TWI718203B - The use of the combination package in the preparation of food, health products or nutraceuticals - Google Patents

The use of the combination package in the preparation of food, health products or nutraceuticals Download PDF

Info

Publication number
TWI718203B
TWI718203B TW105136957A TW105136957A TWI718203B TW I718203 B TWI718203 B TW I718203B TW 105136957 A TW105136957 A TW 105136957A TW 105136957 A TW105136957 A TW 105136957A TW I718203 B TWI718203 B TW I718203B
Authority
TW
Taiwan
Prior art keywords
composition
weight
item
patent application
scope
Prior art date
Application number
TW105136957A
Other languages
Chinese (zh)
Other versions
TW201717777A (en
Inventor
趙立平
吳國軍
張夢暉
張晨虹
王景
Original Assignee
大陸商完美(中國)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商完美(中國)有限公司 filed Critical 大陸商完美(中國)有限公司
Publication of TW201717777A publication Critical patent/TW201717777A/en
Application granted granted Critical
Publication of TWI718203B publication Critical patent/TWI718203B/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/42Cucurbitaceae (Cucumber family)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/702Oligosaccharides, i.e. having three to five saccharide radicals attached to each other by glycosidic linkages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/48Fabaceae or Leguminosae (Pea or Legume family); Caesalpiniaceae; Mimosaceae; Papilionaceae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/62Nymphaeaceae (Water-lily family)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/70Polygonaceae (Buckwheat family), e.g. spineflower or dock
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/72Rhamnaceae (Buckthorn family), e.g. buckthorn, chewstick or umbrella-tree
    • A61K36/725Ziziphus, e.g. jujube
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/81Solanaceae (Potato family), e.g. tobacco, nightshade, tomato, belladonna, capsicum or jimsonweed
    • A61K36/815Lycium (desert-thorn)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/88Liliopsida (monocotyledons)
    • A61K36/894Dioscoreaceae (Yam family)
    • A61K36/8945Dioscorea, e.g. yam, Chinese yam or water yam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/88Liliopsida (monocotyledons)
    • A61K36/899Poaceae or Gramineae (Grass family), e.g. bamboo, corn or sugar cane
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/88Liliopsida (monocotyledons)
    • A61K36/899Poaceae or Gramineae (Grass family), e.g. bamboo, corn or sugar cane
    • A61K36/8994Coix (Job's tears)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/02Peptides of undefined number of amino acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H3/00Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
    • C07H3/06Oligosaccharides, i.e. having three to five saccharide radicals attached to each other by glycosidic linkages
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Landscapes

  • Health & Medical Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Medical Informatics (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Botany (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

一種組合包於製備食品、藥品、保健品或營養品之用途,所述食品、藥品、保健品或營養品用於減少腸道菌群耐藥基因組或在抗生素治療中減少抗生素抗性,所述組合包包括以下組合物,每種組合物為便於劑量給予和均勻性的劑量單位形式,所述劑量單位形式是單一劑量的物理分散單位:第一組合物包括:全糧穀物;第二組合物包括:苦瓜、可溶性膳食纖維和低聚糖;第三組合物包括;可溶性膳食纖維和低聚糖。通過對患者飲食營養的合理調整,達到減少或改善腸道菌群耐藥基因組的目的。 A combination package is used for preparing food, medicine, health care product or nutraceutical, said food, medicine, health care product or nutraceutical is used to reduce the drug resistance genome of intestinal flora or reduce antibiotic resistance in antibiotic treatment, said The combination package includes the following compositions, each of which is in the form of a dosage unit for ease of dosage administration and uniformity, and the dosage unit form is a single-dose physically dispersed unit: the first composition includes: whole grains; the second composition Including: bitter gourd, soluble dietary fiber and oligosaccharide; the third composition includes; soluble dietary fiber and oligosaccharide. Through the reasonable adjustment of the patient's diet and nutrition, the goal of reducing or improving the drug resistance genome of the intestinal flora is achieved.

Description

組合包在製備食品、保健品或營養品中之用途 The use of the combination package in the preparation of food, health products or nutraceuticals

本發明涉及微生物和食品、藥品、保健品領域。更具體地,本發明涉及包括苦瓜粉的組合包在製備用於減少腸道內菌群抗抗生素基因或腸道耐藥基因組(gut microflora resistome)的食品、藥品、保健品、營養品的應用。 The invention relates to the fields of microorganisms and food, medicines and health products. More specifically, the present invention relates to the application of a combination package including bitter melon powder in the preparation of foods, medicines, health products, and nutraceuticals for reducing antibiotic resistance genes or gut microflora resistome in the intestinal flora.

從二十世紀四十年代開始使用抗生素以來,抗生素的利用大大減少了因感染而造成的死亡,延長了人們的壽命預期。但是,由於濫用和不當使用抗生素,使得在微生物中抗生素抗性迅速發展,抗生素抗性已經成為全球威脅人類健康的重要因素之一。抗生素抗性問題大大增加了用於公共衛生的花費和投入,延長了病人的住院時間,並且造成了治療失敗的增加以及死亡率的增長(引用文獻1)。 Since the beginning of the use of antibiotics in the 1940s, the use of antibiotics has greatly reduced deaths caused by infections and prolonged people's life expectancy. However, due to the abuse and improper use of antibiotics, antibiotic resistance has developed rapidly in microorganisms, and antibiotic resistance has become one of the important factors threatening human health in the world. The problem of antibiotic resistance has greatly increased the expenditure and investment in public health, prolonged the hospitalization time of patients, and caused an increase in treatment failure and an increase in mortality (Cited Reference 1).

在中國,抗生素濫用嚴重,抗生素抗性已經成為一個不可忽視的問題。 In China, the abuse of antibiotics is serious, and antibiotic resistance has become a problem that cannot be ignored.

以往對抗生素抗性的許多研究多集中在對臨床致病菌的分析。但是,最近越來越多的研究轉向“耐藥基因組”。耐藥基因組這一概念由Vanessa M.D'Costa於2006年在對土壤抗生素抗性基因研究的文章中提出,代表了在特定環境中所有抗生素抗性基因的總和(引用文獻2)。人類的腸道中儲藏著大量的抗生素抗性基因(引用文獻3),這些抗性基因不僅 能夠在共生腸道菌之間交換,也能夠轉移到機會致病菌中(引用文獻4)。在一項大規模的人群研究中,研究人員利用總體基因組測序技術檢測人腸道耐藥基因組,並在其中識別出了成千上萬的抗生素抗性基因(引用文獻5)。 Many previous studies on antibiotic resistance focused on the analysis of clinical pathogens. However, recently, more and more researches have turned to "drug-resistant genomes." The concept of drug-resistant genome was proposed by Vanessa M.D'Costa in an article on soil antibiotic resistance genes in 2006, which represents the sum of all antibiotic resistance genes in a specific environment (reference 2). A large number of antibiotic resistance genes are stored in the human intestines (Citation 3). These resistance genes are not only It can be exchanged between commensal intestinal bacteria, and can also be transferred to opportunistic pathogens (Citation 4). In a large-scale population study, researchers used total genome sequencing technology to detect the human intestinal drug resistance genome, and identified thousands of antibiotic resistance genes in it (Cited Reference 5).

對於肥胖個體,膳食干預是一項常用的減少體重的方法。同時飲食也已經被報道是調節腸道菌群的主要因素(引用文獻6、引用文獻7)。在我們實驗室已發表的一項研究中,我們發現遺傳性肥胖和單純性肥胖的病人,在經過由全穀物、中國傳統醫藥食材和益生元組成的飲食干預後,他們的體重顯著減少並且生理指標和炎症情況得到顯著改善。同時在這項膳食干預實驗中,腸道菌群的結構和功能發生了顯著的變化,包括了毒素產生菌的減少以及有益菌的增加(引用文獻8)。 For obese individuals, dietary intervention is a commonly used method to reduce weight. At the same time, diet has also been reported to be the main factor regulating the intestinal flora (Citation 6, Citation 7). In a study published in our laboratory, we found that patients with genetic obesity and simple obesity, after undergoing dietary intervention consisting of whole grains, traditional Chinese medicine ingredients, and prebiotics, their weight was significantly reduced and their physiology The indicators and inflammation have been significantly improved. At the same time, in this dietary intervention experiment, the structure and function of the intestinal flora have undergone significant changes, including the reduction of toxin-producing bacteria and the increase of beneficial bacteria (reference 8).

迄今為止,還沒有一個能有效減少腸道菌群耐藥基因組的方法。 So far, there has not been a method that can effectively reduce the resistant genome of the intestinal flora.

通過利用以基因組為核心的總體基因組學分析方法,本發明人意想不到地發現,患者通過服用一種組合包(膳食干預)可以用來扶持腸道有益菌,抑制條件致病菌,從而減少腸道內菌群抗抗生素基因的數量和豐度。 By using the overall genomics analysis method centered on the genome, the present inventors unexpectedly discovered that by taking a combination package (dietary intervention), patients can be used to support beneficial intestinal bacteria, inhibit conditional pathogenic bacteria, and reduce the number of pathogenic bacteria in the intestine. The number and abundance of antibiotic resistance genes in the flora.

因此,本發明提供一種組合包在製備食品、藥品、保健品、或營養品中的應用,所述食品、藥品、保健品、或營養品用於減少腸道菌群耐藥基因組或在抗生素治療中減少抗生素抗性,所述組合包包括以下組合物,每種組合物為便於劑量給予和均勻性的劑量單位形式,所述劑量單位形式是單一劑量的物理分散單位: 第一組合物,包括:全糧穀物;第二組合物,包括:苦瓜、可溶性膳食纖維和低聚糖;第三組合物,包括:可溶性膳食纖維和低聚糖。 Therefore, the present invention provides an application of a combination package in the preparation of foods, medicines, health products, or nutraceuticals. The foods, medicines, health products, or nutraceuticals are used to reduce the drug-resistant genome of the intestinal flora or in the treatment of antibiotics. To reduce antibiotic resistance, the combination package includes the following compositions, each of which is in the form of a dosage unit for convenient dosage administration and uniformity, and the dosage unit form is a single-dose physically dispersed unit: The first composition includes: whole grains; the second composition includes: bitter gourd, soluble dietary fiber and oligosaccharide; the third composition includes: soluble dietary fiber and oligosaccharide.

本發明還提供一種減少腸道菌群耐藥基因組或在抗生素治療中減少抗生素抗性的方法,包括以下步驟:給予有需要的物件一種組合包,所述組合包包括以下組合物,每種組合物為便於劑量給予和均勻性的劑量單位形式,所述劑量單位形式是單一劑量的物理分散單位:第一組合物,包括:全糧穀物;第二組合物,包括:苦瓜、可溶性膳食纖維和低聚糖;第三組合物,包括:可溶性膳食纖維和低聚糖。 The present invention also provides a method for reducing the drug resistance genome of the intestinal flora or reducing antibiotic resistance in antibiotic treatment, comprising the following steps: administering a combination package to an object in need, the combination package including the following compositions, each combination The substance is a dosage unit form for convenient dosage administration and uniformity. The dosage unit form is a single-dose physically dispersed unit: the first composition includes: whole grains; the second composition includes: bitter gourd, soluble dietary fiber, and Oligosaccharides; The third composition includes: soluble dietary fiber and oligosaccharides.

根據本發明另一方面,本發明還提供一種組合包,用於減少腸道菌群耐藥基因組或在抗生素治療中減少抗生素抗性,所述組合包包括以下組合物,每種組合物為便於劑量給予和均勻性的劑量單位形式,所述劑量單位形式是單一劑量的物理分散單位:第一組合物,包括:全糧穀物;第二組合物,包括:苦瓜、可溶性膳食纖維和低聚糖;第三組合物,包括:可溶性膳食纖維和低聚糖。 According to another aspect of the present invention, the present invention also provides a combination package for reducing the drug resistance genome of the intestinal flora or reducing antibiotic resistance in antibiotic therapy. The combination package includes the following compositions, each of which is convenient The dosage unit form of dosage administration and uniformity, the dosage unit form is a single-dose physically dispersed unit: the first composition includes: whole grains; the second composition includes: bitter gourd, soluble dietary fiber and oligosaccharides ; The third composition includes: soluble dietary fiber and oligosaccharides.

在一些實施方案中,所述全糧穀物包括薏仁、燕麥、蕎麥、扁豆、玉米、赤小豆、黃豆、山藥、大棗、花生、蓮子和枸杞。 In some embodiments, the whole grains include coix seed, oats, buckwheat, lentils, corn, adzuki beans, soybeans, yams, dates, peanuts, lotus seeds, and goji berries.

在一些實施方案中,所述組合包用於人類患者。 In some embodiments, the combination package is for human patients.

在一些實施方案中,所述第一組合物作為主食服用,其形式 選自米、麵、粥或飯。用所述第一組合物製備米、麵、粥或飯前,先將第一組合物的種子、果實或其他植株部位粉碎成顆粒,其中1-70%、15-70%、25-70%、30-70%、50-70%的顆粒直徑為0.65mm或以上。 In some embodiments, the first composition is taken as a staple food in the form Selected from rice, noodles, porridge or rice. Before preparing rice, noodles, porridge or meals with the first composition, the seeds, fruits or other plant parts of the first composition are crushed into particles, of which 1-70%, 15-70%, 25-70% , 30-70%, 50-70% of the particle diameter is 0.65mm or more.

在一些實施方案中,所述薏仁的重量占所述第一組合物重量的5-35%、10-30%、或15-25%,燕麥的重量占所述第一組合物重量的5-30%或10-20%,所述蕎麥的重量占所述第一組合物重量的5-50%、8-40%或10-30%,所述扁豆的重量占所述第一組合物重量的5-20%或8-15%,所述山藥的重量占所述第一組合物重量的5-30%、8-20%或10-15%。 In some embodiments, the weight of the coix seed accounts for 5-35%, 10-30%, or 15-25% of the weight of the first composition, and the weight of oats accounts for 5- 35% of the weight of the first composition. 30% or 10-20%, the weight of the buckwheat accounts for 5-50%, 8-40% or 10-30% of the weight of the first composition, and the weight of the lentils accounts for the weight of the first composition The weight of the yam accounts for 5-30%, 8-20% or 10-15% of the weight of the first composition.

在一些實施方案中,蛋白質的重量占所述第一組合物重量的5-40%或10-20%,碳水化合物的重量占所述第一組合物重量的30-80%或50-70%,脂肪的重量占所述第一組合物重量的0.5-30%或2-15%,膳食纖維的重量占所述第一組合物重量的0.5-30%或2-15%,維生素的重量占所述第一組合物重量的0.1-5%或0.5-1%,礦物質的重量占所述第一組合物重量的0.1-2%或0.8-1.2%。 In some embodiments, the weight of protein accounts for 5-40% or 10-20% of the weight of the first composition, and the weight of carbohydrate accounts for 30-80% or 50-70% of the weight of the first composition. , The weight of fat accounts for 0.5-30% or 2-15% of the weight of the first composition, the weight of dietary fiber accounts for 0.5-30% or 2-15% of the weight of the first composition, and the weight of vitamins The weight of the first composition is 0.1-5% or 0.5-1%, and the weight of the minerals is 0.1-2% or 0.8-1.2% of the weight of the first composition.

在一些實施方案中,每100克的所述第一組合物提供320-400千卡總熱量。 In some embodiments, each 100 grams of the first composition provides 320-400 kcal total calories.

在一些實施方案中,每100克的所述第一組合物含有:VA 3-857 ugRE,VD 0.01-5ugRE,VE 2-79.09mg,VB1 0.01-1.89mg,VB2 0.01-1.4mg,VB60.01-1.2mg,VB12 0.1-2.4mg,VC 1-1170mg,煙酸0.5-28.4mg,Ca 60-2458mg,P 200-1893mg,K 350-1796mg,Na 8-2200mg,Mg 100-350mg,Fe 2-20mg。 In some embodiments, every 100 grams of the first composition contains: VA 3-857 ugRE, VD 0.01-5ugRE, VE 2-79.09mg, VB1 0.01-1.89mg, VB2 0.01-1.4mg, VB60.01 -1.2mg, VB12 0.1-2.4mg, VC 1-1170mg, niacin 0.5-28.4mg, Ca 60-2458mg, P 200-1893mg, K 350-1796mg, Na 8-2200mg, Mg 100-350mg, Fe 2- 20mg.

在一些實施方案中,所述第一組合物中的所述蕎麥包括:普通蕎麥或苦蕎麥。 In some embodiments, the buckwheat in the first composition includes: common buckwheat or tartary buckwheat.

在一些實施方案中,所述第一組合物中的所述蕎麥包括:蕎麥屬種子。 In some embodiments, the buckwheat in the first composition includes: Fagopyrum seeds.

在一些實施方案中,所述第一組合物中的所述燕麥包括:燕麥屬植物種子。 In some embodiments, the oats in the first composition include: Oats seeds.

在一些實施方案中,所述第一組合物中的所述山藥包括:山藥干。 In some embodiments, the yam in the first composition includes: dried yam.

在一些實施方案中,所述第二組合物被製成沖調粉劑,在餐前0.25到1小時服用。 In some embodiments, the second composition is prepared as a powder and is taken 0.25 to 1 hour before a meal.

在一些實施方案中,所述第二組合物的日劑量為5-100克、40-60克或30-80克,以水沖調。 In some embodiments, the daily dose of the second composition is 5-100 grams, 40-60 grams, or 30-80 grams, which is prepared with water.

在一些實施方案中,所述第二組合物中的所述苦瓜包括:苦瓜屬的植物果實全粉。 In some embodiments, the bitter melon in the second composition includes: whole fruit powder of a plant of the genus Momordica.

在一些實施方案中,所述植物果實全粉是通過冷凍乾燥或噴霧乾燥生產。 In some embodiments, the whole plant fruit powder is produced by freeze drying or spray drying.

在一些實施方案中,所述第二組合物中的所述苦瓜包括:苦瓜提取物。 In some embodiments, the bitter melon in the second composition includes: bitter melon extract.

在一些實施方案中,所述第二組合物中的所述可溶性膳食纖維包括:Fibersol-2、抗性澱粉、聚葡萄糖、纖維素、半纖維素、果膠或樹膠。 In some embodiments, the soluble dietary fiber in the second composition includes: Fibersol-2, resistant starch, polydextrose, cellulose, hemicellulose, pectin or gum.

在一些實施方案中,所述第二組合物中的所述低聚糖包括:低聚果糖、低聚半乳糖、低聚木糖、低聚異麥芽糖、大豆低聚糖、低聚葡萄糖、水蘇糖或低聚乳果糖。 In some embodiments, the oligosaccharides in the second composition include: fructooligosaccharides, galacto-oligosaccharides, xylo-oligosaccharides, isomalt-oligosaccharides, soybean oligosaccharides, glucose oligosaccharides, water Threose or lactulose oligosaccharide.

在一些實施方案中,所述苦瓜與所述膳食纖維和所述低聚糖的重量比為10:1-1:1,例如9:1,8:1或7:1。 In some embodiments, the weight ratio of the bitter gourd to the dietary fiber and the oligosaccharide is 10:1 to 1:1, such as 9:1, 8:1 or 7:1.

在一些實施方案中,所述苦瓜粉的重量占所述第二組合物重量的15-99.8%、30-95%或45-90%,所述可溶性膳食纖維的重量占所述第二組合物重量的0.1-51%、1-40%、3-30%或5-20%,所述低聚糖的重量占所述第二 組合物重量的0.1-34%、1-25%、2-20%或3-15%。 In some embodiments, the weight of the bitter melon powder accounts for 15-99.8%, 30-95%, or 45-90% of the weight of the second composition, and the weight of the soluble dietary fiber accounts for the weight of the second composition 0.1-51%, 1-40%, 3-30% or 5-20% of the weight, the weight of the oligosaccharide accounts for the second 0.1-34%, 1-25%, 2-20% or 3-15% of the weight of the composition.

在一些實施方案中,所述第三組合物被製成沖調粉劑,餐前2-5小時服用或與早餐同時服用。 In some embodiments, the third composition is prepared as a powder, which is taken 2-5 hours before a meal or taken at the same time as breakfast.

在一些實施方案中,所述第三組合物的日劑量為5-200克、30-100克或50-150克,以300-1500毫升水沖調。 In some embodiments, the daily dose of the third composition is 5-200 grams, 30-100 grams, or 50-150 grams, prepared with 300-1500 milliliters of water.

在一些實施方案中,所述第三組合物中的所述可溶性膳食纖維包括:Fibersol-2,抗性澱粉,聚葡萄糖、纖維素,半纖維素,果膠或樹膠。 In some embodiments, the soluble dietary fiber in the third composition includes: Fibersol-2, resistant starch, polydextrose, cellulose, hemicellulose, pectin or gum.

在一些實施方案中,所述第三組合物中膳食纖維和低聚糖的重量比為6:1-1:6,例如6:4。 In some embodiments, the weight ratio of dietary fiber and oligosaccharide in the third composition is 6:1 to 1:6, such as 6:4.

在一些實施方案中,所述第三組合物中的所述低聚糖包括:低聚果糖、低聚半乳糖、低聚木糖、低聚異麥芽糖、大豆低聚糖、低聚葡萄糖、水蘇糖、或低聚乳果糖。在一些實施方案中,所述第三組合物中的所述可溶性膳食纖維包括:瓜爾膠、果膠、魔芋粉及其他可發酵膳食纖維(Fibersol-2、抗性澱粉、半纖維素)等益生元。 In some embodiments, the oligosaccharides in the third composition include: fructo-oligosaccharides, galacto-oligosaccharides, xylo-oligosaccharides, isomalt-oligosaccharides, soybean oligosaccharides, glucose oligosaccharides, water Threose, or lactulose oligosaccharide. In some embodiments, the soluble dietary fiber in the third composition includes: guar gum, pectin, konjac flour, and other fermentable dietary fibers (Fibersol-2, resistant starch, hemicellulose), etc. Prebiotics.

與現有技術相比,本發明具有如下的有益效果:本發明的組合物可用於平衡患者中腸道菌群結構,改善或減少腸道內菌群抗抗生素基因;可以多個途徑給予需要的患者,達到恢復健康的目的。 Compared with the prior art, the present invention has the following beneficial effects: the composition of the present invention can be used to balance the structure of the intestinal flora in patients, improve or reduce antibiotic resistance genes in the intestinal flora; it can be administered to patients in need in multiple ways , To achieve the purpose of restoring health.

第1圖顯示膳食干預之後腸道耐藥基因組整體結構的改變。(a)根據399個ARGs的資料得出的PCA分數圖顯示在飲食干預之前和之後的樣本中有顯著的分離(log-轉化的,PERMONOVA P=0.0187,置換=9999)。(b)ARGs的總數目和豐度。圖框(box)代表第一和第三四分位數(分別為第25%和75%)之間的四分位距(IQR),圖框內的線代表中位數。鬚(whiskers)代表 分別距離第一和第三四分位數的IQR的1.5倍內的最低和最高值。樣本顯示為左邊的點。用雙尾威氏(Wilcoxon)配對符號秩檢驗法(n=35)進行統計學分析。(c)ARGs和對應于抗性基因類型的ARG的發生率。 Figure 1 shows the changes in the overall structure of the intestinal drug resistance genome after dietary intervention. (a) The PCA score chart derived from the data of 399 ARGs shows significant separation in the samples before and after the diet intervention (log-transformed, PERMONOVA P=0.0187, replacement=9999). (b) The total number and abundance of ARGs. The box represents the interquartile range (IQR) between the first and third quartiles (25% and 75%, respectively), and the line in the box represents the median. Representatives of whiskers The lowest and highest value within 1.5 times the IQR of the first and third quartiles, respectively. The sample is shown as the point on the left. Two-tailed Wilcoxon paired signed-rank test (n=35) was used for statistical analysis. (c) The incidence of ARGs and ARGs corresponding to the type of resistance gene.

第2圖為一熱圖,顯示96個顯著改變的ARGs以及它們對膳食干預的回應。其中點的顏色對應於ARGs的經log-轉化的豐度。根據抗生素抗性基因類型組織這些ARGs。 Figure 2 is a heat map showing 96 significantly altered ARGs and their responses to dietary interventions. The color of the dot corresponds to the log-converted abundance of ARGs. These ARGs are organized according to the type of antibiotic resistance gene.

第3圖顯示膳食干預之後顯著改變的抗生素抗性基因。(a)在我們的膳食實驗(之前和之後)中以及三個另外的群組(中國、丹麥和西班牙,來自文獻[5])中抗生素抗性基因類型的數目。圖框代表第一和第三四分位數(分別為第25%和75%)之間的四分位距(IQR),圖框內的線代表中位數。須代表分別距離第一和第三四分位數的IQR的1.5倍內的最低和最高值。(b)36個顯著改變的基因類型。線/三角標記代表基因類型豐度的中位數和25%/75%四分位數。(c)分配到抗生素化合物的ARGs的顯著改變的豐度(校正的P<0.05)。根據ARDB將抗性基因分配到抗生素。將賦予對同樣的抗生素化合物的抗性的基因進行豐度的加和。(d)分配到各抗生素類別的ARGs的豐度。根據ARDB將抗生素基因分配到抗生素類別。將賦予對同樣的抗生素類別的抗性的基因進行豐度的加和。對於(a)配對比較的統計學分析,用雙尾Mann-Whitney U檢驗法和雙尾威氏配對符號秩檢驗法(在n=35之前,n=35之後,中國n=38,丹麥n=85,西班牙n=39)進行;對於(b)、(c)和(d),進行威氏配對符號秩檢驗法(n=35)。*校正的P<0.05,**校正的P<0.01,***校正的P<0.001(Benjamini & Hochberg 1995)。 Figure 3 shows antibiotic resistance genes that are significantly changed after dietary intervention. (a) The number of antibiotic resistance gene types in our diet experiment (before and after) and in three additional groups (China, Denmark and Spain, from literature [5]). The frame represents the interquartile range (IQR) between the first and third quartiles (25% and 75%, respectively), and the line in the frame represents the median. Must represent the lowest and highest values within 1.5 times the IQR of the first and third quartiles, respectively. (b) 36 significantly changed gene types. The line/triangle markers represent the median and 25%/75% quartiles of gene type abundance. (c) Significantly altered abundance of ARGs assigned to antibiotic compounds (corrected P <0.05). Assign resistance genes to antibiotics based on ARDB. The genes that confer resistance to the same antibiotic compound are added in abundance. (d) The abundance of ARGs assigned to each antibiotic category. According to ARDB, antibiotic genes are assigned to antibiotic categories. Add the abundance of genes that confer resistance to the same antibiotic class. For the statistical analysis of (a) paired comparison, two-tailed Mann-Whitney U test and two-tailed Weiss paired signed rank test were used (before n=35, after n=35, China n=38, Denmark n= 85, Spain n=39); for (b), (c) and (d), the Weiss paired signed-rank test (n=35) was performed. *Corrected P<0.05, **corrected P<0.01, ***corrected P<0.001 (Benjamini & Hochberg 1995).

第4圖顯示通過三類不同機制發揮抗性的抗生素抗性基因的豐度變 化。通過ARDB資料庫,抗生素抗性基因被分配到對應的抗性機制。對通過同一種機制發揮抗性的抗生素抗性基因豐度進行加和。圖框(box)代表第一和第三四分位數(分別為第25%和75%)之間的四分位距(IQR),圖框內的線代表中位數。須代表分別距離第一和第三四分位數的IQR的1.5倍內的最低和最高值。樣本顯示為左邊的點。用雙尾威氏配對符號秩檢驗法(n=35)進行統計學分析。P值校正(Benjamini & Hochberg 1995)。 Figure 4 shows the changes in the abundance of antibiotic resistance genes that exert resistance through three different mechanisms 化. Through the ARDB database, antibiotic resistance genes are assigned to corresponding resistance mechanisms. Add the abundance of antibiotic resistance genes that exert resistance through the same mechanism. The box represents the interquartile range (IQR) between the first and third quartiles (25% and 75%, respectively), and the line in the box represents the median. Must represent the lowest and highest values within 1.5 times the IQR of the first and third quartiles, respectively. The sample is shown as the point on the left. Two-tailed Weiss paired signed-rank test (n=35) was used for statistical analysis. P value correction (Benjamini & Hochberg 1995).

第5圖顯示抗生素抗性基因攜帶者在膳食干預後的變化。基於120個抗生素抗性基因攜帶者的主成分分析表明干預前、後的樣品有著一定的區分趨勢(log轉化,PERMONOVA P=0.0584,置換(permutations)=9999)。 Figure 5 shows the changes of antibiotic resistance gene carriers after dietary intervention. Principal component analysis based on 120 antibiotic resistance gene carriers showed that the samples before and after intervention had a certain trend of differentiation (log transformation, PERMONOVA P=0.0584, permutations=9999).

第6圖顯示ARGs在ARG攜帶者中的分佈網路。圖中的圓形代表抗生素抗性類別,其他形狀代表不同的門(方形:變形菌門,三角:擬桿菌門,菱形:厚壁菌門)。形狀的大小代表兩類ARG攜帶者(大:>700基因和小:

Figure 105136957-A0202-12-0008-219
700基因)。各ARG攜帶者豐度變化的方向被分到四類中,由校正的P<0.05確定顯著性(雙尾威氏配對符號秩檢驗法,n=120,Benjamini & Hochberg 1995)。 Figure 6 shows the distribution network of ARGs among ARG carriers. The circle in the figure represents the antibiotic resistance category, and the other shapes represent different phyla (square: Proteobacteria, triangle: Bacteroides, diamond: Firmicutes). The size of the shape represents two types of ARG carriers (large: >700 genes and small:
Figure 105136957-A0202-12-0008-219
700 genes). The directions of changes in the abundance of each ARG carrier were divided into four categories, and the significance was determined by the adjusted P<0.05 (two-tailed Weiss paired signed-rank test, n=120, Benjamini & Hochberg 1995).

下面對本發明的實施例作詳細說明:本實施例在以本發明技術方案為前提下進行實施,給出了詳細的實施方式和具體的操作過程,但本發明的保護範圍不限於下述的實施例。 The following describes the embodiments of the present invention in detail: this embodiment is implemented on the premise of the technical solution of the present invention, and gives detailed implementation manners and specific operating procedures, but the scope of protection of the present invention is not limited to the following implementations example.

在一項以腸道菌群為靶點的人群膳食干預實驗中。我們對在來自於35個兒童的70份糞便樣品進行深度總體基因組測序,共得到平均八千四百萬條高質量測序片段的資料,在多個不同水平進行耐藥基因組的比較 分析。共有399個抗生素抗性基因從含約兩百多萬個的已建腸道微生物基因集合(引用文獻8)中被識別出。在膳食干預之後,腸道耐藥基因組整體結構發生了顯著的變化(第1圖a部份),整體數量和豐度均顯著下降(第1圖b部份、第2圖),在干預後有48個抗生素抗性基因組徹底消失,77%的抗生素抗性基因豐度顯著減少或有減少的趨勢。 In a population diet intervention experiment targeting the intestinal flora. We performed in-depth overall genome sequencing on 70 stool samples from 35 children, obtaining an average of 84 million high-quality sequenced fragments, and comparing drug-resistant genomes at multiple levels analysis. A total of 399 antibiotic resistance genes were identified from the set of established gut microbial genes (cited reference 8) containing more than two million. After dietary intervention, the overall structure of the intestinal drug resistance genome has undergone significant changes (Figure 1 part a), and the overall number and abundance are significantly reduced (Figure 1 part b, Figure 2). After the intervention 48 antibiotic resistance genomes disappeared completely, and 77% of antibiotic resistance gene abundances were significantly reduced or tended to decrease.

我們將399個抗生素抗性基因歸併到抗性基因類別,得到131個抗性基因類別,並與來自於中國、丹麥和西班牙成年人的資料進行比較。根據已有報導,在這三個人群中,中國成年人的耐藥基因組種類最多和豐度最高(引用文獻5)。我們發現干預前的樣品中含有比中國成年人更顯著多的抗性基因類別(第3圖a部份),即這些個體的腸道耐藥組在干預前已經有非常高的多樣性。並且和已有文獻觀察的結果一致,我們在所研究物件的腸道耐藥基因組中也同樣看到了TetW、TetQ、TetO、TetM、Tet40、Tet32、ErmB和BacA這些抗性類別在個體中的廣泛存在(引用文獻5、9、10),以及四環素抗性基因在耐藥基因組中也同樣是豐度最高(引用文獻5)。在干預之後,36個抗性基因類別的豐度顯著變化,其中33個顯著減少(第3圖b部份)。根據資料庫中抗性基因與其產生抗性的抗生素之間的對應關係,我們發現在干預之後,對10/47個抗生素化合物的抗性潛能顯著減少(第3圖c部份),對8/15個抗生素大類的抗性潛能顯著下降(第3圖d部份)。 We grouped 399 antibiotic resistance genes into the resistance gene category, obtained 131 resistance gene categories, and compared them with data from adults in China, Denmark, and Spain. According to existing reports, among the three populations, Chinese adults have the most types and abundance of drug-resistant genomes (reference 5). We found that the samples before the intervention contained significantly more resistance gene types than Chinese adults (part a in Figure 3), that is, the intestinal resistance group of these individuals had a very high diversity before the intervention. And consistent with the results observed in the existing literature, we have also seen the wide range of resistance categories of TetW, TetQ, TetO, TetM, Tet40, Tet32, ErmB and BacA in the intestinal drug resistance genome of the studied objects in individuals. Existence (references 5, 9, 10), and tetracycline resistance genes are also the most abundant in the drug-resistant genome (reference 5). After the intervention, the abundance of 36 resistance gene categories changed significantly, of which 33 were significantly reduced (Figure 3, part b). According to the corresponding relationship between the resistance genes in the database and the antibiotics that produced resistance, we found that after the intervention, the resistance potential to 10/47 antibiotic compounds was significantly reduced (part c in Figure 3), and 8/ The resistance potential of 15 major antibiotics has decreased significantly (Figure 3, part d).

細菌的抗生素抗性基因主要通過三種機制產生抗性:1)通過削弱通透性或者外排泵,減少細菌細胞內的抗生素濃度;2)修飾抗生素的靶點,從而起到保護作用;以及3)水解或者修飾抗生素分子,使抗生素失去活性(引用文獻11)。在干預後,通過靶點保護和外排泵這兩種機制產生抗性的抗性基因豐度總和是顯著減少的(第4圖)。通過Canopy演算法(引用文獻12)對腸道微生物基因歸併分類,可以得到“共豐度基因集合 (CAG)”,隨後對CAG進行從頭組裝和分類地位鑒定。通過上述步驟,我們能夠追溯得到201個抗生素抗性基因(它們的豐度占總耐藥基因組的86%以上)的攜帶者,共計120個CAG,其中24個CAG有高質量基因組草圖,30個CAG能夠在種/屬水平上確定分類學地位,這些CAG的整體結構在干預後有著明顯變化的趨勢(第5圖)。在構建的抗生素抗性基因在其攜帶者中的分佈網路中(第6圖),可以看到抗生素抗性基因在厚壁菌門,擬桿菌門和變形菌門中都存在,這表明了這類基因在細菌界中分佈廣泛。其中,克雷伯氏菌、腸桿菌和埃希氏菌屬的細菌與多種抗生素抗性基類別相連,以熱點的形式存在,這些細菌是潛在的多重耐藥機會致病菌(引用文獻13、14),具有能夠對包括β-內醯胺類、四環素類、磺胺類和大環內酯類在內的多種抗生素產生抗性的基因潛力。根據已有的報導,由多重耐藥致病菌引起的感染不僅造成了更高的死亡率和更多的治療失敗,而且對健康衛生系統造成了更多的經濟損失(引用文獻15)。通過膳食干預,69%的抗生素抗性基因攜帶者顯著減少或有減少趨勢,特別是那些多重耐藥菌,包括了CAG00001a(Escherichia/Shigella sp.)、CAG00002(Escherichia/Shigella sp.)、CAG00146(Klebsiella sp.)、CAG00008(Klebsiella pneumoniae)以及CAG00356(Enterobacter sp.)。 Bacterial antibiotic resistance genes mainly generate resistance through three mechanisms: 1) reduce the concentration of antibiotics in bacterial cells by weakening permeability or efflux pump; 2) modify antibiotic targets to protect them; and 3 ) Hydrolyze or modify the antibiotic molecule to make the antibiotic inactive (Citation 11). After the intervention, the sum of the abundance of resistance genes that produced resistance through the two mechanisms of target protection and efflux pump was significantly reduced (Figure 4). Through the Canopy algorithm (reference 12) to merge and classify the gut microbial genes, the "common abundance gene set" can be obtained. (CAG)", then de novo assembly and classification status identification of CAG. Through the above steps, we were able to retrospectively obtain the carriers of 201 antibiotic resistance genes (their abundance accounts for more than 86% of the total drug resistance genome), a total of There are 120 CAGs, of which 24 CAGs have high-quality genome drafts, and 30 CAGs can determine their taxonomic status at the species/genus level. The overall structure of these CAGs has a clear trend of change after intervention (Figure 5). The distribution network of antibiotic resistance genes in its carriers (Figure 6), it can be seen that antibiotic resistance genes exist in Firmicutes, Bacteroides and Proteobacteria, which indicates this type of Genes are widely distributed in the bacterial kingdom. Among them, bacteria of the genus Klebsiella, Enterobacter and Escherichia are connected to a variety of antibiotic resistance groups and exist in the form of hot spots. These bacteria are potential opportunities for multiple drug resistance. Pathogenic bacteria (cited documents 13 and 14) have the gene potential to develop resistance to a variety of antibiotics including β-lactams, tetracyclines, sulfonamides and macrolides. According to existing reports Infections caused by multi-drug resistant pathogens not only cause higher mortality and more treatment failures, but also cause more economic losses to the health system (cited reference 15). Through dietary intervention, 69% Carriers of antibiotic resistance genes are significantly reduced or there is a tendency to decrease, especially those multi-drug resistant bacteria, including CAG00001a (Escherichia/Shigella sp.), CAG00002 (Escherichia/Shigella sp.), CAG00146 (Klebsiella sp.), CAG00008 (Klebsiella pneumoniae) and CAG00356 (Enterobacter sp.).

為了應對抗生素抗性的全球化威脅,人們已經從不同的角度做了非常多的努力。我們的研究結果證明了以腸道菌群為靶點的膳食干預不僅能調節腸道菌群和改善個體的健康狀況,而且能夠顯著的減少他們的腸道耐藥基因組所含耐藥基因的種類和豐度。 In order to deal with the global threat of antibiotic resistance, people have made a lot of efforts from different angles. Our research results prove that dietary intervention targeting the intestinal flora can not only regulate the intestinal flora and improve the health of individuals, but also significantly reduce the types of drug resistance genes contained in their intestinal drug resistance genomes. And abundance.

相應地,本發明提供一種作為應對抗生素抗性威脅的一種方法。本發明的目的之一是將一種組合包應用於製備食品、藥品、保健品或 營養品,所述食品、藥品、保健品或營養品用於減少腸道菌群耐藥基因組或在抗生素治療中減少抗生素抗性,所述組合包包括以下組合物,每種組合物為便於劑量給予和均勻性的劑量單位形式,所述劑量單位形式是單一劑量的物理分散單位:第一組合物,包括:全糧穀物;第二組合物,包括:苦瓜、可溶性膳食纖維和低聚糖;第三組合物,包括:可溶性膳食纖維和低聚糖。 Accordingly, the present invention provides a method as a response to the threat of antibiotic resistance. One of the objectives of the present invention is to apply a combination package to the preparation of food, medicine, health care products or Nutraceuticals, the foods, medicines, health care products or nutraceuticals used to reduce the drug resistance genome of the intestinal flora or to reduce antibiotic resistance in antibiotic therapy, the combination package includes the following compositions, each composition is convenient for dosage Dosage unit form for administration and uniformity, the dosage unit form is a single-dose physically dispersed unit: the first composition includes: whole grains; the second composition includes: bitter gourd, soluble dietary fiber and oligosaccharides; The third composition includes: soluble dietary fiber and oligosaccharides.

在一些實施方案中,所述全糧穀物選自薏仁、燕麥、蕎麥、扁豆、玉米、赤小豆、黃豆、山藥、大棗、花生、蓮子、枸杞或以上的組合。一個優選實施方案中,扁豆為白扁豆。另一個優選實施方案中,玉米為黃玉米。 In some embodiments, the whole grain is selected from the group consisting of coix seed, oats, buckwheat, lentils, corn, adzuki beans, soybeans, yam, jujube, peanuts, lotus seeds, wolfberry, or a combination of the above. In a preferred embodiment, the lentils are white lentils. In another preferred embodiment, the corn is yellow corn.

本發明上下文中的“抗生素”可以指本領域所知的任何抗生素,例如選自以下抗生素類別:β-內醯胺、氨基糖苷、甘氨醯環素、大環內酯、氯黴素類、四環素類、喹諾酮類、多肽類、氨基核苷、糖肽類、林可醯胺、鏈陽菌素、磺胺類、磷黴素或以上的組合。 The "antibiotic" in the context of the present invention can refer to any antibiotic known in the art, for example selected from the following antibiotic classes: β-lactam, aminoglycoside, glycylcycline, macrolide, chloramphenicol, Tetracyclines, quinolones, polypeptides, aminonucleosides, glycopeptides, lincosamide, streptocin, sulfonamides, fosfomycin or a combination of the above.

全糧穀物或全穀物(whole grains)是指包括麩皮、胚乳和胚芽三個部分的完整穀粒,或者在加工過程中保全了天然植物食材的所有營養成分的植物食材。本發明中使用的全糧穀物可包括但不限於薏仁、燕麥、蕎麥、扁豆、玉米、赤小豆、黃豆、山藥、大棗、花生、蓮子和枸杞,其他可使用的全糧穀物例如小米、高粱、紅薯等。本發明中使用的三種組合物的各種成分均可通過常規商業途徑購得。 Whole grains or whole grains (whole grains) refer to whole grains including bran, endosperm, and germ, or plant foods that preserve all the nutrients of natural plant foods during processing. The whole grains used in the present invention may include, but are not limited to, barley, oats, buckwheat, lentils, corn, adzuki beans, soybeans, yams, jujubes, peanuts, lotus seeds and wolfberry, and other whole grains that can be used such as millet, sorghum, Sweet potatoes and so on. The various components of the three compositions used in the present invention can all be purchased through conventional commercial channels.

例如,作為營養品,可以是飲食補充劑的形式。作為藥品, 可以與藥學可接受載體混合以形成藥物組合物。“藥學可接受載體”包括溶劑、分散劑、包衣、抗菌和抗真菌劑以及等滲和吸收延遲劑等等,適合於藥物給藥。 For example, as a nutritional product, it may be in the form of a dietary supplement. As a medicine, It can be mixed with a pharmaceutically acceptable carrier to form a pharmaceutical composition. "Pharmaceutically acceptable carriers" include solvents, dispersants, coatings, antibacterial and antifungal agents, and isotonic and absorption delaying agents, etc., suitable for drug administration.

所述組合包可以配製成與其計劃的給予途徑相適應的劑型。參見例如美國專利No.6,756,196。給予途徑的實例包括口服。所述組合包可以是用於口服的片劑、膠囊、米、粥或飯形式,為便於劑量給予和均勻性的劑量單位形式,配製口服組合物將是有利的。術語“劑量單位形式”指適合作為用於治療主體的單一劑量的物理分散單位,每一單位包含與所需的藥學載體結合、計劃產生所需治療效果的預定量的活性成分。 The combination package can be formulated into a dosage form suitable for its planned route of administration. See, for example, U.S. Patent No. 6,756,196. Examples of the route of administration include oral administration. The combination package may be in the form of tablets, capsules, rice, porridge or rice for oral administration, and it would be advantageous to formulate an oral composition in the form of a dosage unit that facilitates dosage administration and uniformity. The term "dosage unit form" refers to a physically discrete unit suitable as a single dose for the treatment of a subject, each unit containing a predetermined amount of active ingredient in combination with the required pharmaceutical carrier and intended to produce the desired therapeutic effect.

通過運用系統生物學策略,合併分析腸道總體基因組特徵、宿主和腸道菌群共代謝譜特徵及將患者腸道菌群移植給無菌小鼠,我們觀察到了干預後腸道菌群在組成和功能上的顯著變化,宿主健康狀況的顯著改善,共代謝產物中有毒有害物質的減少,干預前患者菌群會對無菌小鼠造成炎症反應且造成更多的脂肪積累。這些結果說明我們的膳食干預,能夠增加腸道中的有益菌,減少有害菌,改善失調的菌群,減少宿主共代謝產物中的有害物質,從而改善人體健康。 Through the use of systems biology strategies, combined analysis of the overall intestinal genome characteristics, the characteristics of the co-metabolic profile of the host and the intestinal flora, and the transplantation of the patient’s intestinal flora to sterile mice, we have observed that the composition and composition of the intestinal flora after intervention Significant changes in function, significant improvement of host health, reduction of toxic and harmful substances in co-metabolites, and the patient's flora before intervention will cause inflammatory reactions in sterile mice and cause more fat accumulation. These results indicate that our dietary intervention can increase the beneficial bacteria in the intestines, reduce harmful bacteria, improve the imbalanced flora, reduce harmful substances in host co-metabolites, and thereby improve human health.

實施例1:遺傳性肥胖及單純性肥胖的膳食干預 Example 1: Dietary intervention for genetic obesity and simple obesity

為了研究腸道菌群失調在人類肥胖及相關代謝失調中的貢獻,我們招募了一批肥胖患兒和膳食因素導致肥胖的兒童,在醫院對其進行WTP膳食干預(引用文獻8)。 In order to study the contribution of intestinal microflora disorders in human obesity and related metabolic disorders, we recruited a group of obese children and children who were obese due to dietary factors, and carried out WTP dietary intervention on them in the hospital (Cited Reference 8).

營養干預在廣東省廣州市婦女兒童醫療中心進行。除了超重、持續超過3天給予抗生素或參與減肥專案外,參與營養干預的主體在先前的3個月均未患有胃腸道疾病、未進行胃腸道手術或未患有慢性疾病。所述營 養干預的主體可以由主體或健康護理專業人員的判斷而確定,並且可以是主觀的(例如看法)或客觀的(例如可通過檢驗或診斷方法測量的)。例如,所述干預的主體可以是具有低水平腸道有益菌和高水準條件致病菌的主體,或診斷有代謝綜合症的主體。 Nutritional intervention was carried out at Guangzhou Women and Children's Medical Center in Guangdong Province. Except for being overweight, being given antibiotics for more than 3 days, or participating in weight loss projects, the subjects participating in the nutritional intervention have not suffered from gastrointestinal disease, gastrointestinal surgery or chronic disease in the previous 3 months. Said camp The subject of nutrition intervention can be determined by the judgment of the subject or health care professional, and can be subjective (e.g. opinion) or objective (e.g. measurable by testing or diagnostic methods). For example, the subject of the intervention may be a subject with a low level of beneficial intestinal bacteria and a high level of pathogenic bacteria, or a subject diagnosed with metabolic syndrome.

「營養干預」定義為通過對主體飲食營養的合理調整,達到減輕、解除、補救、預防或改善代謝綜合症症狀,恢復健康的目的。 "Nutrition intervention" is defined as the purpose of reducing, relieving, remedying, preventing or improving the symptoms of metabolic syndrome and restoring health through reasonable adjustments to the subject's diet and nutrition.

經上海交通大學生命與生物科技學院道德委員會批准,我們進行了開放標記研究及自控研究。臨床試驗在中國臨床試驗註冊中心的註冊編號為ChiCTR-ONC-12002646,並獲得了患兒監護人的書面同意。我們還進行了問卷調查,從而收集了人口統計特徵、健康狀態、疾病歷史、胃腸道狀況、飲食習慣及體育活動等資訊。基於《中國食物成分表(2002版)》,隨餐頻率的問卷調查及24小時的飲食記錄被用於計算基本營養攝入。 Approved by the Ethics Committee of the School of Life and Biotechnology, Shanghai Jiaotong University, we conducted open labeling research and self-control research. The registration number of the clinical trial in the Chinese Clinical Trial Registry is ChiCTR-ONC-12002646, and the written consent of the child’s guardian has been obtained. We also conducted a questionnaire survey to collect information on demographic characteristics, health status, disease history, gastrointestinal conditions, eating habits, and physical activity. Based on the "Chinese Food Composition Table (2002 Edition)", questionnaires with meal frequency and 24-hour diet records were used to calculate basic nutritional intake.

我們招募了肥胖患兒37名(年齡範圍2-16歲)。受試者在廣東省婦幼保健院進行30天膳食干預。 We recruited 37 obese children (age range 2-16 years). The subjects underwent a 30-day dietary intervention in the Guangdong Provincial Maternity and Child Health Hospital.

所述WTP飲食是指對患兒給予全穀物、中國傳統藥膳以及益生元。具體而言,在本實施例中,所述WTP飲食是指提供一種組合包,包括第一組合物、第二組合物及第三組合物。每種組合物為便於劑量給予和均勻性的劑量單位形式,所述劑量單位形式是單一劑量的物理分散單位。所述第一組合物、所述第二組合物及所述第三組合物由食品製造商:完美(中國)有限公司製備。 The WTP diet refers to giving whole grains, traditional Chinese medicated diet and prebiotics to children. Specifically, in this embodiment, the WTP diet refers to providing a combination package, including a first composition, a second composition, and a third composition. Each composition is in dosage unit form for ease of dosage administration and uniformity, and the dosage unit form is a single dose of physically discrete units. The first composition, the second composition, and the third composition are prepared by a food manufacturer: Perfect (China) Co., Ltd.

所述第一組合物為事先烹調好的12種選自富含膳食纖維的全糧穀物的混合物,包括:薏仁(薏苡)、燕麥、蕎麥、白扁豆、黃玉米、赤小豆、黃豆、山藥、大棗、花生、蓮子和枸杞,以罐頭粥的形式由食品製造商製備(每罐淨重為370g)。每罐第一組合物含有100g的成分(包括59g 碳水化合物、15g蛋白質、5g脂肪、6g纖維;維生素和礦物質的含量:VE 2.8mg/kg;VB2 0.082mg/100g;Vc 0.3mg/100g;煙酸(煙醯胺)220ug/100g;葉酸11.1ug/100g;鈉67mg/kg;鉀1800mg/kg;銅1mg/kg;鎂337mg/kg;鐵9mg/kg;鋅5mg/kg;錳5mg/kg;鈣158mg/kg;磷74.2mg/100g;碘0.12mg/kg;硒0.016mg/kg;肌醇90mg/kg;亞油酸0.28g/100g;a-亞麻酸0.01g/100g)以及336kcal的熱量(包括70%碳水化合物、17%蛋白質、13%脂肪),具體成分含量參見下表1。其中,總熱量可以通過氧彈測定能力修正法測定,蛋白質的含量可以通過凱氏微量法測定,碳水化合物的含量可以通過高壓液相色譜測定,脂肪的含量可以通過索氏抽提法測定,膳食纖維的含量可以通過中性洗滌劑法測定,維生素的含量可以通過高壓液相色譜測定,礦物質的含量可以通過分光光度法測定。 The first composition is a pre-cooked mixture of 12 kinds of whole grains selected from the group consisting of whole grains rich in dietary fiber, including: coix seed (coix), oats, buckwheat, white lentils, yellow corn, red beans, soybeans, yam, and glutinous rice Dates, peanuts, lotus seeds and wolfberry are prepared by food manufacturers in the form of canned porridge (each can has a net weight of 370g). Each can of the first composition contains 100g of ingredients (including 59g Carbohydrate, 15g protein, 5g fat, 6g fiber; Vitamin and mineral content: VE 2.8mg/kg; VB2 0.082mg/100g; Vc 0.3mg/100g; Niacin (niacinamide) 220ug/100g; Folic acid 11.1 ug/100g; Sodium 67mg/kg; Potassium 1800mg/kg; Copper 1mg/kg; Magnesium 337mg/kg; Iron 9mg/kg; Zinc 5mg/kg; Manganese 5mg/kg; Calcium 158mg/kg; Phosphorus 74.2mg/100g; Iodine 0.12mg/kg; selenium 0.016mg/kg; inositol 90mg/kg; linoleic acid 0.28g/100g; a-linolenic acid 0.01g/100g) and 336kcal calories (including 70% carbohydrate, 17% protein, 13% fat), see Table 1 below for specific ingredient content. Among them, the total calories can be determined by the oxygen bomb determination ability correction method, the protein content can be determined by the Kjeldahl micro method, the carbohydrate content can be determined by high pressure liquid chromatography, the fat content can be determined by the Soxhlet extraction method, and the diet The content of fiber can be measured by the neutral detergent method, the content of vitamins can be measured by high pressure liquid chromatography, and the content of minerals can be measured by spectrophotometry.

所述第一組合物作為主食,製成米、麵、粥或飯給予。在經過蒸、煮等烹調方式後,其中的澱粉不易糊化,不易升高血糖。患兒被給予足夠的第一組合物以滿足饑餓感,並滿足其年齡段的標準營養要求,該標準營養要求規定於中國營養學會(CNS,2012)建議的《中國居民膳食營養素參考攝入量》(DRI)中。每名患者的飲食記錄被用於基於《中國食物成分表》(2002年)計算營養攝入。 The first composition is used as a staple food to be prepared as rice, noodles, porridge or rice for administration. After cooking methods such as steaming and boiling, the starch in it is not easy to gelatinize, and it is not easy to raise blood sugar. Children are given enough first composition to satisfy hunger and meet the standard nutritional requirements for their age group. The standard nutritional requirements are stipulated in the Chinese Dietary Nutrient Reference Intakes recommended by the Chinese Nutrition Society (CNS, 2012) "(DRI). The diet record of each patient was used to calculate the nutritional intake based on the "Chinese Food Composition Table" (2002).

所述第二組合物以沖調粉劑的形式給予(每袋20g),具體成分和含量參見下表1。其中,低聚糖為2個或2個以上(一般指2-10個)單糖單位以糖苷鍵相連形成的糖分子,例如低聚果糖或低聚異麥芽糖。第二組合物製成沖調粉劑後用溫水沖調食用,每天沖服60克第二組合物。 The second composition was given in the form of a reconstituted powder (20 g per bag), and the specific ingredients and contents are shown in Table 1 below. Among them, oligosaccharides are sugar molecules formed by two or more (generally 2-10) monosaccharide units connected by glycosidic bonds, such as fructooligosaccharides or isomaltose oligosaccharides. After the second composition is made into a powdered preparation, it is reconstituted and eaten with warm water, and 60 grams of the second composition is taken every day.

所述第三組合物以沖調粉劑的形式給予(每袋20g),具體成分和含量參見下表1。用溫水沖調食用,每天沖服60克第三組合物。 The third composition is administered in the form of a reconstituted powder (20 g per bag), and the specific ingredients and contents are shown in Table 1 below. Prepare and consume with warm water, and take 60 grams of the third composition every day.

表1. 三種組合物的成分和含量

Figure 105136957-A0202-12-0015-1
Figure 105136957-A0202-12-0016-2
Table 1. Ingredients and contents of the three compositions
Figure 105136957-A0202-12-0015-1
Figure 105136957-A0202-12-0016-2

本發明組合包的代表性給藥周期為一周至幾個月,例如一周、兩周、一個月、兩個月、四個月和八個月。在主體中腸道有益菌水平開始上升、條件致病菌水平開始下降後,組合物的劑量可以逐步降低。當腸道菌群結構恢復正常時可以結束給藥。 The representative administration period of the combination package of the present invention is one week to several months, such as one week, two weeks, one month, two months, four months, and eight months. After the level of intestinal beneficial bacteria in the subject begins to rise and the level of conditional pathogenic bacteria begins to decrease, the dosage of the composition can be gradually reduced. The administration can be terminated when the structure of the intestinal flora returns to normal.

我們發現:(1)膳食干預能夠緩解遺傳性肥胖及單純性肥胖並改善患者的生化指標;干預30天後,所有相關的臨床指標在遺傳因素導致的肥胖和單純性肥胖患者中都顯著改善;(2)干預後腸道菌群在小鼠中產生很少炎症及脂肪堆積;(3)膳食干預改變腸道菌群結構和功能。 We found that: (1) Diet intervention can relieve genetic obesity and simple obesity and improve the patient's biochemical indicators; after 30 days of intervention, all relevant clinical indicators have been significantly improved in obesity and simple obesity patients caused by genetic factors; (2) The intestinal flora produced little inflammation and fat accumulation in mice after the intervention; (3) Diet intervention changed the structure and function of the intestinal flora.

實施例2 Example 2

實施例所採用的資料集 Data set used in the embodiment

在我們已發表的一項研究中(引用文獻8),17個遺傳性肥胖和21個單純性肥胖的兒童接受了以腸道菌群為靶點的膳食干預。我們利用Illumina平臺對他們的糞便樣品進行了總體基因組測序(單純性肥胖兒童:0天和30天;遺傳性肥胖兒童:0天、30天、60天和90天)。原始的測序數據可以從NCBI的SRA資料庫中下載(接受號:SRP045211)。在我們這樣配對研究中,我們 由於資料的不完整性或識別為異常值,去除了三個個體的資料(GD10個體缺少30天的資料,GD20和GD26個體為異常值)。在剩餘的35個肥胖兒童的0天和30天的樣品中,共含有平均八千四百萬的高質量測序片段。 In a study we have published (Citation 8), 17 children with genetic obesity and 21 children with simple obesity received dietary intervention targeting the intestinal flora. We used the Illumina platform to perform overall genome sequencing on their stool samples (simple obese children: 0 days and 30 days; genetically obese children: 0 days, 30 days, 60 days, and 90 days). The original sequencing data can be downloaded from NCBI's SRA database (acceptance number: SRP045211). In our pairing study like this, we Due to the incompleteness of the data or the identification of outliers, the data of three individuals were removed (GD10 individuals lacked 30-day data, and GD20 and GD26 individuals were outliers). In the remaining 35 obese children's 0-day and 30-day samples, there were an average of 84 million high-quality sequencing fragments.

抗生素抗性基因的識別 Identification of antibiotic resistance genes

我們下載了ARDB資料庫中核心的7828條抗生素抗性基因蛋白序列。我們之前所構建的非冗餘腸道微生物基因集合中的蛋白序列與這些抗生素抗性基因蛋白序列進行BLASTP的比對,比對結果需要E-value小於1e-10,比對序列的70%需要被覆蓋,比對的同一性至少80%(引用文獻5)。 We downloaded the core 7828 antibiotic resistance gene protein sequences in the ARDB database. The protein sequences in the non-redundant gut microbial gene collection we constructed before are compared with the protein sequences of these antibiotic resistance genes. The result of the comparison requires E-value to be less than 1e-10, and 70% of the aligned sequence is required. It is covered, and the identity of the comparison is at least 80% (Cited Document 5).

大的共豐度基因集合(CAG)的基因組組裝 Genome assembly of a large co-abundance gene collection (CAG)

所有滿足90%的總豐度分佈在三個以上樣品中的基因,基於他們的豐度,我們利用canopy演算法將他們進行歸類。所有攜帶有抗生素抗性基因的大CAG,我們通過與已發佈論文一樣的手段對它們進行組裝(引用文獻8)。過程簡述:通過與CAG特異的基因進行比對,我們收集樣品特異和CAG特異的測序短序列,然後通過Velvet工具進行從頭組裝。我們引入人類衛生組計劃(HMP)對高質量基因組草圖進行判定的6個指標。 All genes satisfying 90% of the total abundance distribution in more than three samples, based on their abundance, we use the canopy algorithm to classify them. We assemble all the large CAGs carrying antibiotic resistance genes by the same means as published papers (Cited Reference 8). Brief description of the process: By comparing with CAG-specific genes, we collect sample-specific and CAG-specific sequencing short sequences, and then assemble them de novo using the Velvet tool. We introduce 6 indicators for the Human Health Group Project (HMP) to judge high-quality genome drafts.

CAG的分類地位識別 Classification status recognition of CAG

對於滿足至少5個HMP高質量基因組草圖標準的大CAG,我們通過使用CVtree3.0網頁伺服器和SpecI兩個工具確定分類地位(引用文獻8)。對於小的CAG和沒有高質量組裝產物的大CAG,我們在核酸和蛋白水平上,將每個CAG中的基因與7991個參考基因組序列進行比對。比對結果通過E-value(核酸水平:小於1e10,蛋白水平:小於1e-5)和序列覆蓋度(>70%)進行過濾。根據已有報導的分類學地位識別閾值(引用文獻17),CAG被識別到種或者屬的水平(種水平:在DNA水平,90%的基因能夠以95%的同一性比對上相同種的基因組;屬水平:在DNA和蛋白水平上,同時滿足80%的基因 能夠比對上同一個屬)。 For large CAGs that meet at least five HMP high-quality genome draft standards, we use CVtree3.0 web server and SpecI to determine the classification status (cited reference 8). For small CAGs and large CAGs without high-quality assembly products, we compare the genes in each CAG with 7,991 reference genome sequences at the nucleic acid and protein levels. The comparison results are filtered by E-value (nucleic acid level: less than 1e10, protein level: less than 1e-5) and sequence coverage (>70%). According to the reported taxonomic status recognition threshold (reference 17), CAG is recognized at the species or genus level (species level: at the DNA level, 90% of the genes can be compared with the same species with 95% identity) Genome; Genus level: At the DNA and protein level, 80% of the genes are met at the same time Can be compared to the same genus).

結果 result

被改變的抗生素抗性基因 Altered antibiotic resistance gene

在這項對遺傳性和單純性肥胖的膳食干預專案中,我們已經發表了一篇文章,在該文章中,我們構建了一個包含~200萬個的人腸道菌群非冗餘基因集合(引用文獻8)。通過利用BLAST比對工具,以ARDB資料庫為參考序列庫(引用文獻18),在這個基因集合中我們共識別出399個抗生素抗性基因。 In this dietary intervention project for hereditary and simple obesity, we have published an article in which we constructed a non-redundant gene set containing ~2 million human intestinal flora ( Reference 8). By using the BLAST comparison tool and using the ARDB database as the reference sequence library (cited reference 18), we identified a total of 399 antibiotic resistance genes in this gene set.

基於抗生素抗性基因整體結構的主成分分析表明,干預前後有著顯著的差異,並且這樣的差異能夠通過置換性MANOVA的檢驗(第1圖a部份)(9999次置換,P值=0.0187)。抗性基因的總數量由干預前的185.54±10.56(如無其他聲明,資料均以均值±標準差的形式表示)顯著減少到151.91±7.37(第1圖b部份)。干預之後的樣品相比干預之前,有48個抗生素抗性基因消失,但是也有15個新的抗生素抗性基因出現(表1A),這表明了在干預過程中,抗生素抗性基因的動態得失。雖然有新的抗生素抗性基因出現,但是攜帶這些基因的樣品數量(1.6±1.1,均值±標準差)顯著少於攜帶干預後消失的抗生素抗性基因的樣品數量(2.9±2.1,均值±標準差)。 Principal component analysis based on the overall structure of antibiotic resistance genes shows that there are significant differences before and after intervention, and such differences can be tested by substitutional MANOVA (part a in Figure 1) (9999 substitutions, P value = 0.0187). The total number of resistance genes was significantly reduced from 185.54±10.56 before intervention (if there is no other statement, the data are expressed in the form of mean±standard deviation) to 151.91±7.37 (part b in Figure 1). Compared with the samples before the intervention, 48 antibiotic resistance genes disappeared in the samples after the intervention, but 15 new antibiotic resistance genes appeared (Table 1A), which indicates the dynamic gains and losses of antibiotic resistance genes during the intervention process. Although new antibiotic resistance genes appeared, the number of samples carrying these genes (1.6±1.1, mean±standard deviation) was significantly less than the number of samples carrying antibiotic resistance genes that disappeared after intervention (2.9±2.1, mean±standard) difference).

Figure 105136957-A0202-12-0018-3
Figure 105136957-A0202-12-0018-3
Figure 105136957-A0202-12-0019-4
Figure 105136957-A0202-12-0019-4
Figure 105136957-A0202-12-0020-5
Figure 105136957-A0202-12-0020-5
Figure 105136957-A0202-12-0021-6
Figure 105136957-A0202-12-0021-6
Figure 105136957-A0202-12-0022-7
Figure 105136957-A0202-12-0022-7
Figure 105136957-A0202-12-0023-8
Figure 105136957-A0202-12-0023-8
Figure 105136957-A0202-12-0024-9
Figure 105136957-A0202-12-0024-9
Figure 105136957-A0202-12-0025-10
Figure 105136957-A0202-12-0025-10
Figure 105136957-A0202-12-0026-11
Figure 105136957-A0202-12-0026-11
Figure 105136957-A0202-12-0027-12
Figure 105136957-A0202-12-0027-12
Figure 105136957-A0202-12-0028-13
Figure 105136957-A0202-12-0028-13

並且,在干預之後,抗生素抗性基因的總豐度也發生了顯著的減少,由4075.51±313.91減少到3410.52±306.90(第1圖b部份)。在所有的399個抗生素抗性基因中,有86個的豐度在干預後顯著減少,它們占了干預前後耐藥基因組總豐度的33.39%±3.39%和24.48%±2.79%。總共有222個抗 生素抗性基因在干預後豐度減少,它們占了總耐藥基因組的47.90%±4.48%(干預前)和41.22%±5.68%(干預後)。雖然有10個抗生素抗性基因的豐度在干預後顯著增加,但是它們的豐度僅占總耐藥基因組的1.96%±0.94%(干預前)和8.94%±3.33%(干預後)。干預後顯著減少的抗生素抗性基因主要屬於tet,mdt和erm家族,增加的抗生素抗性基因主要是pbp和erm家族的成員(第2圖和下表2)。 Moreover, after the intervention, the total abundance of antibiotic resistance genes also decreased significantly, from 4,075.51±313.91 to 3410.52±306.90 (part b in Figure 1). Among all 399 antibiotic resistance genes, the abundance of 86 decreased significantly after the intervention, and they accounted for 33.39%±3.39% and 24.48%±2.79% of the total abundance of drug-resistant genomes before and after the intervention. There are 222 anti- The abundance of antibiotic resistance genes decreased after intervention, and they accounted for 47.90%±4.48% (before intervention) and 41.22%±5.68% (after intervention) of the total drug resistance genome. Although the abundance of 10 antibiotic resistance genes increased significantly after intervention, their abundance only accounted for 1.96%±0.94% (before intervention) and 8.94%±3.33% (after intervention) of the total resistance gene group. The antibiotic resistance genes that were significantly reduced after the intervention mainly belonged to the tet, mdt and erm families, and the increased antibiotic resistance genes were mainly members of the pbp and erm families (Figure 2 and Table 2 below).

Figure 105136957-A0202-12-0029-14
Figure 105136957-A0202-12-0029-14
Figure 105136957-A0202-12-0030-15
Figure 105136957-A0202-12-0030-15
Figure 105136957-A0202-12-0031-16
Figure 105136957-A0202-12-0031-16
Figure 105136957-A0202-12-0032-17
Figure 105136957-A0202-12-0032-17
Figure 105136957-A0202-12-0033-18
Figure 105136957-A0202-12-0033-18
Figure 105136957-A0202-12-0034-19
Figure 105136957-A0202-12-0034-19
Figure 105136957-A0202-12-0035-20
Figure 105136957-A0202-12-0035-20
Figure 105136957-A0202-12-0036-21
Figure 105136957-A0202-12-0036-21
Figure 105136957-A0202-12-0037-22
Figure 105136957-A0202-12-0037-22
Figure 105136957-A0202-12-0038-23
Figure 105136957-A0202-12-0038-23
Figure 105136957-A0202-12-0039-24
Figure 105136957-A0202-12-0039-24
Figure 105136957-A0202-12-0040-25
Figure 105136957-A0202-12-0040-25
Figure 105136957-A0202-12-0041-26
Figure 105136957-A0202-12-0041-26
Figure 105136957-A0202-12-0042-27
Figure 105136957-A0202-12-0042-27
Figure 105136957-A0202-12-0043-28
Figure 105136957-A0202-12-0043-28
Figure 105136957-A0202-12-0044-29
Figure 105136957-A0202-12-0044-29
Figure 105136957-A0202-12-0045-30
Figure 105136957-A0202-12-0045-30
Figure 105136957-A0202-12-0046-31
Figure 105136957-A0202-12-0046-31

被改變的抗性基因類別及所對應的抗生素 The type of resistance gene changed and the corresponding antibiotic

所識別出的399個抗生素抗性基因能夠被進一步歸為131個不同的抗性類別。在這131個抗性類別中有15個在所有的70個樣品中均存在,它們是TetW、TetQ、TetO、TetM、Tet40、Tet32、MdtF、MdtE、ErmF、ErmB、B12e_cfxa、BacA、AcrB、AcrA和Aac6Ie。有11個類別僅出現在干預前的樣品中,有4個僅出現在干預後的樣品中(第1圖c部份)。在肥胖兒童干預前的樣品中,抗性類別的數量顯著高於中國、丹麥和西班牙的成年人(第3圖a部份)。在干預之後,抗性類別的數量顯著減少,相比中國成年人已經沒有顯著差異,但是仍然顯著高於丹麥和西班牙成年人中含有的抗性類別數量(第3圖a部份)。 The 399 antibiotic resistance genes identified can be further classified into 131 different resistance classes. Fifteen of these 131 resistance categories are present in all 70 samples. They are TetW, TetQ, TetO, TetM, Tet40, Tet32, MdtF, MdtE, ErmF, ErmB, B12e_cfxa, BacA, AcrB, AcrA And Aac6Ie. There are 11 categories that only appeared in the samples before the intervention, and 4 were only in the samples after the intervention (Part c of Figure 1). In the pre-intervention samples of obese children, the number of resistant categories was significantly higher than that of adults in China, Denmark, and Spain (Figure 3, part a). After the intervention, the number of resistance categories decreased significantly. Compared with Chinese adults, there is no significant difference, but it is still significantly higher than the number of resistance categories contained in Danish and Spanish adults (part a in Figure 3).

在131個抗性類別中,有36個豐度在干預後顯著變化(第3圖b部份)。平均而言,33個顯著減少的類別,它們的豐度總和從1364.2±188.85 減少到了761.6±78.81。僅有3個類別的豐度在干預後顯著增加,他們是能夠對林可胺類、大環內酯類和鏈陽菌素b產生抗性的ErmX,能夠對四環素類產生抗性的TetL和能夠對青黴素產生抗性的PBP2b。從在樣品中的分佈廣泛性看,36個顯著變化的類別中,8個沒有變化,16個在干預後減少(第3圖b部份)。 Among the 131 resistance categories, 36 abundances changed significantly after intervention (Figure 3, part b). On average, 33 significantly reduced categories, their abundances totaled from 1364.2 ± 188.85 Reduced to 761.6±78.81. The abundance of only three categories increased significantly after the intervention. They are ErmX, which is resistant to lincosamides, macrolides and streptocin b, and TetL and TetL, which are resistant to tetracyclines. PBP2b that is resistant to penicillin. From the perspective of widespread distribution in the sample, of the 36 categories with significant changes, 8 did not change, and 16 decreased after the intervention (Figure 3, part b).

當我們把所有抗性類別匹配到它們參與產生抗性的抗生素後,我們得到了47個抗生素的潛在抗性能力。這47個中的10個在干預後顯著減少,他們是氯黴素、諾氟沙星、嘌呤黴素、紅黴素、磷黴素、萬古黴素、多黏菌素、依諾沙星、膦胺黴素和春雷黴素(第3圖c部份)。在抗生素大類的水平上,15個大類中的8個在干預後的樣品中,豐度顯著減少,包括鏈陽菌素類、大環內酯類、多肽類、磺胺類、喹諾酮類、醯胺醇類和糖肽類(第3圖d部份)。 When we matched all resistance categories to the antibiotics they participated in the resistance, we got the potential resistance of 47 antibiotics. 10 of these 47 were significantly reduced after intervention. They are chloramphenicol, norfloxacin, puromycin, erythromycin, fosfomycin, vancomycin, polymyxin, enoxacin, Fosmidomycin and kasugamycin (panel 3 part c). At the level of antibiotics, 8 of the 15 categories showed significant abundance in the samples after the intervention, including streptomycins, macrolides, peptides, sulfonamides, quinolones, and amides. Alcohols and glycopeptides (Figure 3, part d).

細菌的抗生素抗性基因主要通過三種機制產生抗性:1)通過削弱通透性或者外排泵,減少細菌細胞內的抗生素濃度;2)修飾抗生素的靶點從而起到保護作用;以及3)水解或者修飾抗生素分子,使抗生素失去活性(引用文獻11)。通過ARDB資料庫中的資訊,根據產生抗性的機制,399個抗生素基因被分配到這三種機制中。在干預後,通過靶點保護和外排泵這兩種機制產生抗性的抗性基因豐度總和是顯著減少的(第4圖)。紅黴素核糖體甲基化酶(erm)家族通過甲基化16S核糖體RNA基因,從而對大環內酯、林可胺類和鏈陽菌素的抗生素產生抗性(引用文獻19)。膳食干預顯著減少了erm家族中ErmB、ErmG和ErmQ的豐度。並且,通過保護核糖體免受四環素翻譯限制的TetO和TetPB的豐度,也在干預後顯著減少。其他通過保護靶點產生抗性的抗性類別,包括sul2、arna、ksga和vangu的豐度也都顯著減少。細菌的外排泵系統可以將很多抗生素轉移到胞外,從而減少細 胞內抗生素的濃度。在干預後,ErmD和10個Mdt(E、F、G、H、K、L、M、N、O和P)家族的多重耐藥泵的豐度,以及AcrAB-TolC多重耐藥泵複合物的豐度都是顯著減少的。這一結果暗示了潛在多重耐藥細菌的減少。除此以外,特異性的外排泵,包括外排桿菌肽的Bcr、外排大環內酯類的MacB、外排四環素的Tete40和TetC以及外排磷黴素的RosA-RosB複合物的豐度(引用文獻20),在膳食干預之後顯著減少。 Bacterial antibiotic resistance genes mainly generate resistance through three mechanisms: 1) reduce the concentration of antibiotics in bacterial cells by weakening permeability or efflux pump; 2) modify antibiotic targets to protect them; and 3) Hydrolyze or modify the antibiotic molecule to make the antibiotic inactive (reference 11). Based on the information in the ARDB database, 399 antibiotic genes were assigned to these three mechanisms according to the mechanism of resistance. After the intervention, the sum of the abundance of resistance genes that produced resistance through the two mechanisms of target protection and efflux pump was significantly reduced (Figure 4). The erythromycin ribosomal methylase (erm) family develops resistance to antibiotics such as macrolides, lincosamides, and streptomycin by methylating 16S ribosomal RNA genes (reference 19). Dietary intervention significantly reduced the abundance of ErmB, ErmG and ErmQ in the erm family. In addition, the abundance of TetO and TetPB, which protect ribosomes from translational restriction of tetracycline, was also significantly reduced after the intervention. The abundance of other types of resistance, including sul2, arna, ksga, and vangu, that generate resistance by protecting the target has also been significantly reduced. The bacterial efflux pump system can transfer a lot of antibiotics to the outside of the cell, thereby reducing The concentration of intracellular antibiotics. After the intervention, the abundance of the multi-drug resistance pumps of ErmD and 10 Mdt (E, F, G, H, K, L, M, N, O, and P) families, and the AcrAB-TolC multi-drug pump complex The abundances of are all significantly reduced. This result implies a reduction in potentially multi-drug resistant bacteria. In addition, specific efflux pumps include Bcr for efflux bacitracin, MacB for efflux macrolides, Tete40 and TetC for tetracycline efflux, and RosA-RosB complex for efflux fosfomycin. (Cited Reference 20), significantly reduced after dietary intervention.

識別抗生素抗性基因的攜帶者 Identify carriers of antibiotic resistance genes

在已經發表的研究中,通過基於基因豐度的相關性,我們依靠canopy演算法將非冗餘腸道細菌基因集合歸類到「共豐度基因集合(CAG)」中(引用文獻8、12)。根據包含的基因數量的不同,CAG被進一步分為兩類。含有超過700個基因的大CAG,被認為是細菌基因組,含有不超過700個基因的小CAG,可能是不完整的細菌基因組或者是噬菌體。在整個耐藥基因組中,201個抗生素抗性基因,能夠找到它們的攜帶者,它們來自38個大CAG和80個小CAG,這201個抗性基因的豐度分別占干預前、後整個耐藥基因組的86.60%±1.11%和87.45%±1.99%。平均而言,在38個大CAG中的抗性基因豐度為87.45%±1.99%(干預前)和334.54±61.70(干預後)。在80個小CAG中的抗性基因豐度為2981.58±246.93(干預前)和2665.39±272.79(干預後)。總共有198個抗生素抗性基因在CAG中追溯到。這一部分的抗性基因豐度總和在干預後由532.63±60.82顯著減少到425.13±103.35。 In published studies, we rely on the canopy algorithm to classify non-redundant intestinal bacterial gene sets into the "common abundance gene set (CAG)" based on the correlation based on gene abundance (Cited References 8, 12 ). According to the number of genes contained, CAG is further divided into two categories. A large CAG containing more than 700 genes is considered to be a bacterial genome, and a small CAG containing no more than 700 genes may be an incomplete bacterial genome or a phage. In the entire drug resistance genome, 201 antibiotic resistance genes can be found in their carriers. They come from 38 large CAGs and 80 small CAGs. The abundances of these 201 resistance genes account for the total resistance genes before and after intervention. 86.60%±1.11% and 87.45%±1.99% of the drug genome. On average, the abundance of resistance genes in 38 large CAGs was 87.45%±1.99% (before intervention) and 334.54±61.70 (after intervention). The abundance of resistance genes in 80 small CAGs were 2985.58±246.93 (before intervention) and 2665.39±272.79 (after intervention). A total of 198 antibiotic resistance genes have been traced back in CAG. The total abundance of resistance genes in this part was significantly reduced from 532.63±60.82 to 425.13±103.35 after the intervention.

對每一個攜帶有抗生素抗性基因的CAG我們都進行了從頭組裝(詳見上文「大的共豐度基因集合(CAG)的基因組組裝」)。24個基因組組裝產物滿足了人類微生物組計劃(HMP)對基因組草圖6項質量標準的至少5項。通過CVtree3.0網頁伺服器(引用文獻21)和specI工具(引用文獻22),這24個基因組草圖的系統發生資訊得以確定。剩餘的14個大CAG和80 個小CAG的分類學鑒定通過和參考基因組的比對實現(詳見上文「CAG的分類地位識別」),其中的8個大CAG和22個小CAG能夠在種/屬的水平上得到分類地位的資訊。在118個攜帶有抗生素抗性基因的CAG中,含有最多數量的前三個CAG分別為CAG00002(埃希氏菌屬(Escherichia)/志賀菌屬(Shigella sp.)),CAG00001和CAG00008(肺炎克雷伯菌(Klebsiella pneumonia)),他們分別攜帶了41,37和20個抗生素抗性基因。在核酸水平上,通過和參考基因組的比較,我們發現CAG00001中51.5%的基因能夠比對上Escherichia/Shigella,16.7%比對上Weissella(魏斯氏菌屬)以及14.9%比對上Enterococcus(腸球菌屬),這樣的結果表明了CAG00001的異質性。通過將canopy工具中的參數「--max_canopy_dist」從0.9提高到0.95,我們對CAG00001中的基因進行了第二輪的分類。得到四個子類,分別標記為CAG00001a到CAG00001d。CAG00001a和CAG00001c為Escherichia/Shigella sp,但是CAG00001b和CAG00001d無法在種/屬的水平上得到分類學地位的資訊。CAG00001a、b、c和d分別攜帶了28、3、5和0個抗生素抗性基因。因為更嚴格的分類參數設定,有三個抗性基因沒能被歸類到CAG00001~d中。由於一個基因可以被歸類到過個CAG中,所以CAG00001a~d中攜帶的抗生素抗性基因總數會大於34。 We have performed de novo assembly for each CAG carrying antibiotic resistance genes (see "Genome Assembly of Large Co-abundance Gene Set (CAG)" above for details). The 24 genome assembly products meet at least 5 of the 6 quality standards of the Human Microbiome Project (HMP) for the draft genome. Through the CVtree3.0 web server (cited reference 21) and the specI tool (cited reference 22), the phylogenetic information of the 24 draft genomes was determined. The remaining 14 large CAGs and 80 The taxonomic identification of a small CAG is achieved by comparison with a reference genome (see "CAG Classification Status Identification" above for details), of which 8 large CAGs and 22 small CAGs can be classified at the species/genus level Status information. Among the 118 CAGs carrying antibiotic resistance genes, the first three CAGs with the largest number are CAG00002 (Escherichia/Shigella sp.), CAG00001 and CAG00008 (grams of pneumonia). Klebsiella pneumonia), they carry 41, 37 and 20 antibiotic resistance genes, respectively. At the nucleic acid level, through comparison with the reference genome, we found that 51.5% of the genes in CAG00001 can be compared to Escherichia/Shigella, 16.7% to Weissella (Weissella), and 14.9% to Enterococcus (intestinal). Coccus), this result indicates the heterogeneity of CAG00001. By increasing the parameter "--max_canopy_dist" in the canopy tool from 0.9 to 0.95, we performed the second round of classification of the genes in CAG00001. Four sub-categories are obtained, which are labeled CAG00001a to CAG00001d. CAG00001a and CAG00001c are Escherichia/Shigella sp, but CAG00001b and CAG00001d cannot obtain information on their taxonomic status at the species/genus level. CAG00001a, b, c, and d carry 28, 3, 5, and 0 antibiotic resistance genes, respectively. Because of stricter classification parameter settings, three resistance genes could not be classified into CAG00001~d. Since a gene can be classified into more than one CAG, the total number of antibiotic resistance genes carried in CAG00001a~d will be greater than 34.

基於基因分類,基因組組裝和分類地位鑒定,我們最終得到了120個(CAG00001a~c+117個攜帶抗性基因的CAG)抗生素抗性基因攜帶者。基於抗性基因攜帶者豐度的組成分分析表明,干預前後的樣品有一定的區分趨勢(第2圖)(置換性MANOVA test,9999次置換,P=0.0584)。結合399個抗性基因的主成分分析結果和抗性基因攜帶者的主成分分析結果的procrustes分析表明,耐藥基因組的變化與這些攜帶者的變化顯著相關(Monte-Carlo檢驗,P<0.001,M2=0.23)。考慮到這120個抗性基因攜帶者攜 帶了相當高豐度的抗性基因,這暗示著整體耐藥基因組的結構變化主要就是由這些攜帶者所貢獻的。 Based on gene classification, genome assembly and classification status identification, we finally got 120 (CAG00001a~c+117 CAGs carrying resistance genes) antibiotic resistance gene carriers. The component analysis based on the abundance of resistance gene carriers showed that the samples before and after the intervention had a certain trend of differentiation (Figure 2) (replacement MANOVA test, 9999 replacements, P=0.0584). The procrustes analysis combining the principal component analysis results of 399 resistance genes and the principal component analysis results of the resistance gene carriers showed that the changes in the drug resistance genome were significantly related to the changes in these carriers (Monte-Carlo test, P <0.001, M 2 =0.23). Considering that these 120 resistance gene carriers carry a relatively high abundance of resistance genes, this implies that the structural changes of the overall drug resistance genome are mainly contributed by these carriers.

抗生素抗性基因和其攜帶者的分佈 Distribution of antibiotic resistance genes and their carriers

基於抗生素抗性基因和其攜帶者的從屬關係,屬於我們所研究的特定人群中的抗性基因網路得以構建(第6圖)。抗生素抗性基因在多個細菌門中存在,包括厚壁菌門,擬桿菌門和變形菌門,這表明了抗生素抗性基因在細菌界中的廣泛分佈。在厚壁菌門中的細菌,含有的抗生素抗性基因載荷最小,基本上每個細菌僅含有一種抗性基因類別。對桿菌肽能夠產生抗性的BacA基因類別被厚壁菌門中的細菌大量攜帶,在網路圖中呈現為熱點。總共有6個Lactobacillus(乳桿菌屬),3個Eubacterium(真細菌屬)和3個梭菌攜帶有該基因類別。在擬桿菌門中的細菌主要(8/11)攜帶有對β-內醯胺類抗生素產生抗性的抗性基因類別,包括php2b、BL3_ccra、BL2e_cbla、BL2e_cepa和BL2e_cfxa。抗性基因類別BL2e-cepa僅在擬桿菌屬中存在,這與ARDB資料庫的結果相一致,暗示了這個抗性基因類別的潛在分類學特異性。腸桿菌科中的細菌,特別是克雷伯氏菌、腸桿菌和埃希氏菌屬,在分佈網路中以熱點的形式存在。10個mdt(E、F、G、H、K、L、M、N、O和P)家族的多重耐藥外排泵和AcrAB-TolC多重耐藥泵複合物,特異性地被這些屬的細菌攜帶。並且這些細菌所攜帶抗性基因類別,能夠對廣泛的抗生素產生抗性包括了β-內醯胺類、四環素類、磺胺類和大環內酯類。在干預後,這些細菌的豐度被顯著減少或減少,特別是CAG00001a(Escherichia/Shigella sp.)、CAG00002(Escherichia/Shigella sp.)、CAG00146(Klebsiella sp.)、CAG00008(Klebsiella pneumoniae)以及CAG00356(Enterobacter sp.)。 Based on the affiliation of antibiotic resistance genes and their carriers, a network of resistance genes belonging to the specific population we studied was constructed (Figure 6). Antibiotic resistance genes exist in many bacterial phyla, including Firmicutes, Bacteroides and Proteobacteria, which indicates that antibiotic resistance genes are widely distributed in the bacterial kingdom. Bacteria in Firmicutes contain the smallest antibiotic resistance gene load, and basically each bacteria contains only one type of resistance gene. The BacA gene type that is resistant to bacitracin is carried in large numbers by bacteria in Firmicutes and appears as a hot spot in the network diagram. A total of 6 Lactobacillus (Lactobacillus), 3 Eubacterium (Eubacterium) and 3 Clostridia carry this gene category. Bacteria in the Bacteroides phylum mainly (8/11) carry resistance genes that are resistant to β-lactam antibiotics, including php2b, BL3_ccra, BL2e_cbla, BL2e_cepa and BL2e_cfxa. The resistance gene category BL2e-cepa only exists in Bacteroides, which is consistent with the results of the ARDB database and implies the potential taxonomic specificity of this resistance gene category. Bacteria in Enterobacteriaceae, especially Klebsiella, Enterobacter and Escherichia, exist in the form of hot spots in the distribution network. 10 mdt (E, F, G, H, K, L, M, N, O, and P) families of multi-drug resistant efflux pumps and AcrAB-TolC multi-drug resistant pump complexes are specifically controlled by these genera Bacteria carry. And the types of resistance genes carried by these bacteria can develop resistance to a wide range of antibiotics, including β-lactams, tetracyclines, sulfonamides and macrolides. After the intervention, the abundance of these bacteria was significantly reduced or reduced, especially CAG00001a (Escherichia/Shigella sp.), CAG00002 (Escherichia/Shigella sp.), CAG00146 (Klebsiella sp.), CAG00008 (Klebsiella pneumoniae) and CAG00356 ( Enterobacter sp.).

本說明書引用的所有出版物通過引用整體引入。 All publications cited in this specification are incorporated by reference in their entirety.

引用文獻 Citation

1 World, Health & Organization. Antimicrobial Resistance: Global Report on Surveillance. (2014). 1 World, Health & Organization. Antimicrobial Resistance: Global Report on Surveillance. (2014).

2 D'Costa, V. M., McGrann, K. M., Hughes, D. W. & Wright, G. D. Sampling the antibiotic resistome. Science 311, 374-377, doi:10.1126/science.1120800 (2006). 2 D'Costa, VM, McGrann, KM, Hughes, DW & Wright, GD Sampling the antibiotic resistome. Science 311, 374-377, doi:10.1126/science.1120800 (2006).

3 Sommer, M. O. A., Dantas, G. & Church, G. M. Functional Characterization of the Antibiotic Resistance Reservoir in the Human Microflora. Science 325, 1128-1131, doi:Doi 10.1126/Science.1176950 (2009). 3 Sommer, MOA, Dantas, G. & Church, GM Functional Characterization of the Antibiotic Resistance Reservoir in the Human Microflora. Science 325, 1128-1131, doi:Doi 10.1126/Science.1176950 (2009).

4 Stecher, B. et al. Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae. P Natl Acad Sci USA 109, 1269-1274, doi:Doi 10.1073/Pnas.1113246109 (2012). 4 Stecher, B. et al. Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae. P Natl Acad Sci USA 109, 1269-1274, doi:Doi 10.1073/Pnas.1113246109 (2012).

5 Hu, Y. F. et al. Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Nat Commun 4, doi:Artn 2151 Doi 10.1038/Ncomms3151 (2013). 5 Hu, YF et al. Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Nat Commun 4, doi:Artn 2151 Doi 10.1038/Ncomms3151 (2013).

6 Zhao, L. The gut microbiota and obesity: from correlation to causality. Nat Rev Microbiol 11, 639-647, doi:10.1038/nrmicro3089 (2013). 6 Zhao, L. The gut microbiota and obesity: from correlation to causality. Nat Rev Microbiol 11, 639-647, doi:10.1038/nrmicro3089 (2013).

7 Xu, Z. J. & Knight, R. Dietary effects on human gut rnicrobiome diversity. Brit J Nutr 113, S1-S5, doi:Doi 10.1017/S0007114514004127 (2015). 7 Xu, ZJ & Knight, R. Dietary effects on human gut rnicrobiome diversity. Brit J Nutr 113, S1-S5, doi:Doi 10.1017/S0007114514004127 (2015).

8 Zhang, C. et al. Dietary modulation of gut microbiota contributes to alleviation of both genetic and simple obesity in children. EBioMedicine, doi:http://dx.doi.org/10.1016/j.ebiom.2015.07.007 (2015). 8 Zhang, C. et al. Dietary modulation of gut microbiota contributes to alleviation of both genetic and simple obesity in children. EBioMedicine , doi: http://dx.doi.org/10.1016/j.ebiom.2015.07.007 (2015 ).

9 Seville, L. A. et al. Distribution of Tetracycline and Erythromycin Resistance Genes Among Human Oral and Fecal Metagenomic DNA. Microb Drug Resist 15, 159-166, doi:Doi 10.1089/Mdr.2009.0916 (2009). 9 Seville, LA et al. Distribution of Tetracycline and Erythromycin Resistance Genes Among Human Oral and Fecal Metagenomic DNA. Microb Drug Resist 15, 159-166, doi:Doi 10.1089/Mdr.2009.0916 (2009).

10 Ghosh, T. S., Sen Gupta, S., Nair, G. B. & Mande, S. S. In Silico Analysis of Antibiotic Resistance Genes in the Gut Microflora of Individuals from Diverse Geographies and Age-Groups. Plos One 8, doi:ARTN e83823 DOI 10.1371/journal.pone.0083823 (2013). 10 Ghosh, TS, Sen Gupta, S., Nair, GB & Mande, SS In Silico Analysis of Antibiotic Resistance Genes in the Gut Microflora of Individuals from Diverse Geographies and Age-Groups. Plos One 8, doi:ARTN e83823 DOI 10.1371/ journal.pone.0083823 (2013).

11 Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O. & Piddock, L. J. V. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13, 42-51, doi:Doi 10.1038/Nrmicro3380 (2015). 11 Blair, JMA, Webber, MA, Baylay, AJ, Ogbolu, DO & Piddock, LJV Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13, 42-51, doi:Doi 10.1038/Nrmicro3380 (2015).

12 Nielsen, H. B. et al. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat Biotechnol 32, 822-828, doi:Doi 10.1038/Nbt.2939 (2014). 12 Nielsen, HB et al. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat Biotechnol 32, 822-828, doi:Doi 10.1038/Nbt.2939 (2014).

13 Tadesse, D. A. et al. Antimicrobial drug resistance in Escherichia coli from humans and food animals, United States, 1950-2002. Emerging infectious diseases 18, 741-749, doi:10.3201/eid1805.111153 (2012). 13 Tadesse, DA et al. Antimicrobial drug resistance in Escherichia coli from humans and food animals, United States, 1950-2002. Emerging infectious diseases 18, 741-749, doi:10.3201/eid1805.111153 (2012).

14 Bouza, E. & Cercenado, E. Klebsiella and enterobacter: antibiotic resistance and treatment implications. Seminars in respiratory infections 17, 215-230 (2002). 14 Bouza, E. & Cercenado, E. Klebsiella and enterobacter: antibiotic resistance and treatment implications. Seminars in respiratory infections 17, 215-230 (2002).

15 Tansarli, G. S., Karageorgopoulos, D. E., Kapaskelis, A. & Ealagas, M. E. Impact of antimicrobial multidrug resistance on inpatient care cost: an evaluation of the evidence. Expert review of anti-infective therapy 11, 321-331, doi:10.1586/eri.13.4 (2013). 15 Tansarli, GS, Karageorgopoulos, DE, Kapaskelis, A. & Ealagas, ME Impact of antimicrobial multidrug resistance on inpatient care cost: an evaluation of the evidence. Expert review of anti-infective therapy 11, 321-331, doi:10.1586/ eri.13.4 (2013).

16 Xiao, S. et al. A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome. FEMS Microbiol Ecol 87, 357-367, doi:10.1111/1574-6941.12228 (2014). 16 Xiao, S. et al. A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome. FEMS Microbiol Ecol 87, 357-367, doi:10.1111/1574-6941.12228 (2014).

17 Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55-60, doi:10.1038/nature11450 (2012). 17 Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55-60, doi:10.1038/nature11450 (2012).

18 Liu, B. & Pop, M. ARDB-Antibiotic Resistance Genes Database. Nucleic Acids Res 37, D443-D447, doi:Doi 10.1093/Nar/Gkn656 (2009). 18 Liu, B. & Pop, M. ARDB-Antibiotic Resistance Genes Database. Nucleic Acids Res 37, D443-D447, doi:Doi 10.1093/Nar/Gkn656 (2009).

19 Leclercq, R. Mechanisms of resistance to macrolides and lincosamides: Nature of the resistance elements and their clinical implications. Clin Infect Dis 34, 482-492, doi:Doi 10.1086/324626 (2002). 19 Leclercq, R. Mechanisms of resistance to macrolides and lincosamides: Nature of the resistance elements and their clinical implications. Clin Infect Dis 34, 482-492, doi:Doi 10.1086/324626 (2002).

20 Perez, A. et al. Cloning, nucleotide sequencing, and analysis of the AcrAB-TolC efflux pump of Enterobacter cloacae and determination of its involvement in antibiotic resistance in a clinical isolate. Antimicrobial agents and chemotherapy 51, 3247-3253, doi:10.1128/AAC.00072-07 (2007). 20 Perez, A. et al. Cloning, nucleotide sequencing, and analysis of the AcrAB-TolC efflux pump of Enterobacter cloacae and determination of its involvement in antibiotic resistance in a clinical isolate. Antimicrobial agents and chemotherapy 51, 3247-3253, doi: 10.1128/AAC.00072-07 (2007).

21 Qi, J., Wang, B. & Hao, B. I. Whole proteome prokaryote phylogeny without sequence alignment: A K-string composition approach. J Mol Evol 58, 1-11, doi:Doi 10.1007/S00239-003-2493-7 (2004). 21 Qi, J., Wang, B. & Hao, BI Whole proteome prokaryote phylogeny without sequence alignment: A K-string composition approach. J Mol Evol 58, 1-11, doi:Doi 10.1007/S00239-003-2493-7 (2004).

22 Mende, D. R., Sunagawa, S., Zeller, G. & Bork, P. Accurate and universal delineation of prokaryotic species. Nat Methods 10, 881-+, doi:Doi 10.1038/Nmeth.2575 (2013). 22 Mende, DR, Sunagawa, S., Zeller, G. & Bork, P. Accurate and universal delineation of prokaryotic species. Nat Methods 10, 881-+, doi:Doi 10.1038/Nmeth.2575 (2013).

>GD02_151608

Figure 105136957-A0202-12-0055-32
>GD02_151608
Figure 105136957-A0202-12-0055-32

>GD02_183277

Figure 105136957-A0202-12-0055-33
>GD02_183277
Figure 105136957-A0202-12-0055-33

>GD02_212773

Figure 105136957-A0202-12-0055-34
>GD02_212773
Figure 105136957-A0202-12-0055-34

>GD04_337689

Figure 105136957-A0202-12-0055-35
>GD04_337689
Figure 105136957-A0202-12-0055-35

>GD06_173509

Figure 105136957-A0202-12-0055-36
>GD06_173509
Figure 105136957-A0202-12-0055-36

>GD10_192550

Figure 105136957-A0202-12-0055-37
>GD10_192550
Figure 105136957-A0202-12-0055-37

>GD15_225837

Figure 105136957-A0202-12-0055-38
>GD15_225837
Figure 105136957-A0202-12-0055-38

>GD20_98737

Figure 105136957-A0202-12-0055-39
>GD20_98737
Figure 105136957-A0202-12-0055-39

>GD20_101660

Figure 105136957-A0202-12-0055-40
>GD20_101660
Figure 105136957-A0202-12-0055-40

>GD20_124380

Figure 105136957-A0202-12-0055-41
Figure 105136957-A0202-12-0056-42
>GD20_124380
Figure 105136957-A0202-12-0055-41
Figure 105136957-A0202-12-0056-42

>GD20_126198

Figure 105136957-A0202-12-0056-43
>GD20_126198
Figure 105136957-A0202-12-0056-43

>GD20_128837

Figure 105136957-A0202-12-0056-44
>GD20_128837
Figure 105136957-A0202-12-0056-44

>GD28_191757

Figure 105136957-A0202-12-0056-45
>GD28_191757
Figure 105136957-A0202-12-0056-45

>GD28_237231

Figure 105136957-A0202-12-0056-46
>GD28_237231
Figure 105136957-A0202-12-0056-46

>GD31_102048

Figure 105136957-A0202-12-0056-47
>GD31_102048
Figure 105136957-A0202-12-0056-47

>GD31_192139

Figure 105136957-A0202-12-0056-48
>GD31_192139
Figure 105136957-A0202-12-0056-48

>GD31_254100

Figure 105136957-A0202-12-0056-49
>GD31_254100
Figure 105136957-A0202-12-0056-49

>GD31_256237

Figure 105136957-A0202-12-0056-51
>GD31_256237
Figure 105136957-A0202-12-0056-51

>GD31_261434

Figure 105136957-A0202-12-0056-52
>GD31_261434
Figure 105136957-A0202-12-0056-52

>GD32_9897

Figure 105136957-A0202-12-0057-53
>GD32_9897
Figure 105136957-A0202-12-0057-53

>GD32_20258

Figure 105136957-A0202-12-0057-54
>GD32_20258
Figure 105136957-A0202-12-0057-54

>GD32_34439

Figure 105136957-A0202-12-0057-55
>GD32_34439
Figure 105136957-A0202-12-0057-55

>GD32_50703

Figure 105136957-A0202-12-0057-56
>GD32_50703
Figure 105136957-A0202-12-0057-56

>GD32_65629

Figure 105136957-A0202-12-0057-220
>GD32_65629
Figure 105136957-A0202-12-0057-220

>GD32_92913

Figure 105136957-A0202-12-0058-58
>GD32_92913
Figure 105136957-A0202-12-0058-58

>GD32_104346

Figure 105136957-A0202-12-0058-59
>GD32_104346
Figure 105136957-A0202-12-0058-59

>GD32_122434

Figure 105136957-A0202-12-0058-60
>GD32_122434
Figure 105136957-A0202-12-0058-60

>GD32_173957

Figure 105136957-A0202-12-0058-61
>GD32_173957
Figure 105136957-A0202-12-0058-61

>GD32_229315

Figure 105136957-A0202-12-0058-62
Figure 105136957-A0202-12-0059-63
>GD32_229315
Figure 105136957-A0202-12-0058-62
Figure 105136957-A0202-12-0059-63

>GD47_241358

Figure 105136957-A0202-12-0059-64
>GD47_241358
Figure 105136957-A0202-12-0059-64

>GD56_188040

Figure 105136957-A0202-12-0059-65
>GD56_188040
Figure 105136957-A0202-12-0059-65

>GD56_214413

Figure 105136957-A0202-12-0059-66
>GD56_214413
Figure 105136957-A0202-12-0059-66

>GD56_217315

Figure 105136957-A0202-12-0059-67
>GD56_217315
Figure 105136957-A0202-12-0059-67

>GD56_238636

Figure 105136957-A0202-12-0059-68
>GD56_238636
Figure 105136957-A0202-12-0059-68

>GD56_242028

Figure 105136957-A0202-12-0059-70
>GD56_242028
Figure 105136957-A0202-12-0059-70

>GD56_254774

Figure 105136957-A0202-12-0059-71
>GD56_254774
Figure 105136957-A0202-12-0059-71

>GD56_262717

Figure 105136957-A0202-12-0059-72
>GD56_262717
Figure 105136957-A0202-12-0059-72

>GD56_262718

Figure 105136957-A0202-12-0059-73
>GD56_262718
Figure 105136957-A0202-12-0059-73

>GD56_262918

Figure 105136957-A0202-12-0059-74
Figure 105136957-A0202-12-0060-75
>GD56_262918
Figure 105136957-A0202-12-0059-74
Figure 105136957-A0202-12-0060-75

>GD56_267356

Figure 105136957-A0202-12-0060-76
>GD56_267356
Figure 105136957-A0202-12-0060-76

>GD56_272486

Figure 105136957-A0202-12-0060-77
>GD56_272486
Figure 105136957-A0202-12-0060-77

>GD56_286869

Figure 105136957-A0202-12-0060-78
>GD56_286869
Figure 105136957-A0202-12-0060-78

>GD56_291851

Figure 105136957-A0202-12-0060-80
>GD56_291851
Figure 105136957-A0202-12-0060-80

>GD56_295403

Figure 105136957-A0202-12-0060-81
>GD56_295403
Figure 105136957-A0202-12-0060-81

>GD58_201240

Figure 105136957-A0202-12-0060-82
>GD58_201240
Figure 105136957-A0202-12-0060-82

>GD58_206137

Figure 105136957-A0202-12-0060-83
>GD58_206137
Figure 105136957-A0202-12-0060-83

>GD58_218054

Figure 105136957-A0202-12-0060-84
>GD58_218054
Figure 105136957-A0202-12-0060-84

>GD58_218055

Figure 105136957-A0202-12-0060-85
>GD58_218055
Figure 105136957-A0202-12-0060-85

>GD02_176751

Figure 105136957-A0202-12-0061-86
>GD02_176751
Figure 105136957-A0202-12-0061-86

>GD02_180577

Figure 105136957-A0202-12-0061-87
>GD02_180577
Figure 105136957-A0202-12-0061-87

>GD04_356699

Figure 105136957-A0202-12-0061-88
>GD04_356699
Figure 105136957-A0202-12-0061-88

>GD04_366875

Figure 105136957-A0202-12-0061-89
>GD04_366875
Figure 105136957-A0202-12-0061-89

>GD10_197137

Figure 105136957-A0202-12-0061-90
>GD10_197137
Figure 105136957-A0202-12-0061-90

>GD20_115301

Figure 105136957-A0202-12-0061-91
>GD20_115301
Figure 105136957-A0202-12-0061-91

>GD24_251571

Figure 105136957-A0202-12-0061-92
>GD24_251571
Figure 105136957-A0202-12-0061-92

>GD31_228944

Figure 105136957-A0202-12-0061-93
>GD31_228944
Figure 105136957-A0202-12-0061-93

>GD31_249238

Figure 105136957-A0202-12-0062-94
>GD31_249238
Figure 105136957-A0202-12-0062-94

>GD31_271422

Figure 105136957-A0202-12-0062-95
>GD31_271422
Figure 105136957-A0202-12-0062-95

>GD31_273572

Figure 105136957-A0202-12-0062-96
>GD31_273572
Figure 105136957-A0202-12-0062-96

>GD36_136665

Figure 105136957-A0202-12-0062-97
>GD36_136665
Figure 105136957-A0202-12-0062-97

>GD47_231005

Figure 105136957-A0202-12-0062-98
>GD47_231005
Figure 105136957-A0202-12-0062-98

>GD58_207326

Figure 105136957-A0202-12-0062-99
>GD58_207326
Figure 105136957-A0202-12-0062-99

>GD58_223056

Figure 105136957-A0202-12-0062-100
>GD58_223056
Figure 105136957-A0202-12-0062-100

>GD02_103489

Figure 105136957-A0202-12-0062-101
>GD02_103489
Figure 105136957-A0202-12-0062-101

>GD02_105249

Figure 105136957-A0202-12-0062-102
Figure 105136957-A0202-12-0063-103
>GD02_105249
Figure 105136957-A0202-12-0062-102
Figure 105136957-A0202-12-0063-103

>GD02_110811

Figure 105136957-A0202-12-0063-104
>GD02_110811
Figure 105136957-A0202-12-0063-104

>GD02_112204

Figure 105136957-A0202-12-0063-105
>GD02_112204
Figure 105136957-A0202-12-0063-105

>GD02_112205

Figure 105136957-A0202-12-0063-106
>GD02_112205
Figure 105136957-A0202-12-0063-106

>GD02_123177

Figure 105136957-A0202-12-0063-107
Figure 105136957-A0202-12-0064-109
>GD02_123177
Figure 105136957-A0202-12-0063-107
Figure 105136957-A0202-12-0064-109

>GD02_127083

Figure 105136957-A0202-12-0064-110
>GD02_127083
Figure 105136957-A0202-12-0064-110

>GD02_158373

Figure 105136957-A0202-12-0064-111
>GD02_158373
Figure 105136957-A0202-12-0064-111

>GD02_174171

Figure 105136957-A0202-12-0064-112
>GD02_174171
Figure 105136957-A0202-12-0064-112

>GD02_186961

Figure 105136957-A0202-12-0064-113
>GD02_186961
Figure 105136957-A0202-12-0064-113

>GD02_23042

Figure 105136957-A0202-12-0064-114
Figure 105136957-A0202-12-0065-115
>GD02_23042
Figure 105136957-A0202-12-0064-114
Figure 105136957-A0202-12-0065-115

>GD02_23054

Figure 105136957-A0202-12-0065-116
>GD02_23054
Figure 105136957-A0202-12-0065-116

>GD02_27563

Figure 105136957-A0202-12-0065-117
>GD02_27563
Figure 105136957-A0202-12-0065-117

>GD02_39013

Figure 105136957-A0202-12-0065-118
>GD02_39013
Figure 105136957-A0202-12-0065-118

>GD02_41625

Figure 105136957-A0202-12-0065-119
>GD02_41625
Figure 105136957-A0202-12-0065-119

>GD02_45183

Figure 105136957-A0202-12-0065-120
>GD02_45183
Figure 105136957-A0202-12-0065-120

>GD02_45198

Figure 105136957-A0202-12-0066-121
>GD02_45198
Figure 105136957-A0202-12-0066-121

>GD02_45199

Figure 105136957-A0202-12-0066-122
>GD02_45199
Figure 105136957-A0202-12-0066-122

>GD02_50698

Figure 105136957-A0202-12-0066-123
>GD02_50698
Figure 105136957-A0202-12-0066-123

>GD02_57948

Figure 105136957-A0202-12-0066-124
Figure 105136957-A0202-12-0067-125
>GD02_57948
Figure 105136957-A0202-12-0066-124
Figure 105136957-A0202-12-0067-125

>GD02_68989

Figure 105136957-A0202-12-0067-126
>GD02_68989
Figure 105136957-A0202-12-0067-126

>GD02_73580

Figure 105136957-A0202-12-0067-127
>GD02_73580
Figure 105136957-A0202-12-0067-127

>GD02_82568

Figure 105136957-A0202-12-0067-128
>GD02_82568
Figure 105136957-A0202-12-0067-128

>GD02_83077

Figure 105136957-A0202-12-0067-129
>GD02_83077
Figure 105136957-A0202-12-0067-129

>GD02_89355

Figure 105136957-A0202-12-0067-130
>GD02_89355
Figure 105136957-A0202-12-0067-130

>GD02_89356

Figure 105136957-A0202-12-0067-131
Figure 105136957-A0202-12-0068-132
>GD02_89356
Figure 105136957-A0202-12-0067-131
Figure 105136957-A0202-12-0068-132

>GD02_89357

Figure 105136957-A0202-12-0068-133
>GD02_89357
Figure 105136957-A0202-12-0068-133

>GD02_97267

Figure 105136957-A0202-12-0068-134
>GD02_97267
Figure 105136957-A0202-12-0068-134

>GD03_234422

Figure 105136957-A0202-12-0068-135
>GD03_234422
Figure 105136957-A0202-12-0068-135

>GD03_269264

Figure 105136957-A0202-12-0068-136
>GD03_269264
Figure 105136957-A0202-12-0068-136

>GD03_274003

Figure 105136957-A0202-12-0068-137
Figure 105136957-A0202-12-0069-138
>GD03_274003
Figure 105136957-A0202-12-0068-137
Figure 105136957-A0202-12-0069-138

>GD04_183056

Figure 105136957-A0202-12-0069-139
>GD04_183056
Figure 105136957-A0202-12-0069-139

>GD04_370449

Figure 105136957-A0202-12-0069-140
>GD04_370449
Figure 105136957-A0202-12-0069-140

>GD06_23263

Figure 105136957-A0202-12-0069-141
>GD06_23263
Figure 105136957-A0202-12-0069-141

>GD08_135131

Figure 105136957-A0202-12-0069-142
>GD08_135131
Figure 105136957-A0202-12-0069-142

>GD08_152605

Figure 105136957-A0202-12-0069-143
>GD08_152605
Figure 105136957-A0202-12-0069-143

>GD11_81761

Figure 105136957-A0202-12-0069-144
>GD11_81761
Figure 105136957-A0202-12-0069-144

>GD12_115363

Figure 105136957-A0202-12-0069-145
Figure 105136957-A0202-12-0070-146
>GD12_115363
Figure 105136957-A0202-12-0069-145
Figure 105136957-A0202-12-0070-146

>GD13_66504

Figure 105136957-A0202-12-0070-147
>GD13_66504
Figure 105136957-A0202-12-0070-147

>GD13_88162

Figure 105136957-A0202-12-0070-148
>GD13_88162
Figure 105136957-A0202-12-0070-148

>GD15_139317

Figure 105136957-A0202-12-0070-149
>GD15_139317
Figure 105136957-A0202-12-0070-149

>GD15_245514

Figure 105136957-A0202-12-0070-150
>GD15_245514
Figure 105136957-A0202-12-0070-150

>GD18_219448

Figure 105136957-A0202-12-0070-151
>GD18_219448
Figure 105136957-A0202-12-0070-151

>GD20_105167

Figure 105136957-A0202-12-0071-152
>GD20_105167
Figure 105136957-A0202-12-0071-152

>GD20_121947

Figure 105136957-A0202-12-0071-153
>GD20_121947
Figure 105136957-A0202-12-0071-153

>GD20_71487

Figure 105136957-A0202-12-0071-154
>GD20_71487
Figure 105136957-A0202-12-0071-154

>GD20_92301

Figure 105136957-A0202-12-0071-155
>GD20_92301
Figure 105136957-A0202-12-0071-155

>GD21_110170

Figure 105136957-A0202-12-0071-156
>GD21_110170
Figure 105136957-A0202-12-0071-156

>GD23_145347

Figure 105136957-A0202-12-0071-157
>GD23_145347
Figure 105136957-A0202-12-0071-157

>GD23_145348

Figure 105136957-A0202-12-0071-158
Figure 105136957-A0202-12-0072-159
>GD23_145348
Figure 105136957-A0202-12-0071-158
Figure 105136957-A0202-12-0072-159

>GD24_225038

Figure 105136957-A0202-12-0072-160
>GD24_225038
Figure 105136957-A0202-12-0072-160

>GD28_103338

Figure 105136957-A0202-12-0072-161
>GD28_103338
Figure 105136957-A0202-12-0072-161

>GD28_138810

Figure 105136957-A0202-12-0072-162
>GD28_138810
Figure 105136957-A0202-12-0072-162

>GD28_144604

Figure 105136957-A0202-12-0072-163
>GD28_144604
Figure 105136957-A0202-12-0072-163

>GD28_61950

Figure 105136957-A0202-12-0072-164
>GD28_61950
Figure 105136957-A0202-12-0072-164

>GD29_109842

Figure 105136957-A0202-12-0072-165
Figure 105136957-A0202-12-0073-166
>GD29_109842
Figure 105136957-A0202-12-0072-165
Figure 105136957-A0202-12-0073-166

>GD31_102048

Figure 105136957-A0202-12-0073-167
>GD31_102048
Figure 105136957-A0202-12-0073-167

>GD31_147921

Figure 105136957-A0202-12-0073-168
>GD31_147921
Figure 105136957-A0202-12-0073-168

>GD31_154298

Figure 105136957-A0202-12-0073-169
>GD31_154298
Figure 105136957-A0202-12-0073-169

>GD31_231624

Figure 105136957-A0202-12-0073-170
>GD31_231624
Figure 105136957-A0202-12-0073-170

>GD31_256237

Figure 105136957-A0202-12-0073-171
>GD31_256237
Figure 105136957-A0202-12-0073-171

>GD31_269207

Figure 105136957-A0202-12-0073-172
Figure 105136957-A0202-12-0074-173
>GD31_269207
Figure 105136957-A0202-12-0073-172
Figure 105136957-A0202-12-0074-173

>GD32_10102

Figure 105136957-A0202-12-0074-174
>GD32_10102
Figure 105136957-A0202-12-0074-174

>GD32_113960

Figure 105136957-A0202-12-0074-175
>GD32_113960
Figure 105136957-A0202-12-0074-175

>GD32_140719

Figure 105136957-A0202-12-0074-176
>GD32_140719
Figure 105136957-A0202-12-0074-176

>GD32_250806

Figure 105136957-A0202-12-0074-177
>GD32_250806
Figure 105136957-A0202-12-0074-177

>GD32_26136

Figure 105136957-A0202-12-0075-178
>GD32_26136
Figure 105136957-A0202-12-0075-178

>GD32_84470

Figure 105136957-A0202-12-0075-179
>GD32_84470
Figure 105136957-A0202-12-0075-179

>GD32_8579

Figure 105136957-A0202-12-0075-180
>GD32_8579
Figure 105136957-A0202-12-0075-180

>GD36_144381

Figure 105136957-A0202-12-0075-181
>GD36_144381
Figure 105136957-A0202-12-0075-181

>GD36_225459

Figure 105136957-A0202-12-0075-182
>GD36_225459
Figure 105136957-A0202-12-0075-182

>GD39_140471

Figure 105136957-A0202-12-0075-183
>GD39_140471
Figure 105136957-A0202-12-0075-183

>GD40_197303

Figure 105136957-A0202-12-0076-184
>GD40_197303
Figure 105136957-A0202-12-0076-184

>GD40_248676

Figure 105136957-A0202-12-0076-185
>GD40_248676
Figure 105136957-A0202-12-0076-185

>GD41_230207

Figure 105136957-A0202-12-0076-186
>GD41_230207
Figure 105136957-A0202-12-0076-186

>GD43_122542

Figure 105136957-A0202-12-0076-187
>GD43_122542
Figure 105136957-A0202-12-0076-187

>GD43_91996

Figure 105136957-A0202-12-0076-188
>GD43_91996
Figure 105136957-A0202-12-0076-188

>GD50_155565

Figure 105136957-A0202-12-0076-189
>GD50_155565
Figure 105136957-A0202-12-0076-189

>GD51_174300

Figure 105136957-A0202-12-0076-190
>GD51_174300
Figure 105136957-A0202-12-0076-190

>GD52_146010

Figure 105136957-A0202-12-0077-191
>GD52_146010
Figure 105136957-A0202-12-0077-191

>GD52_217520

Figure 105136957-A0202-12-0077-192
>GD52_217520
Figure 105136957-A0202-12-0077-192

>GD52_222708

Figure 105136957-A0202-12-0077-193
>GD52_222708
Figure 105136957-A0202-12-0077-193

>GD56_156703

Figure 105136957-A0202-12-0077-194
>GD56_156703
Figure 105136957-A0202-12-0077-194

>GD56_191144

Figure 105136957-A0202-12-0077-195
>GD56_191144
Figure 105136957-A0202-12-0077-195

>GD58_215195

Figure 105136957-A0202-12-0077-196
>GD58_215195
Figure 105136957-A0202-12-0077-196

>GD59_221492

Figure 105136957-A0202-12-0077-198
Figure 105136957-A0202-12-0078-199
>GD59_221492
Figure 105136957-A0202-12-0077-198
Figure 105136957-A0202-12-0078-199

>GD02_205799

Figure 105136957-A0202-12-0078-200
>GD02_205799
Figure 105136957-A0202-12-0078-200

>GD04_112145

Figure 105136957-A0202-12-0078-201
>GD04_112145
Figure 105136957-A0202-12-0078-201

>GD08_240415

Figure 105136957-A0202-12-0078-203
>GD08_240415
Figure 105136957-A0202-12-0078-203

>GD17_122282

Figure 105136957-A0202-12-0078-204
>GD17_122282
Figure 105136957-A0202-12-0078-204

>GD24_231729

Figure 105136957-A0202-12-0078-205
>GD24_231729
Figure 105136957-A0202-12-0078-205

>GD32_160233

Figure 105136957-A0202-12-0078-206
Figure 105136957-A0202-12-0079-207
>GD32_160233
Figure 105136957-A0202-12-0078-206
Figure 105136957-A0202-12-0079-207

>GD35_157074

Figure 105136957-A0202-12-0079-208
>GD35_157074
Figure 105136957-A0202-12-0079-208

>GD39_124849

Figure 105136957-A0202-12-0079-209
>GD39_124849
Figure 105136957-A0202-12-0079-209

>GD40_172807

Figure 105136957-A0202-12-0079-210
>GD40_172807
Figure 105136957-A0202-12-0079-210

>GD51_86167

Figure 105136957-A0202-12-0079-211
>GD51_86167
Figure 105136957-A0202-12-0079-211

Claims (21)

一種組合包在製備食品、保健品或營養品中之用途,所述食品、保健品或營養品係在抗生素治療中減少抗生素抗性,所述組合包包括以下組合物,其中每種組合物為便於劑量給予和均勻性的劑量單位形式,所述劑量單位形式是單一劑量的物理分散單位:第一組合物,包括:全糧穀物;第二組合物,包括:苦瓜、可溶性膳食纖維和低聚糖;第三組合物,包括:可溶性膳食纖維和低聚糖,其中,所述第一組合物中,蛋白質的重量占所述第一組合物重量的5-40%或10-20%,碳水化合物的重量占所述第一組合物重量的30-80%或50-70%,酯肪的重量占所述第一組合物重量的0.5-30%或2-15%,膳食纖維的重量占所述第一組合物重量的0.5-30%或2-15%,維生素的重量占所述第一組合物重量的0.1-5%或0.5-1%,礦物質的重量占所述第一組合物重量的0.1-2%或0.8-1.2%;其中,所述第一組合物中,所述全糧穀物包括慧仁20wt%、燕麥15wt%、蕎麥15wt%、白扁豆10wt%、黃玉米5wt%、赤小豆5wt%、黃豆5wt%、山藥10wt%、大棗5wt%、花生5wt%、蓮子5wt%和枸杞5wt%;所述第二組合物中,所述苦瓜相對於所述膳食纖維和所述低聚糖的重量 比為10:1-1:1;所述第三組合物中膳食纖維和低聚糖的重量比為6:1-1:6;和所述抗生素選自由β-內醯胺、氨基糖苷、甘氨醯環素、大環內酯、氯黴素類、四環素類、喹諾酮類、多肽類、氨基核苷、糖肽類、林可醯胺、鏈陽菌素、磺胺類、磷黴素和以上的組合所組成之群組。 The use of a combination package in the preparation of foods, health products or nutritional products, the food, health products or nutritional products in the treatment of antibiotics to reduce antibiotic resistance, the combination package includes the following composition, wherein each composition is A dosage unit form for convenient dosage administration and uniformity, the dosage unit form is a single-dose physically dispersed unit: the first composition includes: whole grains; the second composition includes: bitter gourd, soluble dietary fiber and oligomer Sugar; a third composition, including: soluble dietary fiber and oligosaccharides, wherein, in the first composition, the weight of the protein accounts for 5-40% or 10-20% of the weight of the first composition, and carbon water The weight of the compound accounts for 30-80% or 50-70% of the weight of the first composition, the weight of fat accounts for 0.5-30% or 2-15% of the weight of the first composition, and the weight of dietary fiber accounts for The weight of the first composition is 0.5-30% or 2-15%, the weight of vitamins is 0.1-5% or 0.5-1% of the weight of the first composition, and the weight of minerals is the weight of the first composition. 0.1-2% or 0.8-1.2% by weight of the substance; wherein, in the first composition, the whole grains include Huiren 20wt%, oats 15wt%, buckwheat 15wt%, white lentils 10wt%, yellow corn 5wt% %, red bean 5wt%, soybean 5wt%, yam 10wt%, jujube 5wt%, peanut 5wt%, lotus seed 5wt% and wolfberry 5wt%; in the second composition, the bitter melon is relative to the dietary fiber and the The weight of oligosaccharides The ratio is 10:1 to 1:1; the weight ratio of dietary fiber and oligosaccharide in the third composition is 6:1 to 1:6; and the antibiotic is selected from β-lactam, aminoglycoside, Glycylcyclines, macrolides, chloramphenicols, tetracyclines, quinolones, peptides, aminonucleosides, glycopeptides, lincoramide, streptomycin, sulfonamides, fosfomycin and A group composed of the above combinations. 如申請專利範圍第1項所述之用途,其特徵在於,所述第一組合物作為主食服用,其形式為米、麵、粥或飯。 The use described in item 1 of the scope of patent application is characterized in that the first composition is taken as a staple food in the form of rice, noodles, porridge or rice. 如申請專利範圍第2項所述之用途,其特徵在於,用所述第一組合物製備米、麵、粥或飯前,先將第一組合物的種子、果實或其他植株部位粉碎成顆粒,其中1-70%、15-70%、25-70%、30-70%、或50-70%的顆粒直徑為0.65mm或以上。 The use described in item 2 of the scope of patent application is characterized in that before preparing rice, noodles, porridge or meals with the first composition, the seeds, fruits or other plant parts of the first composition are crushed into particles , Where 1-70%, 15-70%, 25-70%, 30-70%, or 50-70% of the particles have a diameter of 0.65mm or more. 如申請專利範圍第1項所述之用途,其特徵在於,每100克的所述第一組合物提供320-400千卡總熱量。 The use described in item 1 of the scope of the patent application is characterized in that every 100 grams of the first composition provides 320-400 kcal total calories. 如申請專利範圍第1項所述之用途,其特徵在於,每100克的所述第一組合物含有:VA 3-857ugRE,VD 0.01-5ugRE,VE 0.2-79.09mg,VB1 0.01-1.89mg,VB2 0.01-1.4mg,VB60.01-1.2mg,VB12 0.1-2.4mg,VC 0.1-1170mg,煙酸0.1-28.4mg,Ca 10-2458mg,P 50-1893mg,K 100-1796mg,Na 5-2200mg,Mg 30-350mg,Fe 0.5-20mg。 The use described in item 1 of the scope of patent application is characterized in that, per 100 grams of the first composition contains: VA 3-857ugRE, VD 0.01-5ugRE, VE 0.2-79.09mg, VB1 0.01-1.89mg, VB2 0.01-1.4mg, VB60.01-1.2mg, VB12 0.1-2.4mg, VC 0.1-1170mg, niacin 0.1-28.4mg, Ca 10-2458mg, P 50-1893mg, K 100-1796mg, Na 5-2200mg , Mg 30-350mg, Fe 0.5-20mg. 如申請專利範圍第1項所述之用途,其特徵在於,所述第一組合物 中的所述蕎麥包括:普通蕎麥或苦蕎麥。 The use described in item 1 of the scope of the patent application is characterized in that the first composition The buckwheat in includes: common buckwheat or tartary buckwheat. 如申請專利範圍第1項所述之用途,其特徵在於,所述第一組合物中的所述蕎麥包括:蕎麥屬種子。 The use described in item 1 of the scope of patent application is characterized in that the buckwheat in the first composition comprises: seeds of the genus Fagopyrum. 如申請專利範圍第1項所述之用途,其特徵在於,所述第一組合物中的所述燕麥包括:燕麥屬植物種子。 The use described in item 1 of the scope of the patent application is characterized in that the oats in the first composition comprise oat seeds. 如申請專利範圍第1項所述之用途,其特徵在於,所述第一組合物中的所述山藥包括:山藥干。 The use described in item 1 of the scope of patent application is characterized in that the yam in the first composition includes: dried yam. 如申請專利範圍第1項所述之用途,其特徵在於,所述第二組合物被製成沖調粉劑,在餐前0.25到1小時服用。 The use described in item 1 of the scope of the patent application is characterized in that the second composition is made into a reconstituted powder and taken 0.25 to 1 hour before a meal. 如申請專利範圍第10項所述之用途,其特徵在於,所述第二組合物的日劑量為5-100克、40-60克或30-80克,以水沖調。 The use described in item 10 of the scope of the patent application is characterized in that the daily dose of the second composition is 5-100 g, 40-60 g or 30-80 g, prepared with water. 如申請專利範圍第1項所述之用途,其特徵在於,所述第二組合物中的所述苦瓜包括:苦瓜屬的植物果實全粉。 The use described in item 1 of the scope of the patent application is characterized in that the bitter gourd in the second composition comprises: whole fruit powder of a plant of the genus Momordica. 如申請專利範圍第12項所述之用途,其特徵在於,所述植物果實全粉是通過冷凍乾燥或噴霧乾燥生產。 The use described in item 12 of the scope of the patent application is characterized in that the whole plant fruit powder is produced by freeze drying or spray drying. 如申請專利範圍第1項所述之用途,其特徵在於,所述第二組合物中的所述苦瓜包括:苦瓜提取物。 The use described in item 1 of the scope of the patent application is characterized in that the bitter gourd in the second composition comprises: bitter gourd extract. 如申請專利範圍第1項所述之用途,其特徵在於,所述第二組合物 中的所述可溶性膳食纖維選自由Fibersol-2、抗性澱粉、聚葡萄糖、纖維素、半纖維素、果膠和樹膠所組成之群組。 The use described in item 1 of the scope of the patent application is characterized in that the second composition The soluble dietary fiber in is selected from the group consisting of Fibersol-2, resistant starch, polydextrose, cellulose, hemicellulose, pectin and gum. 如申請專利範圍第1項所述之用途,其特徵在於,所述第二組合物中的所述低聚糖選自由低聚果糖、低聚半乳糖、低聚木糖、低聚異麥芽糖、大豆低聚糖、低聚葡萄糖、水蘇糖和低聚乳果糖所組成之群組。 The use described in item 1 of the scope of the patent application is characterized in that the oligosaccharides in the second composition are selected from the group consisting of fructooligosaccharides, galacto-oligosaccharides, xylo-oligosaccharides, isomalto-oligosaccharides, Soybean oligosaccharides, oligodextrose, stachyose, and lactulose oligosaccharides. 如申請專利範圍第1項所述之用途,其特徵在於,所述苦瓜的重量占所述第二組合物重量的15-99.8%、30-95%或45-90%,所述可溶性膳食纖維的重量占所述第二組合物重量的0.1-51%、1-40%、3-30%或5-20%,所述低聚糖的重量占所述第二組合物重量的0.1-34%、1-25%、2-20%或3-15%。 The use described in item 1 of the scope of the patent application is characterized in that the weight of the bitter gourd accounts for 15-99.8%, 30-95% or 45-90% of the weight of the second composition, and the soluble dietary fiber The weight of the oligosaccharide accounts for 0.1-51%, 1-40%, 3-30% or 5-20% of the weight of the second composition, and the weight of the oligosaccharide accounts for 0.1-34% of the weight of the second composition %, 1-25%, 2-20% or 3-15%. 如申請專利範圍第1項所述之用途,其特徵在於,所述第三組合物被製成沖調粉劑,於餐前2-5小時服用或與早餐同時服用。 The use described in item 1 of the scope of the patent application is characterized in that the third composition is made into a reconstituted powder, which is taken 2-5 hours before a meal or taken at the same time as breakfast. 如申請專利範圍第18項所述之用途,其特徵在於,所述第三組合物的日劑量為5-200克、30-100克或50-150克,以300-1500毫升水沖調。 The use described in item 18 of the scope of patent application is characterized in that the daily dose of the third composition is 5-200 g, 30-100 g or 50-150 g, prepared with 300-1500 ml of water. 如申請專利範圍第1項所述之用途,其特徵在於,所述第三組合物中的所述可溶性膳食纖維選自由Fibersol-2、抗性澱粉、聚葡萄糖、纖維素、半纖維素、果膠和樹膠所組成之群組。 The use according to item 1 of the scope of patent application, characterized in that the soluble dietary fiber in the third composition is selected from Fibersol-2, resistant starch, polydextrose, cellulose, hemicellulose, fruit Group of gums and gums. 如申請專利範圍第1項所述之用途,其特徵在於,所述第三組合物中的所述低聚糖選自由低聚果糖、低聚半乳糖、低聚木糖、低聚異麥芽糖、大豆低聚糖、低聚葡萄糖、水蘇糖和低聚乳果糖所組成之群組。 The use described in item 1 of the scope of the patent application is characterized in that the oligosaccharides in the third composition are selected from the group consisting of fructooligosaccharides, galacto-oligosaccharides, xylo-oligosaccharides, isomalto-oligosaccharides, Soybean oligosaccharides, oligodextrose, stachyose, and lactulose oligosaccharides.
TW105136957A 2015-10-21 2016-11-11 The use of the combination package in the preparation of food, health products or nutraceuticals TWI718203B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201510688833 2015-10-21
CN201510786350.X 2015-11-13
CN201510786350.XA CN106237168B (en) 2015-10-21 2015-11-13 Application of combined bag in preparation of food, medicine and the like for reducing drug-resistant genome of intestinal flora

Publications (2)

Publication Number Publication Date
TW201717777A TW201717777A (en) 2017-06-01
TWI718203B true TWI718203B (en) 2021-02-11

Family

ID=57626878

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105136957A TWI718203B (en) 2015-10-21 2016-11-11 The use of the combination package in the preparation of food, health products or nutraceuticals

Country Status (3)

Country Link
CN (1) CN106237168B (en)
TW (1) TWI718203B (en)
WO (1) WO2017080498A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110527717B (en) * 2018-01-31 2023-08-18 完美(广东)日用品有限公司 Biomarkers for type 2 diabetes and uses thereof
PT3578056T (en) * 2018-06-08 2021-06-15 Nestle Sa Nutritional composition comprising a lentil product

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102987383A (en) * 2012-11-27 2013-03-27 上海交通大学 Total nutrient composition for balancing intestinal flora structure and improving metabolic syndrome and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102018216A (en) * 2009-09-19 2011-04-20 菲伯纳生物医药有限责任公司 Composition containing bifidobacteria for adjusting intestinal flora and enhancing immunity
CN103053904A (en) * 2012-12-29 2013-04-24 北京中科邦尼国际科技有限责任公司 Compound functional sugar with function of adjusting intestinal flora

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102987383A (en) * 2012-11-27 2013-03-27 上海交通大学 Total nutrient composition for balancing intestinal flora structure and improving metabolic syndrome and application thereof

Also Published As

Publication number Publication date
WO2017080498A1 (en) 2017-05-18
CN106237168B (en) 2020-09-08
CN106237168A (en) 2016-12-21
TW201717777A (en) 2017-06-01

Similar Documents

Publication Publication Date Title
Candela et al. Modulation of gut microbiota dysbioses in type 2 diabetic patients by macrobiotic Ma-Pi 2 diet
Murphy et al. β-glucan metabolic and immunomodulatory properties and potential for clinical application
McBurney et al. Establishing what constitutes a healthy human gut microbiome: state of the science, regulatory considerations, and future directions
Jefferson et al. The effects of intact cereal grain fibers, including wheat bran on the gut microbiota composition of healthy adults: a systematic review
Tiderencel et al. Probiotics for the treatment of type 2 diabetes: A review of randomized controlled trials
Venter et al. Role of dietary fiber in promoting immune health—An EAACI position paper
Bordoni et al. Ancient wheat and health: a legend or the reality? A review on KAMUT khorasan wheat
Smith et al. Lupin kernel fiber consumption modifies fecal microbiota in healthy men as determined by rRNA gene fluorescent in situ hybridization
Fares et al. Nutritional profile and cooking quality of a new functional pasta naturally enriched in phenolic acids, added with β-glucan and Bacillus coagulans GBI-30, 6086
JP2023052629A (en) Treatment of inflammatory bowel diseases with 2&#39;-fucosyllactose compounds
Xu et al. The human microbiota associated with overall health
Chiang et al. Effects of dehulled adlay on the culture count of some microbiota and their metabolism in the gastrointestinal tract of rats
WO2018152306A1 (en) Modulation of host immune cell populations using gut microbiota
TWI718203B (en) The use of the combination package in the preparation of food, health products or nutraceuticals
TWI671017B (en) Application of the combination package in the preparation of a medicine for improving and treating human chubby Willie syndrome
Park et al. Comprehensive analysis of the effect of probiotic intake by the mother on human breast milk and infant fecal microbiota
Yadav et al. Synbiotics as potent functional food: recent updates on therapeutic potential and mechanistic insight
Martyniak et al. Prevention and health benefits of prebiotics, probiotics and postbiotics in acute lymphoblastic leukemia
Nybacka et al. A low FODMAP diet plus traditional dietary advice versus a low-carbohydrate diet versus pharmacological treatment in irritable bowel syndrome (CARIBS): a single-centre, single-blind, randomised controlled trial
JP2023096097A (en) Combination of lactobacilli for the relief of irritable bowel syndrome and for the relief of other gastrointestinal disorders
Kawano et al. High-parameter immune profiling and subjective health assessment of the immunomodulatory effects of paramylon-rich Euglena gracilis EOD-1: A randomized, double-blind, placebo-controlled, parallel-group study
WO2021219001A1 (en) Composition for improving immunity
Murray et al. Possible role of the microbiome in the development of acute malnutrition and implications for food-based strategies to prevent and treat acute malnutrition
Hussein et al. Developments on the applications and the suitability of functional fermented Sour Sobya as a viable source of novel probiotics in the managements of gastrointestinal disorders and blood lipid profiles
Anand et al. Tailored synbiotic powder (functional food) to prevent hyperphosphataemia (kidney disorder)