2B、2C、2D、2E、2F及2G;(b)2B、2C、2J、2F及2G;(c)2B、2C、2J及2M;(d)2B、2C、2D、2E及2M;(e)2B、2C、2K及2G;(f)2B、2C、2D、2L及2G;(g)2J、2D、2E、2F及2G;(h)2I、2D、2E及2M;(i)2I、2J、2F及2G;(j)2I、2J及2M;(k)2I、2K及2G;或(l)2I、2D、2L及2G。在某些實施例中,MMP進一步包含1I。在一些實施例中,MMP進一步包含IG。在其他實施例中,MMP進一步包含1G及1H。在一些實施例中,1K為自發性的。在其他實施例中,1K為EM10。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在一個實施例中,(1)MMP包含1J、1K、1C、1D及1F;且(2)BDOP包含(a)2A、2B、2C、2D、2E、2F及2G;(b)2A、2B、2C、2J、2F及2G;(c)2A、2B、2C、2J及2M;(d)2A、2B、2C、2D、2E及2M;(e)2A、2B、2C、2K及2G;(f)2A、2B、2C、2D、2L及2G;(g)2A、2I、2D、2E、2F及2G;(h)2A、2I、2D、2E及2M;(i)2A、2I、2J、2F及2G;(j)2A、2I、2J及2M;(k)2A、2I、2K及2G;(l)2A、2I、2D、2L及2G;(m)2H、2C、2D、2E、2F及2G;(n)2H、2C、2J、2F及2G;(o)2H、2C、2J及2M;(p)2H、2C、2D、2E及2M;(q)2H、2C、2K及2G;或(r)2H、2C、2D、2L及2G。在某些實施例中,MMP進一步包含1I。在一些實施例中,MMP進一步包含IG。在其他實施例中,MMP進一步包含1G及1H。在一些實施例中,1K為自發性的。在其他實施例中,1K為EM10。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在一個實施例中,(1)MMP包含1A、1B及1C;且(2)BDOP包含(a)2B、2C、2D、2E、2F及2G;(b)2B、2C、2J、2F及2G;(c)2B、 2C、2J及2M;(d)2B、2C、2D、2E及2M;(e)2B、2C、2K及2G;(f)2B、2C、2D、2L及2G;(g)2I、2D、2E、2F及2G;(h)2I、2D、2E及2M;(i)2I、2J、2F及2G;(j)2I、2J及2M;(k)2I、2K及2G;或(l)2I、2D、2L及2G。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在一個實施例中,(1)MMP包含1A、1B及1C;且(2)BDOP包含(a)2A、2B、2C、2D、2E、2F及2G;(b)2A、2B、2C、2J、2F及2G;(c)2A、2B、2C、2J及2M;(d)2A、2B、2C、2D、2E及2M;(e)2A、2B、2C、2K及2G;(f)2A、2B、2C、2D、2L及2G;(g)2A、2I、2D、2E、2F及2G;(h)2A、2I、2D、2E及2M;(i)2A、2I、2J、2F及2G;(j)2A、2I、2J及2M;(k)2A、2I、2K及2G;(l)2A、2I、2D、2L及2G;(m)2H、2C、2D、2E、2F及2G;(n)2H、2C、2J、2F及2G;(o)2H、2C、2J及2M;(p)2H、2C、2D、2E及2M;(q)2H、2C、2K及2G;或(r)2H、2C、2D、2L及2G。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在另一實施例中,(1)MMP包含1J、1M及1N;且(2)BDOP包含(a)2B、2C、2D、2E、2F及2G;(b)2B、2C、2J、2F及2G;(c)2B、2C、2J及2M;(d)2B、2C、2D、2E及2M;(e)2B、2C、2K及2G;(f)2B、2C、2D、2L及2G;(g)2I、2D、2E、2F及2G;(h)2I、2D、2E及2M;(i)2I、2J、2F及2G;(j)2I、2J及2M;(k)2I、2K及2G;或(l)2I、2D、2L及2G。在一些實施例中,1M為自發性的。在其他實施例中,1M為EM12。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在另一實施例中,(1)MMP包含1J、1M及1N;且(2)BDOP包含(a)2A、2B、2C、2D、2E、2F及2G;(b)2A、2B、2C、2J、2F及2G;(c)2A、2B、2C、2J及2M;(d)2A、2B、2C、2D、2E及2M; (e)2A、2B、2C、2K及2G;(f)2A、2B、2C、2D、2L及2G;(g)2A、2I、2D、2E、2F及2G;(h)2A、2I、2D、2E及2M;(i)2A、2I、2J、2F及2G;(j)2A、2I、2J及2M;(k)2A、2I、2K及2G;(l)2A、2I、2D、2L及2G;(m)2H、2C、2D、2E、2F及2G;(n)2H、2C、2J、2F及2G;(o)2H、2C、2J及2M;(p)2H、2C、2D、2E及2M;(q)2H、2C、2K及2G;或(r)2H、2C、2D、2L及2G。在一些實施例中,1M為自發性的。在其他實施例中,1M為EM12。在一個實施例中,2J為EB11。在另一實施例中,2J為EB12。
在一個實施例中,NNOMO包含(1)包含以下之MMP:1A及1B;1J;1J及1K;1A、1B、1C、1D及1E;1A、1B、1C、1D及1F;1J、1C、1D及1E;1J、1C、1D及1F;1J及1L;1J、1M、1N及1O;1J、1N及1O;1J、1K、1C、1D及1E;1J、1K、1C、1D及1F;1I;1A、1B、1C、1D、1E及1I;1A、1B、1C、1D、1F及1I;1J、1C、1D、1E及1I;1J、1C、1D、1F及1I;1J、1L及1I;1J、1M、1N、1O及1I;1J、1N、1O及1I;1J、1K、1C、1D、1E及1I;1J、1K、1C、1D、1F及1I;1G;1A、1B、1C、1D、1E及1G;1A、1B、1C、1D、1F及1G;1J、1C、1D、1E及1G;1J、1C、1D、1F及1G;1J、1L及1G;1J、1M、1N、1O及1G;1J、1N、1O及1G;1J、1K、1C、1D、1E及1G;1J、1K、1C、1D、1F及1G;1G及1H;1A、1B、1C、1D、1E、1G及1H;1A、1B、1C、1D、1F、1G及1H;1J、1C、1D、1E、1G及1H;1J、1C、1D、1F、1G及1H;1J、1L、1G及1H;1J、1M、1N、1O、1G及1H;1J、1N、1O、1G及1H;1J、1K、1C、1D、1E、1G及1H;或1J、1K、1C、1D、1F、1G及1H;及(2)BDOP。在一些實施例中,1K為自發性的。在其他實施例中,1K為EM10。在一些實施例中,1M為EM12。
本文中所提供之任何MMP均可與本文中所提供之任何BDOP組 合。
本文中亦提供例示性路徑,其利用由甲醇氧化(例如如圖1,步驟J中提供)產生之甲醛形成某些可用於形成生物質之主要代謝路徑中間物。可利用由甲醇氧化(例如如圖1中提供)產生之甲醛之一種例示性FAP展示於圖3中,其涉及由EF1使甲醛與D-核酮糖-5-磷酸縮合以形成H6P(圖3,步驟A)。酶可使用Mg2+或Mn2+以達成最大活性,但其他金屬離子亦為適用的,且甚至涵蓋非金屬離子依賴性機制。H6P由EF2轉化為F6P(圖3,步驟B)。涉及由甲醇氧化(例如如圖1中提供)產生之甲醛之解毒及同化的另一例示性路徑展示於圖4中且經由DHA進行。EF3為特殊轉酮醇酶,其首先將乙醇醛基自木酮糖-5-磷酸轉移至甲醛,導致形成DHA及G3P,其為糖酵解中之中間物(圖4,步驟A)。由DHA合成酶獲得之DHA隨後進一步由DHA激酶磷酸化以形成磷酸DHA(圖4,步驟B)。DHAP可經同化至糖酵解及若干其他路徑中。圖3及4中提供之路徑展示碳經同化進入最終產物,而非將甲醛轉化為甲酸且至CO2排出氣體上。
因此,在一個實施例中,如本文中提供具有單獨或與BDOP組合的MMP之生物體進一步包含FAP,其利用例如由甲醇氧化獲得的甲醛形成某些可用於例如形成生物質之主要代謝路徑之中間物。在一些實施例中,FAP包含3A或3B,其中3A為EF1且3B為EF2。在其他實施例中,FAP包含4A或4B,其中4A為EF3且4B為EF4。
在某些實施例中,本文中提供一種具有MMP之NNOMO,其中該生物體包含至少一種編碼EM9(1J)之外源核酸,該EM9以足以在甲醇存在下增進還原當量之可得性之量表現及/或以足以將甲醇轉化為甲醛之量表現。在一些實施例中,生物體包含至少一種編碼EM9之外源核酸,該EM9以足以在甲醇存在下增進還原當量之可得性之量表現。在其他實施例中,生物體包含至少一種編碼EM9之外源核酸,該EM9 以足以將甲醇轉化為甲醛之量表現。在一些實施例中,微生物生物體進一步包含FAP。在某些實施例中,生物體進一步包含至少一種編碼FAPE之外源核酸,該FAPE以足以產生糖酵解及/或可用於例如形成生物質之代謝路徑之中間物的量表現。在某些實施例中,FAPE係選自由以下組成之群:EF1(3A)、EF2(3B)、EF3(4A)及EF4(4B)。
在一些實施例中,編碼EM9之外源核酸在培養基中或細胞內以足以產生大於或等於1μM、10μM、20μM或50μM或其範圍之甲醛量的量表現。在其他實施例中,編碼EM9之外源核酸在培養基中或細胞內能夠產生大於或等於1μM、10μM、20μM或50μM或其範圍之甲醛量。在一些實施例中,範圍為1μM至50μM或50μM以上。在其他實施例中,範圍為10μM至50μM或50μM以上。在其他實施例中,範圍為20μM至50μM或50μM以上。在其他實施例中,甲醛產生量為50μM或50μM以上。在特定實施例中,甲醛產生量超過陰性對照物(例如不包含外源核酸之相同生物體物種,諸如野生型微生物生物體或其對照微生物生物體)之甲醛產生量或與其相當。在某些實施例中,EM9係選自本文中所提供者,例如如實例I(參見圖1,步驟J)中所例示者。在某些實施例中,甲醛產生量藉由全細胞分析(諸如實例I中提供者(參見圖1,步驟J))或藉由本文中所提供或者此項技術中已知之另一分析來測定。在某些實施例中,在全細胞中缺乏甲醛利用活性。
在某些實施例中,編碼EM9之外源核酸在培養基中或細胞內以足以產生至少1X、2X、3X、4X、5X、6X、7X、8X、9X、10X、15X、20X、30X、40X、50X、100X或100X以上甲醛之量表現。在其他實施例中,編碼EM9之外源核酸在培養基中或細胞內能夠產生至少1X、2X、3X、4X、5X、6X、7X、8X、9X、10X、15X、20X、30X、40X、50X、100X或其範圍之甲醛量。在一些實施例中,範圍為1X至100X。在其他實施例中,範圍為2X至100X。在其他實施例 中,範圍為5X至100X。在其他實施例中,範圍為10X至100X。在其他實施例中,範圍為50X至100X。在一些實施例中,甲醛產生量為至少20X。在其他實施例中,甲醛產生量為至少50X。在特定實施例中,甲醛產生量超過陰性對照物(例如不包含外源核酸之相同生物體物種,諸如野生型微生物生物體或其對照微生物生物體)之甲醛產生量或與其相當。在某些實施例中,EM9係選自本文中所提供者,例如如實例I(參見圖1,步驟J)中所例示者。在某些實施例中,甲醛產生量藉由全細胞分析(諸如實例I中提供者(參見圖1,步驟J))或藉由本文中所提供或者此項技術中已知之另一分析來測定。在某些實施例中,在全細胞中缺乏甲醛利用活性。
在一個態樣中,本文中提供一種NNOMO,其包含(1)MMP,其中該生物體包含至少一種編碼MMPE之外源核酸,該MMPE量為足以在甲醇存在下增進還原當量之可得性及/或以足以將甲醇轉化為甲醛之量表現;及(2)FAP,其中該生物體包含至少一種編碼FAPE之外源核酸,該FAPE以足以產生糖酵解及/或可用於例如形成生物質之代謝路徑之中間物之量表現。在一些實施例中,生物體包含至少一種編碼EM9之外源核酸,該EM9以足以在甲醇存在下增進還原當量之可得性之量表現。在其他實施例中,生物體包含至少一種編碼EM9之外源核酸,該EM9以足以將甲醇轉化為甲酸之量表現。在特定實施例中,MMP包含EM9(1J)。在某些實施例中,FAPE為3A,且中間物為H6P、F6P或其組合。在其他實施例中,FAPE為3B,且中間物為H6P、F6P或其組合。在其他實施例中,FAPE為3A及3B,且中間物為H6P、F6P或其組合。在一些實施例中,FAPE為4A,且中間物為DHA、磷酸DHA或其組合。在其他實施例中,FAPE為4B,且中間物為DHA、磷酸DHA或其組合。在其他實施例中,FAPE為4A及4B,且中間物為DHA、磷酸DHA或其組合。在一個實施例中,至少一種編 碼MMPE之外源核酸在甲醇存在下充分增進還原當量之可得性且充分增加甲醛同化,以增加非天然微生物生物體之BDO或本文中所述之其他產物之產生。在一些實施例中,MMP包含上文或本文中別處所描述之各種MMPE組合中的任一者。
在某些實施例中,(1)MMP包含:1A、1B、1C、1D、1E、1F、1G、1H、1I、1J、1K、1L、1M、1N或1O或其1A、1B、1C、1D、1E、1F、1G、1H、1I、1J、1K、1L、1M、1N或1O之任何組合,其中1A為EM1;1B為EM2;1C為EM3;1D為EM4;1E為EM5;1F為EM6;1G為EM15;1H為EM16;1I為EM8;1J為EM9;1K為自發性的或EM10;1L為EM11;1M為自發性的或EM12;1N為EM13;且1O為EM14;且(2)FAP包含3A、3B或其組合,其中3A為EF1,且3B為EF2。在一些實施例中,1K為自發性的。在其他實施例中,1K為EM10。在一些實施例中,1M為自發性的。在其他實施例中,1M為EM12。在一些實施例中,中間物為H6P。在其他實施例中,中間物為F6P。在其他實施例中,中間物為H6P及F6P。
在一個實施例中,FAP包含3A。在另一實施例中,FAP包含3B。在一個實施例中,FAP包含3A及3B。
在一些實施例中,MMP為圖1中描繪之MMP及圖3中描繪之FAP。根據圖3將D-核酮糖-5-磷酸及甲醛轉化為F6P(經由H6P)之一組例示性FAPE包括3A及3B。
在一特定實施例中,(1)MMP包含1J;且(2)FAP包含3A及3B。在其他實施例中,(1)MMP包含1J及1K;且(2)FAP包含3A及3B。在一些實施例中,(1)MMP包含1J、1C、1D及1E;且(2)FAP包含3A及3B。在一個實施例中,(1)MMP包含1J、1C、1D及1F;且(2)FAP包含3A及3B。在另一實施例中,(1)MMP包含1J及1L;且(2)FAP包含3A及3B。在另一實施例中,(1)MMP包含1J、1M、1N及1O;且(2) FAP包含3A及3B。在某些實施例中,(1)MMP包含1J、1N及1O;且(2)FAP包含3A及3B。在一些實施例中,(1)MMP包含1J、1K、1C、1D及1E;且(2)FAP包含3A及3B。在一個實施例中,(1)MMP包含1J、1K、1C、1D及1F;且(2)FAP包含3A及3B。在一些實施例中,(1)MMP包含1J、1C、1D、1E及1I;且(2)FAP包含3A及3B。在一個實施例中,(1)MMP包含1J、1C、1D、1F及1I;且(2)FAP包含3A及3B。在另一實施例中,(1)MMP包含1J、1L及1I;且(2)FAP包含3A及3B。在另一實施例中,(1)MMP包含1J、1M、1N、1O及1I;且(2)FAP包含3A及3B。在某些實施例中,(1)MMP包含1J、1N、1O及1I;且(2)FAP包含3A及3B。在一些實施例中,(1)MMP包含1J、1K、1C、1D、1E及1I;且(2)FAP包含3A及3B。在一個實施例中,(1)MMP包含1J、1K、1C、1D、1F及1I;且(2)FAP包含3A及3B。在一些實施例中,(1)MMP包含1J、1C、1D、1E及1G;且(2)FAP包含3A及3B。在一個實施例中,(1)MMP包含1J、1C、1D、1F及1G;且(2)FAP包含3A及3B。在另一實施例中,(1)MMP包含1J、1L及1G;且(2)FAP包含3A及3B。在另一實施例中,(1)MMP包含1J、1M、1N、1O及1G;且(2)FAP包含3A及3B。在某些實施例中,(1)MMP包含1J、1N、1O及1G;且(2)FAP包含3A及3B。在一些實施例中,(1)MMP包含1J、1K、1C、1D、1E及1G;且(2)FAP包含3A及3B。在一個實施例中,(1)MMP包含1J、1K、1C、1D、1F及1G;且(2)FAP包含3A及3B。在一些實施例中,(1)MMP包含1J、1C、1D、1E、1G及1H;且(2)FAP包含3A及3B。在一個實施例中,(1)MMP包含1J、1C、1D、1F、1G及1H;且(2)FAP包含3A及3B。在另一實施例中,(1)MMP包含1J、1L、1G及1H;且(2)FAP包含3A及3B。在另一實施例中,(1)MMP包含1J、1M、1N、1O、1G及1H;且(2)FAP包含3A及3B。在某些實施例中,(1)MMP包含1J、1N、1O、1G及1H;且(2) FAP包含3A及3B。在一些實施例中,(1)MMP包含1J、1K、1C、1D、1E、1G及1H;且(2)FAP包含3A及3B。在一個實施例中,(1)MMP包含1J、1K、1C、1D、1F、1G及1H;且(2)FAP包含3A及3B。在一些實施例中,1K為自發性的。在其他實施例中,1K為EM10。在一些實施例中,1M為自發性的。在一些實施例中,中間物為H6P。在其他實施例中,中間物為F6P。在其他實施例中,中間物為H6P及F6P。
在某些實施例中,(1)MMP包含:1A、1B、1C、1D、1E、1F、1G、1H、1I、1J、1K、1L、1M、1N或1O或其1A、1B、1C、1D、1E、1F、1G、1H、1I、1J、1K、1L、1M、1N或1O之任何組合,其中1A為EM1;1B為EM2;1C為EM3;1D為EM4;1E為EM5;1F為EM6;1G為EM15;1H為EM16;1I為EM8;1J為EM9;1K為自發性的或EM10;1L為EM11;1M為自發性的或EM12;1N為EM13;且1O為EM14;且(2)FAP包含4A、4B或其組合,其中4A為EF3且4B為EF4。在一些實施例中,1K為自發性的。在其他實施例中,1K為EM10。在一些實施例中,1M為自發性的。在其他實施例中,1M為EM12。在一些實施例中,中間物為DHA。在其他實施例中,中間物為磷酸DHA。在其他實施例中,中間物為DHA及磷酸DHA。
在一個實施例中,FAP包含4A。在另一實施例中,FAP包含4B。在一個實施例中,FAP包含4A及4B。
在一些實施例中,MMP為圖1中描繪之MMP及圖4中描繪之FAP。根據圖4將木酮糖-5-磷酸及甲醛轉化為磷酸DHA(經由DHA)之一組例示性FAPE包括4A及4B。
在一特定實施例中,(1)MMP包含1J;且(2)FAP包含4A及4B。在其他實施例中,(1)MMP包含1J及1K;且(2)FAP包含4A及4B。在一些實施例中,(1)MMP包含1J、1C、1D及1E;且(2)FAP包含4A及 4B。在一個實施例中,(1)MMP包含1J、1C、1D及1F;且(2)FAP包含4A及4B。在另一實施例中,(1)MMP包含1J及1L;且(2)FAP包含4A及4B。在另一實施例中,(1)MMP包含1J、1M、1N及1O;且(2)FAP包含4A及4B。在某些實施例中,(1)MMP包含1J、1N及1O;且(2)FAP包含4A及4B。在一些實施例中,(1)MMP包含1J、1K、1C、1D及1E;且(2)FAP包含4A及4B。在一個實施例中,(1)MMP包含1J、1K、1C、1D及1F;且(2)FAP包含4A及4B。在一些實施例中,(1)MMP包含1J、1C、1D、1E及1I;且(2)FAP包含4A及4B。在一個實施例中,(1)MMP包含1J、1C、1D、1F及1I;且(2)FAP包含4A及4B。在另一實施例中,(1)MMP包含1J、1L及1I;且(2)FAP包含4A及4B。在另一實施例中,(1)MMP包含1J、1M、1N、1O及1I;且(2)FAP包含4A及4B。在某些實施例中,(1)MMP包含1J、1N、1O及1I;且(2)FAP包含4A及4B。在一些實施例中,(1)MMP包含1J、1K、1C、1D、1E及1I;且(2)FAP包含4A及4B。在一個實施例中,(1)MMP包含1J、1K、1C、1D、1F及1I;且(2)FAP包含4A及4B。在一些實施例中,(1)MMP包含1J、1C、1D、1E及1G;且(2)FAP包含4A及4B。在一個實施例中,(1)MMP包含1J、1C、1D、1F及1G;且(2)FAP包含4A及4B。在另一實施例中,(1)MMP包含1J、1L及1G;且(2)FAP包含4A及4B。在另一實施例中,(1)MMP包含1J、1M、1N、1O及1G;且(2)FAP包含4A及4B。在某些實施例中,(1)MMP包含1J、1N、1O及1G;且(2)FAP包含4A及4B。在一些實施例中,(1)MMP包含1J、1K、1C、1D、1E及1G;且(2)FAP包含4A及4B。在一個實施例中,(1)MMP包含1J、1K、1C、1D、1F及1G;且(2)FAP包含4A及4B。在一些實施例中,(1)MMP包含1J、1C、1D、1E、1G及1H;且(2)FAP包含4A及4B。在一個實施例中,(1)MMP包含1J、1C、1D、1F、1G及1H;且(2)FAP包含4A及4B。在另一實施例中, (1)MMP包含1J、1L、1G及1H;且(2)FAP包含4A及4B。在另一實施例中,(1)MMP包含1J、1M、1N、1O、1G及1H;且(2)FAP包含4A及4B。在某些實施例中,(1)MMP包含1J、1N、1O、1G及1H;且(2)FAP包含4A及4B。在一些實施例中,(1)MMP包含1J、1K、1C、1D、1E、1G及1H;且(2)FAP包含4A及4B。在一個實施例中,(1)MMP包含1J、1K、1C、1D、1F、1G及1H;且(2)FAP包含4A及4B。在一些實施例中,1K為自發性的。在其他實施例中,1K為EM10。在一些實施例中,1M為自發性的。在一些實施例中,中間物為DHA。在其他實施例中,中間物為磷酸DHA。在其他實施例中,中間物為DHA及磷酸DHA。
本文中所提供之任何MMP均可與本文中所提供之任何FAP組合。另外,本文中所提供之任何MMP均可與本文中所提供之任何BDOP及任何甲醛路徑組合。
本文中亦提供產生甲醛之方法,其包含培養本文中所提供之具有MMP之NNOMO。在一些實施例中,MMP包含1J。在某些實施例中,生物體在實質上缺氧培養基中進行培養。在特定實施例中,甲醛為在BDO及本文中所述之其他產物產生過程中消耗(同化)之中間物。
本文中亦提供產生糖酵解及/或可用於例如形成生物質之代謝路徑之中間物之方法,其包含在產生中間物之條件下且持續充足時間段培養如本文中所提供之具有MMP及FAP之NNOMO。在一些實施例中,中間物為H6P。在其他實施例中,中間物為F6P。在其他實施例中,中間物為H6P及F6P。在一些實施例中,中間物為DHA。在其他實施例中,中間物為磷酸DHA。在其他實施例中,中間物為DHA及磷酸DHA。在一些實施例中,MMP包含1J。在某些實施例中,生物體在實質上缺氧培養基中進行培養。該生物質亦可用於產生本文中別處提供之產物(諸如生物基產物)中之任一者的方法中。
在一些實施例中,生物體包含兩種、三種、四種、五種、六種、七種、八種或八種以上各自編碼BDOPE之外源核酸。在一些實施例中,生物體包含兩種各自編碼BDOPE之外源核酸。在一些實施例中,生物體包含三種各自編碼BDOPE之外源核酸。在一些實施例中,生物體包含四種各自編碼BDOPE之外源核酸。在其他實施例中,生物體包含五種各自編碼BDOPE之外源核酸。在一些實施例中,生物體包含六種各自編碼BDOPE之外源核酸。在其他實施例中,生物體包含七種各自編碼BDOPE之外源核酸。在某些實施例中,生物體包含兩種、三種、四種、五種、六種或七種各自編碼BDOPE之外源核酸;且生物體進一步包含兩種、三種、四種、五種、六種或七種各自編碼MMPE之外源核酸。在某些實施例中,生物體進一步包含兩種各自編碼MMPE之外源核酸。在某些實施例中,生物體進一步包含三種各自編碼MMPE之外源核酸。在某些實施例中,生物體進一步包含四種各自編碼MMPE之外源核酸。在某些實施例中,生物體進一步包含五種各自編碼MMPE之外源核酸。在某些實施例中,生物體進一步包含六種各自編碼MMPE之外源核酸。在某些實施例中,生物體進一步包含七種各自編碼MMPE之外源核酸。
在一些實施例中,生物體包含兩種或兩種以上各自編碼FAPE之外源核酸。在一些實施例中,生物體包含兩種各自編碼FAPE之外源核酸。在某些實施例中,生物體包含兩種各自編碼FAPE之外源核酸;且生物體進一步包含兩種、三種、四種、五種、六種或七種各自編碼MMPE之外源核酸。在某些實施例中,生物體進一步包含兩種各自編碼MMPE之外源核酸。在某些實施例中,生物體進一步包含三種各自編碼MMPE之外源核酸。在某些實施例中,生物體進一步包含四種各自編碼MMPE之外源核酸。在某些實施例中,生物體進一步包含五種各自編碼MMPE之外源核酸。在某些實施例中,生物體進一步包 含六種各自編碼MMPE之外源核酸。在某些實施例中,生物體進一步包含七種各自編碼MMPE之外源核酸。
在一些實施例中,至少一種編碼MMPE之外源核酸為異源核酸。在其他實施例中,至少一種編碼BDOPE之外源核酸為異源核酸。在其他實施例中,至少一種編碼FAPE之外源核酸為異源核酸。在某些實施例中,至少一種編碼MMPE之外源核酸為異源核酸,且至少一種編碼BDOPE之外源核酸為異源核酸。在其他實施例中,至少一種編碼MMPE之外源核酸為異源核酸,且至少一種編碼FAPE之外源核酸為異源核酸。
在某些實施例中,生物體在實質上缺氧培養基中。
在一些實施例中,在某些本文中所提供之NNOMO中由EM9(圖1,步驟J)產生之甲醛用於產生能量、氧化還原及/或形成生物質。兩種該等路徑展示於圖3中。另外,若干生物體使用稱為「絲胺酸循環」之替代性路徑來進行甲醛同化。此等生物體包括甲基營養生物(methylotroph)扭脫甲基桿菌(Methylobacterium extorquens)AM1及另一者嗜有機甲基桿菌(Methylobacterium organophilum)。此循環之淨平衡為將2mol甲醛及1mol CO2固定至1mol 3-磷酸甘油酸中,其用於在消耗2mol ATP且氧化2mol NAD(P)H下進行生物合成。
在絲胺酸路徑之第一反應中,甲醛與甘胺酸反應形成絲胺酸。該反應由絲胺酸羥甲基轉移酶(SHMT)催化,該酶為一種使用四氫葉酸(THF)作為輔因子之酶。此導致形成5,10-亞甲基四氫葉酸。在反應期間,甲醛由5,10-亞甲基四氫葉酸轉移至甘胺酸,形成L-絲胺酸。在下一步驟中,絲胺酸以乙醛酸作為胺基受體由酶絲胺酸-乙醛酸轉胺酶進行胺基轉移,以產生羥基丙酮酸及甘胺酸。羥基丙酮酸由羥基丙酮酸還原酶還原為甘油酸。甘油酸2-激酶催化來自ATP之磷酸酯基的添加以產生2-磷酸甘油酸。
一些2-磷酸甘油酸由磷酸甘油酸變位酶轉化為3-磷酸甘油酸,其為主要代謝路徑之中間物且用於生物合成。其餘2-磷酸甘油酸由烯醇酶轉化為磷酸烯醇丙酮酸(PEP)。PEP羧化酶隨後催化二氧化碳之固定,耦合以將PEP轉化為草醯乙酸,草醯乙酸由蘋果酸脫氫酶(一種NAD連接酶)還原為蘋果酸。蘋果酸由蘋果酸硫激酶活化為蘋果醯輔酶A且由蘋果醯輔酶A裂解酶裂解為乙醯coA及乙醛酸。此兩種酶(蘋果酸硫激酶及蘋果醯輔酶A裂解酶)以及羥基丙酮酸還原酶及甘油酸-2-激酶獨特地存在於含有絲胺酸路徑之甲基營養生物中。
在具有異檸檬酸裂解酶之生物體中,乙醛酸循環之關鍵酶乙醯CoA由乙醛酸循環轉化為乙醛酸。然而,若缺少該酶,則其藉由另一未知路徑轉化(deVries等人,FEMS Microbiol Rev,6(1):57-101(1990))。所得乙醛酸可充當絲胺酸-乙醛酸轉胺酶之受質,使甘胺酸再生且關閉循環。
應理解,如實例中所述及圖中所例示,本文中所揭示之路徑中之任一者(包括圖1、2、3及4之路徑)均可用以產生視需要產生任何路徑中間物或產物之NNOMO。該等中間物或產物之非限制性實例為4-HB及BDO。如本文中所揭示,產生中間物之該種微生物生物體可與表現下游路徑酶之另一微生物生物體組合使用以產生所要產物。然而,應理解,產生BDOP中間物的非天然存在之生物體可用以產生中間物作為所要產物(例如4-羥基丁醛)。
在某些實施例中,本文中所提供的包含MMP及BDOP之NNOMO進一步包含一或多個基因破壞。在某些實施例中,一或多個基因破壞使得生物體中BDO之產生增加。在其他實施例中,本文中所提供的包含MMP及FAP之NNOMO進一步包含一或多個基因破壞。在一些實施例中,基因破壞係處於編碼參與該微生物生物體之乙醇、甘油、乙酸、乳酸、甲酸、CO2、胺基酸或其任何組合之天然產生之蛋白質及/ 或酶的內源基因中。在一個實施例中,基因破壞係處於編碼參與乙醇之天然產生之蛋白質及/或酶的內源基因中。在另一實施例中,基因破壞係處於編碼參與甘油之天然產生之蛋白質及/或酶的內源基因中。在其他實施例中,基因破壞係處於編碼參與乙酸之天然產生之蛋白質及/或酶的內源基因中。在另一實施例中,基因破壞係處於編碼參與乳酸之天然產生之蛋白質及/或酶的內源基因中。在一個實施例中,基因破壞係處於編碼參與甲酸之天然產生之蛋白質及/或酶的內源基因中。在另一實施例中,基因破壞係處於編碼參與CO2之天然產生之蛋白質及/或酶的內源基因中。在其他實施例中,基因破壞係處於編碼參與該微生物生物體之胺基酸之天然產生之蛋白質及/或酶的內源基因中。在一些實施例中,蛋白質或酶為丙酮酸脫羧酶、乙醇脫氫酶、甘油脫氫酶、甘油-3-磷酸酶、甘油-3-磷酸脫氫酶、乳酸脫氫酶、乙酸激酶、磷酸轉乙醯酶、丙酮酸氧化酶、丙酮酸:醌氧化還原酶、丙酮酸甲酸裂解酶、醇脫氫酶、乳酸脫氫酶、丙酮酸脫氫酶、丙酮酸甲酸裂解酶-2-酮丁酸甲酸裂解酶、丙酮酸轉運蛋白、單羧酸轉運蛋白、NADH脫氫酶、細胞色素氧化酶、丙酮酸激酶或其任何組合。在某些實施例中,一或多個基因破壞使得生物體中甲醛之產生增加。在另一實施例中,基因破壞係處於編碼參與天然甲醛利用路徑之蛋白質及/或酶的內源基因中。在某些實施例中,生物體包含一至二十五個基因破壞。在其他實施例中,生物體包含一至二十個基因破壞。在一些實施例中,生物體包含一至十五個基因破壞。在其他實施例中,生物體包含一至十個基因破壞。在一些實施例中,生物體包含一至五個基因破壞。在某些實施例中,生物體包含1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24或25個或25個以上基因破壞。
在其他實施例中,本文中所提供的包含MMP及BDOP之NNOMO 進一步包含一或多種參與該微生物生物體之乙醇、甘油、乙酸、乳酸、甲酸、CO2及/或胺基酸之天然產生之內源蛋白質或酶,其中該一或多種內源蛋白質或酶之蛋白質或酶活性及/或表現水平衰減。在一些實施例中,本文中所提供的包含MMP及FAP之NNOMO進一步包含一或多種參與該微生物生物體之乙醇、甘油、乙酸、乳酸、甲酸、CO2及/或胺基酸之天然產生之內源蛋白質或酶,其中該一或多種內源蛋白質或酶之蛋白質或酶活性及/或表現水平衰減。在一個實施例中,內源蛋白質或酶為丙酮酸脫羧酶、乙醇脫氫酶、甘油脫氫酶、甘油-3-磷酸酶、甘油-3-磷酸脫氫酶、乳酸脫氫酶、乙酸激酶、磷酸轉乙醯酶、丙酮酸氧化酶、丙酮酸:醌氧化還原酶、丙酮酸甲酸裂解酶、醇脫氫酶、乳酸脫氫酶、丙酮酸脫氫酶、丙酮酸甲酸裂解酶-2-酮丁酸甲酸裂解酶、丙酮酸轉運蛋白、單羧酸轉運蛋白、NADH脫氫酶、細胞色素氧化酶、丙酮酸激酶或其任何組合。
本文中所提供的非天然存在之改變中之每一者均使得與不含有該等代謝改變之菌株相比,在適當培養條件下,例如在微生物生物體之指數生長期期間BDO之產生增加及水平增進。適當條件包括例如本文中所揭示之條件,包括諸如特定碳源或反應物可得性及/或適應性進化之條件。
在某些實施例中,本文中提供具有增加例如BDO之產生(例如BDO之生長耦合產生)之基因改變(諸如基因破壞)的NNOMO。產物產生可例如藉由在基因上改變如本文中所揭示之細胞代謝路徑而強制性地與微生物之指數生長期相關聯。基因改變可增加所要產物之產生或甚至使所要產物成為生長期期間之專性產物。適當條件包括例如本文中所揭示之條件,包括諸如特定碳源或反應物可得性及/或適應性進化之條件。
考慮到本文中所提供之教示及指導,熟習此項技術者將理解, 為了引入酶之代謝改變(諸如衰減),可能需要破壞參與反應之一或多種酶之催化活性。或者,代謝改變可包括破壞酶活性或最大活性所需之調節蛋白質或輔因子的表現。此外,酶促反應所需之輔因子之基因損失亦可具有與破壞編碼酶之基因的相同作用。破壞可藉由多種方法進行,包括例如編碼基因之缺失或在一或多個編碼基因序列中併入基因改變。靶向破壞之編碼基因可為編碼參與催化活性之酶的一種、一些或所有基因。舉例而言,在單一酶參與目標催化活性時,破壞可藉由減小或消除所編碼基因產物之催化活性的基因改變進行。類似地,在單一酶為多聚體(包括雜聚體)時,破壞可藉由減少或破壞所編碼基因產物之一種或所有次單元之功能的基因改變進行。活性破壞可藉由形成活性複合物所需之一或多種次單元之結合活性的損失、藉由破壞多聚複合物之催化次單元或藉由兩種方式來實現。亦可靶向多聚蛋白質締合及活性之其他功能以便破壞代謝反應。該等其他功能已為熟習此項技術者所熟知。類似地,目標酶活性可藉由破壞修飾及/或活化目標酶的蛋白質或酶(例如將脫輔基酶轉化為全酶所需之分子)之表現而減小或消除。此外,可破壞單一多肽或多聚複合物之一些或所有功能以便減小或消除參與本文中所提供之反應或代謝修飾的一或多種酶之催化活性。類似地,可破壞參與本文中所提供之反應或代謝修飾之一些或所有酶,只要目標反應得以減少或消除即可。
考慮到本文中所提供之教示及指導,熟習此項技術者亦將理解,酶促反應可藉由減少或消除由常見基因及/或由該基因之展現相似或實質上相同活性之一或多種直系同源物編碼之反應而破壞。基因及所有直系同源物之減少可引起目標反應之任何催化活性的完全消除。然而,破壞常見基因或一或多種直系同源物可引起目標反應之催化活性減小,足以促進生長與產物生物合成之耦合。本文中例示編碼用於多種代謝修飾之催化活性的常見基因以及其直系同源物。熟習此 項技術者將理解,編碼目標代謝反應之酶之一些或所有基因的破壞可在本文中所提供之方法中實踐且併入NNOMO以便實現BDO之產生增加或生長耦合之產物產生。
考慮到本文中所提供之教示及指導,熟習此項技術者亦將理解,酶活性或表現可使用熟知方法衰減。若酶之活性或量之減小致使酶之活性下降至路徑起作用通常所需之臨界水準以下,則該減小可模擬基因之完全破壞。藉由各種技術而非使用基因破壞達成之酶活性減小對於生物體之生存力可為重要的。引起與基因破壞相似或一致之作用的減小酶活性之方法包括(但不限於):減少基因轉錄或轉譯;使mRNA、蛋白質或催化RNA去穩定化;及使影響酶活性或動力學之基因突變(參見Sambrook等人,Molecular Cloning: A Laboratory Manual,第三版,Cold Spring Harbor Laboratory,New York(2001);及Ausubel等人,Current Protocols in Molecular Biology,John Wiley and Sons,Baltimore,MD(1999)。天然或施加之調節控制亦可實現酶衰減,包括:啟動子替代(參見Wang等人,Mol.Biotechnol.52(2):300-308(2012));轉錄因子損失或改變(Dietrick等人,Annu.Rev.Biochem.79:563-590(2010);及Simicevic等人,Mol.Biosyst.6(3):462-468(2010));抑制性RNA或肽(諸如siRNA、反義RNA)、RNA或肽/小分子結合適體、核糖核酸酶、適體酶及核糖開關之引入(Wieland等人,Methods 56(3):351-357(2012);O'Sullivan,Anal.Bioanal.Chem.372(1):44-48(2002);及Lee等人,Curr.Opin.Biotechnol.14(5):505-511(2003));及減小或破壞酶活性的藥物或其他化學品(諸如酶抑制劑、抗生素或目標特異性藥物)之添加。
熟習此項技術者亦將理解且認識到,酶之衰減可在各種層面進行。舉例而言,在基因層面,引起部分或完全剔除式表型之突變(諸如基因破壞)或引起遮蔽基因產物活性之上位基因作用之突變 (Miko,Nature Education 1(1)(2008))可用以使酶衰減。在基因表現層面,用於衰減之方法包括:使轉錄與內源或外源誘導物(諸如異丙硫基-β-半乳糖苷(IPTG))偶聯,隨後在產生階段期間添加低量誘導物或不添加誘導物(Donovan等人,J.Ind.Microbiol.16(3):145-154(1996);及Hansen等人,Curr.Microbiol.36(6):341-347(1998));引入或修飾基因之正或負調節因子;在基因經整合時,修飾真核染色體區域中之組蛋白乙醯化/脫乙醯化(Yang等人,Curr.Opin.Genet.Dev.13(2):143-153(2003)及Kurdistani等人,Nat.Rev.Mol.Cell Biol.4(4):276-284(2003));引入轉位以破壞啟動子或調節基因(Bleykasten-Brosshans等人,C.R.Biol.33(8-9):679-686(2011);及McCue等人,PLoS Genet.8(2):e1002474(2012));翻轉轉位元件或啟動子區域之定向以便調節相鄰基因之基因表現(Wang等人,Genetics 120(4):875-885(1988);Hayes,Annu.Rev.Genet.37:3-29(2003);在二倍體生物體中,刪除一個導致異型接合性損失之對偶基因(Daigaku等人,Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 600(1-2)177-183(2006));引入增加RNA降解之核酸(Houseley等人,Cell,136(4):763-776(2009);或在細菌中,例如引入轉運信使RNA(tmRNA)標籤,其可引起RNA降解及核糖體失速(Sunohara等人,RNA 10(3):378-386(2004);及Sunohara等人,J.Biol.Chem.279:15368-15375(2004))。在轉譯層面,衰減可包括:引入罕見密碼子以限制轉譯(Angov,Biotechnol.J.6(6):650-659(2011));引入阻止轉譯之RNA干擾分子(Castel等人,Nat.Rev.Genet.14(2):100-112(2013);及Kawasaki等人,Curr.Opin.Mol.Ther.7(2):125-131(2005);修飾編碼序列外之區域,例如將二級結構引入至未轉譯區域(UTR)中以阻止轉譯或降低轉譯效率(Ringnér等人,PLoS Comput.Biol.1(7):e72(2005));添加達成快速轉錄物降解之RNA酶位點 (Pasquinelli,Nat.Rev.Genet.13(4):271-282(2012);及Arraiano等人,FEMS Microbiol.Rev.34(5):883-932(2010);引入反義RNA寡聚物或反義轉錄物(Nashizawa等人,Front.Biosci.17:938-958(2012));引入RNA或肽適體、核糖核酸酶、適體酶、核糖開關(Wieland等人,Methods 56(3):351-357(2012);O'Sullivan,Anal.Bioanal.Chem.372(1):44-48(2002);及Lee等人,Curr.Opin.Biotechnol.14(5):505-511(2003));或引入涉及RNA結構之轉譯調節元件,其可防止或減少可受小分子存在或不存在控制之轉譯(Araujo等人,Comparative and Functional Genomics,文章編號475731,8頁(2012))。在酶定位及/或壽命之層面,酶衰減可包括:添加達成更快速蛋白質周轉之降解標籤(Hochstrasser,Annual Rev.Genet.30:405-439(1996);及Yuan等人,PLoS One 8(4):e62529(2013));或添加定位標籤,其使得酶在真核細胞中分泌或侷限於亞細胞區室,在該亞細胞區室中酶將不能與其正常受質反應(Nakai等人Genomics 14(4):897-911(1992);及Russell等人,J.Bact.189(21)7581-7585(2007))。在轉譯後調節層面,酶衰減可包括:增加已知抑制劑之胞內濃度;或修飾轉譯後修飾位點(Mann等人,Nature Biotech.21:255-261(2003))。在酶活性層面,酶衰減可包括:添加內源或外源抑制劑(諸如酶抑制劑、抗生素或目標特異性藥物)以減低酶活性;限制必需輔因子(諸如維生素B12)對需要該輔因子之酶之可得性;螯合酶活性所需之金屬離子;或引入顯性負突變。上文所述之衰減技術之適用性可視既定宿主微生物生物體為原核抑或真核而定,且應理解,對於既定宿主何為適當技術的確定可容易由熟習此項技術者作出。
在一些實施例中,可根據生物體生長-所要產物耦合形成之結果而使用微氧設計。為檢驗此,藉由在代謝網絡中可行的不同生物質形成速率下先將產物產率最大化隨後最小化來針對各策略構築出生產錐 形信號。若突變網絡之所有可能表型之最右邊界為單一點,則意味著在網絡中可能之最大生物質形成速率下存在唯一最佳產物產率。在其他情況下,可行表型之最右邊界為垂直線,顯示在最大生物質點處,代謝網絡可產生出計算範圍內之任何量的產物,包括垂直線之最底點處之最低量。此設計給予低優先性。
經本文中所揭示之方法(諸如OptKnock構架)確定之BDO產生策略一般基於其(i)理論產率及(ii)生物體生長-耦合BDO形成之特徵來分等級。
因此,本文中亦提供一種NNOMO,其具有BDO產生係與生物體生長耦合之代謝修飾,其中該代謝修飾包括破壞選自編碼本文中所提供之蛋白質及/或酶之基因的一或多種基因。
若確定菌株設計不足以增加BDO產生及/或隨著生物質的形成而耦合形成該產物,則每一菌株均可補充額外缺失。或者,已知在生長條件下不具有顯著活性之一些其他酶可因適應性進化或隨機突變誘發而變得有活性。亦可阻斷該等活性。然而,本文中所提供之基因缺失允許構築展現高產率BDO產生(包括生物體生長-BDO的耦合產生)之菌株。
在另一態樣中,本文中提供一種產生BDO之方法,其包含在產生BDO條件下且持續充足時間段培養本文中所提供的包含MMP及BDOP之NNOMO中之任一者。在某些實施例中,生物體在實質上缺氧培養基中進行培養。
本文中提供產生BDO之方法,其包含在產生BDO之條件下且持續充足時間段培養本文中所提供之生物體。在一些實施例中,該方法包含持續產生BDO之充足時間培養包含以下之NNOMO:(1)MMP,其中該生物體包含至少一種編碼MMPE之外源核酸,該MMPE量足以在甲醇存在下增進還原當量之可得性;及(2)BDOP,其包含至少一種 編碼BDOPE之外源核酸,該BDOPE以足以產生BDO之量表現。
在本文中所提供之方法之某些實施例中,生物體進一步包含至少一種編碼BDOPE之核酸,該BDOPE以足以產生BDO之量表現。在一些實施例中,核酸為外源核酸。在其他實施例中,核酸為內源核酸。在一些實施例中,生物體進一步包含本文中所提供之一或多個基因破壞,其使得生物體中BDO之產生增加。在某些實施例中,一或多個基因破壞在編碼參與該微生物生物體之乙醇、甘油、乙酸、乳酸、甲酸、CO2及/或胺基酸之天然產生之蛋白質或酶的內源基因中出現。在其他實施例中,生物體進一步包含參與該微生物生物體之乙醇、甘油、乙酸、乳酸、甲酸、CO2及/或胺基酸之天然產生之一或多種內源蛋白質或酶,其中該一或多種內源蛋白質或酶之蛋白質或酶活性及/或表現水平衰減。在某些實施例中,生物體為克拉布特里(Crabtree)陽性真核生物體,且生物體在包含葡萄糖之培養基中培養。在某些實施例中,生物體包含一至二十五個基因破壞。在其他實施例中,生物體包含一至二十個基因破壞。在一些實施例中,生物體包含一至十五個基因破壞。在其他實施例中,生物體包含一至十個基因破壞。在一些實施例中,生物體包含一至五個基因破壞。在某些實施例中,生物體包含1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24或25個或25個以上基因破壞。
在另一實施例中,提供一種具有BDOP、FAP及/或MMP之NNOMO,其中NNOMO包含至少一種編碼將受質轉化為產物之酶或蛋白質的外源核酸。舉例而言,在圖1中,1J之受質為甲醇,且產物為甲醛;1L之受質為甲醛,且產物為甲酸;等等。熟習此項技術者將理解,其僅為例示性的,且適於產生所要產物且可獲得適當活性用於將受質轉化為產物的本文中所揭示之任何受質-產物對均可由熟習此項技術者基於本文中之教示容易地確定。因此,本文中提供含有至少 一種編碼酶或蛋白質之外源核酸的NNOMO,其中酶或蛋白質轉化MMP(諸如圖1中所示者)、BDOP(諸如圖2中所示者)及/或FAP(諸如圖3或4中所示者)之受質及產物。
雖然本文中一般描述含有BDOP、FAP及/或MMP之微生物生物體,但應理解,本文中亦提供包含至少一種編碼BDO、甲醛同化及/或MMPE之外源核酸的NNOMO,該BDO、甲醛同化及/或MMPE以足以產生BDOP、FAP之中間物及/或MMP中間物之量表現。舉例而言,如本文中所揭示,BDOP例示於圖2中。因此,除了含有產生BDO之BDOP的微生物生物體之外,本文中亦提供一種包含至少一種編碼BDOPE之外源核酸的NNOMO,其中微生物生物體產生BDOP中間物,諸如琥珀醯CoA、琥珀酸半醛、4-HB、4-羥基丁醯磷酸、4-羥基丁醯CoA或4-羥基丁醛。
在一些實施例中,可選擇碳原料及其他細胞攝取源(諸如磷酸、氨、硫酸、氯及其他鹵素)以改變BDO及/或4-HB或任何BDO及/或4-HB路徑中間物中所存在之原子的同位素分佈。上文列舉之各種碳原料及其他攝取源在本文中將統稱為「攝取源」。攝取源可向產物BDO及/或4-HB或BDO及/或4-HB路徑中間物中所存在之任何原子或偏離BDO及/或4-HB路徑之反應中產生之副產物提供同位素增濃。同位素增濃可對任何目標原子達成,包括例如碳、氫、氧、氮、硫、磷、氯或其他鹵素。對於本文中所提供之MMP及FAP以及其中間物,同樣如此。
在一些實施例中,可選擇攝取源以改變碳-12、碳-13及碳-14比率。在一些實施例中,可選擇攝取源以改變氧-16、氧-17及氧-18比率。在一些實施例中,可選擇攝取源以改變氫、氘及氚比率。在一些實施例中,可選擇攝取源以改變氮-14及氮-15比率。在一些實施例中,可選擇攝取源以改變硫-32、硫-33、硫-34及硫-35比率。在一些 實施例中,可選擇攝取源以改變磷-31、磷-32及磷-33比率。在一些實施例中,可選擇攝取源以改變氯-35、氯-36及氯-37比率。
在一些實施例中,目標原子之同位素比率可藉由選擇一或多種攝取源改變為所要比率。攝取源可源自天然源(如自然界中所見)或人造源,且熟習此項技術者可選擇天然源、人造源或其組合以達成目標原子之所要同位素比率。人造攝取源之實例包括例如至少部分源自化學合成反應之攝取源。該等同位素增濃攝取源可在商業上購買或在實驗室中製備及/或視情況與攝取源之天然源混合以達成所要同位素比率。在一些實施例中,攝取源之目標同位素比率可藉由選擇如自然界中所見之攝取源的所要起源而獲得。舉例而言,如本文中所論述,天然源可為生物性的,源自生物體或諸如石油基產物或大氣之來源或由生物體或諸如石油基產物或大氣之來源合成。在一些此類實施例中,碳源例如可選自化石燃料衍生之碳源,其可相對耗乏碳-14;或環境或大氣碳源,諸如CO2,其碳-14含量可大於其石油衍生性對應物。
同位素增濃容易藉由質譜分析使用此項技術中已知之技術評估,該等技術諸如穩定同位素比質譜分析(SIRMS)及位點特異性天然同位素分餾核磁共振(SNIF-NMR)。該等質譜技術可與分離技術整合,該等分離技術諸如液相層析(LC)及/或高效液相層析(HPLC)。
在地球大氣中,1012個碳原子中約有1個碳原子由不穩定碳同位素碳-14或放射性碳構成,且該不穩定碳同位素碳-14或放射性碳之半衰期為約5700年。碳儲備在上層大氣中由涉及宇宙射線及普通氮(14N)之核反應補充。化石燃料不含有碳-14,因為碳-14早已衰變。化石燃料燃燒降低大氣碳-14分率,即所謂「休斯效應(Suess effect)」。
測定化合物中原子之同位素比率的方法為熟習此項技術者所熟知。同位素增濃容易藉由質譜分析使用此項技術中已知之技術評估,該等技術諸如加速質譜分析(AMS)、穩定同位素比質譜分析(SIRMS) 及位點特異性天然同位素分餾核磁共振(SNIF-NMR)。該等質譜技術可與分離技術整合,該等分離技術諸如液相層析(LC)、高效液相層析(HPLC)及/或氣相層析及其類似技術。
在碳之情況下,在美國已由國際性美國測試與材料協會(ASTM)開發出ASTM D6866作為使用放射性碳定年法來測定固體、液體及氣體樣品之生物性含量的標準化分析方法。該標準係基於使用放射性碳定年法來測定產物的生物性含量。ASTM D6866最先在2004年公開,且該標準之現行版本為ASTM D6866-11(2011年4月1日施行)。放射性碳定年技術為熟習此項技術者所熟知,包括本文中所述之技術。
化合物之生物性含量由碳-14(14C)與碳-12(12C)之比率估算。特定言之,由以下表達式計算現代分率(Fm):Fm=(S-B)/(M-B),其中B、S及M分別代表空白、樣品及現代參考物之14C/12C比率。現代分率為樣品之14C/12C比率與「現代值」之偏差的量度。現代值被定義為國家標準局(NBS)草酸I(亦即標準參考物質(SRM)4990b)之針對δ13CVPDB=-19/密耳正規化之放射性碳濃度(AD 1950)的95%(Olsson,The use of Oxalic acid as a Standard. Radiocarbon Variations and Absolute Chronology,諾貝爾研討會(Nobel Symposium),第12屆會刊,John Wiley & Sons,New York(1970))。使用國際上認可之定義:0.95×NBS草酸I(SRM 4990b)的比活性(針對δ13CVPDB=-19/密耳正規化)計算例如由ASM量測之質譜分析結果。此等於1.176±0.010×10-12之絕對(AD 1950)14C/12C比率(Karlen等人,Arkiv Geofysik,4:465-471(1968))。標準計算考慮了一種同位素相對於另一同位素之差異攝取,例如生物系統中之吸收優先級為C12優於C13優於C14,且此等校正反映為針對δ13校正之Fm。
草酸標準物(SRM 4990b或HOx 1)由1955甜菜作物製成。儘管製造了1000磅,但此草酸標準物不再可在市面上購得。草酸II標準物 (HOx 2;N.I.S.T名稱SRM 4990 C)由1977法國甜菜糖蜜作物製成。在1980年代早期,由12個實驗室組成之團體量測了兩種標準物之比率。草酸II與草酸1之活性比為1.2933±0.001(加權平均值)。HOx II之同位素比率為-17.8/密耳。ASTM D6866-11提出將可獲得之草酸II標準物SRM 4990 C(Hox2)用於現代標準(參見Mann,Radiocarbon,25(2):519-527(1983)中原有草酸標準物對比當前可得草酸標準物之論述)。Fm=0%表示在材料中完全不含碳-14原子,因此表明為化石(例如石油基)碳源。Fm=100%(在針對1950年由核彈試驗向大氣中注入碳-14後進行校正之後)指示完全為現代碳源。如本文中所述,該種「現代」源包括生物性源。
如ASTM D6866中所述,由於1950年代核試驗項目持續但逐漸減少之影響(其引起大氣中碳-14顯著增濃,如ASTM D6866-11中所述),現代碳百分比(pMC)可大於100%。因為所有樣品碳-14活性均參考「爆炸前(pre-bomb)」標準,且因為幾乎所有新的生物基產物均係在爆炸後環境中產生,因此所有pMC值(在針對同位素分率校正之後)均必須乘以0.95(自2010年起)以更好地反映樣品之真實生物性含量。生物性含量大於103%表明存在分析誤差抑,或生物性碳源超過若干年。
ASTM D6866相對於物質之總有機物含量對生物性含量進行定量,且不考慮存在之無機碳及其他不含碳物質。舉例而言,基於ASTM D6866,含有50%澱粉基物質及50%水的產物將被視為具有=100%的生物性含量(50%有機物含量,其為100%生物性的)。在另一實例中,含有50%澱粉基物質、25%石油基及25%水的產物將具有=66.7%的生物性含量(75%有機物含量,但僅50%產物為生物性的)。在另一實例中,含有50%有機碳且為石油基產物的產物將被視為具有=0%的生物性含量(50%有機碳但來自化石源)。因此,基於測定化合物 或物質的生物性含量之熟知方法及已知標準,熟習此項技術者可容易地測定生物性含量及/或製備具有所要生物性含量的下游產物。
此項技術中已知應用碳-14定年技術來定量物質的生物性含量(Currie等人,Nuclear Instruments and Methods in Physics Research B,172:281-287(2000))。舉例而言,已使用碳-14定年法來定量含對苯二甲酸之物質的生物性含量(Colonna等人,Green Chemistry,13:2543-2548(2011))。值得注意地,源自可再生1,3-丙二醇及石油衍生性之對苯二甲酸的聚對苯二甲酸伸丙酯(PPT)聚合物產生接近30%之Fm值(亦即因為3/11聚合碳源自可再生1,3-丙二醇且8/11聚合碳源自化石末端成員對苯二甲酸)(Currie等人,同前文獻,2000)。相比之下,源自可再生BDO及可再生對苯二甲酸之聚對苯二甲酸伸丁酯聚合物產生超過90%的生物性含量(Colonna等人,同前文獻,2011)。
因此,在一些實施例中,提供BDO及/或4-HB或其BDO及/或4-HB路徑中間物,其具有反映大氣碳(亦稱為環境碳)攝取源之碳-12、碳-13及碳-14比率。舉例而言,在一些態樣中,BDO及/或4-HB或其BDO及/或4-HB中間物可具有至少10%、至少15%、至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少98%或多至100%之Fm值。在一些此類實施例中,攝取源為CO2。在一些實施例中,提供BDO及/或4-HB或其BDO及/或4-HB中間物,其具有反映石油基碳攝取源的碳-12、碳-13及碳-14比率。在此態樣中,BDO及/或4-HB或其BDO及/或4-HB中間物可具有小於95%、小於90%、小於85%、小於80%、小於75%、小於70%、小於65%、小於60%、小於55%、小於50%、小於45%、小於40%、小於35%、小於30%、小於25%、小於20%、小於15%、小於10%、小於5%、小於2%或小於1%之Fm值。在一些實施例中,提供 BDO及/或4-HB或其BDO及/或4-HB中間物,其具有由大氣碳攝取源與石油基攝取源的組合獲得之碳-12、碳-13及碳-14比率。使用該種攝取源組合為可用以改變碳-12、碳-13及碳-14比率之一種方法,且各別比率將反映攝取源之比例。
此外,本發明部分地關於如本文中所揭示的以生物方式產生之BDO及/或4-HB或其BDO及/或4-HB中間物,且關於由其衍生之產物,其中BDO及/或4-HB或其BDO及/或4-HB中間物具有與環境中存在之CO2大致相同之值的碳-12、碳-13及碳-14同位素比率。舉例而言,在一些態樣中,提供一種生物衍生性BDO及/或4-HB或其生物衍生性BDO及/或4-HB中間物,其具有與環境中存在之CO2大致相同之值或本文中所揭示之任何其他比率的碳-12與碳-13與碳-14同位素比率。應理解,如本文中所揭示,產物可具有與環境中存在之CO2大致相同之值或本文中所揭示之任何比率的碳-12與碳-13與碳-14同位素比率,其中產物由如本文中所揭示的生物衍生性BDO及/或4-HB或其生物衍生性BDO及/或4-HB中間物產生,其中生物衍生性產物係經化學修飾以產生最終產物。如本文中所述,化學修飾BDO及/或4-HB的生物衍生性產物或其中間物以產生所要產物之方法為熟習此項技術者所熟知。亦提供塑膠、彈性纖維、聚胺基甲酸酯、聚酯(包括聚羥基烷酸酯,諸如聚-4-羥基丁酸酯(P4HB)或其共聚物)、聚(伸丁醚)二醇(PTMEG)(亦稱為PTMO,聚氧化四亞甲基)及聚胺基甲酸酯-聚脲共聚物(稱為彈性人造纖維、氨綸或LycraTM)、耐綸及其類似物,其具有與環境中存在之CO2大致相同之值的碳-12與碳-13與碳-14同位素比率,其中塑膠、彈性纖維、聚胺基甲酸酯、聚酯(包括聚羥基烷酸酯,諸如P4HB或其共聚物)、PTMEG及聚胺基甲酸酯-聚脲共聚物(稱為彈性人造纖維、氨綸或LycraTM)、耐綸及其類似物直接由如本文中所揭示的生物衍生性BDO及/或4-HB或其生物衍生性BDO及/或4-HB中間物產 生或與其組合。
BDO及/或4-HB為用於商業及工業應用中之化學品。該等應用之非限制性實例包括製造塑膠、彈性纖維、聚胺基甲酸酯、聚酯(包括聚羥基烷酸酯,諸如P4HB或其共聚物)、PTMEG及聚胺基甲酸酯-聚脲共聚物(稱為彈性人造纖維、氨綸或LycraTM)、耐綸及其類似物。此外,BDO及/或4-HB亦用作製造多種產品的原料,該等產品包括塑膠、彈性纖維、聚胺基甲酸酯、聚酯(包括聚羥基烷酸酯,諸如P4HB或其共聚物)、PTMEG及聚胺基甲酸酯-聚脲共聚物(稱為彈性人造纖維、氨綸或LycraTM)、耐綸及其類似物。因此,在一些實施例中,提供生物性塑膠、彈性纖維、聚胺基甲酸酯、聚酯(包括聚羥基烷酸酯,諸如P4HB或其共聚物)、PTMEG及聚胺基甲酸酯-聚脲共聚物(稱為彈性人造纖維、氨綸或LycraTM)、耐綸及其類似物,其包含由本文中所提供之NNOMO產生或使用本文中所揭示之方法產生的一或多種生物衍生性BDO及/或4-HB或其生物衍生性BDO及/或4-HB中間物。
如本文中所用,術語「生物衍生性」意謂源自生物體或由生物體合成,且因為其可由生物體產生而可被視為可再生資源。該種生物體,尤其本文中所揭示的本發明之微生物生物體可利用由農業、植物、細菌或動物來源獲得之原料或生物質,諸如糖或碳水化合物。或者,生物體可利用大氣碳。如本文中所用,術語「生物性」意謂完全或部分地由本發明生物衍生性化合物組成的如上文所述之產物。生物性或生物衍生性產物與石油衍生性產物形成對比,其中該種產物源自石油或石油化學原料或由其合成。
在一些實施例中,本發明提供塑膠、彈性纖維、聚胺基甲酸酯、聚酯(包括聚羥基烷酸酯,諸如P4HB或其共聚物)、PTMEG及聚胺基甲酸酯-聚脲共聚物(稱為彈性人造纖維、氨綸或LycraTM)、耐綸及其類似物,其包含生物衍生性BDO及/或4-HB或其生物衍生性BDO 及/或4-HB中間物,其中生物衍生性BDO及/或4-HB或其生物衍生性BDO及/或4-HB中間物包括用於產生以下的所有或部分BDO及/或4-HB或其BDO及/或4-HB中間物:塑膠、彈性纖維、聚胺基甲酸酯、聚酯(包括聚羥基烷酸酯,諸如P4HB或其共聚物)、PTMEG及聚胺基甲酸酯-聚脲共聚物(稱為彈性人造纖維、氨綸或LycraTM)、耐綸及其類似物。因此,在一些態樣中,本發明提供一種生物性塑膠、彈性纖維、聚胺基甲酸酯、聚酯(包括聚羥基烷酸酯,諸如P4HB或其共聚物)、PTMEG及聚胺基甲酸酯-聚脲共聚物(稱為彈性人造纖維、氨綸或LycraTM)、耐綸及其類似物,其包含至少2%、至少3%、至少5%、至少10%、至少15%、至少20%、至少25%、至少30%、至少35%、至少40%、至少50%、至少60%、至少70%、至少80%、至少90%、至少95%、至少98%或100%如本文中所揭示的生物衍生性BDO及/或4-HB或其生物衍生性BDO及/或4-HB中間物。另外,在一些態樣中,本發明提供一種生物性塑膠、彈性纖維、聚胺基甲酸酯、聚酯(包括聚羥基烷酸酯,諸如P4HB或其共聚物)、PTMEG及聚胺基甲酸酯-聚脲共聚物(稱為彈性人造纖維、氨綸或LycraTM)、耐綸及其類似物,其中用於產生其之BDO及/或4-HB或其BDO及/或4-HB中間物為生物衍生性及石油衍生性BDO及/或4-HB或其BDO及/或4-HB中間物的組合。舉例而言,生物性塑膠、彈性纖維、聚胺基甲酸酯、聚酯(包括聚羥基烷酸酯,諸如P4HB或其共聚物)、PTMEG及聚胺基甲酸酯-聚脲共聚物(稱為彈性人造纖維、氨綸或LycraTM)、耐綸及其類似物可使用50%生物衍生性BDO及/或4-HB及50%石油衍生性BDO及/或4-HB或諸如60%/40%、70%/30%、80%/20%、90%/10%、95%/5%、100%/0%、40%/60%、30%/70%、20%/80%、10%/90%之生物衍生/石油衍生性前驅體的其他所要比率產生,只要至少一部分產物包含由本文中所揭示之微生物生物體產生的生物衍生性產物即可。應理解,使用本發明之 生物衍生性BDO及/或4-HB或其生物衍生性BDO及/或4-HB中間物產生塑膠、彈性纖維、聚胺基甲酸酯、聚酯(包括聚羥基烷酸酯,諸如P4HB或其共聚物)、PTMEG及聚胺基甲酸酯-聚脲共聚物(稱為彈性人造纖維、氨綸或LycraTM)、耐綸及其類似物的方法為此項技術中所熟知。
在一個實施例中,產物為塑膠。在一個實施例中,產物為彈性纖維。在一個實施例中,產物為聚胺基甲酸酯。在一個實施例中,產物為聚酯。在一個實施例中,產物為聚羥基烷酸酯。在一個實施例中,產物為聚-4-HB。在一個實施例中,產物為聚-4-HB之共聚物。在一個實施例中,產物為聚(伸丁醚)二醇。在一個實施例中,產物為聚胺基甲酸酯-聚脲共聚物。在一個實施例中,產物為彈性人造纖維。在一個實施例中,產物為氨綸。在一個實施例中,產物為LycraTM。在一個實施例中,產物為耐綸。
在一些實施例中,本文中提供一種培養基,其包含生物衍生性BDO。在一些實施例中,生物衍生性BDO藉由培養如本文中所提供的具有MMP及BDOP之NNOMO而產生。在某些實施例中,生物衍生性BDO具有反映大氣二氧化碳攝取源之碳-12、碳-13及碳-14同位素比率。在一個實施例中,培養基與具有MMP及BDOP之NNOMO分離。
在其他實施例中,本文中提供一種生物衍生性BDO。在一些實施例中,生物衍生性BDO藉由培養如本文中所提供的具有MMP及BDOP之NNOMO而產生。在某些實施例中,生物衍生性BDO具有反映大氣二氧化碳攝取源之碳-12、碳-13及碳-14同位素比率。在一些實施例中,生物衍生性BDO具有至少80%、至少85%、至少90%、至少95%或至少98%之Fm值。在某些實施例中,生物衍生性BDO為培養基之組分。
在某些實施例中,本文中提供一種組合物,其包含本文中所提 供的生物衍生性BDO,例如藉由培養如本文中所提供的具有MMP及BDOP之NNOMO產生的生物衍生性BDO。在一些實施例中,組合物進一步包含除該生物衍生性BDO以外的化合物。在某些實施例中,除該生物衍生性BDO以外的化合物為微量的如本文中所提供的具有MMP及BDOP之NNOMO的細胞部分。
在一些實施例中,本文中提供一種生物基產物,其包含本文中所提供的生物衍生性BDO。在某些實施例中,生物基產物為塑膠、彈性纖維、聚胺基甲酸酯、聚酯、聚羥基烷酸酯、聚-4-HB、聚-4-HB之共聚物、聚(伸丁醚)二醇、聚胺基甲酸酯-聚脲共聚物、彈性人造纖維、氨綸、LycraTM或耐綸。在某些實施例中,生物基產物包含至少5%生物衍生性BDO。在某些實施例中,生物基產物為(i)聚合物、THF或THF衍生物、或GBL或GBL衍生物;(ii)塑膠、彈性纖維、聚胺基甲酸酯、聚酯、聚羥基烷酸酯、聚-4-HB、聚-4-HB之共聚物、聚(伸丁醚)二醇、聚胺基甲酸酯-聚脲共聚物、彈性人造纖維、氨綸、LycraTM或耐綸;(iii)聚合物、樹脂、纖維、珠粒、顆粒、球粒、片粒、塑膠、聚酯、熱塑性聚酯、模製物品、射出模製物品、射出模製部件、汽車部件、擠出樹脂、電部件及套管;且視情況其中生物基產物經加強或填充,且進一步其中生物基產物經玻璃加強或填充或經礦物加強或填充;(iv)聚合物,其中聚合物包含聚對苯二甲酸伸丁酯(PBT);(v)聚合物,其中聚合物包含PBT,且生物基產物為樹脂、纖維、珠粒、顆粒、球粒、片粒、塑膠、聚酯、熱塑性聚酯、模製物品、射出模製物品、射出模製部件、汽車部件、擠出樹脂、電部件及套管;且視情況其中生物基產物經加強或填充,且進一步其中生物基產物經玻璃加強或填充或經礦物加強或填充;(vi)THF或THF衍生物,其中THF衍生物為聚伸丁醚二醇(PTMEG)、聚酯醚(COPE)或熱塑性聚胺基甲酸酯;(viii)THF衍生物,其中THF衍生物包含纖維;或 (ix)GBL或GBL衍生物,其中GBL衍生物為吡咯啶酮。在某些實施例中,生物基產物包含至少10%生物衍生性BDO。在一些實施例中,生物基產物包含至少20%生物衍生性BDO。在其他實施例中,生物基產物包含至少30%生物衍生性BDO。在一些實施例中,生物基產物包含至少40%生物衍生性BDO。在其他實施例中,生物基產物包含至少50%生物衍生性BDO。在一個實施例中,生物基產物包含該生物衍生性BDO之一部分作為重複單元。在另一實施例中,本文中提供一種模製產物,其藉由模製本文中所提供的生物基產物而獲得。在其他實施例中,本文中提供一種產生本文中所提供的生物基產物之方法,其包含使該生物衍生性BDO在產生該生物基產物的反應中與自身或另一化合物發生化學反應。在某些實施例中,本文中提供一種聚合物,其包含生物衍生性BDO或藉由轉化生物衍生性BDO而獲得。在其他實施例中,本文中提供一種產生聚合物之方法,其包含以化學方式或酶促方式將生物衍生性BDO轉化為聚合物。在其他實施例中,本文中提供一種組合物,其包含生物衍生性BDO;或其細胞溶解物或培養物上清液。
在一些實施例中,本文中提供一種培養基,其包含生物衍生性4-HB。在一些實施例中,生物衍生性4-HB藉由培養如本文中所提供的具有MMP及BDO及/或4-HB路徑之NNOMO而產生。在某些實施例中,生物衍生性4-HB具有反映大氣二氧化碳攝取源之碳-12、碳-13及碳-14同位素比率。在一個實施例中,培養基與具有MMP及BDO及/或4-HB路徑之NNOMO分離。
在其他實施例中,本文中提供一種生物衍生性4-HB。在一些實施例中,生物衍生性4-HB藉由培養如本文中所提供的具有MMP及BDO及/或4-HB路徑之NNOMO而產生。在某些實施例中,生物衍生性4-HB具有反映大氣二氧化碳攝取源之碳-12、碳-13及碳-14同位素 比率。在一些實施例中,生物衍生性4-HB具有至少80%、至少85%、至少90%、至少95%或至少98%之Fm值。在某些實施例中,生物衍生性4-HB為培養基之組分。
在某些實施例中,本文中提供一種組合物,其包含本文中所提供的生物衍生性4-HB,例如藉由培養如本文中所提供的具有MMP及BDO及/或4-HB路徑之NNOMO而產生的生物衍生性4-HB。在一些實施例中,組合物進一步包含除該生物衍生性4-HB以外的化合物。在某些實施例中,除該生物衍生性4-HB以外的化合物為微量的如本文中所提供的具有MMP及BDO及/或4-HB路徑之NNOMO的細胞部分。
在一些實施例中,本文中提供一種生物基產物,其包含本文中所提供的生物衍生性4-HB。在某些實施例中,生物基產物為塑膠、彈性纖維、聚胺基甲酸酯、聚酯、聚羥基烷酸酯、聚-4-HB、聚-4-HB之共聚物、聚(伸丁醚)二醇、聚胺基甲酸酯-聚脲共聚物、彈性人造纖維、氨綸、LycraTM或耐綸。在某些實施例中,生物基產物包含至少5%生物衍生性4-HB。在某些實施例中,生物基產物包含至少10%生物衍生性4-HB。在一些實施例中,生物基產物包含至少20%生物衍生性4-HB。在其他實施例中,生物基產物包含至少30%生物衍生性4-HB。在一些實施例中,生物基產物包含至少40%生物衍生性4-HB。在其他實施例中,生物基產物包含至少50%生物衍生性4-HB。在一個實施例中,生物基產物包含該生物衍生性4-HB之一部分作為重複單元。在另一實施例中,本文中提供一種模製產物,其藉由模製本文中所提供的生物基產物而獲得。在其他實施例中,本文中提供一種產生本文中所提供的生物基產物之方法,其包含使該生物衍生性4-HB在產生該生物基產物的反應中與自身或另一化合物發生化學反應。
本文中亦提供一種產生甲醛之方法,其包含在產生甲醛之條件下且持續充足時間段培養本文中所提供之NNOMO(例如包含編碼EM9 (1J)之外源核酸)。在某些實施例中,消耗甲醛以提供還原當量。在其他實施例中,消耗甲醛以併入BDO中。在其他實施例中,消耗甲醛以併入另一目標產物中。
本文中亦提供一種產生糖酵解中間物及/或可用於形成生物質之代謝路徑中間物的方法,其包含在產生中間物之條件下且持續充足時間段培養本文中所提供之NNOMO(例如包含編碼EM9(1J)之外源核酸)。在一個實施例中,該方法為產生糖酵解中間物之方法。在其他實施例中,該方法為產生可用於形成生物質之代謝路徑中間物的方法。在某些實施例中,消耗中間物以提供還原當量。在其他實施例中,消耗中間物以併入BDO中。在其他實施例中,消耗甲醛以併入另一目標產物中。
本文中一般參考代謝反應、其反應物或產物或特定參考一或多種編碼以下之核酸或基因來描述本發明:與所參考代謝反應、反應物或產物相關或催化所參考代謝反應、反應物或產物之酶,或與所參考代謝反應、反應物或產物相關之蛋白質。除非本文中另外明確規定,否則熟習此項技術者將理解對反應之參考亦構成對反應之反應物及產物的參考。類似地,除非本文中另外明確規定,否則參考反應物或產物亦參考反應,且參考此等代謝成分中之任一者亦參考編碼以下之基因:催化所參考反應、反應物或產物之酶或參與所參考反應、反應物或產物之蛋白質。同樣,考慮到代謝生物化學、酶學及基因組學之熟知領域,本文中對基因或編碼核酸之參考亦構成對相應編碼酶及其所催化之反應或與反應以及反應之反應物及產物相關之蛋白質的參考。
使用本發明之微生物生物體經由生物合成模式產生4-HB尤其適用,此因為其可產生單體4-HB。本發明之NNOMO及其對4-HB及BDO家族化合物之生物合成亦尤其適用,此係因為4-HB產物可(1)經分泌;(2)可不含任何衍生作用,諸如輔酶A;(3)在生物合成期間避免熱 力學變化;(4)允許BDO之直接生物合成;及(5)允許4-HB在酸性pH值培養基中自發性化學轉化為γ-丁內酯(GBL)。此後一特徵亦尤其適用於例如BDO家族化合物(諸如BDO及/或四氫呋喃(THF))之有效化學合成或生物合成。
微生物生物體一般缺乏合成4-HB;及因此本文中所揭示在BDO家族化合物內或由此項技術者已知在BDO家族化合物內的任何化合物之能力。此外,已知具有所有必需代謝酶促能力之生物體不能由本文中所述酶及所例示生物化學路徑產生4-HB。事實上,下文進一步描述之若干厭氧微生物可能例外,該等微生物具有酶促能力以使用4-HB作為受質從而產生例如琥珀酸。相比之下,本發明之NNOMO可產生BDO及/或4-HB作為產物。呈單體形式之4-HB之生物合成不僅尤其適用於BDO家族化合物之化學合成,而且允許BDO家族化合物之進一步生物合成且避免完全化學合成程序。
可產生BDO及/或4-HB的本發明之NNOMO藉由確保宿主微生物生物體包括完全生物化學合成本文中所提供之至少一種BDO及/或4-HB生物合成路徑的功能能力來產生。確保至少一種必需BDO及/或4-HB生物合成路徑賦予宿主微生物生物體以BDO及/或4-HB生物合成能力。
本文中一般參考代謝反應、其反應物或產物或特定參考一或多種編碼以下之核酸或基因來描述生物體及方法:與所參考代謝反應、反應物或產物相關或催化所參考代謝反應、反應物或產物之酶,或與所參考代謝反應、反應物或產物相關之蛋白質。除非本文中另外明確規定,否則熟習此項技術者將理解對反應的參考亦構成對反應之反應物及產物的參考。類似地,除非本文中另外明確規定,否則參考反應物或產物亦參考反應,且參考此等代謝成分中之任一者亦參考編碼以下之基因:催化所參考反應、反應物或產物之酶或參與所參考反應、 反應物或產物之蛋白質。同樣,考慮到代謝生物化學、酶學及基因組學之熟知領域,本文中對基因或編碼核酸的參考亦構成對相應編碼酶及其所催化之反應或與反應以及反應之反應物及產物相關之蛋白質的參考。
本文中所述之NNOMO可藉由引入編碼參與一或多種甲醇代謝、甲醛同化及/或BDO生物合成路徑之一或多種酶或蛋白質之可表現核酸來產生。視選擇用於生物合成之宿主微生物生物體而定,可表現用於特定甲醇代謝、甲醛同化及/或BDO生物合成路徑中一些或所有者之核酸。舉例而言,若所選宿主中用於所要代謝、同化或生物合成路徑之一或多種酶或蛋白質不足,則將不足酶或蛋白質之可表現核酸引入宿主中用於後續外源表現。或者,若所選宿主展現一些路徑基因之內源表現,但其他基因不足,則不足酶或蛋白質需要編碼核酸以達成BDO生物合成及/或甲醇代謝。因此,本文中所述之NNOMO可藉由引入外源酶或蛋白質活性以獲得所要代謝路徑或生物合成路徑而產生;及/或所要代謝路徑或生物合成路徑可藉由引入一或多種外源酶或蛋白質活性而獲得,該一或多種外源酶或蛋白質活性與一或多種內源酶或蛋白質一起產生所要產物,諸如BDO。
宿主微生物生物體可選自以下及在以下中產生之NNOMO:例如細菌、酵母、真菌或可應用或適合於醱酵製程之多種其他微生物中之任一者。例示性細菌包括選自以下之任何種:腸桿菌目(Enterobacteriales),腸桿菌科(Enterobacteriaceae),包括埃希氏菌屬(Escherichia)及克雷伯氏菌屬(Klebsiella);氣單胞菌目(Aeromonadales),琥珀酸弧菌科(Succinivibrionaceae),包括厭氧螺菌屬(Anaerobiospirillum);巴斯德氏菌目(Pasteurellales),巴斯德氏菌科(Pasteurellaceae),包括放線桿菌屬(Actinobacillus)及曼氏桿菌屬(Mannheimia);根瘤菌目(Rhizobiales),慢生根瘤菌科 (Bradyrhizobiaceae),包括根瘤菌屬(Rhizobium);芽孢桿菌目(Bacillales),芽孢桿菌科(Bacillaceae),包括芽孢桿菌屬(Bacillus);放線菌目(Actinomycetales),棒狀桿菌科(Corynebacteriaceae)及鏈黴菌科(Streptomycetaceae),分別包括棒狀桿菌屬(Corynebacterium)及鏈黴菌屬(Streptomyces);紅螺菌目(Rhodospirillales),醋桿菌科(Acetobacteraceae),包括葡糖桿菌屬(Gluconobacter);鞘脂單胞菌目(Sphingomonadales),鞘脂單胞菌科(Sphingomonadaceae),包括醱酵單胞菌屬(Zymomonas);乳桿菌目(Lactobacillales),乳桿菌科(Lactobacillaceae)及鏈球菌科(Streptococcaceae),分別包括乳桿菌屬(Lactobacillus)及乳球菌屬(Lactococcus);梭菌目(Clostridiales),梭菌科(Clostridiaceae),包括梭菌屬(Clostridium);及假單胞菌目(Pseudomonadales),假單胞菌科(Pseudomonadaceae),包括假單胞菌屬(Pseudomonas)。宿主細菌之非限制性種包括大腸桿菌(Escherichia coli)、產酸克雷伯氏菌(Klebsiella oxytoca)、產琥珀酸厭氧螺菌(Anaerobiospirillum succiniciproducens)、產琥珀酸放線桿菌(Actinobacillus succinogenes)、產琥珀酸曼氏桿菌(Mannheimia succiniciproducens)、埃特里根瘤菌(Rhizobium etli)、枯草桿菌(Bacillus subtilis)、麩胺酸棒狀桿菌(Corynebacterium glutamicum)、氧化葡糖桿菌(Gluconobacter oxydans)、運動醱酵單胞菌(Zymomonas mobilis)、乳酸乳球菌(Lactococcus lactis)、植物乳桿菌(Lactobacillus plantarum)、天藍色鏈黴菌(Streptomyces coelicolor)、丙酮丁醇梭菌(Clostridium acetobutylicum)、螢光假單胞菌(Pseudomonas fluorescens)及惡臭假單胞菌(Pseudomonas putida)。
類似地,酵母或真菌物種之例示性物種包括選自以下之任何物種:酵母目(Saccharomycetales),酵母科(Saccaromycetaceae),包括酵母屬(Saccharomyces)、克魯維酵母屬(Kluyveromyces)及畢赤酵母屬 (Pichia);酵母目,雙足囊菌科(Dipodascaceae),包括耶氏酵母屬(Yarrowia);裂殖酵母目(Schizosaccharomycetales),裂殖酵母科(Schizosaccaromycetaceae),包括裂殖酵母屬(Schizosaccharomyces);散囊菌目(Eurotiales),發菌科(Trichocomaceae),包括麴菌屬(Aspergillus);及毛黴目(Mucorales),毛黴科(Mucoraceae),包括根黴屬(Rhizopus)。宿主酵母或真菌之非限制性物種包括釀酒酵母(Saccharomyces cerevisiae)、粟酒裂殖酵母(Schizosaccharomyces pombe)、乳酸克魯維酵母(Kluyveromyces lactis)、馬克斯克魯維酵母(Kluyveromyces marxianus)、土麴菌(Aspergillus terreus)、黑麴菌(Aspergillus niger)、巴斯德畢赤酵母(Pichia pastoris)、少根根黴(Rhizopus arrhizus)、米根黴(Rhizobus oryzae)、解脂耶氏酵母(Yarrowia lipolytica)及其類似物種。大腸桿菌為尤其適用之宿主生物體,此係因為其為適用於基因工程改造之經充分表徵之微生物生物體。其他尤其適用之宿主生物體包括酵母,諸如釀酒酵母。應理解,任何適合之微生物宿主生物體均可用以引入代謝及/或基因修飾以產生所要產物。
在一些實施例中,宿主微生物生物體可為相比於野生型微生物生物體具有增加之琥珀酸(succinate/succinic acid)產生的重組微生物生物體。增加之琥珀酸產生可藉由引入宿主微生物生物體基因之一或多個基因破壞及/或外源核酸而產生。增加微生物生物體中琥珀酸產生之方法為此項技術中所熟知。舉例而言,宿主微生物生物體可為重組細菌,諸如瘤胃細菌,其在選自以下之一或多種基因中包括基因破壞:乳酸脫氫酶基因(ldhA)、丙酮酸甲酸裂解酶基因(pfl)、磷酸轉乙醯酶基因(pta)及乙酸激酶基因(ackA),如2007年3月8日公開之美國公開案2007-0054387(現為美國專利7,470,530)及2009年8月13日公開之美國公開案2009-0203095中所述。舉例而言,在一個態樣中,宿主微 生物生物體可在編碼ldhAptaackA之基因中包括基因破壞,而不破壞編碼pfl之基因。因此,在一些態樣中,可用作宿主微生物生物體之細菌包括(但不限於)曼氏桿菌屬物種(例如曼氏桿菌屬物種LPK、曼氏桿菌屬物種LPK4、曼氏桿菌屬物種LPK7、曼氏桿菌屬物種LPK(KCTC 10558BP)、產琥珀酸曼氏桿菌MBEL55E(KCTC 0769BP)、產琥珀酸曼氏桿菌PALK(KCTC10973BP)、產琥珀酸曼氏桿菌ALK或產琥珀酸曼氏桿菌ALKt)、放線桿菌屬物種(例如產琥珀酸放線桿菌)、擬桿菌屬物種、琥珀酸單胞菌屬(Succinimonas)物種、琥珀酸弧菌屬(Succinivibrio)物種或厭氧螺菌屬物種(例如產琥珀酸厭氧螺菌)。
用於產生具有增加之琥珀酸產生之宿主微生物生物體的其他方法亦為此項技術中熟知。舉例而言,宿主微生物生物體可在編碼ldhApfl及磷酸丙酮酸羧化酶(ppc)之基因中具有基因破壞,或者/另外在編碼葡糖磷酸轉移酶(ptsG)及丙酮酸激酶(pykApykF)之基因中具有基因破壞,或者/另外在編碼琥珀酸半醛脫氫酶(GabD)之基因中具有基因破壞,或者/另外引入或擴增編碼C4-二羧酸轉運蛋白(DctA)之核酸,其與琥珀酸轉運相關,如2010年12月30日公開之美國公開案2010-0330634中所述。因此,宿主微生物生物體可包括內腔細菌,棒狀桿菌屬物種、短桿菌屬(Brevibacterium)物種或埃希氏菌屬物種(例如大腸桿菌,尤其菌株W3110GFA,如2009年3月19日公開之美國公開案2009-0075352中所揭示)。作為另一實例,具有增加之琥珀酸產生的宿主微生物生物體可藉由引入編碼增加琥珀酸產生之酶或蛋白質的外源核酸而產生,描述於2007年2月22日公開之美國公開案2007-0042476、2007年2月22日公開之美國公開案2007-0042477及2008年1月24日公開之美國公開案2008-0020436中,該等公開案揭示引入編碼蘋果酸酶B(maeB)、反丁烯二酸水合酶C(fumC)、甲酸脫氫酶D(fdhD)或甲酸脫氫酶E(fdhE)之核酸。其他適用宿主微生物生物體包 括(但不限於)如WO 2009/048202中所揭示可使用甘油作為碳源產生琥珀酸之微生物生物體;或如EP 2612905中所述同時使用蔗糖及甘油作為碳源藉由用蔗糖弱化甘油之分解代謝抑制機制產生琥珀酸之生物體。
適用作用於本文中所述之路徑及方法之宿主微生物生物體的具有高琥珀酸產生之其他微生物包括國際公開案WO 2010/092155及WO 2009/024294及2010年6月24日公開之美國公開案2010-0159542中所述之彼等細菌菌株。舉例而言,巴斯德菌屬(Pasteurella)之細菌菌株,其為革蘭氏陰性兼性厭氧菌,運動性,多形性且通常為過氧化氫酶及氧化酶陽性,尤其巴斯德菌屬菌株DD1及其變異體為適合宿主微生物生物體。巴斯德菌屬菌株DD1為根據布達佩斯條約(Budapest Treaty)寄存在德國DSMZ(Deutsche Sammlungvon Mikroorganismen und Zellkulturen,GmbH),寄存編號為DSM18541的細菌菌株,且最初自德國起源之母牛之瘤胃分離。DD1之改良變異體描述於WO 2010/092155中,亦為適合宿主微生物生物體,且包括(但不限於)LU15348(缺失pfl基因之DD1);LU15050(缺失ldh基因之DD1);及LU15224(缺失pflldh兩種基因之DD1)。其他宿主細菌包括自牛瘤胃分離之琥珀酸產生者,其屬於曼氏桿菌屬,尤其種產琥珀酸曼氏桿菌及菌株產琥珀酸曼氏桿菌MBEL55E及其變異體。
視所選宿主微生物生物體之BDO生物合成、甲醇代謝及/或FAP成分而定,本文中所提供之NNOMO將包括至少一種外源性表現之BDO、甲醛同化及/或MMP編碼核酸及多至用於一或多種BDO生物合成路徑、FAP及/或MMP之所有編碼核酸。舉例而言,BDO生物合成可在路徑酶或蛋白質不足之宿主中經由相應編碼核酸之外源表現而建立。在BDOP之所有酶或蛋白質均不足之宿主中,可包括路徑中所有酶或蛋白質之外源表現,但應理解即使宿主含有至少一種路徑酶或蛋 白質,亦可表現該路徑之所有酶或蛋白質。舉例而言,可包括用於BDO產生之路徑中之所有酶或蛋白質的外源表現。對於本文中所提供之MMP及FAP,同樣如此。
考慮到本文中所提供之教示及指導,熟習此項技術者將理解,以可表現形式引入之編碼核酸之數目將至少與所選宿主微生物生物體之BDOP、FAP及MMP不足相當。因此,本發明之NNOMO可具有編碼構成本文中所揭示之MMP、甲醛同化及/或BDO生物合成路徑之一種、兩種、三種、四種、五種、六種、七種、八種或多至所有酶或蛋白質的核酸。在一些實施例中,NNOMO亦可包括促進或最佳化BDO生物合成、甲醛同化及/或甲醇代謝或賦予宿主微生物生物體以其他適用功能之其他基因修飾。一種此類其他功能可包括例如加強一或多種BDOP前驅體的合成,該一或多種BDOP前驅體諸如α-酮戊二酸、琥珀酸、反丁烯二酸、草醯乙酸、磷酸烯醇丙酮酸或其任何組合。
一般而言,選擇宿主微生物生物體以使得其產生呈天然產生分子或經工程改造產物形式的BDOP之前驅體,其使得所要前驅體從頭產生或由宿主微生物生物體天然產生之前驅體之產生增加。如本文中所揭示,宿主生物體可經工程改造以增加前驅體產生。另外,已經工程改造以產生所要前驅體之微生物生物體可用作宿主生物體且經進一步工程改造以表現BDOP酶或蛋白質。
在一些實施例中,本文中所提供之NNOMO係由含有合成BDO、同化甲醛及/或代謝甲醇之酶促能力的宿主產生。在此特定實施例中,可能適用的為,增加BDOP產物、FAP產物及/或MMP產物(例如還原當量及/或甲醛)之合成或積聚以例如驅動BDOP反應向BDO產生進行。合成或積聚增加可藉由例如過度表現編碼一或多種上文所述之BDO、甲醛同化及/或MMP酶或蛋白質的核酸來實現。BDOP、甲醛同化及/或MMP之酶及/或蛋白質的過度表現可例如經由內源基因之外 源表現或經由異源基因之外源表現來進行。因此,天然存在之生物體可容易產生為NNOMO,例如經由過度表現編碼BDO生物合成路徑及/或MMP酶或蛋白質之一種、兩種、三種、四種、五種、六種、七種、八種、多至所有核酸而產生BDO。天然存在之生物體亦可容易產生為NNOMO,例如經由過度表現編碼FAP及/或MMP酶或蛋白質之一種、兩種、三種、四種、五種、六種、七種、八種、多至所有核酸而同化甲酸。另外,N可藉由突變誘發引起BDO生物合成、甲醛同化及/或甲醇代謝路徑中之酶之活性增加的內源基因而產生。
在尤其適用之實施例中,採用編碼核酸之外源表現。外源表現賦予宿主及應用以定製表現及/或調節元件之能力以達成由使用者控制之所要表現量。然而,內源表現亦可在其他實施例諸如藉由移除負調節效應子或誘導基因之啟動子(當連接至誘導性啟動子或其他調節元件時)而加以利用。因此,具有天然存在之誘導性啟動子的內源基因可藉由提供適當誘導劑而上調,或內源基因之調節區可經工程改造以併有誘導性調節元件,藉此允許在需要時調節內源基因增加之表現。類似地,可包括誘導性啟動子作為引入NNOMO中之外源基因的調節元件。
應理解,在本文中所提供之方法中,可將一或多種外源核酸中之任一者引入微生物生物體中以產生本文中所提供之NNOMO。可引入核酸以便賦予微生物生物體以例如BDO生物合成、甲醛同化及/或甲醇代謝路徑。或者,可引入編碼核酸以產生具有生物合成能力之中間微生物生物體,以催化一些所需反應以賦予BDO生物合成、甲醛同化及/或甲醇代謝能力。舉例而言,具有BDOP、FAP及/或MMP之NNOMO可包含至少兩種編碼所要酶或蛋白質之外源核酸。因此,應理解,在本文中所提供之NNOMO中可包括生物合成路徑、FAP及/或代謝路徑之兩種或兩種以上酶或蛋白質之任何組合。類似地,應理 解,在本文中所提供之NNOMO中可視需要包括生物合成路徑、FAP及/或代謝路徑之三種或三種以上酶或蛋白質之任何組合,只要所要生物合成路徑、FAP及/或代謝路徑之酶及/或蛋白質之組合引起相應所要產物產生即可。類似地,在本文中所提供之NNOMO中可視需要包括如本文中所揭示之生物合成路徑、FAP及/或MMP之四種或四種以上酶或蛋白質之任何組合,只要所要生物合成、同化及/或代謝路徑之酶及/或蛋白質之組合引起相應所要產物產生即可。在特定實施例中,生物合成路徑為BDO生物合成路徑。
除了如本文中所述之甲醇代謝、甲醛同化及BDO生物合成之外,所提供之NNOMO及方法亦可以與彼此及與此項技術中熟知藉由其他途徑達成產物生物合成之其他微生物生物體及方法的各種組合形式使用。舉例而言,除使用BDO產生者以外,一種產生BDO之替代方案為經由添加另一種能夠將BDOP中間物轉化為BDO之微生物生物體。一種此類程序包括例如使產生BDOP中間物之微生物生物體醱酵。BDOP中間物可隨後用作第二微生物生物體之受質,該第二微生物生物體將BDOP中間物轉化為BDO。可直接添加BDOP中間物至第二生物體之另一培養物中,或可藉由例如細胞分離來使BDOP中間物產生者之最初培養物耗乏此等微生物生物體,隨後可利用後續添加第二生物體至醱酵培養液中以產生最終產物而無中間物純化步驟。對於本文中所提供之MMP及FAP,同樣如此。
在其他實施例中,本文中所提供之NNOMO及方法可於各種子路徑中組合以達成例如BDO之生物合成。在此等實施例中,可將所要產物之生物合成路徑分離至不同微生物生物體中,且可共同培養不同微生物生物體以產生最終產物。在該種生物合成流程中,一種微生物生物體之產物為第二微生物生物體之受質直至合成最終產物為止。舉例而言,BDO之生物合成可藉由構築含有用於將一種路徑中間物轉化為 另一路徑中間物或產物之生物合成路徑的微生物生物體而實現。或者,BDO亦可自微生物生物體經由在同一容器中使用兩種生物體共同培養或共同醱酵來以生物合成方式產生,其中第一微生物生物體產生BDO中間物且第二微生物生物體將中間物轉化為BDO。對於本文中所提供之MMP及FAP,同樣如此。
考慮到本文中所提供之教示及指導,熟習此項技術者將理解,存在NNOMO及方法與其他微生物生物體;與具有子路徑之其他NNOMO之共同培養物;及與此項技術中熟知產生BDO及/或代謝甲醇之其他化學及/或生物化學程序之組合的各種組合及置換。
BDO、甲醛同化或MMP酶或蛋白質之編碼核酸之來源可包括例如其中所編碼基因產物能夠催化所參考反應之任何物種。該等物種包括原核與真核生物體,包括(但不限於)細菌,包括古菌及真細菌;及真核生物,包括酵母、植物、昆蟲、動物及哺乳動物(包括人類)。該等來源之例示性物種包括例如大腸桿菌、釀酒酵母、克魯維酵母(Saccharomyces kluyveri)、博伊丁假絲酵母(Candida boidinii)、克氏梭菌(Clostridium kluyveri)、丙酮丁醇梭菌、拜氏梭菌(Clostridium beijerinckii)、糖乙酸多丁醇梭菌(Clostridium saccharoperbutylacetonicum)、產氣莢膜梭菌(Clostridium perfringens)、艱難梭菌(Clostridium difficile)、肉毒梭菌(Clostridium botulinum)、酪丁酸梭菌(Clostridium tyrobutyricum)、破傷風形梭菌(Clostridium tetanomorphum)、破傷風梭菌(Clostridium tetani)、丙酸梭菌(Clostridium propionicum)、胺基丁酸梭菌(Clostridium aminobutyricum)、近端梭菌(Clostridium subterminale)、斯氏梭菌(Clostridium sticklandii)、富養羅爾斯通氏菌(Ralstonia eutropha)、牛分枝桿菌(Mycobacterium bovis)、結核分枝桿菌(Mycobacterium tuberculosis)、牙齦卟啉單胞菌(Porphyromonas gingivalis)、擬南芥 (Arabidopsis thaliana)、嗜熱棲熱菌(Thermus thermophilus)、假單胞菌屬物種(包括綠膿假單胞菌(Pseudomonas aeruginosa)、惡臭假單胞菌、斯氏假單胞菌(Pseudomonas stutzeri)、螢光假單胞菌、智人(Homo sapiens)、穴兔(Oryctolagus cuniculus)、類球紅細菌(Rhodobacter spaeroides)、布氏嗜熱厭氧桿菌(Thermoanaerobacter brockii)、勤奮金屬球菌(Metallosphaera sedula)、腸膜狀明串珠菌(Leuconostoc mesenteroides)、橙色綠屈撓菌(Chloroflexus aurantiacus)、卡氏玫瑰彎菌(Roseiflexus castenholzii)、赤桿菌屬(Erythrobacter)、中國希蒙得木(Simmondsia chinensis)、不動桿菌屬(Acinetobacter)物種(包括醋酸鈣不動桿菌(Acinetobacter calcoaceticus)及貝氏不動桿菌(Acinetobacter baylyi))、牙齦卟啉單胞菌、托科達硫化葉菌(Sulfolobus tokodaii)、硫磺礦硫化葉菌(Sulfolobus solfataricus)、嗜酸熱硫化葉菌(Sulfolobus acidocaldarius)、枯草桿菌、蠟樣芽孢桿菌(Bacillus cereus)、巨大芽孢桿菌(Bacillus megaterium)、短芽孢桿菌(Bacillus brevis)、短小芽孢桿菌(Bacillus pumilus)、褐家鼠(Rattus norvegicus)、肺炎克雷伯氏菌(Klebsiella pneumonia)、產酸克雷伯氏菌、纖細裸藻(Euglena gracilis)、齒垢密螺旋體(Treponema denticola)、熱醋酸穆爾氏菌(Moorella thermoacetica)、海棲熱孢菌(Thermotoga maritima)、嗜鹽桿菌(Halobacterium salinarum)、嗜熱脂肪土芽孢桿菌(Geobacillus stearothermophilus)、敏捷氣熱菌(Aeropyrum pernix)、野豬(Sus scrofa)、秀麗隱桿線蟲(Caenorhabditis elegans)、麩胺酸棒狀桿菌、醱酵胺基酸球菌(Acidaminococcus fermentans)、乳酸乳球菌、植物乳桿菌、嗜熱鏈球菌(Streptococcus thermophilus)、產氣腸桿菌(Enterobacter aerogenes)、假絲酵母(Candida)、土麴菌、戊糖片球菌(Pedicoccus pentosaceus)、運動醱酵單胞菌(Zymomonas mobilus)、巴 斯德醋桿菌(Acetobacter pasteurians)、乳酸克魯維酵母、巴氏真桿菌(Eubacterium barkeri)、多毛擬桿菌(Bacteroides capillosus)、科氏厭氧幹菌(Anaerotruncus colihominis)、嗜熱鹽鹼厭氧菌(Natranaerobius thermophilusm)、空腸彎曲桿菌(Campylobacter jejuni)、流感嗜血桿菌(Haemophilus influenzae)、黏質沙雷氏菌(Serratia marcescens)、無丙二酸檸檬酸桿菌(Citrobacter amalonaticus)、黃色黏球菌(Myxococcus xanthus)、具核梭桿菌(Fusobacterium nuleatum)、產黃青黴菌(Penicillium chrysogenum)、海洋γ變形桿菌(marine gamma proteobacterium)、產丁酸細菌(butyrate-producing bacterium)、艾瓦諾卡菌(Nocardia iowensis)、鼻疽諾卡菌(Nocardia farcinica)、灰色鏈黴菌(Streptomyces griseus)、粟酒裂殖酵母、熱葡糖苷酶土芽孢桿菌(Geobacillus thermoglucosidasius)、鼠傷寒沙門氏菌(Salmonella typhimurium)、霍亂弧菌(Vibrio cholera)、幽門螺桿菌(Heliobacter pylori)、菸草(Nicotiana tabacum)、稻(Oryza sativa)、地中海富鹽菌(Haloferax mediterranei)、根癌農桿菌(Agrobacterium tumefaciens)、脫氮無色桿菌(Achromobacter denitrificans)、具核梭桿菌(Fusobacterium nucleatum)、棒狀鏈黴菌(Streptomyces clavuligenus)、鮑氏不動桿菌(Acinetobacter baumanii)、小家鼠(Mus musculus)、克魯維酵母(Lachancea kluyveri)、陰道毛滴蟲(Trichomonas vaginalis)、布氏錐蟲(Trypanosoma brucei)、斯氏假單胞菌、慢生型大豆根瘤菌(Bradyrhizobium japonicum)、百脈根根瘤菌(Mesorhizobium loti)、牛(Bos taurus)、心葉菸(Nicotiana glutinosa)、創傷弧菌(Vibrio vulnificus)、反芻月形單胞菌(Selenomonas ruminantium)、副溶血弧菌(Vibrio parahaemolyticus)、閃爍古生球菌(Archaeoglobus fulgidus)、死海鹽盒菌(Haloarcula marismortui)、好氧火棒菌(Pyrobaculum aerophilum)、恥垢分枝桿菌(Mycobacterium smegmatis)MC2 155、鳥 副結核分枝桿菌(Mycobacterium avium subsp.paratuberculosis)K-10、海洋分枝桿菌(Mycobacterium marinum)M、微變塚村氏菌(Tsukamurella paurometabola)DSM 20162、藍菌屬(Cyanobium)PCC7001、盤基網柄菌(Dictyostelium discoideum)AX4以及本文中所揭示或可得到作為相應基因之源生物體的其他例示性物種。
在某些實施例中,BDO、甲醛同化或MMP酶或蛋白質之編碼核酸之來源包括鮑氏不動桿菌(Acinetobacter baumannii)Naval-82、不動桿菌屬物種ADP1、不動桿菌屬物種菌株M-1、產琥珀酸放線桿菌130Z、酒色異著色菌(Allochromatium vinosum)DSM 180、嗜甲基擬無枝酸菌(Amycolatopsis methanolica)、擬南芥、極小奇異菌(Atopobium parvulum)DSM 20469、棕色固氮菌(Azotobacter vinelandii)DJ、嗜鹼芽孢桿菌(Bacillus alcalophilus)ATCC 27647、產氮芽孢桿菌(Bacillus azotoformans)LMG 9581、凝結芽孢桿菌(Bacillus coagulans)36D1、巨大芽孢桿菌、甲醇芽孢桿菌(Bacillus methanolicus)MGA3、甲醇芽孢桿菌PB1、甲醇芽孢桿菌PB-1、砷還原芽孢桿菌(Bacillus selenitireducens)MLS10、史氏芽孢桿菌(Bacillus smithii)、枯草桿菌、新洋蔥伯克霍爾德菌(Burkholderia cenocepacia)、洋蔥伯克霍爾德菌(Burkholderia cepacia)、多噬伯克霍爾德菌(Burkholderia multivorans)、吡咯伯克霍爾德菌(Burkholderia pyrrocinia)、穩定伯克霍爾德菌(Burkholderia stabilis)、泰國伯克霍爾德菌(Burkholderia thailandensis)E264、伯克霍爾德細菌(Burkholderiales bacterium)Joshi_001、產丁酸細菌L2-50、空腸彎曲桿菌、白假絲酵母(Candida albicans)、博伊丁假絲酵母、甲基假絲酵母(Candida methylica)、產氫羧基嗜熱菌(Carboxydothermus hydrogenoformans)、產氫羧基嗜熱菌Z-2901、柄桿菌屬物種AP07、聚集綠屈撓菌(Chloroflexus aggregans)DSM 9485、橙色綠屈撓菌J-10-fl、弗氏檸檬酸桿菌 (Citrobacter freundii)、克氏檸檬酸桿菌(Citrobacter koseri)ATCC BAA-895、楊氏檸檬酸桿菌(Citrobacter youngae)、梭菌屬、丙酮丁醇梭菌、丙酮丁醇梭菌ATCC 824、尿酸梭菌(Clostridium acidurici)、胺基丁酸梭菌、產天冬胺酸梭菌(Clostridium asparagiforme)DSM 15981、拜氏梭菌、拜氏梭菌NCIMB 8052、博氏梭菌(Clostridium bolteae)ATCC BAA-613、食一氧化碳梭菌(Clostridium carboxidivorans)P7、嗜纖維梭菌(Clostridium cellulovorans)743B、艱難梭菌、希拉諾梭菌(Clostridium hiranonis)DSM 13275、海氏梭菌(Clostridium hylemonae)DSM 15053、克氏梭菌、克氏梭菌DSM 555、將達梭菌(Clostridium ljungdahli)、將達梭菌DSM 13528、甲基戊糖梭菌(Clostridium methylpentosum)DSM 5476、巴斯德梭菌(Clostridium pasteurianum)、巴斯德梭菌DSM 525、產氣莢膜梭菌、產氣莢膜梭菌ATCC 13124、產氣莢膜梭菌菌株13、植物醱酵梭菌(Clostridium phytofermentans)ISDg、糖丁醇梭菌(Clostridium saccharobutylicum)、糖乙酸多丁醇梭菌、糖乙酸多丁醇梭菌N1-4、破傷風梭菌、麩胺酸棒狀桿菌ATCC 14067、麩胺酸棒狀桿菌R、棒狀桿菌屬物種U-96、變異棒狀桿菌(Corynebacterium variabile)、鉤蟲貪銅菌(Cupriavidus necator)N-1、藍菌屬PCC7001、食烯烴脫硫桿菌(Desulfatibacillum alkenivorans)AK-01、哈弗尼脫亞硫酸菌(Desulfitobacterium hafniense)、金屬還原脫亞硫酸菌(Desulfitobacterium metallireducens)DSM 15288、還原脫硫腸狀菌(Desulfotomaculum reducens)MI-1、非洲脫硫弧菌沃爾維斯灣菌株(Desulfovibrio africanus str.Walvis Bay)、嗜果糖脫硫弧菌(Desulfovibrio fructosovorons)JJ、普通脫硫弧菌希爾登伯勒菌株(Desulfovibrio vulgaris str.Hildenborough)、普通脫硫弧菌『宮崎F』菌株(Desulfovibrio vulgaris str.「Miyazaki F」)、盤基網柄菌AX4、大腸桿菌、大腸桿菌K-12、大腸桿菌K-12 MG1655、霍氏真 桿菌(Eubacterium hallii)DSM 3353、寒黃桿菌(Flavobacterium frigoris)、具核梭桿菌多形亞種(Fusobacterium nucleatum subsp.polymorphum)ATCC 10953、土芽孢桿菌屬物種Y4.1MC1、嗜熱脫氮土芽孢桿菌(Geobacillus themodenitrificans)NG80-2、貝米津地桿菌(Geobacter bemidjiensis)Bem、硫還原地桿菌(Geobacter sulfurreducens)、硫還原地桿菌PCA、嗜熱脂肪土芽孢桿菌DSM 2334、流感嗜血桿菌、幽門螺旋桿菌(Helicobacter pylori)、智人、嗜熱產氫桿菌(Hydrogenobacter thermophilus)、嗜熱產氫桿菌TK-6、脫氮生絲微菌(Hyphomicrobium denitrificans)ATCC 51888、劄瓦金氏生絲微菌(Hyphomicrobium zavarzinii)、肺炎克雷伯氏菌、肺炎克雷伯氏菌肺炎亞種(Klebsiella pneumoniae subsp.pneumoniae)MGH 78578、短乳桿菌(Lactobacillus brevis)ATCC 367、腸膜狀明串珠菌、紡綞形離胺酸芽孢桿菌(Lysinibacillus fusiformis)、球形離胺酸芽孢桿菌(Lysinibacillus sphaericus)、百脈根根瘤菌MAFF303099、勤奮金屬球菌、嗜乙酸甲烷八疊球菌(Methanosarcina acetivorans)、嗜乙酸甲烷八疊球菌C2A、巴氏甲烷八疊球菌(Methanosarcina barkeri)、馬氏甲烷八疊球菌(Methanosarcina mazei)Tuc01、海洋甲基桿菌(Methylobacter marinus)、扭脫甲基桿菌、扭脫甲基桿菌AM1、莢膜甲基球菌(Methylococcus capsulatas)、生胺基甲基單胞菌(Methylomonas aminofaciens)、熱醋酸穆爾氏菌、分枝桿菌屬物種(Mycobacter sp.)菌株JC1 DSM 3803、鳥副結核分枝桿菌K-10、牛分枝桿菌BCG、胃分枝桿菌(Mycobacterium gastri)、海洋分枝桿菌M、恥垢分枝桿菌、恥垢分枝桿菌MC2 155、結核分枝桿菌、鹽漬亞硝化侏儒菌(Nitrosopumilus salaria)BD31、加爾加亞硝化球菌(Nitrososphaera gargensis)Ga9.2、皮疽諾卡菌IFM 10152、艾瓦諾卡菌(NRRL 5646種)、念珠藻屬物種(Nostoc sp.)PCC 7120、安格斯歐加鐵菌(Ogataea angusta)、擬多形歐 加鐵菌(Ogataea parapolymorpha)DL-1(多形漢遜酵母(Hansenula polymorpha)DL-1)、皮氏類芽孢桿菌(Paenibacillus peoriae)KCTC 3763、脫氮副球菌(Paracoccus denitrificans)、產黃青黴菌、深發光桿菌(Photobacterium profundum)3TCK、植物醱酵ISDg、巴斯德畢赤酵母、嗜苦古菌(Picrophilus torridus)DSM9790、牙齦卟啉單胞菌、牙齦卟啉單胞菌W83、綠膿假單胞菌PA01、脫氮假單胞菌(Pseudomonas denitrificans)、克氏假單胞菌(Pseudomonas knackmussii)、惡臭假單胞菌、假單胞菌屬物種、丁香假單胞菌丁香致病變種(Pseudomonas syringae pv.syringae)B728a、冰島火棒菌(Pyrobaculum islandicum)DSM 4184、阿比西火球菌(Pyrococcus abyssi)、激烈火球菌(Pyrococcus furiosus)、掘越氏火球菌(Pyrococcus horikoshii)OT3、富養羅爾斯通氏菌、富養羅爾斯通氏菌H16、莢膜紅細菌(Rhodobacter capsulatus)、類球紅細菌(Rhodobacter sphaeroides)、類球紅細菌ATCC 17025、沼澤紅假單胞菌(Rhodopseudomonas palustris)、沼澤紅假單胞菌CGA009、沼澤紅假單胞菌DX-1、深紅紅螺菌(Rhodospirillum rubrum)、深紅紅螺菌ATCC 11170、卵形瘤胃球菌(Ruminococcus obeum)ATCC 29174、釀酒酵母、釀酒酵母S288c、腸道沙門氏菌(Salmonella enterica)、腸道沙門氏菌鼠傷寒腸道血清型亞種(Salmonella enterica subsp.enterica serovar Typhimurium)菌株LT2、鼠傷寒腸道沙門氏菌(Salmonella enterica typhimurium)、鼠傷寒沙門氏菌、粟酒裂殖酵母、白蟻塞巴魯德菌(Sebaldella termitidis)ATCC 33386、奧奈達希瓦氏菌(Shewanella oneidensis)MR-1、苜蓿中華根瘤菌(Sinorhizobium meliloti)1021、天藍色鏈黴菌(Streptomyces coelicolor)、灰色鏈黴菌灰色亞種(Streptomyces griseus subsp.griseus)NBRC 13350、嗜酸熱硫化葉菌(Sulfolobus acidocalarius)、硫磺礦硫化葉菌P-2、集胞藻屬菌株(Synechocystis str.)PCC 6803、弗氏互營桿 菌(Syntrophobacter fumaroxidans)、芳香陶厄氏菌(Thauera aromatica)、嗜熱厭氧桿菌屬物種X514、鹿兒島熱球菌(Thermococcus kodakaraensis)、海濱熱球菌(Thermococcus litoralis)、嗜酸熱原體(Thermoplasma acidophilum)、嗜中性熱變形菌(Thermoproteus neutrophilus)、海棲熱孢菌、桃紅莢硫菌(Thiocapsa roseopersicina)、奧恩西斯甲苯單胞菌(Tolumonas auensis)DSM 9187、陰道毛滴蟲G3、布氏錐蟲、微變塚村氏菌DSM 20162、霍亂弧菌、哈維氏弧菌(Vibrio harveyi)ATCC BAA-1116、自養黃色桿菌(Xanthobacter autotrophicus)Py2、中間耶爾森菌(Yersinia intermedia)或玉蜀黍(Zea mays)。
然而,在現在可得到超過550種物種的完整基因組序列(其中超過一半可在諸如NCBI之公共資料庫得到)(包括395種微生物基因組及多種酵母、真菌、植物及哺乳動物基因組)之情況下,編碼相關或疏遠物種中之一或多種基因之必需BDO或4-HB生物合成路徑、甲醇代謝及/或甲醛同化活性的基因(包括例如已知基因之同源物、直系同源物、旁系同源物及非直系同源基因置換)之鑑別;及生物體之間的基因改變互換為常規的且為此項技術中所熟知。因此,允許本文中參考特定生物體(諸如大腸桿菌)所述之BDO或4-HB生物合成、甲醇代謝及/或甲醛同化的代謝改變可容易地應用於其他微生物,同樣包括原核及真核生物體。考慮到本文中所提供之教示及指導,熟習此項技術者將知曉在一種生物體中例示之代謝改變可同等適用於其他生物體。
在一些情況下,諸如當在無關物種中存在替代BDO生物合成、甲醛同化及/或MMP時,BDO生物合成、甲醛同化及/或甲醇代謝可藉由例如來自無關物種的催化相似但不相同代謝反應以替代所參考反應之旁系同源物的外源表現而被賦予宿主物種。因為不同生物體之間代謝網絡存在某些差異,所以熟習此項技術者將理解不同生物體之間的 實際基因使用可能不同。然而,考慮到本文中所提供之教示及指導,熟習此項技術者亦將理解,本文中所提供之教示及方法可使用對本文中例示者之同源代謝改變而應用於所有微生物生物體,以構築所關注物種中將合成BDO、使甲醛同化及/或使甲醇代謝之微生物生物體。
構築及測試非天然存在之產BDO宿主的表現水平之方法可例如藉由此項技術中熟知之重組及偵測方法來進行。該等方法可發現描述於例如Sambrook等人,Molecular Cloning:A Laboratory Manual,第三版,Cold Spring Harbor Laboratory,New York(2001);及Ausubel等人,Current Protocols in Molecular Biology,John Wiley and Sons,Baltimore,MD(1999)中。
參與甲醇代謝、甲醛同化及/或BDO產生之路徑的外源核酸序列可使用此項技術中熟知之技術穩定地或暫時地引入宿主細胞中,該等技術包括(但不限於)結合、電穿孔、化學轉化、轉導、轉染及超音波轉化。為了在大腸桿菌或其他原核細胞中外源表現,真核核酸之基因或cDNA中之一些核酸序列可編碼靶向信號,諸如N端粒線體或其他靶向信號,必要時其可在轉化至原核宿主細胞中之前經移除。舉例而言,粒線體前導序列之移除使得大腸桿菌之表現增加(Hoffmeister等人,J.Biol.Chem.280:4329-4338(2005))。為了在酵母或其他真核細胞中外源表現,基因可在不添加前導序列之情況下於細胞溶質中表現,或可靶向線粒體或其他細胞器,或經靶向以便分泌,藉由添加諸如適用於宿主細胞之粒線體靶向或分泌信號之適合靶向序列來達成。因此,應理解為了移除或包括靶向序列而對核酸序列所作之適當修飾可併入外源核酸序列中以賦予所需性質。此外,可用此項技術中熟知之技術對基因進行密碼子最佳化以達成最佳化蛋白質表現。
可構築表現載體以包括一或多種如本文中例示的可操作地連接於在宿主生物體中起作用之表現控制序列的BDO生物合成、甲醛同化 及/或MMP編碼核酸。適用於所提供微生物宿主生物體中之表現載體包括例如質體、噬菌體載體、病毒載體、游離基因體及人工染色體,包括可操作用於穩定整合至宿主染色體中之載體及選擇序列或標記。另外,表現載體可包括一或多種選擇標記基因及適當表現控制序列。亦可包括如下選擇標記基因,其例如提供對抗生素或毒素、補體營養缺陷型缺乏之抗性,或供應不在培養基中之關鍵營養素。表現控制序列可包括此項技術中熟知之構成性及誘導性啟動子、轉錄增強子、轉錄終止子及其類似物。當兩種或兩種以上外源編碼核酸經共同表現時,兩種核酸可插入例如單一表現載體或各別表現載體中。對於單一載體表現,編碼核酸可操作地連接於一個共同表現控制序列,或連接於不同表現控制序列,諸如一個誘導性啟動子及一個構成性啟動子。參與代謝或合成路徑之外源核酸序列的轉化可使用此項技術中熟知之方法來證實。該等方法包括例如核酸分析,諸如北方墨點法(Northern blots)或mRNA之聚合酶鏈反應(PCR)擴增;或基因產物表現之免疫墨點法,或測試所引入核酸序列或其相應基因產物之表現的其他適合分析方法。熟習此項技術者應理解,外源核酸以足以產生所要產物之量表現,且應進一步理解,可使用此項技術中熟知且如本文中所揭示之方法使表現水平最佳化以獲得充足表現。
適合純化及/或測試例如BDO產生之分析可使用熟知方法來進行。對於待測試之各工程改造菌株,可使諸如三個重複培養物之適合複製物生長。舉例而言,可監測經工程改造之產生宿主中的產物及副產物形成。最終產物及中間物,及其他有機化合物可藉由諸如HPLC(高效液相層析)、GC-MS(氣相層析-質譜分析)及LC-MS(液相層析-質譜分析)或其他適合分析方法之方法使用此項技術中熟知之常規程序來分析。醱酵液(fermentation broth)中產物之釋放亦可用培養物上清液測試。副產物及殘餘葡萄糖可藉由HPLC使用例如葡萄糖及醇 之折射率偵測器及有機酸之UV偵測器(Lin等人,Biotechnol.Bioeng.90:775-779(2005))或此項技術中熟知的其他適合分析及偵測方法來定量。外源DNA序列之個別酶或蛋白質活性亦可使用此項技術中熟知之方法來分析。甲醇脫氫酶(圖1,步驟J)之活性的例示性分析提供於實例I中。
BDO可使用此項技術中熟知之多種方法與培養物中之其他組分分離。該等分離方法包括例如萃取程序以及包括連續液-液萃取、滲透蒸發、膜過濾、膜分離、逆滲透、電滲析、蒸餾、結晶、離心、萃取過濾、離子交換層析、尺寸排阻層析、吸附層析及超濾之方法。所有上述方法均為此項技術中所熟知。
可培養本文中所述之NNOMO中之任一者以產生及/或分泌生物合成產物或其中間物。舉例而言,可培養BDO產生者以便生物合成產生BDO。因此,在一些實施例中,提供一種培養基,其具有本文中所述之BDO、甲醛同化及/或MMP中間物。在一些態樣中,培養基亦可與本文中所提供的產生BDO、甲醛同化及/或MMP中間物之NNOMO分離。自培養基分離微生物生物體之方法為此項技術中所熟知。例示性方法包括過濾、絮凝、沈澱、離心、沈降及其類似方法。
在某些實施例中,舉例而言,為了產生BDO,重組菌株在具有碳源及其他必需營養素之培養基中培養。有時需要且可能極需要維持醱酵槽中之缺氧條件以降低總體製程之成本。該等條件可例如藉由首先以氮氣噴射培養基,隨後以隔膜及螺旋蓋密封燒瓶來獲得。對於在缺氧下未觀測到生長之菌株,可藉由將隔膜刺出小孔以達成有限充氣來施加微有氧或實質上缺氧條件。例示性缺氧條件先前已描述且為此項技術中所熟知。例示性有氧及缺氧條件描述於例如美國公開案第2009/0047719號中。如本文中所揭示,醱酵可以分批、分批饋入或連續方式進行。必要時,醱酵亦可分兩個階段進行。第一階段可為有氧 的以允許高生長且因此允許高生產力,隨後為高BDO產率之缺氧階段。
必要時,培養基之pH值可藉由添加如將培養基維持在所需pH值下所需之鹼(諸如NaOH或其他鹼)或酸而維持在所需pH值,尤其中性pH值,諸如約7之pH值下。生長速率可藉由使用分光光度計(600nm)量測光學密度來測定,且葡萄糖攝取速率藉由隨時間監測碳源消耗來測定。
生長培養基可包括例如可向NNOMO供應碳源之任何碳水化合物源。該等來源包括例如糖,諸如葡萄糖、木糖、阿拉伯糖、半乳糖、甘露糖、果糖、蔗糖及澱粉;或甘油,單獨作為唯一碳源或與本文中所述或此項技術中已知之其他碳源組合。在一個實施例中,碳源為糖。在一個實施例中,碳源為含有糖之生物質。在一些實施例中,糖為葡萄糖。在一個實施例中,糖為木糖。在另一實施例中,糖為阿拉伯糖。在一個實施例中,糖為半乳糖。在另一實施例中,糖為果糖。在其他實施例中,糖為蔗糖。在一個實施例中,糖為澱粉。在某些實施例中,碳源為甘油。在一些實施例中,碳源為粗製甘油。在一個實施例中,碳源為未經處理之粗製甘油。在其他實施例中,碳源為甘油及葡萄糖。在另一實施例中,碳源為甲醇及甘油。在一個實施例中,碳源為二氧化碳。在一個實施例中,碳源為甲酸。在一個實施例中,碳源為甲烷。在一個實施例中,碳源為甲醇。在某些實施例中,甲醇單獨用作唯一碳源或與本文中所述或此項技術中已知之其他碳源組合使用。在一特定實施例中,甲醇為僅有的(唯一)碳源。在一個實施例中,碳源為電化學產生之碳(參見例如Liao等人(2012)Science 335:1596)。在一個實施例中,電化學產生之碳為甲醇。在一個實施例中,電化學產生之碳為甲酸。在一個實施例中,電化學產生之碳為甲酸及甲醇。在一個實施例中,碳源為碳水化合物及甲醇。在一個實 施例中,碳源為糖及甲醇。在另一實施例中,碳源為糖及甘油。在其他實施例中,碳源為糖及粗製甘油。在其他實施例中,碳源為糖及未經處理之粗製甘油。在一個實施例中,碳源為含有糖之生物質及甲醇。在另一實施例中,碳源為含有糖之生物質及甘油。在其他實施例中,碳源為含有糖之生物質及粗製甘油。在其他實施例中,碳源為含有糖之生物質及未經處理之粗製甘油。在一些實施例中,碳源為含有糖之生物質、甲醇及碳水化合物。碳水化合物之其他來源包括例如可再生原料及生物質。可用作本文中所提供之方法中之原料的生物質之例示性類型包括纖維素生物質、半纖維素生物質及木質素原料或原料之部分。該等生物質原料含有例如適用作碳源之碳水化合物受質,諸如葡萄糖、木糖、阿拉伯糖、半乳糖、甘露糖、果糖及澱粉。考慮到本文中所提供之教示及指導,熟習此項技術者將理解,除上文例示者以外之可再生原料及生物質亦可用於培養本文中所提供之微生物生物體以便產生BDO及其他路徑中間物。
在一個實施例中,碳源為甘油。在某些實施例中,甘油碳源為粗製甘油或未經進一步處理之粗製甘油。在另一實施例中,碳源包含甘油或粗製甘油以及糖或含有糖之生物質(諸如葡萄糖)。在一特定實施例中,醱酵液中甘油之濃度藉由饋入粗製甘油或粗製甘油與糖(例如葡萄糖)之混合物來維持。在某些實施例中,提供糖以達成充分菌株生長。在一些實施例中,糖(例如葡萄糖)以200:1至1:200的甘油:糖之莫耳濃度比提供。在一些實施例中,糖(例如葡萄糖)以100:1至1:100的甘油:糖之莫耳濃度比提供。在一些實施例中,糖(例如葡萄糖)以100:1至5:1的甘油:糖之莫耳濃度比提供。在一些實施例中,糖(例如葡萄糖)以50:1至5:1的甘油:糖之莫耳濃度比提供。在某些實施例中,糖(例如葡萄糖)以100:1的甘油:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以90:1的甘油:糖之莫耳濃度比提供。在一 個實施例中,糖(例如葡萄糖)以80:1的甘油:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以70:1的甘油:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以60:1的甘油:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以50:1的甘油:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以40:1的甘油:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以30:1的甘油:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以20:1的甘油:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以10:1的甘油:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以5:1的甘油:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以2:1的甘油:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:1的甘油:糖之莫耳濃度比提供。在某些實施例中,糖(例如葡萄糖)以1:100的甘油:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:90的甘油:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:80的甘油:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:70的甘油:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:60的甘油:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:50的甘油:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:40的甘油:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:30的甘油:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:20的甘油:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:10的甘油:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:5的甘油:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:2的甘油:糖之莫耳濃度比提供。在上文提供之比率的某些實施例中,糖為含有糖之生物質。在上文提供之比率的某些其他實施例中,甘油為粗製甘油或未經進一步處理之粗製甘油。 在上文提供之比率的其他實施例中,糖為含有糖之生物質,且甘油為粗製甘油或未經進一步處理之粗製甘油。
粗製甘油可為生物柴油產生中產生之副產物,且可在不經任何進一步處理之情況下用於醱酵。生物柴油產生方法包括(1)化學方法,其中植物油或動物油之甘油基藉由在酸性或鹼性催化劑存在下進行轉酯化而經低碳醇(諸如甲醇或乙醇)取代以產生相應脂肪酸甲酯或脂肪酸乙酯;(2)生物方法,其中使用生物酶或細胞催化轉酯化反應且產生相應脂肪酸甲酯或脂肪酸乙酯;及(3)超臨界方法,其中轉酯化反應在不具有任何催化劑之超臨界溶劑系統中進行。粗製甘油之化學組成可隨用以產生生物柴油之製程、轉酯化效率、生物柴油之回收效率、原料中之其他雜質及是否回收甲醇及催化劑而變化。舉例而言,自七個澳大利亞生物柴油製造商收集之十一份粗製甘油之化學組成報導,甘油含量介於38%與96%之間,一些樣品包括超過14%甲醇及29%灰分。在某些實施例中,粗製甘油包含5%至99%甘油。在一些實施例中,粗製甘油包含10%至90%甘油。在一些實施例中,粗製甘油包含10%至80%甘油。在一些實施例中,粗製甘油包含10%至70%甘油。在一些實施例中,粗製甘油包含10%至60%甘油。在一些實施例中,粗製甘油包含10%至50%甘油。在一些實施例中,粗製甘油包含10%至40%甘油。在一些實施例中,粗製甘油包含10%至30%甘油。在一些實施例中,粗製甘油包含10%至20%甘油。在一些實施例中,粗製甘油包含80%至90%甘油。在一些實施例中,粗製甘油包含70%至90%甘油。在一些實施例中,粗製甘油包含60%至90%甘油。在一些實施例中,粗製甘油包含50%至90%甘油。在一些實施例中,粗製甘油包含40%至90%甘油。在一些實施例中,粗製甘油包含30%至90%甘油。在一些實施例中,粗製甘油包含20%至90%甘油。在一些實施例中,粗製甘油包含20%至40%甘油。在一些實施例中,粗製 甘油包含40%至60%甘油。在一些實施例中,粗製甘油包含60%至80%甘油。在一些實施例中,粗製甘油包含50%至70%甘油。在一個實施例中,甘油包含5%甘油。在一個實施例中,甘油包含10%甘油。在一個實施例中,甘油包含15%甘油。在一個實施例中,甘油包含20%甘油。在一個實施例中,甘油包含25%甘油。在一個實施例中,甘油包含30%甘油。在一個實施例中,甘油包含35%甘油。在一個實施例中,甘油包含40%甘油。在一個實施例中,甘油包含45%甘油。在一個實施例中,甘油包含50%甘油。在一個實施例中,甘油包含55%甘油。在一個實施例中,甘油包含60%甘油。在一個實施例中,甘油包含65%甘油。在一個實施例中,甘油包含70%甘油。在一個實施例中,甘油包含75%甘油。在一個實施例中,甘油包含80%甘油。在一個實施例中,甘油包含85%甘油。在一個實施例中,甘油包含90%甘油。在一個實施例中,甘油包含95%甘油。在一個實施例中,甘油包含99%甘油。
在一個實施例中,碳源為甲醇或甲酸。在某些實施例中,甲醇用作本文中所提供之FAP中的碳源。在一個實施例中,碳源為甲醇或甲酸。在其他實施例中,甲酸用作本文中所提供之FAP中的碳源。在特定實施例中,甲醇單獨或與本文中所提供之產物路徑組合用作本文中所提供之MMP中的碳源。在一個實施例中,碳源為甲醇。在另一實施例中,碳源為甲酸。
在一個實施例中,碳源包含甲醇及糖(例如葡萄糖)或含有糖之生物質。在另一實施例中,碳源包含甲酸及糖(例如葡萄糖)或含有糖之生物質。在一個實施例中,碳源包含甲醇、甲酸及糖(例如葡萄糖)或含有糖之生物質。在特定實施例中,醱酵饋料中之甲醇或甲酸或兩者以與糖(例如葡萄糖)或包含糖之生物質的混合物形式提供。在某些實施例中,提供糖以達成充分菌株生長。
在某些實施例中,碳源包含甲醇及糖(例如葡萄糖)。在一些實施例中,糖(例如葡萄糖)以200:1至1:200的甲醇:糖之莫耳濃度比提供。在一些實施例中,糖(例如葡萄糖)以100:1至1:100的甲醇:糖之莫耳濃度比提供。在一些實施例中,糖(例如葡萄糖)以100:1至5:1的甲醇:糖之莫耳濃度比提供。在一些實施例中,糖(例如葡萄糖)以50:1至5:1的甲醇:糖之莫耳濃度比提供。在某些實施例中,糖(例如葡萄糖)以100:1的甲醇:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以90:1的甲醇:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以80:1的甲醇:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以70:1的甲醇:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以60:1的甲醇:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以50:1的甲醇:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以40:1的甲醇:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以30:1的甲醇:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以20:1的甲醇:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以10:1的甲醇:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以5:1的甲醇:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以2:1的甲醇:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:1的甲醇:糖之莫耳濃度比提供。在某些實施例中,糖(例如葡萄糖)以1:100的甲醇:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:90的甲醇:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:80的甲醇:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:70的甲醇:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:60的甲醇:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:50的甲醇:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:40的甲醇:糖之 莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:30的甲醇:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:20的甲醇:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:10的甲醇:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:5的甲醇:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:2的甲醇:糖之莫耳濃度比提供。在上文提供之比率的某些實施例中,糖為含有糖之生物質。
在某些實施例中,碳源包含甲酸及糖(例如葡萄糖)。在一些實施例中,糖(例如葡萄糖)以200:1至1:200的甲酸:糖之莫耳濃度比提供。在一些實施例中,糖(例如葡萄糖)以100:1至1:100的甲酸:糖之莫耳濃度比提供。在一些實施例中,糖(例如葡萄糖)以100:1至5:1的甲酸:糖之莫耳濃度比提供。在一些實施例中,糖(例如葡萄糖)以50:1至5:1的甲酸:糖之莫耳濃度比提供。在某些實施例中,糖(例如葡萄糖)以100:1的甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以90:1的甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以80:1的甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以70:1的甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以60:1的甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以50:1的甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以40:1的甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以30:1的甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以20:1的甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以10:1的甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以5:1的甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以2:1的甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:1的甲酸:糖之莫耳濃度比提供。 在某些實施例中,糖(例如葡萄糖)以1:100的甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:90的甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:80的甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:70的甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:60的甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:50的甲酸:糖之莫耳濃度比提供。在一個實施例中,在一個實施例中,糖(例如葡萄糖)以1:40的甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:30的甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:20的甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:10的甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:5的甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:2的甲酸:糖之莫耳濃度比提供。在上文提供之比率的某些實施例中,糖為含有糖之生物質。
在某些實施例中,碳源包含甲醇與甲酸之混合物及糖(例如葡萄糖)。在某些實施例中,提供糖以達成充分菌株生長。在一些實施例中,糖(例如葡萄糖)以200:1至1:200的甲醇及甲酸:糖之莫耳濃度比提供。在一些實施例中,糖(例如葡萄糖)以100:1至1:100的甲醇及甲酸:糖之莫耳濃度比提供。在一些實施例中,糖(例如葡萄糖)以100:1至5:1的甲醇及甲酸:糖之莫耳濃度比提供。在一些實施例中,糖(例如葡萄糖)以50:1至5:1的甲醇及甲酸:糖之莫耳濃度比提供。在某些實施例中,糖(例如葡萄糖)以100:1的甲醇及甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以90:1的甲醇及甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以80:1的甲醇及甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以70:1的甲醇及甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以60:1的 甲醇及甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以50:1的甲醇及甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以40:1的甲醇及甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以30:1的甲醇及甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以20:1的甲醇及甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以10:1的甲醇及甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以5:1的甲醇及甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以2:1的甲醇及甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:1的甲醇及甲酸:糖之莫耳濃度比提供。在某些實施例中,糖(例如葡萄糖)以1:100的甲醇及甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:90的甲醇及甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:80的甲醇及甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:70的甲醇及甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:60的甲醇及甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:50的甲醇及甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:40的甲醇及甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:30的甲醇及甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:20的甲醇及甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:10的甲醇及甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:5的甲醇及甲酸:糖之莫耳濃度比提供。在一個實施例中,糖(例如葡萄糖)以1:2的甲醇及甲酸:糖之莫耳濃度比提供。在上文提供之比率的某些實施例中,糖為含有糖之生物質。
考慮到本文中所提供之教示及指導,熟習此項技術者將理解, 當在碳源(諸如碳水化合物)上生長時,可產生分泌生物合成化合物之NNOMO。該等化合物包括例如BDO及BDOP中之任何中間代謝物。僅需要在一或多種所需酶或蛋白質活性方面進行工程改造以達成所要化合物或中間物之生物合成,包括例如包涵一些或所有BDO生物合成路徑。因此,本文中提供一種NNOMO,其當在碳水化合物或其他碳源上生長時產生及/或分泌BDO,且當在碳水化合物或其他碳源上生長時產生及/或分泌BDOP中所示之任何中間代謝物。本文中所提供的產生BDO之微生物生物體可自中間物起始合成。對於甲醛同化及MMP中之中間物,同樣如此。
如本文中所例示使用此項技術中熟知之方法構築本文中所提供之NNOMO,以外源性表現至少一種編碼足以產生BDO之量的BDO及/或MMP酶或蛋白質之核酸。應理解,微生物生物體在足以產生BDO之條件下培養。按照本文中所提供之教示及指導,NNOMO可達成BDO之生物合成,產生約0.1-500mM之間或500mM以上的細胞內濃度。一般而言,BDO之細胞內濃度在約3-150mM之間,尤其在約5-125mM之間,且更尤其在約8-100mM之間,包括約10mM、20mM、50mM、80mM或80mM以上。在此等例示性範圍中之每一者之間及超出此等例示性範圍中之每一者的細胞內濃度亦可自本文中所提供之NNOMO達成。
在一些實施例中,培養條件包括缺氧或實質上缺氧生長或維持條件。例示性缺氧條件先前已描述且為此項技術中所熟知。用於醱酵製程中之例示性缺氧條件描述於本文中,且描述於例如美國公開案第2009/0047719號中。在NNOMO之情況下可採用此等條件中之任一者以及此項技術中熟知之其他缺氧條件。在該等缺氧或實質上缺氧條件下,BDO產生者可以5-100mM或100mM以上之細胞內濃度以及本文中例示之所有其他濃度合成BDO。應理解,即使以上描述係指細胞內 濃度,BDO亦可在細胞內產生BDO及/或將產物分泌至培養基中。
例示性醱酵製程包括(但不限於)分批饋入醱酵及分批分離;分批饋入醱酵及連續分離;及連續醱酵及連續分離。在例示性分批醱酵方案中,產生生物體在以適當氣體噴射的具有適合尺寸之生物反應器中生長。在缺氧條件下,培養物以惰性氣體或氣體之組合(例如氮氣、N2/CO2混合物、氬氣、氦氣及其類似氣體)噴射。隨著細胞生長及利用碳源,另外的碳源及/或其他營養素以大致平衡碳源及/或營養素之消耗的速率饋入生物反應器中。生物反應器之溫度維持於所要溫度下,一般在22-37℃範圍內,但溫度可視產生生物體之生長特徵及/或醱酵製程之所要條件而維持於更高或更低溫度下。生長持續所要時間段以在醱酵槽中達成培養物之所要特徵,例如細胞密度、產物濃度及其類似特徵。在分批醱酵製程中,醱酵之時間段視所要培養條件而一般在數小時至數天範圍內,例如8至24小時,或1、2、3、4或5天或長達一週。可視需要控制或不控制pH值,在該情況下,其中不控制pH值之培養物在操作結束時典型地將降低至pH 3-6。在培養期完成時,可使醱酵槽內容物通過細胞分離單元(例如離心機、過濾單元及其類似單元)以移除細胞及細胞碎片。在所要產物在細胞內表現之情況下,可視需要在自醱酵液分離細胞之前或之後以酶促方式或以化學方式溶解或破壞細胞,以便釋放另外的產物。可將醱酵液轉移至產物分離單元。產物之分離藉由此項技術中所用之標準分離程序進行以自稀水溶液分離所要產物。該等方法視醱酵製程之產物的化學特徵而包括(但不限於)適當時使用水不可混溶有機溶劑(例如甲苯或其他適合溶劑,包括(但不限於)乙醚、乙酸乙酯、四氫呋喃(THF)、二氯甲烷、氯仿、苯、戊烷、己烷、庚烷、石油醚、甲基第三丁基醚(MTBE)、二噁烷、二甲基甲醯胺(DMF)、二甲亞碸(DMSO)及其類似溶劑)進行液-液萃取以提供產物之有機溶液;標準蒸餾方法;及其類似方法。
在例示性完全連續醱酵方案中,產生生物體一般首先以分批模式生長以便達成所要細胞密度。當碳源及/或其他營養素耗盡時,以所要速率連續地供應具有相同組成之饋入培養基,且以相同速率抽出醱酵液體。在該等條件下,生物反應器中之產物濃度以及細胞密度一般保持恆定。如上文所論述,醱酵槽之溫度維持於所要溫度下。在連續醱酵階段期間,一般需要維持適合pH值範圍以達成最佳化產生。pH值可使用常規方法監測並維持,該等方法包括添加適合酸或鹼以維持所要pH值範圍。生物反應器適當且必要時連續地操作延長之時間段,一般至少一週至數週且長達一個月或一個月以上。醱酵液體及/或培養物視需要定期進行監測,包括多至每天取樣,以確保產物濃度及/或細胞密度之一致性。在連續模式中,隨著新的饋入培養基的供應,連續移除醱酵槽內容物。一般對含有細胞、培養基及產物之排出流進行連續產物分離程序,視需要移除或不移除細胞及細胞碎片。此項技術中所用之連續分離方法可用以自稀水溶液分離產物,包括(但不限於)使用水不可混溶有機溶劑(例如甲苯或其他適合溶劑,包括(但不限於)乙醚、乙酸乙酯、四氫呋喃(THF)、二氯甲烷、氯仿、苯、戊烷、己烷、庚烷、石油醚、甲基第三丁基醚(MTBE)、二噁烷、二甲基甲醯胺(DMF)、二甲亞碸(DMSO)及其類似溶劑)進行之連續液-液萃取;標準連續蒸餾方法;及其類似方法;或此項技術中熟知之其他方法。
除了本文中所揭示之培養及醱酵條件之外,達成BDO生物合成之生長條件可包括添加滲透保護劑至培養條件。在某些實施例中,本文中所提供之NNOMO可如本文中所述在滲透保護劑存在下維持、培養或醱酵。簡言之,滲透保護劑係指充當滲透劑(osmolyte)且有助於如本文中所述之微生物生物體經受住滲透應力之化合物。滲透保護劑包括(但不限於)甜菜鹼、胺基酸及糖海藻糖。該等滲透保護劑之非限 制性實例為甘胺酸甜菜鹼、堅果糖甜菜鹼、二甲基噻亭(dimethylthetin)、二甲基二氫硫基丙酸酯、3-二甲基二氫硫基-2-甲基丙酸酯、哌啶甲酸(pipecolic acid)、二甲基二氫硫基乙酸酯、膽鹼、L-肉鹼及艾克托因(ectoine)。在一個態樣中,滲透保護劑為甘胺酸甜菜鹼。一般技術者應理解,適用於保護本文中所述之微生物生物體不受滲透應力影響之滲透保護劑的量及類型將視所用微生物生物體而定。培養條件中滲透保護劑之量可為例如不超過約0.1mM、不超過約0.5mM、不超過約1.0mM、不超過約1.5mM、不超過約2.0mM、不超過約2.5mM、不超過約3.0mM、不超過約5.0mM、不超過約7.0mM、不超過約10mM、不超過約50mM、不超過約100mM或不超過約500mM。
培養條件可包括例如液體培養程序以及醱酵及其他大規模培養程序。如本文中所述,本文中所提供之生物合成產物的尤其適用產率可在缺氧或實質上缺氧培養條件下獲得。
如本文中所述,達成BDO以及其他路徑中間物之生物合成的一種例示性生長條件包括缺氧培養或醱酵條件。在某些實施例中,所提供之NNOMO可在缺氧或實質上缺氧條件下維持、培養或醱酵。簡言之,缺氧條件係指缺乏氧氣之環境。實質上缺氧條件包括例如培養、分批醱酵或連續醱酵,使得培養基中之溶解氧濃度保持在0與10%飽和度之間。實質上缺氧條件亦包括使細胞在液體培養基中或在固體瓊脂上在維持具有小於1%氧氣之氛圍的密封腔室內生長或靜止。氧氣百分比可藉由例如以N2/CO2混合物或其他適合非氧氣體噴射培養物來維持。
本文中所述之培養條件可連續按比例擴大及生長以便製造BDO。例示性生長程序包括例如分批饋入醱酵及分批分離;分批饋入醱酵及連續分離,或連續醱酵及連續分離。所有此等製程均為此項技 術中所熟知。醱酵程序尤其適用於生物合成產生商業量之BDO。一般而言且如同非連續培養程序一般,BDO之連續及/或接近連續產生將包括在充足營養素及培養基中培養本文中所提供的非天然存在之產生BDO之生物體以維持及/或接近維持處於指數期之生長。可包括在該等條件下之連續培養,例如生長或培養1天、2天、3天、4天、5天、6天或7天或7天以上。另外,連續培養可包括1週、2週、3週、4週或5週或5週以上及長達數月之較長時間段。或者,所提供之生物體在適用於特定應用時可培養數小時。應理解,連續及/或接近連續培養條件亦可包括此等例示性時段之間的所有時間間隔。進一步應理解,培養本文中所提供之NNOMO的時間為持續足以產生充足量之產物達成所要目的的時間段。
醱酵程序為此項技術中所熟知。簡言之,用於生物合成產生BDO之醱酵可以例如分批饋入醱酵及分批分離;分批饋入醱酵及連續分離;或連續醱酵及連續分離形式利用。分批及連續醱酵程序之實例為此項技術中所熟知。
除了使用BDO產生者來連續產生實質量之BDO的以上醱酵程序之外,必要時,BDO產生者亦可例如同時進行化學合成程序以將產物轉化為其他化合物,或可將產物與醱酵培養物分離隨後進行化學及/或酶促轉化以將產物轉化為其他化合物。
為產生更佳產生者,可利用代謝模型化以使生長條件最佳化。模型化亦可用以設計另外使路徑利用最佳化之基因剔除(參見例如美國公開案第2002/0012939號、第2003/0224363號、第2004/0029149號、第2004/0072723號、第2003/0059792號、第2002/0168654號及第2004/0009466號,及美國專利第7,127,379號)。模型化分析允許可靠預測使代謝向BDO之更有效產生偏移對細胞生長之影響。
一種鑑別及設計有利於生物合成所要產物之代謝改變的計算方 法為OptKnock計算構架(Burgard等人,Biotechnol.Bioeng.84:647-657(2003))。OptKnock為代謝模型化及模擬程式,其提出導致產生過度產生目標產物之基因穩定微生物的基因缺失或破壞策略。特定言之,該構架檢驗微生物之完整代謝及/或生物化學網絡,以提出迫使所要生物化學物質變成細胞生長之專性副產物的基因操作。藉由經由策略性置放之基因缺失或其他功能基因破壞將生物化學物質產生與細胞生長耦合,在生物反應器中長時間段之後,施加於經工程改造菌株之生長選擇壓力使得效能因強迫性生長耦合生物化學物質產生而改良。最後,當構築基因缺失時,存在以下可忽略之可能性:因為藉由OptKnock選擇之基因自基因組完全移除,所以所設計之菌株恢復至其野生型狀態。因此,此計算方法可用以鑑別引起所要產物之生物合成之替代路徑,或與NNOMO結合使用以便進一步使所要產物之生物合成最佳化。
簡言之,OptKnock為在本文中用以指用於模型化細胞代謝之計算方法及系統的術語。OptKnock程式係關於將特定約束併入通量平衡分析(flux balance analysis,FBA)模型中之模型及方法的構架。此等約束包括例如定性動力學資訊、定性調節資訊及/或DNA微陣列實驗資料。OptKnock亦藉由例如收緊經由通量平衡模型產生之通量邊界隨後探測在基因添加或缺失存在下代謝網絡之效能限度來計算各種代謝問題之解。OptKnock計算構架允許構築模型制定(model formulation),其允許有效查詢代謝網絡之效能限度且提供解決所得混合整數線性規劃問題之方法。本文中稱為OptKnock之代謝模型化及模擬方法描述於例如美國公開案第2002/0168654號、國際專利申請案第PCT/US02/00660號及美國公開案第2009/0047719號中。
鑑別及設計有利於生物合成產生產物之代謝改變的另一計算方法為稱為SimPheny®之代謝模型化及模擬系統。此計算方法及系統描 述於例如美國公開案第2003/0233218號及國際專利申請案第PCT/US03/18838號中。SimPheny®為一種計算系統,其可用以經由電腦模擬產生網絡模型,且模擬通過生物系統之化學反應的質量、能量或電荷通量,以界定含有系統中之化學反應之任何及所有可能功能性的解空間,從而確定生物系統之允許活性之範圍。因為解空間由諸如所包括反應之已知化學計量以及與通過反應之最大通量相關的反應熱力學及能力約束之約束界定,所以此方法稱為基於約束之模型化。由此等約束界定之空間可經詢問以確定生物系統或其生物化學組分之表型能力及特性。
因為生物系統為靈活的且可以許多不同方式達成相同結果,所以此等計算方法與生物現實一致。經由已受所有生物系統均必須面對之基本約束限制的進化機制來設計生物系統。因此,基於約束之模型化策略包涵此等一般現實。此外,經由收緊約束對網絡模型連續施加其他限制之能力引起解空間尺寸減小,從而增進可預測生理學效能或表型之精度。
考慮到本文中所提供之教示及指導,熟習此項技術者將能夠應用代謝模型化及模擬之各種計算構架以設計及實施宿主微生物生物體中所要化合物之生物合成。該等代謝模型化及模擬方法包括例如上文例示為SimPheny®及OptKnock之計算系統。為了說明,一些方法在本文中參考模型化及模擬之OptKnock計算構架進行描述。熟習此項技術者將知曉如何使用OptKnock將代謝改變之鑑別、設計及實施應用於此項技術中熟知之任何該等其他代謝模型化及模擬計算構架及方法。
上文所述之方法將提供一組代謝反應來破壞。消除該組內之各反應或代謝修飾可在生物體之生長期期間產生所要產物作為專性產物。因為反應為已知的,所以雙層OptKnock問題(bilevel OptKnock problem)之解決方法亦將提供編碼一或多種在反應組內催化各反應之酶的相關基因。鑑別一組反應及其編碼參與各反應之酶的相應基因一般為自動製程,其經由反應與具有酶與編碼基因之間關係的反應資料庫之相關性來實現。
一旦經鑑別,欲經破壞以達成產生所要產物之反應組即在目標細胞或生物體中藉由功能性破壞至少一種編碼該組內各代謝反應之基因來實施。一種可達成反應組之功能性破壞之尤其適用方法是將各編碼基因進行缺失作用。然而,在一些情況下,宜藉由調節區(諸如啟動子,或調節因子之順式結合位點)之其他基因異常(genetic aberration)(包括例如突變、缺失)或藉由在許多位置中任一處截短編碼序列來破壞反應。該等會造成小於基因組全部缺失的後者異常是可以使用的,例如當需要快速評估所要產物的耦合時或者當不太可能發生基因回復時。
為鑑別產生其他反應組以供破壞或代謝修飾(其可引起所要產物之生物合成(包括生長耦合生物合成))之上述雙層OptKnock問題之其他產生性解決方法(productive solution),可實施稱為整數切割(integer cuts)之最佳化方法。此方法係藉由在各反覆下併入稱為整數切割之其他約束反覆地解決上文例示之OptKnock問題來進行。整數切割約束可有效防止解決程序免於選擇產物生物合成與生長強制耦合之任何先前反覆中鑑別的精確相同之反應組。舉例而言,若先前鑑別之生長耦合代謝修飾指定反應1、2及3以供破壞,則以下約束就可防止在隨後解決方案中同時考慮相同反應。整數切割方法為此項技術中所熟知且可見描述於例如Burgard等人,Biotechnol.Prog.17:791-797(2001)中。如對於本文中參考用途組合用於代謝模型化及模擬之OptKnock計算構架描述之所有方法一般,在反覆計算分析中減少冗餘之整數切割法亦可與此項技術中熟知之其他計算構架(包括例如SimPheny®)一 起應用。
本文中例示之方法允許構築生物合成產生所要產物之細胞及生物體,包括將目標生化產物之產生與經工程改造而帶有經鑑別基因改變之細胞或生物體的生長強制耦合在一起。因此,本文中所述之計算方法允許鑑別及實施由選自OptKnock或SimPheny®之電腦模擬方法鑑別的代謝修飾。該組代謝修飾可包括例如加入一或多種生物合成路徑酶及/或功能性破壞一或多種代謝反應,包括例如藉由基因缺失加以破壞。
如上文所討論,OptKnock方法係在突變型微生物網絡當經受長期生長選擇時可向其計算預測之最大生長表型進化之前提下開發。換言之,該方法影響生物體在選擇壓力下自我最佳化之能力。OptKnock構架允許詳盡列舉迫使在生物化學物質產生與細胞生長之間基於網絡化學計量耦合之基因缺失組合。鑑別最佳基因/反應剔除需要雙層最佳化問題之解決方案,其選擇活性反應組以使得所得網絡之最佳生長解決方案過度產生所關注之生物化學物質(Burgard等人,Biotechnol.Bioeng.84:647-657(2003))。
可採用大腸桿菌代謝之電腦模擬化學計算模型來鑑別如先前例示之代謝路徑之必需基因,且描述於例如美國公開案第2002/0012939號、第2003/0224363號、第2004/0029149號、第2004/0072723號、第2003/0059792號、第2002/0168654號及第2004/0009466號;及美國專利第7,127,379號中。如本文中所揭示,OptKnock數學構架可應用於精確定點引起所要產物之生長耦合產生之基因缺失。此外,雙層OptKnock問題之解決方法僅提供一組缺失。為列舉所有有意義之求解,亦即所有引起生長耦合產生形成之剔除組,可實施稱為整數切割之最佳化技術。此要求如上文所討論在各反覆下併入稱為整數切割之其他約束來反覆地解決OptKnock問題。
如本文中所揭示,可將編碼BDOP、FAP及/或MMP之所要活性的核酸引入宿主生物體中。在一些情況下,可能需要修飾BDO、甲醛同化或MMP酶或蛋白質之活性以增加BDO、甲醛及/或還原當量之產生。舉例而言,可將增加蛋白質或酶活性之已知突變引入編碼核酸分子中。另外,可應用最佳化方法以增加酶或蛋白質活性及/或降低抑制活性,例如降低負調節劑之活性。
一種此類最佳化方法為定向進化(directed evolution)。定向進化為一種涉及引入靶向特定基因之突變以改良及/或改變酶性質之強大方法。經改良及/或改變之酶可經由開發及實施允許自動篩選多種酶變異體(例如>104)之敏感性高產量篩選分析來鑑別。典型地進行數輪反覆之突變誘發及篩選以得到具有最佳化性質之酶。可有助於鑑別供突變誘發之基因區域之計算演算法亦已經開發且可顯著減少需要產生及篩選之酶變異體的數目。已開發出眾多定向進化技術(關於評述,參見Hibbert等人,Biomol.Eng.22:11-19(2005);Huisman及Lalonde,In Biocatalysis in the pharmaceutical and biotechnology industries第717-742頁(2007),Patel(編),CRC Press;Otten及Quax.Biomol.Eng.22:1-9(2005);及Sen等人,Appl Biochem.Biotechnol 143:212-223(2007))以有效建立多樣性變異體庫,且此等方法已成功地應用於改良涉及許多酶類別的多種性質。已藉由定向進化技術改良及/或改變之酶特徵包括例如:選擇性/特異性,用於轉化非天然受質;溫度穩定性,用於穩固高溫加工;pH值穩定性,用於在較低或較高pH值條件下生物加工;受質或產物容限,使得可達成高產物效價;結合(Km),包括加寬受質結合以包括非天然受質;抑制(Ki),以移除產物、受質或關鍵中間物之抑制;活性(kcat),以提高酶促反應速率以達成所要通量;表現水平,以增加蛋白質產率及總路徑通量;氧氣穩定性,針對在有氧條件下操作空氣敏感性酶;及缺氧活性,針對在無氧氣存在 下操作好氧酶。
已開發出多種例示性方法用於對基因進行突變誘發及多樣化,以靶向特定酶之所要性質。該等方法已為熟習此項技術者所熟知。其中之任一者均可用以使BDOPE或蛋白質之效力改變及/或最佳化。該等方法包括(但不限於)EpPCR,其藉由降低PCR反應中DNA聚合酶的保真度來引入隨機點突變(Pritchard等人,J.Theor.Biol.234:497-509(2005));易錯滾環擴增(Error-prone Rolling Circle Amplification,epRCA),其類似於epPCR,但其中改用完整環形質體作為模板,且使用在最後2個核苷酸上具有核酸外切酶抗性硫代磷酸酯鍵之隨機6-聚體來擴增質體隨後轉化至其中質體已以連續重複序列重新環化之細胞中(Fujii等人,Nucleic Acids Res.32:e145(2004);及Fujii等人,Nat.Protoc.1:2493-2497(2006));DNA或家族改組,其典型地涉及用核酸酶(諸如Dnase I或EndoV)消解兩種或兩種以上變異基因以產生隨機片段集合,該隨機片段集合藉由在DNA聚合酶存在下黏接及延伸之循環而重組,產生嵌合基因庫(Stemmer,Proc.Natl.Acad.Sci.U.S.A.91:10747-10751(1994);及Stemmer,Nature 370:389-391(1994));交錯延伸(StEP),其需要模板引發,隨後為重複變性與極短持續時間的黏接/延伸(如短至5秒)之兩步驟PCR循環(Zhao等人,Nat.Biotechnol.16:258-261(1998));隨機激活重組(RPR),其中使用隨機序列引子產生許多與模板之不同區段互補的短DNA片段(Shao等人,Nucleic Acids Res.26:681-683(1998))。
其他方法包括異雙螺旋重組,其中使用線性化質體DNA形成藉由錯配修復法來修復之異雙螺旋(Volkov等人,Nucleic Acids Res.27:e18(1999);及Volkov等人,Methods Enzymol.328:456-463(2000));暫時性模板之隨機嵌合發生(RACHITT),其採用單股DNA(ssDNA)之Dnase I切斷及篩分(Coco等人,Nat.Biotechnol.19:354-359 (2001));截短模板之重組延伸(RETT),其需要在用作模板集合之單向ssDNA片段存在下,使模板從引子轉換成單向生長股(Lee等人,J.Molec.Catalysis 26:119-129(2003));簡併寡核苷酸基因改組(DOGS),其中市用簡併引子控制分子之間的重組(Bergquist及Gibbs,Methods Mol.Biol.352:191-204(2007);Bergquist等人,Biomol.Eng.22:63-72(2005);Gibbs等人,Gene 271:13-20(2001));用於產生雜合酶之增量截短(ITCHY),其產生具有所關注之基因或基因片段之1個鹼基對缺失的組合庫(Ostermeier等人,Proc.Natl.Acad.Sci.U.S.A.96:3562-3567(1999);及Ostermeier等人,Nat.Biotechnol.17:1205-1209(1999));用於產生雜合酶之硫增量截短(THIO-ITCHY),其類似於ITCHY法,但其中改用硫代磷酸酯dNTP產生截短物(Lutz等人,Nucleic Acids Res.29:E16(2001));SCRATCHY,其將併用兩種重組基因之方法(ITCHY與DNA改組)(Lutz等人,Proc.Natl.Acad.Sci.U.S.A.98:11248-11253(2001));隨機漂移突變誘發(RNDM),其中在經由epPCR進行突變後篩檢/選擇彼等保留適用活性之突變(Bergquist等人,Biomol.Eng.22:63-72(2005));序列飽和突變誘發(SeSaM),一種隨機突變誘發方法,其使用隨機併入硫代磷酸酯核苷酸及裂解產生隨機長度片段集合,該隨機長度片段集合用作模板以在「通用」鹼基(諸如肌核苷)存在下延伸,且含肌核苷之補體複製引起隨機鹼基併入且因此發生突變誘發(Wong等人,Biotechnol.J.3:74-82(2008);Wong等人,Nucleic Acids Res.32:e26(2004);及Wong等人,Anal.Biochem.341:187-189(2005));合成改組,其使用經設計以編碼「目標中之所有基因多樣性」之重疊寡核苷酸且實現經改組子代之極高多樣性(Ness等人,Nat.Biotechnol.20:1251-1255(2002));核苷酸交換及切除技術NexT,其利用dUTP併入隨後相繼用尿嘧啶DNA糖基化酶及哌啶處理之組合以進行終點DNA切斷(Muller等人,Nucleic Acids Res.33:e117(2005))。
其他方法包括不依賴序列同源性之蛋白質重組(SHIPREC),其中使用連接子促進兩種相關性較弱或無關基因之間的融合,且在兩個基因之間產生一系列嵌合體,從而產生單交叉雜合物之庫(Sieber等人,Nat.Biotechnol.19:456-460(2001));基因位點飽和突變誘發(Gene Site Saturation Mutagenesis)TM(GSSMTM),其中起始物質包括超螺旋雙鏈DNA(dsDNA)質體,其含有插入物及兩個引子,其在所要突變位點處簡併(Kretz等人,Methods Enzymol.388:3-11(2004));組合型卡匣突變誘發(CCM),其涉及使用短寡核苷酸卡匣置換具有大量可能胺基酸序列改變之限制區域(Reidhaar-Olson等人Methods Enzymol.208:564-586(1991);及Reidhaar-Olson等人Science 241:53-57(1988));組合型多卡匣突變誘發(CMCM),其基本上類似於CCM,且在高突變速率下使用epPCR以鑑別熱點及熱區域隨後藉由CMCM延伸以覆蓋蛋白質序列空間之界定區域(Reetz等人,Angew.Chem.Int.Ed Engl.40:3589-3591(2001));致突變菌株技術(Mutator Strains technique),其中條件性ts致突變質體利用mutD5基因(其編碼DNA聚合酶III之突變次單元)使選擇期間的隨機及自然突變頻率增加20至4000倍且在無需進行選擇時阻止有害突變之積聚(Selifonova等人,Appl.Environ.Microbiol.67:3645-3649(2001));Low等人,J.Mol.Biol.260:359-3680(1996))。
其他例示性方法包括精確突變誘發(Look-Through Mutagenesis,LTM),其為評估及最佳化所選胺基酸之組合突變的多維突變誘發方法(Rajpal等人,Proc.Natl.Acad.Sci.U.S.A.102:8466-8471(2005));基因重組,其為DNA改組方法,其可同時應用於多個基因或建立單一基因之大型嵌合體庫(多個突變)(由Verenium公司供應之可調基因重組(Tunable GeneReassembly)TM(TGRTM)技術);電腦模擬蛋白質設計自 動化(PDA),其為最佳化演算法,其錨定具備特定摺疊之結構上界定之蛋白質主鏈、且搜尋序列空間以進行胺基酸取代,由此可使摺疊及總體蛋白質能量學穩定,且一般對具有已知三維結構之蛋白質最有效(Hayes等人,Proc.Natl.Acad.Sci.U.S.A.99:15926-15931(2002));及反覆飽和突變誘發(ISM),其涉及使用結構/功能知識來選擇酶改良之可能位點,使用諸如Stratagene QUIKCHANGE(Stratagene;San Diego CA)之突變誘發方法在所選位點處進行飽和突變誘發,篩檢/選擇所要性質,及使用經改良之純系,在另一位點處重新開始,且繼續重複直至獲得所要活性為止(Reetz等人,Nat.Protoc.2:891-903(2007);及Reetz等人,Angew.Chem.Int.Ed Engl.45:7745-7751(2006))。
任何以上提及之突變誘發方法均可單獨使用或以任何組合使用。另外,定向進化方法中任一者或其組合可與如本文中所述之適應性進化技術聯合使用。
如本文中所揭示,BDO(或4-HB)可在微生物生物體培養期間、例如連續及/或接近連續培養期中之任何時間點收集或分離。一般而言,微生物於連續及/或接近連續生長期維持得愈久,可產生BDO之量按比例愈大。
因此,另外提供一種產生BDO之方法,其包括培養如本文中所揭示的具有一或多個基因破壞之非天然存在之微生物生物體。破壞可在一或多種編碼增加BDO產生之酶的基因中進行,包括當基因破壞減小或消除酶活性時視情況將BDO產生與微生物生長耦合。舉例而言,破壞可賦予非天然微生物生物體以BDO之穩定生長耦合產生。
在一些實施例中,基因破壞可包括完整基因缺失。在一些實施例中,破壞基因之其他方法包括例如藉由省略或添加寡核苷酸或藉由致使基因不可操作之突變進行框移。熟習此項技術者將認識到基因缺 失之優點,然而,由於穩定性,其使得非天然存在之生物體不會恢復為未發生基因破壞之親本表型。特定言之,基因破壞係選自如本文中所揭示之基因組。
一旦對可供破壞以增加BDO產生之基因組作出計算預測,即可構築、進化並測試菌株。包括基因缺失之基因破壞藉由此項技術中熟知之方法引入宿主生物體中。如本文中所揭示,尤其適用於基因破壞之方法為藉由同源重組。
經工程改造菌株可藉由量測生長速率、受質攝取速率及/或產物/副產物分泌速率來表徵。培養物可生長且用作新鮮分批培養物之接種原,在指數生長期間對其進行量測。生長速率可藉由使用分光光度計(A600)量測光學密度來測定。培養物上清液中葡萄糖及其他有機酸副產物之濃度可藉由如本文中所揭示的適用於所要產物分析之熟知方法(諸如HPLC、GC-MS或其他熟知分析方法)來測定,且用以計算攝取及分泌速率。
含有基因破壞之菌株可展現次最佳生長速率直至其代謝網絡已根據其缺失功能進行調節。為了幫助此調節,可使菌株進行適應性進化。藉由使菌株進行適應性進化,細胞生長速率變為主要選擇壓力,且迫使突變細胞重新配置其代謝通量以便增進其生長速率。近來已展示數種大腸桿菌突變體的此代謝重程式化,該等大腸桿菌突變體已在各種受質上適應性進化以達到由電腦模擬模型先驗性預測之生長速率(Fong及Palsson,Nat.Genet.36:1056-1058(2004))。由適應性進化引起之生長改良可伴隨有增進之BDO產生速率。菌株一般一式多份地進行適應性進化,平行操作,以解決可由宿主生物體展現之進化模式方面之差異(Fong及Palsson,Nat.Genet.36:1056-1058(2004);Fong等人,J.Bacteriol.185:6400-6408(2003);Ibarra等人,Nature 420:186-189(2002)),其可能產生具有優於其他菌株的優越產生品質的一種菌株。 進化可操作一段時間,典型地2-6週,此視所獲得之生長改良率而定。一般而言,一旦獲得穩定表型,即停止進化。
在適應性進化過程之後,再次藉由量測生長速率、受質攝取速率及產物/副產物分泌速率來表徵新菌株。藉由將實際生長及產生產率與來自代謝模型化之產生包絡線一起繪製曲線來將此等結果與理論預測值相比較。選擇最成功設計/進化組合以進一步繼續,且在實驗室規模之分批及連續醱酵中進行表徵。本文中所揭示之方法(諸如OptKnock方法)背後的生長耦合生物化學產生概念亦應引起遺傳穩定過度產生者之產生。因此,以連續模式維持培養物一段延長之時間(例如一個月或一個月以上)以評估長期穩定性。可獲取週期性樣品以確保維持產率及生產力。
適應性進化為可用以增加突變體或經工程改造微生物菌株或在非天然環境條件下生長之野生型菌株之生長速率的強大技術。其尤其適用於經由諸如OptKnock(其引起生長耦合產物形成)之方法設計的菌株。因此,朝著最佳生長菌株之進化亦將間接地使產生最佳化。經由基因剔除及適應性進化產生大腸桿菌K-12 MG1655之獨特菌株。(Fong及Palsson,Nat.Genet.36:1056-1058(2004))。在此工作中,所有適應性進化培養物均藉由在達到生長停滯期之前將分批培養物連續繼代至新鮮培養基中而維持於延長之指數生長,因此使得生長速率成為主要選擇壓力。構築基因剔除菌株且使其在補充有不同碳受質(每個基因剔除菌株四種)之基本培養基上進化。一式兩份或一式三份地進行進化培養,得到總共50個進化基因剔除菌株。進化培養物維持於指數生長直至達到穩定生長速率。在所檢測的50例中之38例中,計算預測值在預測基因剔除菌株之進化後生長速率方面為精確的(在10%內)。此外,OptKnock設計與適應性進化之組合已產生改良之乳酸產生菌株。(Fong等人,Biotechnol.Bioeng.91:643-648(2005))。相似方 法可應用於本文中所揭示之菌株且應用於各種宿主菌株。
存在多種已開發技術用於進行適應性進化。例示性方法揭示於本文中。在一些實施例中,本文中所提供之NNOMO的最佳化包括利用適應性進化技術增加BDO產生及/或產生菌株之穩定性。
連續培養涉及將小體積之生長培養物反覆轉移至大得多的含有新鮮生長培養基之容器中。當在新容器中培養之生物體已生長至飽和時,重複該過程。此方法已在文獻(Lenski及Travisano,Proc.Natl.Acad.Sci.USA 91:6808-6814(1994))中在實驗中用以達成維持培養物之最長久展示,其清楚地展示在一年內生殖速率之一致改良。典型地,培養物之轉移通常在指數期期間進行,因此每天精確計算轉移體積以維持貫穿下一個24小時時段的指數生長。手動連續稀釋成本低且易於平行化。
在連續培養物中,恆化器中之細胞生長代表保留極高分率細胞群體之極端稀釋情況。隨著培養物生長且變得飽和,以新鮮培養基替換小比例之生長培養物,從而允許培養物連續生長接近於其最大群體尺寸。恆化器已用以展現生殖速率的短期快速改良(Dykhuizen,Methods Enzymol.613-631(1993))。此等裝置之潛在適用性被認識到,但傳統恆化器因稀釋抗性(靜態)變異體之非期望選擇而不能維持長時期之選擇以達成增加之生殖速率。此等變異體能夠藉由黏附於恆化器之表面而抵抗稀釋,且藉此勝過黏著性較小之個體,包括具有較高生殖速率者,因此妨礙該裝置之預期目的(Chao及Ramsdell,J.Gen.Microbiol 20:132-138(1985))。一種克服此缺點之可行方法為建構具有兩個生長腔室之裝置,其如先前所述定期地經歷短暫滅菌階段(Marliere及Mutzel,美國專利第6,686,194號)。
EvolugatorTM為由Evolugate,LLC(Gainesville,FL)開發之連續培養裝置,且相較於傳統進化技術明顯省時省力(de Crecy等人,Appl. Microbiol.Biotechnol.77:489-496(2007))。細胞在達到生長停滯期之前藉由將分批培養物連續繼代至新鮮培養基中而維持於延長之指數生長。藉由自動光學密度量測及液體處理,EvolugatorTM可使用較大培養物體積在高速率下進行連續轉移,因此接近恆化器在細胞擬合進化中之效率。舉例而言,在轉譯設備之組件不足且具有嚴重受妨礙生長的不動桿菌屬物種ADP1之突變體在200代中進化至野生型生長速率之80%。然而,與將細胞維持於單一容器中之恆化器對比,該機器藉由在管線軸之再分區域中自一個「反應器」移動至下一個中來操作,因此消除壁生長之任何選擇。轉移體積為可調節的,且通常設定為約50%。此裝置之一個缺點為,其較大且成本高,因此平行操作較大數目之進化不可行。此外,在當前裝置配置下,氣體添加未得到良好調節,且嚴格缺氧條件未得以維持。然而,此為使產生菌株適應性進化之替代方法。
在整篇本申請案中,已參考各種公開案。此等公開案之揭示內容全文(包括GenBank及GI編號公開案)據此以引用的方式併入本申請案中以更充分描述本發明所屬之技術現狀。雖然已參考上文所提供之實例描述本發明,但應理解在不背離本發明之精神下可進行多種修改。
應理解,並不實質上影響本發明之各種實施例之效力的修改亦包括於本文中所提供之本發明定義內。因此,以下實例意欲說明而非限制本發明。
實例 實例I-經由MMP產生還原當量
例示性MMP提供於圖1中。
圖1,步驟A-甲醇甲基轉移酶(EM1)
表示為MtaA、MtaB及MtaC之3種甲基轉移酶蛋白質的複合物發 揮所要EM1活性(Sauer等人,Eur.J.Biochem.243:670-677(1997);Naidu及Ragsdale,J.Bacteriol.183:3276-3281(2001);Tallant及Krzycki,J.Biol.Chem.276:4485-4493(2001);Tallant及Krzycki,J.Bacteriol.179:6902-6911(1997);Tallant及Krzycki,J.Bacteriol.178:1295-1301(1996);Ragsdale,S.W.,Crit.Rev.Biochem.Mol.Biol.39:165-195(2004))。
MtaB為鋅蛋白,其可催化甲基自甲醇向類咕啉(corrinoid)蛋白MtaC之轉移。編碼MtaB及MtaC之例示性基因可見於產甲烷古菌,諸如巴氏甲烷八疊球菌(Maeder等人,J.Bacteriol.188:7922-7931(2006)及嗜乙酸甲烷八疊球菌(Galagan等人,Genome Res.12:532-542(2002)以及產乙酸菌(acetogen)熱醋酸穆爾氏菌(Das等人,Proteins 67:167-176(2007)中。一般而言,MtaB及MtaC基因由於其活性緊密地相互依賴而在染色體上彼此相鄰。巴氏甲烷八疊球菌、嗜乙酸甲烷八疊球菌及熱醋酸穆爾氏菌中的各種MtaB及MtaC編碼基因之蛋白質序列可由其以下GenBank寄存編號鑑別。
Figure 102130678-A0305-02-0119-59
將來自巴氏甲烷八疊球菌之MtaB1及MtaC1基因YP_304299及 YP_304298選殖至大腸桿菌中且定序(Sauer等人,Eur.J.Biochem.243:670-677(1997))。此甲醇-鈷胺素(cobalamin)甲基轉移酶複合物之晶體結構亦可得(Hagemeier等人,Proc.Natl.Acad.Sci.U.S.A.103:18917-18922(2006))。巴氏甲烷八疊球菌中之MtaB基因YP_307082及YP_304612藉由與YP_304299之序列同源性鑑別。一般而言,同源性搜尋為鑑別EM1之有效方法,此係因為MtaB編碼基因展示與作用於替代受質(諸如三甲胺、二甲胺、一甲胺或二甲基硫醚)之甲基轉移酶的極小相似性或無相似性。MtaC基因YP_307081及YP_304611基於其與MtaB基因之接近性以及其與YP_304298之同源性鑑別。來自嗜乙酸甲烷八疊球菌之三組MtaB及MtaC基因已經由遺傳學、生理學及生物化學方式加以表徵(Pritchett及Metcalf,Mol.Microbiol.56:1183-1194(2005))。不具有該等組中之兩組的突變菌株能夠在甲醇上生長,而不具有MtaB及MtaC基因組中之所有三組的菌株不能在甲醇上生長。此表明各基因組在甲醇利用中起作用。熱醋酸穆爾氏菌MtaB基因基於與產甲烷MtaB基因之同源性且亦藉由其與甲醇誘生之類咕啉蛋白MtaC的相鄰染色體接近性來鑑別,MtaC已經結晶(Zhou等人,Acta Crystallogr.Sect.F.Struct.Biol.Cyrst.Commun.61:537-540(2005)且進一步藉由北方雜交(Northern hybridization)及西方墨點法(Western Blotting)表徵((Das等人,Proteins 67:167-176(2007))。
MtaA為鋅蛋白,其催化甲基自MtaC向產甲烷菌中之輔酶M或產乙酸菌中之甲基四氫葉酸轉移。MtaA亦可利用甲基鈷胺素作為甲基供體。編碼MtaA之例示性基因可見於諸如以下之產甲烷古菌中:巴氏甲烷八疊球菌(Maeder等人,J.Bacteriol.188:7922-7931(2006)及嗜乙酸甲烷八疊球菌(Galagan等人,Genome Res.12:532-542(2002)以及產乙酸菌熱醋酸穆爾氏菌((Das等人,Proteins 67:167-176(2007))。一 般而言,催化甲基自CH3-MtaC轉移的MtaA蛋白難以經由生物資訊鑑別,此係由於其享有與其他類咕啉蛋白甲基轉移酶之相似性,且在染色體上並不與MtaB及MtaC基因相鄰定向。然而,大量MtaA編碼基因已經表徵。巴氏甲烷八疊球菌及嗜乙酸甲烷八疊球菌中此等基因的蛋白質序列可藉由以下GenBank寄存編號鑑別。
Figure 102130678-A0305-02-0121-2
將來自巴氏甲烷八疊球菌之MtaA基因YP_304602選殖於大腸桿菌中,定序且在功能上過度表現(Harms及Thauer,Eur.J.Biochem.235:653-659(1996))。在嗜乙酸甲烷八疊球菌中,MtaA1為在甲醇上生長所需,而縱使自甲醇產生甲烷在MtaA2突變體中減少,MtaA2亦為非必需的(Bose等人,J.Bacteriol.190:4017-4026(2008))。巴氏甲烷八疊球菌及嗜乙酸甲烷八疊球菌中之多種其他MtaA同源物至今未經表徵,但亦可催化類咕啉蛋白甲基轉移酶活性。
熱醋酸穆爾氏菌中之推定MtaA編碼基因藉由其與經表徵產甲烷MtaA基因之序列相似性鑑別。特定言之,三種熱醋酸穆爾氏菌基因展示與來自巴氏甲烷八疊球菌之YP_304602的高同源性(>30%序列一致性)。不同於天然催化甲基自CH3-MtaC向輔酶M轉移的產甲烷MtaA蛋白,鑒於甲基四氫葉酸與輔酶M分別於產甲烷菌與產乙酸菌中之相似作用,熱醋酸穆爾氏菌MtaA可能將甲基轉移至甲基四氫葉酸。來自熱醋酸穆爾氏菌之推定MtaA編碼基因的蛋白質序列可藉由以下GenBank寄存編號鑑別。
Figure 102130678-A0305-02-0121-3
Figure 102130678-A0305-02-0122-4
圖1,步驟B-亞甲基四氫葉酸還原酶(EM2)
甲基-THF向亞甲基四氫葉酸轉化由EM2催化。在熱醋酸穆爾氏菌中,此酶為對氧敏感的且含有鐵-硫簇(Clark及Ljungdahl,J.Biol.Chem.259:10845-10849(1984)。此酶由大腸桿菌中之metF(Sheppard等人,J.Bacteriol.181:718-725(1999)及產氫羧基嗜熱菌(C.hydrogenoformans)中之CHY_1233(Wu等人,PLoS Genet.1:e65(2005)編碼。熱醋酸穆爾氏菌基因及其產氫羧基嗜熱菌對應物接近CODH/ACS基因簇定位,由推定氫化酶及雜二硫化物還原酶基因分隔。經由生物資訊發現之一些其他基因候選物列於下文。在伍氏醋酸桿菌(Acetobacterium woodii)中,metF經由RnfC2與Rnf複合物偶聯(Poehlein等人,PLoS One.7:e33439)。RnfC之同源物藉由blast搜尋見於其他生物體中。Rnf複合物已知為可逆複合物(Fuchs(2011)Annu.Rev.Microbiol.65:631-658)。
Figure 102130678-A0305-02-0122-5
圖1,步驟C及D-亞甲基四氫葉酸脫氫酶(EM3)、次甲基四氫葉酸環水解酶(EM4)
在熱醋酸穆爾氏菌、大腸桿菌及產氫羧基嗜熱菌中,EM4及EM3分別藉由Moth_1516、folD及CHY_1878之雙功能基因產物進行(Pierce等人,Environ.Microbiol.10:2550-2573(2008);Wu等人,PLoS Genet.1:e65(2005);D'Ari及Rabinowitz,J.Biol.Chem.266:23953- 23958(1991))。同源物存在於食一氧化碳梭菌P7中。如下文所列表,數種其他生物體亦編碼此雙官能蛋白質。
Figure 102130678-A0305-02-0123-6
圖1,步驟E-甲醯四氫葉酸脫甲醯酶(EM5)
此酶催化10-甲醯基四氫葉酸(甲醯基-THF)向THF及甲酸之水解。在大腸桿菌中,此酶由purU編碼,且已經過度產生、純化及表徵(Nagy,等人,J.Bacteriol.3:1292-1298(1995))。同源物存在於棒狀桿菌屬物種U-96(Suzuki等人,Biosci.Biotechnol.Biochem.69(5):952-956(2005))、麩胺酸棒狀桿菌ATCC 14067、腸道沙門氏菌及數種其他生物體中。
Figure 102130678-A0305-02-0123-7
圖1,步驟F-甲醯四氫葉酸合成酶(EM6)
甲醯四氫葉酸合成酶以一個ATP為代價將甲酸與四氫葉酸連接。此反應由熱醋酸穆爾氏菌中之Moth_0109(O'brien等人,Experientia Suppl.26:249-262(1976);Lovell等人,Arch.Microbiol.149:280-285(1988);Lovell等人,Biochemistry 29:5687-5694(1990))、尿酸梭菌中之FHS(Whitehead及Rabinowitz,J.Bacteriol.167:203-209(1986); Whitehead及Rabinowitz,J.Bacteriol.170:3255-3261(1988)及產氫羧基嗜熱菌中之CHY_2385(Wu等人,PLoS Genet.1:e65(2005)的基因產物催化。同源物存在於食一氧化碳梭菌P7中。此酶見於如下所列之數種其他生物體中。
Figure 102130678-A0305-02-0124-8
圖1,步驟G-甲酸氫裂解酶(EM15)
EM15酶可用以將甲酸轉化為二氧化碳及氫氣。例示性EM15酶可見於大腸桿菌中。大腸桿菌EM15由氫化酶3及甲酸脫氫酶-H組成(Maeda等人,Appl Microbiol Biotechnol 77:879-890(2007))。其由fhlA之基因產物活化。(Maeda等人,Appl Microbiol Biotechnol 77:879-890(2007))。已展示向醱酵液中添加微量元素硒、鎳及鉬可增進EM15活性(Soini等人,Microb.Cell Fact.7:26(2008))。各種氫化酶3、EM8及轉錄活化基因展示如下。
Figure 102130678-A0305-02-0124-9
Figure 102130678-A0305-02-0125-10
EM15酶亦存在於極端嗜熱古菌海濱熱球菌中(Takacs等人,BMC.Microbiol 8:88(2008))。
Figure 102130678-A0305-02-0125-11
其他EM15系統已見於鼠傷寒沙門氏菌、肺炎克雷伯氏菌、深紅紅螺菌、甲酸甲烷桿菌(Methanobacterium formicicum)中(Vardar-Schara等人,Microbial Biotechnology 1:107-125(2008))。
圖1,步驟H-氫化酶(EM16)
氫化酶可將氫氣轉化為質子,且將電子轉移至受體,諸如鐵氧化還原蛋白、NAD+或NADP+。富養羅爾斯通氏菌H16使用氫氣作為能量源,氧氣作為終點電子受體。其膜結合攝取[NiFe]-氫化酶為「O2耐受性」EM16(Cracknell,等人Proc Nat Acad Sci,106(49)20681-20686(2009)),其定向於周質且經由b型細胞色素與呼吸鏈連接(Schink及Schlegel,Biochim.Biophys.Acta,567,315-324(1979);Bernhard等人,Eur.J.Biochem.248,179-186(1997))。富養羅爾斯通氏菌(R.eutropha)亦含有由Hox操縱子編碼之O2耐受性可溶EM16,其為細胞質的且以氫氣為代價直接還原NAD+(Schneider及Schlegel,Biochim.Biophys.Acta 452,66-80(1976);Burgdorf,J.Bact.187(9)3122-3132(2005))。可溶EM16酶為另外存在於包括以下之數種其他生物體中:硫還原地桿菌(Coppi,Microbiology 151,1239-1254(2005))、集胞藻屬菌株PCC 6803(Germer,J.Biol.Chem.,284(52),36462-36472 (2009))及桃紅莢硫菌(Rakhely,Appl.Environ.Microbiol.70(2)722-728(2004))。集胞藻屬酶能夠自氫氣產生NADPH。來自集胞藻屬菌株PCC 6803之Hox操縱子及由來自念珠藻屬物種PCC 7120之Hyp操縱子編碼的附加基因之過度表現使得EM16活性與單獨Hox基因之表現相比增加(Germer,J.Biol.Chem.284(52),36462-36472(2009))。
Figure 102130678-A0305-02-0126-12
大腸桿菌及其他腸細菌之基因組編碼多至四種EM16酶(Sawers, G.,Antonie Van Leeuwenhoek 66:57-88(1994);Sawers等人,J Bacteriol.164:1324-1331(1985);Sawers及Boxer,Eur.J Biochem.156:265-275(1986);Sawers等人,J Bacteriol.168:398-404(1986))。鑒於大量酶活性,大腸桿菌或另一宿主生物體可提供足夠EM16活性以分裂引入之分子氫且還原相應受體。大腸桿菌之內源氫裂解酶包括氫化酶3,一種使用鐵氧化還原蛋白作為受體之膜結合酶複合物;及氫化酶4,其亦使用鐵氧化還原蛋白受體。氫化酶3及4分別由hychyf基因簇編碼。大腸桿菌中之EM16活性亦視hyp基因之表現而定,該等基因之相應蛋白質參與EM16複合物之組裝(Jacobi等人,Arch.Microbiol 158:444-451(1992);Rangarajan等人,J Bacteriol.190:1447-1458(2008))。熱醋酸穆爾氏菌及將達梭菌EM16適用於不具有充足內源EM16活性之宿主。熱醋酸穆爾氏菌及將達梭菌可在以CO2作為獨有碳源之情況下生長,表明還原當量係自H2提取以使得能夠經由Wood-Ljungdahl路徑進行乙醯CoA合成(Drake,H.L.,J Bacteriol.150:702-709(1982);Drake及Daniel,Res Microbiol 155:869-883(2004);Kellum及Drake,J Bacteriol.160:466-469(1984))。熱醋酸穆爾氏菌具有與來自大腸桿菌之數種hyphychyf基因的同源物。由此等基因編碼之此等蛋白質序列藉由以下GenBank寄存編號鑑別。另外,編碼EM16功能之數種基因簇存在於熱醋酸穆爾氏菌及將達梭菌中(參見例如US 2012/0003652)。
Figure 102130678-A0305-02-0127-13
Figure 102130678-A0305-02-0128-14
熱醋酸穆爾氏菌中的基因與大腸桿菌EM16基因同源之蛋白質展示如下。
Figure 102130678-A0305-02-0128-15
Figure 102130678-A0305-02-0129-16
來自將達梭菌之編碼EM16酶的基因展示如下。
Figure 102130678-A0305-02-0129-17
在一些情況下,EM16編碼基因與CODH相鄰定位。在深紅紅螺 菌中,所編碼CODH/氫化酶蛋白質形成膜結合酶複合物,其已經指示為自CO及H2O向CO2及H2之轉化產生質子梯度形式之能量的位點(Fox等人,J Bacteriol.178:6200-6208(1996))。已提出產氫羧基嗜熱菌之CODH-I及其相鄰基因基於其與深紅紅螺菌CODH/氫化酶基因簇之相似性而催化相似功能性作用(Wu等人,PLoS Genet.1:e65(2005))。亦展示產氫羧基嗜熱菌CODH-I當與電極連接時展現劇烈CO氧化及CO2還原活性(Parkin等人,J Am.Chem.Soc.129:10328-10329(2007))。
Figure 102130678-A0305-02-0130-18
一些EM16及CODH酶將電子轉移至鐵氧化還原蛋白。鐵氧化還原蛋白為含有充當具有低還原電位之胞內電子載體的一或多個鐵-硫簇之小酸性蛋白。經還原之鐵氧化還原蛋白向Fe依賴性酶(諸如鐵氧化還原蛋白-NADP+氧化還原酶、丙酮酸:鐵氧化還原蛋白氧化還原酶(PFOR)及2-側氧基戊二酸:鐵氧化還原蛋白氧化還原酶(OFOR))贈予電子。嗜熱產氫桿菌基因fdx1編碼[4Fe-4S]-型鐵氧化還原蛋白,其為2- 側氧基戊二酸及丙酮酸分別由OFOR及PFOR可逆羧化所需(Yamamoto等人,Extremophiles 14:79-85(2010))。與硫磺礦硫化葉菌2-含氧酸:鐵氧化還原蛋白還原酶相關之鐵氧化還原蛋白為單體二簇[3Fe-4S][4Fe-4S]型鐵氧化還原蛋白(Park等人2006)。雖然與此蛋白質相關之基因尚未完全定序,但N末端域與來自嗜酸熱硫化葉菌之zfx鐵氧化還原蛋白享有93%同源性。大腸桿菌基因組編碼未知生理功能之可溶鐵氧化還原蛋白fdx。一些證據表明,此蛋白質可在鐵-硫簇組裝中起作用(Takahashi及Nakamura,1999)。其他鐵氧化還原蛋白已於幽門螺旋桿菌(Mukhopadhyay等人2003)及空腸彎曲桿菌(van Vliet等人2001)中表徵。已將來自巴斯德梭菌之2Fe-2S鐵氧化還原蛋白選殖且表現於大腸桿菌中(Fujinaga及Meyer,Biochemical and Biophysical Research Communications,192(3):(1993))。預測產乙酸細菌(諸如熱醋酸穆爾氏菌、食一氧化碳梭菌P7、將達梭菌及深紅紅螺菌)可編碼下文所列之數種鐵氧化還原蛋白。
Figure 102130678-A0305-02-0131-19
Figure 102130678-A0305-02-0132-20
鐵氧化還原蛋白氧化還原酶將電子自鐵氧化還原蛋白或黃素氧化還原蛋白(flavodoxin)轉移至NAD(P)H。催化電子自經還原鐵氧化還原蛋白向NAD(P)+可逆轉移之兩種酶為鐵氧化還原蛋白:NAD+氧化還原酶(EC 1.18.1.3)及鐵氧化還原蛋白:NADP+氧化還原酶(FNR,EC 1.18.1.2)。鐵氧化還原蛋白:NADP+氧化還原酶(FNR,EC 1.18.1.2)具有非共價結合FAD輔因子,其促進電子自NADPH向低電位受體(諸如鐵氧化還原蛋白或黃素氧化還原蛋白)可逆轉移(Blaschkowski等人,Eur.J.Biochem.123:563-569(1982);Fujii等人,1977)。由HP1164(fqrB)編碼之幽門螺旋桿菌FNR與丙酮酸:鐵氧化還原蛋白氧化還原酶(PFOR)之活性耦合,引起NADPH之丙酮酸依賴性產生(St等人2007)。同功酶見於空腸彎曲桿菌中(St Maurice等人,J.Bacteriol.189:4764-4773(2007))。鐵氧化還原蛋白:NADP+氧化還原酶於大腸桿 菌基因組中由fpr編碼(Bianchi等人1993)。鐵氧化還原蛋白:NAD+氧化還原酶利用經還原鐵氧化還原蛋白以自NAD+產生NADH。在數種生物體(包括大腸桿菌)中,此酶為多功能雙加氧酶複合物之組分。由hcaD編碼的大腸桿菌之鐵氧化還原蛋白:NAD+氧化還原酶為參與芳族酸利用的3-苯基丙酸雙加氧酶系統之組分(Diaz等人1998)。NADH:鐵氧化還原蛋白還原酶活性在嗜熱產氫桿菌之細胞提取物中偵測到,但具有此活性之基因尚未指定(Yoon等人2006)。其他鐵氧化還原蛋白:NAD(P)+氧化還原酶已在食一氧化碳梭菌P7中註釋。由nfnAB編碼的克氏梭菌之NADH依賴性經還原鐵氧化還原蛋白:NADP氧化還原酶催化鐵氧化還原蛋白及NAD+與兩當量NADPH的伴隨還原(Wang等人,J Bacteriol 192:5115-5123(2010))。最後,節約能量之膜結合Rnf型蛋白(Seedorf等人,PNAS 105:2128-2133(2008);及Herrmann,J.Bacteriol 190:784-791(2008))提供一種自經還原鐵氧化還原蛋白產生NADH或NADPH之方法。
Figure 102130678-A0305-02-0133-21
Figure 102130678-A0305-02-0134-22
圖1,步驟I-甲酸脫氫酶(EM8)
甲酸脫氫酶(FDH;EM8)催化電子自甲酸向受體可逆轉移。具有FDH活性之酶利用各種電子載體,諸如NADH(EC 1.2.1.2)、NADPH(EC 1.2.1.43)、醌醇(EC 1.1.5.6)、細胞色素(EC 1.2.2.3)及EM16s(EC 1.1.99.33)。FDH酶已自熱醋酸穆爾氏菌表徵(Andreesen及Ljungdahl,J Bacteriol 116:867-873(1973);Li等人,J Bacteriol 92:405-412(1966);Yamamoto等人,J Biol Chem.258:1826-1832(1983)。基因座Moth_2312負責編碼EM8之α次單元,而β次單元由Moth_2314編碼(Pierce等人,Environ Microbiol(2008))。另一組編碼EM8活性(具有CO2還原傾向)之基因由弗氏互營桿菌中之Sfum_2703至Sfum_2706編碼(de Bok等人,Eur J Biochem .270:2476-2485(2003));Reda等人,PNAS 105:10654-10658(2008))。推測實現相同功能之類似基因組由產氫羧基嗜熱菌中之CHY_0731、CHY_0732及CHY_0733編碼(Wu等人,PLoS Genet 1:e65(2005))。EM8亦見於包括以下之多種其他生物體中:食一氧化碳梭菌P7、甲醇芽孢桿菌、穩定伯克霍爾德菌、熱醋酸穆爾氏菌ATCC 39073、博伊丁假絲酵母、甲基假絲酵母及釀酒酵母S288c。來自富養羅爾斯通氏菌之可溶EM8還原NAD+(fdsGfdsBfdsAfdsCfdsD)(Oh及Bowien,1998)。
已鑑別數種具有對於作為輔因子之NADP與NAD相比較高特異性的EM8酶。此酶已被視為NADP依賴性甲酸脫氫酶且已自洋蔥伯克霍爾德菌複合物之5個物種得以報導。其於多噬伯克霍爾德菌、穩定伯克霍爾德菌、吡咯伯克霍爾德菌及新洋蔥伯克霍爾德菌之多個菌株中加以測試及驗證(Hatrongjit等人,Enzyme and Microbial Tech.,46:557-561(2010))。來自穩定伯克霍爾德菌之酶已經表徵且該酶之表觀Km經報導對於甲酸、NADP及NAD分別為55.5mM、0.16mM及1.43mM。可使用寄存於公開資料庫(諸如NCBI、JGI及元基因組資料庫)中的蛋白質之序列同源性鑑別更多基因候選物。
Figure 102130678-A0305-02-0135-23
Figure 102130678-A0305-02-0136-24
圖1,步驟J-甲醇脫氫酶(EM9)
NAD+依賴性EM9酶(EC 1.1.1.244)催化甲醇及NAD+向甲醛及NADH轉化。具有此活性之酶最先於甲醇芽孢桿菌中表徵(Heggeset,等人,Applied and Environmental Microbiology,78(15):5170-5181(2012))。此酶具鋅及鎂依賴性,且酶活性藉由活化由act編碼之酶增進(Kloosterman等人,J Biol Chem 277:34785-92(2002))。act為Nudix水解酶。此等候選物中之數者已經鑑別且展示對甲醇具有活性。其他NAD(P)+依賴性酶可藉由序列同源性鑑別。利用不同電子受體之EM9酶亦為此項技術中所已知。實例包括細胞色素依賴性酶,諸如甲基營養生物扭脫甲基桿菌之mxaIF(Nunn等人,Nucl Acid Res 16:7722(1988))。甲烷營養生物(諸如莢膜甲基球菌)之EM9酶以與甲烷單加氧酶(MMO)之複合物形式起作用(Myronova等人,Biochem 45:11905-14(2006))。甲醇亦可由博伊丁假絲酵母之醇氧化酶(諸如甲醇氧化酶(EC 1.1.3.13))氧化為甲醛(Sakai等人,Gene 114:67-73(1992))。
Figure 102130678-A0305-02-0136-25
Figure 102130678-A0305-02-0137-26
Figure 102130678-A0305-02-0138-27
已開發出活體內分析以測定甲醇脫氫酶之活性。此分析依靠偵測甲醛(HCHO),因此量測酶之前向活性(甲醇氧化)。為此,使用Lamba Red重組酶技術產生包含BDOP且不具有frmAfrmBfrmR之菌株(Datsenko及Wanner,Proc.Natl.Acad.Sci.USA,6 97(12):6640-5(2000)。將表現甲醇脫氫酶之質體轉化至菌株中,隨後在37℃下在震盪下於LB培養基+抗生素中生長至飽和。用空載體轉化菌株充當陰性對照。藉由O.D.調節培養物,隨後1:10稀釋至M9培養基+0.5%葡萄糖+抗生素中,且在37℃下在震盪下培養6-8小時直至晚期對數生長期為止。添加甲醇至2% v/v中,且在37℃下在震盪下進一步培育培養物30分鐘。將培養物短暫離心,且使用DETECTX甲醛偵測套組(Arbor Assays;Ann Arbor,MI)根據製造商說明書分析上清液中所產生之甲醛。frmAfrmBfrmR缺失使得天然甲醛利用路徑被去除,其使得能夠形成甲醛,此可用於偵測NNOMO中之甲醇脫氫酶活性。
使用上文所述之分析量測數種酶之活性。四個獨立實驗之結果提供於下表1中。
Figure 102130678-A0305-02-0139-28
圖1,步驟K-自發性的或甲醛活化酶(EM10)
甲醛及THF向亞甲基四氫葉酸轉化可自發性地進行。此反應之速率亦可能由EM10增進。甲醛活化酶(Fae;EM10)已於扭脫甲基桿菌AM1中鑑別,其催化甲醛與四氫甲烷喋呤向亞甲基四氫甲烷喋呤之縮合(Vorholt,等人,J.Bacteriol.,182(23),6645-6650(2000))。有可能類似酶存在或可經工程改造以催化甲醛與四氫葉酸向亞甲基四氫葉酸之縮合。同源物存在於包括以下之數種生物體中:自養黃色桿菌Py2及脫氮生絲微菌ATCC 51888。
Figure 102130678-A0305-02-0139-29
圖1,步驟L-甲醛脫氫酶(EM11)
甲醛向甲酸氧化由EM11催化。NAD+依賴性EM11酶由惡臭假單 胞菌之fdhA編碼(Ito等人,J Bacteriol 176:2483-2491(1994))。其他EM11酶包括來自劄瓦金氏生絲微菌之NAD+及麩胱甘肽非依賴性EM11(Jerome等人,Appl Microbiol Biotechnol 77:779-88(2007))、巴斯德畢赤酵母之麩胱甘肽依賴性EM11(Sunga等人,Gene 330:39-47(2004))及海洋甲基桿菌之NAD(P)+依賴性EM11(Speer等人,FEMS Microbiol Lett,121(3):349-55(1994))。
Figure 102130678-A0305-02-0140-30
除以上列出之EM11酶之外,用於將甲醛轉化為甲酸之替代酶及路徑為此項技術中已知。舉例而言,許多生物體採用麩胱甘肽依賴性甲醛氧化路徑,其中甲醛在三個步驟中經由中間物S-羥甲基麩胱甘肽及S-甲醯麩胱甘肽轉化為甲酸(Vorholt等人,J Bacteriol 182:6645-50(2000))。此路徑之酶為EM12(EC 4.4.1.22)、EM13(EC 1.1.1.284)及EM14(EC 3.1.2.12)。
圖1,步驟M-自發性的或S-(羥甲基)麩胱甘肽合成酶(EM12)
雖然甲醛向S-羥甲基麩胱甘肽轉化可在麩胱甘肽存在下自發性地進行,但已由Goenrich等人(Goenrich,等人,J Biol Chem 277(5);3069-72(2002))展示來自脫氮副球菌之酶可加速此自發性縮合反應。催化甲醛及麩胱甘肽轉化之酶經純化且稱為麩胱甘肽依賴性甲醛活化酶(Gfa)。編碼其之基因(稱為gfa)直接定位於EM13之基因之上游,其催化S-羥甲基麩胱甘肽之後續氧化。具有與來自脫氮副球菌之Gfa的序列一致性之推定蛋白質亦存在於類球紅細菌、苜蓿中華根瘤菌及百脈根根瘤菌中。
Figure 102130678-A0305-02-0140-31
Figure 102130678-A0305-02-0141-32
圖1,步驟N-麩胱甘肽依賴性甲醛脫氫酶(EM13)
EM13(GS-FDH)屬於III類醇脫氫酶家族。麩胱甘肽及甲醛以非酶促方式組合形成羥甲基麩胱甘肽,其為GS-FDH催化反應之真實受質。產物S-甲醯麩胱甘肽經進一步代謝為甲酸。
Figure 102130678-A0305-02-0141-33
圖1,步驟O-S-甲醯麩胱甘肽水解酶(EM14)
EM14為見於細菌、植物及動物中之麩胱甘肽硫醇酯酶。其催化S-甲醯麩胱甘肽向甲酸及麩胱甘肽轉化。脫氮副球菌之fghA基因定位於與gfaflhA(此生物體中參與甲醛向甲酸氧化的兩種基因)相同之操縱子中。在大腸桿菌中,FrmB與FrmR及FrmA(其為參與甲醛氧化之蛋白質)一起於操縱子中編碼。大腸桿菌之YeiG為混雜絲胺酸水解酶;其最高比活性為出現在受質S-甲醯麩胱甘肽情況下。
Figure 102130678-A0305-02-0141-34
實例II-使用甲醇自碳水化合物產生1,4丁二醇之產率增進
用於增進還原當量之可得性的例示性MMP提供於圖2中。
圖2,步驟A-琥珀醯CoA轉移酶(EB1)或琥珀醯CoA合成酶(EB2A)(或琥珀醯CoA連接酶)
琥珀酸向琥珀醯CoA轉化由EB1或EB2A(連接酶)催化。EB1酶包括克氏梭菌之cat1及大腸桿菌之ygfH(Seedorf等人, Proc.Natl.Acad.Sci U.S.A 105:2128-2133(2008);Sohling等人,J Bacteriol.178:871-880(1996);Haller等人,Biochemistry,39(16)4622-4629)。同源物可見於例如楊氏檸檬酸桿菌ATCC 29220、腸道沙門氏菌亞利桑那血清型亞種(Salmonella enterica subsp.arizonae serovar)及中間耶爾森菌ATCC 29909中。琥珀醯CoA:3:含氧酸CoA轉移酶採用琥珀酸作為CoA受體。此酶由惡臭假單胞菌中之pcaIpcaJ編碼(Kaschabek等人,J Bacteriol.184:207-215(2002))。類似酶見於不動桿菌屬物種ADP1(Kowalchuk等人,Gene 146:23-30(1994))、天藍色鏈黴菌及克氏假單胞菌(先前之物種B13)中(Gobel等人,J Bacteriol.184:216-223(2002);Kaschabek等人,J Bacteriol.184:207-215(2002))。其他琥珀醯CoA:3:含氧酸CoA轉移酶已於幽門螺旋桿菌(Corthesy-Theulaz等人,J Biol.Chem.272:25659-25667(1997))、枯草桿菌(Stols等人,Protein Expr.Purif.53:396-403(2007))及智人中表徵(Fukao,T.等人,Genomics 68:144-151(2000);Tanaka,H.等人,Mol Hum Reprod 8:16-23(2002))。與此等基因相關之GenBank資訊概述如下。
Figure 102130678-A0305-02-0142-35
Figure 102130678-A0305-02-0143-36
EB2A(亦稱為琥珀醯CoA連接酶)由大腸桿菌之sucCD及釀酒酵母之LSC1LSC2基因編碼。此等酶催化在活體內可逆的反應中自琥珀酸形成琥珀醯CoA,伴隨消耗一個ATP(Buck等人,Biochemistry 24:6245-6252(1985))。
Figure 102130678-A0305-02-0143-37
圖2,步驟B-琥珀醯CoA還原酶(形成醛)(EB3)
具有琥珀醯CoA還原酶活性之酶由克氏梭菌之sucD(Sohling,J.Bacteriol.178:871-880(1996))及牙齦卟啉單胞菌之sucD(Takahashi,J.Bacteriol 182:4704-4710(2000))編碼。其他琥珀醯CoA還原酶參與諸如以下之嗜熱古菌的3-羥基丙酸/4-HB循環:勤奮金屬球菌(Berg等人,Science 318:1782-1786(2007))及嗜中性熱變形菌(Ramos-Vera等人,J Bacteriol,191:4286-4297(2009))。由Msed_0709編碼之勤奮金屬球菌酶具嚴格NADPH依賴性且亦具有丙二醯CoA還原酶活性。嗜中性熱變形菌酶在NADPH及NADH之情況下均具有活性。
Figure 102130678-A0305-02-0143-38
圖2,步驟C-4-羥基丁酸脫氫酶(EB4)
展現EB4活性之酶(EC 1.1.1.61)已於富養羅爾斯通氏菌(Bravo等人,J.Forensic Sci.49:379-387(2004)、克氏梭菌(Wolff及Kenealy,Protein Expr.Purif.6:206-212(1995))及擬南芥中(Breitkreuz等人,J. Biol.Chem.278:41552-41556(2003))表徵。其他EB4酶見於牙齦卟啉單胞菌及非培養細菌之gbd中。此等基因之寄存編號列於下表中。
Figure 102130678-A0305-02-0144-39
圖2,步驟D-羥基丁酸激酶
4-HB向4-羥基丁醯磷酸活化由EB5催化。EC 2.7.2類中之磷酸轉移酶在同時水解一個ATP下將羧酸轉化為膦酸。適用於催化此反應之酶包括丁酸激酶、乙酸激酶、天冬胺酸激酶及γ-麩胺醯激酶。在丙酮丁醇梭菌中丁酸激酶在產酸期間執行丁醯磷酸向丁酸之可逆轉化(Cary等人,Appl.Environ.Microbiol.56:1576-1583(1990))。此酶由兩種buk基因產物之任一者編碼(Huang等人,J.Mol.Microbiol.Biotechnol.2:33-38(2000))。其他丁酸激酶見於丁酸梭菌、拜氏梭菌及破傷風形梭菌中(Twarog及Wolfe,J.Bacteriol.86:112-117(1963))。相關酶,來自海棲熱孢菌之異丁酸激酶亦表現於大腸桿菌中且經結晶(Diao等人,Acta Crystallogr.D.Biol.Crystallogr.59:1100-1102(2003);Diao及Hasson,J.Bacteriol.191:2521-2529(2009))。天冬胺酸激酶催化天冬胺酸之ATP依賴性磷酸化且參與數種胺基酸之合成。由lysC編碼的大腸桿菌中之天冬胺酸激酶III酶具有廣泛受質範圍,且已闡明參與受質特異性之催化殘基(Keng及Viola,Arch.Biochem.Biophys.335:73-81(1996))。大腸桿菌中之兩種其他激酶亦為良好候選物:乙酸激酶及γ-麩胺醯激酶。由ackA編碼之大腸桿菌乙酸激酶(Skarstedt及Silverstein,J.Biol.Chem.251:6775-6783(1976))除了乙酸之外亦使丙酸磷酸化(Hesslinger等人,Mol.Microbiol.27:477-492(1998))。由proB編碼之大腸桿菌γ-麩胺醯激酶(Smith等人,J. Bacteriol.157:545-551(1984))使麩胺酸之γ碳酸基磷酸化。
Figure 102130678-A0305-02-0145-40
圖2,步驟E-磷酸轉-4-羥基丁醯酶(EB6)
EB6催化4-羥基丁醯基自磷酸轉移至CoA。適用於催化此反應之醯基轉移酶包括磷酸轉乙醯酶及磷酸轉丁醯酶。來自大腸桿菌之pta基因編碼可將乙醯磷酸轉化為乙醯CoA之酶(Suzuki,Biochim.Biophys.Acta 191:559-569(1969))。此酶亦可利用丙醯CoA替代乙醯CoA(Hesslinger等人,Mol.Microbiol.27:477-492(1998))。類似地,來自丙酮丁醇梭菌之ptb基因編碼可將丁醯CoA轉化為丁醯磷酸之酶(Walter等人,Gene 134:107-111(1993));Huang等人,J Mol.Microbiol.Biotechno.l 2:33-38(2000)。其他ptb基因可見於梭菌屬生物體:產丁酸細菌L2-50(Louis等人,J.Bacteriol.186:2099-2106(2004))及巨大芽孢桿菌(Vazquez等人,Curr.Microbiol.42:345-349(2001))中。
Figure 102130678-A0305-02-0145-41
圖2,步驟F-4-羥基丁醯CoA還原酶(形成醛)(EB7)
4-羥基丁醯CoA還原酶催化4-羥基丁醯CoA向其相應醛還原。數種醯基CoA脫氫酶能夠催化此活性。克氏梭菌及牙齦卟啉單胞菌之琥 珀酸半醛脫氫酶(SucD)於參考文獻(WO/2008/115840)中展示可將4-羥基丁醯CoA轉化為4-羥基丁醛作為產生1,4-丁二醇之路徑的一部分。多種丁醛脫氫酶亦對4-羥基丁醛具有活性,包括糖乙酸多丁醇梭菌之bld及假單胞菌屬物種之bphG(Powlowski等人,J.Bacteriol.175:377-385(1993))。另一候選物為來自拜氏梭菌之ald基因(Toth,Appl.Environ.Microbiol.65:4973-4980(1999)。此基因極類似於鼠傷寒沙門氏菌及大腸桿菌之編碼乙醛脫氫酶的eutE(Toth,Appl.Environ.Microbiol.65:4973-4980(1999)。具有4-羥基丁醯CoA還原酶活性之此等及其他蛋白質鑑別如下。
Figure 102130678-A0305-02-0146-42
圖2,步驟G-1,4-丁二醇脫氫酶(EB8)
EB8催化4-羥基丁醛向1,4-丁二醇還原。編碼此活性之例示性基因包括不動桿菌屬物種菌株M-1之alrA(Tani等人,Appl.Environ.Microbiol.66:5231-5235(2000))、來自大腸桿菌之yqhDfucO(Sulzenbacher等人,J Mol Biol 342:489-502(2004))及來自丙酮丁醇梭菌之bdh I及bdh II(Walter等人,J.Bacteriol 174:7149-7158(1992))。其他EB8酶由糖乙酸多丁醇梭菌(C.saccharoperbutylacetonicum)中之bdh及拜氏梭菌中之Cbei_1722Cbei_2181Cbei_2421編碼。具有1,4-丁二醇活性之此等及其他酶列於下表中。
Figure 102130678-A0305-02-0147-43
圖2,步驟H-琥珀酸還原酶(EB9)
琥珀酸向琥珀酸半醛之直接還原由羧酸還原酶催化。催化此轉化之例示性酶描述如下(參見圖2,步驟K)。
圖2,步驟I-琥珀醯CoA還原酶(形成醇)(EB10)
EB10酶為將琥珀醯CoA轉化為4-HB之雙官能氧化還原酶。下文描述之EB15酶候選物(圖2,步驟M)亦適用於催化琥珀醯CoA之還原。
圖2,步驟J-4-羥基丁醯CoA轉移酶(EB11)或4-羥基丁醯CoA合成酶(EB12)
4-HB向4-羥基丁醯CoA之轉化由CoA轉移酶或合成酶催化。EB11酶包括克氏梭菌之cat1cat2cat3的基因產物(Seedorf等人,Proc.Natl.Acad.Sci U.S.A 105:2128-2133(2008);Sohling等人,J Bacteriol.178:871-880(1996))。類似CoA轉移酶活性為亦存在於陰道毛滴蟲、布氏錐蟲、胺基丁酸梭菌及牙齦卟啉單胞菌中(Riviere等人,J.Biol.Chem.279:45337-45346(2004);van Grinsven等人,J.Biol.Chem.283:1411-1418(2008))。
Figure 102130678-A0305-02-0148-44
4HB-CoA合成酶催化4-HB向4-羥基丁醯CoA之ATP依賴性轉化。形成AMP之4-HB-CoA合成酶見於經由二羧酸/羥基丁酸循環或3-羥基丙酸/4-HB循環使碳同化之生物體中。具有此活性之酶已於嗜中性熱變形菌及勤奮金屬球菌中表徵(Ramos-Vera等人,J Bacteriol 192:5329-40(2010);Berg等人,Science 318:1782-6(2007))。其他可藉由序列同源性推斷。形成ADP之CoA合成酶(諸如EB2A)亦為適合候選物。
Figure 102130678-A0305-02-0149-45
圖2,步驟K-4-羥基丁酸還原酶(EB13)
4-HB向4-羥基丁醛之還原由羧酸還原酶(CAR)催化。該種酶見於艾瓦諾卡菌中。羧酸還原酶催化羧酸向其相應醛之ATP及NADPH依賴性還原(Venkitasubramanian等人,J.Biol.Chem.282:478-485(2007))。將由car編碼之艾瓦諾卡菌酶選殖且功能表現於大腸桿菌中(Venkitasubramanian等人,J.Biol.Chem.282:478-485(2007))。npt基因產物之表現經由轉錄後修飾改良酶活性。npt基因編碼特定磷酸泛醯巰基乙胺轉移酶(PPTase),其將非活性脫輔基酶轉化為活性全酶。此酶之天然受質為香草酸,且該酶展現對芳族及脂族受質(包括4-HB)之廣泛接受度(Venkitasubramanian等人,Biocatalysis in the Pharmaceutical and Biotechnology Industires,編者R.N.Patel,第15章,第425-440頁,CRC Press LLC,Boca Raton,FL.(2006))。
Figure 102130678-A0305-02-0149-46
其他carnpt基因可基於序列同源性鑑別。
Figure 102130678-A0305-02-0149-47
Figure 102130678-A0305-02-0150-48
發現於灰色鏈黴菌中之另一CAR酶由griCgriD基因編碼。咸信此酶將3-胺基-4-羥基苯甲酸轉化為3-胺基-4-羥基苯甲醛,因為缺失griCgriD導致3-胺基-4-羥基苯甲酸代謝之分路產物3-乙醯胺基-4-羥基苯甲酸細胞外積聚(Suzuki,等人,J.Antibiot.60(6):380-387(2007))。griCgriD經SGR_665(序列與艾瓦諾卡氏菌npt類似之酶)共同表現可為有利的。
Figure 102130678-A0305-02-0150-49
具有相似特徵之酶α-胺基己二酸還原酶(AAR,EC 1.2.1.31)參與一些真菌物種中之離胺酸生物合成路徑。此酶天然地將α-胺基己二酸還原為α-胺基己二酸半醛。羧基首先經由腺苷酸之ATP依賴性形成活化,腺苷酸隨後由NAD(P)H還原,產生醛及AMP。如CAR,此酶利用鎂且需要由PPTase活化。AAR及其相應PPTase之酶候選物見於釀酒酵母(Morris等人,Gene 98:141-145(1991))、白假絲酵母(Guo等人,Mol.Genet.Genomics 269:271-279(2003))及粟酒裂殖酵母(Ford等人,Curr.Genet.28:131-137(1995))中。來自粟酒裂殖酵母之AAR當於大腸桿菌中表現時展現顯著活性(Guo等人,Yeast 21:1279-1288(2004))。來自產黃青黴菌之AAR接受S-羧甲基-L-半胱胺酸作為替代受質,但不與己二酸、L-麩胺酸或二胺基庚二酸反應(Hijarrubia等人,J.Biol.Chem.278:8250-8256(2003))。編碼產黃青黴菌PPTase之 基因迄今為止尚未鑑別。
Figure 102130678-A0305-02-0151-50
圖2,步驟L-4-羥基丁醯磷酸還原酶(EB14)
EB14催化4-羥基丁醯磷酸向4-羥基丁醛還原。催化此轉化之酶迄今尚未鑑別。然而,類似酶包括EC 1.2.1類中之磷酸還原酶。例示性膦酸還原酶包括G3P脫氫酶(EC 1.2.1.12)、天冬胺酸半醛脫氫酶(EC 1.2.1.11)、乙醯麩胺醯磷酸還原酶(EC 1.2.1.38)及麩胺酸-5-半醛脫氫酶(EC 1.2.1.-)。天冬胺酸半醛脫氫酶(ASD,EC 1.2.1.11)催化4-天冬胺醯磷酸向天冬胺酸-4-半醛之NADPH依賴性還原。ASD參與胺基酸生物合成且近來已經研究作為抗微生物劑目標(Hadfield等人,Biochemistry 40:14475-14483(2001))。大腸桿菌ASD結構已經解析(Hadfield等人,J Mol.Biol.289:991-1002(1999))且該酶已經展示接受替代受質β-3-甲基天冬胺醯磷酸(Shames等人,J Biol.Chem.259:15331-15339(1984))。流感嗜血桿菌酶已成為在活性位點處改變受質結合親和力之酶工程改造研究的主題(Blanco等人,Acta Crystallogr.D.Biol.Crystallogr.60:1388-1395(2004);Blanco等人,Acta Crystallogr.D.Biol.Crystallogr.60:1808-1815(2004))。其他ASD候選物見於結核分枝桿菌(Shafiani等人,J Appl Microbiol 98:832-838(2005))、詹氏甲烷球菌(Methanococcus jannaschii)(Faehnle等人,J Mol.Biol.353:1055-1068(2005))及感染性微生物霍亂弧菌及幽門螺桿菌(Moore等人,Protein Expr.Purif.25:189-194(2002))中。相關酶候 選物為乙醯麩胺醯磷酸還原酶(EC 1.2.1.38),一種天然地將乙醯麩胺醯磷酸還原為乙醯麩胺酸-5-半醛之酶,其見於釀酒酵母(Pauwels等人,Eur.J Biochem.270:1014-1024(2003))、枯草桿菌(O'Reilly等人,Microbiology 140(Pt 5):1023-1025(1994))、大腸桿菌(Parsot等人,Gene.68:275-283(1988))及其他生物體中。大腸桿菌之其他磷酸還原酶包括甘油醛3-磷酸脫氫酶(gapA(Branlant等人,Eur.J.Biochem.150:61-66(1985)))及麩胺酸-5-半醛脫氫酶(proA(Smith等人,J.Bacteriol.157:545-551(1984)))。將來自鼠傷寒沙門氏菌(Mahan等人,J Bacteriol.156:1249-1262(1983))及空腸彎曲桿菌(Louie等人,Mol.Gen.Genet.240:29-35(1993))的編碼麩胺酸-5-半醛脫氫酶之基因選殖且表現於大腸桿菌中。
Figure 102130678-A0305-02-0152-52
圖2,步驟M-4-羥基丁醯CoA還原酶(形成醇)(EB15)
EB15酶為將4-羥基丁醯CoA轉化為1,4-丁二醇之雙官能氧化還原酶。具有此活性之酶包括來自大腸桿菌之adhE、來自丙酮丁醇梭菌之adhE2(Fontaine等人,J.Bacteriol.184:821-830(2002))及由bdh I及bdh II編碼之丙酮丁醇梭菌酶(Walter等人,J.Bacteriol.174:7149-7158(1992))。除將乙醯CoA還原為乙醇之外,由腸膜狀明串珠菌中之adhE編碼之酶已經展示將分支鏈化合物異丁醛氧化為異丁醯CoA (Kazahaya等人,J.Gen.Appl.Microbiol.18:43-55(1972);Koo等人,Biotechnol Lett,27:505-510(2005))。
Figure 102130678-A0305-02-0153-53
實例III-使用由甲醇氧化產生之甲醛形成用於形成生物質之主要代謝路徑之中間物的方法
本文中提供例示性路徑,其利用由甲醇氧化(參見例如圖1,步驟J)產生的甲醛形成某些可用於形成生物質之主要代謝路徑之中間物。用於增進還原當量之可得性以及由甲醇產生甲醛(步驟J)之例示性MMP提供於圖1中。
可利用由甲醇氧化(例如如圖1中提供)產生之甲醛的一種例示性路徑展示於圖3中,其涉及藉由EF1使甲醛與D-核酮糖-5-磷酸縮合以形成H6P(圖3,步驟A)。酶可使用Mg2+或Mn2+以達成最大活性,但其他金屬離子亦為適用的,且甚至涵蓋非金屬離子依賴性機制。H6P藉由EF2轉化為F6P(圖3,步驟B)。
涉及對由甲醇氧化(例如如圖1中提供)產生之甲醛進行解毒及同化的另一例示性路徑展示於圖4中且經由DHA進行。EF3為特殊轉酮醇酶,其首先將乙醇醛基自木酮糖-5-磷酸轉移至甲醛,導致形成DHA及G3P,其為糖酵解中之中間物(圖4,步驟A)。由DHA合成酶獲得之DHA隨後進一步由DHA激酶磷酸化以形成磷酸DHA(圖4,步驟B)。DHAP可經同化至糖酵解及若干其他路徑中。
圖3,步驟A及B-己酮糖-6-磷酸合成酶(EF1)(步驟A)及6-磷酸-3-己 酮糖異構酶(EF2)(步驟B)
EF1與EF2酶兩者均見於數種生物體中,包括甲烷營養生物及甲基營養生物,其已自該等生物體純化(Kato等人,2006,BioSci Biotechnol Biochem.70(1):10-21)。另外,此等酶已經報導於異養生物(諸如枯草桿菌)中,其中其亦經報導參與甲醛解毒(Mitsui等人,2003,AEM 69(10):6128-32,Yasueda等人,1999.J Bac 181(23):7154-60。來自甲基營養細菌胃分枝桿菌MB19之此兩種酶之基因已經融合,且具有hps-phi構築體之大腸桿菌菌株展示甲醛之更有效利用(Orita等人,2007,Appl Microbiol Biotechnol.76:439-445)。在一些生物體中,此兩種酶天然地以雙功能之融合形式存在。
H6P合成酶之例示性候選基因為:
Figure 102130678-A0305-02-0154-54
EF2之例示性基因候選物為:
Figure 102130678-A0305-02-0154-55
此兩種功能均已融合至單一開放閱讀框架中的酶之候選物包括以下。
Figure 102130678-A0305-02-0154-56
圖4,步驟A-二羥基丙酮合成酶(EF3)
涉及對由甲醇氧化(例如如圖1中提供)產生之甲醛進行解毒及同化的另一例示性路徑展示於圖4中且經由DHA進行。EF3為特殊轉酮醇酶,其首先將乙醇醛基自木酮糖-5-磷酸轉移至甲醛,導致形成DHA及G3P,其為糖酵解中之中間物(圖4,步驟A)。由DHA合成酶獲得之DHA隨後進一步由DHA激酶磷酸化以形成磷酸DHA(圖4,步驟B)。DHAP可經同化至糖酵解及若干其他路徑中。
博伊丁假絲酵母中之EF3酶使用焦磷酸硫胺素及Mg2+作為輔因子且定位於過氧化體中。亦發現來自甲醇生長羧基細菌分枝桿菌屬物種菌株JC1 DSM 3803之酶具有DHA合成酶及激酶活性(Ro等人,1997,JBac 179(19):6041-7)。來自此生物體之DHA合成酶亦具有與來自博伊丁假絲酵母之酶類似之輔因子需求。甲醛及木酮糖5-磷酸之Km經報導分別為1.86mM及33.3μM。數種其他分枝桿菌(不包括僅有的結核分枝桿菌)可使用甲醇作為唯一碳及能量源且經報導使用EF3(Part等人,2003,JBac 185(1):142-7)。
Figure 102130678-A0305-02-0155-57
圖4,步驟B-二羥基丙酮(DHA)激酶
由DHA合成酶獲得之DHA進一步由DHA激酶磷酸化以形成磷酸DHA。DHAP可經同化至糖酵解及若干其他路徑中。EF4已自安格斯歐加鐵菌純化為均質(Bystrkh,1983,Biokhimiia,48(10):1611-6)。使DHA磷酸化且較低程度地使甘油醛磷酸化之酶為139kDa之均二聚蛋白質。ATP為該酶之較佳磷酸酯基供體。當使用ITP、GTP、CTP及UTP時,活性下降至約30%。在數種生物體,諸如肺炎克雷伯氏菌及弗氏檸檬酸桿菌(Daniel等人,1995,JBac 177(15):4392-40)中,DHA 由於甘油氧化而形成且由激酶轉化為DHAP肺炎克雷伯氏菌之DHA激酶已經表徵(Jonathan等人,1984,JBac 160(1):55-60)。其對DHA具有較大特異性,Km為4μM,且對於ATP具有兩個表觀Km值,一者為25至35μM,且另一者為200至300μM。DHA亦可由甘油激酶磷酸化,但來自肺炎克雷伯氏菌之DHA激酶在數個態樣中不同於甘油激酶。雖然兩種酶均可使DHA磷酸化,但DHA激酶不使甘油磷酸化,其亦不受果糖-1,6-二磷酸抑制。在釀酒酵母中,DHA激酶(I及II)參與拯救細胞免受DHA之毒性作用(Molin等人,2003,J Biol Chem.17;278(3):1415-23)。
在大腸桿菌中,DHA激酶由三種次單元DhaK、DhaL及DhaM構成,且由於其利用磷酸烯醇丙酮酸作為磷醯基供體而與磷酸轉移酶系統(PTS)類似地起作用(Gutknecht等人,2001,EMBO J.20(10):2480-6)。其不同之處在於不參與轉運。磷酸化反應需要存在PTS系統之EI及HPr蛋白。DhaM次單元在多個位點處經磷酸化。DhaK含有受質結合位點(Garcia-Alles等人,2004,43(41):13037-45;Siebold等人,2003,PNAS.100(14):8188-92)。大腸桿菌酶對DHA之KM已經報導為6μM。K次單元類似於弗氏檸檬酸桿菌及真核生物體之ATP依賴性EF4之N末端一半。
此步驟之例示性DHA激酶基因候選物為:
Figure 102130678-A0305-02-0156-58
實例IV-處置缺氧培養物之方法
此實例描述用於處置缺氧培養物之方法。
A.缺氧腔室及條件.例示性缺氧腔室可在商業上得到(參見例如Vacuum Atmospheres Company,Hawthorne CA;MBraun,Newburyport MA)。條件包括1ppm或1ppm以下之O2濃度及1atm純N2。在一個實例中,使用3個氧氣洗滌器/催化劑再生器,且腔室包括O2電極(諸如Teledyne;City of Industry CA)。幾乎所有物品及試劑在腔室之氣塞中循環四次,隨後打開內腔室門。以純N2噴射體積>5mL之試劑,隨後引入腔室中。每年兩次更換手套,且當腔室對氧氣含量變化顯示日益滯後反應時,定期更新催化劑容器。經由由螺線管激活之單向閥控制腔室壓力。此特徵允許將腔室壓力設定在高於周圍之水準下從而允許經由沖洗閥轉移極小管。
缺氧腔室達成始終極低且為對氧高度敏感之缺氧條件所需的O2含量。然而,細胞之生長及處置通常不需要該等預防措施。在替代性缺氧腔室配置中,可使用鉑或鈀作為催化劑,其在混合物中需要一些氫氣。替代使用螺線管閥,可由起泡器控制壓力釋放。替代使用基於儀器之O2監測,可改用測試條。
B.厭氧微生物學.對血清或培養基瓶裝備厚橡膠塞,且採用鋁質捲曲蓋(aluminum crimp)將瓶密封。以習知方式製造培養基(諸如極品肉湯)且分配至具有適當尺寸之血清瓶中。用氮氣噴射瓶,適度鼓泡約30分鐘。由此自培養基移除大部分氧氣,且在此步驟之後,用橡膠塞(諸如Bellco 20mm隔膜塞;Bellco,Vineland,NJ)將各瓶加蓋且捲曲密封(Bellco 20mm)。隨後使用緩慢(液體)排氣循環熱壓處理培養基瓶。在熱壓處理期間至少有時可將針捅穿塞以實現排氣;針需要在移離熱壓處理後立即移除。無菌培養基之剩餘培養基組分(例如緩衝劑或抗生素)經由注射器及針添加。在添加還原劑之前,用氮氣(或CO,視用途而定)使瓶平衡30-60分鐘。添加還原劑,諸如100×150mM硫 化鈉、200mM半胱胺酸-HCl。此藉由以下製造:稱取硫化鈉至乾燥燒杯中且稱取半胱胺酸至血清瓶中、將兩者引入缺氧腔室中、將硫化鈉溶解至缺氧水中、隨後將此添加至血清瓶中之半胱胺酸中。當硫化鈉溶液在與半胱胺酸接觸後產生硫化氫氣體時即刻塞住瓶。當注入培養物中時,使用注射過濾器將溶液滅菌。經由注射針添加其他組分,諸如B12(10μM氰鈷胺)、氯化鎳(NiCl2,20μM最終濃度,來自40mM儲備液,其在腔室中於缺氧水中製造且藉由熱壓處理或在注入培養物中時藉由使用注射過濾器滅菌)及硫酸亞鐵銨(所需最終濃度為100μM--在腔室中製造為於缺氧水中之100-1000×儲備溶液且藉由熱壓處理或在注入培養物中時藉由使用注射過濾器滅菌)。為了促進在缺氧條件下較快生長,在1公升瓶接種50mL缺氧生長之預先培養物。藉由添加異丙基β-D-1-硫代哌喃半乳糖苷(IPTG)至0.2mM之最終濃度來誘生載體中之pA1-lacO1啟動子,且進行約3小時。
可使用連續氣體添加同時鼓泡於較大瓶中生長較大培養物。在添加培養基之後,將具有金屬鼓泡器之橡膠塞置於瓶中,且用氮氣噴射30分鐘或30分鐘以上,隨後設置瓶其餘部分。將各瓶放在一起以使得無菌過濾器將對鼓泡進入之氣體進行滅菌,且瓶上之軟管為可壓縮的,具有小C形夾。用磁性攪拌棒攪拌培養基及細胞。一旦添加所有培養基組分及細胞,即將瓶在室內空氣中在培育箱中培育,同時將氮氣連續噴射至瓶中。
在整篇本申請案中,已參考各種公開案。此等公開案之揭示內容全文(包括GenBank及GI編號公開案)據此以引用的方式併入本申請案中以更充分描述本發明所屬之技術現狀。雖然已參考上文所提供之實例及實施例描述本發明,但應理解在不背離本發明之精神下可進行多種修改。

Claims (16)

  1. 一種非天然存在之微生物生物體,其具有(A)甲醇代謝路徑(MMP),其中該非天然存在之微生物生物體包含至少一種可編碼MMP酶之外源核酸,該MMP酶係以足以在甲醇存在下增進還原當量之可得性之量表現,其中該MMP包含:甲醇脫氫酶(EM9)及甲醛活化酶(EM10);及(B)1,4-丁二醇(BDO)路徑,其中該非天然存在之微生物生物體包含能產生BDO之至少一種編碼BDO路徑(BDOP)酶之外源核酸。
  2. 如請求項1之非天然存在之微生物生物體,其中該MMP包含:(i)(a)EM9、亞甲基四氫葉酸脫氫酶(EM3)、次甲基四氫葉酸環水解酶(EM4)及甲醯四氫葉酸脫甲醯酶(EM5);(b)EM9、EM3、EM4及甲醯四氫葉酸合成酶(EM6);(c)EM9及甲醛脫氫酶(EM11);(d)EM9、S-(羥甲基)麩胱甘肽合成酶(EM12)、麩胱甘肽依賴性甲醛脫氫酶(EM13)及S-甲醯麩胱甘肽水解酶(EM14);或(e)EM9、EM13及EM14;或(ii)(a)EM9、EM10、EM3、EM4及EM5;或(b)EM9、EM10、EM3、EM4及EM6。
  3. 如請求項1或2之非天然存在之微生物生物體,其中該MMP進一步包含甲酸脫氫酶(EM8)、甲酸氫裂解酶(EM15)或氫化酶(EM16)。
  4. 如請求項1或2之非天然存在之微生物生物體,其中該非天然存在之微生物生物體包含兩種、三種、四種、五種、六種或七種各自編碼MMP酶之外源核酸。
  5. 如請求項1或2之非天然存在之微生物生物體,其中該BDOP包含:(i)琥珀醯CoA還原酶(形成醛)(EB3)、4-羥基丁酸(4-HB)脫氫酶(EB4)、4-HB激酶(EB5)、磷酸轉-4-羥基丁醯酶(EB6)、4-羥基丁醯CoA還原酶(形成醛)(EB7)及1,4-丁二醇脫氫酶(EB8);(ii)EB3、EB4、4-羥基丁醯CoA轉移酶(EB11)或4-羥基丁醯CoA合成酶(EB12)、EB7及EB8;(iii)EB3、EB4、EB11或4-羥基丁醯CoA合成酶及4-羥基丁醯CoA還原酶(形成醇)(EB15);(iv)EB3、EB4、EB5、EB6及EB15;(v)EB3、EB4、4-HB還原酶(EB13)及EB8;(vi)EB3、EB4、EB5、4-羥基丁醯磷酸還原酶(EB14)及EB8;(vii)琥珀醯CoA還原酶(形成醇)(EB10)、EB5、EB6、EB7及EB8;(viii)EB10、EB5、EB6及EB15;(ix)EB10、EB11或EB12、EB7及EB8;(x)EB10、EB11或EB12及EB15;(xi)EB10、EB13及EB8;(xii)EB10、EB5、EB14及EB8;(xiii)琥珀酸還原酶(EB9)、EB4、EB5、EB6、EB7及EB8;(xiv)EB9、EB4、EB11或EB12、EB7及EB8;(xv)EB9、EB4、EB11或EB12及EB15;(xvi)EB9、EB4、EB5、EB6及EB15;(xvii)EB9、EB4、EB13及EB8;或(xviii)EB9、EB4、EB5、EB14及EB8;或 其中該(i)-(xii)之BDOP進一步包含琥珀醯CoA轉移酶(EB1)或琥珀醯CoA合成酶(EB2A)。
  6. 如請求項5之非天然存在之微生物生物體,其中該非天然存在之微生物生物體包含四種、五種、六種或七種各自編碼BDOP酶之外源核酸。
  7. 如請求項1或2之非天然存在之微生物生物體,其中(a)該非天然存在之微生物生物體進一步包含一或多個基因破壞,其中該一或多個基因破壞在編碼參與該非天然存在之微生物生物體之乙醇、甘油、乙酸、乳酸、甲酸、CO2及/或胺基酸之天然產生之蛋白質或酶的一或多種內源基因中出現,且其中該一或多個基因破壞使得該非天然存在之微生物生物體中BDO之產生增加;及/或(b)其中參與該非天然存在之微生物生物體之以下各者之天然產生的一或多種內源酶之酶活性或表現水平衰減:乙醇、甘油、乙酸、乳酸、甲酸、CO2及/或胺基酸。
  8. 如請求項1或2之非天然存在之微生物生物體,其進一步包含甲醛同化路徑(formaldehyde assimilation pathway;FAP),其中該非天然存在之微生物生物體包含至少一種編碼FAP酶之外源核酸,該酶係以足以產生糖酵解及/或可用於形成生物質之代謝路徑的中間物之量表現,且其中(a)該FAP包含(i)己酮糖-6-磷酸合成酶(EF1)及6-磷酸-3-己酮糖異構酶(EF2);或(ii)二羥基丙酮合成酶(EF3)及二羥基丙酮激酶(EF4);及/或(b)該中間物為 (i)己酮糖-6-磷酸、果糖-6-磷酸或其組合;或(ii)二羥基丙酮、二羥基丙酮磷酸或其組合。
  9. 如請求項1或2之非天然存在之微生物生物體,其中(a)該至少一種編碼MMP酶或BDOP酶之外源核酸為異源核酸;(b)該非天然存在之微生物生物體係在實質上缺氧培養基中;及/或(c)該非天然存在之微生物生物體為細菌、酵母或真菌物種。
  10. 一種產生BDO之方法,其包含將如請求項1或2之非天然存在之微生物生物體培養在可產生BDO之條件下及一段充足時間。
  11. 如請求項10之方法,其中該方法進一步包含將該BDO與該培養物中之其他組分分離,其中該分離包含萃取、連續液-液萃取、滲透蒸發、膜過濾、膜分離、逆滲透、電滲析、蒸餾、結晶、離心、萃取過濾、離子交換層析、尺寸排阻層析、吸附層析或超濾。
  12. 一種產生甲醛之方法,其包含將如請求項1之非天然存在之微生物生物體培養在可產生甲醛之條件下及一段充足時間。
  13. 如請求項12之方法,其中該甲醛經消耗而提供還原當量或併入至BDO中。
  14. 一種產生糖酵解中間物及/或可用於形成生物質之代謝路徑中間物的方法,其包含將如請求項8之非天然存在之微生物生物體培養在可產生該中間物之條件下及一段充足時間。
  15. 如請求項14之方法,其中該中間物經消耗而提供還原當量或併入至BDO中。
  16. 如請求項12至15中任一項之方法,其中該非天然存在之微生物生物體係培養在包含生物質、葡萄糖、木糖、阿拉伯糖、半乳 糖、甘露糖、果糖、蔗糖、澱粉、甘油、甲醇、二氧化碳、甲酸、甲烷或其任何組合作為碳源之培養基中。
TW102130678A 2012-08-27 2013-08-27 用於在甲醇存在下增進還原當量之可得性及用於產生相關之1,4-丁二醇之微生物及方法 TWI721936B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201261693683P 2012-08-27 2012-08-27
US61/693,683 2012-08-27
US201361766609P 2013-02-19 2013-02-19
US61/766,609 2013-02-19
US13/975,678 US9657316B2 (en) 2012-08-27 2013-08-26 Microorganisms and methods for enhancing the availability of reducing equivalents in the presence of methanol, and for producing 1,4-butanediol related thereto
US13/975,678 2013-08-26

Publications (2)

Publication Number Publication Date
TW201422813A TW201422813A (zh) 2014-06-16
TWI721936B true TWI721936B (zh) 2021-03-21

Family

ID=50148540

Family Applications (4)

Application Number Title Priority Date Filing Date
TW111118309A TW202309263A (zh) 2012-08-27 2013-08-27 用於在甲醇存在下增進還原相等物之可得性及用於產生相關之1,4-丁二醇之微生物及方法
TW102130678A TWI721936B (zh) 2012-08-27 2013-08-27 用於在甲醇存在下增進還原當量之可得性及用於產生相關之1,4-丁二醇之微生物及方法
TW108106226A TW201940692A (zh) 2012-08-27 2013-08-27 用於在甲醇存在下增進還原相等物之可得性及用於產生相關之1,4-丁二醇之微生物及方法
TW109134132A TWI799741B (zh) 2012-08-27 2013-08-27 用於在甲醇存在下增進還原相等物之可得性及用於產生相關之1,4-丁二醇之微生物及方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW111118309A TW202309263A (zh) 2012-08-27 2013-08-27 用於在甲醇存在下增進還原相等物之可得性及用於產生相關之1,4-丁二醇之微生物及方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW108106226A TW201940692A (zh) 2012-08-27 2013-08-27 用於在甲醇存在下增進還原相等物之可得性及用於產生相關之1,4-丁二醇之微生物及方法
TW109134132A TWI799741B (zh) 2012-08-27 2013-08-27 用於在甲醇存在下增進還原相等物之可得性及用於產生相關之1,4-丁二醇之微生物及方法

Country Status (8)

Country Link
US (5) US9657316B2 (zh)
EP (2) EP3792352A3 (zh)
CN (2) CN118006521A (zh)
BR (1) BR112015004089A2 (zh)
CA (1) CA2882896A1 (zh)
MY (1) MY175678A (zh)
TW (4) TW202309263A (zh)
WO (1) WO2014035925A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11932845B2 (en) 2012-06-04 2024-03-19 Genomatica, Inc. Microorganisms and methods for production of 4-hydroxybutyrate, 1,4-butanediol and related compounds
US9657316B2 (en) * 2012-08-27 2017-05-23 Genomatica, Inc. Microorganisms and methods for enhancing the availability of reducing equivalents in the presence of methanol, and for producing 1,4-butanediol related thereto
EP2947143B1 (en) 2013-01-21 2018-07-11 Sekisui Chemical Co., Ltd. Recombinant cell, and method for producing 1,4-butanediol
US10006033B2 (en) * 2013-03-14 2018-06-26 The Regents Of The University Of California Recombinant microorganisms having a methanol elongation cycle (MEC)
JP6387345B2 (ja) * 2013-06-26 2018-09-05 株式会社カネカ 新規ポリペプチド及びその用途
JP6387346B2 (ja) 2013-06-26 2018-09-05 株式会社カネカ 新規ポリペプチド及びその用途
WO2015108777A1 (en) 2014-01-16 2015-07-23 Papoutsakis Eleftherios T Synthetic methylotrophy to liquid fuels and chemicals
US10196653B2 (en) 2014-04-02 2019-02-05 The Regents Of The University Of California Synthetic biochemistry molecular purge valve module that maintain co-factor balance
EP3167066A4 (en) 2014-07-11 2018-03-07 Genomatica, Inc. Microorganisms and methods for the production of butadiene using acetyl-coa
EP3325634A4 (en) 2015-07-21 2019-03-13 The Regents of The University of California GLUCOSE GROUND CHANGE WITH MOLECULAR VENTILATION VALVE
EP3814515A2 (en) 2018-06-26 2021-05-05 Genomatica, Inc. Engineered microorganisms with g3p---> 3pg enzyme and/or fructose-1,6-bisphosphatase including those having synthetic or enhanced methylotrophy
WO2022026419A1 (en) * 2020-07-26 2022-02-03 Rubi Laboratories, Llc Compositions, systems, and methods for artificial carbon fixation, chemical synthesis, and/or production of useful products
CN113999881A (zh) * 2021-12-07 2022-02-01 天津科技大学 微生物发酵制备l-2-氨基己二酸的方法及抑制蓝藻的应用
CN114517215A (zh) * 2022-01-14 2022-05-20 合肥师范学院 一种芳基甲基醚的去甲基方法、去甲文拉法辛或其盐的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1454991A1 (en) * 2003-03-04 2004-09-08 Ajinomoto Co., Inc. Coryneform bacterium transformed to utilize methanol as carbon source
US8129155B2 (en) * 2008-12-16 2012-03-06 Genomatica, Inc. Microorganisms and methods for conversion of syngas and other carbon sources to useful products

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19856136C2 (de) 1998-12-04 2002-10-24 Pasteur Institut Verfahren und Vorrichtung zur Selektion beschleunigter Proliferation lebender Zellen in Suspension
AU3482200A (en) 1999-02-02 2000-08-25 Bernhard Palsson Methods for identifying drug targets based on genomic sequence data
JP4776146B2 (ja) 2001-01-10 2011-09-21 ザ・ペン・ステート・リサーチ・ファンデーション 細胞代謝をモデル化する方法及びシステム
US7127379B2 (en) 2001-01-31 2006-10-24 The Regents Of The University Of California Method for the evolutionary design of biochemical reaction networks
EP1381860A4 (en) 2001-03-01 2008-10-15 Univ California MODELS AND METHOD FOR DETERMINING SYSTEMIC PROPERTIES OF REGULATED RESPONSE NETWORKS
US20030224363A1 (en) 2002-03-19 2003-12-04 Park Sung M. Compositions and methods for modeling bacillus subtilis metabolism
AU2003222128A1 (en) 2002-03-29 2003-10-13 Genomatica, Inc. Human metabolic models and methods
US7856317B2 (en) 2002-06-14 2010-12-21 Genomatica, Inc. Systems and methods for constructing genomic-based phenotypic models
WO2004018621A2 (en) 2002-07-10 2004-03-04 The Penn State Research Foundation Method for determining gene knockout strategies
EP1552472A4 (en) 2002-10-15 2008-02-20 Univ California METHODS AND SYSTEMS FOR IDENTIFYING FUNCTIONAL REACTION PATHWAYS
EP1692271B2 (en) 2003-11-27 2022-08-03 Korea Advanced Institute of Science and Technology Novel rumen bacteria variants and process for preparing succinic acid employing the same
KR100630836B1 (ko) 2005-04-08 2006-10-02 한국과학기술원 인-실리코 분석을 통한 균주 개량방법
KR100679638B1 (ko) 2005-08-19 2007-02-06 한국과학기술원 포메이트 디하이드로게나제 d 또는 e를 코딩하는 유전자로 형질전환된 미생물 및 이를 이용한 숙신산의 제조방법
KR100676160B1 (ko) 2005-08-19 2007-02-01 한국과학기술원 말릭효소를 코딩하는 유전자로 형질전환된 재조합 미생물 및 이를 이용한 숙신산의 제조방법
KR100727054B1 (ko) 2005-08-19 2007-06-12 한국과학기술원 푸마레이트 하이드라타제 c를 코딩하는 유전자로 형질전환된 재조합 미생물 및 이를 이용한 숙신산의 제조방법
KR100780324B1 (ko) 2006-07-28 2007-11-29 한국과학기술원 신규 순수 숙신산 생성 변이 미생물 및 이를 이용한 숙신산제조방법
EP2821494B1 (en) 2007-03-16 2017-03-08 Genomatica, Inc. Compositions and methods for the biosynthesis of 1,4-butanediol and its precursors
US7947483B2 (en) 2007-08-10 2011-05-24 Genomatica, Inc. Methods and organisms for the growth-coupled production of 1,4-butanediol
US8574875B2 (en) 2007-08-17 2013-11-05 Basf Se Bacterial strain and process for the fermentative production of organic acids
KR101042242B1 (ko) 2007-09-07 2011-06-17 한국과학기술원 1,4-부탄디올 생성능을 가지는 변이체 및 이를 이용한1,4-부탄디올의 제조방법
WO2009048202A1 (en) 2007-10-09 2009-04-16 Korea Advanced Institute Of Science And Technology Method for preparing succinic acid using glycerol as carbon source
US7803589B2 (en) * 2008-01-22 2010-09-28 Genomatica, Inc. Methods and organisms for utilizing synthesis gas or other gaseous carbon sources and methanol
WO2010030711A2 (en) * 2008-09-10 2010-03-18 Genomatica, Inc. Microorganisms for the production of 1,4-butanediol
EP2204443B1 (en) 2008-12-23 2015-11-25 Basf Se Bacterial cells exhibiting formate dehydrogenase activity for the manufacture of suc-cinic acid
CA2751280C (en) 2009-02-16 2019-03-12 Basf Se Novel microbial succinic acid producers and purification of succinic acid
EP3392340B1 (en) * 2009-06-04 2022-01-05 Genomatica, Inc. Microorganisms for the production of 1,4-butanediol and related methods
US8530210B2 (en) 2009-11-25 2013-09-10 Genomatica, Inc. Microorganisms and methods for the coproduction 1,4-butanediol and gamma-butyrolactone
US8048661B2 (en) 2010-02-23 2011-11-01 Genomatica, Inc. Microbial organisms comprising exogenous nucleic acids encoding reductive TCA pathway enzymes
US8987431B2 (en) 2010-07-01 2015-03-24 Coskata, Inc. Essential genes encoding conserved metabolic pathway function in autotrophic solventogenic clostridial species
KR101221557B1 (ko) 2010-08-30 2013-01-14 한국과학기술원 수크로오즈와 글리세롤을 동시에 이용하는 신규 숙신산 생성 변이 미생물 및 이를 이용한 숙신산 제조방법
GB201201178D0 (en) * 2012-01-25 2012-03-07 Sinvent As Novel enzymes
US9657316B2 (en) * 2012-08-27 2017-05-23 Genomatica, Inc. Microorganisms and methods for enhancing the availability of reducing equivalents in the presence of methanol, and for producing 1,4-butanediol related thereto
EP2909325A4 (en) * 2012-10-22 2016-05-25 Genomatica Inc MICROORGANISMS AND METHODS FOR ENHANCING THE AVAILABILITY OF REDUCING EQUIVALENTS IN THE PRESENCE OF METHANOL, AND THE PRODUCTION OF SUCCINATE CORRESPONDING
EP2940123B1 (en) * 2012-12-27 2018-04-25 Sekisui Chemical Co., Ltd. Recombinant cell and method for producing isoprene

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1454991A1 (en) * 2003-03-04 2004-09-08 Ajinomoto Co., Inc. Coryneform bacterium transformed to utilize methanol as carbon source
US8129155B2 (en) * 2008-12-16 2012-03-06 Genomatica, Inc. Microorganisms and methods for conversion of syngas and other carbon sources to useful products

Also Published As

Publication number Publication date
TW201422813A (zh) 2014-06-16
US20180030484A1 (en) 2018-02-01
CN118006521A (zh) 2024-05-10
US20210087591A1 (en) 2021-03-25
EP2888369B1 (en) 2020-07-15
EP2888369A1 (en) 2015-07-01
TW202124707A (zh) 2021-07-01
WO2014035925A1 (en) 2014-03-06
US20150203875A1 (en) 2015-07-23
US9657316B2 (en) 2017-05-23
EP2888369A4 (en) 2016-08-10
US20140058056A1 (en) 2014-02-27
TW201940692A (zh) 2019-10-16
TW202309263A (zh) 2023-03-01
US20240052379A1 (en) 2024-02-15
MY175678A (en) 2020-07-06
CA2882896A1 (en) 2014-03-06
BR112015004089A2 (pt) 2017-07-04
EP3792352A2 (en) 2021-03-17
US10626422B2 (en) 2020-04-21
CN104736716A (zh) 2015-06-24
EP3792352A3 (en) 2021-06-16
TWI799741B (zh) 2023-04-21

Similar Documents

Publication Publication Date Title
TWI721936B (zh) 用於在甲醇存在下增進還原當量之可得性及用於產生相關之1,4-丁二醇之微生物及方法
US20230332194A1 (en) Microorganisms and methods for enhancing the availability of reducing equivalents in the presence of methanol, and for producing adipate, 6-aminocaproate, hexamethylenediamine or caprolactam related thereto
US10640795B2 (en) Microorganisms and methods for enhancing the availability of reducing equivalents in the presence of methanol, and for producing succinate related thereto
US11371063B2 (en) Microorganisms and methods for the production of butadiene using acetyl-coA
US11629363B2 (en) Microorganisms and methods for enhancing the availability of reducing equivalents in the presence of methanol, and for producing 1,2-propanediol, n-propanol, 1,3-propanediol, or glycerol related thereto
WO2014071289A1 (en) Microorganisms for enhancing the availability of reducing equivalents in the presence of methanol, and for producing 3-hydroxyisobutyrate
WO2020006058A2 (en) Engineered microorganisms with g3p---> 3pg enzyme and/or fructose-1,6-bisphosphatase including those having synthetic or enhanced methylotrophy