TWI721686B - Fingerprint identification module and optical imaging lens - Google Patents

Fingerprint identification module and optical imaging lens Download PDF

Info

Publication number
TWI721686B
TWI721686B TW108144602A TW108144602A TWI721686B TW I721686 B TWI721686 B TW I721686B TW 108144602 A TW108144602 A TW 108144602A TW 108144602 A TW108144602 A TW 108144602A TW I721686 B TWI721686 B TW I721686B
Authority
TW
Taiwan
Prior art keywords
lens
optical imaging
imaging lens
following conditional
optical
Prior art date
Application number
TW108144602A
Other languages
Chinese (zh)
Other versions
TW202122854A (en
Inventor
賴正益
Original Assignee
聲遠精密光學股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聲遠精密光學股份有限公司 filed Critical 聲遠精密光學股份有限公司
Priority to TW108144602A priority Critical patent/TWI721686B/en
Priority to CN201911300565.0A priority patent/CN112925084A/en
Application granted granted Critical
Publication of TWI721686B publication Critical patent/TWI721686B/en
Publication of TW202122854A publication Critical patent/TW202122854A/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0035Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1324Sensors therefor by using geometrical optics, e.g. using prisms

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Lenses (AREA)

Abstract

An optical imaging lens including a first to a third lens elements arranged in a sequence from an object side to an image side along an optical axis is provided. The refractive power of the first to the third lens elements are negative, positive and positive. An image-side surface of the first lens element is concave surface. An object-side surface of the second lens element is convex surface. An image-side surface of the third lens element is convex surface. Furthermore, a fingerprint identification module is also provided.

Description

指紋辨識模組及光學成像鏡頭Fingerprint recognition module and optical imaging lens

本發明是有關於一種光學成像鏡頭及光學功能模組,且特別是有關於一種光學成像鏡頭及指紋辨識模組。 The present invention relates to an optical imaging lens and an optical function module, and particularly relates to an optical imaging lens and a fingerprint recognition module.

因應電子產品迅速發展,微距鏡頭的應用也開始出現,其應用領域諸如為指紋辨識或微距拍攝等領域,但都希望設計的輕薄短小。但是,在現階段的微距鏡頭中通常具有較長的鏡頭長度(Total Track Length,TTL),不利於鏡頭的薄型化。有鑑於上述之問題,如何設計一種具有成像品質良好、較短的鏡頭長度並且具有微距鏡頭一直是本領域的技術人員努力的方向 In response to the rapid development of electronic products, the application of macro lenses has also begun to appear. Its application areas are such as fingerprint recognition or macro shooting, but it is hoped that the design is thin and short. However, the current macro lens usually has a longer lens length (Total Track Length, TTL), which is not conducive to the thinning of the lens. In view of the above-mentioned problems, how to design a lens with good imaging quality, a short lens length and a macro lens has always been the direction for those skilled in the art.

本發明提供一種光學成像鏡頭及指紋辨識模組,其能夠在體積小的情況下兼具有良好的光學品質。 The invention provides an optical imaging lens and a fingerprint recognition module, which can have good optical quality in a small volume.

在本發明的實施例中提供一種光學成像鏡頭,從物側至像側沿一光軸依序包括第一透鏡、第二透鏡及第三透鏡。第一透 鏡至第三透鏡各自包括一朝向物側且使成像光線通過的物側面及一朝向像側且使成像光線通過的像側面,且具有屈光度的透鏡只有上述三片透鏡。第一透鏡具有負屈光度,且第一透鏡的像側面為凹面。第二透鏡,具有正屈光度,且第二透鏡的物側面為凸面。第三透鏡,具有正屈光度,且第三透鏡的像側面為凸面。 In an embodiment of the present invention, an optical imaging lens is provided, which includes a first lens, a second lens, and a third lens in sequence along an optical axis from the object side to the image side. First pass The mirror to the third lens each include an object side surface facing the object side and passing imaging light rays, and an image side surface facing the image side and passing imaging light rays, and the lenses with diopter only have the above three lenses. The first lens has a negative refractive power, and the image side surface of the first lens is concave. The second lens has a positive refractive power, and the object side surface of the second lens is convex. The third lens has a positive refractive power, and the image side surface of the third lens is convex.

在本發明的實施例中提供一種指紋辨識模組,包括蓋板、上述的光學成像鏡頭及影像感測器。光學成像鏡頭設置於蓋板的光路下游。影像感測器設置於光學成像鏡頭的光路下游。 In an embodiment of the present invention, a fingerprint recognition module is provided, which includes a cover plate, the above-mentioned optical imaging lens, and an image sensor. The optical imaging lens is arranged downstream of the optical path of the cover plate. The image sensor is arranged downstream of the optical path of the optical imaging lens.

在本發明的一實施例中,上述的光學成像鏡頭更包括一光圈,設置於第二透鏡與第三透鏡之間。 In an embodiment of the present invention, the above-mentioned optical imaging lens further includes an aperture, which is disposed between the second lens and the third lens.

在本發明的一實施例中,上述的光學成像鏡頭更滿足以下的條件式:(R1+R2)/(R1-R2)<2,其中R1為第一透鏡的物側面的曲率半徑,且R2為第一透鏡的像側面的曲率半徑。 In an embodiment of the present invention, the above-mentioned optical imaging lens further satisfies the following conditional formula: (R1+R2)/(R1-R2)<2, where R1 is the curvature radius of the object side surface of the first lens, and R2 Is the curvature radius of the image side surface of the first lens.

在本發明的一實施例中,上述的光學成像鏡頭更滿足以下的條件式:(ET1-CT1)/(ET1+CT1)>0,其中ET1為通過第一透鏡的兩邊緣且與光軸方向平行的一厚度,且CT1代表為通過第一透鏡的中心且在光軸平行的一厚度。 In an embodiment of the present invention, the above-mentioned optical imaging lens further satisfies the following conditional formula: (ET1-CT1)/(ET1+CT1)>0, where ET1 is passed through the two edges of the first lens and is in line with the optical axis. A thickness that is parallel, and CT1 represents a thickness that passes through the center of the first lens and is parallel to the optical axis.

在本發明的一實施例中,上述的光學成像鏡頭更滿足以下的條件式:1.86>(n1+n2+n3)/(n1*n2*n3)>0.85,其中n1為第一透鏡的折射率,n2為第二透鏡的折射率,且n3為第三透鏡的折射率。 In an embodiment of the present invention, the above-mentioned optical imaging lens further satisfies the following conditional formula: 1.86>(n1+n2+n3)/(n1*n2*n3)>0.85, where n1 is the refractive index of the first lens , N2 is the refractive index of the second lens, and n3 is the refractive index of the third lens.

在本發明的一實施例中,上述的光學成像鏡頭更滿足以 下的條件式:2.74≧tan(HFOV)≧0.92,其中HFOV為光學成像鏡頭的半視場角。 In an embodiment of the present invention, the above-mentioned optical imaging lens is more satisfied with The following conditional formula: 2.74≧tan(HFOV)≧0.92, where HFOV is the half angle of view of the optical imaging lens.

在本發明的一實施例中,上述的光學成像鏡頭更滿足以下的條件式:5≧TTL/ImgH≧1,其中TTL代表為第一透鏡的物側面至一成像面在光軸上的一距離,ImgH為光學成像鏡頭的像高。 In an embodiment of the present invention, the above-mentioned optical imaging lens further satisfies the following conditional formula: 5≧TTL/ImgH≧1, where TTL represents a distance from the object side of the first lens to an imaging surface on the optical axis , ImgH is the image height of the optical imaging lens.

在本發明的一實施例中,上述的光學成像鏡頭更滿足以下的條件式:1.9≧|f/f1|≧0.4,其中f代表為光學成像鏡頭的有效焦距,f1代表為第一透鏡的焦距,且|f/f1|代表為f/f1的絕對值。 In an embodiment of the present invention, the above-mentioned optical imaging lens further satisfies the following conditional formula: 1.9≧|f/f1|≧0.4, where f represents the effective focal length of the optical imaging lens, and f1 represents the focal length of the first lens , And |f/f1| represents the absolute value of f/f1.

在本發明的一實施例中,上述的光學成像鏡頭更滿足以下的條件式:1.2≧f/f2≧0.1,其中f代表為光學成像鏡頭的有效焦距,且f2代表為第二透鏡的焦距。 In an embodiment of the present invention, the above-mentioned optical imaging lens further satisfies the following conditional formula: 1.2≧f/f2≧0.1, where f represents the effective focal length of the optical imaging lens, and f2 represents the focal length of the second lens.

在本發明的一實施例中,上述的光學成像鏡頭更滿足以下的條件式:更滿足以下的條件式:1.8≧f/f3≧0.2,其中f代表為光學成像鏡頭的有效焦距,且f3代表為第三透鏡的焦距。 In an embodiment of the present invention, the above-mentioned optical imaging lens further satisfies the following conditional formula: it satisfies the following conditional formula: 1.8≧f/f3≧0.2, where f represents the effective focal length of the optical imaging lens, and f3 represents Is the focal length of the third lens.

基於上述,在本發明實施例的光學成像鏡頭及指紋辨識模組中,其藉由滿足上述第一至第三透鏡的屈光率組合及面形設計,藉此在能夠在體積小的情況下兼具有良好的光學品質。 Based on the above, in the optical imaging lens and fingerprint recognition module of the embodiment of the present invention, by satisfying the refractive index combination and surface design of the first to third lenses, it can be used in a small volume. It also has good optical quality.

0:光圈 0: aperture

1:第一透鏡 1: the first lens

2:第二透鏡 2: second lens

3:第三透鏡 3: The third lens

211、11、21、31、221:物側面 211, 11, 21, 31, 221: Object side

212、12、22、32、222:像側面 212, 12, 22, 32, 222: like side

100:光學成像鏡頭 100: Optical imaging lens

200:指紋辨識模組 200: Fingerprint recognition module

210:蓋板 210: cover

220:濾光片 220: filter

230:影像感測器 230: image sensor

C:第一透鏡的中心 C: The center of the first lens

CT1:中心厚度 CT1: Center thickness

E1、E2:邊 E1, E2: Edge

ET1:邊緣厚度 ET1: Edge thickness

IP:成像面 IP: imaging surface

I:光軸 I: Optical axis

IS:像側 IS: image side

OS:物側 OS: Object side

圖1是本發明的第一實施例的指紋辨識模組的示意圖。 FIG. 1 is a schematic diagram of the fingerprint recognition module according to the first embodiment of the present invention.

圖2A至圖2C是第一實施例的各項像差圖。 2A to 2C are various aberration diagrams of the first embodiment.

圖3是本發明的第二實施例的指紋辨識模組的示意圖。 Fig. 3 is a schematic diagram of a fingerprint recognition module according to a second embodiment of the present invention.

圖4A至圖4C是第二實施例的各項像差圖。 4A to 4C are various aberration diagrams of the second embodiment.

圖5是本發明的第三實施例的指紋辨識模組的示意圖。 Fig. 5 is a schematic diagram of a fingerprint recognition module according to a third embodiment of the present invention.

圖6A至圖6C是第三實施例的各項像差圖。 6A to 6C are various aberration diagrams of the third embodiment.

圖7是本發明的第四實施例的指紋辨識模組的示意圖。 FIG. 7 is a schematic diagram of a fingerprint recognition module according to a fourth embodiment of the present invention.

圖8A至圖8C是第四實施例的各項像差圖。 8A to 8C are various aberration diagrams of the fourth example.

圖9是本發明的第五實施例的指紋辨識模組的示意圖。 FIG. 9 is a schematic diagram of a fingerprint recognition module according to a fifth embodiment of the present invention.

圖10A至圖10C是第五實施例的各項像差圖。 10A to 10C are various aberration diagrams of the fifth example.

在本說明書中,「透鏡具有正屈光力(或負屈光力)」是指所述透鏡以高斯光學理論計算出來之光軸上的屈光力為正(或為負)。在光學成像鏡頭中,每一透鏡以光軸為對稱軸徑向地相互對稱。每一透鏡具有物側面及相對於物側面的像側面。物側面及像側面定義為透鏡被成像光線通過的表面,其中成像光線包括了主光線(chief ray)及邊緣光線(marginal ray)。物側面(或像側面)具有光軸附近區域以及連接且環繞光軸附近區域的圓周附近區域。光軸附近區域為成像光線通過光軸上的區域。圓周附近區域為被邊緣光線通過的區域。 In this specification, "the lens has positive refractive power (or negative refractive power)" means that the refractive power on the optical axis of the lens calculated by the Gaussian optics theory is positive (or negative). In the optical imaging lens, each lens is radially symmetrical to each other with the optical axis as the symmetry axis. Each lens has an object side and an image side opposite to the object side. The object side and the image side are defined as the surface through which the imaging light passes through the lens. The imaging light includes chief ray and marginal ray. The object side (or image side) has an area near the optical axis and an area near the circumference connected to and surrounding the area near the optical axis. The area near the optical axis is the area where the imaging light passes through the optical axis. The area near the circumference is the area passed by the edge rays.

「透鏡的一表面(物側面或像側面)在光軸附近區域(或圓周附近區域)為凸面或凹面」可以是以平行通過該區域的光線(或光線延伸線)與光軸的交點在像側或物側來決定(光線焦點判定 方式)。舉例言之,當光線通過該區域後,光線會朝像側聚焦,與光軸的焦點會位在像側,則該區域為凸面部。反之,若光線通過該某區域後,光線會發散,其延伸線與光軸的焦點在物側。所述表面在光軸附近區域的面形判斷可以依據本領域中的技術人員的判斷方式,也就是以R值(指近軸的曲率半徑)的正負來判斷凹凸。以物側面來說,當R值為正時,判定物側面在光軸附近區域為凸面;當R值為負時,判定物側面在光軸附近區域為凹面。以像側面來說,當R值為正時,判定像側面在光軸附近區域為凹面;當R值為負時,判定像側面在光軸附近區域為凸面。 ``A lens surface (object side or image side) in the area near the optical axis (or area near the circumference) is convex or concave'' can be the intersection of the light (or light extension line) passing through the area in parallel with the optical axis in the image Side or object side to decide (light focus judgment the way). For example, when the light passes through this area, the light will focus toward the image side, and the focal point with the optical axis will be on the image side, and the area is a convex surface. On the contrary, if the light passes through the certain area, the light will diverge, and the focal point of the extension line and the optical axis is on the object side. The surface shape of the surface near the optical axis can be judged according to the judgment method of those skilled in the art, that is, the positive or negative R value (referring to the radius of curvature of the paraxial) is used to judge the unevenness. For the object side surface, when the R value is positive, the object side surface is determined to be convex in the area near the optical axis; when the R value is negative, the object side surface is determined to be concave in the area near the optical axis. For the image side surface, when the R value is positive, it is determined that the area near the optical axis of the image side surface is concave; when the R value is negative, it is determined that the area near the optical axis of the image side surface is convex.

圖1是本發明第一實施例的指紋辨識模組的示意圖。圖2A至圖2C是第一實施例的各項像差圖。 FIG. 1 is a schematic diagram of a fingerprint recognition module according to a first embodiment of the present invention. 2A to 2C are various aberration diagrams of the first embodiment.

請參照圖1,在本第一實施例中,指紋辨識模組200包括從物側OS至像側IS沿光軸I依序設置的蓋板210、光學成像鏡頭100、紅外線濾除濾光片220及影像感測器230。換言之,光學成像鏡頭100設置於蓋板210的光路下游,影像感測器230設置於光學成像鏡頭100的光路下游。光學成像鏡頭100從物側OS至像側IS沿光軸I依序包括第一透鏡1、第二透鏡2、光圈0及第三透鏡3。當由一待拍攝物(例如是手指,未示出)所發出的光線進入指紋辨識模組200後,並依序經由蓋板210、第一透鏡1、第二透鏡2、光圈0、第三透鏡3及紅外線濾除濾光片220之後,會在一成像面IP(Image Plane)形成一影像,其中成像面IP例如是影像感測器230的表面。紅外線濾除濾光片220設置於第三透鏡3與成 像面IP之間。補充說明的是,物側OS是朝向待拍攝物的一側,而像側IS是朝向成像面IP的一側。光學成像鏡頭100例如是用於指紋辨識模組,但於其他實施例中亦可使用於相機或望遠鏡頭等不同的光學鏡頭模組,本發明並不以此為限。於以下段落中會詳細說明上述各元件。 1, in the first embodiment, the fingerprint recognition module 200 includes a cover 210, an optical imaging lens 100, and an infrared filter which are sequentially arranged from the object side OS to the image side IS along the optical axis I 220 and image sensor 230. In other words, the optical imaging lens 100 is disposed downstream of the optical path of the cover 210, and the image sensor 230 is disposed downstream of the optical path of the optical imaging lens 100. The optical imaging lens 100 includes a first lens 1, a second lens 2, an aperture 0, and a third lens 3 in order from the object side OS to the image side IS along the optical axis I. When the light emitted by an object to be photographed (for example, a finger, not shown) enters the fingerprint recognition module 200, it sequentially passes through the cover 210, the first lens 1, the second lens 2, the aperture 0, and the third lens. After the lens 3 and the infrared filter 220, an image is formed on an imaging plane IP (Image Plane), where the imaging plane IP is, for example, the surface of the image sensor 230. The infrared filter 220 is arranged on the third lens 3 and Between the image surface IP. It is supplemented that the object side OS is the side facing the object to be photographed, and the image side IS is the side facing the imaging surface IP. The optical imaging lens 100 is, for example, used in a fingerprint recognition module, but in other embodiments, it can also be used in different optical lens modules such as a camera or a telescope lens, and the present invention is not limited to this. The above components will be explained in detail in the following paragraphs.

蓋板210可包括指壓板、顯示面板、觸控顯示面板或上述至少兩個的組合,其例如是作為指紋按壓區域,供使用者按壓。 The cover 210 may include a finger pressure pad, a display panel, a touch display panel, or a combination of at least two of the above, which, for example, serves as a fingerprint pressing area for the user to press.

在本實施例中,蓋板210、光學成像鏡頭100的第一透鏡1至第三透鏡3及紅外線濾除濾光片220都各自具有一朝向物側且使成像光線通過之物側面211、11、21、31、221及一朝向像側且使成像光線通過之像側面212、12、22、32、222。即,物側面211、11、21、31、221、像側面212、12、22、32、222是被定義為成像光線通過的範圍 In this embodiment, the cover 210, the first lens 1 to the third lens 3 of the optical imaging lens 100, and the infrared filter 220 each have an object side surface 211, 11 that faces the object side and allows imaging light to pass through. , 21, 31, 221 and an image side surface 212, 12, 22, 32, 222 that faces the image side and allows imaging light to pass through. That is, the object side 211, 11, 21, 31, 221, and the image side 212, 12, 22, 32, 222 are defined as the range through which the imaging light passes.

第一透鏡1具有負屈光率。第一透鏡1的物側面11為凸面,且其像側面12為凹面。在本實施例中,第一透鏡3的物側面11與像側面12皆為非球面(aspheric surface)。 The first lens 1 has a negative refractive power. The object side surface 11 of the first lens 1 is a convex surface, and the image side surface 12 is a concave surface. In this embodiment, both the object side surface 11 and the image side surface 12 of the first lens 3 are aspheric surfaces.

第二透鏡2具有正屈光率。第二透鏡2的物側面21為凸面,且其像側面22為凹面。在本實施例中,第二透鏡2的物側面21與像側面22皆為非球面。 The second lens 2 has positive refractive power. The object side surface 21 of the second lens 2 is a convex surface, and the image side surface 22 is a concave surface. In this embodiment, both the object side surface 21 and the image side surface 22 of the second lens 2 are aspherical surfaces.

第三透鏡3具有正屈光率。第三透鏡3的物側面31為凸面,且其像側面32為凸面。在本實施例中,第三透鏡3的物側面31與像側面32皆為非球面。 The third lens 3 has positive refractive power. The object side surface 31 of the third lens 3 is a convex surface, and the image side surface 32 thereof is a convex surface. In this embodiment, both the object side surface 31 and the image side surface 32 of the third lens 3 are aspherical.

在本實施例的光學成像鏡頭100中,具有屈光率的透鏡只有上述三片。並且,於本實施例中,第一透鏡1至第三透鏡3可由塑膠材質製成,以滿足輕量化的需求,但不以此為限制。於另一例中,第一透鏡1至第三透鏡3可由玻璃材質製成。再一例中,第一透鏡1至第三透鏡3中的至少一者可由玻璃材質製成,而其餘的透鏡則由塑膠材質製成。 In the optical imaging lens 100 of this embodiment, there are only the above three lenses with refractive power. Moreover, in this embodiment, the first lens 1 to the third lens 3 can be made of plastic material to meet the requirements of light weight, but it is not limited thereto. In another example, the first lens 1 to the third lens 3 may be made of glass material. In another example, at least one of the first lens 1 to the third lens 3 may be made of glass material, and the remaining lenses are made of plastic material.

影像感測器230用以接收來自光學成像鏡頭100的成像光線,其例如是電荷藕合器件(Charge-Coupled Device,CCD)或者是互補式金屬氧化物半導體(Complementary Metal-Oxide-Semiconductor,CMOS,本發明並不以此為限。當影像感測器230接收來自光學成像鏡頭100的成像光線後,會將其轉換成電訊號,以供後端的處理器(未示出)進行運算,以辨識使用者的指紋。 The image sensor 230 is used to receive the imaging light from the optical imaging lens 100, which is, for example, a charge-coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS, The present invention is not limited to this. When the image sensor 230 receives the imaging light from the optical imaging lens 100, it converts it into an electrical signal for a back-end processor (not shown) to perform calculations for identification The user's fingerprint.

第一實施例的光學成像鏡頭100的其他詳細光學數據如表一所示。在表一中,第一透鏡1的物側面11所對應的間距(mm)為0.200代表第一透鏡1的物側面11到第一透鏡1的像側面12在光軸I上的距離(即為第一透鏡1在光軸I上的厚度)為0.200mm。第一透鏡1的像側面12所對應的間距為0.211代表第一透鏡1的像側面12到第二透鏡2的物側面21在光軸I上的距離為0.211mm。間距(mm)的其它欄位可依此類推,下文便不再重述。 Other detailed optical data of the optical imaging lens 100 of the first embodiment are shown in Table 1. In Table 1, the distance (mm) corresponding to the object side 11 of the first lens 1 is 0.200, which represents the distance from the object side 11 of the first lens 1 to the image side 12 of the first lens 1 on the optical axis I (that is, The thickness of the first lens 1 on the optical axis I) is 0.200 mm. The distance corresponding to the image side surface 12 of the first lens 1 is 0.211, which means that the distance from the image side surface 12 of the first lens 1 to the object side surface 21 of the second lens 2 on the optical axis I is 0.211 mm. The other fields of the spacing (mm) can be deduced by analogy, and will not be repeated below.

Figure 108144602-A0305-02-0010-1
Figure 108144602-A0305-02-0010-1

在本實施例中,第一透鏡1至第三透鏡3的物側面11、21、31及像側面12、22、32共計六個面均是偶次非球面,而這些非球面是依公式(1)定義:

Figure 108144602-A0305-02-0010-2
In this embodiment, the object side surfaces 11, 21, 31 and the image side surfaces 12, 22, 32 of the first lens 1 to the third lens 3 are all even-order aspheric surfaces, and these aspheric surfaces are based on the formula ( 1) Definition:
Figure 108144602-A0305-02-0010-2

在公式(1)中,Y為非球面曲線上的點與光軸I的距離。Z為非球面之深度。R為透鏡表面近光軸I處的曲率半徑。K為錐面係數(conic constant)。 A 2i 為第2i階非球面係數, 第一透鏡1的物側面11到第三透鏡3的像側面32在公式(1)中的各項非球面係數如表二所示。其中,表二中欄位編號11表示其為第一透鏡1的物側面11的非球面係數,其它欄位可依此類推。其中A2皆為0故省略。 In formula (1), Y is the distance between the point on the aspherical curve and the optical axis I. Z is the depth of the aspheric surface. R is the radius of curvature of the lens surface near the optical axis I. K is the conic constant. A 2 i is the 2i-th order aspheric coefficient. The aspheric coefficients of the object side surface 11 of the first lens 1 to the image side surface 32 of the third lens 3 in formula (1) are shown in Table 2. Among them, the column number 11 in Table 2 indicates that it is the aspheric coefficient of the object side surface 11 of the first lens 1, and the other columns can be deduced by analogy. Among them, A 2 is all 0 so it is omitted.

Figure 108144602-A0305-02-0011-3
Figure 108144602-A0305-02-0011-3

第一實施例之光學成像鏡頭100中各重要參數間的關係如下表三所示。 The relationship among the important parameters in the optical imaging lens 100 of the first embodiment is shown in Table 3 below.

其中,EFL為光學成像鏡頭100的系統焦距;ET1為通過第一透鏡1的兩邊緣E1、E2且與光軸I平行的一厚度(或稱邊緣厚度);CT1代表為通過第一透鏡1的中心C且在光軸I上的一厚度(或稱中心厚度);HFOV為光學成像鏡頭100的半視場角(Half angle of view);Fno為光學成像鏡頭100的光圈值; R1為第一透鏡1的物側面11的曲率半徑;R2為第一透鏡1的像側面12的曲率半徑;TTL(鏡頭總長)為第一透鏡1的物側面11到成像面IP在光軸I上的距離;另外,再定義:f1為第一透鏡1的焦距;f2為第二透鏡2的焦距;f3為第三透鏡3的焦距;|f/f1|為f/f1的絕對值;n1為第一透鏡1的折射率;n2為第二透鏡2的折射率;及n3為第三透鏡3的折射率。 Among them, EFL is the system focal length of the optical imaging lens 100; ET1 is a thickness (or edge thickness) that passes through the two edges E1 and E2 of the first lens 1 and is parallel to the optical axis I; CT1 represents the thickness that passes through the first lens 1. The center C and a thickness on the optical axis I (or center thickness); HFOV is the half angle of view of the optical imaging lens 100; Fno is the aperture value of the optical imaging lens 100; R1 is the radius of curvature of the object side surface 11 of the first lens 1; R2 is the radius of curvature of the image side surface 12 of the first lens 1; TTL (total length of the lens) is the object side surface 11 of the first lens 1 to the imaging surface IP on the optical axis I In addition, redefine: f1 is the focal length of the first lens 1; f2 is the focal length of the second lens 2; f3 is the focal length of the third lens 3; |f/f1| is the absolute value of f/f1; n1 Is the refractive index of the first lens 1; n2 is the refractive index of the second lens 2; and n3 is the refractive index of the third lens 3.

Figure 108144602-A0305-02-0012-4
Figure 108144602-A0305-02-0012-4
Figure 108144602-A0305-02-0013-5
Figure 108144602-A0305-02-0013-5

再配合參閱圖2A至圖2C,圖2A與圖2B的圖式則分別說明第一實施例當其波長為430奈米、450奈米、530奈米、500奈米、550奈米時在成像面100上有關弧矢(Sagittal)方向的場曲(Field Curvature)像差及子午(Tangential)方向的場曲像差,圖2C的圖式則說明第一實施例當其波長為430奈米、450奈米、500奈米、530奈米、580奈米時在成像面IP上的畸變像差(Distortion Aberration)。 Also refer to Figures 2A to 2C. The diagrams of Figures 2A and 2B respectively illustrate the imaging of the first embodiment when the wavelength is 430nm, 450nm, 530nm, 500nm, 550nm. On the plane 100, the field curvature aberration in the Sagittal direction and the field curvature aberration in the Tangential direction are related to the field curvature aberration of the tangential direction. The diagram in FIG. 2C illustrates the first embodiment when the wavelength is 430 nm, Distortion Aberration on the imaging surface IP at 450nm, 500nm, 530nm, and 580nm.

在圖2A與圖2B的二個場曲像差圖示中,三種代表波長在整個視場範圍內的焦距變化量落在±0.14毫米內。而圖2C的畸變像差圖式則顯示本第一實施例的畸變像差維持在±0.8%的範圍內。據此可知,本第一實施例的光學成像鏡頭100在鏡頭全長已縮短至2.40毫米左右的條件下,可具有良好的光學成像品質。 In the two field curvature aberration diagrams in FIGS. 2A and 2B, the focal length variation of the three representative wavelengths within the entire field of view falls within ±0.14 mm. The distortion aberration diagram in FIG. 2C shows that the distortion aberration of the first embodiment is maintained within the range of ±0.8%. It can be seen from this that the optical imaging lens 100 of the first embodiment can have good optical imaging quality under the condition that the total length of the lens has been shortened to about 2.40 mm.

圖3為本發明的第二實施例的一種指紋辨識模組的示意圖。圖4A至圖4C為第二實施例的各項像差圖。請先參照圖3,本發明指紋辨識模組200的一第二實施例,其與第一實施例大致相似,而兩者的差異如下所述:各光學數據、非球面係數及這些透鏡1、2、3的參數或多或少有些不同。 FIG. 3 is a schematic diagram of a fingerprint recognition module according to the second embodiment of the present invention. 4A to 4C are various aberration diagrams of the second embodiment. Please refer to FIG. 3 first. A second embodiment of the fingerprint recognition module 200 of the present invention is roughly similar to the first embodiment, and the differences between the two are as follows: optical data, aspheric coefficients, and these lenses 1, The parameters of 2 and 3 are more or less different.

第二實施例的其他的詳細光學數據如下方表四所示。第二實施例的第一透鏡1的物側面11到第五透鏡5的像側面52在 公式(1)中的各項非球面係數如表五所示:

Figure 108144602-A0305-02-0014-6
Other detailed optical data of the second embodiment are shown in Table 4 below. In the second embodiment, the aspheric coefficients of the object side surface 11 of the first lens 1 to the image side surface 52 of the fifth lens 5 in formula (1) are shown in Table 5:
Figure 108144602-A0305-02-0014-6

Figure 108144602-A0305-02-0014-8
Figure 108144602-A0305-02-0014-8
Figure 108144602-A0305-02-0015-9
Figure 108144602-A0305-02-0015-9

第二實施例的光學成像鏡頭10中各重要參數間的關係如表六所示。 The relationship among the important parameters in the optical imaging lens 10 of the second embodiment is shown in Table 6.

Figure 108144602-A0305-02-0015-10
Figure 108144602-A0305-02-0015-10

在圖4A與圖4B的二個場曲像差圖示中,三種代表波長在整個視場範圍內的焦距變化量落在±0.12毫米內。而圖4C的畸變像差圖式則顯示本第二實施例的畸變像差維持在±1.4%的範圍內。據此可知,本第二實施例的光學成像鏡頭100在鏡頭全長已 縮短至2.03毫米左右的條件下,可具有良好的光學成像品質。 In the two field curvature aberration diagrams in FIGS. 4A and 4B, the focal length variation of the three representative wavelengths within the entire field of view falls within ±0.12 mm. The distortion aberration diagram in FIG. 4C shows that the distortion aberration of the second embodiment is maintained within a range of ±1.4%. Based on this, it can be seen that the optical imaging lens 100 of the second embodiment has Under the condition of shortening to about 2.03 mm, it can have good optical imaging quality.

圖5為本發明的第三實施例的一種指紋辨識模組的示意圖。圖6A至圖6C為第三實施例的各項像差圖。請先參照圖3,本發明指紋辨識模組200的一第三實施例,其與第一實施例大致相似,而兩者的差異如下所述:各光學數據、非球面係數及這些透鏡1、2、3的參數或多或少有些不同。 FIG. 5 is a schematic diagram of a fingerprint recognition module according to the third embodiment of the present invention. 6A to 6C are various aberration diagrams of the third embodiment. Please refer to FIG. 3 first, a third embodiment of the fingerprint recognition module 200 of the present invention is roughly similar to the first embodiment, and the differences between the two are as follows: optical data, aspheric coefficients, and these lenses 1, The parameters of 2 and 3 are more or less different.

第三實施例的其他的詳細光學數據如下方表七所示。第三實施例的第一透鏡1的物側面11到第五透鏡5的像側面52在公式(1)中的各項非球面係數如表八所示:

Figure 108144602-A0305-02-0016-11
Figure 108144602-A0305-02-0017-12
Other detailed optical data of the third embodiment are shown in Table 7 below. In the third embodiment, the aspheric coefficients of the object side surface 11 of the first lens 1 to the image side surface 52 of the fifth lens 5 in formula (1) are shown in Table 8:
Figure 108144602-A0305-02-0016-11
Figure 108144602-A0305-02-0017-12

Figure 108144602-A0305-02-0017-13
Figure 108144602-A0305-02-0017-13

第三實施例的光學成像鏡頭100中各重要參數間的關係如表九所示。 The relationship among the important parameters in the optical imaging lens 100 of the third embodiment is shown in Table 9.

Figure 108144602-A0305-02-0017-14
Figure 108144602-A0305-02-0017-14
Figure 108144602-A0305-02-0018-15
Figure 108144602-A0305-02-0018-15

在圖6A與圖6B的二個場曲像差圖示中,三種代表波長在整個視場範圍內的焦距變化量落在±0.14毫米內。而圖6C的畸變像差圖式則顯示本第三實施例的畸變像差維持在±1.8%的範圍內。據此可知,本第三實施例的光學成像鏡頭100在鏡頭全長已縮短至2.21毫米左右的條件下,可具有良好的光學成像品質。 In the two field curvature aberration diagrams in FIGS. 6A and 6B, the focal length variation of the three representative wavelengths within the entire field of view falls within ±0.14 mm. The distortion aberration diagram in FIG. 6C shows that the distortion aberration of the third embodiment is maintained within the range of ±1.8%. Based on this, it can be seen that the optical imaging lens 100 of the third embodiment can have good optical imaging quality under the condition that the total length of the lens has been shortened to about 2.21 mm.

圖7為本發明的第二實施例的一種指紋辨識模組的示意圖。圖8A至圖8C為第四實施例的各項像差圖。請先參照圖3,本發明指紋辨識模組200的一第四實施例,其與第一實施例大致相似,而兩者的差異如下所述:各光學數據、非球面係數及這些透鏡1、2、3的參數或多或少有些不同。 FIG. 7 is a schematic diagram of a fingerprint recognition module according to the second embodiment of the present invention. 8A to 8C are various aberration diagrams of the fourth embodiment. Please refer to FIG. 3 first. A fourth embodiment of the fingerprint recognition module 200 of the present invention is roughly similar to the first embodiment, and the differences between the two are as follows: optical data, aspheric coefficients, and these lenses 1, The parameters of 2 and 3 are more or less different.

第四實施例的其他的詳細光學數據如下方表十所示。第四實施例的第一透鏡1的物側面11到第五透鏡5的像側面52在公式(1)中的各項非球面係數如表十一所示:

Figure 108144602-A0305-02-0018-16
Figure 108144602-A0305-02-0019-17
Other detailed optical data of the fourth embodiment are shown in Table 10 below. In the fourth embodiment, the aspheric coefficients of the object side surface 11 of the first lens 1 to the image side surface 52 of the fifth lens 5 in formula (1) are shown in Table 11:
Figure 108144602-A0305-02-0018-16
Figure 108144602-A0305-02-0019-17

Figure 108144602-A0305-02-0019-18
Figure 108144602-A0305-02-0019-18

第四實施例的光學成像鏡頭100中各重要參數間的關係如表十二所示。 The relationship among the important parameters in the optical imaging lens 100 of the fourth embodiment is shown in Table 12.

Figure 108144602-A0305-02-0019-19
Figure 108144602-A0305-02-0019-19
Figure 108144602-A0305-02-0020-20
Figure 108144602-A0305-02-0020-20

在圖8A與圖8B的二個場曲像差圖示中,三種代表波長在整個視場範圍內的焦距變化量落在±0.18毫米內。而圖8C的畸變像差圖式則顯示本第四實施例的畸變像差維持在±1.1%的範圍內。據此可知,本第四實施例的光學成像鏡頭100在鏡頭全長已縮短至2.26毫米左右的條件下,可具有良好的光學成像品質。 In the two field curvature aberration diagrams in FIGS. 8A and 8B, the focal length variation of the three representative wavelengths within the entire field of view falls within ±0.18 mm. The distortion aberration diagram of FIG. 8C shows that the distortion aberration of the fourth embodiment is maintained within the range of ±1.1%. It can be seen from this that the optical imaging lens 100 of the fourth embodiment can have good optical imaging quality under the condition that the total length of the lens has been shortened to about 2.26 mm.

圖9為本發明的第五實施例的一種指紋辨識模組的示意圖。圖10A至圖10C為第五實施例的各項像差圖。請先參照圖9,本發明指紋辨識模組200的一第五實施例,其與第一實施例大致相似,而兩者的差異如下所述:各光學數據、非球面係數及這些透鏡1、2、3的參數或多或少有些不同。 FIG. 9 is a schematic diagram of a fingerprint recognition module according to the fifth embodiment of the present invention. 10A to 10C are various aberration diagrams of the fifth embodiment. Please refer to FIG. 9 first. A fifth embodiment of the fingerprint recognition module 200 of the present invention is roughly similar to the first embodiment, and the differences between the two are as follows: optical data, aspheric coefficients, and these lenses 1, The parameters of 2 and 3 are more or less different.

第五實施例的其他的詳細光學數據如下方表十三所示。 第五實施例的第一透鏡1的物側面11到第五透鏡5的像側面52在公式(1)中的各項非球面係數如表十四所示:

Figure 108144602-A0305-02-0021-21
Other detailed optical data of the fifth embodiment are shown in Table 13 below. In the fifth embodiment, the aspheric coefficients of the object side surface 11 of the first lens 1 to the image side surface 52 of the fifth lens 5 in formula (1) are shown in Table 14:
Figure 108144602-A0305-02-0021-21

Figure 108144602-A0305-02-0021-22
Figure 108144602-A0305-02-0021-22
Figure 108144602-A0305-02-0022-23
Figure 108144602-A0305-02-0022-23

第五實施例的光學成像鏡頭100中各重要參數間的關係如表十五所示。 The relationship among the important parameters in the optical imaging lens 100 of the fifth embodiment is shown in Table 15.

Figure 108144602-A0305-02-0022-24
Figure 108144602-A0305-02-0022-24

在圖10A與圖10B的二個場曲像差圖示中,三種代表波長在整個視場範圍內的焦距變化量落在±0.3毫米內。而圖10C的畸變像差圖式則顯示本第五實施例的畸變像差維持在±4.5%的範 圍內。據此可知,本第五實施例的光學成像鏡頭100在鏡頭全長已縮短至1.85毫米左右的條件下,可具有良好的光學成像品質。 In the two field curvature aberration diagrams in FIGS. 10A and 10B, the focal length variation of the three representative wavelengths within the entire field of view falls within ±0.3 mm. The distortion aberration diagram in FIG. 10C shows that the distortion aberration of the fifth embodiment is maintained in the range of ±4.5%. Inside. Based on this, it can be seen that the optical imaging lens 100 of the fifth embodiment can have good optical imaging quality under the condition that the total length of the lens has been shortened to about 1.85 mm.

應注意的是,在上述的實施例中,第一透鏡1的物側面11為凸面,即其光軸附近區域與圓周附近區域皆為凸面。於其他實施例中,第一透鏡的物側面的光軸附近區域及圓周附近區域亦可分別被設計為以下三種面形組合:1.凸面、凹面;2.凹面、凸面;3.凹面、凹面,本發明並不以第一透鏡的物側面的面形為限。 It should be noted that in the above-mentioned embodiment, the object side surface 11 of the first lens 1 is convex, that is, the area near the optical axis and the area near the circumference are both convex. In other embodiments, the area near the optical axis and the area near the circumference of the object side surface of the first lens can also be designed as the following three combinations of surface shapes: 1. Convex surface, concave surface; 2. Concave surface, convex surface; 3. Concave surface, concave surface The present invention is not limited to the surface shape of the object side surface of the first lens.

在本發明的實施例的光學成像鏡頭100可以獲致下述的功效: 在本發明實施例的光學成像鏡頭100中,藉由將第一至第三透鏡1~3的屈光率依序設計為負、正、正,並搭配以下的面形設計,即第一透鏡1的像側面12為凹面、第二透鏡2的物側面21為凸面、第三透鏡3的像側面32為凸面,藉此在能夠在短的鏡頭總長的情況下兼具有良好的光學品質。 The optical imaging lens 100 of the embodiment of the present invention can achieve the following effects: In the optical imaging lens 100 of the embodiment of the present invention, the refractive powers of the first to third lenses 1 to 3 are sequentially designed to be negative, positive, and positive, with the following surface design, namely, the first lens The image side surface 12 of 1 is a concave surface, the object side 21 of the second lens 2 is a convex surface, and the image side 32 of the third lens 3 is a convex surface, thereby achieving good optical quality with a short overall lens length.

在本發明實施例的光學成像鏡頭100中,其滿足以下的條件式:1.9≧|f/f1|≧0.4。 In the optical imaging lens 100 of the embodiment of the present invention, it satisfies the following conditional expression: 1.9≧|f/f1|≧0.4.

在本發明實施例的光學成像鏡頭100中,其滿足以下的條件式:1.2≧f/f2≧0.1。 In the optical imaging lens 100 of the embodiment of the present invention, it satisfies the following conditional formula: 1.2≧f/f2≧0.1.

在本發明實施例的光學成像鏡頭100中,其滿足以下的條件式:1.8≧f/f3≧0.2。 In the optical imaging lens 100 of the embodiment of the present invention, it satisfies the following conditional expression: 1.8≧f/f3≧0.2.

承上述,詳細來說,在本發明實施例的光學成像鏡頭100中,搭配上述的透鏡屈光率組合、面形設計並滿足上述焦距的條 件式,可達到以下效果:第一透鏡1的屈光率設計為負,是為了要將大角度的成像光線收進後方的透鏡,以達到廣視場角及降低畸變的目的。第二透鏡2的屈光率設計為正且其將其焦距設計為較大,可以聚焦並輔助第一透鏡1提升視場角及降低畸變,以縮小第一透鏡1外徑達成縮小體積之目的。並且,搭配將第三透鏡3的屈光率設計為正且將其焦距設計為較小,其可用以聚焦並修正入射像平面的角度。 In view of the above, in detail, in the optical imaging lens 100 of the embodiment of the present invention, the above-mentioned lens refractive power combination and surface shape design are used to meet the above-mentioned focal length criteria. It can achieve the following effects: the refractive power of the first lens 1 is designed to be negative, in order to collect the large-angle imaging light into the rear lens, so as to achieve the purpose of wide field of view and reduce distortion. The refractive power of the second lens 2 is designed to be positive and its focal length is designed to be larger, which can focus and assist the first lens 1 to increase the angle of view and reduce distortion, so as to reduce the outer diameter of the first lens 1 to achieve the purpose of reducing the volume . In addition, the third lens 3 is designed to have a positive refractive power and a smaller focal length, which can be used to focus and correct the angle of the incident image plane.

在本發明實施例的光學成像鏡頭100中,藉由將光圈0的位置設於第二、第三鏡片2、3之間,可以加大光圈並且提升像高以增加成像面積。 In the optical imaging lens 100 of the embodiment of the present invention, by setting the position of the aperture 0 between the second and third lenses 2 and 3, the aperture can be enlarged and the image height can be increased to increase the imaging area.

在本發明實施例的光學成像鏡頭100中,藉由滿足以下的條件式:(R1+R2)/(R1-R2)<2,可使第一透鏡1的像側面12相較於其物側面11的變形較為明顯,以讓第一透鏡1收光角度比較大。 In the optical imaging lens 100 of the embodiment of the present invention, by satisfying the following conditional formula: (R1+R2)/(R1-R2)<2, the image side surface 12 of the first lens 1 can be compared with the object side surface The deformation of 11 is more obvious, so that the light receiving angle of the first lens 1 is relatively large.

在本發明實施例的光學成像鏡頭100中,藉由滿足以下的條件式:(ET1-CT1)/(ET1+CT1)>0,可使第一透鏡1的中心厚度CT1較邊緣厚度ET1為薄,以讓第一透鏡1收光角度比較大,畸變較小。 In the optical imaging lens 100 of the embodiment of the present invention, by satisfying the following conditional formula: (ET1-CT1)/(ET1+CT1)>0, the center thickness CT1 of the first lens 1 can be made thinner than the edge thickness ET1 , So that the light receiving angle of the first lens 1 is relatively large, and the distortion is relatively small.

在本發明實施例的光學成像鏡頭100中,第一透鏡1至第三透鏡3的材質可滿足以下的條件式:1.86≧(n1+n2+n3)/(n1*n2*n3)≧0.85,即第一透鏡1至第三透鏡3的折射率n1~n3可選擇折射率介於1.4至1.7範圍內的物質。 In the optical imaging lens 100 of the embodiment of the present invention, the materials of the first lens 1 to the third lens 3 may satisfy the following conditional formula: 1.86≧(n1+n2+n3)/(n1*n2*n3)≧0.85, That is, the refractive indexes n1 to n3 of the first lens 1 to the third lens 3 can be selected from substances with a refractive index in the range of 1.4 to 1.7.

在本發明實施例的光學成像鏡頭100中,其視場角在85 度至140度之間,具有較廣視場角的範圍,即光學成像鏡頭100滿足以下的條件式:2.74≧tan(HFOV)≧0.92。 In the optical imaging lens 100 of the embodiment of the present invention, its field of view is 85 Between degrees and 140 degrees, it has a wide field of view, that is, the optical imaging lens 100 satisfies the following conditional formula: 2.74≧tan(HFOV)≧0.92.

在本發明實施例的光學成像鏡頭100中,其滿足以下的條件式:5≧TTL/ImgH≧1,藉由滿足此條件式,可限制鏡頭總長與像高比例關係。若TTL/ImgH小於1,則代表鏡頭總長相對像高太短則公差敏感且製造性差。若TTL/ImgH大於5,則代表鏡頭總長相對像高太長會導致產品體積過大。 In the optical imaging lens 100 of the embodiment of the present invention, it satisfies the following conditional formula: 5≧TTL/ImgH≧1. By satisfying this conditional formula, the ratio relationship between the total lens length and the image height can be restricted. If TTL/ImgH is less than 1, it means that the total length of the lens is too short relative to the image height, and the tolerance is sensitive and the manufacturability is poor. If the TTL/ImgH is greater than 5, it means that the total length of the lens relative to the image height is too long and the product will be too large.

0:光圈 0: aperture

1:第一透鏡 1: the first lens

2:第二透鏡 2: second lens

3:第三透鏡 3: The third lens

211、11、21、31、221:物側面 211, 11, 21, 31, 221: Object side

212、12、22、32、222:像側面 212, 12, 22, 32, 222: like side

100:光學成像鏡頭 100: Optical imaging lens

200:指紋辨識模組 200: Fingerprint recognition module

210:蓋板 210: cover

220:濾光片 220: filter

230:影像感測器 230: image sensor

C:第一透鏡的中心 C: The center of the first lens

CT1:中心厚度 CT1: Center thickness

E1、E2:邊 E1, E2: Edge

ET1:邊緣厚度 ET1: Edge thickness

IP:成像面 IP: imaging surface

I:光軸 I: Optical axis

IS:像側 IS: image side

OS:物側 OS: Object side

Claims (18)

一種光學成像鏡頭,從物側至像側沿一光軸依序包括一第一透鏡、一第二透鏡及一第三透鏡,其中該第一透鏡至該第三透鏡各自包括一朝向物側且使成像光線通過的物側面及一朝向像側且使成像光線通過的像側面,且在該光學成像鏡頭中具有屈光度的透鏡只有上述三片透鏡,其中,該第一透鏡,具有負屈光度,且該第一透鏡的該像側面為凹面;該第二透鏡,具有正屈光度,且該第二透鏡的該物側面為凸面;以及該第三透鏡,具有正屈光度,且該第三透鏡的該像側面為凸面,其中該光學成像鏡頭更滿足以下的條件式:1.9≧|f/f1|>0.97,其中f代表為該光學成像鏡頭的有效焦距,f1代表為該第一透鏡的焦距,且|f/f1|代表為f/f1的絕對值。 An optical imaging lens includes a first lens, a second lens, and a third lens in sequence along an optical axis from the object side to the image side, wherein the first lens to the third lens each include a side facing the object side and The object side through which the imaging light passes and an image side toward the image side and through which the imaging light passes. The optical imaging lens has only the above three lenses with refractive power. Among them, the first lens has negative refractive power, and The image side surface of the first lens is concave; the second lens has positive refractive power, and the object side of the second lens is convex; and the third lens has positive refractive power, and the image of the third lens The side surface is convex, and the optical imaging lens satisfies the following conditional formula: 1.9≧|f/f1|>0.97, where f represents the effective focal length of the optical imaging lens, f1 represents the focal length of the first lens, and | f/f1| represents the absolute value of f/f1. 如申請專利範圍第1項所述的光學成像鏡頭,更包括一光圈,設置於該第二透鏡與該第三透鏡之間。 The optical imaging lens described in item 1 of the scope of patent application further includes an aperture, which is arranged between the second lens and the third lens. 如申請專利範圍第1項所述的光學成像鏡頭,其中該光學成像鏡頭更滿足以下的條件式:(R1+R2)/(R1-R2)<2,其中R1為該第一透鏡的該物側面的曲率半徑,且R2為該第一透鏡的該像側面的曲率半徑。 For the optical imaging lens described in item 1 of the scope of patent application, the optical imaging lens further satisfies the following conditional formula: (R1+R2)/(R1-R2)<2, where R1 is the object of the first lens The curvature radius of the side surface, and R2 is the curvature radius of the image side surface of the first lens. 如申請專利範圍第1項所述的光學成像鏡頭,其中該光學成像鏡頭更滿足以下的條件式:(ET1-CT1)/(ET1+CT1)>0,其中 ET1為通過該第一透鏡的兩邊緣且與該光軸平行的一厚度,且CT1代表為通過該第一透鏡的中心且在該光軸上的一厚度。 For the optical imaging lens described in item 1 of the scope of patent application, the optical imaging lens further satisfies the following conditional formula: (ET1-CT1)/(ET1+CT1)>0, where ET1 is a thickness passing through the two edges of the first lens and parallel to the optical axis, and CT1 represents a thickness passing through the center of the first lens and on the optical axis. 如申請專利範圍第1項所述的光學成像鏡頭,其中該光學成像鏡頭更滿足以下的條件式:1.86≧(n1+n2+n3)/(n1*n2*n3)≧0.85,其中n1為該第一透鏡的折射率,n2為該第二透鏡的折射率,且n3為該第三透鏡的折射率。 For the optical imaging lens described in item 1 of the scope of patent application, the optical imaging lens further satisfies the following conditional formula: 1.86≧(n1+n2+n3)/(n1*n2*n3)≧0.85, where n1 is the The refractive index of the first lens, n2 is the refractive index of the second lens, and n3 is the refractive index of the third lens. 如申請專利範圍第1項所述的光學成像鏡頭,其中該光學成像鏡頭更滿足以下的條件式:2.74≧tan(HFOV)≧0.92,其中HFOV為該光學成像鏡頭的半視場角。 For the optical imaging lens described in item 1 of the scope of patent application, the optical imaging lens further satisfies the following conditional formula: 2.74≧tan(HFOV)≧0.92, where HFOV is the half angle of view of the optical imaging lens. 如申請專利範圍第1項所述的光學成像鏡頭,其中該光學成像鏡頭更滿足以下的條件式:5≧TTL/ImgH≧1,其中TTL代表為該第一透鏡的該物側面至一成像面在該光軸上的一距離,ImgH為該光學成像鏡頭的像高。 The optical imaging lens described in item 1 of the scope of patent application, wherein the optical imaging lens further satisfies the following conditional formula: 5≧TTL/ImgH≧1, where TTL represents the object side of the first lens to an imaging surface At a distance on the optical axis, ImgH is the image height of the optical imaging lens. 如申請專利範圍第1項所述的光學成像鏡頭,其中該光學成像鏡頭更滿足以下的條件式:1.2≧f/f2≧0.1,其中f代表為該光學成像鏡頭的有效焦距,且f2代表為該第二透鏡的焦距。 For the optical imaging lens described in item 1 of the scope of patent application, the optical imaging lens further satisfies the following conditional formula: 1.2≧f/f2≧0.1, where f represents the effective focal length of the optical imaging lens, and f2 represents The focal length of the second lens. 如申請專利範圍第1項所述的光學成像鏡頭,其中該光學成像鏡頭更滿足以下的條件式:1.8≧f/f3≧0.2,其中f代表為該光學成像鏡頭的有效焦距,且f3代表為該第三透鏡的焦距。 For the optical imaging lens described in item 1 of the scope of patent application, the optical imaging lens further satisfies the following conditional formula: 1.8≧f/f3≧0.2, where f represents the effective focal length of the optical imaging lens, and f3 represents The focal length of the third lens. 一種指紋辨識模組,包括:一蓋板; 一光學成像鏡頭,設置於該蓋板的光路下游,該光學成像鏡頭從物側至像側沿一光軸依序包括一第一透鏡、一第二透鏡及一第三透鏡,其中該第一透鏡至該第三透鏡各自包括一朝向物側且使成像光線通過的物側面及一朝向像側且使成像光線通過的像側面,且在該光學成像鏡頭中具有屈光度的透鏡只有上述三片透鏡,其中,該第一透鏡,具有負屈光度,且該第一透鏡的該像側面為凹面;該第二透鏡,具有正屈光度,且該第二透鏡的該物側面為凸面;以及該第三透鏡,具有正屈光度,且該第三透鏡的該像側面為凸面,其中該光學成像鏡頭更滿足以下的條件式:1.9≧|f/f1|>0.97,其中f代表為該光學成像鏡頭的有效焦距,f1代表為該第一透鏡的焦距,且|f/f1|代表為f/f1的絕對值;以及一影像感測器,設置於該光學成像鏡頭的光路下游。 A fingerprint recognition module includes: a cover; An optical imaging lens is arranged downstream of the optical path of the cover plate. The optical imaging lens includes a first lens, a second lens, and a third lens in sequence from the object side to the image side along an optical axis. The lens to the third lens each include an object side surface that faces the object side and allows imaging light to pass through, and an image side surface that faces the image side and allows imaging light to pass, and the optical imaging lens has only the above three lenses. , Wherein the first lens has a negative refractive power, and the image side surface of the first lens is a concave surface; the second lens has a positive refractive power, and the object side surface of the second lens is a convex surface; and the third lens , Has a positive refractive power, and the image side surface of the third lens is convex, wherein the optical imaging lens satisfies the following conditional formula: 1.9≧|f/f1|>0.97, where f represents the effective focal length of the optical imaging lens , F1 represents the focal length of the first lens, and |f/f1| represents the absolute value of f/f1; and an image sensor is arranged downstream of the optical path of the optical imaging lens. 如申請專利範圍第10項所述的指紋辨識模組,其中該光學成像鏡頭更包括一光圈,設置於該第二透鏡與該第三透鏡之間。 According to the fingerprint recognition module of claim 10, the optical imaging lens further includes an aperture arranged between the second lens and the third lens. 如申請專利範圍第10項所述的指紋辨識模組,其中該光學成像鏡頭更滿足以下的條件式:(R1+R2)/(R1-R2)<2,其中R1為該第一透鏡的該物側面的曲率半徑,且R2為該第一透鏡的該像側面的曲率半徑。 As for the fingerprint recognition module described in item 10 of the scope of patent application, the optical imaging lens further satisfies the following conditional formula: (R1+R2)/(R1-R2)<2, where R1 is the first lens The curvature radius of the object side surface, and R2 is the curvature radius of the image side surface of the first lens. 如申請專利範圍第10項所述的指紋辨識模組,其中該光學成像鏡頭更滿足以下的條件式:(ET1-CT1)/(ET1+CT1)>0,其中ET1為通過該第一透鏡的兩邊緣且與該光軸平行的一厚度,且CT1代表為通過該第一透鏡的中心且在該光軸上的一厚度。 For example, the fingerprint recognition module described in item 10 of the scope of patent application, wherein the optical imaging lens further satisfies the following conditional formula: (ET1-CT1)/(ET1+CT1)>0, where ET1 is the lens passing through the first lens Two edges are a thickness parallel to the optical axis, and CT1 represents a thickness passing through the center of the first lens and on the optical axis. 如申請專利範圍第10項所述的指紋辨識模組,其中該光學成像鏡頭更滿足以下的條件式:1.86≧(n1+n2+n3)/(n1*n2*n3)≧0.85,其中n1為該第一透鏡的折射率,n2為該第二透鏡的折射率,且n3為該第三透鏡的折射率。 For example, the fingerprint recognition module described in item 10 of the scope of patent application, wherein the optical imaging lens satisfies the following conditional formula: 1.86≧(n1+n2+n3)/(n1*n2*n3)≧0.85, where n1 is The refractive index of the first lens, n2 is the refractive index of the second lens, and n3 is the refractive index of the third lens. 如申請專利範圍第10項所述的指紋辨識模組,其中該光學成像鏡頭更滿足以下的條件式:2.74≧tan(HFOV)≧0.92,其中HFOV為該光學成像鏡頭的半視場角。 For the fingerprint recognition module described in item 10 of the scope of patent application, the optical imaging lens further satisfies the following conditional formula: 2.74≧tan(HFOV)≧0.92, where HFOV is the half angle of view of the optical imaging lens. 如申請專利範圍第10項所述的指紋辨識模組,其中該光學成像鏡頭更滿足以下的條件式:5≧TTL/ImgH≧1,其中TTL代表為該第一透鏡的該物側面至一成像面在該光軸上的一距離,ImgH為該光學成像鏡頭的像高。 For the fingerprint recognition module described in item 10 of the scope of patent application, the optical imaging lens further satisfies the following conditional formula: 5≧TTL/ImgH≧1, where TTL represents the object side of the first lens to an imaging A distance of the surface on the optical axis, ImgH is the image height of the optical imaging lens. 如申請專利範圍第10項所述的指紋辨識模組,其中該光學成像鏡頭更滿足以下的條件式:1.2≧f/f2≧0.1,其中f代表為該光學成像鏡頭的有效焦距,且f2代表為該第二透鏡的焦距。 For the fingerprint recognition module described in item 10 of the scope of patent application, the optical imaging lens further satisfies the following conditional formula: 1.2≧f/f2≧0.1, where f represents the effective focal length of the optical imaging lens, and f2 represents Is the focal length of the second lens. 如申請專利範圍第10項所述的指紋辨識模組,其中該光學成像鏡頭更滿足以下的條件式:1.8≧f/f3≧0.2,其中f代表為該光學成像鏡頭的有效焦距,且f3代表為該第三透鏡的焦距。 For example, the fingerprint recognition module described in item 10 of the scope of patent application, wherein the optical imaging lens satisfies the following conditional formula: 1.8≧f/f3≧0.2, where f represents the effective focal length of the optical imaging lens, and f3 represents Is the focal length of the third lens.
TW108144602A 2019-12-06 2019-12-06 Fingerprint identification module and optical imaging lens TWI721686B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW108144602A TWI721686B (en) 2019-12-06 2019-12-06 Fingerprint identification module and optical imaging lens
CN201911300565.0A CN112925084A (en) 2019-12-06 2019-12-17 Fingerprint identification module and optical imaging lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108144602A TWI721686B (en) 2019-12-06 2019-12-06 Fingerprint identification module and optical imaging lens

Publications (2)

Publication Number Publication Date
TWI721686B true TWI721686B (en) 2021-03-11
TW202122854A TW202122854A (en) 2021-06-16

Family

ID=76035942

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108144602A TWI721686B (en) 2019-12-06 2019-12-06 Fingerprint identification module and optical imaging lens

Country Status (2)

Country Link
CN (1) CN112925084A (en)
TW (1) TWI721686B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110737080A (en) * 2018-07-19 2020-01-31 新巨科技股份有限公司 Thin imaging lens group

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11832791B2 (en) * 2021-09-17 2023-12-05 Altek Biotechnology Corporation Optical imaging lens assembly and endoscopic optical device
CN113777759A (en) * 2021-10-14 2021-12-10 辽宁中蓝光电科技有限公司 Fingerprint identification optical lens

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070046926A1 (en) * 2005-08-26 2007-03-01 Jung-Chun Wu Fingerprint identification assembly using reflection to identify pattern of a fingerprint
US20080260365A1 (en) * 2007-04-20 2008-10-23 Hon Hai Precision Industry Co., Ltd. Image capturing apparatus
TWI533020B (en) * 2015-01-09 2016-05-11 大立光電股份有限公司 Compact optical system, image capturing unit and electronic device
TWM569426U (en) * 2018-08-13 2018-11-01 印芯科技股份有限公司 Optical imaging lens set and fingerprint identification device
WO2019164359A1 (en) * 2018-02-23 2019-08-29 삼성전자 주식회사 Method for acquiring image corresponding to infrared rays by using camera module comprising lens capable of absorbing light in visible light band and electronic device implementing same
TWI676045B (en) * 2018-03-31 2019-11-01 金佶科技股份有限公司 Image capturing apparatus
TWI691733B (en) * 2019-04-10 2020-04-21 大立光電股份有限公司 Optical photographing lens assembly, fingerprint identification module and electronic device

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002055278A (en) * 2000-05-30 2002-02-20 Minolta Co Ltd Image pickup lens device
JP2007041080A (en) * 2005-07-29 2007-02-15 Hoya Corp Imaging lens and imaging apparatus
JP2007133324A (en) * 2005-11-14 2007-05-31 Sony Corp Lens unit
JP4815319B2 (en) * 2006-09-29 2011-11-16 富士フイルム株式会社 Imaging lens and camera device provided with the same
JP5096226B2 (en) * 2008-05-16 2012-12-12 パナソニック株式会社 Wide angle lens
CN201383032Y (en) * 2008-12-16 2010-01-13 富士能株式会社 Camera lens and camera head using same
TWM368071U (en) * 2009-03-06 2009-11-01 Fujinon Corp Photographing lens and photographing device
KR101118910B1 (en) * 2010-03-05 2012-03-13 주식회사 코렌 Photographic lens optical system
TWI427355B (en) * 2011-02-23 2014-02-21 Largan Precision Co Ltd Wide viewing angle optical lens assembly
TWI506296B (en) * 2011-10-14 2015-11-01 Hon Hai Prec Ind Co Ltd Lens module system
CN103048767B (en) * 2011-10-14 2016-05-11 鸿富锦精密工业(深圳)有限公司 Lens system
TWM459408U (en) * 2013-04-15 2013-08-11 Ability Opto Electronics Technology Co Ltd Thin type wide-angle three-piece type imaging lens module
CN103777315B (en) * 2013-11-15 2016-05-11 浙江舜宇光学有限公司 Miniature wide-angle imaging lens
CN105988201B (en) * 2015-04-08 2018-09-07 浙江舜宇光学有限公司 Interactive camera lens
CN106443977B (en) * 2015-08-06 2018-10-09 亚太精密工业(深圳)有限公司 Wide-angle lens
CN206282024U (en) * 2015-09-28 2017-06-27 富士胶片株式会社 Imaging lens system and possesses the camera head of imaging lens system
JPWO2017068726A1 (en) * 2015-10-23 2018-08-09 オリンパス株式会社 Imaging apparatus and optical apparatus including the same
CN207636833U (en) * 2017-03-27 2018-07-20 惠州市众泰光电科技有限公司 A kind of optical lenses
CN108037577B (en) * 2017-12-08 2020-06-26 深圳市莱通光学科技有限公司 Image capturing lens
CN207516710U (en) * 2017-12-13 2018-06-19 浙江舜宇光学有限公司 Projection lens
CN110412715A (en) * 2018-04-26 2019-11-05 光芒光学股份有限公司 Camera lens and its manufacturing method
CN210038312U (en) * 2018-08-21 2020-02-07 深圳市汇顶科技股份有限公司 Lens system, fingerprint identification device and terminal equipment
CN209014800U (en) * 2018-11-28 2019-06-21 中山联合光电科技股份有限公司 A kind of ultrashort conjugate distance optical lens
CN110187480B (en) * 2019-07-23 2019-10-25 江西联益光学有限公司 Imaging lens system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070046926A1 (en) * 2005-08-26 2007-03-01 Jung-Chun Wu Fingerprint identification assembly using reflection to identify pattern of a fingerprint
US20080260365A1 (en) * 2007-04-20 2008-10-23 Hon Hai Precision Industry Co., Ltd. Image capturing apparatus
TWI533020B (en) * 2015-01-09 2016-05-11 大立光電股份有限公司 Compact optical system, image capturing unit and electronic device
WO2019164359A1 (en) * 2018-02-23 2019-08-29 삼성전자 주식회사 Method for acquiring image corresponding to infrared rays by using camera module comprising lens capable of absorbing light in visible light band and electronic device implementing same
TWI676045B (en) * 2018-03-31 2019-11-01 金佶科技股份有限公司 Image capturing apparatus
TWM569426U (en) * 2018-08-13 2018-11-01 印芯科技股份有限公司 Optical imaging lens set and fingerprint identification device
TWI691733B (en) * 2019-04-10 2020-04-21 大立光電股份有限公司 Optical photographing lens assembly, fingerprint identification module and electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110737080A (en) * 2018-07-19 2020-01-31 新巨科技股份有限公司 Thin imaging lens group

Also Published As

Publication number Publication date
TW202122854A (en) 2021-06-16
CN112925084A (en) 2021-06-08

Similar Documents

Publication Publication Date Title
TWI660194B (en) Optical system
TWI516791B (en) Mobile device and optical imaging lens thereof
TWI541556B (en) Mobile device and optical imaging lens thereof
TWI391701B (en) Imaging lens assembly
TWI424187B (en) Image capturing optical system
TWI507722B (en) Mobile device and optical imaging lens thereof
TWI418877B (en) Imagery optical system
TWI512319B (en) Mobile device and optical imaging lens thereof
TWI629501B (en) Wide angle imaging lens assembly
TWI407140B (en) Photographing lens assembly
TWI721686B (en) Fingerprint identification module and optical imaging lens
TWI479188B (en) Electronic device and optical imaging lens thereof
TWI676045B (en) Image capturing apparatus
TWI704386B (en) Image capturing apparatus
TWM569426U (en) Optical imaging lens set and fingerprint identification device
TWI467217B (en) Mobile device and optical imaging lens thereof
TWI424214B (en) Photographing optical lens assembly
TWI475245B (en) Optics lens assembly for image capture and image capture device thereof
TW201525519A (en) Mobile device and optical imaging lens thereof
TWI529411B (en) Optical imaging lens and eletronic device comprising the same
TWI421559B (en) Optical photographing lens assembly
TWI479182B (en) Mobile device and optical imaging lens thereof
TW201533468A (en) Mobile device and optical imaging lens thereof
TW201329499A (en) Mobile device and optical imaging lens thereof
TW202011074A (en) Wide angle imaging lens