TWI721806B - 運用通訊設備之生理訊號感測方法及感測系統 - Google Patents
運用通訊設備之生理訊號感測方法及感測系統 Download PDFInfo
- Publication number
- TWI721806B TWI721806B TW109107018A TW109107018A TWI721806B TW I721806 B TWI721806 B TW I721806B TW 109107018 A TW109107018 A TW 109107018A TW 109107018 A TW109107018 A TW 109107018A TW I721806 B TWI721806 B TW I721806B
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- phase
- physiological
- quadrature
- error vector
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7228—Signal modulation applied to the input signal sent to patient or subject; demodulation to recover the physiological signal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
- A61B5/0015—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
- A61B5/0022—Monitoring a patient using a global network, e.g. telephone networks, internet
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/0507—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves using microwaves or terahertz waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/0205—Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7203—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
- A61B5/7207—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
- A61B5/7214—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts using signal cancellation, e.g. based on input of two identical physiological sensors spaced apart, or based on two signals derived from the same sensor, for different optical wavelengths
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7221—Determining signal validity, reliability or quality
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Physics & Mathematics (AREA)
- Physiology (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Psychiatry (AREA)
- Signal Processing (AREA)
- Cardiology (AREA)
- Computer Networks & Wireless Communication (AREA)
- Pulmonology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
一種運用通訊設備之生理訊號感測方法及感測系統,藉由對IQ解調單元輸出之一同相解調訊號及正交解調訊號進行誤差向量振幅演算法而得到該生物體之一生理訊號,由於不須新增額外之硬體架構,即可在不影響通訊設備原有之通訊功能的情況下讓通訊設備成為生理訊號感測器,除了能避免主動式感測系統發出之訊號與通訊訊號產生干擾外,還可大幅降低非接觸式生理訊號感測系統的建置成本。
Description
本發明是關於一種生理訊號感測方法及感測系統,特別是關於一種運用通訊設備之生理訊號感測方法及感測系統。
非接觸生理訊號感測主要是藉由雷達發出之無線訊號與待測物之間的都普勒效應(Doppler Effect)測得待測物的生理徵象(如:呼吸、心跳),但由於待測物的生理徵象的振動幅度相當微弱,其對於無線訊號造成之都普勒相移成份並不容易辨識,因此,一般雷達發出之無線訊號會使用純弦波進行待測物之生理徵象的感測,而需要另外設置主動電路產生純弦波,導致習知非接觸式生理訊號感測器的建置成本及功率消耗較大。
請參閱美國專利號US9,846,226「Motion detection device」,該專利說明書揭露使用環境中的通訊訊號進行手勢感測,並請參閱該專利圖式第3圖,其天線接收之通訊訊號經由耦合器150耦合後注入一壓控振盪器VCO中,使其進入注入鎖定狀態,使得壓控振盪器的頻率產生變化,藉此提高雷達對於手勢對通訊訊號造成之都普勒相移成份的靈敏度。雖然該專利說明書第13列第45至62行有揭露其可用於人體之生理訊號的感測,但也僅適用於近距離之人體,還無法對遠距離之人體,或是接收器與人體之間有障礙物的環境下進行感測。
本發明之主要目的在於對同相解調訊號及正交解調訊號進行誤差向量振幅演算法,可讓任何通訊設備成為對於細微振動具有高靈敏度的感測器,而可適用於生物體之生理訊號的感測。
本發明之一種運用通訊設備之生理訊號感測方法包含:一發射器發射一發射訊號至一生物體,且該生物體反射一反射訊號至一接收器;該接收器接收該反射訊號為一接收訊號,且該接收器之一IQ解調單元對該接收訊號進行解調而得到一同相解調訊號及一正交解調訊號;以及一運算單元接收該同相解調訊號及該正交解調訊號,且該運算單元將該同相解調訊號及該正交解調訊號進行一誤差向量振幅演算法(Error vector magnitude algorithm)而得到該生物體之一生理訊號。
本發明之一種運用通訊設備之生理訊號感測系統包含一發射器、一接收器及一運算單元,該發射器用以發射一發射訊號至一生物體,該生物體反射一反射訊號,該接收器具有一接收天線及一IQ解調單元,該接收天線接收該反射訊號為一接收訊號,該IQ解調單元耦接該接收天線以接收該接收訊號,該IQ解調單元用以對該接收訊號進行解調而得到一同相解調訊號及一正交解調訊號,該運算單元耦接該接收器以接收該同相解調訊號及該正交解調訊號,該運算單元用以對該同相解調訊號及該正交解調訊號進行一誤差向量振幅演算法(Error vector magnitude algorithm)而得到該生物體之一生理訊號。
本發明藉由對該IQ解調單元解調而得之該同相解調訊號及該正交解調訊號進行誤差向量振幅演算法而得到生物體之該生理訊號,由於本發明可直接使用於空間中搭載有通訊資訊之無線訊號進行生理訊號感測,而能在不影響通訊設備原有之通訊功能的情況下讓通訊設備成為生理訊號感測器,可避免生理訊號感測器發出之無線電波與通訊設備發出之無線電波之間受到干擾,並具有低成本及低電力消耗之功效。
請參閱第1圖,其為本發明之一第一實施例,一種運用通訊設備之生理訊號感測系統100的功能方塊圖,該運用通訊設備之生理訊號感測系統100具有一發射器110、一接收器120及一運算單元130,在本實施例中,該發射器110及該接收器120設置於同一通訊設備中,該通訊設備可為任意之商用無線通訊裝置,如行動電話、筆記型電腦、Wi-Fi基地站或行動通訊基地站等透過通訊標準協議連接之無線通訊裝置。
在本實施例中,該發射器110具有一訊號產生單元111及一發射天線112,該訊號產生單元111包含訊號產生器、混波器、調變器等電子裝置,該訊號產生單元111產生一調變訊號S
M,該調變訊號S
M傳送至該發射天線112,且該發射天線112將其發射為一發射訊號S
T至環境中,該發射訊號S
T以數學式表示為:
其中,
為該發射訊號S
T,
及
分別為同相及正交之該基頻訊號,
為通訊訊號的載波頻率。該發射訊號S
T傳送至位在環境中之一生物體B後,該生物體B會反射一反射訊號S
R,若該生物體B與該發射天線112之間具有一相對位移,該相對位移會對該發射訊號S
T產生都普勒效應,使得該反射訊號S
R含有該相對位移造成的都普勒相移成分,而當該相對位移是由該生物體B之生理徵象,如呼吸、心跳造成時,該反射訊號S
R會含有該生物體B之生理徵象造成的都普勒相移成分。
在本實施例中,該發射器110發射之該發射訊號S
T為搭載有通訊資訊之無線訊號,且該發射訊號S
T可為數位相位調變訊號(Phase-shift keying),如BPSK、QPSK、OQPSK、DQSK、4/п PSK、8-PSK、16-PSK、32-PSK、64-PSK…等,或為正交振幅調變訊號(Quadrature amplitude modulation),如4-QAM、8-QAM、16-QAM、32-QAM、128-QAM、256-QAM、1024-QAM…等能夠計算誤差向量振幅(Error vector amplitude)的調變方式。
該接收器120具有一IQ解調單元121及一接收天線122,該生物體B反射之該反射訊號S
R傳送至接收器120,該接收天線122接收該反射訊號S
R為一接收訊號S
r,其中,該接收訊號S
r以數學式表示為:
其中,
為該接收訊號S
r,
為該發射訊號S
T及該接收訊號S
r之間的一振幅變化量,
為該發射器110與該接收器120之間的傳輸時間,
為該生物體B及該接收器120之間的傳輸時間,
為該相對位移造成的都普勒相移成分。
該IQ解調單元121電性連接該接收天線122以接收該接收訊號S
r,該IQ解調單元121用以對該接收訊號S
r進行解調而得到一同相解調訊號I及一正交解調訊號Q,其中該IQ解調單元121包含有功率分配器、正交功率分配器及混波器,該IQ解調單元121的電路結構為一般習知架構,因此不再贅述。解調而得之該同相解調訊號I及該正交解調訊號Q可由數學式表示為:
其中,
為該同相解調訊號I,
為該正交解調訊號Q。該相對位移造成的都普勒相移成分可由數學式表示為:
其中,
為該相對位移,
為該發射訊號S
T於空氣中的波長,
及
分別為該生物體B之心跳及呼吸造成之該相對位移,
及
分別為該生物體B之心跳及呼吸之頻率。其中該相對位移之大小遠小於該發射訊號S
T的波長時:
解調而得之該同相解調訊號I及該正交解調訊號Q之數學式可藉由上式簡寫為:
由上式可知,該同相解調訊號I及該正交解調訊號Q的第一項之
及
表示了通訊訊號,第二項之
及
則表示了系統雜訊,而系統雜訊即為該生物體B的生理徵象造成。
請參閱第1圖,該運算單元130電性連接該接收器120,以接收該同相解調訊號I及該正交解調訊號Q,且該運算單元130將該同相解調訊號及該正交解調訊號進行一誤差向量振幅演算法(Error vector magnitude algorithm)而得到該生物體B之一生理訊號VS。在本實施例中,該誤差向量振幅演算法包含該運算單元130將該同相解調訊號及該正交解調訊號映射至星座圖以得到一理想向量及一誤差向量。該運算單元130是根據系統當前之符號率(Symbol rate)對該同相解調訊號I及該正交解調訊號Q進行採樣,以建立瞬時星座圖,取樣而得之瞬時同相理想向量及瞬時正交理想向量為:
其中,
為瞬時同相理想向量,
為瞬時正交理想向量。而瞬時同相錯誤向量及瞬時正交錯誤向量為:
其中,
為瞬時同相錯誤向量,
為瞬時正交錯誤向量。該理想向量是由瞬時同相理想向量及瞬時正交理想向量組成,該誤差向量是由瞬時同相誤差向量及瞬時正交誤差向量組成,該理想向量及該錯誤向量的大小為:
其中,
為該理想向量的振幅大小,
為該錯誤向量的振幅大小。接著,該運算單元130根據該理想向量及誤差向量計算一相位變化量訊號,計算式為:
其中,
為該相位變化量訊號,由上式可知,該錯誤向量的振幅大小除上該理想向量的振幅大小即可得到該相量變化訊號,且該相量變化訊號即為生物體B與該發射器110之間的相對運動所造成,因此,該運算單元130對該相位變化量訊號進行頻譜分析,例如快速傅立葉分析後即可得到該生物體B之生理訊號VS。
請參閱第2圖,其為本發明之一第二實施例,第二實施例與第一實施例的差異在於該發射器110a與該接收器120b是分別位在一第一通訊設備A及一第二通訊設備B中。該第一通訊設備A之該發射器110a發出該發射訊號S
T至該生物體B,該生物體B反射一反射訊號S
R,該反射訊號S
R被第二通訊設備B之該接收器120b接收該反射訊號S
R為一接收訊號S
r。相同地,若該生物體B與該發射器110a之間有著相對運動,該相對運動會對該發射訊號S
T產生都普勒效應,使得該反射訊號S
R及該接收訊號S
r中含有該相對運動造成的都普勒相移成分。該IQ解調單元121b接收該接收訊號Sr並對其進行IQ解調而得到同相解調訊號I及正交解調訊號Q,該運算單元130接收該同相解調訊號I及該正交解調訊號Q並對其進行誤差向量振幅演算法即可得到該生物體B之該生理訊號VS。
請參閱第3圖,其為本發明之一第三實施例,其與第二實施例的差異在於除了該第一通訊設備A發出該第一發射訊號S
T1至該生物體,且該生物體B反射之該第一反射訊號S
R1被該第二通訊設備B之該接收器120b接收外,該第二通訊設備B之該發射器110b也發出一第二發射訊號S
T2,該生物體B反射之該第二反射訊號S
R2也被該第二通訊設備B之該接收器120b接收,因此,該第二通訊設備B之該接收器120b接收了兩個反射訊號,藉此,若該生物體B在生理徵象之外有著其他的位移,如身體的擺動或是隨機的移動可藉由兩個反射訊號中的都普勒相移成分消除。由於生物體B之身體擺動或是隨機位移對該第一發射訊號S
T1及第二發射訊號S
T2造成之都普勒相移成份是相互反相的,而生物體B之生理徵象的位移對該第一發射訊號S
T1及第二發射訊號S
T2造成之都普勒相移成份是同相的,而可在解調過程中將身體擺動或是隨機移動的都普勒相移成分消除,使生理訊號之感測能夠不受身體移動的影響。
請參閱第4圖,其為本發明之一第四實施例,其與第一實施例的差異在於該運用通訊設備之生理訊號感測系統100包含有複數個該發射器110、複數個該接收器120、複數個該運算單元130及一訊號處理器140。各該運算單元130電性連接各該接收器120以接收各該接收器120輸出之該同相解調訊號I及該正交解調訊號Q,且各該運算單元130對各該同相解調訊號I及各該正交解調訊號Q進行一誤差向量振幅演算法而得到該生物體B之該生理訊號VS,該訊號處理器140電性連接該些運算單元130以接收該些生理訊號VS,其中該訊號處理器140根據該些生理訊號VS判斷該生物體B所在之一方位。本實施例藉由在各該發射器110發射之該發射訊號S
T之間設置一延遲量,讓該些發射訊號S
T構成一朝向特定角度發射之波束,並透過調整該延遲量的大小,令波束的角度改變而可指向不同位置,因此,該些運算單元130計算而得之該生理訊號VS只有在波束指向該生物體B才會出現生理徵象,藉此判斷該生物體B所在之該方位。
請參閱第5圖,為本發明之一第一實驗架構的平面圖,其中W為窗戶,D為不銹鋼門,該發射器110為一Wi-Fi AP(Access point),該接收器120為具有兩天線之一通用軟體無線電周邊設備(USRP)儀器,該生物體B為坐姿之人體,該發射器110與該接收器120之接收天線相距1公尺,該生物體B與接收天線相距9公尺。請參閱第6圖,為第一實驗架構感測而得之誤差向量振幅EVM及生理訊號,其中,該發射器110發射之該發射訊號為功率為-30 dBm的64-QAM調變訊號,由生理訊號中可以看到由呼吸及心跳所造成之頻譜成份。請參閱第7圖,為第一實驗架構感測而得之誤差向量振幅EVM及生理訊號,其中,該發射器110發射之該發射訊號為功率為-30 dBm的QPSK調變訊號,相同地由生理訊號中可以看到由呼吸及心跳所造成之頻譜成份,可證明本案能夠以不同之調變方式進行遠距離之生理訊號感測。
請參閱第8圖,為本發明之一第二實驗架構的平面圖,其中W為窗戶,C為不銹鋼書櫃,T為不銹鋼桌,R為電冰箱,該生物體B為站姿之人體,D為關閉之木門,CW為15 公分厚之鋼筋強化水泥牆,該發射器110及該接收器120皆設置於該通用軟體無線電周邊設備儀器中,並分別以兩個天線進行無線訊號之發射及接收,其中,加強水泥牆CW位在收發天線及該生物體B之間,該生物體距離加強水泥牆CW 4.3 公尺,該兩個天線距離鋼筋強化水泥牆15 公分。請參閱第9圖,為第二實驗架構感測而得之誤差向量振幅EVM及生理訊號,其中,該發射器110發射之該發射訊號為功率為10 dBm的64-QAM調變訊號,由生理訊號中可以看到由呼吸及心跳所造成之頻譜成份。請參閱第10圖,為第二實驗架構感測而得之誤差向量振幅EVM及生理訊號,其中,該發射器110發射之該發射訊號為功率為10 dBm的QPSK調變訊號,相同地由生理訊號中可以看到由呼吸及心跳所造成之頻譜成份,可證明本案能夠以不同之調變方式進行隔牆式之生理訊號感測。
本發明藉由對該IQ解調單元121解調而得之該同相解調訊號I及該正交解調訊號Q進行誤差向量振幅演算法而得到生物體B之該生理訊號VS,由於可直接使用於空間中搭載有通訊資訊之無線訊號進行生理訊號VS感測,並能在不影響通訊設備原有之通訊功能的情況下讓通訊設備成為生理訊號感測器,可避免生理訊號感測器發出之無線電波與通訊設備發出之無線電波之間受到干擾,且具有低成本及低電力消耗之功效。
本發明之保護範圍當視後附之申請專利範圍所界定者為準,任何熟知此項技藝者,在不脫離本發明之精神和範圍內所作之任何變化與修改,均屬於本發明之保護範圍。
100:運用通訊設備之生理訊號感測系統
110:發射器
111:訊號產生單元
112:發射天線
120:接收器
121:IQ解調單元
122:接收天線
130:運算單元
140:訊號處理器
S
T:發射訊號
S
T1:第一發射訊號
S
T2:第二發射訊號
B:生物體
S
R:反射訊號
S
R1:第一反射訊號
S
R2:第二反射訊號
S
r:接收訊號
VS:生理訊號
I:同相解調訊號
Q:正交解調訊號
A:第一通訊設備
B:第二通訊設備
S
M:調變訊號
第1圖:依據本發明之一第一實施例,一運用通訊設備之生理訊號感測系統的功能方塊圖。
第2圖:依據本發明之一第二實施例,一運用通訊設備之生理訊號感測系統的功能方塊圖。
第3圖:依據本發明之一第三實施例,一運用通訊設備之生理訊號感測系統的功能方塊圖。
第4圖:依據本發明之一第四實施例,一運用通訊設備之生理訊號感測系統的功能方塊圖。
第5圖:本發明之一第一實驗架構的平面圖。
第6圖:本發明之該第一實驗架構使用64-QAM調變訊號感測而得之誤差向量振幅及生理訊號。
第7圖:本發明之該第一實驗架構使用QPSK調變訊號感測而得之誤差向量振幅及生理訊號。
第8圖:本發明之一第二實驗架構的平面圖。
第9圖:本發明之該第二實驗架構使用64-QAM調變訊號感測而得之誤差向量振幅EVM及生理訊號。
第10圖:本發明之該第二實驗架構使用QPSK調變訊號感測而得之誤差向量振幅EVM及生理訊號。
100:應用通訊設備之生理訊號感測系統
110:發射器
111:訊號產生單元
112:發射天線
120:接收器
121:IQ解調單元
122:接收天線
130:運算單元
ST:發射訊號
SR:反射訊號
Sr:接收訊號
B:生物體
I:同相解調訊號
Q:正交解調訊號
SM:調變訊號
Claims (10)
- 一種運用通訊設備之生理訊號感測方法,其包含: 一發射器發射一發射訊號至一生物體,且該生物體反射一反射訊號至一接收器; 該接收器接收該反射訊號為一接收訊號,且該接收器之一IQ解調單元對該接收訊號進行解調而得到一同相解調訊號及一正交解調訊號;以及 一運算單元接收該同相解調訊號及該正交解調訊號,且該運算單元將該同相解調訊號及該正交解調訊號進行一誤差向量振幅演算法(Error vector magnitude algorithm)而得到該生物體之一生理訊號。
- 如請求項1之運用通訊設備之生理訊號感測方法,其中該誤差向量振幅演算法包含:該運算單元將該同相解調訊號及該正交解調訊號映射至星座圖以得到一理想向量及一誤差向量;以及該運算單元根據該理想向量及誤差向量計算一相位變化量訊號。
- 如請求項2之運用通訊設備之生理訊號感測方法,其中該運算單元對該相位變化量訊號進行頻譜分析以得到該生理訊號。
- 如請求項1之運用通訊設備之生理訊號感測方法,其中該發射器發射之該發射訊號為搭載有通訊資訊之無線訊號。
- 一種運用通訊設備之生理訊號感測系統,其包含: 一發射器,用以發射一發射訊號至一生物體,該生物體反射一反射訊號; 一接收器,具有一接收天線及一IQ解調單元,該接收天線接收該反射訊號為一接收訊號,該IQ解調單元耦接該接收天線以接收該接收訊號,該IQ解調單元用以對該接收訊號進行解調而得到一同相解調訊號及一正交解調訊號;以及 一運算單元,耦接該接收器以接收該同相解調訊號及該正交解調訊號,該運算單元用以對該同相解調訊號及該正交解調訊號進行一誤差向量振幅演算法(Error vector magnitude algorithm)而得到該生物體之一生理訊號。
- 如請求項7之運用通訊設備之生理訊號感測系統,其中該發射器及該接收器可設置於同一通訊設備或不同通訊設備。
- 如請求項7之運用通訊設備之生理訊號感測系統,其包含有複數個該發射器、複數個該接收器、複數個運算單元及一訊號處理器,各該運算單元電性連接各該接收器以接收各該接收器輸出之該同相解調訊號及該正交解調訊號,且各該運算單元對各該同相解調訊號及各該正交解調訊號進行一誤差向量振幅演算法(Error vector magnitude algorithm)而得到該生物體之一生理訊號,該訊號處理器電性連接該些運算單元以接收該些生理訊號,該訊號處理器根據該些生理訊號判斷該生物體所在之一方位。
- 如請求項7之運用通訊設備之生理訊號感測系統,其中該發射器發射之該發射訊號為搭載有通訊資訊之無線訊號。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109107018A TWI721806B (zh) | 2020-03-04 | 2020-03-04 | 運用通訊設備之生理訊號感測方法及感測系統 |
US16/850,162 US20210275105A1 (en) | 2020-03-04 | 2020-04-16 | Vital sign sensing method and system using a communication device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109107018A TWI721806B (zh) | 2020-03-04 | 2020-03-04 | 運用通訊設備之生理訊號感測方法及感測系統 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI721806B true TWI721806B (zh) | 2021-03-11 |
TW202133795A TW202133795A (zh) | 2021-09-16 |
Family
ID=76036005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109107018A TWI721806B (zh) | 2020-03-04 | 2020-03-04 | 運用通訊設備之生理訊號感測方法及感測系統 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20210275105A1 (zh) |
TW (1) | TWI721806B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI822535B (zh) * | 2022-12-28 | 2023-11-11 | 財團法人工業技術研究院 | 生理資訊感測裝置及方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11717181B2 (en) * | 2020-06-11 | 2023-08-08 | Samsung Electronics Co., Ltd. | Adaptive respiratory condition assessment |
TWI795028B (zh) * | 2021-10-13 | 2023-03-01 | 合盈光電科技股份有限公司 | 一種改善心跳及呼吸偵測精度的生理監控系統 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110053637A1 (en) * | 2009-09-03 | 2011-03-03 | Zlatko Aurelio Filipovic | Universal radio card for wireless devices |
CN106464645A (zh) * | 2014-03-28 | 2017-02-22 | 华为技术有限公司 | 发送设备和接收设备及其方法 |
-
2020
- 2020-03-04 TW TW109107018A patent/TWI721806B/zh active
- 2020-04-16 US US16/850,162 patent/US20210275105A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110053637A1 (en) * | 2009-09-03 | 2011-03-03 | Zlatko Aurelio Filipovic | Universal radio card for wireless devices |
CN106464645A (zh) * | 2014-03-28 | 2017-02-22 | 华为技术有限公司 | 发送设备和接收设备及其方法 |
Non-Patent Citations (1)
Title |
---|
Kang-Chun Peng, Jen-Hao Lee, "A Novel Active/Passive Dual-Mode Sensing Technique for Detecting Vital Signs", IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 68, NO. 1, JANUARY 2020, pages 414-424. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI822535B (zh) * | 2022-12-28 | 2023-11-11 | 財團法人工業技術研究院 | 生理資訊感測裝置及方法 |
Also Published As
Publication number | Publication date |
---|---|
TW202133795A (zh) | 2021-09-16 |
US20210275105A1 (en) | 2021-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI721806B (zh) | 運用通訊設備之生理訊號感測方法及感測系統 | |
US9846226B2 (en) | Motion detection device | |
Jiokeng et al. | When FTM discovered MUSIC: Accurate WiFi-based ranging in the presence of multipath | |
US10708970B2 (en) | BLE networking systems and methods providing central and peripheral role reversal with enhanced peripheral location determination using constant tone extension analysis for a same channel | |
JP2007533976A (ja) | 非接触リーダライタ | |
Li et al. | Towards physical-layer vibration sensing with rfids | |
TW201301790A (zh) | 無線位置偵測及/或追蹤裝置及相關方法 | |
US11867827B2 (en) | Radar sensing | |
JP7212217B2 (ja) | レーダーシステムにおけるノイズ測定 | |
TWI675218B (zh) | 可抵抗雜波之生理徵象感測器 | |
CN107769851A (zh) | 一种基于混合ofdm的led定位方法与系统 | |
Park et al. | Multiphase continuous-wave Doppler radar with multiarc circle fitting algorithm for small periodic displacement measurement | |
JP2008122255A (ja) | 距離測定装置 | |
TWI682649B (zh) | 具正交混波器之訊號解調裝置及其解調方法 | |
US20110292982A1 (en) | Method of Using Average Phase Difference to Measure a Distance and Apparatus for the Same | |
Zhou et al. | Amp-Phi: A CSI-based indoor positioning system | |
CN107942288A (zh) | 一种结合ofdm的led定位方法及系统 | |
CN114646956B (zh) | 使用无线网络信号的生命征象雷达感测器 | |
Liao et al. | UE Assisted Ambient IoT in LTE Downlink, in real-time and open source | |
Löffler et al. | A multi-purpose RFID reader supporting indoor navigation systems | |
Ens et al. | Robust multi-carrier frame synchronization for localization systems with ultrasound | |
CN114325668A (zh) | 谐振频率校正装置、倒车雷达报警系统及测距系统 | |
JP2011145196A (ja) | 距離測定装置 | |
WO2023125041A1 (zh) | 区域定位方法、测距装置和电子设备 | |
TWI723574B (zh) | 手勢辨識系統及手勢辨識方法 |