TWI719901B - Method for judging the decline of preload of ball screw - Google Patents

Method for judging the decline of preload of ball screw Download PDF

Info

Publication number
TWI719901B
TWI719901B TW109116566A TW109116566A TWI719901B TW I719901 B TWI719901 B TW I719901B TW 109116566 A TW109116566 A TW 109116566A TW 109116566 A TW109116566 A TW 109116566A TW I719901 B TWI719901 B TW I719901B
Authority
TW
Taiwan
Prior art keywords
vibration
domain data
computer device
ball screw
preload
Prior art date
Application number
TW109116566A
Other languages
Chinese (zh)
Other versions
TW202144756A (en
Inventor
林育新
Original Assignee
上銀科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上銀科技股份有限公司 filed Critical 上銀科技股份有限公司
Priority to TW109116566A priority Critical patent/TWI719901B/en
Application granted granted Critical
Publication of TWI719901B publication Critical patent/TWI719901B/en
Publication of TW202144756A publication Critical patent/TW202144756A/en

Links

Images

Landscapes

  • Transmission Devices (AREA)

Abstract

一種滾珠螺桿預壓衰退判定方法,藉由一訊號連接一第一感測單元的電腦裝置來實施,該第一感測單元週期性地傳送一相關於該循環配件中之滾珠振動的振動訊號至該電腦裝置,並包含:(A) 根據所接收到的至少一振動訊號,獲得一振動時域資料;(B) 根據該振動時域資料,獲得至少一筆對應該振動時域資料的振動子頻域資料;(C) 對於每一振動子頻域資料,獲得一相關於該振動子頻域資料的振動特徵向量;(D) 根據該等振動特徵向量、多個振動參考向量及一預壓檢測範圍,獲得一預壓判定結果;(E) 根據該預壓判定結果,判定該滾珠螺桿之預壓是否已衰退。A method for judging the precompression decay of a ball screw is implemented by a computer device connected to a first sensing unit with a signal. The first sensing unit periodically transmits a vibration signal related to the vibration of the ball in the circulating accessory to The computer device includes: (A) obtaining a vibration time domain data according to the received at least one vibration signal; (B) obtaining at least one vibrator frequency corresponding to the vibration time domain data according to the vibration time domain data Domain data; (C) For each vibrator frequency domain data, obtain a vibration eigenvector related to the vibrator frequency domain data; (D) According to the vibration eigenvectors, multiple vibration reference vectors and a preload detection Range, obtain a pre-compression judgment result; (E) According to the pre-compression judgment result, judge whether the pre-compression of the ball screw has declined.

Description

滾珠螺桿預壓衰退判定方法Method for judging the decline of ball screw preload

本發明是有關於一種檢測方法,特別是指一種用於檢測滾珠螺桿之預壓的方法。The present invention relates to a detection method, in particular to a method for detecting the preload of a ball screw.

目前技術上,滾珠螺桿已廣泛地運用於需要精密定位的工具機中,其中滾珠螺桿是利用螺帽透過可滾動的滾珠與螺桿軸螺合而成,並藉由螺帽與循環配件(迴流配件)中滾珠的滾動來使得螺帽沿螺桿軸直線移動。At present, the ball screw has been widely used in machine tools that require precise positioning. The ball screw is made by screwing a screw cap through a rollable ball and the screw shaft, and through the nut and the circulation accessories (return accessories) ) The rolling of the ball to make the nut move linearly along the screw axis.

然而,隨著滾珠螺桿使用時間越長,滾珠螺桿的預壓便會逐漸減少,預壓的不足則會使得螺帽在往返的移動過程中容易產生前後振動的現象,造成精度降低,而當預壓衰退至一定程度,甚至會導致滾珠螺桿產生背隙。However, as the ball screw is used longer, the preload of the ball screw will gradually decrease. The lack of preload will make the nut easy to vibrate back and forth during the reciprocating movement, resulting in a decrease in accuracy. The pressure decays to a certain extent, and even causes backlash in the ball screw.

參考台灣證書號第TW I653410B號專利,其目地是用於檢測滾珠螺桿是否已產生背隙(無預壓),而無法得知滾珠螺桿當前是否僅有預壓衰退但尚未產生背隙。Refer to the Taiwan Certificate No. TW I653410B patent, its purpose is to detect whether the ball screw has produced backlash (no preload), but it is impossible to know whether the ball screw currently has only preload recession but no backlash.

因此,本發明的目的,即在提供一種能判定滾珠螺桿預壓是否僅衰退而尚未產生背隙的方法。Therefore, the object of the present invention is to provide a method that can determine whether the preload of the ball screw has only declined without backlash.

於是,本發明滾珠螺桿預壓衰退判定方法,藉由一電腦裝置來實施,該電腦裝置訊號連接一第一感測單元,該第一感測單元裝設於一滾珠螺桿之一螺帽且鄰近該滾珠螺桿之一循環配件並週期性地傳送一相關於該循環配件中之滾珠振動的振動訊號至該電腦裝置,該滾珠螺桿預壓衰退判定方法包含以下步驟。Therefore, the method for judging the precompression decay of the ball screw of the present invention is implemented by a computer device, the computer device signal is connected to a first sensing unit, the first sensing unit is installed on a nut of a ball screw and adjacent to A circulating part of the ball screw periodically transmits a vibration signal related to the vibration of the ball in the circulating part to the computer device. The method for judging the preload decline of the ball screw includes the following steps.

步驟(A)是藉由該電腦裝置,根據所接收到的至少一振動訊號,獲得一對應該至少一振動訊號的振動時域資料。Step (A) is to obtain vibration time-domain data corresponding to the at least one vibration signal based on the received at least one vibration signal by the computer device.

步驟(B)是藉由該電腦裝置,根據該振動時域資料,獲得至少一筆對應該振動時域資料的振動子頻域資料。Step (B) is to obtain at least one vibrator frequency domain data corresponding to the vibration time domain data based on the vibration time domain data by the computer device.

步驟(C)是對於每一振動子頻域資料,藉由該電腦裝置,根據該振動子頻域資料,獲得一相關於該振動子頻域資料的振動特徵向量。Step (C) is to obtain a vibration feature vector related to the frequency domain data of the vibrator by the computer device according to the frequency domain data of the vibrator for each vibrator frequency domain data.

步驟(D)是藉由該電腦裝置,根據該等振動特徵向量、多個振動參考向量及一預壓檢測範圍,獲得一預壓判定結果。Step (D) is to use the computer device to obtain a pre-compression determination result based on the vibration feature vectors, multiple vibration reference vectors, and a pre-compression detection range.

步驟(E)是藉由該電腦裝置,根據該預壓判定結果,判定該滾珠螺桿之預壓是否已衰退。Step (E) is to use the computer device to determine whether the preload of the ball screw has decayed based on the result of the preload determination.

本發明的功效在於:藉由根據該至少一振動訊號所獲得的該至少一振動特徵向量、該等振動參考向量及該預壓檢測範圍,獲得用於判定該滾珠螺桿之預壓是否已衰退的該預壓判定結果,便能檢測出該滾珠螺桿僅有預壓衰退而尚未產生背隙之情況。The effect of the present invention is: by obtaining the at least one vibration feature vector obtained according to the at least one vibration signal, the vibration reference vectors, and the pre-compression detection range, a method for determining whether the pre-compression of the ball screw has declined is obtained As a result of the preload determination, it can be detected that the ball screw has only decayed in preload without backlash.

在本發明被詳細描述之前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。Before the present invention is described in detail, it should be noted that in the following description, similar elements are denoted by the same numbers.

參閱圖1,本發明滾珠螺桿預壓衰退判定方法的一實施例係藉由一滾珠螺桿預壓衰退判定系統100來實施,該滾珠螺桿預壓衰退判定系統100包含一電腦裝置1、一訊號連接該電腦裝置1的第一感測單元2,以及一訊號連接該電腦裝置1的第二感測單元3。Referring to FIG. 1, an embodiment of the method for judging the decline of the ball screw preload of the present invention is implemented by a ball screw preloading decline judging system 100. The ball screw preloading decline judging system 100 includes a computer device 1, a signal connection The first sensing unit 2 of the computer device 1 and the second sensing unit 3 of the computer device 1 are connected by a signal.

參閱圖1、2,該第一感測單元2裝設於一滾珠螺桿4之一螺帽41且鄰近該滾珠螺桿4之一循環配件43並週期性地傳送一相關於該循環配件43中之滾珠44振動的振動訊號至該電腦裝置1。該第二感測單元3裝設於該螺帽41並週期地傳送一相關於該螺帽41相對於該滾珠螺桿之一螺桿軸42之移動方向之慣性力的慣性力訊號至該電腦裝置1。Referring to Figures 1 and 2, the first sensing unit 2 is installed on a nut 41 of a ball screw 4 and adjacent to a circulating fitting 43 of the ball screw 4 and periodically transmits a piece of information related to the circulating fitting 43 The vibration signal of the vibration of the ball 44 is sent to the computer device 1. The second sensing unit 3 is installed on the nut 41 and periodically transmits an inertial force signal related to the inertial force of the nut 41 relative to the moving direction of the screw shaft 42 of the ball screw to the computer device 1 .

值得特別說明的是,使用者亦可根據不同種類的滾珠螺桿(圖2僅揭示外循環式滾珠螺桿),將該第一感測單元2與該第二感測單元3安裝各種類滾珠螺桿4各自所對應的位置(表示根據不同種類的滾珠螺桿4亦可能將該第一感測單元2與該第二感測單元3安裝於同一位置),以獲得相關於循環配件43中之滾珠44振動的振動訊號與相關於螺帽41相對於滾珠螺桿42之螺桿軸之移動方向之慣性力的慣性力訊號。It is worth noting that the user can also install various types of ball screws 4 on the first sensing unit 2 and the second sensing unit 3 according to different types of ball screws (Figure 2 only shows the outer circulation type ball screws). Each corresponding position (indicating that the first sensing unit 2 and the second sensing unit 3 may be installed at the same position according to different types of ball screws 4) to obtain vibrations related to the balls 44 in the circulating fitting 43 The vibration signal and the inertial force signal related to the inertial force of the nut 41 relative to the screw axis of the ball screw 42.

該電腦裝置1包含一訊號連接該第一感測單元2與該第二感測單元3的通訊模組11、一儲存模組12、一顯示模組13,以及一電連接該通訊模組11與該儲存模組12與該顯示模組13的處理模組14。The computer device 1 includes a communication module 11 that signals the first sensing unit 2 and the second sensing unit 3, a storage module 12, a display module 13, and an electrical connection to the communication module 11 The processing module 14 with the storage module 12 and the display module 13.

在本實施例中,該電腦裝置1之實施態樣例如為一個人電腦、一伺服器或一雲端主機,但不以此為限。In this embodiment, the implementation aspect of the computer device 1 is, for example, a personal computer, a server, or a cloud host, but it is not limited to this.

在本實施例中,該第一感測單元2與該第二感測單元3之實施態樣為一加速規(Accelerometer),但不以此為限,於其他實施例中亦可為位移計或是速度計。進一步來說,該第一感測單元2的有效頻寬需涵蓋0.1~5Hz,而該第二感測單元3的有效頻寬需涵蓋螺桿軸42轉速頻之10倍頻寬內(例如:0.1~250Hz),且數位解析度為20bit。In this embodiment, the implementation of the first sensing unit 2 and the second sensing unit 3 is an accelerometer, but it is not limited to this. In other embodiments, it can also be a displacement meter. Or a speedometer. Furthermore, the effective bandwidth of the first sensing unit 2 needs to cover 0.1~5 Hz, and the effective bandwidth of the second sensing unit 3 needs to cover 10 times the bandwidth of the screw shaft 42 rotation frequency (for example: 0.1 ~250Hz), and the digital resolution is 20bit.

該儲存模組12儲存有多筆第一訓練振動特徵向量、多筆第二訓練振動特徵向量、多筆第一訓練慣性力特徵向量,及多筆第二訓練慣性力特徵向量。其中,每一訓練振動特徵向量包含一指示出該訓練振動特徵向量所對應之頻域資料之峰度(Kurtosis)的訓練峰度特徵向量、一指示出該訓練振動特徵向量所對應之頻域資料之最大峰值的訓練最大頻域峰值特徵向量,及一指示出該訓練振動特徵向量所對應之頻域資料之總能量的訓練總能量特徵向量之至少一者,但不以上述為限。其中,每一訓練慣性力特徵向量包含一指示出該訓練慣性力特徵向量所對應之時域資料之峰峰值(peak-peak)的訓練峰峰值特徵向量、一指示出該訓練慣性力特徵向量所對應之時域資料之最大峰值的訓練最大時域峰值特徵向量,及一指示出該訓練慣性力特徵向量所對應之時域資料之最大峰值之絕對值與最小峰值之絕對值的總和取平均的訓練平均峰值特徵向量之至少一者,但不以上述為限。The storage module 12 stores multiple first training vibration feature vectors, multiple second training vibration feature vectors, multiple first training inertial force feature vectors, and multiple second training inertial force feature vectors. Wherein, each training vibration feature vector includes a training kurtosis feature vector indicating the kurtosis of the frequency domain data corresponding to the training vibration feature vector, and a training kurtosis feature vector indicating the frequency domain data corresponding to the training vibration feature vector At least one of the training maximum peak frequency domain peak feature vector of the maximum peak value and a training total energy feature vector indicating the total energy of the frequency domain data corresponding to the training vibration feature vector, but not limited to the above. Wherein, each training inertial force feature vector includes a training peak-peak feature vector indicating the peak-peak value of the time domain data corresponding to the training inertial force feature vector, and a training peak-peak feature vector indicating the location of the training inertial force feature vector. The training maximum time domain peak eigenvector corresponding to the maximum peak of the time domain data, and an indication that the sum of the absolute value of the maximum peak value and the absolute value of the minimum peak value of the time domain data corresponding to the training inertial force eigenvector is averaged Train at least one of the average peak feature vectors, but not limited to the above.

以下將藉由本發明滾珠螺桿預壓衰退判定方法之該實施例來說明該滾珠螺桿預壓衰退判定系統100之該電腦裝置1、該第一感測單元2,及該第二感測單元3各元件的運作細節,本發明滾珠螺桿預壓衰退判定方法包含一預壓訓練程序、一背隙訓練程序,以及一預壓判定程序。Hereinafter, the computer device 1, the first sensing unit 2, and the second sensing unit 3 of the ball screw precompression decay judging system 100 will be described by the embodiment of the method for judging the precompression decay of the ball screw of the present invention. As for the operation details of the components, the method for judging the precompression decline of the ball screw of the present invention includes a precompression training program, a backlash training program, and a precompression judgment program.

參閱圖3,該預壓訓練程序包含步驟50~步驟53。Referring to Fig. 3, the pre-compression training program includes steps 50 to 53.

在步驟50中,該處理模組14根據該等第一訓練振動特徵向量,利用一非監督式演算法,獲得多個處於所對應之資料空間中的振動參考向量。進一步來說,當該非監督式演算法包含分群演算法(例:K-mean)時,該等振動參考向量包含由分群演算法所獲得之多個振動群集分別對應之中心的向量;而當該非監督式演算法包含自組織對映演算法(SOM,Self-Organizing Map),該等振動參考向量包含由自組織對映演算法所獲得之更新次數大於一預設次數的所有神經元所對應之向量,但不以上述例子為限。In step 50, the processing module 14 uses an unsupervised algorithm according to the first training vibration feature vectors to obtain a plurality of vibration reference vectors in the corresponding data space. Furthermore, when the unsupervised algorithm includes a clustering algorithm (e.g. K-mean), the vibration reference vectors include the vectors corresponding to the centers of the multiple vibration clusters obtained by the clustering algorithm; and when the non-supervised algorithm The supervised algorithm includes the self-organizing map (SOM, Self-Organizing Map). The vibration reference vectors include all neurons whose update times obtained by the self-organizing map algorithm are greater than a preset number of times. Vector, but not limited to the above example.

在步驟51中,對於每一第二訓練振動特徵向量,該處理模組14計算該第二訓練振動特徵向量分別與每一振動參考向量的一第一振動候選距離。進一步來說,計算每一第一振動候選距離係使用歐氏距離,但不以此為限。In step 51, for each second training vibration feature vector, the processing module 14 calculates a first vibration candidate distance between the second training vibration feature vector and each vibration reference vector. Furthermore, the Euclidean distance is used to calculate each first vibration candidate distance, but it is not limited to this.

在步驟52中,對於每一已獲得該等第一振動候選距離的第二訓練振動特徵向量,該處理模組14自該第二訓練振動特徵向量所對應的該等第一振動候選距離中,獲得一對應有最短距離的第一振動目標距離。In step 52, for each second training vibration feature vector for which the first vibration candidate distances have been obtained, the processing module 14 selects from the first vibration candidate distances corresponding to the second training vibration feature vector, Obtain a first vibration target distance corresponding to the shortest distance.

在步驟53中,該處理模組14根據該等第一振動目標距離,獲得一預壓檢測範圍。進一步來說,本實施例係將該等第一振動目標距離作為常態分布(Normal Distribution),並將該等第一振動目標距離所對應的95%信賴區間(CI,Confidence interval)作為該預壓檢測範圍,但不以此為限。In step 53, the processing module 14 obtains a preload detection range according to the first vibration target distances. Furthermore, in this embodiment, the first vibration target distances are regarded as the normal distribution (Normal Distribution), and the 95% confidence interval (CI, Confidence interval) corresponding to the first vibration target distances is used as the preload The detection range, but not limited to this.

參閱圖4,該背隙檢測範圍獲得程序包含步驟60~步驟63。Referring to FIG. 4, the procedure for obtaining the backlash detection range includes steps 60 to 63.

在步驟60中,該處理模組14根據該等第一訓練慣性力特徵向量,利用另一非監督式演算法,獲得多個處於所對應之資料空間中的慣性力參考向量。進一步來說,當該另一非監督式演算法包含分群演算法時,該等慣性力參考向量包含由分群演算法所獲得之多個慣性力群集分別對應之中心的向量;而當該另一非監督式演算法包含自組織對映演算法,該等慣性力參考向量包含由自組織對映演算法所獲得之更新次數大於另一預設次數的所有神經元所對應之向量,但不以上述例子為限。In step 60, the processing module 14 uses another unsupervised algorithm to obtain a plurality of inertial force reference vectors in the corresponding data space according to the first training inertial force feature vectors. Furthermore, when the other unsupervised algorithm includes a clustering algorithm, the inertial force reference vectors include the vectors corresponding to the centers of the multiple inertial force clusters obtained by the clustering algorithm; and when the other Unsupervised algorithms include self-organizing mapping algorithms. These inertial force reference vectors include vectors corresponding to all neurons whose update times obtained by the self-organizing mapping algorithm are greater than another preset number. The above examples are limited.

在步驟61中,對於每一第二訓練慣性力特徵向量,該處理模組14計算該第二訓練慣性力特徵向量分別與每一慣性力參考向量的一第一慣性力候選距離。進一步來說,計算每一第一慣性力候選距離係使用歐氏距離,但不以此為限。In step 61, for each second training inertial force feature vector, the processing module 14 calculates a first inertial force candidate distance between the second training inertial force feature vector and each inertial force reference vector. Furthermore, the Euclidean distance is used to calculate each first inertial force candidate distance, but it is not limited to this.

在步驟62中,對於每一已獲得該等第一慣性力候選距離的第二訓練慣性力特徵向量,該處理模組14自該第二訓練慣性力特徵向量所對應的該等第一慣性力候選距離中,獲得一對應有最短距離的第一慣性力目標距離。In step 62, for each second training inertial force feature vector for which the first inertial force candidate distances have been obtained, the processing module 14 obtains the first inertial force feature vector corresponding to the second training inertial force feature vector Among the candidate distances, a first inertial force target distance corresponding to the shortest distance is obtained.

在步驟63中,該處理模組14根據該等第一慣性力目標距離,獲得一背隙檢測範圍。進一步來說,本實施例係將該等第一慣性力目標距離作為常態分布,並將該等第一慣性力目標距離所對應的95%信賴區間作為該背隙檢測範圍,但不以此為限。In step 63, the processing module 14 obtains a backlash detection range according to the first inertial force target distances. Furthermore, in this embodiment, the first inertial force target distances are regarded as the normal distribution, and the 95% confidence interval corresponding to the first inertial force target distances is used as the backlash detection range, but this is not limit.

參閱圖5、6,該預壓判定程序包含步驟70~步驟85。Referring to Figures 5 and 6, the pre-compression determination procedure includes steps 70 to 85.

在步驟70中,該處理模組14根據所接收到的至少一振動訊號,獲得一對應該至少一振動訊號的振動時域資料。In step 70, the processing module 14 obtains vibration time-domain data corresponding to the at least one vibration signal according to the received at least one vibration signal.

在步驟71中,該處理模組14根據該振動時域資料,獲得至少一筆對應該振動時域資料的振動子頻域資料。In step 71, the processing module 14 obtains at least one vibrator frequency domain data corresponding to the vibration time domain data according to the vibration time domain data.

參閱圖7,值得特別說明的是,步驟51還進一步包含步驟710~步驟714。Referring to FIG. 7, it is worth noting that step 51 further includes step 710 to step 714.

在步驟710中,該處理模組14根據該振動時域資料,進行包絡處理(Envelope),獲得已處理的該振動時域資料。其中,包絡處理為習知技術亦非本發明重點,故不多作闡述。In step 710, the processing module 14 performs envelope processing (Envelope) according to the vibration time domain data to obtain the processed vibration time domain data. Among them, envelope processing is a conventional technology and is not the focus of the present invention, so it will not be elaborated.

在步驟711中,該處理模組14根據已處理的該振動時域資料,獲得一相關於該滾珠螺桿4移動時之等速度期間的目標振動時域資料。進一步來說,該滾珠螺桿4移動時之等速度期間亦可由預先設定之控制該滾珠螺桿4移動之馬達轉速而得知。In step 711, the processing module 14 obtains a target vibration time domain data related to the constant velocity period when the ball screw 4 is moving according to the processed vibration time domain data. Furthermore, the constant speed period during the movement of the ball screw 4 can also be known from the preset motor speed for controlling the movement of the ball screw 4.

在步驟712中,該處理模組14根據該目標振動時域資料,獲得至少一振動子時域資料。進一步來說,該處理模組14係依據預先設定之相同長度的時間區間,將該目標振動時域資料進行切割,以獲得該至少一振動子時域資料,而每一振動子時域資料皆對應有相同長度的時間區間。反之,在其他實施例中,該處理模組14亦可根據多筆目標振動時域資料,依據預先設定之相同長度的另一時間區間,將該等目標振動時域資料進行結合,以獲得至少一另一振動子時域資料,而每一另一振動子時域資料皆對應有相同長度的另一時間區間。In step 712, the processing module 14 obtains at least one vibrator time domain data according to the target vibration time domain data. Furthermore, the processing module 14 cuts the target vibration time domain data according to a preset time interval of the same length to obtain the at least one vibrator time domain data, and each vibrator time domain data is Corresponds to time intervals of the same length. Conversely, in other embodiments, the processing module 14 may also combine the target vibration time domain data according to a plurality of pieces of target vibration time domain data and another preset time interval of the same length to obtain at least One other vibrator time-domain data, and each other vibrator time-domain data corresponds to another time interval of the same length.

在步驟713中,對於每一振動子時域資料,該處理模組14根據該振動子時域資料,進行帶通濾波(Band Pass Filter),獲得已濾波的該振動子時域資料。進一步來說,已濾波的該振動子時域資料所保留之頻率範圍為螺桿軸42轉速頻之10倍頻寬內,因此,當該第一感測單元2所能感測的頻率範圍剛好僅涵蓋螺桿軸42轉速頻之10倍頻寬內時,則無需進行步驟713所述之帶通濾波,直接進行步驟714。In step 713, for each vibrator time-domain data, the processing module 14 performs a band pass filter (Band Pass Filter) according to the vibrator time-domain data to obtain filtered time-domain data of the vibrator. Furthermore, the frequency range reserved by the filtered time domain data of the vibrator is within 10 times the bandwidth of the rotational speed of the screw shaft 42. Therefore, the frequency range that can be sensed by the first sensing unit 2 is just When it covers a bandwidth of 10 times the frequency of the rotation speed of the screw shaft 42, the band-pass filtering described in step 713 is not required, and step 714 is directly performed.

在步驟714中,對於每一已濾波的振動子時域資料,該處理模組14根據已濾波的該振動子時域資料,進行傅立葉轉換( Fourier Transform),獲得對應已濾波的該振動子時域資料的該振動子頻域資料。In step 714, for each filtered time domain data of the vibrator, the processing module 14 performs Fourier Transform according to the filtered time domain data of the vibrator to obtain the corresponding filtered time domain data of the vibrator The frequency domain data of the vibrator of the domain data.

在步驟72中,對於每一振動子頻域資料,該處理模組14根據該振動子頻域資料,獲得一相關於該振動子頻域資料的振動特徵向量。其中,每一振動特徵向量包含一指示出該振動特徵向量所對應之振動子頻域資料之峰度的峰度特徵向量、一指示出該振動特徵向量所對應之振動子頻域資料之最大峰值的最大頻域峰值特徵向量,及一指示出該振動特徵向量所對應之振動子頻域資料之總能量的總能量特徵向量之至少一者,但不以上述為限。In step 72, for each vibrator frequency domain data, the processing module 14 obtains a vibration feature vector related to the vibrator frequency domain data according to the vibrator frequency domain data. Wherein, each vibration feature vector includes a kurtosis feature vector indicating the kurtosis of the vibrator frequency domain data corresponding to the vibration feature vector, and a kurtosis feature vector indicating the maximum peak value of the vibrator frequency domain data corresponding to the vibration feature vector At least one of the maximum frequency domain peak eigenvector of the vibration eigenvector, and a total energy eigenvector indicating the total energy of the frequency domain data of the vibrator corresponding to the vibration eigenvector, but not limited to the above.

在步驟73中,對於每一振動特徵向量,該處理模組14計算該振動特徵向量分別與每一振動參考向量的一第二振動候選距離。In step 73, for each vibration feature vector, the processing module 14 calculates a second candidate vibration distance between the vibration feature vector and each vibration reference vector.

在步驟74中,對於每一已獲得該等第二振動候選距離的振動特徵向量,該處理模組14自該振動特徵向量所對應的該等第二振動候選距離中,獲得一對應有最短距離的第二振動目標距離。In step 74, for each vibration feature vector for which the second vibration candidate distances have been obtained, the processing module 14 obtains a corresponding shortest distance from the second vibration candidate distances corresponding to the vibration feature vector The second vibration target distance.

在步驟75中,該處理模組14根據該等第二振動目標距離及用於判定該等振動特徵向量是否指示出該滾珠螺桿4之預壓已衰退的該預壓檢測範圍,獲得該預壓判定結果。舉例來說,該處理模組14係將該等第二振動目標距離取平均,以獲得一振動平均數,並判定該振動平均數是否位於該預壓檢測範圍內,以作為該預壓判定結果;又或是,根據該等第二振動目標距離取眾數,以獲得一振動眾數,並判定該振動眾數是否位於該預壓檢測範圍內,以作為該預壓判定結果,但不以上述算法為限。In step 75, the processing module 14 obtains the pre-compression detection range based on the second vibration target distances and the pre-compression detection range used to determine whether the vibration characteristic vectors indicate that the pre-compression of the ball screw 4 has declined. judgement result. For example, the processing module 14 averages the distances of the second vibration targets to obtain a vibration average, and determines whether the vibration average is within the preload detection range as the preload determination result Or, take the mode according to the second vibration target distances to obtain a vibration mode, and determine whether the vibration mode is within the preload detection range, as the preload determination result, but not The above algorithm is limited.

在步驟76中,該處理模組14根據該預壓判定結果,判定該滾珠螺桿4之預壓是否已衰退。當判定出該滾珠螺桿4之預壓未衰退(例:該振動平均數位於該預壓檢測範圍內)時,進行流程步驟77;當判定出該滾珠螺桿4之預壓已衰退(例:該振動平均數位於該預壓檢測範圍外)時,進行流程步驟78。In step 76, the processing module 14 determines whether the preload of the ball screw 4 has declined according to the result of the preload determination. When it is determined that the pre-compression of the ball screw 4 has not decayed (e.g., the average number of vibrations is within the pre-compression detection range), proceed to step 77; when it is determined that the pre-compression of the ball screw 4 has decayed (e.g., the When the average number of vibrations is outside the preload detection range), proceed to step 78 of the process.

在步驟77中,該處理模組14產生一指示出該滾珠螺桿4之預壓未衰退的預壓未衰退訊息,並將該預壓未衰退訊息顯示於該顯示模組13。In step 77, the processing module 14 generates a pre-compression non-decaying message indicating that the pre-compression of the ball screw 4 has not decayed, and displays the pre-compression non-decaying message on the display module 13.

在步驟78中,該處理模組14根據所接收到的至少一慣性力訊號,獲得至少一對應該至少一慣性力訊號的慣性力時域資料。其中,每一筆慣性力時域資料皆對應該滾珠螺桿4之螺帽41相對於螺桿軸42的一往返週期,每一往返週期係指該螺帽41從該螺桿軸42的一初始位置開始移動至一終點位置,再自該終點位置回到該初始位置。較佳地,每一慣性力時域資料亦可僅涵蓋該滾珠螺桿4所對應之往返週期的加速度(減速度)期間。In step 78, the processing module 14 obtains at least one inertial force time domain data corresponding to the at least one inertial force signal according to the received at least one inertial force signal. Among them, each inertial force time domain data corresponds to a reciprocating cycle of the nut 41 of the ball screw 4 relative to the screw shaft 42, and each reciprocating cycle means that the nut 41 starts to move from an initial position of the screw shaft 42 To an end position, and then return to the initial position from the end position. Preferably, each inertial force time domain data can also only cover the acceleration (deceleration) period of the reciprocating cycle corresponding to the ball screw 4.

在步驟79中,對於每一慣性力時域資料,該處理模組14根據該慣性力時域資料,獲得一相關於該慣性力時域資料的慣性力特徵向量。其中,每一慣性力特徵向量包含一指示出該慣性力特徵向量所對應之慣性力時域資料之峰峰值的峰峰值特徵向量、一指示出該慣性力特徵向量所對應之慣性力時域資料之最大峰值的最大時域峰值特徵向量,及一指示出該慣性力特徵向量所對應之慣性力時域資料之最大峰值之絕對值與最小峰值之絕對值的總和取平均的平均峰值特徵向量之至少一者,但不以上述為限。In step 79, for each inertial force time domain data, the processing module 14 obtains an inertial force feature vector related to the inertial force time domain data according to the inertial force time domain data. Wherein, each inertial force eigenvector includes a peak-to-peak eigenvector indicating the peak-to-peak value of the inertial force time-domain data corresponding to the inertial force eigenvector, and a peak-to-peak eigenvector indicating the inertial force time-domain data corresponding to the inertial force eigenvector The maximum peak value of the maximum time domain peak eigenvector, and an average peak eigenvector that indicates the sum of the absolute value of the maximum peak value and the absolute value of the minimum peak value of the inertial force time domain data corresponding to the inertial force eigenvector At least one, but not limited to the above.

參閱圖8,值得特別說明的是,步驟79還進一步包含步驟790~步驟792。Referring to FIG. 8, it is worth noting that step 79 further includes step 790 to step 792.

在步驟790中,對於每一慣性力時域資料,該處理模組14根據該慣性力時域資料,進行包絡處理,獲得已處理的該慣性力時域資料。In step 790, for each inertial force time domain data, the processing module 14 performs envelope processing according to the inertial force time domain data to obtain the processed inertial force time domain data.

在步驟791中,對於每一已處理的該慣性力時域資料,該處理模組14根據已處理的該慣性力時域資料,進行低通濾波(Low-pass Filter),獲得一對應已處理之該慣性力時域資料的已濾波的該慣性力時域資料。進一步來說,已濾波的該慣性力時域資料所保留之頻率範圍為0.1~5Hz頻寬,因此,當該第二感測單元3所能感測的頻率範圍剛好僅涵蓋0.1~5Hz頻寬時,則無需進行步驟791所述之低通濾波,直接進行步驟792。In step 791, for each processed time-domain inertial force data, the processing module 14 performs a low-pass filter based on the processed time-domain inertial force data to obtain a corresponding processed time-domain data. The filtered time-domain data of the inertial force of the time-domain data of the inertial force. Furthermore, the frequency range reserved by the filtered inertial force time-domain data is 0.1~5Hz bandwidth, therefore, when the frequency range that the second sensing unit 3 can sense only covers 0.1~5Hz bandwidth At this time, there is no need to perform the low-pass filtering described in step 791, and step 792 is directly performed.

在步驟792中,對於每一已濾波的該慣性力時域資料,該處理模組14根據已濾波的該慣性力時域資料,獲得對應已濾波之該慣性力時域資料的該慣性力特徵向量。In step 792, for each filtered time-domain inertial force data, the processing module 14 obtains the inertial force characteristic corresponding to the filtered time-domain inertial force data according to the filtered time-domain inertial force data vector.

在步驟80中,對於每一慣性力特徵向量,該處理模組14計算該慣性力特徵向量分別與每一慣性力參考向量的一第二慣性力候選距離。In step 80, for each inertial force feature vector, the processing module 14 calculates a second inertial force candidate distance between the inertial force feature vector and each inertial force reference vector.

在步驟81中,對於每一已獲得該等第二慣性力候選距離的慣性力特徵向量,該處理模組14自該慣性力特徵向量所對應的該等慣性力候選距離中,獲得一對應有最短距離的第二慣性力目標距離。In step 81, for each inertial force feature vector that has obtained the second inertial force candidate distances, the processing module 14 obtains a corresponding inertial force candidate distance from the inertial force candidate distances corresponding to the inertial force feature vector. The shortest distance of the second inertial force target distance.

在步驟82中,該處理模組14根據該等第二慣性力目標距離及用於判定該等慣性力特徵向量是否指示出該滾珠螺桿4已產生背隙的該背隙檢測範圍,獲得該背隙判定結果。舉例來說,該處理模組14係將該等第二慣性力目標距離取平均,以獲得一慣性力平均數,並判定該慣性力平均數是否位於該背隙檢測範圍內,以作為該背隙判定結果;又或是,根據該等第二慣性力目標距離取眾數,以獲得一慣性力眾數,並判定該慣性力眾數是否位於該背隙檢測範圍內,以作為該背隙判定結果,但不以上述算法為限。In step 82, the processing module 14 obtains the backlash detection range based on the second inertial force target distance and the backlash used to determine whether the inertial force feature vectors indicate that the ball screw 4 has generated backlash. The result of the gap determination. For example, the processing module 14 averages the distances of the second inertial force targets to obtain an average inertial force, and determines whether the average inertial force is within the detection range of the backlash as the backlash. Or, take the mode according to the second inertial force target distance to obtain an inertial force mode, and determine whether the inertial force mode is within the detection range of the back gap, as the back gap Judgment result, but not limited to the above algorithm.

在步驟83中,該處理模組14根據該背隙判定結果,判定該滾珠螺桿4是否已產生背隙。當判定出該滾珠螺桿4未產生背隙(例:該慣性力平均數位於該背隙檢測範圍內)時,進行流程步驟84;當判定出該滾珠螺桿4已產生背隙(例:該慣性力平均數位於該背隙檢測範圍內)時,進行流程步驟85。In step 83, the processing module 14 determines whether the ball screw 4 has a backlash based on the backlash determination result. When it is determined that the ball screw 4 has no backlash (for example: the average number of inertial forces is within the backlash detection range), proceed to step 84; when it is determined that the ball screw 4 has generated backlash (for example: the inertial force) When the force average is within the backlash detection range), proceed to step 85 of the process.

在步驟84中,該處理模組14產生一指示出該滾珠螺桿4之預壓已衰退但未產生背隙的僅預壓衰退訊息,並將該僅預壓衰退訊息顯示於該顯示模組13。In step 84, the processing module 14 generates a pre-compression-only decay message indicating that the pre-compression of the ball screw 4 has decayed but no backlash has occurred, and displays the pre-compression-only decay message on the display module 13 .

在步驟85中,該處理模組14產生一指示出該滾珠螺桿4之已產生背隙的背隙已產生訊息,並將該背隙已產生訊息顯示於該顯示模組13。In step 85, the processing module 14 generates a backlash generated message indicating that the backlash of the ball screw 4 has been generated, and displays the backlash generated message on the display module 13.

綜上所述,本發明滾珠螺桿預壓衰退判定方法,藉由用於判定該滾珠螺桿4之預壓是否已衰退的該預壓判定結果,以及用於判定該滾珠螺桿4之是否已產生背隙的該背隙判定結果,便能檢測出該滾珠螺桿4之預壓為未衰退、僅衰退但尚未產生背隙,或是以產生背隙等三種情況,故確實能達成本發明的目的。In summary, the method for judging the precompression recession of the ball screw of the present invention uses the precompression judgment result for judging whether the precompression of the ball screw 4 has recessed, and the precompression judgment result for judging whether the ball screw 4 has generated back pressure. As a result of the backlash determination result, it can be detected that the preload of the ball screw 4 is not decayed, only decayed but backlash has not yet occurred, or backlash has occurred. Therefore, the objective of the invention can be achieved.

惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。However, the above are only examples of the present invention. When the scope of implementation of the present invention cannot be limited by this, all simple equivalent changes and modifications made in accordance with the scope of the patent application of the present invention and the content of the patent specification still belong to Within the scope of the patent of the present invention.

100:滾珠螺桿預壓衰退判定系統 1:電腦裝置 11:通訊模組 12:儲存模組 13:顯示模組 14:處理模組 2:第一感測單元 3:第二感測單元 4:滾珠螺桿 41:螺帽 42:螺桿軸 43:循環配件 44:滾珠 50~53:步驟 60~63:步驟 70~85:步驟 710~714:步驟 790~792:步驟100: Ball screw preload decay judging system 1: computer device 11: Communication module 12: Storage module 13: display module 14: Processing module 2: The first sensing unit 3: The second sensing unit 4: Ball screw 41: Nut 42: screw shaft 43: Loop accessories 44: Ball 50~53: Step 60~63: Step 70~85: Step 710~714: steps 790~792: steps

本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一方塊圖,說明執行本發明滾珠螺桿預壓衰退判定方法的一實施例的一滾珠螺桿預壓衰退判定系統; 圖2是一示意圖,說明該實施例之一第一感測單元、一第二感測單元及一滾珠螺桿; 圖3是一流程圖,說明該實施例的一預壓訓練程序; 圖4是一流程圖,說明該實施例的一背隙訓練程序; 圖5是一流程圖,說明該實施例之一預壓判定程序的步驟70~77; 圖6是一流程圖,說明該實施例之該預壓判定程序的步驟78~85; 圖7是一流程圖,說明該實施例之該預壓判定程序如何獲得振動子頻域資料;及 圖8是一流程圖,說明該實施例之該預壓判定程序如何獲得慣性力特徵向量。 Other features and effects of the present invention will be clearly presented in the embodiments with reference to the drawings, in which: Figure 1 is a block diagram illustrating a ball screw preload decay judging system for implementing an embodiment of the ball screw preload decay judging method of the present invention; 2 is a schematic diagram illustrating a first sensing unit, a second sensing unit and a ball screw of the embodiment; Figure 3 is a flowchart illustrating a pre-compression training procedure of this embodiment; Figure 4 is a flowchart illustrating a backlash training procedure of this embodiment; Figure 5 is a flowchart illustrating steps 70 to 77 of a pre-compression determination program of this embodiment; Fig. 6 is a flowchart illustrating steps 78 to 85 of the pre-compression determination procedure of this embodiment; FIG. 7 is a flowchart illustrating how the preload determination procedure of this embodiment obtains the frequency domain data of the vibrator; and Fig. 8 is a flowchart illustrating how the pre-compression determination program of this embodiment obtains the inertial force feature vector.

70~77:步驟 70~77: Step

Claims (10)

一種滾珠螺桿預壓衰退判定方法,藉由一電腦裝置來實施,該電腦裝置訊號連接一第一感測單元,該第一感測單元裝設於一滾珠螺桿之一螺帽且鄰近該滾珠螺桿之一循環配件並週期性地傳送一相關於該循環配件中之滾珠振動的振動訊號至該電腦裝置,該滾珠螺桿預壓衰退判定方法包含以下步驟: (A) 藉由該電腦裝置,根據所接收到的至少一振動訊號,獲得一對應該至少一振動訊號的振動時域資料; (B) 藉由該電腦裝置,根據該振動時域資料,獲得至少一筆對應該振動時域資料的振動子頻域資料; (C) 對於每一振動子頻域資料,藉由該電腦裝置,根據該振動子頻域資料,獲得一相關於該振動子頻域資料的振動特徵向量; (D) 藉由該電腦裝置,根據該等振動特徵向量、多個振動參考向量及一預壓檢測範圍,獲得一預壓判定結果;及 (E) 藉由該電腦裝置,根據該預壓判定結果,判定該滾珠螺桿之預壓是否已衰退。 A method for judging the pre-compression decay of a ball screw is implemented by a computer device whose signal is connected to a first sensing unit, the first sensing unit being installed on a nut of a ball screw and adjacent to the ball screw A circulating accessory periodically transmits a vibration signal related to the vibration of the ball in the circulating accessory to the computer device. The method for judging the preload decline of the ball screw includes the following steps: (A) Using the computer device, according to the received at least one vibration signal, obtain vibration time-domain data corresponding to at least one vibration signal; (B) Using the computer device to obtain at least one vibrator frequency domain data corresponding to the vibration time domain data based on the vibration time domain data; (C) For each vibrator frequency domain data, using the computer device, obtain a vibration eigenvector related to the vibrator frequency domain data according to the vibrator frequency domain data; (D) Using the computer device, obtain a preload determination result based on the vibration feature vectors, multiple vibration reference vectors, and a preload detection range; and (E) Using the computer device, determine whether the preload of the ball screw has declined according to the result of the preload determination. 如請求項1所述的滾珠螺桿預壓衰退判定方法,其中,步驟(B)還包含以下步驟: (B-1) 藉由該電腦裝置,根據該振動時域資料,進行包絡處理,獲得已處理的該振動時域資料; (B-2) 藉由該電腦裝置,根據已處理的該振動時域資料,獲得一相關於該滾珠螺桿移動時之等速度期間的目標振動時域資料; (B-3) 藉由該電腦裝置,根據該目標振動時域資料,獲得該至少一振動子頻域資料。 The method for judging the decline of the ball screw preload according to claim 1, wherein step (B) further includes the following steps: (B-1) Using the computer device to perform envelope processing based on the vibration time domain data to obtain the processed vibration time domain data; (B-2) According to the processed vibration time domain data by the computer device, obtain a target vibration time domain data related to the constant velocity period when the ball screw is moving; (B-3) Obtain the at least one vibrator frequency domain data according to the target vibration time domain data by the computer device. 如請求項2所述的滾珠螺桿預壓衰退判定方法,其中,步驟(B-3)還包含以下步驟: (B-3-1) 藉由該電腦裝置,根據該目標振動時域資料,獲得至少一振動子時域資料;及 (B-3-2) 對於每一振動子時域資料,藉由該電腦裝置,根據該振動子時域資料,進行傅立葉轉換,獲得對應該振動子時域資料的該振動子頻域資料。 The method for judging the decline of the ball screw preload according to claim 2, wherein the step (B-3) further includes the following steps: (B-3-1) Obtain at least one vibrator time-domain data based on the target vibration time-domain data through the computer device; and (B-3-2) For each vibrator time domain data, the computer device performs Fourier transform according to the vibrator time domain data to obtain the vibrator frequency domain data corresponding to the vibrator time domain data. 如請求項1所述的滾珠螺桿預壓衰退判定方法,其中,步驟(D)包含以下步驟: (D-1) 對於每一振動特徵向量,藉由該電腦裝置,計算該振動特徵向量分別與每一振動參考向量的一第二振動候選距離; (D-2) 對於每一已獲得該等第二振動候選距離的振動特徵向量,藉由該電腦裝置,自該振動特徵向量所對應的該等第二振動候選距離中,獲得一對應有最短距離的第二振動目標距離;及 (D-3) 藉由該電腦裝置,根據該等第二振動目標距離及該預壓檢測範圍,獲得該預壓判定結果。 The method for judging the decline of the ball screw preload according to claim 1, wherein step (D) includes the following steps: (D-1) For each vibration feature vector, using the computer device, calculate a second candidate vibration distance between the vibration feature vector and each vibration reference vector; (D-2) For each vibration eigenvector for which the second vibration candidate distances have been obtained, by the computer device, from the second vibration candidate distances corresponding to the vibration eigenvector, obtain a corresponding one with the shortest The second vibration target distance of the distance; and (D-3) The computer device obtains the preload determination result according to the second vibration target distances and the preload detection range. 如請求項1所述的滾珠螺桿預壓衰退判定方法,其中,在步驟(C)中,每一振動特徵向量包含一指示出所對應之振動子頻域資料之峰度的峰度特徵向量、一指示出所對應之振動子頻域資料之最大峰值的最大頻域峰值特徵向量,及一指示出所對應之振動子頻域資料之總能量的總能量特徵向量之至少一者。The ball screw preload decay determination method according to claim 1, wherein in step (C), each vibration eigenvector includes a kurtosis eigenvector indicating the kurtosis of the corresponding vibrator frequency domain data, and a At least one of a maximum frequency domain peak eigenvector indicating the maximum peak of the corresponding vibrator frequency domain data, and a total energy eigenvector indicating the total energy of the corresponding vibrator frequency domain data. 如請求項1所述的滾珠螺桿預壓衰退判定方法,該電腦裝置儲存有多筆第一訓練振動特徵向量,及多筆第二訓練振動特徵向量,其中,在步驟(D)之前,還包含以下步驟: (F) 藉由該電腦裝置,根據該等第一訓練振動特徵向量,利用一非監督式演算法,獲得處於所對應之資料空間中的該等振動參考向量;及 (G) 藉由該電腦裝置,根據該等振動參考向量及該等第二訓練振動特徵向量,獲得該預壓檢測範圍。 According to the method for judging the decline of preload of a ball screw according to claim 1, the computer device stores a plurality of first training vibration feature vectors and a plurality of second training vibration feature vectors, wherein, before step (D), it further includes The following steps: (F) Using the computer device, according to the first training vibration feature vectors, use an unsupervised algorithm to obtain the vibration reference vectors in the corresponding data space; and (G) By using the computer device, the preload detection range is obtained according to the vibration reference vectors and the second training vibration characteristic vectors. 如請求項5所述的滾珠螺桿預壓衰退判定方法,其中,在步驟(F)中,該非監督式演算法包含分群演算法,該等振動參考向量包含由分群演算法所獲得之多個振動群集分別對應之中心的向量。The ball screw preload decay determination method according to claim 5, wherein, in step (F), the unsupervised algorithm includes a grouping algorithm, and the vibration reference vectors include a plurality of vibrations obtained by the grouping algorithm The clusters respectively correspond to the vector of the center. 如請求項5所述的滾珠螺桿預壓衰退判定方法,其中,在步驟(F)中,該非監督式演算法包含自組織對映演算法,該等振動參考向量包含由自組織對映演算法所獲得之更新次數大於一預設次數的所有神經元所對應之向量。The method for judging the decline of the ball screw preload according to claim 5, wherein, in step (F), the unsupervised algorithm includes a self-organizing mapping algorithm, and the vibration reference vectors include a self-organizing mapping algorithm The obtained update times are greater than a preset number of neurons corresponding to the vectors. 如請求項5所述的滾珠螺桿預壓衰退判定方法,其中,步驟(G)還包含以下步驟: (G-1) 對於每一第二訓練振動特徵向量,藉由該電腦裝置,計算該第二訓練振動特徵向量分別與每一振動參考向量的一第一振動候選距離; (G-2) 對於每一已獲得該等第一振動候選距離的第二訓練振動特徵向量,藉由該電腦裝置,自該第二訓練振動特徵向量所對應的該等第一振動候選距離中,獲得一對應有最短距離的第一振動目標距離;及 (G-3) 藉由該電腦裝置,根據該等第一振動目標距離,獲得該預壓檢測範圍。 The method for judging the decline of the ball screw preload according to claim 5, wherein step (G) further includes the following steps: (G-1) For each second training vibration feature vector, using the computer device, calculate a first vibration candidate distance between the second training vibration feature vector and each vibration reference vector; (G-2) For each second training vibration feature vector that has obtained the first vibration candidate distances, by the computer device, from the first vibration candidate distances corresponding to the second training vibration feature vector , Obtain the first vibration target distance corresponding to the shortest distance; and (G-3) Using the computer device, obtain the preload detection range according to the first vibration target distances. 如請求項1所述的滾珠螺桿預壓衰退判定方法,該電腦裝置還訊號連接一第二感測單元,該第二感測單元裝設於該螺帽並週期地傳送一相關於該螺帽相對於該滾珠螺桿之一螺桿軸之移動方向之慣性力的慣性力訊號至該電腦裝置,其中,在步驟(E)之後,還包含以下步驟: (H) 當判定出該滾珠螺桿之預壓已衰退時,藉由該電腦裝置,根據所接收到的至少一慣性力訊號,獲得至少一對應該至少一慣性力訊號的慣性力時域資料; (I) 對於每一慣性力時域資料,藉由該電腦裝置,根據該慣性力時域資料,獲得一相關於該慣性力時域資料的慣性力特徵向量; (J) 藉由該電腦裝置,根據該等慣性力特徵向量、多個慣性力參考向量及一背隙檢測範圍,獲得一背隙判定結果;及 (K) 藉由該電腦裝置,根據該背隙判定結果,判定該滾珠螺桿是否已產生背隙。 According to the method for judging the deterioration of the preload of the ball screw according to claim 1, the computer device is also signally connected to a second sensing unit, the second sensing unit is installed on the nut and periodically transmits a signal related to the nut The inertial force signal relative to the inertial force of the moving direction of a screw shaft of the ball screw is sent to the computer device, wherein, after step (E), the following steps are further included: (H) When it is determined that the preload of the ball screw has decayed, at least one pair of inertial force time-domain data corresponding to at least one inertial force signal is obtained by the computer device according to the received at least one inertial force signal; (I) For each inertial force time-domain data, use the computer device to obtain an inertial force eigenvector related to the inertial force time-domain data based on the inertial force time-domain data; (J) With the computer device, a backlash determination result is obtained based on the inertial force feature vectors, multiple inertial force reference vectors, and a backlash detection range; and (K) Using the computer device, determine whether the ball screw has backlash based on the backlash determination result.
TW109116566A 2020-05-19 2020-05-19 Method for judging the decline of preload of ball screw TWI719901B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109116566A TWI719901B (en) 2020-05-19 2020-05-19 Method for judging the decline of preload of ball screw

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109116566A TWI719901B (en) 2020-05-19 2020-05-19 Method for judging the decline of preload of ball screw

Publications (2)

Publication Number Publication Date
TWI719901B true TWI719901B (en) 2021-02-21
TW202144756A TW202144756A (en) 2021-12-01

Family

ID=75745951

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109116566A TWI719901B (en) 2020-05-19 2020-05-19 Method for judging the decline of preload of ball screw

Country Status (1)

Country Link
TW (1) TWI719901B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM441751U (en) * 2009-06-02 2012-11-21 Nat Univ Chung Cheng Sensing module applied to ball-screw mechanism
TW201337233A (en) * 2012-03-14 2013-09-16 Nat Univ Chung Cheng Method of monitoring the ball-screw preload variation in a ball-screw feed drive system
TWI572797B (en) * 2015-09-23 2017-03-01 Double nut ball screw with sensing preload function

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM441751U (en) * 2009-06-02 2012-11-21 Nat Univ Chung Cheng Sensing module applied to ball-screw mechanism
TW201337233A (en) * 2012-03-14 2013-09-16 Nat Univ Chung Cheng Method of monitoring the ball-screw preload variation in a ball-screw feed drive system
TWI572797B (en) * 2015-09-23 2017-03-01 Double nut ball screw with sensing preload function
TW201712253A (en) * 2015-09-23 2017-04-01 國立中正大學 Dual-nut ball screw having preload sensing function achieving better preload sensing sensitivity and effect of force sensor

Also Published As

Publication number Publication date
TW202144756A (en) 2021-12-01

Similar Documents

Publication Publication Date Title
US10990085B2 (en) Machine-tool-state determination system and machine-tool-state determination method
US9823168B2 (en) Auto tire localization systems and methods utilizing a TPMS angular position index
KR101667164B1 (en) Rotor speed-based bearing fault diagnosis method
KR101748559B1 (en) Apparatus for inspecting rotating device and method thereof
JP6221652B2 (en) Life prediction method, life prediction device, life prediction system, life calculation device, and rotating machine
US20150354690A1 (en) System and method for monitoring preload in ball screw
JP2010513877A (en) Non-contact blade vibration measuring apparatus and method
JP2011517353A5 (en)
JP2012503194A (en) How to process measurements from accelerometers
JP2017142153A (en) Life prediction method, life prediction device, and life prediction system
JP2017129583A (en) Vibration monitoring systems
JP2019168412A (en) Abnormality detector and abnormality detection method
JP2006502411A (en) Speed detection method and apparatus
CN109211551A (en) A kind of trouble-shooter for rotating machinery
TWI719901B (en) Method for judging the decline of preload of ball screw
CN110762771B (en) Air conditioner external unit resonance control method and device and air conditioner
CN107843369A (en) Method and device for monitoring real-time dynamic load of bearing and method for evaluating service life of bearing
TWI834215B (en) Methods for monitoring the health status of mechanical tools
CN113834595B (en) Ball screw precompression decay judging method
FR3103273B1 (en) Method for monitoring the torsion of a rotating shaft on a turbomachine of an aircraft
JP6812438B2 (en) Impact wrench rotation detection
CN107782267B (en) Rotating machinery eccentric detection method and device based on RFID
KR101372406B1 (en) Apparatus for analysizing rotation axis
KR102419817B1 (en) Method for assessing preload degradation of ball screw
TWI711805B (en) Measurement device and method for measuring practical rotational speed of rotor