TWI718945B - Active constant force imposing sensing and controlling system - Google Patents
Active constant force imposing sensing and controlling system Download PDFInfo
- Publication number
- TWI718945B TWI718945B TW109115669A TW109115669A TWI718945B TW I718945 B TWI718945 B TW I718945B TW 109115669 A TW109115669 A TW 109115669A TW 109115669 A TW109115669 A TW 109115669A TW I718945 B TWI718945 B TW I718945B
- Authority
- TW
- Taiwan
- Prior art keywords
- air pressure
- processing
- pneumatic
- constant force
- control system
- Prior art date
Links
Images
Landscapes
- Fluid-Pressure Circuits (AREA)
Abstract
Description
本發明係關於一種力量感測相關領域,尤指一種運用於精密加工作業的主動式恆定施力感測控制系統。 The present invention relates to a field related to force sensing, in particular to an active constant force sensing control system used in precision machining operations.
隨著工業科技迅速發展,工件加工日漸趨向於細微化,為了使工件精密度符合需求,自動化加工廠中會依賴加工載具進行工件之加工。 With the rapid development of industrial technology, the processing of workpieces is becoming more and more refined. In order to make the precision of the workpiece meet the demand, the automated processing plant will rely on the processing carrier for the processing of the workpiece.
所以控制加工載具的精密力量是非常重要的技術,通常會於加工載具裝設感測器,以感測加工載具進行工件加工時的力量,感測器是否能夠精密地感測加工載具來自不同方向的施力或受力,必須經由調校,以避免該加工載具因感測器不準確,而造成工件之精密度的情形。 Therefore, it is a very important technology to control the precision power of the processing carrier. Usually, a sensor is installed on the processing carrier to sense the force of the processing carrier when the workpiece is processed. Whether the sensor can accurately sense the processing load The force applied or received from different directions must be adjusted to avoid the accuracy of the workpiece due to the inaccuracy of the sensor.
為解決上述課題,本發明提供一種主動式恆定施力感測控制系統,根據作動路徑數據與加工參數帶動多軸作動裝置及輸出對應之供給壓力,於多軸作動裝置作動過程,終端裝置接收氣壓訊號並進行計算處理,依據產生之診斷資訊,判斷是否調整供給壓力,藉以達到力量感知與回授控制之效果。 In order to solve the above problems, the present invention provides an active constant force sensing and control system, which drives a multi-axis actuation device and outputs the corresponding supply pressure according to the actuation path data and processing parameters. During the actuation process of the multi-axis actuation device, the terminal device receives the air pressure. The signal is calculated and processed, and based on the generated diagnostic information, it is judged whether to adjust the supply pressure to achieve the effect of power perception and feedback control.
本發明之一項實施例提供一種主動式恆定施力感測控制系統,其包含:一控制器,其裝設於一加工載具;一多軸作動裝置,其連結於加工載具之一端,多軸作動裝置具有複數氣壓驅動件、複數氣壓偵測器及一轉接介面,各氣壓驅動件與一氣壓組連通,各氣壓驅動件連接轉接介面,轉接介面提供夾持加工物件,各氣壓偵測器設於各氣壓驅動件;於氣壓組提供氣壓驅使各氣壓驅動件帶動轉接介面運作時,各氣壓偵測器感應各氣壓組之供給壓力,以產生一氣壓訊號;以及一終端裝置,其訊號連接控制器、多軸作動裝置及氣壓組,終端裝置具有一資料庫及一處理模組,資料庫存有對應不同加工物件型態之複數作動路徑數據及複數加工參數,處理模組根據加工物件之型態,讀取其中一作動路徑數據並傳送至控制器,及讀取其中一加工參數並傳送至氣壓組,其中,加工載具會根據作動路徑數據帶動多軸作動裝置移動,而氣壓組根據加工參數輸出對應之氣壓至各氣壓驅動件,俾使轉接介面帶動加工物件進行加工,於多軸作動裝置作動過程,處理模組接收氣壓訊號,將氣壓訊號與加工參數進行計算處理,產生一診斷資訊,處理模組依據診斷資訊判斷是否調整氣壓組提供給各氣壓組之供給壓力。 An embodiment of the present invention provides an active constant force sensing control system, which includes: a controller installed on a processing carrier; a multi-axis actuation device connected to one end of the processing carrier, The multi-axis actuation device has a plurality of air pressure drives, a plurality of air pressure detectors, and an adapter interface. Each air pressure drive member is connected to an air pressure group. Each air pressure drive member is connected to the adapter interface. The adapter interface provides clamping processing objects. Air pressure detectors are installed in each air pressure driving part; when the air pressure group provides air pressure to drive each air pressure driving part to drive the switching interface to operate, each air pressure sensor senses the supply pressure of each air pressure group to generate an air pressure signal; and a terminal Device, the signal is connected to the controller, multi-axis actuation device and air pressure group. The terminal device has a database and a processing module. The database has multiple operating path data and multiple processing parameters corresponding to different processing object types. Processing module According to the type of the processing object, read one of the actuation path data and send it to the controller, and read one of the processing parameters and send it to the air pressure group, where the processing carrier will drive the multi-axis actuation device to move according to the actuation path data. The air pressure group outputs the corresponding air pressure to each air pressure driving part according to the processing parameters, so that the transfer interface drives the processing object for processing. During the operation of the multi-axis actuator, the processing module receives the air pressure signal and calculates the air pressure signal and the processing parameters. Processing, generating a diagnostic information, and the processing module determines whether to adjust the supply pressure of the air pressure group to each air pressure group according to the diagnostic information.
藉由前述,本發明終端裝置依據作動路徑數據操控加工載具驅使多軸作動裝置帶動加工物件移動,並依據加工參數操控氣壓組輸出對應之供給壓力,以使多軸作動裝置帶動加工物件進行加工,於多軸作動裝置作動過程中,終端裝置會持續接收氣壓訊號並與資料庫之數據進行計算處理,進而產生診斷資訊;並且依據診斷資訊,判斷是否調整氣壓組之供給壓力;藉此,透過主動式力量感知,進行資料的運算與判斷,進而達到回授控制之效果。 Based on the foregoing, the terminal device of the present invention controls the processing carrier according to the actuation path data to drive the multi-axis actuation device to drive the processing object to move, and controls the air pressure group to output the corresponding supply pressure according to the processing parameters, so that the multi-axis actuation device drives the processing object for processing During the operation of the multi-axis actuator, the terminal device will continue to receive the air pressure signal and perform calculations with the data in the database to generate diagnostic information; and based on the diagnostic information, determine whether to adjust the supply pressure of the air pressure group; Active power perception, calculation and judgment of data, and then achieve the effect of feedback control.
1:加工物件 1: Processing object
2:加工機 2: Processing machine
100:主動式恆定施力感測控制系統 100: Active constant force sensing control system
10:控制器 10: Controller
11:加工載具 11: Processing vehicle
20:多軸作動裝置 20: Multi-axis actuator
21:氣壓驅動件 21: Pneumatic drive
22:萬向旋轉接頭 22: Universal rotary joint
23:第一法蘭盤 23: The first flange
24:第二法蘭盤 24: second flange
25:轉接介面 25: Transfer interface
26:氣壓偵測器 26: Air pressure detector
27:位置偵測器 27: position detector
30:氣壓組 30: Air pressure group
31:氣壓源 31: Air pressure source
32:調壓閥 32: Pressure regulating valve
40:終端裝置 40: terminal device
41:資料庫 41: Database
42:處理模組 42: Processing module
43:檢測模組 43: detection module
F:力量 F: Strength
C1作動點 C1 actuation point
C2:作動點 C2: Actuation point
L:距離 L: distance
圖1係本發明系統架構示意圖。 Figure 1 is a schematic diagram of the system architecture of the present invention.
圖2係本發明系統方塊連結示意圖。 Figure 2 is a schematic diagram of the block connection of the system of the present invention.
圖3係本發明外觀架構實施例示意圖。 FIG. 3 is a schematic diagram of an embodiment of the appearance structure of the present invention.
圖4係圖3局部放大示意圖。 Fig. 4 is a partial enlarged schematic diagram of Fig. 3.
圖5係本發明多軸作動裝置之作動示意圖。 Fig. 5 is a schematic diagram of the operation of the multi-axis actuating device of the present invention.
為便於說明本發明於上述發明內容一欄中所表示的中心思想,茲以具體實施例表達。實施例中各種不同物件係按適於說明之比例、尺寸、變形量或位移量而描繪,而非按實際元件的比例予以繪製,合先敘明。 In order to facilitate the description of the central idea of the present invention expressed in the column of the above-mentioned summary of the invention, specific embodiments are used to express it. The various objects in the embodiment are drawn according to the proportion, size, deformation or displacement suitable for illustration, rather than drawn according to the proportion of the actual element, which will be described first.
請參閱圖1至圖5所示,本發明提供一種主動式恆定施力感測控制系統100,其包含:一控制器10,其裝設於一加工載具11,控制器10具有接收、傳輸及處理資訊之功能,其中,加工載具11能夠係機械手臂或機台;本發明圖3及圖4所顯示的加工載具11機械手臂,本發明不限制加工載具11的廠牌與型態,即表示本發明能夠運用於各種型態的加工載具11。
1 to 5, the present invention provides an active constant force
一多軸作動裝置20,其連結於加工載具11之一端,多軸作動裝置20具有複數氣壓驅動件21、複數萬向旋轉接頭22、一第一法蘭盤23、一第二法蘭盤24、一轉接介面25、複數氣壓偵測器26及複數位置偵測器27,各氣壓驅動件21架設於各萬向旋轉接頭22,第一法蘭盤23連接於加工載具11之一
端及各萬向旋轉接頭22間,第二法蘭盤24連接於各萬向旋轉接頭22與轉接介面25間;於本發明實施例中,轉接介面25為夾爪。
A
每一氣壓驅動件21連通一氣壓組30且連接轉接介面25,轉接介面25提供夾持加工物件1,各氣壓偵測器26及各位置偵測器27設於各氣壓驅動件21,其中,氣壓組30具有一氣壓源31及複數調壓閥32,每一調壓閥32與氣壓源31及氣壓驅動件21連通。
Each
於本發明實施例中,氣壓驅動件21為氣壓缸,氣壓驅動件21之數量為3個,氣壓偵測器26之數量為4個,其中三個氣壓偵測器26設於三調壓閥32與三氣壓驅動件21間,另一氣壓偵測器26與三氣壓驅動件21連接;位置偵測器27之數量為3個,各氣壓偵測器26及各位置偵測器27設於各氣壓驅動件21之外周緣,其中,氣壓偵測器26及位置偵測器27設於氣壓驅動件21的進出氣口之一側邊。萬向旋轉接頭22之數量為3個,每一萬向旋轉接頭22具有一個萬向接頭及一個旋轉接頭,旋轉接頭連接於第一法蘭盤23及氣壓驅動件21間,萬向接頭連接於氣壓驅動件21與第二法蘭盤24間,萬向旋轉接頭22具有3個旋轉自由度,旋轉接頭具有1個旋轉自由度;第一法蘭盤23及第二法蘭盤24為圓盤狀,三個萬向旋轉接頭22等角度間隔連接於第一法蘭盤23與第二法蘭盤24間。
In the embodiment of the present invention, the
於氣壓組30透過各調壓閥32提供氣壓至各氣壓驅動件21,以驅使各氣壓驅動件21帶動轉接介面25運作時,各氣壓偵測器26能夠感應各氣壓驅動件21之供給壓力,以產生一氣壓訊號,各氣壓偵測器26能夠將各自產生之氣壓訊號往外傳輸;而各位置偵測器27感應各氣壓驅動件21之作動位置,以產生一位置訊號,各位置偵測器27能夠將各自產生之位置訊號往外傳輸。
When the
一終端裝置40,其訊號連接控制器10、多軸作動裝置20及氣壓組30,其中,終端裝置40能夠是電腦或是架設於雲端的伺服器;於本發明實施例中,終端裝置40是架設於雲端的伺服器;終端裝置40透過無線傳輸方式與控制器10、多軸作動裝置20之各氣壓偵測器26、各位置偵測器27及氣壓組30之各調壓閥32連接。
A
終端裝置40具有一資料庫41及一處理模組42,資料庫41存有對應不同加工物件1型態之複數作動路徑數據及複數加工參數,處理模組42根據加工物件1之型態,讀取其中一作動路徑數據並傳送至控制器10,及讀取其中一加工參數並傳送至氣壓組30之各調壓閥32,其中,處理模組42能夠提供設定加工物件1之型態或是自動判斷加工物件1的型態;加工參數為氣壓組30供給壓力之氣壓控制值及各氣壓驅動件21之基準位置,其中,氣壓控制值能夠係使用者對應不同加工情況所設定。
The
終端裝置40提供將加工物件1欲完成的型態進行分析,並配合加工流程產生所述作動路徑數據,其中,終端裝置40能夠根據加工物件1的完成型態,先將完成型態之各個曲面表面作劃分,形成幾何不連續之曲面路徑,再將所搭配使用的加工機2及加工流程,分析出複數個加工路徑,並將各加工路徑串聯,以產生每一加工物件1型態之專屬作動路徑數據。
The
再者,加工載具11會根據作動路徑數據帶動多軸作動裝置20移動,而氣壓組30之各調壓閥32根據加工參數輸出對應之氣壓至各氣壓驅動件21,俾使由各氣壓驅動件21連動轉接介面25帶動加工物件1透過加工機2進行加工,於多軸作動裝置20作動過程中,終端裝置40之處理模組42會接收到各氣壓偵測器26所產生之氣壓訊號與各位置偵測器27產生之位置訊號,處理模組
42會將氣壓訊號及位置訊號與加工參數進行計算處理,產生一診斷資訊,終端裝置40依據診斷資訊判斷是否調整氣壓組30提供給各氣壓驅動件21之供給壓力以及調整各氣壓驅動件21之作動位置,其中,診斷資訊為目前多軸作動裝置20之轉接介面25所承受之力量F及力矩;處理模組42能根據位置訊號運算取得各氣壓驅動件21之作動位置與角度。
Furthermore, the
舉例說明:若當診斷資訊判斷當前氣壓驅動件21之移動量不足時,處理模組42會發出一調整訊號給調壓閥32,由調壓閥32控制氣壓組30提升輸出至氣壓驅動件21之供給壓力,使氣壓驅動件21的移動量符合加工參數;若當診斷資訊判斷當前氣壓驅動件21之移動量超過加工參數時,處理模組42會發出調整訊號給調壓閥32,由調壓閥32控制氣壓組30降低輸出至氣壓驅動件21之供給壓力,使氣壓驅動件21的移動量符合加工參數;若當診斷資訊判斷當前氣壓驅動件21之移動量符合加工參數時,處理模組42便不會發出調整訊號給調壓閥32,以維持氣壓驅動件21當前的移動量。
For example: if the diagnosis information determines that the current movement of the air
請參閱圖3及圖5所示,於本發明實施例中,在加工物件1透過加工機2的加工過程中,多軸作動裝置20能夠分為初始狀態、準備加工狀態、Z軸方向加工狀態、X、Y軸加工狀態及加工結束狀態,其中,X、Y及Z軸是以圖5方向所示,並非侷限本發明的作動方向,而Z軸與加工方向之力量F平行,X、Y軸與加工方向之力量F垂直;前述各狀態說明如下:於初始狀態下,會進行位置校正,各位置偵測器27與各氣壓偵測器26會傳送當前各氣壓驅動件21所在位置、角度與供給壓力(可視為氣壓驅動件21當前Z軸力量),以確保各氣壓驅動件21在空間中任何位置與方向的保持姿態(即大地座標)為(0,0,0),Z軸合力為0,合力矩為0。
Please refer to Figures 3 and 5, in the embodiment of the present invention, during the processing of the processed
於準備加工狀態下,會進行重量校正,各位置偵測器27與各氣壓偵測器26會傳送當前各氣壓驅動件21所在位置、角度與供給壓力(可視為氣壓驅動件21當前Z軸力量),以確保各氣壓驅動件21在空間中任何位置與方向的保持姿態為(0,0,0),Z軸合力為0,合力矩為0。
In the state of preparing for processing, weight calibration will be carried out. Each
於Z軸方向加工狀態下,會將如圖5上所顯示之作動點C1及作動點C2自動調整相對位置,確保各氣壓驅動件21的保持姿態為(0,0,0),而加工方向之力量F藉由各氣壓驅動件21之向量合力控制。
In the state of machining in the Z-axis direction, the relative positions of the actuation point C1 and actuation point C2 as shown in Figure 5 will be automatically adjusted to ensure that the holding posture of each
X、Y軸加工狀態下,確保各氣壓驅動件21的保持姿態為(0,0,0),而加工方向之力量F藉由各氣壓驅動件21對作動點C2產生合力矩控制,而力矩隨加工物件1之一端與各氣壓驅動件21之間隔距離L變化,使加工方向之力量F為一定值。
In the X and Y axis processing state, ensure that the holding attitude of each
加工結束狀態下,當加工物件1經過前述狀態流程後,即表示完成加工,則多軸作動裝置20回到初始狀態下等待下次加工。
In the processing end state, when the processed
再者,終端裝置40具有一檢測模組43,檢測模組43將對應加工物件1型態之作動路徑數據傳送至加工載具11之控制器10,及將加工參數傳送至多軸作動裝置20,俾使加工載具11及多軸作動裝置20帶動加工物件1依照作動路徑數據及加工參數透過加工機2進行加工;於加工物件1透過加工機2加工過程中,檢測模組43將收集之氣壓訊號及位置訊號處理為加工參數,並進行檢測分析,確認是否符合設定之所述加工參數,當符合設定之加工參數,檢測模組43能夠將收集之氣壓訊號及位置訊處理儲存於資料庫41;當不符合設定之加工參數,則調校加工參數並回存於資料庫41。
Furthermore, the
綜合上述,本發明能夠達成效果如下: In summary, the present invention can achieve the following effects:
一、本發明終端裝置40依據作動路徑數據操控加工載具11驅使多軸作動裝置20帶動加工物件1移動,並依據加工參數操控氣壓組30輸出對應之供給壓力,以使多軸作動裝置20帶動加工物件1透過加工機2進行加工,於多軸作動裝置20作動過程中,終端裝置40會持續接收氣壓訊號並與資料庫41之數據進行計算處理,進而產生診斷資訊;並且依據診斷資訊,判斷是否調整氣壓組30之供給壓力,以透過主動式力量感知,進行資料的運算與判斷,進而達到回授控制之效果。
1. The
二、本發明透過主動式位置感測,於多軸作動裝置20作動過程中,終端裝置40之處理模組42根據接收到的氣壓訊號及位置訊號,判斷多軸作動裝置20之負載狀態,以即時透過運算取得之診斷資訊,調整多軸作動裝置20之作動位置、力量與力矩,避免因位置與角度不確實,導致加工物件1之精密度不足。
2. The present invention uses active position sensing. During the operation of the
三、本發明透過預先模擬加工物件1於加工完成後之表面型態,以產生準確的作動路徑數據,進而使多軸作動裝置20作動過程更加精準,以達到精密加工的效果。
3. The present invention generates accurate motion path data by pre-simulating the surface shape of the processed
四、本發明透過將多軸作動裝置20作動過程的數據收集分析,驗證資料庫41中的加工參數與品質的關係,以達到精密加工的效果。
Fourth, the present invention verifies the relationship between the processing parameters and quality in the
以上所舉實施例僅用以說明本發明而已,非用以限制本發明之範圍。舉凡不違本發明精神所從事的種種修改或變化,俱屬本發明意欲保護之範疇。 The above-mentioned embodiments are only used to illustrate the present invention, and are not used to limit the scope of the present invention. All modifications or changes made without violating the spirit of the present invention fall within the scope of the present invention's intended protection.
1:加工物件 1: Processing object
2:加工機 2: Processing machine
100:主動式恆定施力感測控制系統 100: Active constant force sensing control system
10:控制器 10: Controller
11:加工載具 11: Processing vehicle
20:多軸作動裝置 20: Multi-axis actuator
30:氣壓組 30: Air pressure group
31:氣壓源 31: Air pressure source
32:調壓閥 32: Pressure regulating valve
40:終端裝置 40: terminal device
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109115669A TWI718945B (en) | 2020-05-12 | 2020-05-12 | Active constant force imposing sensing and controlling system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109115669A TWI718945B (en) | 2020-05-12 | 2020-05-12 | Active constant force imposing sensing and controlling system |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI718945B true TWI718945B (en) | 2021-02-11 |
TW202142980A TW202142980A (en) | 2021-11-16 |
Family
ID=75745818
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109115669A TWI718945B (en) | 2020-05-12 | 2020-05-12 | Active constant force imposing sensing and controlling system |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI718945B (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100204824A1 (en) * | 2009-02-12 | 2010-08-12 | David Keith Luce | Methods, systems, and devices for manipulating cutting elements for earth-boring drill bits and tools |
US20140364986A1 (en) * | 2012-02-27 | 2014-12-11 | Kabushiki Kaisha Yaskawa Denki | Robot system |
CN107076332A (en) * | 2014-08-01 | 2017-08-18 | 查普特技术有限公司 | Use monitoring system and method |
EP3401054A1 (en) * | 2015-11-09 | 2018-11-14 | Peddinghaus Corporation | System for processing a workpiece |
CN108829041A (en) * | 2018-07-13 | 2018-11-16 | 安徽工程大学 | A kind of numerically-controlled machine tool multi-axis controller of self-stabilization |
TW201902605A (en) * | 2017-05-05 | 2019-01-16 | 美商伊雷克托科學工業股份有限公司 | Multi-axis tool, its control method and related configuration |
JP2019084596A (en) * | 2017-11-02 | 2019-06-06 | 昭和電工株式会社 | Arm control method of multi-shaft robot |
US10423154B2 (en) * | 2017-01-24 | 2019-09-24 | Fanuc Corporation | Robot system including force-controlled pushing device |
TW201941328A (en) * | 2018-03-20 | 2019-10-16 | 日商東京威力科創股份有限公司 | Self-aware and correcting heterogenous platform incorporating integrated semiconductor processing modules and method for using same |
-
2020
- 2020-05-12 TW TW109115669A patent/TWI718945B/en active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100204824A1 (en) * | 2009-02-12 | 2010-08-12 | David Keith Luce | Methods, systems, and devices for manipulating cutting elements for earth-boring drill bits and tools |
US20140364986A1 (en) * | 2012-02-27 | 2014-12-11 | Kabushiki Kaisha Yaskawa Denki | Robot system |
CN107076332A (en) * | 2014-08-01 | 2017-08-18 | 查普特技术有限公司 | Use monitoring system and method |
EP3401054A1 (en) * | 2015-11-09 | 2018-11-14 | Peddinghaus Corporation | System for processing a workpiece |
US10423154B2 (en) * | 2017-01-24 | 2019-09-24 | Fanuc Corporation | Robot system including force-controlled pushing device |
TW201902605A (en) * | 2017-05-05 | 2019-01-16 | 美商伊雷克托科學工業股份有限公司 | Multi-axis tool, its control method and related configuration |
JP2019084596A (en) * | 2017-11-02 | 2019-06-06 | 昭和電工株式会社 | Arm control method of multi-shaft robot |
TW201941328A (en) * | 2018-03-20 | 2019-10-16 | 日商東京威力科創股份有限公司 | Self-aware and correcting heterogenous platform incorporating integrated semiconductor processing modules and method for using same |
CN108829041A (en) * | 2018-07-13 | 2018-11-16 | 安徽工程大学 | A kind of numerically-controlled machine tool multi-axis controller of self-stabilization |
Also Published As
Publication number | Publication date |
---|---|
TW202142980A (en) | 2021-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021208230A1 (en) | Intelligent assembly control system | |
US7813830B2 (en) | Method and an apparatus for performing a program controlled process on a component | |
CN108000477B (en) | Method for screwing valve by full-attitude active and passive flexible robot | |
Wang et al. | A point and distance constraint based 6R robot calibration method through machine vision | |
CN110977992B (en) | Non-kinematic model trajectory tracking method for mechanical arm and mechanical arm system | |
CN104626152B (en) | Industrial robot Active Compliance Control method and device | |
CN109848983A (en) | A kind of method of highly conforming properties people guided robot work compound | |
CN111037542B (en) | Track error compensation method for linear machining of inverse dynamics control robot | |
WO2020237407A1 (en) | Method and system for self-calibrating robot kinematic parameter, and storage device | |
CN111267073B (en) | Industrial robot teaching system and method based on augmented reality technology | |
WO2018196232A1 (en) | Method for automatically calibrating robot and end effector, and system | |
JP2010531238A (en) | Apparatus and method for position adjustment of universal bearing device for cutting machine | |
CN104736304A (en) | Method for in-line calibration of an industrial robot, calibration system for performing such a method and industrial robot comprising such a calibration system | |
WO2015070010A1 (en) | Calibration system and method for calibrating industrial robot | |
CN105643641A (en) | Force sensor calibration device and method and force control robot | |
EP3807058A1 (en) | Estimation of payload attached to a robot arm | |
CN111515928B (en) | Mechanical arm motion control system | |
CN114454060B (en) | Robot self-adaptive curved surface tracking constant force polishing method and system | |
US7925382B2 (en) | Robot controller and robot control method | |
TWI718945B (en) | Active constant force imposing sensing and controlling system | |
JP2024510677A (en) | Force-controlled handling equipment for robot-assisted surface machining | |
CN111604900B (en) | Target parameter detection method suitable for manual operation of manipulator | |
EP4241930A1 (en) | Robot control in working space | |
JPH1044074A (en) | Multi-work method and device thereof | |
Daniyan et al. | Design and simulation of a dual-arm robot for manufacturing operations in the railcar industry |