TWI720075B - Use of microrna precursors as drugs for inducing cd34-positive adult stem cell expansion - Google Patents

Use of microrna precursors as drugs for inducing cd34-positive adult stem cell expansion Download PDF

Info

Publication number
TWI720075B
TWI720075B TW105139971A TW105139971A TWI720075B TW I720075 B TWI720075 B TW I720075B TW 105139971 A TW105139971 A TW 105139971A TW 105139971 A TW105139971 A TW 105139971A TW I720075 B TWI720075 B TW I720075B
Authority
TW
Taiwan
Prior art keywords
mir
rna
cells
cell
seq
Prior art date
Application number
TW105139971A
Other languages
Chinese (zh)
Other versions
TW201735932A (en
Inventor
希龍 林
欽次 張
堂熙 吳
Original Assignee
希龍 林
堂熙 吳
Wjwu & Lynn幹細胞硏究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/048,964 external-priority patent/US10519440B2/en
Priority claimed from US15/167,226 external-priority patent/US9879263B2/en
Application filed by 希龍 林, 堂熙 吳, Wjwu & Lynn幹細胞硏究所 filed Critical 希龍 林
Publication of TW201735932A publication Critical patent/TW201735932A/en
Application granted granted Critical
Publication of TWI720075B publication Critical patent/TWI720075B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0647Haematopoietic stem cells; Uncommitted or multipotent progenitors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • C12N2310/141MicroRNAs, miRNAs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/51Physical structure in polymeric form, e.g. multimers, concatemers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/53Physical structure partially self-complementary or closed
    • C12N2310/531Stem-loop; Hairpin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/32Special delivery means, e.g. tissue-specific
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2330/00Production
    • C12N2330/50Biochemical production, i.e. in a transformed host cell
    • C12N2330/51Specially adapted vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/65MicroRNA

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Neurosurgery (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Neurology (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Dermatology (AREA)
  • Psychiatry (AREA)
  • Hospice & Palliative Care (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

This invention generally relates to a composition and method for inducing the expansion and/or regeneration of CD34-positive adult stem cell population, which is useful for developing drugs/vaccines and/or therapies against a variety of ageing-related degenerative diseases in humans. Also, the present invention teaches the production and purification methods required for making high quality and high quantity of small hairpin-like RNA (shRNA) compositions, such as microRNA precursors (pri-miRNA and pre-miRNA) and short interfering RNAs (siRNA), which are useful for treating human ageing-related diseases, such as, but not limited, Alzheimer’s diseases, Parkinson’s diseases, osteoporosis, diabetes, and cancers. The resulting shRNAs, preferably pre-miRNAs, are useful for developing therapeutic drugs against human degenerative diseases, particularly through a mechanism to induce CD34-positive stem cell expansion and/or regeneration.

Description

使用微核醣核酸前驅物作為誘導CD34陽性成體幹細胞增殖之藥物 Use of microribonucleic acid precursors as drugs for inducing the proliferation of CD34-positive adult stem cells 相關申請案的交互參照 Cross-reference of related applications

本發明主張2015年12月2日申請、標題為「miR-302 Attenuates Aβ-induced Neurotoxicity through Activation of Akt Signaling」之美國臨時申請案第62/262,280號之優先權。此外,本發明主張2016年2月19日申請、標題為「A Composition and Method of Using miR-302 Precursors as Drugs for Treating Alzheimer's Diseases」之美國專利申請案第15/048,964號之優先權。此外,本發明主張2016年5月27日申請、標題為「Use of MicroRNA Precursors as Drugs for Inducing CD34-positive Adult Stem Cell Expansion」之美國專利申請案第15/167,226號之優先權。 The present invention claims the priority of U.S. Provisional Application No. 62/262,280 filed on December 2, 2015, entitled "miR-302 Attenuates Aβ-induced Neurotoxicity through Activation of Akt Signaling". In addition, the present invention claims the priority of US Patent Application No. 15/048,964 filed on February 19, 2016, entitled "A Composition and Method of Using miR-302 Precursors as Drugs for Treating Alzheimer's Diseases". In addition, the present invention claims the priority of US Patent Application No. 15/167,226 filed on May 27, 2016, entitled "Use of MicroRNA Precursors as Drugs for Inducing CD34-positive Adult Stem Cell Expansion".

本發明大體上係關於一種用小髮夾RNA(shRNA)分子、較佳microRNA前驅物(pre-miRNA)及/或siRNA誘導CD34細胞增殖及/或再生之組合物及方法,該等分子可用於開發針對人類之多種衰老相關退化性疾病的藥物/ 疫苗及/或療法。此外,本發明教示製造高品質且大量的小髮夾型RNA(shRNA)組合物所需之製造及純化方法,該等組合物諸如microRNA前驅物(pri-miRNA及/或pre-miRNA)及短干擾RNAs(siRNA),其可用於治療人類衰老相關疾病,諸如但不限於阿茲海默症(Alzheimer's disease)、帕金森氏症(Parkinson's disease)、骨質疏鬆症、糖尿病及癌症。所得shRNAs,較佳pre-miRNAs及siRNAs可用於開發針對人類退化性疾病之治療藥物,特定言之經由誘導CD34陽性幹細胞增殖及/或再生之機制進行。此外,本發明亦揭示一種新穎基於pre-miRNA之藥物組合物,其能夠將高度肝癌之惡性特性重新編程至低度良性或甚至相對正常階段-一種稱為「癌症逆轉(Cancer Reversion)」之機制。因為癌症逆轉在藥物設計中係一個全新的概念,所以本發明使用該種新穎機制設計用於癌症療法之此種首選藥物。 The present invention generally relates to a composition and method for inducing the proliferation and/or regeneration of CD34 cells with small hairpin RNA (shRNA) molecules, preferred microRNA precursors (pre-miRNA) and/or siRNA, and these molecules can be used for Develop drugs for a variety of aging-related degenerative diseases in humans/ Vaccines and/or therapy. In addition, the present invention teaches the manufacturing and purification methods required to manufacture high-quality and large amounts of small hairpin RNA (shRNA) compositions, such as microRNA precursors (pri-miRNA and/or pre-miRNA) and short Interfering RNAs (siRNA) can be used to treat human aging-related diseases, such as but not limited to Alzheimer's disease, Parkinson's disease, osteoporosis, diabetes, and cancer. The resulting shRNAs, preferably pre-miRNAs and siRNAs, can be used to develop therapeutic drugs for human degenerative diseases, specifically through mechanisms that induce the proliferation and/or regeneration of CD34-positive stem cells. In addition, the present invention also discloses a novel pre-miRNA-based pharmaceutical composition that can reprogram the malignant characteristics of high-grade liver cancer to low-grade benign or even relatively normal stages-a mechanism called "Cancer Reversion" . Because cancer reversal is a completely new concept in drug design, the present invention uses this novel mechanism to design the preferred drug for cancer therapy.

幹細胞如同含有眾多有效成分之百寶箱,其可用於刺激新細胞生長/組織再生、修復及/或復原受損/老化組織、治療退化性疾病及預防腫瘤/癌症形成/進程。因此,發明人可設想可使用此等幹細胞作為新穎藥物篩檢、鑑別及製造之工具。因此,由此獲得之藥物將可用於開發醫藥及治療應用,諸如用於研究、診斷及/或療法之生物醫學利用、裝置及/或設備及其組合。 Stem cells are like a treasure chest containing many active ingredients, which can be used to stimulate new cell growth/tissue regeneration, repair and/or restore damaged/aging tissues, treat degenerative diseases and prevent tumor/cancer formation/process. Therefore, the inventor can imagine that these stem cells can be used as a tool for screening, identification and manufacturing of novel drugs. Therefore, the drugs thus obtained can be used to develop medical and therapeutic applications, such as biomedical applications, devices and/or equipment and combinations thereof for research, diagnosis, and/or therapy.

MicroRNA(miRNA)是人胚胎幹細胞(hESCs)中的主要有效成分之一。主要hESC特異性miRNA種類包括 但不限於miR-302家族、miR-371至373家族及miR-520家族之成員。其中,已發現miR-302家族在腫瘤抑制中起功能性作用(Lin等人,2008及2010)。MiR-302含有八個(8)家族成員,包括四個(4)正義miR-302(a、b、c及d)及四個(4)反義miR-302*(a*、b*、c*及d*)。此等正義及反義成員部分匹配且可分別形成雙股雙鏈體。miR-302之前驅物分別由miR-302a與a*(pre-miR-302a)、miR-302b與b*(pre-miR-302b)、miR-302c與c*(miR-302c)及miR-302d與d*(pre-miR-302d)形成,在一端有連接序列(莖環)。為了活化miR-302功能,miR-302前驅物(pre-miR-302)首先由細胞核糖核酸酶III Dicers(RNaseIII Dicers)處理為成熟miR-302s且進一步與某些阿爾古蛋白(argonaute protein)形成RNA誘導之靜默複合物(RISCs),隨後導致標的基因轉錄物(mRNAs),特別是致癌基因mRNAs之RNA干擾(RNAi)導向降解或轉譯抑制(Lin等人,2008,2010及2011)。 MicroRNA (miRNA) is one of the main effective components in human embryonic stem cells (hESCs). The main hESC-specific miRNA types include But not limited to members of the miR-302 family, miR-371 to 373 family, and miR-520 family. Among them, the miR-302 family has been found to play a functional role in tumor suppression (Lin et al., 2008 and 2010). MiR-302 contains eight (8) family members, including four (4) sense miR-302 (a, b, c, and d) and four (4) antisense miR-302* (a*, b*, c* and d*). These sense and antisense members are partially matched and can respectively form a double-stranded duplex. The precursors of miR-302 are composed of miR-302a and a*(pre-miR-302a), miR-302b and b*(pre-miR-302b), miR-302c and c*(miR-302c), and miR-302a, respectively. 302d is formed with d* (pre-miR-302d), with a connecting sequence (stem loop) at one end. In order to activate the function of miR-302, miR-302 precursor (pre-miR-302) is first processed into mature miR-302s by ribonuclease III Dicers (RNase III Dicers) and further formed with certain argonaute proteins. RNA-induced silencing complexes (RISCs) subsequently lead to target gene transcripts (mRNAs), especially RNA interference (RNAi) targeted degradation or translational inhibition of oncogene mRNAs (Lin et al., 2008, 2010 and 2011).

MiR-302係hESCs及誘導多能幹細胞(iPSCs)中發現之最豐富ncRNA種類。發明人先前研究已顯示,miR-302超出hESCs中所見水準之異位過度表達能夠以類似於桑椹胚階段之早期人類受精卵的相對緩慢細胞週期速率(20-24小時/週期)將人類正常及癌細胞兩者皆重新編程為hESC類iPSC(Lin等人,2008,2010及2011;EP 2198025;U.S.12/149,725;U.S.12/318,806;U.S.12/792,413)。相對靜止(Relative quiescence)係此等miR-302誘導iPSCs之確定特徵,而hESCs及其他先前報導之四因子誘導(Oct4-Sox2-Klf4-c-MycOct4-Sox2-Nanog-Lin28)iPSCs皆 展示類似於腫瘤/癌細胞之高度增殖性細胞週期速率(12-15小時/週期)(Takahashi等人,2006;Yu等人,2007;Wernig等人,2007;Wang等人,2008)。為揭示miR-302之此腫瘤抑制效應,發明人鑑別涉及兩種miR-302靶向G1-檢控點調節子,包括週期素依賴性激酶2(CDK2)及週期素D(Lin等人,2010;U.S.12/792,413;U.S.13/964,705)。已知細胞週期進程係由週期素依賴性激酶(CDK)之活動驅動,其與正調節亞單位(positive regulatory subunits)、週期素以及負調節子、CDK抑制子(CKIs,諸如p14/p19Arf、p15Ink4b、p16Ink4a、p18Ink4c、p21Cip1/Waf1及p27Kip1)形成功能複合物。在哺乳動物中,不同週期素-CDK複合物參與調節不同細胞週期過渡,諸如週期素-D-CDK4/6用於G1期進程、週期素-E-CDK2用於G1-S過渡、週期素-A-CDK2用於S期進程及週期素-A/B-CDC2(週期素-A/B-CDK1)用於進入M期。因此,發明人之研究表明,miR-302之腫瘤抑制功能由在G1-S過渡期間週期素-E-CDK2及週期素-D-CDK4/6路徑之共抑制產生。 MiR-302 is the most abundant ncRNA species found in hESCs and induced pluripotent stem cells (iPSCs). The inventors’ previous studies have shown that the ectopic overexpression of miR-302 beyond the level seen in hESCs can normalize humans with a relatively slow cell cycle rate (20-24 hours/cycle) similar to the early human fertilized eggs in the morula stage. Both cancer cells are reprogrammed into hESC-like iPSCs (Lin et al., 2008, 2010 and 2011; EP 2198025; US12/149,725; US12/318,806; US12/792,413). Relative quiescence is the definite feature of miR-302 inducing iPSCs, and hESCs and other previously reported four-factor induction ( Oct4-Sox2-Klf4-c-Myc or Oct4-Sox2-Nanog-Lin28 ) iPSCs all show It is similar to the highly proliferative cell cycle rate (12-15 hours/cycle) of tumor/cancer cells (Takahashi et al., 2006; Yu et al., 2007; Wernig et al., 2007; Wang et al., 2008). To reveal this tumor suppressor effect of miR-302, the inventors identified two miR-302 targeting G1-checkpoint regulators, including cyclin-dependent kinase 2 (CDK2) and cyclin D (Lin et al., 2010; US12/792,413; US13/964,705). It is known that cell cycle progression is driven by the activity of cyclin-dependent kinase (CDK), which is related to positive regulatory subunits (positive regulatory subunits), cyclin and negative regulators, CDK inhibitors (CKIs, such as p14/p19Arf, p15Ink4b). , P16Ink4a, p18Ink4c, p21Cip1/Waf1 and p27Kip1) form functional complexes. In mammals, different cyclin-CDK complexes are involved in the regulation of different cell cycle transitions, such as cyclin-D-CDK4/6 for G1 phase progression, cyclin-E-CDK2 for G1-S transition, and cyclin- A-CDK2 is used for S phase progression and Cyclin-A/B-CDC2 (Cyclin-A/B-CDK1) is used to enter M phase. Therefore, the inventor's research shows that the tumor suppressor function of miR-302 is produced by the co-inhibition of the cyclin-E-CDK2 and cyclin-D-CDK4/6 pathways during the G1-S transition period.

儘管miR-302可用於設計及開發新穎抗癌藥物/疫苗,但其生產是個問題,因為天然miR-302僅可見於人多能幹細胞諸如hESCs中,其資源極其有限。或者,合成小干擾RNA(siRNA)可用以模擬pre-miR-302;然而,因為pre-miR-302之結構由兩個失配之miR-302及miR-302*股形成,所以此類完美匹配之siRNA模擬物無法置換miR-302*之功能,其序列完全不同於siRNA之反義股。舉例而言,siRNA-302a模擬物之反義股係5'-UCACCAAAAC AUGGAAGCAC UUA-3'(SEQ.ID.NO.1),而天然miR-302a* 係5'-ACUUAAACGU GGAUGUACUU GCU-3'(SEQ.ID.NO.2)。因為miR-302功能由其正義miR-302及反義miR-302*股兩者產生,所以使用此類siRNA模擬物之先前報導已展示與天然miR-302功能不同之結果。另一方面,發明人近期之iPSCs研究可提供pre-miR-302生產之替代性解決方案(EP 2198025;U.S.12/149,725;U.S.12/318,806)。儘管如此,使此類iPSCs生長之成本仍太高以致無法用於工業製造。 Although miR-302 can be used to design and develop novel anti-cancer drugs/vaccines, its production is a problem because natural miR-302 can only be found in human pluripotent stem cells such as hESCs, and its resources are extremely limited. Alternatively, synthetic small interfering RNA (siRNA) can be used to mimic pre-miR-302; however, because the structure of pre-miR-302 is formed by two mismatched miR-302 and miR-302* strands, this type of perfect match The siRNA mimic cannot replace the function of miR-302*, and its sequence is completely different from the antisense strand of siRNA. For example, the antisense strand of the siRNA-302a mimic is 5'-UCACCAAAAC AUGGAAGCAC UUA-3' (SEQ.ID.NO.1), while the natural miR-302a* Line 5'-ACUUAAACGU GGAUGUACUU GCU-3' (SEQ.ID.NO.2). Because miR-302 function is produced by both its sense miR-302 and antisense miR-302* strands, previous reports using such siRNA mimics have shown different results from native miR-302 functions. On the other hand, the inventor's recent iPSCs research can provide an alternative solution for the production of pre-miR-302 (EP 2198025; U.S. 12/149,725; U.S. 12/318,806). Nevertheless, the cost of growing such iPSCs is still too high to be used in industrial manufacturing.

或者,使用原核勝任細胞可為製造人microRNAs及其前驅物之可能方法。然而,原核細胞不具有真核microRNA表達及處理所需之若干必需酶,諸如Drosha及Dicer。此外,原核RNA聚合酶不會高效地轉錄具有高二級結構之小RNA,諸如髮夾型pre-miRNAs及shRNAs。事實上,細菌基因組中不編碼真實microRNA且細菌不會天然地表現microRNA。因此,若發明人可迫使人microRNAs於原核生物中之表達,則所得microRNAs將最可能保持呈其類似於pri-miRNA(多個pre-miRNAs之初級大簇(large primary cluster))及/或pre-miRNA(一個單一髮夾RNA)之前驅構形。儘管存在以上所有問題,但真正的挑戰是如何迫使人microRNA於原核生物中之表達。為克服此主要問題,發明人優先權申請案美國第13/572,263號已確定一種初步方法;然而,當前尚不確定此等原核生物產生之microRNAs(pro-miRNA)是否將具有與其人類對應物相同之結構及功能。此外,由此獲得之pro-miRNAs可能受細菌內毒素污染,其並不適用於直接用於療法中。 Alternatively, the use of prokaryotic competent cells may be a possible method for the production of human microRNAs and their precursors. However, prokaryotic cells do not have several essential enzymes required for eukaryotic microRNA expression and processing, such as Drosha and Dicer. In addition, prokaryotic RNA polymerase does not efficiently transcribe small RNAs with high secondary structure, such as hairpin pre-miRNAs and shRNAs. In fact, the bacterial genome does not encode real microRNAs and bacteria do not naturally express microRNAs. Therefore, if the inventors can force the expression of human microRNAs in prokaryotes, the resulting microRNAs will most likely remain similar to pri-miRNAs (large primary clusters of multiple pre-miRNAs) and/or pre-miRNAs. -miRNA (a single hairpin RNA) precursor configuration. Despite all the above problems, the real challenge is how to force the expression of human microRNA in prokaryotes. To overcome this major problem, the inventor’s priority application US No. 13/572,263 has established a preliminary method; however, it is currently uncertain whether the microRNAs (pro-miRNA) produced by these prokaryotes will have the same characteristics as their human counterparts. The structure and function. In addition, the pro-miRNAs thus obtained may be contaminated with bacterial endotoxins, which are not suitable for direct use in therapy.

如自當前教科書習得,所屬技術領域中具有通常 知識者皆熟知原核與真核轉錄機制不同且因此彼此不相容。舉例而言,基於當前理解,真核RNA聚合酶不直接結合至啟動子序列且需要額外輔助蛋白(輔因子)來起始轉錄,而原核RNA聚合酶形成直接結合至啟動子序列以起始轉錄的全酶。通常亦知真核傳訊RNA(mRNA)係藉由第二型RNA聚合酶(pol-2)於細胞核中合成,且隨後經處理及輸出至細胞質用於蛋白質合成,而原核RNA轉錄及蛋白質轉譯在相同位置由相同段DNA同時發生。此係因為原核生物,諸如細菌及古細菌,不具有任何細胞核樣結構。因此,此等差異使得原核細胞難以或甚至不可能使用真核啟動子製造真核RNAs。 If acquired from current textbooks, there are general The intellectuals are well aware that prokaryotic and eukaryotic transcription mechanisms are different and therefore incompatible with each other. For example, based on current understanding, eukaryotic RNA polymerase does not directly bind to the promoter sequence and requires additional accessory proteins (cofactors) to initiate transcription, while prokaryotic RNA polymerase forms directly binds to the promoter sequence to initiate transcription The whole enzyme. It is generally known that eukaryotic messaging RNA (mRNA) is synthesized in the nucleus by type 2 RNA polymerase (pol-2), and then processed and exported to the cytoplasm for protein synthesis. Prokaryotic RNA transcription and protein translation The same position occurs at the same time by the same piece of DNA. This is because prokaryotes, such as bacteria and archaea, do not have any nuclear-like structures. Therefore, these differences make it difficult or even impossible for prokaryotic cells to use eukaryotic promoters to produce eukaryotic RNAs.

先前技術嘗試在細菌細胞中製造哺乳動物肽及/或蛋白質,諸如Buechler之美國專利第7,959,926號及Mehta之美國專利第7,968,311號,使用細菌或噬菌體啟動子。為了起始表達,將所要基因選殖至由細菌或噬菌體啟動子驅動之質體載體中。基因不得含有任何非編碼內含子,因為細菌不具有用以處理內含子之任何RNA剪接機制。隨後,將由此獲得之載體引入至細菌細胞之勝任菌株,諸如大腸桿菌(Escherichia coliE.coli)中,以便表現基因之轉錄物(mRNAs)且隨後將mRNAs轉譯為蛋白質。儘管如此,細菌及噬菌體啟動子,諸如Tac、Lac、T3、T7及SP6 RNA啟動子不是pol-2啟動子且其轉錄活動傾向為會導致突變之錯誤傾向過程。另外,Mehta進一步教示,甘油(glycerol/glycerin)可用以增加細菌轉形之效率;然而,無教示涉及RNA轉錄、尤其pol-2啟動子驅動之原核RNA轉錄的增強。由於真核與原核轉錄系統之間不具有可能的相容性,所以此類先前技術 仍受將原核RNA啟動子用於原核生物中之基因表達限制。 Prior art attempts to produce mammalian peptides and/or proteins in bacterial cells, such as Buechler's US Patent No. 7,959,926 and Mehta's US Patent No. 7,968,311, use bacterial or phage promoters. To initiate expression, the desired gene is cloned into a plastid vector driven by a bacterial or phage promoter. Genes must not contain any non-coding introns, because bacteria do not have any RNA splicing mechanism to handle introns. Subsequently, the thus obtained vector was introduced into competent cells of bacterial strain, such as E. coli (Escherichia coli, E.coli) so that the performance of gene transcripts (mRNAs) and subsequently translated into protein mRNAs. Nevertheless, bacterial and phage promoters, such as Tac, Lac, T3, T7, and SP6 RNA promoters are not pol-2 promoters and their transcriptional activities tend to be error-prone processes that can lead to mutations. In addition, Mehta further teaches that glycerol/glycerin can be used to increase the efficiency of bacterial transformation; however, no teaching relates to the enhancement of RNA transcription, especially prokaryotic RNA transcription driven by the pol-2 promoter. Since there is no possible compatibility between eukaryotic and prokaryotic transcription systems, such prior art is still limited by the use of prokaryotic RNA promoters for gene expression in prokaryotes.

歸因於系統不相容性及可能的內毒素污染之問題,先前不存在於原核生物中製造人pre-miRNA/shRNA類藥物之方法。此外,pre-miRNA/shRNA大小約為70-85個核苷酸長,其太大且成本太高以致無法藉由RNA合成機制製得。為克服此等問題,本發明提供一種新穎突破:藉由添加模擬某些轉錄輔因子之一些確定化學品,發明人可為原核細胞建立新穎適應環境,以將真核pol-2及/或pol-2類啟動子用於轉錄所要pre-miRNAs及shRNAs而不經由錯誤傾向原核啟動子進行。此優勢為:第一,歸因於細菌之快速生長而可有成本效益地大量製造;第二,由於不需要使專用hESCs或iPSCs生長而易於處置;第三,就pol-2啟動子驅動之RNA轉錄而言,存在高保真生產率(fidelity productivity);第四,歸因於原核生物中不具有真實microRNA而具有高純度之所要microRNAs;及最後,無內毒素,其可藉由某些化學處理而進一步移除。因此,一種在原核細胞中製造人pre-miRNAs及/或shRNAs而不存在系統不相容性及內毒素污染之問題的方法係高度理想的。此外,由此獲得之藥物可呈現除microRNA之當前已知功能以外的新穎治療效果。 Due to the problems of system incompatibility and possible endotoxin contamination, there was no previous method for producing human pre-miRNA/shRNA drugs in prokaryotes. In addition, the size of pre-miRNA/shRNA is about 70-85 nucleotides long, which is too large and costly to be prepared by RNA synthesis mechanism. In order to overcome these problems, the present invention provides a novel breakthrough: by adding certain chemicals that mimic some transcription cofactors, the inventors can establish a novel adaptive environment for prokaryotic cells to transform eukaryotic pol-2 and/or pol Type -2 promoters are used to transcribe desired pre-miRNAs and shRNAs without going through error-prone prokaryotic promoters. This advantage is: first, it can be manufactured in large quantities cost-effectively due to the rapid growth of bacteria; second, it is easy to handle because it does not require the growth of dedicated hESCs or iPSCs; third, it is driven by the pol-2 promoter In terms of RNA transcription, there is high fidelity productivity; fourth, due to the lack of real microRNAs in prokaryotes, but high purity of the desired microRNAs; and finally, there is no endotoxin, which can be treated by certain chemical treatments. And further removed. Therefore, a method for producing human pre-miRNAs and/or shRNAs in prokaryotic cells without the problems of system incompatibility and endotoxin contamination is highly ideal. In addition, the drugs thus obtained can exhibit novel therapeutic effects in addition to the currently known functions of microRNA.

本發明之原理依賴於原核與真核RNA轉錄系統之間的不同且不相容之特性。天然地,原核RNA聚合酶不識別真核啟動子,且反之亦然。然而,本發明已鑑別可充當轉錄誘導劑以觸發及/或增強原核生物中之真核啟動子驅動之 RNA轉錄的化學劑。因此,在本發明中教示之知識係超出關於原核與真核轉錄系統之間的差異之所有當前理解之全新的突破。 The principle of the present invention relies on the different and incompatible characteristics between prokaryotic and eukaryotic RNA transcription systems. Naturally, prokaryotic RNA polymerase does not recognize eukaryotic promoters, and vice versa. However, the present invention has identified that it can act as a transcriptional inducer to trigger and/or enhance eukaryotic promoter-driven prokaryotes in prokaryotes. Chemical agents for RNA transcription. Therefore, the knowledge taught in this invention is a brand new breakthrough beyond all current understandings about the differences between prokaryotic and eukaryotic transcription systems.

本發明係關於一種使用某些化學誘導劑刺激及/或增強原核生物中之真核啟動子驅動的RNA轉錄之誘導型基因表達組合物。此等化學誘導劑歸因於其抑菌及/或殺菌特性而尚未用於細胞培養基中,包括3-嗎啉基丙烷-1-磺酸[或名為3-(N-嗎啉基)丙烷磺酸;MOPS]、甘油及乙醇,以及其功能類似物,諸如2-(N-嗎啉基)乙烷磺酸(MES)、4-(2-羥乙基)-1-哌嗪乙烷磺酸(HEPES)及甘露糖醇(mannitol)。可設想地,具有類似結構之化學品,例如此些轉錄誘導劑,可共有類似功能。舉例而言,MOPS常用作細菌細胞裂解中之緩衝劑且因此不適用於使細菌生長。另一方面,乙醇係熟知消毒劑且甘油常用於藉由使細菌細胞壁去穩定化而進行細菌轉形,分別表明甘油係抑菌且乙醇係殺菌。有鑒於MOPS、乙醇及甘油之此等已知功能,所屬技術領域中具有通常知識者在不先知曉本發明之知識的情況下將不會預期使用痕量(0.001%至4%體積/體積濃度)此等化學品誘導原核細胞中真核啟動子驅動之基因表達。 The present invention relates to an inducible gene expression composition that uses certain chemical inducers to stimulate and/or enhance RNA transcription driven by eukaryotic promoters in prokaryotes. These chemical inducers have not been used in cell culture media due to their antibacterial and/or bactericidal properties, including 3-morpholinopropane-1-sulfonic acid [or named 3-(N-morpholino)propane Sulfonic acid; MOPS], glycerol and ethanol, and their functional analogs, such as 2-(N-morpholino)ethanesulfonic acid (MES), 4-(2-hydroxyethyl)-1-piperazineethane Sulfonic acid (HEPES) and mannitol (mannitol). It is conceivable that chemicals with similar structures, such as these transcription inducers, can share similar functions. For example, MOPS is often used as a buffer in bacterial cell lysis and therefore is not suitable for growing bacteria. On the other hand, ethanol is a well-known disinfectant and glycerol is often used for bacterial transformation by destabilizing the bacterial cell wall, indicating that glycerol is antibacterial and ethanol is sterilizing. In view of the known functions of MOPS, ethanol and glycerol, those with ordinary knowledge in the art would not expect to use trace amounts (0.001% to 4% volume/volume concentration) without first knowing the knowledge of the present invention. ) These chemicals induce gene expression driven by eukaryotic promoters in prokaryotic cells.

基於以上知識,本發明係一種利用原核細胞製造人microRNA前驅物(pre-miRNAs)及/或shRNAs作為癌症療法之治療藥物及/或疫苗的設計及方法。更特定言之,本發明係一種利用原核細胞製造一類特殊pre-miRNA類藥劑(名為pro-miRNA)之設計及方法,該等藥劑能夠將人類高度癌細胞之惡性特性重新編程為低度良性或甚至相對正常樣狀 態。較佳地,此等pro-miRNA係腫瘤抑制microRNAs(TS-miRNA),類似於miR-302a、b、c、d、e及/或f之前驅物(pre-miR-302s)及其天然家族簇以及其人工再設計之小髮夾RNA(shRNA)同源物/衍生物及/或其組合。pro-miRNA類shRNA同源物/衍生物之設計包括pro-miRNA及其同源小干擾RNA(siRNA)的不完美及完美匹配之髮夾組合物,其可形成為單個單元或多個單元簇中。此等設計可改良標靶特異性及/或減少有效遞送及療法所需之pro-miR-302之複本數。適用於該種藥物治療之人類細胞包括活體外、離體及/或活體內正常、腫瘤及癌細胞。 Based on the above knowledge, the present invention is a design and method for using prokaryotic cells to produce human microRNA precursors (pre-miRNAs) and/or shRNAs as therapeutic drugs and/or vaccines for cancer therapy. More specifically, the present invention is a design and method for using prokaryotic cells to produce a type of special pre-miRNA drugs (named pro-miRNA), which can reprogram the malignant properties of human high-grade cancer cells into low-grade benign ones Or even relatively normal appearance state. Preferably, these pro-miRNAs are tumor suppressor microRNAs (TS-miRNAs), similar to miR-302a, b, c, d, e and/or f precursors (pre-miR-302s) and their natural families Clusters and their artificially redesigned small hairpin RNA (shRNA) homologs/derivatives and/or combinations thereof. The design of pro-miRNA shRNA homologs/derivatives includes the imperfect and perfectly matched hairpin composition of pro-miRNA and its homologous small interfering RNA (siRNA), which can be formed into a single unit or multiple unit clusters in. These designs can improve target specificity and/or reduce the number of copies of pro-miR-302 required for effective delivery and therapy. Human cells suitable for such drug treatment include normal, tumor and cancer cells in vitro, in vitro and/or in vivo.

較佳地,用於本發明之原核細胞係細菌勝任細胞、特別是大腸桿菌(E.coli),且化學誘導劑係MOPS、乙醇或甘油或其混合物。亦較佳地,所用真核RNA啟動子係真核pol-2啟動子(亦即EF1α啟動子)或pol-2相容(pol-2類)病毒啟動子(亦即巨細胞病毒(cytomegaloviral)CMV啟動子)。由真核RNA啟動子介導之基因可編碼選自由microRNA(miRNA)、小髮夾RNA(shRNA)、小干擾RNA(siRNA)、傳訊RNA(mRNA)、其前驅物及同源物及其組合所組成之群組的非編碼或蛋白質編碼RNA或兩者(諸如含內含子之基因轉錄物)。為了誘導基因表達,以真核RNA啟動子介導之基因轉染原核細胞,且隨後在37℃下在添加化學誘導劑下生長於類似於Luria-Bertani(LB)培養液之培養基中>24小時。 Preferably, the prokaryotic cell line used in the present invention is a competent cell of bacteria, especially E. coli, and the chemical inducer is MOPS, ethanol or glycerol or a mixture thereof. Also preferably, the eukaryotic RNA promoter used is the eukaryotic pol-2 promoter (that is, the EF1α promoter) or the pol-2 compatible (pol-2 type) viral promoter (that is, the cytomegaloviral ). CMV promoter). Genes mediated by eukaryotic RNA promoters can be encoded from microRNA (miRNA), small hairpin RNA (shRNA), small interfering RNA (siRNA), messaging RNA (mRNA), their precursors and homologs, and combinations thereof The group of non-coding or protein-coding RNA or both (such as intron-containing gene transcripts). In order to induce gene expression, prokaryotic cells were transfected with genes mediated by eukaryotic RNA promoters, and then grown in a medium similar to Luria-Bertani (LB) medium at 37°C with the addition of chemical inducers for >24 hours .

為證實該等化學誘導劑對於原核生物中人microRNA製造之可誘導性,發明人將來自發明人之優先權美國專利申請案第12/149,725號及第12/318,806號之慢病毒載 體pSpRNAi-RGFP-miR302修飾為新質體載體pLenti-EF1a-RGFP-miR302,其SpRNAi-RGFP基因表達係由真核啟動子諸如EF1αCMV所驅動(圖1A)。此後,發明人用其轉形大腸桿菌勝任細胞,且隨後使用紅色螢光蛋白(RGFP)之生成作為量測microRNA miR-302之轉錄速率及過程的可見標記,如圖1B中所示。因為miR-302家族簇亦經修飾以編碼於RGFP基因之5'-內含子區[例如5'-非轉譯區(5'-UTR)或第一內含子]中,所以每個RGFP mRNA之轉錄引領至產生一個4髮夾之miR-302前驅物簇(pri-miR-302)及/或四個1髮夾之miR-302前驅物(pre-miR-302s),如圖5及6中所示。由於原核生物中不具有RNase III Dicer,因此pri-miR-302轉錄物將最終(由大腸桿菌中之某些單股RNases)分解為1髮夾之pre-miR-302s,其皆可經提取且進一步在本發明中用作治療藥物。廣義而言,5'-UTR及3'-UTR在本發明中視為內含子之一部分。 In order to verify the inducibility of these chemical inducers for the production of human microRNAs in prokaryotes, the inventors gave priority to the lentiviral vector pSpRNAi-RGFP of US Patent Application Nos. 12/149,725 and 12/318,806 from the inventors. -miR302 was modified into a new plastid vector pLenti-EF1a-RGFP-miR302 , whose SpRNAi-RGFP gene expression system is driven by eukaryotic promoters such as EF1α or CMV (Figure 1A). Thereafter, the inventors used it to transform E. coli competent cells, and then used the production of red fluorescent protein (RGFP) as a visible marker for measuring the transcription rate and process of microRNA miR-302, as shown in Figure 1B. Because the miR-302 family cluster has also been modified to encode in the 5'-intron region of the RGFP gene [for example, the 5'-untranslated region (5'-UTR) or the first intron], each RGFP mRNA The transcription leads to a 4-hairpin miR-302 precursor cluster (pri-miR-302) and/or four 1-hairpin miR-302 precursors (pre-miR-302s), as shown in Figures 5 and 6 Shown in. Since there is no RNase III Dicer in prokaryotes, the pri-miR-302 transcript will eventually be decomposed (by some single-stranded RNases in E. coli) into 1 hairpin pre-miR-302s, all of which can be extracted and It is further used as a therapeutic drug in the present invention. Broadly speaking, 5'-UTR and 3'-UTR are regarded as part of introns in the present invention.

所有miR-302成員於其前5'-十七個(17)核苷酸中共有完全相同序列5'-UAAGUGCUUC CAUGUUU-3'(SEQ.ID.NO.3),且於成熟microRNA之其全長23核苷酸中含有>82%同源性。基於線上計算程式TARGETSCAN(http://www.targetscan.org/)及PICTAR-VERT(http://pictar.mdc-berlin.de/)預測之結果,此等miR-302同時靶向幾乎相同基因,包括>600種人類基因。另外,miR-302亦與mir-92、mir-93、mir-200c、mir-367、mir-371、mir-372、mir-373、mir-374及mir-520家族成員共有多種重疊標的基因,其皆可具有類似功能。大多數此等標的基因係參與起始 及/或確立在早期胚胎發生期間某些譜系特異性細胞分化之發育信號及轉錄因子(Lin等人,2008)。多種此等標的基因亦係習知的致癌基因;因此,miR-302s很可能充當腫瘤抑制因子以預防正常hESC生長偏向至腫瘤/癌症形成。 All miR-302 members share the exact same sequence 5'-UAAGUGCUUC CAUGUUU-3' (SEQ.ID.NO.3) in the first 5'-17 (17) nucleotides, and the full length of the mature microRNA The 23 nucleotides contain >82% homology. Based on the results predicted by online calculation programs TARGETSCAN (http://www.targetscan.org/) and PICTAR-VERT (http://pictar.mdc-berlin.de/), these miR-302 targets almost the same genes at the same time , Including >600 human genes. In addition, miR-302 also shares multiple overlapping target genes with mir-92, mir-93, mir-200c, mir-367, mir-371, mir-372, mir-373, mir-374 and mir-520 family members. All of them can have similar functions. Most of these target gene lines are involved in the initiation And/or establish developmental signals and transcription factors for the differentiation of certain lineage-specific cells during early embryogenesis (Lin et al., 2008). Many of these target genes are also known oncogenes; therefore, miR-302s is likely to act as a tumor suppressor to prevent normal hESC growth from deviating to tumor/cancer formation.

誘導原核生物中真核啟動子驅動之基因表達.Induces gene expression driven by eukaryotic promoters in prokaryotes.

將大腸桿菌(E.coli)勝任細胞使用z-勝任大腸桿菌轉形套組(Zymo Research,Irvine,CA)藉由pLenti-EF1α-RGFP-miR302質體(圖1A)轉形,且在37℃下在以170rpm頻繁攪拌下於補充有0.1%(v/v)MOPS與0.05%(v/v)甘油(誘導劑)混合物之Luria-Bertani(LB)培養液中培養。在隔夜培育之後,經轉形之大腸桿菌勝任細胞表達高度豐富之紅色RGFP蛋白,其明顯可見於LB培養液之色彩中,而空白對照大腸桿菌不呈現RGFP,如圖2中所示。功能RGFP之存在表明,其編碼之RNA及蛋白質兩者皆成功地於勝任細胞中產生及加工。 E. coli competent cells were transformed with pLenti-EF1α-RGFP-miR302 plastids (Figure 1A) using the z-competent E. coli transformation kit (Zymo Research, Irvine, CA), and at 37°C It was cultured in Luria-Bertani (LB) medium supplemented with a mixture of 0.1% (v/v) MOPS and 0.05% (v/v) glycerol (inducer) under frequent stirring at 170 rpm. After overnight incubation, the transformed E. coli competent cells express highly abundant red RGFP protein, which is clearly visible in the color of the LB medium, while the blank control E. coli does not show RGFP, as shown in Figure 2. The existence of functional RGFP indicates that both the RNA and protein encoded by it are successfully produced and processed in competent cells.

為進一步證實由化學誘導劑誘導之基因表達之特異性,製備兩種經轉形之大腸桿菌菌株:一種攜載含有CMV啟動子驅動之綠色螢光蛋白(GFP)基因的pLVX-Grn-miR302+367質體載體且另一種攜載前述pLenti-EF1α-RGFP-miR302載體。在僅與0.1%(v/v)MOPS一起培育隔夜之後,經pLVX-Grn-miR302+367轉形之大腸桿菌變為綠色,而經pLenti-EF1α-RGFP-miR302轉形之大腸桿菌仍顯示為紅色,如圖3中所示。此結果表明,如MOPS之化學誘導劑可經由真核pol-2或pol-2類病毒啟動子刺激特異性RNA轉錄及其相關蛋白質產生。特定言之,應注意RGFP 及GFP產量如此豐富,使得大腸桿菌細胞甚至可視地由各別紅色及綠色染色。 In order to further confirm the specificity of gene expression induced by chemical inducers, two transformed E. coli strains were prepared: a pLVX-Grn-miR302 + carrying a green fluorescent protein (GFP) gene driven by a CMV promoter 367 plastid vector and the other carrying the aforementioned pLenti-EF1α-RGFP-miR302 vector. After incubating overnight with only 0.1% (v/v) MOPS, the Escherichia coli transformed by pLVX-Grn-miR302 + 367 turned green, while the Escherichia coli transformed by pLenti-EF1α-RGFP-miR302 still showed as Red, as shown in Figure 3. This result indicates that chemical inducers such as MOPS can stimulate specific RNA transcription and related protein production via eukaryotic pol-2 or pol-2 virus promoters. In particular, it should be noted that the production of RGFP and GFP is so abundant that E. coli cells are even visually stained with red and green respectively.

在本發明中測試的所有化學品之中,前三種最強力誘導劑係MOPS、甘油及乙醇,如圖4中所示。進一步藉由西方墨點分析(Western blot analysis)證實誘導之RGFP產生之定量結果,如圖5及實例3中所示。細菌RuvB蛋白充當管家標準以標準化RGFP表達。亦發現此等鑑別之誘導劑之可誘導性與其濃度成比例地具劑量依賴性。在無任何處理之情況下,陰性對照大腸桿菌細胞在不存在任何螢光染色劑下僅展示其原始色。因此,根據所有此些結果,本發明明顯提供一種新穎化學誘導型組合物及其用於調節原核細胞中真核pol-2驅動或pol-2類病毒啟動子驅動之RNA產生的應用。鑒於以上論證,所屬技術領域中具有通常知識者極明顯可使用其他基因或相關cDNAs替代RGFP基因來於原核生物中製造功能RNAs及相關蛋白質。 Among all the chemicals tested in the present invention, the first three most potent inducers are MOPS, glycerol and ethanol, as shown in Figure 4. The quantitative results of induced RGFP production were further confirmed by Western blot analysis, as shown in Figure 5 and Example 3. The bacterial RuvB protein serves as a housekeeping standard to standardize RGFP expression. It was also found that the inducibility of these identified inducers was dose-dependent in proportion to their concentration. Without any treatment, the negative control E. coli cells showed only their original color in the absence of any fluorescent stain. Therefore, based on all these results, the present invention clearly provides a novel chemically inducible composition and its application for regulating eukaryotic pol-2 or pol-2 virus promoter-driven RNA production in prokaryotic cells. In view of the above arguments, it is very obvious that those with ordinary knowledge in the technical field can use other genes or related cDNAs to replace the RGFP gene to produce functional RNAs and related proteins in prokaryotes.

誘導原核生物中真核啟動子驅動之microRNA表達.Induces the expression of microRNA driven by eukaryotic promoters in prokaryotes.

伴隨著以上所示的RGFP誘導之實驗,發明人進一步量測pri-/pre-miR-302s及其成熟miR-302s於有或無化學誘導之pLenti-EF1α-RGFP-miR302轉形細胞中之表達。如圖6及實例4中所示,誘導之pri-/pre-miR-302產生之定量結果已藉由北方墨點分析(Northern blot analysis)證實。類似於圖4及5中RGFP誘導之結果,pri-/pre-miR-302表達於經MOPS、甘油或乙醇處理之轉形細胞中很大程度上可偵測到,但於空白對照中未偵測到,表明此等化學誘導劑實質上經由真核pol-2啟動子刺激原核細胞中編碼pri-/pre-miRNAs之表 達(圖6)。歸因於pre-miRNAs與shRNAs之結構類似性,所屬技術領域中具有通常知識者明顯可使用本發明製造其他類型之pri-/pre-miRNA種類,諸如但不限於miR-34、miR-146、miR-371-373及miR-520。為了澄清,此等原核生物產生之pri-/pre-miRNAs稱為pro-miRNAs。 Following the RGFP induction experiment shown above, the inventors further measured the expression of pri-/pre-miR-302s and its mature miR-302s in pLenti-EF1α-RGFP-miR302 transformed cells with or without chemical induction . As shown in Figure 6 and Example 4, the quantitative results produced by induced pri-/pre-miR-302 have been confirmed by Northern blot analysis. Similar to the results of RGFP induction in Figures 4 and 5, the expression of pri-/pre-miR-302 was largely detectable in transformed cells treated with MOPS, glycerol, or ethanol, but it was not detected in the blank control. Measured, indicating that these chemical inducers substantially stimulate the expression of pri-/pre-miRNAs in prokaryotic cells via the eukaryotic pol-2 promoter (Figure 6). Due to the structural similarity between pre-miRNAs and shRNAs, those skilled in the art can obviously use the present invention to produce other types of pri-/pre-miRNA, such as but not limited to miR-34, miR-146, miR-371-373 and miR-520. To clarify, the pri-/pre-miRNAs produced by these prokaryotes are called pro-miRNAs.

因為pLenti-EF1α-RGFP-miR302含有位於RGFP基因之5'-UTR中的miR-302家族簇(圖1A及圖1B),所以誘導之RGFP基因表達亦將產生miR-302簇(pri-miR-302)及其衍生物pre-miR-302a、b、c及d(pre-miR-302s),如圖1B中所展現。由於原核生物中不具有RNase III Dicer,因此發現由此獲得之pri-miR-302及pre-miR-302s可保持為髮夾型microRNA前驅物,其可用於開發治療藥物。在人類細胞中,此等pre-miR-302s及pri-miR-302可經處理為成熟miR-302以用於引發其腫瘤抑制功能。類似地,本發明亦可用以製造其他類型之TS-miRNA種類及其前驅物,諸如miR-34a、miR-146a、miR-373及miR-520家族。 Because pLenti-EF1α-RGFP-miR302 contains the miR-302 family cluster located in the 5'-UTR of the RGFP gene (Figure 1A and Figure 1B), the induced expression of the RGFP gene will also produce the miR-302 cluster (pri-miR- 302) and its derivatives pre-miR-302a, b, c and d (pre-miR-302s), as shown in Figure 1B. Since there is no RNase III Dicer in prokaryotes, it is found that the pri-miR-302 and pre-miR-302s obtained can be kept as hairpin microRNA precursors, which can be used to develop therapeutic drugs. In human cells, these pre-miR-302s and pri-miR-302 can be processed into mature miR-302 to trigger its tumor suppressor function. Similarly, the present invention can also be used to produce other types of TS-miRNA species and their precursors, such as miR-34a, miR-146a, miR-373 and miR-520 families.

所得pro-miRNAs可容易自勝任大腸桿菌細胞提取(實例5及6)且藉由高效液相層析(HPLC)進一步純化(圖10A及10B)。在經純化之pro-miR-302s內,發明人已使用microRNA微陣列分析(圖11B及12)及RNA測序[圖13A(pri-miR-302)及13B(pre-miR-302s)]鑑別出所有的miR-302家族成員(miR-302a、a*、b、b*、c、c*、d及d*)。特定言之,測序結果顯示,此等pro-miR-302s皆與其天然pre-miR-302對應物共有完全相同序列(圖13B)。此外,發明人已將此等pro-miR-302s調配為用於IV/活體內注射之可溶藥物以便測試 其在活體內對人類肝癌之治療效果(實例11)。如圖14中所示,在3次注射處理之後,pro-miR-302藥物成功地減小活體內移植之人類肝癌之>90%體積,使平均癌症大小與未經處理之癌症相比縮小至<10%。此外,經蘇木精與伊紅(hematoxylin & eosin,H&E)染色之組織學檢查進一步論證,此顯著治療效果不僅來自miR-302之所報導的腫瘤抑制功能(Lin等人,2010),而亦來自之前尚未觀測到之另一新穎重新編程功能。舉例而言,圖15明顯展示,pro-miR-302藥物可在活體內將人類高度肝癌之惡性特性重新編程至幾乎十分類似於正常肝組織之良性階段。此等經處理之癌症甚至可形成正常肝樣結構,諸如經典肝小葉(liver lobules)、中央靜脈(central veins,CV)及門脈三聯管(portal triads,PT)。因此,此等證據強烈表明,pro-miR-302能夠不僅抑制腫瘤/癌細胞生長,而且在活體內可將人類癌症之惡性復位至相對良性或正常狀態,導領癌症藥物設計之全新治療效果。 The resulting pro-miRNAs can be easily extracted from competent E. coli cells (Examples 5 and 6) and further purified by high performance liquid chromatography (HPLC) (Figures 10A and 10B). In the purified pro-miR-302s, the inventors have used microRNA microarray analysis (Figure 11B and 12) and RNA sequencing [Figure 13A (pri-miR-302) and 13B (pre-miR-302s)] to identify All miR-302 family members (miR-302a, a*, b, b*, c, c*, d, and d*). In particular, the sequencing results showed that these pro-miR-302s share exactly the same sequence with their natural pre-miR-302 counterparts (Figure 13B). In addition, the inventors have formulated these pro-miR-302s as soluble drugs for IV/in vivo injection for testing Its therapeutic effect on human liver cancer in vivo (Example 11). As shown in Figure 14, after 3 injections, the pro-miR-302 drug successfully reduced the volume of human liver cancer transplanted in vivo by >90%, reducing the average cancer size to less than that of untreated cancer. <10%. In addition, the histological examination of hematoxylin and eosin (H&E) staining further demonstrated that this significant therapeutic effect not only comes from the reported tumor suppressor function of miR-302 (Lin et al., 2010), but also From another novel reprogramming function that has not been observed before. For example, Figure 15 clearly shows that the pro-miR-302 drug can reprogram the malignant characteristics of human high-grade liver cancer to a benign stage that is almost similar to normal liver tissue in vivo. These treated cancers can even form normal liver-like structures, such as classic liver lobules (liver lobules), central veins (CV) and portal triads (PT). Therefore, these evidences strongly indicate that pro-miR-302 can not only inhibit the growth of tumor/cancer cells, but also reset the malignant human cancer to a relatively benign or normal state in vivo, leading to a new therapeutic effect for cancer drug design.

在本發明中,質體載體及其編碼之非編碼RNAs(亦即pre-miRNA/shRNA)兩者皆可同時於原核細胞、較佳大腸桿菌DH5α勝任細胞中擴增(實例1、5及6)。用於分離擴增之pLenti-EF1α-RGFP-miR302質體DNA及轉錄之pri-/pre-miR-302s的方法描述於實例5及6中。遞送質體載體(亦即pLenti-EF1α-RGFP-miR302)至原核細胞中之技術稱為細胞轉形,而遞送擴增之非編碼RNAs(亦即pro-/pri-/pre-miR-302s)至真核細胞中之方法可選自由胞吞作用、化學/甘油輸注、胜肽/脂質體/化學介導的轉染、電穿孔(electroporation)、基因槍穿透(gene gun penetration)、微注 射、轉位子/反轉錄轉位子插入及/或腺病毒/反轉錄病毒/慢病毒感染所組成之群組。 In the present invention, both the plastid vector and its encoded non-coding RNAs (ie pre-miRNA/shRNA) can be simultaneously amplified in prokaryotic cells, preferably E. coli DH5α competent cells (Examples 1, 5 and 6 ). The methods used to isolate amplified pLenti-EF1α-RGFP-miR302 plastid DNA and transcribed pri-/pre-miR-302s are described in Examples 5 and 6. The technique of delivering plastid vector (ie pLenti-EF1α-RGFP-miR302 ) into prokaryotic cells is called cell transformation, and delivery of amplified non-coding RNAs (ie pro-/pri-/pre-miR-302s) The method to eukaryotic cells can be selected from endocytosis, chemical/glycerol infusion, peptide/liposome/chemically mediated transfection, electroporation, gene gun penetration, microinjection , A group consisting of transposon/retrotransposon insertion and/or adenovirus/retrovirus/lentivirus infection.

Pre-miR-302誘導之多能幹細胞衍生.Pre-miR-302 induced pluripotent stem cell derived.

MiR-302已據報導可將哺乳動物體細胞重新編程為人胚胎幹細胞(hESC)類誘導多能幹細胞(iPSCs),如發明人之優先權美國專利申請案第12/149,725號及第12/318,806號中所論證。已使用此等iPSCs設計及開發眾多幹細胞應用及療法。儘管如此,因為培養此等iPSCs及hESCs成本極高且極費力,所以自此等多能幹細胞收集miR-302及其前驅物是困難且低效的。另一方面,製造合成shRNA模擬物係pre-miR-302製造之另一可能的替代方案;然而,成本仍極為高昂。此外,合成shRNA與天然pre-miR-302之間的類似性十分令人質疑。為解決此等問題,本發明提供一種簡單、便宜且高效的於原核生物中大量製造pre-miR-302之方法。此外,此等原核生物產生之pre-miR-302s(pro-miR-302s)之提取及純化係相對簡單且具成本效益的,如本發明之圖6及實例6中所示。 MiR-302 has been reported to reprogram mammalian somatic cells into human embryonic stem cells (hESC)-like induced pluripotent stem cells (iPSCs), such as the inventor’s priority US Patent Application Nos. 12/149,725 and 12/318,806 Demonstrated in the number. Many stem cell applications and therapies have been designed and developed using these iPSCs. Nevertheless, it is difficult and inefficient to collect miR-302 and its precursors from such pluripotent stem cells because of the extremely high cost and laborious cultivation of such iPSCs and hESCs. On the other hand, the manufacturing of synthetic shRNA mimics, pre-miR-302, is another possible alternative; however, the cost is still extremely high. In addition, the similarity between synthetic shRNA and natural pre-miR-302 is very questionable. To solve these problems, the present invention provides a simple, cheap and efficient method for mass production of pre-miR-302 in prokaryotes. In addition, the extraction and purification of pre-miR-302s (pro-miR-302s) produced by these prokaryotes is relatively simple and cost-effective, as shown in Figure 6 and Example 6 of the present invention.

發明人已使用pLenti-EF1α-RGFP-miR302轉形大腸桿菌細胞來製造及分離大量且高品質之pLenti-EF1α-RGFP-miR302載體及pro-miR-302s,如實例5及6中所示。pLenti-EF1α-RGFP-miR302及pro-miR-302s兩者皆可用於產生iPSCs。遵循實例2,當藉由本發明製造之pro-miR-302s轉導至人類皮膚初級角質細胞中時,轉染之角質細胞重新編程為表現強hESC標記Oct4之hESC類iPSCs(圖7)。在圖8及實例8中,發明人進一步執行亞硫酸鹽DNA 測序分析以顯示,整體DNA去甲基確實於Oct4Sox2基因兩者之啟動子(兩種關鍵重新編程因子)以及hESC標記中發生。因為整體DNA去甲基及Oct4表達據知為體細胞重新編程以形成hESC類iPSCs之第一步驟(Simonsson及Gurdon,Nat Cell Biol.6:984-990,2004),所以自MOPS誘導之大腸桿菌細胞提取物分離的pro-miR-302s經證實與可用於iPSC衍生之天然pre-miR-302s一樣有效。因此,pro-miR-302及pre-miR-302在幹細胞誘導中很可能具有相同功能。 The inventors have used pLenti-EF1α-RGFP-miR302 to transform E. coli cells to produce and isolate a large number of high-quality pLenti-EF1α-RGFP-miR302 vectors and pro-miR-302s, as shown in Examples 5 and 6. Both pLenti-EF1α-RGFP-miR302 and pro-miR-302s can be used to generate iPSCs. Following Example 2, when the pro-miR-302s produced by the present invention were transduced into primary keratinocytes of human skin, the transfected keratinocytes were reprogrammed into hESC-like iPSCs that exhibit a strong hESC marker Oct4 (Figure 7). In Figure 8 and Example 8, the inventors further performed sulfite DNA sequencing analysis to show that the overall DNA demethylation did occur in the promoters of both Oct4 and Sox2 genes (two key reprogramming factors) and hESC markers. . Since global DNA demethylation and Oct4 expression are known to be the first step in somatic cell reprogramming to form hESC-like iPSCs (Simonsson and Gurdon, Nat Cell Biol. 6: 984-990, 2004), it is derived from MOPS-induced E. coli The pro-miR-302s isolated from cell extracts proved to be as effective as the natural pre-miR-302s that can be used for iPSC derivation. Therefore, pro-miR-302 and pre-miR-302 are likely to have the same function in stem cell induction.

Pre-miR-302誘導之CD34陽性成體幹細胞增殖及/或再生.Proliferation and/or regeneration of CD34-positive adult stem cells induced by Pre-miR-302.

已發現MicroRNA miR-302可將哺乳動物體細胞重新編程為胚胎幹細胞(ESC)類誘導多能幹細胞(iPSC)(Lin,2008,2010,2011;Lin之美國專利申請案第12/149,725號及第12/318,806號)。使用此等iPSCs,已開發多種幹細胞相關之應用及療法用於推進現代再生醫學。然而,miR-302僅富集地見於人ESCs而非分化之組織細胞中。此外,自人ESCs分離miR-302係非常有爭議性、成本高且繁瑣。為解決此等問題,本發明提供一種簡單、便宜、快速且誘導型組合物及方法,以便於原核生物中大量製造髮夾型miR-302分子及/或其前驅物/同源物。此外,自原核細胞分離miR-302及/或其前驅物係相對簡單且具成本效益的,如本發明之圖6及實例6中所示。 It has been found that MicroRNA miR-302 can reprogram mammalian somatic cells into embryonic stem cells (ESC)-like induced pluripotent stem cells (iPSC) (Lin, 2008, 2010, 2011; Lin's U.S. Patent Application No. 12/149,725 and No. 12/318, No. 806). Using these iPSCs, a variety of stem cell-related applications and therapies have been developed to advance modern regenerative medicine. However, miR-302 is only enriched in human ESCs and not differentiated tissue cells. In addition, the isolation of miR-302 from human ESCs is very controversial, costly and cumbersome. In order to solve these problems, the present invention provides a simple, cheap, fast and inducible composition and method to facilitate the mass production of hairpin miR-302 molecules and/or their precursors/homologs in prokaryotes. In addition, the isolation of miR-302 and/or its precursors from prokaryotic cells is relatively simple and cost-effective, as shown in Figure 6 and Example 6 of the present invention.

發明人已使用pLenti-EF1α-RGFP-miR302轉形大腸桿菌細胞來製造及分離大量且高品質之pLenti-EF1α-RGFP-miR302載體及pre-miR-302s,如實例5及 6中所示。鑒於發明人先前美國專利申請案第12/149,725號及第12/318,806號,使用pLenti-EF1α-RGFP-miR302已經展示可產生人ESC類iPSCs。此外,由此獲得之iPSCs可進一步分化為各種體組織細胞,如發明人先前研究(Lin等人,2008,2010及2011)中所論證。 The inventors have used pLenti-EF1α-RGFP-miR302 to transform E. coli cells to produce and isolate a large number of high-quality pLenti-EF1α-RGFP-miR302 vectors and pre-miR-302s, as shown in Examples 5 and 6. In view of the inventors' previous US Patent Application Nos. 12/149,725 and 12/318,806, the use of pLenti-EF1α-RGFP-miR302 has been shown to produce human ESC-like iPSCs. In addition, the iPSCs thus obtained can be further differentiated into various somatic tissue cells, as demonstrated in the inventors' previous studies (Lin et al., 2008, 2010 and 2011).

分離之miR-302及/或pre-miR-302分子之應用可進一步包括CD34陽性成體幹細胞之誘導及增殖。如圖17A及17B中所示,發明人於使用新穎miR-302調配藥物之傷口癒合療法及癌症療法中的近期研究顯示,相對低濃度(50-500μg/mL)之分離之miR-302/pre-miR-302分子的處理不僅極大地增強無疤痕傷口癒合而且在活體內在豬皮膚中誘導受傷區域周圍之CD34陽性成體幹細胞增殖。基於圖17B之miR-302處理(miR-302s/pre-miR-302s+抗生素軟膏)結果與圖17A之對照(僅抗生素軟膏)結果的比較,明顯顯示在miR-302處理之後活體內CD34陽性成體幹細胞群體(經綠色螢光抗體標記)有

Figure 105139971-A0202-12-0017-61
40倍之增加。當前已知之CD34陽性成體幹細胞類型包括但不限於皮膚、毛髮、肌肉、血液(造血)、間質細胞(mesenchymal)及神經幹細胞。因此,因為miR-302可用以活體內誘導CD34陽性成體幹細胞增殖及/或再生,所以此治療效果亦可幫助使功能性成體幹細胞再生長及/或複生以便治療人類之退化性疾病,諸如但不限於阿茲海默症、帕金森氏症、骨質疏鬆症、糖尿病及癌症。 The application of the isolated miR-302 and/or pre-miR-302 molecules may further include the induction and proliferation of CD34-positive adult stem cells. As shown in Figures 17A and 17B, recent studies by the inventors in wound healing and cancer therapy using novel miR-302 formulations show that relatively low concentrations (50-500μg/mL) of isolated miR-302/pre -The treatment of miR-302 molecules not only greatly enhances scarless wound healing but also induces the proliferation of CD34-positive adult stem cells around the injured area in pig skin in vivo. Based on the comparison of the results of miR-302 treatment (miR-302s/pre-miR-302s+antibiotic ointment) in Figure 17B with the results of the control (antibiotic ointment only) in Figure 17A, it is obvious that CD34-positive adults in vivo after miR-302 treatment Stem cell population (labeled with green fluorescent antibody)
Figure 105139971-A0202-12-0017-61
An increase of 40 times. The currently known CD34-positive adult stem cell types include but are not limited to skin, hair, muscle, blood (hematopoietic), mesenchymal and neural stem cells. Therefore, because miR-302 can be used to induce the proliferation and/or regeneration of CD34-positive adult stem cells in vivo, this therapeutic effect can also help regenerate and/or regenerate functional adult stem cells to treat degenerative diseases in humans, such as But not limited to Alzheimer’s disease, Parkinson’s disease, osteoporosis, diabetes and cancer.

將pro-miR-302用於活體內腫瘤/癌症療法.Use pro-miR-302 for in vivo tumor/cancer therapy.

發明人先前研究已論證此方法於活體外而非活體內處理人類肝細胞癌(hepatocellular carcinoma)HepG2細 胞之可行性(Lin等人,2010)。如圖9中所示,經處理之腫瘤/癌細胞重新編程為iPSCs(標記為mirPS-HepG2)且形成胚狀體樣細胞群落。此外,亦發現miR-302可誘導經處理癌細胞群體中之>95%細胞凋亡。圖9之頂圖進一步展示DNA含量響應於細胞週期階段之流式細胞量測術分析,顯示在miR-302處理之後有絲分裂細胞群體之顯著減少(自45.6%至17.2%)。此等結果表明,miR-302可有效減慢人類肝癌細胞之快速細胞週期速率且因此導致此等癌細胞之顯著細胞凋亡。 The inventors’ previous studies have demonstrated that this method can treat human hepatocellular carcinoma (hepatocellular carcinoma) HepG2 cells in vitro rather than in vivo. The viability of the cell (Lin et al., 2010). As shown in Figure 9, the treated tumors/cancer cells were reprogrammed into iPSCs (labeled as mirPS-HepG2) and formed embryoid body-like cell colonies. In addition, it was also found that miR-302 can induce apoptosis in >95% of the treated cancer cell population. The top panel of Figure 9 further shows the flow cytometry analysis of DNA content in response to cell cycle stages, showing a significant reduction in the mitotic cell population (from 45.6% to 17.2%) after miR-302 treatment. These results indicate that miR-302 can effectively slow down the rapid cell cycle rate of human liver cancer cells and thus cause significant apoptosis of these cancer cells.

癌症進程之過程歸因於累積基因突變而視為不可逆;然而,本發明揭示一種新穎pre-miRNA(pro-miR-302)功能,其可在活體內將高度惡性癌症重新編程回至低度良性或甚至正常樣階段,其機制可關於極罕見稱之為自發癌症消退(spontaneous cancer regression)之天然癒合過程。自發癌症消退罕見地以100,000名癌症患者中少於1人的比率出現。發明人發現,pro-miR-302治療在人類肝癌中能夠將此罕見癒合比率增加至>90%。如圖14中所示,使用pro-miR-302s作為藥物處理SCID-米色裸小鼠(n=6)中人類肝癌異種移植物之治療結果證實,此pro-miR-302藥物成功地將癌症大小自728±328mm3(未經處理之空白對照,C)減小至75±15mm3(經pro-miR-302處理,T),指示平均癌症大小減小約90%比率,而其他合成siRNA模擬物(siRNA-302)處理不提供任何類似治療效果。 The process of cancer progression is considered irreversible due to accumulated gene mutations; however, the present invention reveals a novel pre-miRNA (pro-miR-302) function, which can reprogram highly malignant cancers back to low-grade benign in vivo Or even the normal-like stage, the mechanism may be related to the very rare natural healing process called spontaneous cancer regression. Spontaneous cancer regression rarely occurs at a rate of less than 1 in 100,000 cancer patients. The inventor found that pro-miR-302 treatment can increase this rare healing rate to >90% in human liver cancer. As shown in Figure 14, the treatment results of using pro-miR-302s as a drug to treat human liver cancer xenografts in SCID-beige nude mice (n=6) confirmed that this pro-miR-302 drug successfully reduced the size of the cancer. Decreased from 728±328mm 3 (untreated blank control, C) to 75±15mm 3 (treated with pro-miR-302, T), indicating that the average cancer size is reduced by about 90%, while other synthetic siRNA mimics (SiRNA-302) treatment does not provide any similar therapeutic effects.

進一步組織學檢查(圖14之最右圖)顯示,正常肝小葉樣結構(圈出且由黑色箭頭指出)僅於經pro-miR-302處理之癌症移植物中觀測到但於其他處理或對 照中未觀測到,表明重新編程機制發生以將惡性癌細胞特性復位回至相對正常樣狀態(癌症逆轉)。此新穎重新編程機制很可能由miR-302對人類致癌基因、尤其參與癌症進程之突變致癌基因的基因靜默效果產生。藉由使此些突變致癌基因靜默,pro-miR-302能夠將癌基因表達模式復位回至正常樣狀態,因此產生癌症逆轉之治療結果。儘管如此,此活體內重新編程機制明顯不同於先前報導之體細胞重新編程(Lin等人,2008及2011),因為未鑑別出Oct4陽性多能幹細胞。 Further histological examination (the rightmost image in Figure 14) showed that normal liver lobule-like structures (circled and indicated by black arrows) were only observed in cancer grafts treated with pro-miR-302 but not in other treatments or treatments. It was not observed in the photo, indicating that the reprogramming mechanism occurred to reset the characteristics of the malignant cancer cells back to a relatively normal-like state (cancer reversal). This novel reprogramming mechanism is likely to be caused by the gene silencing effect of miR-302 on human oncogenes, especially mutated oncogenes involved in cancer progression. By silencing these mutated oncogenes, pro-miR-302 can reset the oncogene expression pattern back to a normal-like state, thereby producing cancer reversal treatment results. Nevertheless, this in vivo reprogramming mechanism is significantly different from previously reported somatic cell reprogramming (Lin et al., 2008 and 2011) because Oct4-positive pluripotent stem cells have not been identified.

更詳細之組織學檢查(圖15)進一步證實,pro-miR-302藥物確實將高度(IV度)人類肝癌移植物重新編程至更良性的低度(低於II度)狀態。如圖15中所示,經處理之癌症移植物形成含有中央靜脈(CV)樣及門脈三聯管(PT)樣結構(由黑色箭頭指示)之經典肝小葉,極其類似於正常肝組織結構(頂圖)。活體內未經處理、經siRNA處理、經pro-miR-302處理之人類肝癌移植物及正常肝組織之中的組織學比較(圖16)亦顯示,未經處理之移植之人類肝癌(頂圖)侵襲性侵入至周圍正常組織(諸如肌肉及血管)中且形成大規模細胞-細胞及癌症-組織融合結構,證實其高惡性及轉移。siRNA模擬物(siRNA-302)處理不顯著降低移植之肝癌之惡性(中上圖),很可能肇因於活體內siRNA之短暫半衰期。相比之下,pro-miR-302處理不僅將移植之癌細胞重新編程至正常肝細胞樣形態(無融合),而且成功地抑制任何癌症侵入至周圍組織中(中下圖)。與正常肝組織(底圖)相比,經pro-miR-302處理之癌症明顯地展現類似小葉結構、正常腺細胞樣配置以及細胞-細胞及癌症-組織接合處之間的極清楚 邊界(黑色箭頭),表明此等經處理之癌症已極大地降級至極良性的狀態。pro-miR-302藥物進一步連續處理六至十次可完全消除所有六個樣品(n=6)中之癌症異種移植物。 More detailed histological examination (Figure 15) further confirmed that the pro-miR-302 drug did indeed reprogram high-grade (IV degree) human liver cancer grafts to a more benign low-grade (less than II degree) state. As shown in Figure 15, the treated cancer grafts formed classic liver lobules containing central vein (CV)-like and portal triplet (PT)-like structures (indicated by black arrows), which are very similar to normal liver tissue structures ( Top image). The histological comparison between untreated, siRNA-treated, pro-miR-302-treated human liver cancer transplants and normal liver tissues in vivo (Figure 16) also showed that untreated human liver cancer transplants (top image) ) Invasively invade surrounding normal tissues (such as muscles and blood vessels) and form large-scale cell-cell and cancer-tissue fusion structures, confirming its high malignancy and metastasis. siRNA mimic (siRNA-302) treatment does not significantly reduce the malignancy of transplanted liver cancer (upper middle), which is probably caused by the short half-life of siRNA in vivo. In contrast, pro-miR-302 treatment not only reprogrammed the transplanted cancer cells to a normal hepatocyte-like morphology (without fusion), but also successfully inhibited the invasion of any cancer into surrounding tissues (bottom middle panel). Compared with normal liver tissue (bottom image), cancers treated with pro-miR-302 clearly show a lobular-like structure, a normal glandular cell-like configuration, and the cell-cell and cancer-tissue junctions are very clear The border (black arrow) indicates that these treated cancers have been greatly degraded to an extremely benign state. The pro-miR-302 drug was further processed for six to ten consecutive times to completely eliminate cancer xenografts in all six samples (n=6).

A.定義A. Definition

為促進對本發明之理解,多個術語係定義如下:核苷酸:由糖部分體(戊糖)、磷酸基團(phosphate)及含氮雜環鹼基(nitrogenous heterocyclic base)所組成之DNA或RNA的單體單元。該鹼基係經由糖苷碳(glycosidic carbon)(戊糖之1號碳)與糖部分體鏈結,且鹼基與糖的組合為核苷(nucleoside)。含有至少一個磷酸基團鍵結至戊糖之三端或五端位置的核苷即為核苷酸。去氧核糖核酸(DNA)或核糖核酸(RNA)係分別由不同類型之核苷酸單元,即去氧核糖核苷酸與核糖核苷酸所組成。 To facilitate the understanding of the present invention, a number of terms are defined as follows: Nucleotide: DNA or DNA composed of sugar moiety (pentose), phosphate and nitrogenous heterocyclic base The monomeric unit of RNA. The base is linked to the sugar moiety through a glycosidic carbon (the No. 1 carbon of pentose), and the combination of the base and the sugar is a nucleoside. Nucleosides containing at least one phosphate group bonded to the three-terminal or five-terminal position of the pentose are referred to as nucleotides. Deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) is composed of different types of nucleotide units, namely deoxyribonucleotides and ribonucleotides.

寡核苷酸(Oligonucleotide):由兩個或多於兩個、較佳多於三個且通常多於十個之去氧核糖核酸(DNAs)及/或核糖核酸(RNAs)組成之分子。長於13個核苷酸單體之寡核苷酸亦稱為多核苷酸。寡核苷酸確切的大小取決於許多因素,並且依據該寡核苷酸之最終功能或用途而定。寡核苷酸可以任何方式產生,該方式包括化學合成、DNA複製、RNA轉錄、反轉錄或其組合。 Oligonucleotide (Oligonucleotide): A molecule composed of two or more than two, preferably more than three and usually more than ten deoxyribonucleic acids (DNAs) and/or ribonucleotides (RNAs). Oligonucleotides longer than 13 nucleotide monomers are also called polynucleotides. The exact size of the oligonucleotide depends on many factors and depends on the ultimate function or use of the oligonucleotide. Oligonucleotides can be produced in any manner, including chemical synthesis, DNA replication, RNA transcription, reverse transcription, or a combination thereof.

核苷酸類似物:嘌呤或嘧啶核苷酸,其結構上不同於腺嘌呤(A)、胸腺嘧啶(T)、鳥嘌呤(G)、胞嘧啶(C)或脲嘧啶(U),但足夠類似至可取代核酸分子中之正常核苷酸。 Nucleotide analogues: purine or pyrimidine nucleotides, which are structurally different from adenine (A), thymine (T), guanine (G), cytosine (C) or uracil (U), but sufficient Similar to normal nucleotides in nucleic acid molecules.

核酸組合物:核酸組合物係指寡核苷酸或多核苷 酸,諸如呈單股或雙股分子結構之DNA或RNA序列、或混合DNA/RNA序列。 Nucleic acid composition: nucleic acid composition refers to oligonucleotides or polynucleosides Acids, such as DNA or RNA sequences in single-stranded or double-stranded molecular structures, or mixed DNA/RNA sequences.

基因:其寡核苷酸或多核苷酸序列編碼RNA及/或多肽(蛋白質)之核酸組合物。基因可為RNA或DNA。基因可編碼非編碼RNA,諸如小髮夾RNA(shRNA)、microRNA(miRNA)、rRNA、tRNA、snoRNA、snRNA及其RNA前驅物以及衍生物。或者,基因可編碼蛋白質/肽類合成必需之蛋白質編碼RNA,諸如傳訊RNA(mRNA)及其RNA前驅物以及衍生物。在一些情況下,基因可編碼亦含有至少一microRNA或shRNA序列之蛋白質編碼RNA。 Gene: a nucleic acid composition whose oligonucleotide or polynucleotide sequence encodes RNA and/or polypeptide (protein). The gene can be RNA or DNA. Genes can encode non-coding RNA, such as small hairpin RNA (shRNA), microRNA (miRNA), rRNA, tRNA, snoRNA, snRNA and their RNA precursors and derivatives. Alternatively, genes can encode protein-encoding RNA necessary for protein/peptide synthesis, such as messaging RNA (mRNA) and its RNA precursors and derivatives. In some cases, the gene can encode protein-coding RNA that also contains at least one microRNA or shRNA sequence.

初級RNA轉錄物:直接自基因轉錄而未經任何RNA處理或修飾之RNA序列,其可選自由以下組成之群組:mRNA、hnRNA、rRNA、tRNA、snoRNA、snRNA、pre-microRNA、病毒RNA及其RNA前驅物以及衍生物。 Primary RNA transcripts: RNA sequences directly transcribed from genes without any RNA treatment or modification, which can be selected from the group consisting of mRNA, hnRNA, rRNA, tRNA, snoRNA, snRNA, pre-microRNA, viral RNA and Its RNA precursors and derivatives.

前驅傳訊RNA(pre-mRNA):蛋白質編碼基因之初級RNA轉錄物,其藉由真核第二型RNA聚合酶(Pol-II)機制於真核生物中經由稱為轉錄之胞內機制產生。pre-mRNA序列含有5'非轉譯區(UTR)、3'-UTR、外顯子及內含子。 Pre-mRNA (pre-mRNA): The primary RNA transcript of protein-coding genes, which is produced in eukaryotes through an intracellular mechanism called transcription by the mechanism of eukaryotic type II RNA polymerase (Pol-II). The pre-mRNA sequence contains 5'untranslated region (UTR), 3'-UTR, exons and introns.

內含子:編碼非蛋白質閱讀框架之基因轉錄序列之一部分或多個部分,諸如框內內含子、5'-UTR及3'-UTR。 Intron: A part or multiple parts of a gene transcription sequence that encodes a non-protein reading frame, such as in-frame introns, 5'-UTR and 3'-UTR.

外顯子:編碼蛋白質閱讀框架之基因轉錄序列(cDNA)之一部分或多個部分,諸如用於細胞基因、生長因子、胰島素、抗體及其類似物/同源物以及衍生物之cDNA。 Exon: A part or multiple parts of a gene transcription sequence (cDNA) encoding a protein reading frame, such as cDNA for cell genes, growth factors, insulin, antibodies and their analogs/homologs and derivatives.

傳訊RNA(mRNA):pre-mRNA外顯子之集合,其在內含子由胞內RNA剪接機制(剪接體)移除之後形成且 充當用於肽類/蛋白質合成之蛋白質編碼RNA。由mRNAs編碼之肽類/蛋白質包括但不限於酶、生長因子、胰島素、抗體及其類似物/同源物以及衍生物。 Signaling RNA (mRNA): A collection of pre-mRNA exons, which are formed after the introns are removed by the intracellular RNA splicing mechanism (splicesome) and Serves as protein coding RNA for peptide/protein synthesis. Peptides/proteins encoded by mRNAs include but are not limited to enzymes, growth factors, insulin, antibodies and their analogs/homologs and derivatives.

互補DNA(cDNA):含有與mRNA序列互補之序列且不含有任何內含子序列的單股或雙股DNA。 Complementary DNA (cDNA): Single-stranded or double-stranded DNA that contains a sequence complementary to the mRNA sequence and does not contain any intron sequences.

正義:與同源mRNA呈相同序列次序及組成之核酸分子。正義構形以「+」、「s」或「正義」符號指示。 Sense: A nucleic acid molecule with the same sequence order and composition as homologous mRNA. The justice configuration is indicated by the symbol "+", "s" or "justice".

反義:與各別mRNA分子互補之核酸分子。反義構形指示為「-」或「*」符號或在DNA或RNA前面以「a」或「反義」指示,例如「aDNA」或「aRNA」。 Antisense: nucleic acid molecules that are complementary to individual mRNA molecules. The antisense configuration indicator is indicated by "-" or "*" or "a" or "antisense" in front of DNA or RNA, such as "aDNA" or "aRNA".

鹼基對(bp):雙股DNA分子中腺嘌呤(adenine,A)與胸腺嘧啶(thymine,T)或胞嘧啶(cytosine,C)與鳥嘌呤(guanine,G)之配對組合(partnership)。在RNA中,脲嘧啶(uracil,U)取代胸腺嘧啶(thymine,T)。一般而言,配對組合(partnership)係經由氫鍵結實現。 Base pair (bp): The partnership of adenine (A) and thymine (T) or cytosine (C) and guanine (G) in a double-stranded DNA molecule. In RNA, uracil (U) replaces thymine (T). Generally speaking, partnership is achieved through hydrogen bonding.

鹼基對(bp):雙股DNA分子中腺瞟呤(adenine,A)與胸腺嘧啶(thymine,T)或胞嘧啶(cytosine,C)與鳥嘌呤(guanine,G)之配對組合(partnership)。在RNA中,脲嘧啶(uracil,U)取代胸腺嘧啶(thymine,T)。一般而言,配對組合(partnership)係經由氫鍵結實現。舉例而言,正義核苷酸序列「5'-A-T-C-G-U-3'」可與其反義序列「5'-A-C-G-A-T-3'」形成完全鹼基配對。 Base pair (bp): the paired combination of adenine (A) and thymine (T) or cytosine (C) and guanine (G) in double-stranded DNA molecules (partnership) . In RNA, uracil (U) replaces thymine (T). Generally speaking, partnership is achieved through hydrogen bonding. For example, the sense nucleotide sequence "5'-A-T-C-G-U-3'" can form a complete base pairing with its antisense sequence "5'-A-C-G-A-T-3'".

5'-端:在連續核苷酸之5'位置處不具有核苷酸之末端,其中一個核苷酸之5'-羥基係藉由磷酸二酯鍵接合至下一個核苷酸之3'-羥基。其他基團,諸如一或多個磷酸酯可存 在於該末端上。 5'-end: there is no nucleotide end at the 5'position of consecutive nucleotides, and the 5'-hydroxyl group of one nucleotide is joined to the 3'of the next nucleotide by a phosphodiester bond -Hydroxyl. Other groups, such as one or more phosphate esters can be present On the end.

3'-端:在連續核苷酸之3'位置處不具有核苷酸之末端,其中一個核苷酸之5'-羥基係藉由磷酸二酯鍵接合至下一個核苷酸之3'-羥基。在該端亦可存在有其他官能基,最常見為羥基。。 3'-end: There is no nucleotide end at the 3'position of consecutive nucleotides, and the 5'-hydroxyl group of one nucleotide is joined to the 3'of the next nucleotide by a phosphodiester bond -Hydroxyl. There may also be other functional groups at this end, the most common being a hydroxyl group. .

模板:藉由核酸聚合酶複製之核酸分子。模板可視聚合酶而為單股、雙股或部分雙股。合成之複本與模板或與雙股或部分雙股模板之至少一股互補。RNA及DNA兩者皆以5'至3'方向合成。核酸雙鏈體之兩股始終對齊,以使得兩股之5'端在雙鏈體之相對端(且必然地3'末端亦如此)。 Template: A nucleic acid molecule replicated by nucleic acid polymerase. The template may be single-stranded, double-stranded or partially double-stranded depending on the polymerase. The synthesized copy is complementary to the template or to at least one strand of the double-strand or part of the double-strand template. Both RNA and DNA are synthesized in the 5'to 3'direction. The two strands of the nucleic acid duplex are always aligned so that the 5'ends of the two strands are at the opposite ends of the duplex (and necessarily the 3'ends).

核酸模板:雙股DNA分子、雙股RNA分子、雜合分子,諸如DNA-RNA或RNA-DNA雜合物、或單股DNA或RNA分子。 Nucleic acid templates: double-stranded DNA molecules, double-stranded RNA molecules, hybrid molecules, such as DNA-RNA or RNA-DNA hybrids, or single-stranded DNA or RNA molecules.

保守(Conserved):若核苷酸序列與一預選(參考)序列之確切互補物(exact complement)非隨機地雜合,則該核苷酸序列與該預選序列是保守的。 Conserved: If the nucleotide sequence is non-randomly heterogeneous with the exact complement of a preselected (reference) sequence, the nucleotide sequence is conserved with the preselected sequence.

同源的或同源性:指示多核苷酸與基因或mRNA序列之間的類似性之術語。舉例而言,核酸序列可與特定基因或mRNA序列部分或完全同源。同源也可用相似核苷酸數在全部核苷酸數中所佔的百分比表示。 Homologous or homology: a term indicating the similarity between a polynucleotide and a gene or mRNA sequence. For example, the nucleic acid sequence may be partially or completely homologous to a specific gene or mRNA sequence. Homology can also be expressed as a percentage of the number of similar nucleotides in the total number of nucleotides.

互補(Complementary或Complementarity或Complementation):用於表示依前述鹼基配對原則(「base pair(bp)」rule)相聯之介於兩個多核苷酸之間的匹配鹼基配對(亦即,mRNA與cDNA的序列)之詞彙。舉例而言,序列「5'-A-G-T-3'」與序列「5'-A-C-T-3'」以及「5'-A-C-U-3'」互 補。互補可在兩個DNA股、一個DNA與一個RNA股或兩個RNA股之間。互補可以是「部分(partial)」或「完全(complete)」或是「整體(total)」的。當僅一些核酸鹼基根據鹼基配對規則匹配時,出現部分互補(partial complementarity或complementation)。當核酸股之間鹼基完全或完美地匹配時,出現完全或整體互補(complete or total complementarity or complementation)。核酸股之間的互補性程度對核酸股之間雜交之效率及強度具有顯著影響。此對於擴增反應以及視核酸之間的結合而定之偵測方法特別重要。互補率(percent complementarity或complementation)係指在該核酸之一股中失配(mismatch)鹼基數在全部鹼基中所佔的比例。因此,50%互補意謂一半鹼基失配且一半鹼基匹配。即使核酸之兩股之鹼基數不同,兩股亦可互補。在此情況下,互補發生於較長股之一部分與較短股間,其中較長股之該部分的股上為對應於與較短股之鹼基配對之鹼基。 Complementary (Complementary or Complementarity or Complementation): used to indicate the matching base pairing between two polynucleotides (that is, mRNA And cDNA sequence). For example, the sequence "5'-A-G-T-3'" and the sequence "5'-A-C-T-3'" and "5'-A-C-U-3'" interact with each other Make up. Complementarity can be between two DNA strands, one DNA and one RNA strand, or two RNA strands. Complementarity can be "partial" or "complete" or "total". Partial complementarity (complementation) occurs when only some nucleic acid bases are matched according to the base pairing rules. When the bases between nucleic acid strands are completely or perfectly matched, complete or total complementarity or complementation occurs. The degree of complementarity between nucleic acid strands has a significant impact on the efficiency and strength of hybridization between nucleic acid strands. This is particularly important for amplification reactions and detection methods that depend on the binding between nucleic acids. Percent complementarity (or complementation) refers to the proportion of mismatched bases in a strand of the nucleic acid among all bases. Therefore, 50% complementation means that half of the bases are mismatched and half of the bases are matched. Even if the number of bases in the two strands of nucleic acid is different, the two strands can be complementary. In this case, complementation occurs between a part of the longer strand and the shorter strand, wherein the strand of the longer strand has the base paired with the base of the shorter strand.

互補鹼基:當DNA或RNA呈雙股配置時正常配對之核苷酸。 Complementary bases: Nucleotides that normally pair when DNA or RNA is in a double-stranded configuration.

互補核苷酸序列(Complementary Nucleotide Sequence):單股DNA或RNA分子的一核苷酸序列,其充分地與另一單股分子之核苷酸序列互補,以致兩股之間藉由隨應之氫鍵而專一地雜合。 Complementary Nucleotide Sequence: A nucleotide sequence of a single-stranded DNA or RNA molecule that is sufficiently complementary to the nucleotide sequence of another single-stranded molecule, so that the two strands correspond to each other Hydrogen bonding and exclusive hybridization.

雜合(Hybridize及Hybridization):在充分互補以經由鹼基配對形成複合物之核苷酸序列之間形成雙鏈體。在引子(或剪接模板)與標靶(模板)「雜合」時,該等複合物(或雜合體)充分穩定以提供DNA聚合酶起始DNA合成 所需之引子功能(priming function)。兩條互補多核苷酸之間有可被競爭性抑制(competitively inhibited)的特殊,亦即非隨機之交互作用(interaction)。 Hybridization (Hybridize and Hybridization): The formation of a duplex between nucleotide sequences that are sufficiently complementary to form a complex via base pairing. When the primer (or splicing template) is "hybridized" with the target (template), the complexes (or hybrids) are sufficiently stable to provide DNA polymerase to initiate DNA synthesis The required priming function. There is a special feature between two complementary polynucleotides that can be competitively inhibited, that is, non-random interaction.

轉錄後基因靜默(Posttranscriptional Gene Silencing):標的基因在mRNA降解或轉譯抑制階段下的剔除(knockout)或敲低(knockdown)效應,其通常由外來/病毒DNA或RNA轉殖基因(transgenes)或小型抑制性RNAs任一者所觸發。 Posttranscriptional Gene Silencing: The knockout or knockdown effect of the target gene in the mRNA degradation or translation inhibition stage, which is usually caused by foreign/viral DNA or RNA transgenes or small Triggered by any inhibitory RNAs.

RNA干擾(RNAi):真核生物中之轉錄後基因靜默機制,其可由小抑制性RNA分子諸如microRNA(miRNA)、小髮夾RNA(shRNA)及小干擾RNA(siRNA))觸發。此些小RNA分子通常充當基因靜默子,干擾與小RNAs完全或部分互補的胞內基因之表達。 RNA interference (RNAi): The mechanism of post-transcriptional gene silencing in eukaryotes, which can be triggered by small inhibitory RNA molecules such as microRNA (miRNA), small hairpin RNA (shRNA), and small interfering RNA (siRNA). These small RNA molecules usually act as gene silencers, interfering with the expression of intracellular genes that are completely or partially complementary to small RNAs.

基因靜默效應:在基因功能受抑制之後的細胞反應,包含但不限於細胞週期減弱(cell cycle attenuation)、G0/G1檢控點停滯(G0/G1-checkpoint arrest)、腫瘤抑制、抗致腫瘤性(anti-tumorigenecity)、癌細胞凋亡,及其組合。 Gene silencing effect: the cellular response after gene function is inhibited, including but not limited to cell cycle attenuation, G0/G1 checkpoint arrest, tumor suppression, anti-tumorigenicity ( anti-tumorigenecity), cancer cell apoptosis, and combinations thereof.

非編碼RNA:無法用以經由胞內轉譯機制合成肽類或蛋白質之RNA轉錄物。非編碼RNA包括長及短調節性RNA分子,諸如microRNA(miRNA)、小髮夾RNA(shRNA)、小干擾RNA(siRNA)及雙股RNA(dsRNA)。此等調節性RNA分子通常充當基因靜默子,干擾與非編碼RNA完全或部分互補的胞內基因之表達。 Non-coding RNA: RNA transcripts that cannot be used to synthesize peptides or proteins via intracellular translation mechanisms. Non-coding RNA includes long and short regulatory RNA molecules, such as microRNA (miRNA), small hairpin RNA (shRNA), small interfering RNA (siRNA), and double-stranded RNA (dsRNA). These regulatory RNA molecules usually act as gene silencers, interfering with the expression of intracellular genes that are completely or partially complementary to non-coding RNA.

MicroRNA(miRNA):能夠結合至與microRNA之序列部分互補的標的基因轉錄物(mRNAs)之單股RNA。 成熟microRNA通常大小為約17-27個寡核苷酸長,且能夠視microRNA與其標的mRNA(s)之間的互補性而直接降解細胞內之mRNA標的,或抑制所標的之mRNA的蛋白質轉譯。天然microRNAs見於幾乎所有真核生物中,充當針對病毒感染之防禦,且可在植物及動物發育期間調節特異性基因表達。原則上,一個microRNA通常靶向多個標的mRNAs以實現其全部功能,而另一方面,多個miRNAs可靶向相同基因轉錄物以增強基因靜默之效應。 MicroRNA (miRNA): Single-stranded RNA that can bind to target gene transcripts (mRNAs) that are partially complementary to the sequence of microRNA. Mature microRNAs are usually about 17-27 oligonucleotides long, and can directly degrade the mRNA target in the cell or inhibit the protein translation of the target mRNA depending on the complementarity between the microRNA and its target mRNA(s). Natural microRNAs are found in almost all eukaryotes and act as defenses against viral infections and can regulate specific gene expression during plant and animal development. In principle, one microRNA usually targets multiple target mRNAs to achieve all of its functions. On the other hand, multiple miRNAs can target the same gene transcript to enhance the effect of gene silencing.

MicroRNA前驅物(Pre-miRNA):含有莖-臂及莖-環區之髮夾型單股RNA,用於與胞內RNase III Dicer核糖核酸內切酶相互作用,以產生一或多個成熟microRNAs(miRNAs),microRNAs(miRNAs)能夠使與成熟microRNA序列完全或部分互補之標的基因或標的基因之特定基團靜默。pre-miRNA之莖-臂可形成完美(100%)或部分(失配)雜合之雙鏈體,而莖-環連接莖-臂雙鏈體之一端,以形成與一些阿爾古蛋白(AGO)組裝為RNA誘導靜默複合物(RISC)中所需的圓圈或髮夾-環構形。 MicroRNA precursor (Pre-miRNA): Hairpin single-stranded RNA containing stem-arm and stem-loop regions, used to interact with intracellular RNase III Dicer endonuclease to produce one or more mature microRNAs (miRNAs), microRNAs (miRNAs) can silence target genes or specific groups of target genes that are completely or partially complementary to mature microRNA sequences. The stem-arm of pre-miRNA can form a perfect (100%) or partially (mismatched) heterozygous duplex, and the stem-loop connects one end of the stem-arm duplex to form a combination with some Alguin (AGO) ) Assemble into the circle or hairpin-loop configuration required in RNA-induced silencing complex (RISC).

原核生物產生之MicroRNA前驅物(Pro-miRNA):類似於天然microRNA前驅物(pre-miRNA)但於原核勝任細胞中由真核啟動子驅動自人工重組microRNA表達質體轉錄之小髮夾型RNA。舉例而言,pro-miR-302結構上與pre-miR-302相同(圖13A及圖13B),但於大腸桿菌DH5α勝任細胞中自pLVX-Grn-miR302+367pLenti-EF1α-RGFP-miR302載體轉錄(實例1)。因為原核細胞通常不表現具有高二級結構之短RNA,諸如真核 pre-miRNA,所以於原核生物中產生pro-miRNA通常需要添加化學誘導劑以便刺激真核啟動子驅動之pre-miRNA轉錄(圖2-4)。 MicroRNA precursors (Pro-miRNA) produced by prokaryotes: similar to natural microRNA precursors (pre-miRNA) but in prokaryotic competent cells driven by eukaryotic promoters from artificial recombinant microRNA expression plastid-transcribed small hairpin RNA . For example, pro-miR-302 is structurally the same as pre-miR-302 (Figure 13A and Figure 13B), but is derived from pLVX-Grn-miR302 + 367 or pLenti-EF1α-RGFP-miR302 in E. coli DH5α competent cells Vector transcription (Example 1). Because prokaryotic cells usually do not exhibit short RNAs with high secondary structure, such as eukaryotic pre-miRNA, the production of pro-miRNA in prokaryotes usually requires the addition of chemical inducers to stimulate the transcription of pre-miRNA driven by eukaryotic promoters (Figure 2-4).

小干擾RNA(siRNA):大小約為18-27個完美鹼基配對的核糖核苷酸雙鏈體且能夠降解具有幾乎完美互補性的標的基因轉錄物之短雙股RNA。 Small interfering RNA (siRNA): A short double-stranded RNA with a size of about 18-27 perfect base pairing ribonucleotide duplexes and capable of degrading target gene transcripts with almost perfect complementarity.

小或短髮夾RNA(shRNA):含有一對由不匹配環寡核苷酸隔開以形成髮夾型結構之部分或完全匹配的莖-臂核苷酸序列之單股RNA。多種天然miRNAs係衍生自髮夾型RNA前驅物,亦即前驅microRNA(pre-miRNA)。 Small or short hairpin RNA (shRNA): A single-stranded RNA containing a pair of partially or completely matched stem-arm nucleotide sequences separated by mismatched circular oligonucleotides to form a hairpin-type structure. A variety of natural miRNAs are derived from hairpin RNA precursors, that is, precursor microRNA (pre-miRNA).

載體:能夠於不同基因環境中移動及滯留之重組核酸組合物,諸如重組DNA(rDNA)。一般而言,另一核酸可操作地連接於其中。載體能夠在細胞中自主複製,在此情況下,載體及連接之區段複製。一種類型之較佳載體係游離基因體,亦即能夠染色體外複製之核酸分子。較佳之載體係能夠自主複製及表達核酸之載體。能夠引導編碼一或多個多肽之基因及/或非編碼RNA的表達之載體在本文中稱為「表達載體」或「表達勝任載體」。特別重要的載體可使用反轉錄酶自產生之mRNAs選殖cDNA。載體可包含由下列所組成之組分:病毒啟動子或第二型RNA聚合酶(Pol-II或pol-2)啟動子或兩者、Kozak一致性轉譯起始位(Kozak consensus translation initiation site)、多聚腺苷酸化訊號(polyadenylation signals)、複數個限制/選殖位(restriction/cloning site)、pUC複製起始點(pUC origin of replication)、在複製勝任原核細胞中用於表達至少一抗生素 抗藥性基因之SV40早期啟動子(SV40 early promoter)、在哺乳動物細胞中用於複製之選擇性SV40起始點、及/或四環黴素反應元件(tetracycline responsive element)。載體的結構可以是線形或環形的單股或雙股DNA,且選自由質體、病毒載體、轉位子、逆轉位子、DNA轉殖基因(DNA transgene)、跳躍基因(jumping gene)、及其組合所組成之群組。 Vector: A recombinant nucleic acid composition capable of moving and staying in different genetic environments, such as recombinant DNA (rDNA). Generally speaking, another nucleic acid is operably linked to it. The vector can replicate autonomously in the cell, in this case the vector and the connected segments replicate. One type of preferred carrier system is episomes, that is, nucleic acid molecules capable of extrachromosomal replication. The preferred carrier system is a vector capable of autonomous replication and expression of nucleic acid. Vectors capable of directing the expression of genes encoding one or more polypeptides and/or non-coding RNAs are referred to herein as "expression vectors" or "expression competent vectors". Particularly important vectors can be used to clone cDNA from mRNAs produced by reverse transcriptase. The vector may comprise the following components: viral promoter or type 2 RNA polymerase (Pol-II or pol-2) promoter or both, Kozak consensus translation initiation site (Kozak consensus translation initiation site) , Polyadenylation signals, multiple restriction/cloning sites, pUC origin of replication, used to express at least one antibiotic in replication-competent prokaryotic cells The SV40 early promoter of the drug resistance gene, the selective SV40 starting point for replication in mammalian cells, and/or the tetracycline responsive element. The structure of the vector can be linear or circular single-stranded or double-stranded DNA, and is selected from the group consisting of plastids, viral vectors, transposons, reversal positions, DNA transgenes, jumping genes, and combinations thereof The group formed.

啟動子(Promoter):由聚合酶分子所辨識,或與其結合並啟始RNA轉錄之核酸。依據本發明之目的,啟動子可以是習知的聚合酶結合位點、增強子及類似物,以及可使用所需聚合酶來啟始RNA轉錄物之合成的任何序列。 Promoter: A nucleic acid that is recognized by a polymerase molecule, or binds to it and initiates RNA transcription. According to the purpose of the present invention, the promoter can be a conventional polymerase binding site, enhancer and the like, and any sequence that can use the required polymerase to initiate the synthesis of RNA transcripts.

真核啟動子:為RNA及/或基因轉錄所需且可由真核第二型RNA聚合酶(pol-2)、pol-2等效物及/或pol-2相容(pol-2類)病毒聚合酶識別用於起始RNA/基因轉錄的核酸基序之序列。 Eukaryotic promoter: required for RNA and/or gene transcription and compatible with eukaryotic type II RNA polymerase (pol-2), pol-2 equivalent and/or pol-2 (pol-2 type) The viral polymerase recognizes the sequence of the nucleic acid motif used to initiate RNA/gene transcription.

第二型RNA聚合酶(Pol-II或pol-2)啟動子:可由真核第二型RNA聚合酶(Pol-II或pol-2)識別且因此能夠起始真核傳訊RNAs(mRNAs)及/或microRNAs(miRNAs)之轉錄的RNA啟動子。舉例而言,但不限於,pol-2啟動子可為哺乳動物RNA啟動子或巨細胞病毒(CMV)啟動子。 The second type of RNA polymerase (Pol-II or pol-2) promoter: can be recognized by the second type of eukaryotic RNA polymerase (Pol-II or pol-2) and can therefore initiate eukaryotic signaling RNAs (mRNAs) and / Or RNA promoters for transcription of microRNAs (miRNAs). For example, but not limited to, the pol-2 promoter may be a mammalian RNA promoter or a cytomegalovirus (CMV) promoter.

第二型RNA聚合酶(Pol-II或pol-2)等效物:選自由以下組成之群組的真核轉錄機制:哺乳動物第二型RNA聚合酶(Pol-II或pol-2)及Pol-II相容(pol-2類)病毒RNA聚合酶。 Type II RNA polymerase (Pol-II or pol-2) equivalent: Eukaryotic transcription mechanism selected from the group consisting of: mammalian type II RNA polymerase (Pol-II or pol-2) and Pol-II compatible (pol-2 type) viral RNA polymerase.

Pol-II相容(pol-2類)病毒啟動子:能夠使用真核pol-2或pol-2等效物轉錄機制起始基因及/或RNA表達之 病毒RNA啟動子。舉例而言,但不限於,pol-2類病毒啟動子可為巨細胞病毒(CMV)啟動子或反轉錄病毒長末端重複序列(LTR)啟動子。 Pol-II compatible (pol-2 type) virus promoter: can use eukaryotic pol-2 or pol-2 equivalent transcription mechanism to initiate gene and/or RNA expression Viral RNA promoter. For example, but not limited to, the pol-2 virus promoter may be a cytomegalovirus (CMV) promoter or a retrovirus long terminal repeat (LTR) promoter.

順反子:DNA分子中編碼胺基酸殘基序列且包括上游及下游DNA表達控制元件之核苷酸序列。 Cistron: A nucleotide sequence that encodes amino acid residue sequences in a DNA molecule and includes upstream and downstream DNA expression control elements.

內含子切除:負責RNA處理、成熟及降解之細胞機制,包括RNA剪接、外泌體消化、無義介導的降解(NMD)處理及其組合。 Intron excision: The cellular mechanism responsible for RNA processing, maturation and degradation, including RNA splicing, exosomal digestion, nonsense-mediated degradation (NMD) processing and combinations thereof.

RNA處理(RNA processing):一細胞內機制,負責RNA的成熟、修飾、與降解,包含RNA剪接、內含子切除、外泌體消化(exosome digestion)、無義介導的降解(nonsense-mediated decay,NMD)、RNA編輯、RNA處理及其組合。 RNA processing: an intracellular mechanism responsible for the maturation, modification, and degradation of RNA, including RNA splicing, intron excision, exosome digestion, and nonsense-mediated decay , NMD), RNA editing, RNA processing and combinations thereof.

標的細胞:選自由體細胞、組織、幹細胞、生殖系細胞、畸胎瘤細胞、腫瘤細胞、癌細胞及其組合所組成之群組的單個或複數個人類細胞。 Target cells: single or plural human cells selected from the group consisting of somatic cells, tissues, stem cells, germline cells, teratoma cells, tumor cells, cancer cells and combinations thereof.

癌組織:衍生自由皮膚癌、前列腺癌、乳癌、肝癌、肺癌、腦腫瘤/腦癌、淋巴瘤、白血病及其組合所組成之群組的贅生性組織(neoplastic tissue)。 Cancer tissue: neoplastic tissue derived from the group consisting of skin cancer, prostate cancer, breast cancer, liver cancer, lung cancer, brain tumor/brain cancer, lymphoma, leukemia, and combinations thereof.

表達勝任載體:選自由質體、病毒載體、轉位子、反轉錄轉位子、DNA轉殖基因、跳躍基因及其組合所組成之群組的線形或圓形之單股或雙股DNA。 Expression competent vector: linear or round single-stranded or double-stranded DNA selected from the group consisting of plastids, viral vectors, transposons, reverse transcription transposons, DNA transgenes, jumping genes, and combinations thereof.

抗生素抗性基因:能夠降解選自由以下組成之群組的抗生素之基因:盤尼西林G(penicillin G)、鏈黴素(streptomycin)、安比西林(ampicillin(Amp))、新黴素 (neomycin)、G418、卡那黴素(kanamycin)、紅黴素(erythromycin)、巴龍黴素(paromycin)、霍火黴素(phophomycin)、斯派克黴素(spectromycin)、四環黴素(tetracycline(Tet))、去氧羥四環素(doxycycline(Dox))、利福平(rifapicin)、兩性黴素B(amphotericin B)、健他黴素(gentamycin)、氯黴素(chloramphenicol)、先鋒黴素(cephalothin)、泰黴素(tylosin)及其組合。 Antibiotic resistance genes: genes capable of degrading antibiotics selected from the following group: penicillin G (penicillin G), streptomycin, ampicillin (Amp), neomycin (neomycin), G418, kanamycin (kanamycin), erythromycin (erythromycin), paromycin (paromycin), phophomycin (phophomycin), spectromycin (spectromycin), tetracycline ( tetracycline (Tet)), doxycycline (Dox), rifampicin (rifapicin), amphotericin B (amphotericin B), gentamycin (gentamycin), chloramphenicol (chloramphenicol), pioneer mold Cephalothin, tylosin and combinations thereof.

限制/選殖位點:用於限制酶裂解之DNA基序,包括但不限於AatII、AccI、AflII/III、AgeI、ApaI/LI、AseI、Asp718I、BamHI、BbeI、BclI/II、BglII、BsmI、Bsp120I、BspHI/LU11I/120I、BsrI/BI/GI、BssHII/SI、BstBI/U1/XI、ClaI、Csp6I、DpnI、DraI/II、EagI、Ecl136II、EcoRI/RII/47III/RV、EheI、FspI、HaeIII、HhaI、HinPI、HindIII、HinfI、HpaI/II、KasI、KpnI、MaeII/III、MfeI、MluI、MscI、MseI、NaeI、NarI、NcoI、NdeI、NgoMI、NotI、NruI、NsiI、PmlI、Ppu10I、PstI、PvuI/II、RsaI、SacI/II、SalI、Sau3AI、SmaI、SnaBI、SphI、SspI、StuI、TaiI、TaqI、XbaI、XhoI、XmaI裂解位點。 Restriction/selection sites: DNA motifs used for restriction enzyme cleavage, including but not limited to AatII, AccI, AflII/III, AgeI, ApaI/LI, AseI, Asp718I, BamHI, BbeI, BclI/II, BglII, BsmI , Bsp120I, BspHI/LU11I/120I, BsrI/BI/GI, BssHII/SI, BstBI/U1/XI, ClaI, Csp6I, DpnI, DraI/II, EagI, Ecl136II, EcoRI/RII/47III/RV, EheI, FspI , HaeIII, HhaI, HinPI, HindIII, HinfI, HpaI/II, KasI, KpnI, MaeII/III, MfeI, MluI, MscI, MseI, NaeI, NarI, NcoI, NdeI, NgoMI, NotI, NruI, NsiI, 10PmlI, PpuI , PstI, PvuI/II, RsaI, SacI/II, SalI, Sau3AI, SmaI, SnaBI, SphI, SspI, StuI, TaiI, TaqI, XbaI, XhoI, XmaI cleavage sites.

基因遞送:選自由以下所組成之群組的基因工程化方法:多聚體(polysomal)轉染、脂質體(liposomal)轉染、化學轉染、電穿孔、病毒感染、DNA重組、轉位子插入、跳躍基因插入、顯微注射、基因槍穿透,及其組合。 Gene delivery: a genetic engineering method selected from the group consisting of: polysomal transfection, liposomal transfection, chemical transfection, electroporation, viral infection, DNA recombination, translocation insertion , Jumping gene insertion, microinjection, gene gun penetration, and combinations thereof.

基因工程化:選自由以下所組成之群組的DNA重組方法:DNA限制酶反應與接合反應、同源重組、轉殖基因併入、轉位子插入、跳躍基因併入、反轉錄病毒感染,及其組合。 Genetic engineering: DNA recombination method selected from the group consisting of DNA restriction enzyme reaction and conjugation reaction, homologous recombination, transgenic incorporation, translocation insertion, jumping gene incorporation, retrovirus infection, and Its combination.

細胞週期調節子:參與控制細胞分裂及增殖速率之細胞基因,包含但不限於:CDK2、CDK4、CDK6、週期素、BMI-1、p14/p19Arf、p15Ink4b、p16Ink4a、p18Ink4c、p21Cip1/Waf1及p27Kip1及其組合。 Cell cycle regulators: cell genes involved in the control of cell division and proliferation rates, including but not limited to: CDK2, CDK4, CDK6, cyclin, BMI-1, p14/p19Arf, p15Ink4b, p16Ink4a, p18Ink4c, p21Cip1/Waf1, and p27Kip1 and Its combination.

腫瘤抑制效應:細胞抗腫瘤及/或抗癌機制及反應,包含但不限於:細胞週期減弱、細胞週期停滯、腫瘤細胞生長抑制、細胞致腫瘤性抑制、腫瘤/癌細胞轉形之抑制、腫瘤/癌細胞之細胞凋亡之誘導、正常細胞恢復之誘導、高度惡性癌細胞重新編程至更良性的低度狀態(腫瘤消退)及其組合。 Tumor inhibitory effect: cellular anti-tumor and/or anti-cancer mechanisms and responses, including but not limited to: cell cycle reduction, cell cycle arrest, tumor cell growth inhibition, cell tumorigenicity inhibition, tumor/cancer transformation inhibition, tumor /Induction of apoptosis of cancer cells, induction of normal cell recovery, reprogramming of highly malignant cancer cells to a more benign low-grade state (tumor regression) and combinations thereof.

癌症治療效果:由藥物治療產生之細胞反應及/或細胞機制,包括但不限於:致癌基因表達之抑制、癌細胞增殖之抑制、癌細胞侵入及/或遷移之抑制、癌症轉移之抑制、癌細胞死亡之誘導、腫瘤/癌症形成之預防、癌症復發之預防、癌症進程之抑制、受損組織細胞修復、高度惡性癌症重新編程至更良性的低度狀態(癌症消退/緩解)及其組合。 Cancer treatment effect: the cellular response and/or cellular mechanism produced by drug treatment, including but not limited to: inhibition of oncogene expression, inhibition of cancer cell proliferation, inhibition of cancer cell invasion and/or migration, inhibition of cancer metastasis, cancer Induction of cell death, prevention of tumor/cancer formation, prevention of cancer recurrence, inhibition of cancer progression, repair of damaged tissue cells, reprogramming of high-malignant cancers to a more benign low-grade state (cancer regression/remission) and combinations thereof.

基因靜默效應:在基因功能受抑制之後的細胞反應,包含但不限於:致癌基因表達之抑制、細胞增殖之抑制、細胞週期停滯、腫瘤抑制、癌症消退、癌症預防、細胞之細胞凋亡、細胞修復及/或復原、細胞重新編程、患病細胞重新編程至相對正常狀態(自發癒合)及其組合。 Gene silencing effect: the cellular response after gene function is inhibited, including but not limited to: inhibition of oncogene expression, inhibition of cell proliferation, cell cycle arrest, tumor suppression, cancer regression, cancer prevention, cell apoptosis, cell Repair and/or recovery, cell reprogramming, diseased cells reprogramming to a relatively normal state (spontaneous healing), and combinations thereof.

癌症逆轉:在活體外、離體或活體內使高度癌症之惡性特性復位回至相對正常樣低度狀態之重新編程機制。 Cancer reversal: A reprogramming mechanism that resets the malignant characteristics of high-grade cancer to a relatively normal low-grade state in vitro, in vitro or in vivo.

標的細胞:選自由體細胞、組織、幹細胞、生殖系細胞、畸胎瘤細胞、腫瘤細胞、癌細胞及其組合所組成之 群組的單個或複數個人類細胞。 Target cells: selected from body cells, tissues, stem cells, germline cells, teratoma cells, tumor cells, cancer cells and combinations thereof A group of single or multiple human cells.

癌組織:衍生自由皮膚癌、前列腺癌、乳癌、肝癌、肺癌、腦腫瘤/腦癌、淋巴瘤、白血病及其組合所組成之群組的贅生性組織。 Cancer tissue: neoplastic tissue derived from the group consisting of skin cancer, prostate cancer, breast cancer, liver cancer, lung cancer, brain tumor/brain cancer, lymphoma, leukemia, and combinations thereof.

轉錄誘導劑:可於原核細胞中自pol-2或pol-2類啟動子誘導及/或增強真核RNA及/或基因轉錄之化學劑。舉例而言,轉錄誘導劑含有但不限於類似於以下之化學結構:MOPS、乙醇、甘油以及其功能類似物,諸如2-(N-嗎啉基)乙烷磺酸(MES)、4-(2-羥乙基)-1-哌嗪乙烷磺酸(HEPES)及甘露糖醇或其混合物。 Transcription inducer: a chemical agent that can induce and/or enhance eukaryotic RNA and/or gene transcription from pol-2 or pol-2 promoters in prokaryotic cells. For example, transcription inducers contain, but are not limited to, chemical structures similar to the following: MOPS, ethanol, glycerol, and their functional analogs, such as 2-(N-morpholino)ethanesulfonic acid (MES), 4-( 2-Hydroxyethyl)-1-piperazine ethane sulfonic acid (HEPES) and mannitol or mixtures thereof.

抗體:具有預選保守結構域結構,編碼能夠結合預選配位體之受體的肽類或蛋白質分子。 Antibody: A peptide or protein molecule that has a preselected conserved domain structure and encodes a receptor that can bind to a preselected ligand.

醫藥及/或治療應用:可用於診斷、幹細胞生成、幹細胞研究及/或療法開發、組織/器官修復及/或復原、傷口癒合處理、腫瘤抑制、癌症治療及/或預防、疾病治療、藥物製造及其組合之生物醫學用途、裝置及/或設備。 Medical and/or therapeutic applications: can be used for diagnosis, stem cell generation, stem cell research and/or therapy development, tissue/organ repair and/or restoration, wound healing treatment, tumor suppression, cancer treatment and/or prevention, disease treatment, drug manufacturing And its combination of biomedical uses, devices and/or equipment.

B.組合物及應用B. Composition and application

一種製造新類型能夠在活體外、離體及活體內將人類癌症之惡性特性重新編程至低度良性或正常樣狀態的原核生物產生之microRNA前驅物(pro-miRNAs)之組合物及方法,其包含:(a)含有類似於3-嗎啉基丙烷-1-磺酸(MOPS)、乙醇或甘油或其混合物之結構的至少一化學誘導劑;及(b)含有由真核pol-2及/或pol-2類啟動子驅動之轉錄介導的至少一pre-miRNA編碼基因之複數個原核細胞;其中(a)及(b)在誘導該基因表達之條件下混合在一起,以便於原核細胞中 產生所編碼之pre-miRNA。值得注意的是,化學誘導劑能夠刺激原核生物中真核啟動子驅動之RNA轉錄。 A composition and method for producing new types of microRNA precursors (pro-miRNAs) produced by prokaryotes that can reprogram the malignant characteristics of human cancer to a low-grade benign or normal-like state in vitro, in vitro and in vivo, which Containing: (a) containing at least one chemical inducer similar to the structure of 3-morpholinopropane-1-sulfonic acid (MOPS), ethanol or glycerol or a mixture thereof; and (b) containing eukaryotic pol-2 and / Or a plurality of prokaryotic cells of at least one pre-miRNA encoding gene driven by transcription driven by a pol-2 promoter; wherein (a) and (b) are mixed together under the condition of inducing the expression of the gene to facilitate the prokaryotic In the cell Generate the encoded pre-miRNA. It is worth noting that chemical inducers can stimulate RNA transcription driven by eukaryotic promoters in prokaryotes.

原則上,本發明提供一種新穎組合物設計及其可適用策略,其用於誘導原核生物之快速適應以使用真核pol-2及pol-2類啟動子於直接表達特定所需microRNA前驅物(pre-miRNA),而不需要使用錯誤傾向原核啟動子或培育費力且成本高的融合瘤或哺乳動物細胞。 In principle, the present invention provides a novel composition design and applicable strategies for inducing rapid adaptation of prokaryotes to use eukaryotic pol-2 and pol-2 promoters to directly express specific required microRNA precursors ( pre-miRNA) without using error-prone prokaryotic promoters or cultivating laborious and costly fusion tumors or mammalian cells.

較佳地,該原核生物係細菌細胞菌株、尤其大腸桿菌(E.coli),且該化學誘導劑係3-嗎啉基丙烷-1-磺酸(MOPS)、乙醇或甘油或其混合物。亦較佳地,該真核啟動子係真核pol-2啟動子,諸如EF1α;或pol-2相容(pol-2類)病毒啟動子,諸如巨細胞病毒(CMV)啟動子或反轉錄病毒長末端重複序列(LTR)啟動子。由該真核啟動子介導之pre-miRNA編碼基因編碼非編碼或蛋白質編碼RNA轉錄物或兩者(諸如含內含子之基因轉錄物),其中非編碼或蛋白質編碼RNA轉錄物或兩者(諸如含內含子之基因轉錄物)選自由microRNA(miRNA)、小髮夾RNA(shRNA)、小干擾RNA(siRNA)、傳訊RNA(mRNA)及其前驅物以及shRNA/siRNA同源物及其組合所組成之群組。蛋白質編碼RNA可選自但不限於由基因編碼酶、生長因子、抗體、胰島素、肉毒桿菌毒素(botox)、功能蛋白及/或其類似物及其組合所組成之群組。較佳地,用於誘導該pre-miRNA編碼基因之表達的該條件係細菌培養條件,諸如在37℃下添加有所述化學誘導劑之Luria-Bertani(LB)培養液。 Preferably, the prokaryotes are bacterial cell strains, especially E. coli, and the chemical inducer is 3-morpholinopropane-1-sulfonic acid (MOPS), ethanol or glycerol or a mixture thereof. Also preferably, the eukaryotic promoter is a eukaryotic pol-2 promoter, such as EF1α; or a pol-2 compatible (pol-2 type) viral promoter, such as a cytomegalovirus (CMV) promoter or reverse transcription Viral long terminal repeat (LTR) promoter. The pre-miRNA encoding gene mediated by the eukaryotic promoter encodes non-coding or protein-coding RNA transcripts or both (such as gene transcripts containing introns), wherein non-coding or protein-coding RNA transcripts or both (Such as gene transcripts containing introns) selected from microRNA (miRNA), small hairpin RNA (shRNA), small interfering RNA (siRNA), messaging RNA (mRNA) and its precursors, and shRNA/siRNA homologs and The group formed by its combination. The protein-encoding RNA can be selected from, but not limited to, the group consisting of gene-encoding enzymes, growth factors, antibodies, insulin, botox, functional proteins and/or their analogs and combinations thereof. Preferably, the conditions for inducing the expression of the pre-miRNA encoding gene are bacterial culture conditions, such as Luria-Bertani (LB) culture medium added with the chemical inducer at 37°C.

本專利或申請案文件含有至少一個彩圖。在申請且支付必要費用後,USPTO將提供具有彩圖之本專利或專利申請公開案之複本。 This patent or application file contains at least one color drawing. After applying and paying the necessary fees, the USPTO will provide a copy of the patent or patent application publication with color pictures.

僅為了說明目的而非限制性地特別參考圖式,其中說明:圖1A及圖1B展示真核啟動子驅動之表達載體組合物(1A)及其於原核生物中用於RNA轉錄物及/或蛋白質產生之表達機制(1B)。為了驗證本發明,新pLenti-EF1α-RGFP-miR302載體(圖1A)充當用於在MOPS、甘油及/或乙醇之刺激下使大腸桿菌DH5α勝任細胞轉形以製造RGFP蛋白以及miR-302s及其前驅物(pre-miR-302s)之一實例組合物。pLenti-EF1α-RGFP-miR302係由本發明者設計以於原核生物及真核生物兩者中表達各種microRNAs/shRNAs、mRNAs及/或蛋白質/肽類之慢病毒質體載體。根據所揭示之機制(1B),所屬技術領域中具有通常知識者容易使用任何microRNA/shRNA替代miR-302或使用任何mRNA/蛋白質替代RGFP,如本發明中所描述。黑色箭頭指示出現於原核及真核細胞兩者中之路徑,而空白箭頭指示僅出現於真核細胞中之步驟。 For the purpose of illustration and not limitation, the drawings are specifically referred to, which illustrate: Figure 1A and Figure 1B show a eukaryotic promoter-driven expression vector composition (1A) and its use in prokaryotes for RNA transcripts and/or The expression mechanism of protein production (1B). In order to verify the present invention, the new pLenti-EF1α-RGFP-miR302 vector (Figure 1A) is used to transform E. coli DH5α competent cells under the stimulation of MOPS, glycerol and/or ethanol to produce RGFP protein and miR-302s and its An example composition of precursors (pre-miR-302s). pLenti-EF1α-RGFP-miR302 is a lentiviral plastid vector designed by the present inventors to express various microRNAs/shRNAs, mRNAs and/or proteins/peptides in both prokaryotes and eukaryotes. According to the disclosed mechanism (1B), those skilled in the art can easily use any microRNA/shRNA to replace miR-302 or any mRNA/protein to replace RGFP, as described in the present invention. Black arrows indicate paths that occur in both prokaryotic and eukaryotic cells, while blank arrows indicate steps that occur only in eukaryotic cells.

圖2描繪經0.1%(v/v)MOPS及0.05%(v/v)甘油之混合物處理(左)或不經處理(右)的細菌培養培養液之結果。大腸桿菌勝任細胞在化學誘導劑處理之前已藉由pLenti-EF1α-RGFP-miR302轉形。 Figure 2 depicts the results of bacterial culture broth treated (left) or untreated (right) with a mixture of 0.1% (v/v) MOPS and 0.05% (v/v) glycerol. E. coli competent cells have been transformed with pLenti-EF1α-RGFP-miR302 before treatment with chemical inducers.

圖3展示不同細菌集結團塊(pellets)在經0.1% (v/v)MOPS處理之後的結果。大腸桿菌勝任細胞在MOPS處理之前已藉由pLVX-Grn-miR302+367(綠色)或pLenti-EF1a-RGFP-miR302(紅色)轉形。 Figure 3 shows the results of different bacterial pellets after treatment with 0.1% (v/v) MOPS. E. coli competent cells have been transformed by pLVX-Grn-miR302 + 367 (green) or pLenti-EF1a-RGFP-miR302 (red) before MOPS treatment.

圖4展示各種化學誘導劑對於誘導於大腸桿菌勝任細胞中之pol-2啟動子驅動之基因表達的可誘導性。在所有測試之化學品之中,前三種最強力誘導劑係MOPS、甘油及乙醇。所用化學品濃度可介於約0.001%至4%、最佳0.01%至1%。 Figure 4 shows the inducibility of various chemical inducers to induce gene expression driven by the pol-2 promoter in competent E. coli cells. Among all the tested chemicals, the first three most potent inducers are MOPS, glycerol and ethanol. The concentration of the chemicals used can range from about 0.001% to 4%, preferably 0.01% to 1%.

圖5展示分別由MOPS、甘油及乙醇誘導之紅色RGFP蛋白表現之西方墨點法結果。細菌RuvB蛋白用作管家標準以標準化所偵測之RGFP表達。自空白大腸桿菌細胞提取(亦即未經載體轉形)之蛋白質用作陰性對照。 Figure 5 shows the results of the Western blot method for the expression of red RGFP protein induced by MOPS, glycerol and ethanol, respectively. The bacterial RuvB protein was used as a housekeeping standard to normalize the detected RGFP expression. The protein extracted from blank E. coli cells (that is, without vector transformation) was used as a negative control.

圖6展示分別由MOPS、甘油及乙醇誘導之miR-302家族簇(約700nt)及其衍生前驅物(具有1至4個髮夾之pre-miR-302s)之表達的北方墨點法結果。自空白大腸桿菌細胞提取之RNA用作陰性對照。 Figure 6 shows the results of the northern blot method of the expression of the miR-302 family cluster (about 700 nt) and its derivative precursors (pre-miR-302s with 1 to 4 hairpins) induced by MOPS, glycerol, and ethanol, respectively. RNA extracted from blank E. coli cells was used as a negative control.

圖7展示使用自細菌勝任細胞提取物(BE)分離的miR-302及/或pre-miR-302之iPSC生成,其藉由如圖6中所示之北方墨點分析證實。如所報導,miR-302重新編程iPSCs(或稱為mirPSCs)形成球樣細胞群落且表達強Oct4作為標準hESC標記。 FIG. 7 shows the iPSC generation using miR-302 and/or pre-miR-302 isolated from bacterial competent cell extract (BE), which was confirmed by the northern blot analysis as shown in FIG. 6. As reported, miR-302 reprogrammed iPSCs (or called mirPSCs) to form globular cell populations and expressed strong Oct4 as a standard hESC marker.

圖8展示由自細菌勝任細胞提取物(BE)分離的miR-302及/或pre-miR-302誘導之Oct4及Sox2基因啟動子之整體DNA去甲基,其藉由如圖6中所示之北方墨點分析所驗證。如Simonsson及Gurdon(Nat Cell Biol.6,984-990,2004) 所論證,整體DNA去甲基及Oct4表達兩種跡象皆為體細胞重新編程以形成iPSCs所需。 Figure 8 shows the overall DNA demethylation of Oct4 and Sox2 gene promoters induced by miR-302 and/or pre-miR-302 isolated from bacterial competent cell extracts (BE), as shown in Figure 6 Verification by the northern ink dot analysis. As demonstrated by Simonsson and Gurdon ( Nat Cell Biol. 6,984-990, 2004), both signs of global DNA demethylation and Oct4 expression are required for reprogramming of somatic cells to form iPSCs.

圖9展示人類肝癌細胞株HepG2響應於miR-302轉染之活體外致腫瘤性分析。在miR-302轉染之後獲得的細胞標記為mirPS-HepG2,指示其癌細胞特性變至誘導多能幹細胞(iPSC)樣狀態。比較miR-302轉染前後的形態及細胞週期速率之變化。藉由對細胞形態之流式細胞量測術分析之峰圖表(n=3,p<0.01)展示相對於細胞週期階段之各細胞DNA含量。 Figure 9 shows the in vitro tumorigenicity analysis of human liver cancer cell line HepG2 in response to miR-302 transfection. The cells obtained after miR-302 transfection are labeled mirPS-HepG2, indicating that their cancer cell characteristics have changed to an induced pluripotent stem cell (iPSC)-like state. Compare the morphology and cell cycle rate of miR-302 before and after transfection. The peak chart (n=3, p <0.01) analyzed by flow cytometry of cell morphology shows the DNA content of each cell relative to the cell cycle stage.

圖10A及10B展示使用合成標準uDNA(來自Sigma-Genosys)及自pLenti-EF1α-RGFP-miR302轉形大腸桿菌細胞分離的新鮮提取之pro-miR-302s之HPLC純化及分析的結果。標準uDNA經設計以相當於天然pre-miR-302a為:5'-CCACCACUUA AACGUGGAUG UACUUGCUUU GAAACUAAAG AAGUAAGUGC UUCCAUGUUU UGGUGAUGG-3'(SEQ.ID.NO.4)。 Figures 10A and 10B show the results of HPLC purification and analysis using synthetic standard uDNA (from Sigma-Genosys) and freshly extracted pro-miR-302s isolated from pLenti-EF1α-RGFP-miR302 transformed E. coli cells. The standard uDNA is designed to be equivalent to the natural pre-miR-302a as: 5'-CCACCACUUA AACGUGGAUG UACUUGCUUU GAAACUAAAG AAGUAAGUGC UUCCAUGUUU UGGUGAUGG-3' (SEQ. ID. NO. 4).

圖11A及11B展示使用自空白大腸桿菌勝任細胞或pLenti-EF1α-RGFP-miR302(RGFP-miR302)轉染細胞提取之小RNA的microRNA(miRNA)微陣列分析之結果。所提取之小RNA如圖10B之綠色標記區域中所示藉由HPLC進一步純化。圖11A顯示,來自空白大腸桿菌細胞之RNA幾乎不呈現microRNA(綠色點意謂在統計學上不顯著,而紅色點指示陽性結果)。此係因為原核生物不具有microRNA表達及處理所需之若干必需酶,諸如Pol-2、Drosha及RNase III Dicer。此外,原核RNA聚合酶不會高效地轉錄具有高二級結構之小 RNA,諸如髮夾型pre-miRNAs及shRNAs。因此,僅使用本發明,發明人可刺激特定microRNAs於原核細胞中之表達,諸如miR-302a、a*、b、b*、c、c*、d及d*,如圖11B中所示。因為原核細胞不具有Dicer,所以所有microRNAs保持呈其前驅物構形,諸如pri-miRNA(4髮夾簇)及/或pre-miRNA(1髮夾前驅物)。綜合而言,圖10B及11B之結果已確定兩個事實:(1)自RGFP-miR302轉染細胞提取之小RNA主要含有純miR-302前驅物,及(2)大腸桿菌勝任細胞中幾乎不存在其他種類之microRNA污染。 Figures 11A and 11B show the results of microRNA (miRNA) microarray analysis using small RNA extracted from blank E. coli competent cells or pLenti-EF1α-RGFP-miR302 ( RGFP-miR302) transfected cells. The extracted small RNA was further purified by HPLC as shown in the green marked area in Figure 10B. Figure 11A shows that the RNA from blank E. coli cells hardly presents microRNA (green dots mean not statistically significant, and red dots indicate a positive result). This is because prokaryotes do not have several essential enzymes required for microRNA expression and processing, such as Pol-2, Drosha, and RNase III Dicer. In addition, prokaryotic RNA polymerase does not efficiently transcribe small RNAs with high secondary structure, such as hairpin pre-miRNAs and shRNAs. Therefore, using only the present invention, the inventors can stimulate the expression of specific microRNAs in prokaryotic cells, such as miR-302a, a*, b, b*, c, c*, d, and d*, as shown in Figure 11B. Because prokaryotic cells do not have Dicer, all microRNAs maintain their precursor configuration, such as pri-miRNA (4 hairpin cluster) and/or pre-miRNA (1 hairpin precursor). Taken together, the results of Figures 10B and 11B have confirmed two facts: (1) the small RNA extracted from RGFP-miR302 transfected cells mainly contains pure miR-302 precursors, and (2) there are almost none in E. coli competent cells. There are other types of microRNA contamination.

圖12展示自空白大腸桿菌勝任細胞(第1組,如圖11A中所示)或pLenti-EF1α-RGFP-miR302轉染細胞(第2組,如圖11B中所示)提取之表達microRNA之列表。小於500之信號在統計學上不顯著(如圖11A及11B中之綠色所示),其可能由低複本數表達或高背景造成。 Figure 12 shows a list of expressed microRNAs extracted from blank E. coli competent cells (group 1, as shown in Fig. 11A) or pLenti-EF1α-RGFP-miR302 transfected cells (group 2, as shown in Fig. 11B) . Signals less than 500 are not statistically significant (shown in green in Figures 11A and 11B), which may be caused by low copy number expression or high background.

圖13A及圖13B展示miR-302家族簇(13A)及個別pro-miR-302a、pro-miR-302b、pro-miR-302c及pro-miR-302d序列(13B)之測序結果。miR-302家族簇(=pri-miR-302)之結果係5'-AAUUUUUUUC UUCUAAAGUU AUGCCAUUUU GUUUUCUUUC UCCUCAGCUC UAAAUACUCU GAAGUCCAAA GAAGUUGUAU GUUGGGUGGG CUCCCUUCAA CUUUAACAUG GAAGUGCUUU CUGUGACUUU AAAAGUAAGU GCUUCCAUGU UUUAGUAGGA GUGAAUCCAA UUUACUUCUC CAAAAUAGAA CACGCUAACC UCAUUUGAAG GGAUCCCCUU UGCUUUAACA UGGGGGUACC UGCUGUGUGA AACAAAAGUA AGUGCUUCCA UGUUUCAGUG GAGGUGUCUC CAAGCCAGCA CACCUUUUGU UACAAAAUUU UUUUGUUAUU GUGUUUUAAG GUUACUAAGC UUGUUACAGG UUAAAGGAUU CUAACUUUUU CCAAGACUGG GCUCCCCACC ACUUAAACGU GGAUGUACUU GCUUUGAAAC UAAAGAAGUA AGUGCUUCCA UGUUUUGGUG AUGGUAAGUC UUCUUUUUAC AUUUUUAUUA UUUUUUUAGA AAAUAACUUU AUUGUAUUGA CCGCAGCUCA UAUAUUUAAG CUUUAUUUUG UAUUUUUACA UCUGUUAAGG GGCCCCCUCU ACUUUAACAU GGAGGCACUU GCUGUGACAU GACAAAAAUA AGUGCUUCCA UGUUUGAGUG UGGUGGUUCC UACCUAAUCA GCAAUUGAGU UAACGCCCAC ACUGUGUGCA GUUCUUGGCU ACAGGCCAUU ACUGUUGCUA-3'(SEQ.ID.NO.5),而pro-miR-302a、pro-miR-302b、pro-miR-302c及pro-miR-302d之個別序列分別如下:5'-CCACCACUUA AACGUGGAUG UACUUGCUUU GAAACUAAAG AAGUAAGUGC UUCCAUGUUU UGGUGAUGG-3'(SEQ.ID.NO.6)、5'-GCUCCCUUCA ACUUUAACAU GGAAGUGCUU UCUGUGACUU UAAAAGUAAG UGCUUCCAUG UUUUAGUAGG AGU-3'(SEQ.ID.NO.7)、5'-CCUUUGCUUU AACAUGGGGG UACCUGCUGU GUGAAACAAA AGUAAGUGCU UCCAUGUUUC AGUGGAGG-3'(SEQ.ID.NO.8)及5'-CCUCUACUUU AACAUGGAGG CACUUGCUGU GACAUGACAA AAAUAAGUGC UUCCAUGUUU GAGUGUGG-3'(SEQ.ID.NO.9)。 Figures 13A and 13B show the sequencing results of the miR-302 family cluster (13A) and individual pro-miR-302a, pro-miR-302b, pro-miR-302c and pro-miR-302d sequences (13B). miR-302 family cluster (= pri-miR-302) of the result based 5'-AAUUUUUUUC UUCUAAAGUU AUGCCAUUUU GUUUUCUUUC UCCUCAGCUC UAAAUACUCU GAAGUCCAAA GAAGUUGUAU GUUGGGUGGG CUCCCUUCAA CUUUAACAUG GAAGUGCUUU CUGUGACUUU AAAAGUAAGU GCUUCCAUGU UUUAGUAGGA GUGAAUCCAA UUUACUUCUC CAAAAUAGAA CACGCUAACC UCAUUUGAAG GGAUCCCCUU UGCUUUAACA UGGGGGUACC UGCUGUGUGA AACAAAAGUA AGUGCUUCCA UGUUUCAGUG GAGGUGUCUC CAAGCCAGCA CACCUUUUGU UACAAAAUUU UUUUGUUAUU GUGUUUUAAG GUUACUAAGC UUGUUACAGG UUAAAGGAUU CUAACUUUUU CCAAGACUGG GCUCCCCACC ACUUAAACGU GGAUGUACUU GCUUUGAAAC UAAAGAAGUA AGUGCUUCCA UGUUUUGGUG AUGGUAAGUC UUCUUUUUAC AUUUUUAUUA UUUUUUUAGA AAAUAACUUU AUUGUAUUGA CCGCAGCUCA UAUAUUUAAG CUUUAUUUUG UAUUUUUACA UCUGUUAAGG GGCCCCCUCU ACUUUAACAU GGAGGCACUU GCUGUGACAU GACAAAAAUA AGUGCUUCCA UGUUUGAGUG UGGUGGUUCC UACCUAAUCA GCAAUUGAGU UAACGCCCAC ACUGUGUGCA GUUCUUGGCU ACAGGCCAUU ACUGUUGCUA- 3'(SEQ.ID.NO.5), and the individual sequences of pro-miR-302a, pro-miR-302b, pro-miR-302c and pro-miR-302d are as follows: 5'-CCACCACUUA AACGUGGAUG UACUUGCUUU GAAACUAAAG AAGUAAGUGC UUCCAUGUUU UGGUGAUGG-3'(SEQ.ID.NO.6), 5'-GCUCCCUUCA ACUUUAACAU GGAAGUGCUU UCUGUGACUU UAAAAGUAAG UGCUUCCAUG UUUUAGUAGG AGU-3'(SEQ.ID.NO.7), 5'-CCUUCUUGCU GUGUA ACCAUGAAA UCCAUGUUUC AGUGGAGG-3'(SEQ.ID.NO.8) and 5'-CCUCUACUUU AACAUGGAGG CACUUGCUGU GACAUGACAA AAAUAAGUGC UUCCAUGUUU GAGUGUGG-3'(SEQ.ID.NO.9).

圖14展示使用pro-miR-302作為注射藥物處理SCID-米色裸小鼠中的人類肝癌異種移植物之預試驗新藥(pre-IND)試驗之活體內治療結果。在三次處理(每週一次)之後,pro-miR-302藥物(=pre-miR-302)成功地將癌症大小自728±328mm3(未經處理之空白對照,C)減小至75±15mm3(經pro-miR-302處理,T),指示平均癌症大小減小約90%比率。合成siRNA模擬物(siRNA-302)處理中未發現顯著治療效果。進一步組織學檢查(最右圖)發現,正常肝小葉樣結構(由黑色箭頭指出之圓圈)僅於經pro-miR-302處理之癌症中形成但不於其他處理或對照中形成,表明重新編程機制可發生以將惡性癌細胞特性復位回至相對正常樣狀態(稱為「癌症逆轉」)。 Figure 14 shows the in vivo treatment results of the pre-inspected new drug (pre-IND) trial of using pro-miR-302 as an injection drug to treat human liver cancer xenografts in SCID-beige nude mice. After three treatments (once a week), pro-miR-302 drug (=pre-miR-302) successfully reduced the size of the cancer from 728±328mm 3 (untreated blank control, C) to 75±15mm 3 (treated with pro-miR-302, T), indicating that the average cancer size is reduced by about 90%. No significant therapeutic effect was found in the treatment of synthetic siRNA mimic (siRNA-302). Further histological examination (far right) revealed that normal liver lobule-like structures (circles indicated by black arrows) were formed only in cancers treated with pro-miR-302 but not in other treatments or controls, indicating reprogramming The mechanism can occur to reset the characteristics of malignant cancer cells back to a relatively normal-like state (called "cancer reversal").

圖15展示活體內正常肝組織與經pro-miR-302處理之人類肝癌異種移植物之間的組織學類似性。在三次處理(每週一次)之後,pro-miR-302藥物成功地將高度(IV度)人類肝癌移植物重新編程至更良性的低度(低於II度)狀態。類似於正常肝組織(頂圖),經處理之癌症移植物可形成含有中央靜脈(CV)樣及門脈三聯管(PT)樣結構(由黑色箭頭指示)之經典肝小葉。因為癌細胞通常比正常肝細胞酸性更大,所以蘇木精與伊紅(H&E)染色之結果展示癌細胞中更多紫色而正常肝細胞中更多紅色。 Figure 15 shows the histological similarity between normal liver tissue in vivo and human liver cancer xenografts treated with pro-miR-302. After three treatments (once a week), the pro-miR-302 drug successfully reprogrammed high-grade (IV-degree) human liver cancer grafts to a more benign low-grade (less than II-degree) state. Similar to normal liver tissue (top image), treated cancer grafts can form classic liver lobules containing central vein (CV)-like and portal triplet (PT)-like structures (indicated by black arrows). Because cancer cells are usually more acidic than normal liver cells, the results of hematoxylin and eosin (H&E) staining show more purple in cancer cells and more red in normal liver cells.

圖16展示SCID-米色裸小鼠中未經處理、經siRNA處理、經pro-miR-302處理之人類肝癌移植物及正常肝組織之中的病理組織學比較。在未經處理之情況下(頂圖),移植之人類肝癌侵襲性侵入至正常組織,諸如肌肉及血管中,且形成大規模細胞-細胞及癌症-組織融合結構,指示其惡性及高轉移性。siRNA模擬物(siRNA-302)處理不會顯著降低移植之癌症之惡性(中上圖),很可能係由於siRNA之短暫半衰期。相比之下,pro-miR-302處理不僅將移植之癌症重新編程至相對正常樣形態(無融合),而且極大地抑制癌症侵入至周圍組織中(中下圖)。與正常肝組織(底圖)相比,經pro-miR-302處理之癌症形成正常樣小葉結構、腺樣細胞配置以及細胞-細胞及癌症-組織接合處之間的清楚邊界(黑色箭頭),表明此等經處理之癌症已降級至極良性的狀態。 Figure 16 shows the histopathological comparison between untreated, siRNA-treated, and pro-miR-302-treated human liver cancer transplants and normal liver tissues in SCID-beige nude mice. Without treatment (top image), transplanted human liver cancer invasively invades normal tissues, such as muscles and blood vessels, and forms large-scale cell-cell and cancer-tissue fusion structures, indicating its malignancy and high metastasis . siRNA mimic (siRNA-302) treatment does not significantly reduce the malignancy of transplanted cancer (upper middle), which is probably due to the short half-life of siRNA. In contrast, pro-miR-302 treatment not only reprograms the transplanted cancer to a relatively normal-like morphology (no fusion), but also greatly inhibits the invasion of the cancer into the surrounding tissues (bottom middle panel). Compared with normal liver tissue (bottom image), cancers treated with pro-miR-302 form a normal-like lobule structure, adenoid cell configuration, and a clear boundary (black arrow) between cell-cell and cancer-tissue junctions, It shows that these treated cancers have been downgraded to a very benign state.

圖17A及17B展示活體內未經處理(17A)及經miR-302處理(17B)之傷口之間的癒合結果之比較。將分離之miR-302分子(20-400μg/mL)與二-/三-胺醯化甘油(di-/tri-glycylglycerin)、遞送試劑及抗生素軟膏一起調配以形成候選藥物,用於活體內測試豬背皮膚上2cm×2cm大開放傷口之局部處理(各組n=6)。在約兩週處理(每日一次處理)之後,將癒合之傷口解剖且進一步製成組織切片用於在顯微鏡下進行組織學檢查。資料顯示,經miR-302處理之傷口中可見無疤痕或極小疤痕(無疤痕)(17B頂圖,n=6/6),而幾乎所有未經處理(僅經抗生素軟膏處理)之傷口含有大疤痕(17A頂圖,n=5/6)。此外,顯著大量CD34陽性成體幹細胞簇(經綠色螢光抗體標記)見於經miR-302處理之傷 口中(17B底圖,n=6/6),但未見於未經處理之對照傷口中(17A底圖,n=0/6)。此些結果表明,pre-miR-302能夠誘導CD34陽性成體幹細胞增殖及/或再生,以便增強組織修復及再生,對由人類退化性疾病,諸如阿茲海默症、帕金森氏症、骨質疏鬆症、糖尿病及癌症所造成之病變產生極有益的治療效果。該治療效果亦可幫助將高度惡性癌症重新編程為低度良性或甚至正常樣組織,為稱之為癌症逆轉或癌症消退之新穎機制。 Figures 17A and 17B show a comparison of healing results between wounds that were untreated (17A) and miR-302 treated (17B) in vivo. The isolated miR-302 molecules (20-400μg/mL) are formulated with di-/tri-glycylglycerin (di-/tri-glycylglycerin), delivery reagents and antibiotic ointment to form drug candidates for in vivo testing Local treatment of 2cm×2cm large open wound on pig back skin (n=6 in each group). After about two weeks of treatment (treatment once a day), the healed wound was dissected and further made into tissue sections for histological examination under a microscope. Data show that no scars or very small scars (no scars) can be seen in wounds treated with miR-302 (17B top image, n=6/6), and almost all untreated wounds (treated with antibiotic ointment only) contain large Scar (17A top image, n=5/6). In addition, a significant number of CD34-positive adult stem cell clusters (labeled with green fluorescent antibodies) were seen in miR-302-treated injuries In the mouth (base map 17B, n=6/6), but not seen in untreated control wounds (base map 17A, n=0/6). These results indicate that pre-miR-302 can induce the proliferation and/or regeneration of CD34-positive adult stem cells in order to enhance tissue repair and regeneration. Pathological changes caused by porosity, diabetes and cancer produce extremely beneficial therapeutic effects. The therapeutic effect can also help reprogram highly malignant cancers into low-grade benign or even normal-like tissues, which is a novel mechanism called cancer reversal or cancer regression.

實例:Examples:

在以下實驗揭示內容中,以下縮寫適用:M(莫耳濃度);mM(毫莫耳濃度);μm(微莫耳);mol(莫耳);pmol(皮莫耳);gm(公克);mg(毫克);μg(微克);ng(奈克);L(公升);ml(毫升);μl(微升);℃(攝氏度);RNA(核糖核酸);DNA(去氧核糖核酸);dNTP(三磷酸去氧核糖核苷酸);PBS(磷酸鹽緩衝生理食鹽水);NaCl(氯化鈉);HEPES(N-2-羥基乙基哌嗪-N-2-乙烷磺酸);HBS(HEPES緩衝生理食鹽水);SDS(十二烷基硫酸鈉);Tris-HCl(三-羥基甲胺基甲烷-鹽酸鹽);ATCC(美國菌種保存中心,Rockville,MD);hESC(人胚胎幹細胞);及iPSC(誘導多能幹細胞)。 In the following experimental disclosures, the following abbreviations apply: M (molar concentration); mM (millimolar concentration); μm (micromolar); mol (mole); pmol (pimol); gm (gram) ; Mg (milligrams); μg (micrograms); ng (naik); L (liters); ml (milliliters); μl (microliters); ℃ (degrees Celsius); RNA (ribonucleic acid); DNA (deoxyribonucleic acid) ); dNTP (deoxyribonucleotide triphosphate); PBS (phosphate buffered saline); NaCl (sodium chloride); HEPES (N-2-hydroxyethylpiperazine-N-2-ethanesulfon Acid); HBS (HEPES buffered physiological saline); SDS (sodium dodecyl sulfate); Tris-HCl (tris-hydroxymethylaminomethane-hydrochloride); ATCC (American Culture Collection, Rockville, MD ); hESC (human embryonic stem cells); and iPSC (induced pluripotent stem cells).

1. 細菌細胞培養及化學處理1. Bacterial cell culture and chemical treatment

自z-勝任大腸桿菌轉形套組(Zymo Research,Irvine,CA)作為一部分獲取大腸桿菌DH5α勝任細胞,且隨後藉由與5μg預製得之質體載體,諸如 pLenti-EF1α-RGFP-miR302pLVX-Grn-miR302+367)混合而轉形。使非轉形細胞在37℃下在以170rpm頻繁攪拌下正常培育於補充有10mM MgSO4及0.2mM葡萄糖之Luria-Bertani(LB)培養液中,而將轉形細胞於進一步補充有額外100μg/ml安比西林之以上LB培養液中培養。對於化學誘導,分別或組合添加0.5至2ml MOPS、甘油及/或乙醇至補充有10mM MgSO4及0.2mM葡萄糖、存在100μg/ml安比西林之1公升LB培養液中。對於陰性對照,將轉形細胞於以上補充安比西林但不添加任何化學誘導劑之LB培養液中培養。結果展示於圖2-4中。 Obtain E. coli DH5α competent cells from the z-competent E. coli transformation kit (Zymo Research, Irvine, CA) as part, and then use 5 μg of pre-prepared plastid vectors, such as pLenti-EF1α-RGFP-miR302 or pLVX -Grn-miR302 + 367 ) is mixed and transformed. The non-transformed cells were cultured in Luria-Bertani (LB) medium supplemented with 10 mM MgSO 4 and 0.2 mM glucose at 37°C under frequent stirring at 170 rpm, and the transformed cells were further supplemented with an additional 100 μg/ Cultivate in the above LB medium of ml Ambicillin. For chemical induction, 0.5 to 2 ml MOPS, glycerol and/or ethanol are added separately or in combination to 1 liter of LB culture medium supplemented with 10 mM MgSO 4 and 0.2 mM glucose in the presence of 100 μg/ml ampicillin. For the negative control, the transformed cells were cultured in the above LB medium supplemented with ampicillin but without any chemical inducer. The results are shown in Figures 2-4.

2. 人類細胞培養及MicroRNA轉染2. Human cell culture and microRNA transfection

人類肝癌細胞株HepG2係獲自ATCC且根據製造商之建議維續。為了轉染,將15μg pre-miR-302溶解於1ml新鮮RPMI培養基中且與50μl X-tremeGENE HP DNA轉染試劑(Roche,Indianapolis,IN)混合。在10分鐘培育之後,添加混合物至含有50%-60% HepG2細胞滿度之100mm細胞培養皿中。12至18小時後更新培養基。在此等經轉染細胞形成球樣iPSC群落之後,將培養基變為補充有20%基因剔除血清、1% MEM非必需胺基酸、100μM ß-巰基乙醇、1mM GlutaMax、1mM丙酮酸鈉、10ng/ml bFGF、10ng/ml FGF-4、5ng/ml LIF、100IU/ml盤尼西林/100μg/ml鏈黴素、0.1μM A83-01及0.1μM丙戊酸(Stemgent,San Diego,CA)之基因剔除DMEM/F-12培養基(Invitrogen),且在37℃下在5% CO2下培養細胞。結果展示於圖9中。 The human liver cancer cell line HepG2 was obtained from ATCC and maintained according to the manufacturer's recommendations. For transfection, 15 μg pre-miR-302 was dissolved in 1 ml fresh RPMI medium and mixed with 50 μl X-tremeGENE HP DNA transfection reagent (Roche, Indianapolis, IN). After 10 minutes of incubation, add the mixture to a 100mm cell culture dish containing 50%-60% HepG2 cell fullness. Renew the medium after 12 to 18 hours. After these transfected cells formed a spherical iPSC colony, the medium was changed to supplemented with 20% gene knock-out serum, 1% MEM non-essential amino acid, 100μM ß-mercaptoethanol, 1mM GlutaMax, 1mM sodium pyruvate, 10ng /ml bFGF, 10ng/ml FGF-4, 5ng/ml LIF, 100IU/ml penicillin/100μg/ml streptomycin, 0.1μM A83-01 and 0.1μM valproic acid (Stemgent, San Diego, CA) knock-out DMEM/F-12 medium (Invitrogen), and cells were cultured at 37°C under 5% CO 2. The results are shown in Figure 9.

3. 蛋白質提取及西方墨點分析3. Protein extraction and western ink spot analysis

遵循製造商之建議,用補充有蛋白酶抑制劑、亮肽素(Leupeptin)、TLCK、TAME及PMSF之CelLytic-M裂解/提取試劑(Sigma)使細胞(106個)裂解。在4℃下在12,000rpm下使裂解物離心20分鐘且回收上清液。在E-max微盤讀取器(Molecular Devices,CA)上使用改良之SOFTmax蛋白質分析套裝量測蛋白質濃度。在還原(+50mM DTT)及非還原(無DTT)條件下添加各30μg細胞溶解物至SDS-PAGE樣品緩衝液中,且使其沸騰3分鐘,隨後裝載至6-8%聚丙烯醯胺凝膠上。將蛋白質藉由SDS-聚丙烯醯胺凝膠電泳(PAGE)解析,電轉漬至硝化纖維素膜上,且在室溫下於Odyssey阻斷試劑(Li-Cor Biosciences,Lincoln,NB)中培育2小時。隨後,施加一級抗體至試劑且在4℃下培育混合物。一級抗體包括Oct3/4(Santa Cruz Biotechnology,Santa Cruz,CA)、RuvB(Santa Cruz)及RGFP(Clontech)。在隔夜之後,將膜用TBS-T沖洗三次,且隨後在室溫下暴露於Alexa Fluor 680反應性染料標記之山羊抗小鼠IgG結合二級抗體(1:2,000;Invitrogen-Molecular Probes)1小時。在三次額外TBS-T沖洗之後,使用Li-Cor Odyssey紅外成像儀及Odyssey軟體v.10(Li-Cor)執行免疫轉印之螢光掃描及圖像分析。結果展示於圖5中。 Follow the manufacturer & recommended, supplemented with protease inhibitors, leupeptin (Leupeptin), TLCK, TAME and PMSF of CelLytic-M lysis / extraction reagent (Sigma) cells (10 6) cracking. The lysate was centrifuged at 12,000 rpm at 4°C for 20 minutes and the supernatant was recovered. The protein concentration was measured on an E-max microdisk reader (Molecular Devices, CA) using a modified SOFTmax protein analysis kit. Add 30μg of cell lysate to SDS-PAGE sample buffer under reducing (+50mM DTT) and non-reducing (without DTT) conditions, and let it boil for 3 minutes, then load it into 6-8% polyacrylamide gel Glue on. The protein was analyzed by SDS-polyacrylamide gel electrophoresis (PAGE), electrotransfected onto a nitrocellulose membrane, and incubated in Odyssey blocking reagent (Li-Cor Biosciences, Lincoln, NB) at room temperature 2 hour. Subsequently, the primary antibody was applied to the reagent and the mixture was incubated at 4°C. Primary antibodies include Oct3/4 (Santa Cruz Biotechnology, Santa Cruz, CA), RuvB (Santa Cruz) and RGFP (Clontech). After overnight, the membrane was rinsed three times with TBS-T, and then exposed to a goat anti-mouse IgG-conjugated secondary antibody (1:2,000; Invitrogen-Molecular Probes) labeled with Alexa Fluor 680 reactive dye at room temperature for 1 hour . After three additional TBS-T washes, the Li-Cor Odyssey infrared imager and Odyssey software v.10 (Li-Cor) were used to perform fluorescent scanning and image analysis of immunoblotting. The results are shown in Figure 5.

4. RNA提取及北方墨點分析4. RNA extraction and northern ink spot analysis

將總RNA(10μg)用mirVanaTM miRNA分離套組(Ambion,Austin,TX)分離,且藉由15% TBE-脲聚丙烯醯胺凝膠或3.5%低熔點瓊脂糖凝膠電泳來分級分離,且電轉漬至耐綸膜上。用[LNA]-DNA探針(5'-[TCACTGAAAC] ATGGAAGCAC TTA-3')(SEQ.ID.NO.10)探針執行miR-302s及相關pre-miR-302s之偵測。探針藉由高效液相層析(HPLC)純化,且在[32P]-dATP(>3000 Ci/mM,Amersham International,Arlington Heights,IL)存在下經末端轉移酶(20單位)加尾標記20分鐘。結果展示於圖6中。 The total RNA (10μg) was separated with the mir Vana TM miRNA separation kit (Ambion, Austin, TX), and fractionated by 15% TBE-urea polyacrylamide gel or 3.5% low melting point agarose gel electrophoresis , And the electric transfer stains onto the nylon membrane. [LNA]-DNA probe (5'-[TCACTGAAAC] ATGGAAGCAC TTA-3') (SEQ.ID.NO.10) probe was used to detect miR-302s and related pre-miR-302s. The probe was purified by high performance liquid chromatography (HPLC) and tail-labeled with terminal transferase (20 units) in the presence of [32 P]-dATP (>3000 Ci/mM, Amersham International, Arlington Heights, IL) 20 minutes. The results are shown in Figure 6.

5. 質體擴增及質體DNA/總RNA提取5. Plastid amplification and plastid DNA/total RNA extraction

將轉形之後的大腸桿菌DH5α勝任細胞(來自實例1)在補充有10mM MgSO4及0.2mM葡萄糖之LB培養液中在37℃下在以170rpm頻繁攪拌下培養。為了誘導真核啟動子驅動之RNA轉錄,添加0.5至2ml MOPS、甘油及/或乙醇至每1公升LB培養液中以使轉形細胞繁殖隔夜。使用HiSpeed質體純化套組(Qiagen,Valencia,CA)遵循製造商之方案但有RNase A不添加至P1緩衝液中的微小修改,分離轉形細胞中擴增之質體DNAs及表達之mRNAs/microRNAs。此後,將含有質體及mRNAs/microRNAs兩者之最終提取產物溶解於經DEPC處理之ddH2O中,且在使用之前儲存於-80℃下。為了僅純化擴增之質體載體,添加RNase A至P1緩衝液中且遵循製造商之方案執行提取程序。 The transformed E. coli DH5α competent cells (from Example 1) were cultured in LB broth supplemented with 10 mM MgSO 4 and 0.2 mM glucose at 37° C. under frequent stirring at 170 rpm. In order to induce RNA transcription driven by eukaryotic promoters, 0.5 to 2 ml MOPS, glycerol and/or ethanol were added to 1 liter of LB broth to allow the transformed cells to multiply overnight. Use the HiSpeed plastid purification kit (Qiagen, Valencia, CA) to follow the manufacturer’s protocol but with minor modifications that RNase A is not added to the P1 buffer to separate the amplified plastid DNAs and expressed mRNAs in the transformed cells/ microRNAs. Thereafter, the final extraction product containing both plastids and mRNAs/microRNAs was dissolved in DEPC-treated ddH 2 O, and stored at -80°C before use. In order to purify only the amplified plastid vector, add RNase A to the P1 buffer and perform the extraction procedure following the manufacturer's protocol.

6. MicroRNA及Pre-miRNA分離/純化6. MicroRNA and Pre-miRNA separation/purification

為了純化microRNAs及pre-miRNAs,使用mirVanaTM miRNA分離套組(Ambion,Austin,TX)遵循製造商之方案,進一步提取自實例5分離之總RNA。將由此獲得之最終產物溶解於經DEPC處理之ddH2O中,且在使用之前儲存於-80℃下。因為細菌RNAs天然地極快降解(在數小時內),而真核髮夾型microRNA前驅物(pre-miRNAs及 pri-miRNAs)在4℃下大部分保持穩定(半衰期達3-4天),所以發明人可使用此半衰期差異獲取相對純pri-/pre-miRNAs以用於其他應用。舉例而言,由此獲得之pre-miR-302s可用以將體細胞重新編程為hESC類iPSCs,如圖9中所示。 In order to purify microRNAs and pre-miRNAs, the mir Vana TM miRNA isolation kit (Ambion, Austin, TX) was used to follow the manufacturer's protocol, and the total RNA isolated from Example 5 was further extracted. The final product thus obtained was dissolved in DEPC-treated ddH 2 O and stored at -80°C before use. Because bacterial RNAs naturally degrade extremely quickly (within a few hours), the eukaryotic hairpin microRNA precursors (pre-miRNAs and pri-miRNAs) are mostly stable at 4°C (half-life of 3-4 days), Therefore, the inventor can use this half-life difference to obtain relatively pure pri-/pre-miRNAs for other applications. For example, the pre-miR-302s thus obtained can be used to reprogram somatic cells into hESC-like iPSCs, as shown in FIG. 9.

7. 免疫染色分析7. Immunostaining analysis

如先前所報導(Lin等人,2008)對組織樣品執行包埋、切片及免疫染色。一級抗體包括Oct4(Santa Cruz)及RGFP(Clontech,Palo Alto,CA)。經螢光染料標記之山羊抗兔或馬抗小鼠抗體用作二級抗體(Invitrogen-Molecular Probes,Carlsbad,CA)。在螢光80i顯微定量系統下用Metamorph成像程式(Nikon)以100x或200x放大率檢查及分析陽性結果。結果展示於圖7中。 Embedding, sectioning and immunostaining were performed on tissue samples as previously reported (Lin et al., 2008). Primary antibodies include Oct4 (Santa Cruz) and RGFP (Clontech, Palo Alto, CA). Goat anti-rabbit or horse anti-mouse antibodies labeled with fluorescent dyes were used as secondary antibodies (Invitrogen-Molecular Probes, Carlsbad, CA). Use Metamorph imaging program (Nikon) to check and analyze the positive results with 100x or 200x magnification under the fluorescent 80i micro-quantification system. The results are shown in Figure 7.

8. 亞硫酸鹽DNA測序8. Sulphite DNA Sequencing

使用DNA分離套組(Roche)自約2,000,000個細胞分離基因組DNA,且用亞硫酸鹽(CpGenome DNA修飾套組,Chemicon,Temecula,CA)遵循製造商之建議進一步處理1μg分離之DNA。亞硫酸鹽處理將所有未甲基化胞嘧啶轉化為脲嘧啶,而甲基化胞嘧啶保持為胞嘧啶。在亞硫酸鹽DNA測序中,發明人用PCR引子擴增Oct4基因之啟動子區,引子為:5'-GAGGCTGGAG CAGAAGGATT GCTTTGG-3'(SEQ.ID.NO.11)及5'-CCCTCCTGAC CCATCACCTC CACCACC-3'(SEQ.ID.NO.12)。在PCR中,將亞硫酸鹽修飾之DNAs(50ng)與引子(總計100pmol)於1x PCR緩衝液中混合,加熱至94℃維持2分鐘,且立即於冰上冷卻。隨後,使用Expand High Fidelity PCR套組(Roche),如下執行25 個PCR循環:94℃持續1分鐘及70℃持續3分鐘。將具有正確大小之PCR產物藉由3%瓊脂糖凝膠電泳進一步分級分離,藉由凝膠提取過濾件(Qiagen)純化,且隨後用於DNA測序中。此後,藉由將經轉化DNA序列中之未變胞嘧啶與未經轉化之DNA序列比較,生成DNA甲基化位點之詳細圖譜,如圖8中所示。 A DNA isolation kit (Roche) was used to isolate genomic DNA from approximately 2,000,000 cells, and 1 μg of the isolated DNA was further processed with sulfite (CpGenome DNA Modification Kit, Chemicon, Temecula, CA) following the manufacturer’s recommendations. The sulfite treatment converts all unmethylated cytosine to uracil, while methylated cytosine remains as cytosine. In sulfite DNA sequencing, the inventor used PCR primers to amplify the promoter region of the Oct4 gene. The primers are: 5'-GAGGCTGGAG CAGAAGGATT GCTTTGG-3' (SEQ.ID.NO.11) and 5'-CCCTCCTGAC CCATCACCTC CACCACC -3' (SEQ.ID.NO.12). In PCR, sulfite-modified DNAs (50ng) and primers (100pmol in total) were mixed in 1x PCR buffer, heated to 94°C for 2 minutes, and immediately cooled on ice. Subsequently, using the Expand High Fidelity PCR Kit (Roche), 25 PCR cycles were performed as follows: 94°C for 1 minute and 70°C for 3 minutes. The PCR product with the correct size was further fractionated by 3% agarose gel electrophoresis, purified by a gel extraction filter (Qiagen), and then used in DNA sequencing. Thereafter, by comparing the unaltered cytosine in the transformed DNA sequence with the untransformed DNA sequence, a detailed map of DNA methylation sites is generated, as shown in FIG. 8.

9. DNA密度流式細胞量測術9. DNA density flow cytometry

將細胞以胰蛋白酶處理、集結團塊且在-20℃下藉由再懸浮於1ml含預冷卻70%甲醇之PBS中而固定1小時。將細胞集結成團塊且用1ml PBS洗滌一次,且隨後再次集結成團塊且在37℃下再懸浮於1ml含1mg/ml碘化丙錠(propidium iodide)、0.5μg/ml RNase之PBS中30分鐘。此後,在BD FACSCalibur(San Jose,CA)上分析約15,000個細胞。藉由繪製脈衝寬度相對於脈衝面積且於單細胞門控(gating)而排除細胞二重峰。使用套裝軟體Flowjo使用「Watson Pragmatic」演算法分析收集之資料。結果展示於圖9之頂圖中。 The cells were trypsinized, clumped, and fixed by resuspending in 1 ml of PBS containing pre-cooled 70% methanol at -20°C for 1 hour. The cells were aggregated into clumps and washed once with 1ml PBS, and then aggregated into clumps again and resuspended in 1ml PBS containing 1mg/ml propidium iodide and 0.5μg/ml RNase at 37°C 30 minutes. Thereafter, about 15,000 cells were analyzed on BD FACSCalibur (San Jose, CA). The cell doublet is eliminated by plotting the pulse width against the pulse area and gating on the single cell. Use the packaged software Flowjo to analyze the collected data using the "Watson Pragmatic" algorithm. The results are shown in the top panel of Figure 9.

10. MicroRNA(miRNA)微陣列分析10. MicroRNA (miRNA) microarray analysis

在約70%細胞滿度下,使用mirVanaTM miRNA分離套組(Ambion)分離來自各細胞培養物之小RNA。使用1%甲醛-瓊脂糖凝膠電泳及分光光度計量測(Bio-Rad)評估分離之小RNAs之純度及量,且隨後立即將其冷凍於乾冰中且提交至LC Sciences(San Diego,CA)以用於miRNA微陣列分析。使各微陣列晶片雜合,單個樣品經Cy3或Cy5標記或一對樣品分別經Cy3及Cy5標記。根據製造商之建議執行背景 扣除及標準化。在雙樣品分析中,執行p值計算且產生大於3倍的有差異地表達之轉錄物(黃-紅色信號)之清單。最終微陣列結果展示於圖11A及11B中,且有差異地表達之microRNAs之清單展示於圖12中,其將自空白大腸桿菌細胞裂解物提取之小RNAs(第1組)與自pLenti-EF1α-RGFP-miR302轉形細胞裂解物提取之小RNA(第2組)比較。 At about 70% cell fullness, use the mir Vana TM miRNA isolation kit (Ambion) to separate small RNA from each cell culture. Use 1% formaldehyde-agarose gel electrophoresis and spectrophotometric measurement (Bio-Rad) to evaluate the purity and amount of the separated small RNAs, and then immediately freeze them in dry ice and submit to LC Sciences (San Diego, CA ) For miRNA microarray analysis. The microarray wafers are hybridized, and a single sample is labeled with Cy3 or Cy5, or a pair of samples is labeled with Cy3 and Cy5, respectively. Perform background deduction and standardization according to the manufacturer's recommendations. In a two-sample analysis, a p- value calculation is performed and a list of differentially expressed transcripts (yellow-red signal) greater than 3 times is generated. The final microarray results are shown in Figures 11A and 11B, and a list of differentially expressed microRNAs is shown in Figure 12. It combines small RNAs extracted from blank E. coli cell lysates (group 1) and pLenti-EF1α -Comparison of small RNA extracted from RGFP-miR302 transformed cell lysate (group 2).

11. 活體內肝癌療法試驗11. Liver cancer therapy trial in vivo

異種移植人類肝癌至免疫功能不全SCID-米色小鼠中是研究肝癌轉移及療法之有效動物模型。為建立此模型,發明人將5百萬個人類肝癌(HepG2)細胞與100μL基質凝膠混合,且將混合物分別皮下移植至小鼠後肢之各側腹中。因此,小鼠後肢兩側皆經歷大致相同量之癌細胞移植。在移植後約兩週觀測癌症,且其平均大小約為15.6±8mm3(處理之前的起始癌症大小)。對各小鼠,發明人選擇具有更大癌症之側作為處理組且具有更小癌症之另一側作為對照組。因為同一隻小鼠在一側以空白調配試劑(陰性對照)處理且在另一側以調配藥物(pro-miR-302)處理,所以由此獲得之結果可最小化歸因於個體差異之任何可能的變化。 Xenotransplantation of human liver cancer into immunocompromised SCID-beige mice is an effective animal model for studying liver cancer metastasis and therapy. To establish this model, the inventors mixed 5 million human liver cancer (HepG2) cells with 100 μL of Matrigel, and transplanted the mixture subcutaneously into each flank of the hind limb of the mouse. Therefore, both sides of the hind limbs of the mice undergo approximately the same amount of cancer cell transplantation. The cancer was observed about two weeks after transplantation, and its average size was about 15.6±8 mm 3 (the initial cancer size before treatment). For each mouse, the inventors selected the side with larger cancer as the treatment group and the other side with smaller cancer as the control group. Because the same mouse was treated with a blank formulation reagent (negative control) on one side and a formulated drug (pro-miR-302) on the other side, the results obtained can minimize any differences due to individual differences Possible changes.

為了在活體內將pro-miR-302遞送至標的癌症區域中,發明人訂約專業調配公司Latitude(San Diego,CA)將pro-miR-302s經脂質體囊封至160-200nm直徑之奈米粒子中。此些含pro-miR-302之奈米粒子已經測試在室溫下幾乎100%穩定超過兩週且在4℃下幾乎100%穩定超過一個月,而其他合成siRNA模擬物(siRNA-302)在相同條件下在3至5 天內皆快速降解超過50%,表明pro-miRNA而非siRNA足夠穩定以用作治療藥物。在毒性分析中,發明人已進一步最大限度地分別注射300μL調配pro-miR-302(1mg/mL)至小鼠尾靜脈中(n=8),且經六個月在所有測試小鼠中皆未觀測到可偵測副作用。一般而言,非修飾核糖核酸相對不具免疫原性且可容易由組織細胞代謝,提供一種用於活體內療法之安全工具。 In order to deliver pro-miR-302 to the target cancer area in vivo, the inventors contracted a professional blending company Latitude (San Diego, CA) to encapsulate pro-miR-302s into a nanometer with a diameter of 160-200nm via liposomes. In the particles. These nanoparticles containing pro-miR-302 have been tested to be almost 100% stable for more than two weeks at room temperature and almost 100% stable for more than one month at 4°C, while other synthetic siRNA mimics (siRNA-302) are 3 to 5 under the same conditions It degrades rapidly by more than 50% within a day, indicating that pro-miRNA rather than siRNA is stable enough to be used as a therapeutic drug. In the toxicity analysis, the inventors have further injected 300μL of the formulated pro-miR-302 (1mg/mL) into the tail vein of mice (n=8) to the maximum extent, and it has been in all tested mice after six months. No detectable side effects were observed. Generally speaking, unmodified ribonucleic acid is relatively non-immunogenic and can be easily metabolized by tissue cells, providing a safe tool for in vivo therapy.

為了測試藥物效力,發明人分別在小鼠之一側皮下注射200μL調配pro-miR-302且在另一側皮下注射200μL空白調配試劑,且繼續相同注射模式三次(每週一次注射)。藥物及試劑係應用至癌症位點之周圍區域且在18小時內由癌症及其周圍組織吸收。在第三次注射之後一週收集樣品。移出心臟、肝臟、腎臟及移植之癌症以用於進一步組織學檢查。藉由觸診監測腫瘤形成,且使用方程式(長度×寬度2)/2計算腫瘤體積。對腫瘤病灶計數,解剖、稱重,且使用H&E及免疫染色分析使其經歷組織學檢查。組織學檢查展示心臟、肝臟及腎臟中無可偵測之組織病灶。結果展示於圖14、15及16中。 To test the efficacy of the drug, the inventors subcutaneously injected 200 μL of formulated pro-miR-302 on one side of the mouse and 200 μL of blank formulated reagent on the other side, and continued the same injection mode three times (injection once a week). Drugs and reagents are applied to the area around the cancer site and absorbed by the cancer and surrounding tissues within 18 hours. Samples were collected one week after the third injection. Remove heart, liver, kidney and transplanted cancers for further histological examination. Tumor formation was monitored by palpation, and the tumor volume was calculated using the equation (length×width 2 )/2. The tumor lesions were counted, dissected, weighed, and subjected to histological examination using H&E and immunostaining analysis. Histological examination showed no detectable tissue lesions in the heart, liver and kidney. The results are shown in Figures 14, 15 and 16.

12. 統計分析12. Statistical analysis

免疫染色、西方墨點法及北方墨點法之分析中超過75%信號強度之任何變化視為陽性結果,又對其進行分析且呈現為平均值±SE。藉由單因子ANOVA對資料執行統計分析。當主要效果顯著時,鄧尼特事後測試(Dunnett's post-hoc test)用以鑑別顯著不同於對照之群組。為了在兩個處理組之間成對比較(pairwise comparison),使用雙尾學生t測試 (two-tailed student t test)。對於包括多於兩個處理組之實驗,執行ANOVA,隨後執行事後多範圍測試。p<0.05之概率值視為顯著。所有p值皆由雙尾測試測定。 Any change in the signal intensity of more than 75% in the analysis of immunostaining, western blotting and northern blotting is regarded as a positive result, which is analyzed again and presented as the mean ± SE. Perform statistical analysis on the data by one-way ANOVA. When the main effect is significant, Dunnett's post-hoc test is used to identify groups that are significantly different from the control. For pairwise comparison (pairwise comparison), using the two-tailed Student t-test between the two treatment groups (two-tailed student t test) . For experiments involving more than two treatment groups, perform ANOVA followed by post hoc multi-range testing. The probability value of p <0.05 is considered significant. All p- values are determined by a two-tailed test.

參考文獻:references:

1. Lin SL及Ying SY.(2006)Gene silencing in vitro and in vivo using intronic microRNAs. Ying SY. (Ed.) MicroRNA protocols. Humana press, Totowa, New Jersey,第295-312頁。 1. Lin SL and Ying SY. (2006) Gene silencing in vitro and in vivo using intronic microRNAs. Ying SY. (Ed.) MicroRNA protocols. Humana press, Totowa, New Jersey, pages 295-312.

2. Lin SL, Chang D及Ying SY. (2006) Transgene-like animal models using intronic microRNAs. Ying SY. (Ed.) MicroRNA protocols. Humana press, Totowa, New Jersey,第321-334頁。 2. Lin SL, Chang D and Ying SY. (2006) Transgene-like animal models using intronic microRNAs. Ying SY. (Ed.) MicroRNA protocols. Humana press, Totowa, New Jersey, pp. 321-334.

3. Lin SL, Chang D, Chang-Lin S, Lin CH, Wu DTS, Chen DT及Ying SY. (2008) Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA 14, 2115-2124。 3. Lin SL, Chang D, Chang-Lin S, Lin CH, Wu DTS, Chen DT and Ying SY. (2008) Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA 14, 2115 -2124.

4. Lin SL及Ying SY. (2008) Role of mir-302 microRNA family in stem cell pluripotency and renewal. Ying SY. (Ed.) Current Perspectives in MicroRNAs. Springer Publishers press, New York,第167-185頁。 4. Lin SL and Ying SY. (2008) Role of mir-302 microRNA family in stem cell pluripotency and renewal. Ying SY. (Ed.) Current Perspectives in MicroRNAs. Springer Publishers press, New York, pages 167-185.

5. Lin SL, Chang D, Ying SY, Leu D及Wu DTS. (2010) MicroRNA miR-302 inhibits the tumorigenecity of human pluripotent stem cells by coordinate suppression of CDK2 and CDK4/6 cell cycle pathways. Cancer Res. 70, 9473-9482。 5. Lin SL, Chang D, Ying SY, Leu D and Wu DTS. (2010) MicroRNA miR-302 inhibits the tumorigenecity of human pluripotent stem cells by coordinate suppression of CDK2 and CDK4/6 cell cycle pathways. Cancer Res. 70, 9473-9482.

6. Lin SL, Chang D, Lin CH, Ying SY, Leu D及Wu DTS. (2011) Regulation of somatic cell reprogramming through inducible mir-302 expression. Nucleic Acids Res: 39, 1054-1065。 6. Lin SL, Chang D, Lin CH, Ying SY, Leu D and Wu DTS. (2011) Regulation of somatic cell reprogramming through inducible mir-302 expression. Nucleic Acids Res : 39, 1054-1065.

7. Simonsson S及Gurdon J. (2004) DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei. Nat Cell Biol. 6, 984-990。 7. Simonsson S and Gurdon J. (2004) DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei. Nat Cell Biol. 6, 984-990.

8. Takahashi等人(2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663--676。 8. Takahashi et al. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126 , 663-676.

9. Wang等人(2008). Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat. Genet. 40, 1478--1483。 9. Wang et al. (2008). Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat. Genet. 40 , 1478-1483.

10. Wernig等人(2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318--324。 10. Wernig et al. (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448 , 318-324.

11. Yu等人(2007). Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917--1920。 11. Yu et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science 318 , 1917--1920.

12. Buechler之美國專利第7,959,926號。 12. Buechler's US Patent No. 7,959,926.

13. Mehta之美國專利第7,968,311號。 13. Mehta's US Patent No. 7,968,311.

14. Lin之歐洲專利第EP 2198025號。 14. Lin's European Patent No. EP 2198025.

15. Lin之美國專利申請案第12/149,725號。 15. Lin's US Patent Application No. 12/149,725.

16. Lin之美國專利申請案第12/318,806號。 16. Lin's US Patent Application No. 12/318,806.

17. Lin之美國專利申請案第12/792,413號。 17. Lin's US Patent Application No. 12/792,413.

18. Lin之美國專利申請案第13/572,263號。 18. Lin's US Patent Application No. 13/572,263.

19. Lin之美國專利申請案第13/964,705號。 19. Lin's US Patent Application No. 13/964,705.

序列表 Sequence Listing

(1)總體資訊: (1) General information:

(iii)序列數:12 (iii) Number of sequences: 12

(2)SEQ ID NO:1之資訊: (2) SEQ ID NO: 1 information:

(i)序列特徵: (i) Sequence characteristics:

(A)長度:23個鹼基對 (A) Length: 23 base pairs

(B)類型:核酸 (B) Type: Nucleic acid

(C)股型:單股 (C) Share type: single share

(D)拓樸:線性 (D) Topology: Linear

(ii)分子類型:RNA (ii) Molecular type: RNA

(A)描述:/desc=「合成」 (A)Description: /desc="synthesis"

(iii)假想:否 (iii) Hypothesis: No

(iv)反義:是 (iv) Antisense: Yes

(xi)序列描述:SEQ ID NO:1:

Figure 105139971-A0202-12-0051-34
(xi) Sequence description: SEQ ID NO:1:
Figure 105139971-A0202-12-0051-34

(3)SEQ ID NO:2之資訊: (3) SEQ ID NO: 2 information:

(i)序列特徵: (i) Sequence characteristics:

(A)長度:23個鹼基對 (A) Length: 23 base pairs

(B)類型:核酸 (B) Type: Nucleic acid

(C)股型:單股 (C) Share type: single share

(D)拓樸:線性 (D) Topology: Linear

(ii)分子類型:RNA (ii) Molecular type: RNA

(A)描述:/desc=「天然」 (A)Description: /desc="natural"

(iii)假想:否 (iii) Hypothesis: No

(iv)反義:是 (iv) Antisense: Yes

(xi)序列描述:SEQ ID NO:2:

Figure 105139971-A0202-12-0051-36
(xi) Sequence description: SEQ ID NO: 2:
Figure 105139971-A0202-12-0051-36

(4)SEQ ID NO:3之資訊: (4) SEQ ID NO: 3 information:

(i)序列特徵: (i) Sequence characteristics:

(A)長度:17個鹼基對 (A) Length: 17 base pairs

(B)類型:核酸 (B) Type: Nucleic acid

(C)股型:單股 (C) Share type: single share

(D)拓樸:線性 (D) Topology: Linear

(ii)分子類型:RNA (ii) Molecular type: RNA

(A)描述:/desc=「天然」 (A)Description: /desc="natural"

(iii)假想:否 (iii) Hypothesis: No

(iv)反義:否 (iv) Antisense: No

(xi)序列描述:SEQ ID NO:3:

Figure 105139971-A0202-12-0052-37
(xi) Sequence description: SEQ ID NO: 3:
Figure 105139971-A0202-12-0052-37

(5)SEQ ID NO:4之資訊: (5) SEQ ID NO: 4 information:

(i)序列特徵: (i) Sequence characteristics:

(A)長度:69個鹼基對 (A) Length: 69 base pairs

(B)類型:核酸 (B) Type: Nucleic acid

(C)股型:單股 (C) Share type: single share

(D)拓樸:髮夾 (D) Topology: Hairpin

(ii)分子類型:其他核酸 (ii) Molecular type: other nucleic acids

(A)描述:/desc=「合成」 (A)Description: /desc="synthesis"

(iii)假想:是 (iii) Hypothesis: Yes

(iv)反義:否 (iv) Antisense: No

(xi)序列描述:SEQ ID NO:4:

Figure 105139971-A0202-12-0052-62
(xi) Sequence description: SEQ ID NO: 4:
Figure 105139971-A0202-12-0052-62

(6)SEQ ID NO:5之資訊: (6) SEQ ID NO: 5 information:

(i)序列特徵: (i) Sequence characteristics:

(A)長度:720個鹼基對 (A) Length: 720 base pairs

(B)類型:核酸 (B) Type: Nucleic acid

(C)股型:單股 (C) Share type: single share

(D)拓樸:多個髮夾 (D) Topology: Multiple hairpins

(ii)分子類型:RNA (ii) Molecular type: RNA

(A)描述:/desc=「重組」 (A) Description: /desc="Reorganization"

(iii)假想:否 (iii) Hypothesis: No

(iv)反義:否 (iv) Antisense: No

(xi)序列描述:SEQ ID NO:5:

Figure 105139971-A0202-12-0053-1
(xi) Sequence description: SEQ ID NO: 5:
Figure 105139971-A0202-12-0053-1

(7)SEQ ID NO:6之資訊: (7) SEQ ID NO: 6 information:

(i)序列特徵: (i) Sequence characteristics:

(A)長度:69個鹼基對 (A) Length: 69 base pairs

(B)類型:核酸 (B) Type: Nucleic acid

(C)股型:單股 (C) Share type: single share

(D)拓樸:髮夾 (D) Topology: Hairpin

(ii)分子類型:RNA (ii) Molecular type: RNA

(A)描述:/desc=「重組」 (A) Description: /desc="Reorganization"

(iii)假想:是 (iii) Hypothesis: Yes

(iv)反義:否 (iv) Antisense: No

(xi)序列描述:SEQ ID NO:6:

Figure 105139971-A0202-12-0053-39
(xi) Sequence description: SEQ ID NO: 6:
Figure 105139971-A0202-12-0053-39

(8)SEQ ID NO:7之資訊: (8) SEQ ID NO: 7 information:

(i)序列特徵: (i) Sequence characteristics:

(A)長度:73個鹼基對 (A) Length: 73 base pairs

(B)類型:核酸 (B) Type: Nucleic acid

(C)股型:單股 (C) Share type: single share

(D)拓樸:髮夾 (D) Topology: Hairpin

(ii)分子類型:RNA (ii) Molecular type: RNA

(A)描述:/desc=「重組」 (A) Description: /desc="Reorganization"

(iii)假想:是 (iii) Hypothesis: Yes

(iv)反義:否 (iv) Antisense: No

(xi)序列描述:SEQ ID NO:7:

Figure 105139971-A0202-12-0054-41
(xi) Sequence description: SEQ ID NO: 7:
Figure 105139971-A0202-12-0054-41

(9)SEQ ID NO:8之資訊: (9) SEQ ID NO: 8 information:

(i)序列特徵: (i) Sequence characteristics:

(A)長度:68個鹼基對 (A) Length: 68 base pairs

(B)類型:核酸 (B) Type: Nucleic acid

(C)股型:單股 (C) Share type: single share

(D)拓樸:髮夾 (D) Topology: Hairpin

(ii)分子類型:RNA (ii) Molecular type: RNA

(A)描述:/desc=「重組」 (A) Description: /desc="Reorganization"

(iii)假想:是 (iii) Hypothesis: Yes

(iv)反義:否 (iv) Antisense: No

(xi)序列描述:SEQ ID NO:8:

Figure 105139971-A0202-12-0054-42
(xi) Sequence description: SEQ ID NO: 8:
Figure 105139971-A0202-12-0054-42

(10)SEQ ID NO:9之資訊: (10) SEQ ID NO: 9 information:

(i)序列特徵: (i) Sequence characteristics:

(A)長度:68個鹼基對 (A) Length: 68 base pairs

(B)類型:核酸 (B) Type: Nucleic acid

(C)股型:單股 (C) Share type: single share

(D)拓樸:髮夾 (D) Topology: Hairpin

(ii)分子類型:RNA (ii) Molecular type: RNA

(A)描述:/desc=「重組」 (A) Description: /desc="Reorganization"

(iii)假想:是 (iii) Hypothesis: Yes

(iv)反義:否 (iv) Antisense: No

(xi)序列描述:SEQ ID NO:9:

Figure 105139971-A0202-12-0054-43
(xi) Sequence description: SEQ ID NO: 9:
Figure 105139971-A0202-12-0054-43

(11)SEQ ID NO:10之資訊: (11) SEQ ID NO: 10 information:

(i)序列特徵: (i) Sequence characteristics:

(A)長度:23個鹼基對 (A) Length: 23 base pairs

(B)類型:核酸 (B) Type: Nucleic acid

(C)股型:單股 (C) Share type: single share

(D)拓樸:線性 (D) Topology: Linear

(ii)分子類型:LNA-DNA雜合體 (ii) Molecular type: LNA-DNA hybrid

(A)描述:/desc=「合成」 (A)Description: /desc="synthesis"

(iii)假想:是 (iii) Hypothesis: Yes

(iv)反義:是 (iv) Antisense: Yes

(xi)序列描述:SEQ ID NO:10:

Figure 105139971-A0202-12-0055-44
(xi) Sequence description: SEQ ID NO: 10:
Figure 105139971-A0202-12-0055-44

(12)SEQ ID NO:11之資訊: (12) SEQ ID NO: 11 information:

(i)序列特徵: (i) Sequence characteristics:

(A)長度:17個鹼基對 (A) Length: 17 base pairs

(B)類型:核酸 (B) Type: Nucleic acid

(C)股型:單股 (C) Share type: single share

(D)拓樸:線性 (D) Topology: Linear

(ii)分子類型:其他核酸 (ii) Molecular type: other nucleic acids

(A)描述:/desc=「合成」 (A)Description: /desc="synthesis"

(iii)假想:是 (iii) Hypothesis: Yes

(iv)反義:是 (iv) Antisense: Yes

(xi)序列描述:SEQ ID NO:11:

Figure 105139971-A0202-12-0055-45
(xi) Sequence description: SEQ ID NO: 11:
Figure 105139971-A0202-12-0055-45

(13)SEQ ID NO:12之資訊: (13) SEQ ID NO: 12 information:

(i)序列特徵: (i) Sequence characteristics:

(A)長度:17個鹼基對 (A) Length: 17 base pairs

(B)類型:核酸 (B) Type: Nucleic acid

(C)股型:單股 (C) Share type: single share

(D)拓樸:線性 (D) Topology: Linear

(ii)分子類型:其他核酸 (ii) Molecular type: other nucleic acids

(A)描述:/desc=「合成」 (A) Description: /desc="synthesis"

(iii)假想:是 (iii) Hypothesis: Yes

(iv)反義:是 (iv) Antisense: Yes

(xi)序列描述:SEQ ID NO:12:

Figure 105139971-A0202-12-0055-46
(xi) Sequence description: SEQ ID NO: 12:
Figure 105139971-A0202-12-0055-46

<110> 林希龍(Lin,Shi-Lung) 吳堂熙(Wu,David TS) 張欽次(Chang,Donald) <110> Lin Xilong (Lin, Shi-Lung) Wu Tangxi (Wu, David TS) Zhang Qinci (Chang, Donald)

<120> 使用微核醣核酸前驅物作為誘導CD34陽性成體幹細胞增殖之藥物 <120> Use microribonucleic acid precursors as drugs to induce the proliferation of CD34-positive adult stem cells

<150> US 62/262,280 <150> US 62/262,280

<151> 2015-12-02 <151> 2015-12-02

<150> US 15/048,964 <150> US 15/048,964

<151> 2016-02-19 <151> 2016-02-19

<150> US 15/167,226 <150> US 15/167,226

<151> 2016-05-27 <151> 2016-05-27

<150> PCT/US16/49583 <150> PCT/US16/49583

<151> 2016-08-31 <151> 2016-08-31

<160> 12 <160> 12

<170> PatentIn version 3.5 <170> PatentIn version 3.5

<210> 1 <210> 1

<211> 23 <211> 23

<212> RNA <212> RNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成寡核苷酸 <223> Synthetic oligonucleotide

<400> 1

Figure 105139971-A0305-02-0060-1
<400> 1
Figure 105139971-A0305-02-0060-1

<210> 2 <210> 2

<211> 23 <211> 23

<212> RNA <212> RNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成寡核苷酸 <223> Synthetic oligonucleotide

<400> 2

Figure 105139971-A0305-02-0061-2
<400> 2
Figure 105139971-A0305-02-0061-2

<210> 3 <210> 3

<211> 17 <211> 17

<212> RNA <212> RNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成寡核苷酸 <223> Synthetic oligonucleotide

<400> 3

Figure 105139971-A0305-02-0061-3
<400> 3
Figure 105139971-A0305-02-0061-3

<210> 4 <210> 4

<211> 69 <211> 69

<212> RNA <212> RNA

<213> Homo sapiens <213> Homo sapiens

<400> 4

Figure 105139971-A0305-02-0061-4
<400> 4
Figure 105139971-A0305-02-0061-4

<210> 5 <210> 5

<211> 720 <211> 720

<212> RNA <212> RNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成寡核苷酸 <223> Synthetic oligonucleotide

<400> 5

Figure 105139971-A0202-12-0059-52
<400> 5
Figure 105139971-A0202-12-0059-52

<210> 6 <210> 6

<211> 69 <211> 69

<212> RNA <212> RNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成寡核苷酸 <223> Synthetic oligonucleotide

<400> 6

Figure 105139971-A0202-12-0059-53
<400> 6
Figure 105139971-A0202-12-0059-53

<210> 7 <210> 7

<211> 73 <211> 73

<212> RNA <212> RNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成寡核苷酸 <223> Synthetic oligonucleotide

<400> 7

Figure 105139971-A0202-12-0060-57
<400> 7
Figure 105139971-A0202-12-0060-57

<210> 8 <210> 8

<211> 68 <211> 68

<212> RNA <212> RNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成寡核苷酸 <223> Synthetic oligonucleotide

<400> 8

Figure 105139971-A0202-12-0060-58
<400> 8
Figure 105139971-A0202-12-0060-58

<210> 9 <210> 9

<211> 68 <211> 68

<212> RNA <212> RNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成寡核苷酸 <223> Synthetic oligonucleotide

<400> 9

Figure 105139971-A0202-12-0061-2
<400> 9
Figure 105139971-A0202-12-0061-2

<210> 10 <210> 10

<211> 23 <211> 23

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成寡核苷酸 <223> Synthetic oligonucleotide

<400> 10

Figure 105139971-A0202-12-0061-59
<400> 10
Figure 105139971-A0202-12-0061-59

<210> 11 <210> 11

<211> 27 <211> 27

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成寡核苷酸 <223> Synthetic oligonucleotide

<400> 11

Figure 105139971-A0202-12-0061-60
<400> 11
Figure 105139971-A0202-12-0061-60

<210> 12 <210> 12

<211> 27 <211> 27

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成寡核苷酸 <223> Synthetic oligonucleotide

<400> 12

Figure 105139971-A0202-12-0062-3
<400> 12
Figure 105139971-A0202-12-0062-3

Claims (15)

一種microRNA前驅物(pre-miRNA)在製備用於誘導CD34陽性成體幹細胞增殖或再生之藥物上的用途,其中:該microRNA前驅物(pre-miRNA)包含SEQ.ID.NO.3;且使用該microRNA前驅物(pre-miRNA)所製備之藥物包含將該microRNA前驅物(pre-miRNA)與包含至少一CD34陽性成體幹細胞之一細胞基質接觸,以誘導該CD34陽性成體幹細胞之群體之增殖或再生。 Use of a microRNA precursor (pre-miRNA) in the preparation of a medicine for inducing the proliferation or regeneration of CD34-positive adult stem cells, wherein: the microRNA precursor (pre-miRNA) comprises SEQ.ID.NO.3; and used The drug prepared by the microRNA precursor (pre-miRNA) comprises contacting the microRNA precursor (pre-miRNA) with a cell matrix containing at least one CD34-positive adult stem cell to induce the population of the CD34-positive adult stem cell Proliferation or regeneration. 如請求項1所述之用途,其中該microRNA前驅物係藉由原核細胞中的真核啟動子驅動RNA轉錄來產生。 The use according to claim 1, wherein the microRNA precursor is produced by driving RNA transcription by a eukaryotic promoter in a prokaryotic cell. 如請求項2所述之用途,其中該真核啟動子驅動RNA轉錄係藉由將包含3-嗎啉基丙烷-1-磺酸(MOPS)之分子結構的化學藥劑與攜帶編碼SEQ.ID.NO.6、SEQ.ID.NO.7、SEQ.ID.NO.8、或SEQ.ID.NO.9之序列的至少一表達載體的至少一轉形原核細胞接觸來誘導。 The use according to claim 2, wherein the eukaryotic promoter drives RNA transcription by a chemical agent containing the molecular structure of 3-morpholinopropane-1-sulfonic acid (MOPS) and carries the encoding SEQ.ID. NO.6, SEQ.ID.NO.7, SEQ.ID.NO.8, or SEQ.ID.NO.9 sequence of at least one expression vector of at least one transformed prokaryotic cell contact to induce. 如請求項3所述之用途,其中該表達載體是編碼SEQ.ID.NO.5之序列的重組質體。 The use according to claim 3, wherein the expression vector is a recombinant plastid encoding the sequence of SEQ.ID.NO.5. 如請求項3所述之用途,其中該表達載體是包含巨細胞病毒(CMV)或哺乳動物EF1α(EF1alpha)啟動子或同時包含兩者之pLenti-EF1alpha-RGFP-miR302。 The use according to claim 3, wherein the expression vector is pLenti-EF1alpha-RGFP-miR302 containing cytomegalovirus (CMV) or mammalian EF1α (EF1alpha) promoter or both. 如請求項2所述之用途,其中該原核細胞是大腸桿菌勝任細胞。 The use according to claim 2, wherein the prokaryotic cell is a competent cell of Escherichia coli. 如請求項1所述之用途,其中該microRNA前驅物包含SEQ.ID.NO.6、SEQ.ID.NO.7、SEQ.ID.NO.8、或 SEQ.ID.NO.9之至少一髮夾型序列。 The use according to claim 1, wherein the microRNA precursor comprises SEQ.ID.NO.6, SEQ.ID.NO.7, SEQ.ID.NO.8, or At least one hairpin sequence of SEQ.ID.NO.9. 如請求項1所述之用途,其中該microRNA前驅物是原核生物生成miR-302前驅物(pre-miR-302)。 The use according to claim 1, wherein the microRNA precursor is a miR-302 precursor (pre-miR-302) produced by prokaryotes. 如請求項8所述之用途,其中該pre-miR-302包含miR-302a、miR-302b、miR-302c、或miR-302d之至少一序列。 The use according to claim 8, wherein the pre-miR-302 includes at least one sequence of miR-302a, miR-302b, miR-302c, or miR-302d. 如請求項8所述之用途,其中該pre-miR-302用於作為醫藥及治療應用之藥物成份的一部分。 The use according to claim 8, wherein the pre-miR-302 is used as a part of a pharmaceutical ingredient for medical and therapeutic applications. 如請求項1所述之用途,其中該microRNA前驅物用於作為醫藥及治療應用之藥物成份的一部分。 The use according to claim 1, wherein the microRNA precursor is used as a part of pharmaceutical ingredients for medical and therapeutic applications. 如請求項1所述之用途,其中該CD34陽性成體幹細胞之增殖有用於醫藥及治療應用。 The use according to claim 1, wherein the proliferation of the CD34-positive adult stem cells is used for medical and therapeutic applications. 如請求項12所述之用途,其中該CD34陽性成體幹細胞之增殖有用於在體內增進無疤傷口癒合。 The use according to claim 12, wherein the proliferation of CD34-positive adult stem cells is used to promote scarless wound healing in vivo. 如請求項1所述之用途,其中該CD34陽性成體幹細胞包含皮膚、毛髮、肌肉、造血細胞、間質細胞、及神經幹細胞、或其組合。 The use according to claim 1, wherein the CD34-positive adult stem cells comprise skin, hair, muscle, hematopoietic cells, mesenchymal cells, and neural stem cells, or a combination thereof. 一種使用microRNA前驅物(pre-miRNA)於活體外誘導CD34陽性成體幹細胞增殖或再生之方法,其包含:(a)提供包含SEQ.ID.NO.3之至少一microRNA前驅物;(b)提供包含至少一CD34陽性成體幹細胞之一細胞基質;以及(c)將(a)之該microRNA前驅物與(b)之該細胞基質於活體外接觸,以誘導該CD34陽性成體幹細胞之群體之增殖或再生。 A method for using microRNA precursors (pre-miRNA) to induce the proliferation or regeneration of CD34-positive adult stem cells in vitro, which comprises: (a) providing at least one microRNA precursor comprising SEQ.ID.NO.3; (b) Provide a cell matrix containing at least one CD34-positive adult stem cell; and (c) contact the microRNA precursor of (a) with the cell matrix of (b) in vitro to induce a population of the CD34-positive adult stem cells The proliferation or regeneration.
TW105139971A 2015-12-02 2016-12-02 Use of microrna precursors as drugs for inducing cd34-positive adult stem cell expansion TWI720075B (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201562262280P 2015-12-02 2015-12-02
US62/262,280 2015-12-02
US15/048,964 2016-02-19
US15/048,964 US10519440B2 (en) 2012-08-10 2016-02-19 Composition and method of using miR-302 precursors as drugs for treating Alzheimer's diseases
US15/167,226 2016-05-27
US15/167,226 US9879263B2 (en) 2011-08-12 2016-05-27 Use of microRNA precursors as drugs for inducing CD34-positive adult stem cell expansion
PCT/US2016/049583 WO2017095489A1 (en) 2015-12-02 2016-08-31 Use of microrna precursors as drugs for inducing cd34-positive adult stem cell expansion
WOPCT/US16/49583 2016-08-31

Publications (2)

Publication Number Publication Date
TW201735932A TW201735932A (en) 2017-10-16
TWI720075B true TWI720075B (en) 2021-03-01

Family

ID=56896813

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105139971A TWI720075B (en) 2015-12-02 2016-12-02 Use of microrna precursors as drugs for inducing cd34-positive adult stem cell expansion

Country Status (5)

Country Link
EP (1) EP3384026A1 (en)
JP (1) JP2018535684A (en)
CN (1) CN108431227A (en)
TW (1) TWI720075B (en)
WO (1) WO2017095489A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11624067B2 (en) 2008-05-07 2023-04-11 Shi-Lung Lin In-vitro induction of adult stem cell expansion and derivation
WO2020009714A1 (en) * 2018-07-02 2020-01-09 Lin Shi Lung In-Vitro Induction of Adult Stem Cell Expansion and Derivation
CN112430596A (en) * 2019-08-26 2021-03-02 中国科学院上海营养与健康研究所 Application of small RNA molecules and analogs thereof in anti-aging
US20220396778A1 (en) * 2021-06-12 2022-12-15 Shi-Lung Lin Novel RNA Composition and Production Method for Use in iPS Cell Generation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201321507A (en) * 2011-08-12 2013-06-01 Mello Biotechnology Inc An inducible gene expression composition for using eukaryotic pol-2 promoter-driven transcription in prokaryotes and the applications thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUP0001272A3 (en) 1997-04-16 2012-12-28 Unigene Lab Inc Direct expression of peptides into culture media
US9453219B2 (en) * 2003-05-15 2016-09-27 Mello Biotech Taiwan Co., Ltd. Cosmetic designs and products using intronic RNA
NZ555206A (en) 2004-12-22 2010-09-30 Ambrx Inc Methods for expression and purification of recombinant human growth hormone
CN101970664B (en) * 2008-01-16 2013-08-21 林希龙 Generation of tumor-free embryonic stem-like pluripotent cells using inducible recombinant RNA agents
US9422559B2 (en) 2010-06-02 2016-08-23 Shi-Lung Lin Production and utilization of a novel anti-cancer drug in therapy
US9879263B2 (en) * 2011-08-12 2018-01-30 Mello Biotechnology, Inc. Use of microRNA precursors as drugs for inducing CD34-positive adult stem cell expansion
CN105143459B (en) * 2012-08-10 2020-04-14 林希龙 Manufacture and use of novel therapeutic anticancer agents
US10196662B2 (en) * 2012-08-10 2019-02-05 Mello Biotechnology, Inc. Composition for producing microRNA precursors as drugs for enhancing wound healing and production method of the microRNA precursors

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201321507A (en) * 2011-08-12 2013-06-01 Mello Biotechnology Inc An inducible gene expression composition for using eukaryotic pol-2 promoter-driven transcription in prokaryotes and the applications thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ming Yan.et al. Modulation of Gene Expression by Polymer Nanocapsule Delivery of DNA Cassettes Encoding Small RNAs. PLOS ONE | DOI:10.1371/journal.pone.0127986 June 2, 2015. *

Also Published As

Publication number Publication date
EP3384026A1 (en) 2018-10-10
CN108431227A (en) 2018-08-21
JP2018535684A (en) 2018-12-06
TW201735932A (en) 2017-10-16
WO2017095489A1 (en) 2017-06-08

Similar Documents

Publication Publication Date Title
CA2769289C (en) Development of universal cancer drugs and vaccines
TWI689308B (en) Use of a composition comprising mir-302 precursors for the manufacture of a medicine for treatment of lung cancer
TWI516592B (en) An inducible gene expression composition for using eukaryotic pol-2 promoter-driven transcription in prokaryotes and the applications thereof
US9422559B2 (en) Production and utilization of a novel anti-cancer drug in therapy
TWI720075B (en) Use of microrna precursors as drugs for inducing cd34-positive adult stem cell expansion
US9399773B2 (en) Production and extraction of MicroRNA precursor as drug for cancer therapy
US20200165607A1 (en) Composition and method of using mir-302 precursors as anti-cancer drugs for treating human lung cancer
JP2020037599A (en) Production and utilization of novel therapeutic anti-cancer agents
US10196662B2 (en) Composition for producing microRNA precursors as drugs for enhancing wound healing and production method of the microRNA precursors
US20170342418A1 (en) Use of microrna precursors as drugs for inducing cd34-positive adult stem cell expansion
US20160289682A1 (en) Production and utilization of a novel anti-cancer drug in therapy