TWI717868B - Image module and biometric device using the same - Google Patents

Image module and biometric device using the same Download PDF

Info

Publication number
TWI717868B
TWI717868B TW108137852A TW108137852A TWI717868B TW I717868 B TWI717868 B TW I717868B TW 108137852 A TW108137852 A TW 108137852A TW 108137852 A TW108137852 A TW 108137852A TW I717868 B TWI717868 B TW I717868B
Authority
TW
Taiwan
Prior art keywords
light
imaging module
shielding layer
concentrating
aperture
Prior art date
Application number
TW108137852A
Other languages
Chinese (zh)
Other versions
TW202026744A (en
Inventor
林鼎晸
徐煜靈
陳品誠
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to CN201911291307.0A priority Critical patent/CN111435213B/en
Priority to US16/730,634 priority patent/US11113502B2/en
Publication of TW202026744A publication Critical patent/TW202026744A/en
Application granted granted Critical
Publication of TWI717868B publication Critical patent/TWI717868B/en

Links

Images

Abstract

An image module includes a photosensitive element and a light-screening structure disposed on the photosensitive element. The light-screening structure includes a light-transmitting layer, a first light-shielding layer, a second light-shielding layer and a condensing structure. The first light-shielding layer and the second light-shielding layer are disposed in the light-transmitting layer, and the second light-shielding layer is disposed between the first light-shielding layer and the photosensitive element. The first light-shielding layer has a first light passage portion and the second light-shielding layer has a second light passage portion. The condensing structure is disposed on the light-transmitting layer. The first light passage portion and the second light passage portion correspond to the photosensitive element. Light through the condensing structure produces a concentrated beam. The aperture of the first light passage portion and the aperture of the second light passage portion are respectively adjusted according to the width of the concentrated beam at the first light-shielding layer and at the second light-shielding layer.

Description

成像模組與使用其之生物辨識裝置Imaging module and biometric identification device using it

本揭露是有關於一種成像模組與使用其之生物辨識裝置,且特別是有關於一種薄型化的成像模組與使用其之生物辨識裝置。The present disclosure relates to an imaging module and a biometric device using the same, and more particularly to a thin-shaped imaging module and a biometric device using the same.

成像模組(image module)可被使用於各種應用中。舉例而言,成像模組可被應用於生物辨識技術中。生物辨識技術是指利用人體的生理特徵或行為特徵來達到身份辨識與認證授權的技術,人體的生理特徵例如可包含指紋、掌紋、靜脈分布、虹膜、視網膜及臉部特徵等。現今,生物辨識技術已被應用在數位助理、智慧型手機、筆記型電腦、金融卡、電子錢包和海關通行等對於資訊隱密與人身安全有高度需求的領域中。The image module can be used in various applications. For example, the imaging module can be used in biometrics technology. Biometric identification technology refers to a technology that uses the physiological or behavioral characteristics of the human body to achieve identity recognition and authentication. The physiological characteristics of the human body can include fingerprints, palm prints, vein distribution, iris, retina, and facial features, for example. Nowadays, biometrics technology has been applied in digital assistants, smart phones, notebook computers, financial cards, electronic wallets, customs clearance and other fields that have high demands for information privacy and personal safety.

使用生物辨識技術的裝置(例如,指紋辨識裝置、臉部辨識裝置、虹膜辨識裝置等)常需要較大的體積以容納裝置中的成像模組,不利於應用在小型化或可攜式的電子裝置中。若省略成像模組中的構件以達到薄型化的目的,則可能降低生物辨識裝置的辨識成功率。Devices that use biometric technology (for example, fingerprint recognition devices, face recognition devices, iris recognition devices, etc.) often require a larger volume to accommodate the imaging module in the device, which is not conducive to application in miniaturized or portable electronics In the installation. If the components in the imaging module are omitted to achieve the goal of thinning, the identification success rate of the biometric identification device may be reduced.

根據本揭露實施例,提出一種成像模組與使用其之生物辨識裝置,可應用在小型化或可攜式的電子裝置中。此外,也助於降低串擾以提升辨識生物體之特徵點的精準度。According to an embodiment of the present disclosure, an imaging module and a biometric identification device using it are provided, which can be applied to a miniaturized or portable electronic device. In addition, it also helps to reduce crosstalk to improve the accuracy of identifying feature points of organisms.

本揭露實施例包括一種成像模組。成像模組包括一感光元件以及一光篩選結構。光篩選結構設置於感光元件上,且光篩選結構包括一透光層、一第一遮光層、一第二遮光層及一聚光結構。第一遮光層與第二遮光層皆設置於透光層內,且第二遮光層位於第一遮光層與感光元件之間。第一遮光層具有一第一通光部,且第二遮光層具有一第二通光部。聚光結構設置於透光層上。第一通光部與第二通光部對應於感光元件設置。光通過聚光結構產生一聚光束。第一通光部的孔徑與第二通光部的孔徑分別依據聚光束位於第一遮光層之處與位於第二遮光層之處的寬度調整。The disclosed embodiment includes an imaging module. The imaging module includes a photosensitive element and a light screening structure. The light screening structure is arranged on the photosensitive element, and the light screening structure includes a light-transmitting layer, a first light-shielding layer, a second light-shielding layer and a light-concentrating structure. The first light-shielding layer and the second light-shielding layer are both arranged in the light-transmitting layer, and the second light-shielding layer is located between the first light-shielding layer and the photosensitive element. The first light shielding layer has a first light passing portion, and the second light shielding layer has a second light passing portion. The light-concentrating structure is arranged on the light-transmitting layer. The first light passing portion and the second light passing portion are arranged corresponding to the photosensitive element. The light passes through the condensing structure to generate a condensed beam. The aperture of the first light-passing portion and the aperture of the second light-passing portion are respectively adjusted according to the width of the focused beam at the first light shielding layer and the second light shielding layer.

本揭露實施例包括一種成像模組。成像模組包括一感光陣列以及一光篩選結構。感光陣列包括複數個感光元件。光篩選結構設置於感光陣列上,且光篩選結構包括一透光層、複數個遮光層及一聚光陣列。遮光層設置於透光層內,且每個遮光層具有複數個通光部。聚光陣列設置於透光層上,且聚光陣列包括複數個聚光結構。通光部對應於感光元件設置。光通過聚光陣列產生複數聚光束,每個通光部的孔徑依據對應的聚光束位於每個遮光層之處的寬度調整。The disclosed embodiment includes an imaging module. The imaging module includes a photosensitive array and a light screening structure. The photosensitive array includes a plurality of photosensitive elements. The light screening structure is arranged on the photosensitive array, and the light screening structure includes a light-transmitting layer, a plurality of light-shielding layers and a light-concentrating array. The light-shielding layer is arranged in the light-transmitting layer, and each light-shielding layer has a plurality of light passing parts. The concentrating array is arranged on the light-transmitting layer, and the concentrating array includes a plurality of concentrating structures. The light-transmitting part is arranged corresponding to the photosensitive element. The light passes through the condensing array to generate a plurality of condensed beams, and the aperture of each light-passing part is adjusted according to the width of the corresponding condensed beam at each light shielding layer.

本揭露實施例包括一種生物辨識裝置。生物辨識裝置包括一基板、一光源以及前述之成像模組。光源設置於基板上,用以發出光線至生物體。成像模組用以接收光源的光線。The disclosed embodiment includes a biometric identification device. The biometric identification device includes a substrate, a light source and the aforementioned imaging module. The light source is arranged on the substrate to emit light to the biological body. The imaging module is used for receiving light from the light source.

以下的揭露內容提供許多不同的實施例或範例以實施本案的不同特徵。以下的揭露內容敘述各個構件及其排列方式的特定範例,以簡化說明。當然,這些特定的範例並非用以限定。例如,若是本揭露實施例敘述了一第一特徵部件形成於一第二特徵部件之上或上方,即表示其可能包含上述第一特徵部件與上述第二特徵部件是直接接觸的實施例,亦可能包含了有附加特徵部件形成於上述第一特徵部件與上述第二特徵部件之間,而使上述第一特徵部件與第二特徵部件可能未直接接觸的實施例。The following disclosure provides many different embodiments or examples to implement different features of this case. The following disclosure describes specific examples of each component and its arrangement to simplify the description. Of course, these specific examples are not meant to be limiting. For example, if the embodiment of the present disclosure describes that a first characteristic component is formed on or above a second characteristic component, it means that it may include an embodiment in which the first characteristic component and the second characteristic component are in direct contact. It may include an embodiment in which an additional characteristic part is formed between the first characteristic part and the second characteristic part, and the first characteristic part and the second characteristic part may not be in direct contact.

應理解的是,額外的操作步驟可實施於所述方法之前、之間或之後,且在所述方法的其他實施例中,部分的操作步驟可被取代或省略。It should be understood that additional operation steps may be implemented before, during or after the method, and in other embodiments of the method, part of the operation steps may be replaced or omitted.

此外,其中可能用到與空間相關用詞,例如「在… 下方」、「下方」、「較低的」、「在… 上方」、「上方」、「較高的」及類似的用詞,這些空間相關用詞係為了便於描述圖示中一個(些)元件或特徵部件與另一個(些)元件或特徵部件之間的關係,這些空間相關用詞包括使用中或操作中的裝置之不同方位,以及圖式中所描述的方位。當裝置被轉向不同方位時(旋轉90度或其他方位),則其中所使用的空間相關形容詞也將依轉向後的方位來解釋。In addition, terms related to space may be used, such as "below", "below", "lower", "above", "above", "higher" and similar terms. These space-related terms are used to facilitate the description of the relationship between one element(s) or characteristic part and another element(s) or characteristic parts in the illustration. These space-related terms include the difference between devices in use or operation Position, and the position described in the diagram. When the device is turned in different directions (rotated by 90 degrees or other directions), the space-related adjectives used in it will also be interpreted according to the turned position.

在說明書中,「約」、「大約」、「大抵」之用語通常表示在一給定值或範圍的20%之內,或10%之內,或5%之內,或3%之內,或2%之內,或1%之內,或0.5%之內。在此給定的數量為大約的數量,亦即在沒有特定說明「約」、「大約」、「大抵」的情況下,仍可隱含「約」、「大約」、「大抵」之含義。In the manual, the terms "about", "approximately" and "approximately" usually mean within 20%, or within 10%, or within 5%, or within 3% of a given value or range. Or within 2%, or within 1%, or within 0.5%. The quantity given here is an approximate quantity, that is, the meaning of "about", "approximately" and "approximately" can still be implied without specifying "about", "approximately" or "approximately".

除非另外定義,在此使用的全部用語(包括技術及科學用語)具有與此篇揭露所屬之一般技藝者所通常理解的相同涵義。能理解的是,這些用語,例如在通常使用的字典中定義的用語,應被解讀成具有與相關技術及本揭露的背景或上下文一致的意思,而不應以一理想化或過度正式的方式解讀,除非在本揭露實施例有特別定義。Unless otherwise defined, all terms used here (including technical and scientific terms) have the same meanings commonly understood by the general artisans to whom the disclosures in this article belong. It is understandable that these terms, such as those defined in commonly used dictionaries, should be interpreted as having meaning consistent with the relevant technology and the background or context of this disclosure, and should not be used in an idealized or overly formal way. Interpretation, unless there is a special definition in the embodiment of the present disclosure.

以下所揭露之不同實施例可能重複使用相同的參考符號及/或標記。這些重複係為了簡化與清晰的目的,並非用以限定所討論的不同實施例及/或結構之間有特定的關係。The different embodiments disclosed below may use the same reference symbols and/or marks repeatedly. These repetitions are for the purpose of simplification and clarity, and are not used to limit the specific relationship between the different embodiments and/or structures discussed.

第1圖顯示根據本揭露一實施例之成像模組100的部分剖面示意圖。第2圖顯示第1圖之成像模組100的部分放大示意圖。參照第1圖,在一些實施例中,成像模組100可包括一感光陣列10,感光陣列10可包括複數個感光元件11。FIG. 1 shows a schematic partial cross-sectional view of an imaging module 100 according to an embodiment of the disclosure. FIG. 2 shows a partially enlarged schematic diagram of the imaging module 100 of FIG. 1. FIG. 1, in some embodiments, the imaging module 100 may include a photosensitive array 10, and the photosensitive array 10 may include a plurality of photosensitive elements 11.

在一些實施例中,感光陣列10可為一維陣列或二維陣列,但本揭露實施例並非以此為限。在一些實施例中,感光元件11可為一畫素或子畫素,或者可為複數個畫素的一部分。因此,第2圖所示之成像模組100可視為第1圖所示之一感光單元U的放大示意圖,但本揭露實施例並非以此為限。在一些實施例中,感光元件11可包括或對應至少一光電二極體(例如,互補式金屬氧化物半導體(complementary metal-oxide-semiconductor, CMOS)感光元件或電荷耦合元件(charge-coupled device, CCD))及/或其他適當之元件,其可將所接收到的光訊號轉換成電流訊號。In some embodiments, the photosensitive array 10 may be a one-dimensional array or a two-dimensional array, but the embodiment of the disclosure is not limited thereto. In some embodiments, the photosensitive element 11 may be a pixel or a sub-pixel, or may be a part of a plurality of pixels. Therefore, the imaging module 100 shown in FIG. 2 can be regarded as an enlarged schematic diagram of a photosensitive unit U shown in FIG. 1, but the embodiment of the disclosure is not limited thereto. In some embodiments, the photosensitive element 11 may include or correspond to at least one photodiode (for example, a complementary metal-oxide-semiconductor (CMOS) photosensitive element or a charge-coupled device, CCD)) and/or other appropriate components, which can convert the received optical signal into a current signal.

參照第1圖、第2圖,成像模組100可包括一透光層20,透光層20設置於感光陣列10(感光元件11)之上。在一些實施例中,透光層20的材料可包括透明光阻、聚亞醯胺、環氧樹脂、其他適當之材料或前述材料之組合。在一些實施例中,透光層20的材料可包括光固化材料、熱固化材料或上述之組合。舉例而言,可使用旋轉塗佈製程(spin-on coating process)將透光層20形成於感光陣列10(感光元件11)之上,但本揭露實施例並非以此為限。Referring to FIGS. 1 and 2, the imaging module 100 may include a light-transmitting layer 20, and the light-transmitting layer 20 is disposed on the photosensitive array 10 (photosensitive element 11). In some embodiments, the material of the light-transmitting layer 20 may include transparent photoresist, polyimide, epoxy, other suitable materials, or a combination of the foregoing materials. In some embodiments, the material of the light-transmitting layer 20 may include a photocurable material, a thermal curing material, or a combination of the foregoing. For example, a spin-on coating process may be used to form the light-transmitting layer 20 on the photosensitive array 10 (photosensitive element 11), but the embodiment of the disclosure is not limited thereto.

參照第1圖、第2圖,成像模組100可包括複數遮光層,遮光層設置於透光層20內,且每層遮光層皆具有複數個通光部,通光部對應於感光陣列10(感光元件11)設置。具體而言,成像模組100包括一第一遮光層31與一第二遮光層32,第一遮光層31與第二遮光層32設置於透光層20內,且第二遮光層32位於第一遮光層31與感光元件11之間,但本揭露實施例並非以此為限。如第1圖、第2圖所示,第一遮光層31可具有第一通光部31O,第二遮光層32可具有第二通光部32O。1 and 2, the imaging module 100 may include a plurality of light-shielding layers, the light-shielding layer is disposed in the light-transmitting layer 20, and each layer of the light-shielding layer has a plurality of light-passing parts, the light-passing part corresponds to the photosensitive array 10 (Photosensitive element 11) set. Specifically, the imaging module 100 includes a first light-shielding layer 31 and a second light-shielding layer 32. The first light-shielding layer 31 and the second light-shielding layer 32 are disposed in the light-transmitting layer 20, and the second light-shielding layer 32 is located in the Between a light-shielding layer 31 and the photosensitive element 11, but the embodiment of the disclosure is not limited to this. As shown in FIGS. 1 and 2, the first light shielding layer 31 may have a first light passing portion 31O, and the second light shielding layer 32 may have a second light passing portion 32O.

在一些實施例中,遮光層(第一遮光層31與第二遮光層32)的材料可包括金屬,例如:銅(Cu)、銀(Ag)等,但本揭露實施例並非以此為限。在一些實施例中,遮光層的材料可包括光阻(例如,黑光阻或其他適當之非透明的光阻)、油墨(例如,黑色油墨或其他適當之非透明的油墨)、模制化合物(molding compound)(例如,黑色模制化合物或其他適當之非透明的模制化合物)、防焊材料(solder mask)(例如,黑色防焊材料或其他適當之非透明的防焊材料)、環氧樹脂、其他適當之材料或前述材料之組合。在一些實施例中,遮光層的材料可為光固化材料、熱固化材料或前述材料之組合。In some embodiments, the material of the light-shielding layer (the first light-shielding layer 31 and the second light-shielding layer 32) may include metals, such as copper (Cu), silver (Ag), etc., but the embodiments of the disclosure are not limited thereto . In some embodiments, the material of the light shielding layer may include photoresist (for example, black photoresist or other suitable non-transparent photoresist), ink (for example, black ink or other suitable non-transparent ink), molding compound ( molding compound) (for example, black molding compound or other suitable non-transparent molding compound), solder mask (for example, black solder mask or other suitable non-transparent solder mask), epoxy Resin, other suitable materials or a combination of the foregoing materials. In some embodiments, the material of the light-shielding layer may be a photocurable material, a thermal curing material, or a combination of the foregoing materials.

在一些實施例中,可進行圖案化製程將前述材料圖案化,以形成遮光層(第一遮光層31與第二遮光層32)。舉例來說,前述圖案化製程可包括軟烘烤(soft baking)、光罩對準(mask aligning)、曝光(exposure)、曝光後烘烤(post-exposure baking)、顯影(developing)、潤洗(rinsing)、乾燥、其他適當的步驟或前述步驟之組合,但本揭露實施例並非以此為限。In some embodiments, a patterning process may be performed to pattern the aforementioned materials to form a light-shielding layer (the first light-shielding layer 31 and the second light-shielding layer 32). For example, the aforementioned patterning process may include soft baking, mask aligning, exposure, post-exposure baking, developing, and rinsing. (Rinsing), drying, other appropriate steps, or a combination of the foregoing steps, but the embodiments of the present disclosure are not limited thereto.

參照第1圖、第2圖,成像模組100可包括一聚光陣列40,聚光陣列40設置於透光層20上。如第1圖所示,聚光陣列40可包括複數個聚光結構41。舉例來說,聚光陣列40可為一維陣列或二維陣列,但本揭露實施例並非以此為限。Referring to FIGS. 1 and 2, the imaging module 100 may include a light-concentrating array 40, and the light-concentrating array 40 is disposed on the light-transmitting layer 20. As shown in FIG. 1, the concentrating array 40 may include a plurality of concentrating structures 41. For example, the concentrating array 40 may be a one-dimensional array or a two-dimensional array, but the embodiment of the disclosure is not limited thereto.

在一些實施例中,聚光結構41的材料可為透明材料。舉例來說,聚光結構41的材料可包括玻璃、環氧樹脂、矽氧樹脂、聚氨酯、其他適當之材料或前述材料之組合,但本揭露實施例並非以此為限。在一些實施例中,可使用光阻熱回流法(photoresist reflow method)、熱壓成型法(hot embossing method)、其他適當的方法或上述之組合形成聚光結構41。在一些實施例中,形成聚光結構41(聚光陣列40)的步驟可包括旋轉塗佈製程、微影製程、蝕刻製程、其他適當之製程或上述之組合。In some embodiments, the material of the light-concentrating structure 41 may be a transparent material. For example, the material of the light-concentrating structure 41 may include glass, epoxy resin, silicone resin, polyurethane, other suitable materials or a combination of the foregoing materials, but the embodiment of the disclosure is not limited thereto. In some embodiments, a photoresist reflow method, a hot embossing method, other appropriate methods, or a combination thereof may be used to form the light-concentrating structure 41. In some embodiments, the step of forming the light-concentrating structure 41 (the light-concentrating array 40) may include a spin coating process, a photolithography process, an etching process, other appropriate processes, or a combination of the foregoing.

在本實施例中,聚光結構41可為曲率半徑為R的一微透鏡(micro-lens)結構,例如,半凸透鏡或凸透鏡,但本揭露實施例並非以此為限。第3A圖至第3D圖顯示不同態樣的聚光結構的示意圖。如第3A圖與第3B圖所示,聚光結構41A(圓錐)與聚光結構41B(四角錐)可為微角椎(micro-pyramid)結構。如第3C圖與第3D圖所示,聚光結構41C(平頂圓錐)與聚光結構41D(平頂四角錐)可為微梯形(micro-trapezoidal)結構。或者,聚光結構可為一折射率漸變(gradient-index)結構(未繪示)。In this embodiment, the condensing structure 41 may be a micro-lens structure with a radius of curvature R, for example, a semi-convex lens or a convex lens, but the embodiment of the disclosure is not limited thereto. Figures 3A to 3D show schematic diagrams of different light-concentrating structures. As shown in Figs. 3A and 3B, the light-concentrating structure 41A (cone) and the light-concentrating structure 41B (tetragonal pyramid) may be micro-pyramid structures. As shown in FIGS. 3C and 3D, the light-concentrating structure 41C (flat-topped cone) and the light-collecting structure 41D (flat-topped quadrangular pyramid) may be micro-trapezoidal structures. Alternatively, the light-concentrating structure may be a gradient-index structure (not shown).

如第1圖所示,在本實施例中,透光層20、遮光層(第一遮光層31與第二遮光層32)及聚光陣列40(聚光結構41)可形成為一光篩選結構50。亦即,光篩選結構50可設置於感光陣列10(感光元件11)上,用以篩選入射光角度。當光線從上往下入射,光篩選結構50允許接近垂直的光線進入感光陣列10,並且吸收其餘角度的入射光。As shown in Figure 1, in this embodiment, the light-transmitting layer 20, the light-shielding layer (the first light-shielding layer 31 and the second light-shielding layer 32) and the light-concentrating array 40 (the light-concentrating structure 41) can be formed as a light screening Structure 50. That is, the light screening structure 50 can be disposed on the photosensitive array 10 (photosensitive element 11) to filter the angle of incident light. When light is incident from top to bottom, the light screening structure 50 allows nearly vertical light to enter the photosensitive array 10 and absorbs incident light at other angles.

在本揭露實施例中,光通過聚光陣列40(聚光結構41)可產生複數聚光束,且遮光層中的每個通光部的孔徑可依據對應的聚光束位於遮光層之處的寬度調整。In the disclosed embodiment, the light passing through the condensing array 40 (the condensing structure 41) can generate a plurality of condensed beams, and the aperture of each light-passing portion in the light shielding layer can be based on the width of the corresponding condensed beam at the light shielding layer. Adjustment.

具體而言,如第2圖所示,第一通光部31O的孔徑為WO1 ,第二通光部32O的孔徑為WO2 ,孔徑WO1 大於或等於孔徑WO2 (WO1 ≥WO2 ),且孔徑WO1 的中心對準孔徑WO2 的中心,聚光結構41(微透鏡)的弧頂點41T、孔徑WO1 的中心、孔徑WO2 的中心、感光元件11的中心、聚光束L的焦點F相互對準且位於同一軸線上。聚光束L位於第一遮光層31之處的寬度為A1 ,聚光束L位於第二遮光層32之處的寬度為A2 ,WO1 與A1 的比值為Q1 (

Figure 02_image001
),WO2 與A2 的比值為Q2 (
Figure 02_image003
),Q1 與Q2 的幾何平均數大於0.6且小於或等於1.8(
Figure 02_image005
。進一步解釋比值關係,若比值Q1 大於1,代表孔徑WO1 大於聚光束L位於第一遮光層31之處的寬度A1 ;若比值Q1 小於1,代表孔徑WO1 小於聚光束L位於第一遮光層31之處的寬度A1 。類似地,若比值Q2 大於1,代表孔徑WO2 大於聚光束L位於第二遮光層32之處的寬度A2 ;若比值Q2 小於1,代表孔徑WO2 小於聚光束L位於第二遮光層32之處的寬度A2 。Specifically, as shown in Figure 2, the aperture of the first light-transmitting portion 31O is WO 1 , the aperture of the second light-transmitting portion 32O is WO 2 , and the aperture WO 1 is greater than or equal to the aperture WO 2 (WO 1 ≥WO 2 ), and the center of the aperture WO 1 is aligned with the center of the aperture WO 2 , the arc apex 41T of the light collecting structure 41 (microlens), the center of the aperture WO 1 , the center of the aperture WO 2 , the center of the photosensitive element 11, the focusing beam L The focal points F are aligned with each other and are located on the same axis. The width of the focused light beam L at the first light shielding layer 31 is A 1 , the width of the focused light beam L at the second light shielding layer 32 is A 2 , and the ratio of WO 1 to A 1 is Q 1 (
Figure 02_image001
), the ratio of WO 2 to A 2 is Q 2 (
Figure 02_image003
), the geometric mean of Q 1 and Q 2 is greater than 0.6 and less than or equal to 1.8 (
Figure 02_image005
. To further explain the ratio relationship, if the ratio Q 1 is greater than 1, it means that the aperture WO 1 is larger than the width A 1 where the focused beam L is located on the first light shielding layer 31; if the ratio Q 1 is less than 1, it means that the aperture WO 1 is smaller than the focused beam L in the first light shielding layer 31. A width A 1 of the light shielding layer 31. Similarly, if the ratio Q 2 is greater than 1, it means that the aperture WO 2 is larger than the width A 2 where the condensed beam L is located at the second light shielding layer 32; if the ratio Q 2 is less than 1, it means that the aperture WO 2 is smaller than the condensed beam L in the second light shielding layer 32. Width A 2 at layer 32.

要注意的是,光篩選結構50中的遮光層的數量並未限定於第1圖與第2圖所示的兩層。在一些實施例中,光篩選結構50可包括n層遮光層,n為大於或等於2的正整數。在這些遮光層中,第k層遮光層中的每個通光部的孔徑為WOk ,聚光束L位於第k層遮光層之處的寬度為Ak ,WOk 與Ak 的比值為Qk

Figure 02_image007
,k為小於或等於n的正整數。亦即,在這些實施例中,光篩選結構50可滿足以下條件(後方將稱為公式(1)),比值Qk 的幾何平均數大於0.6且小於或等於1.8:
Figure 02_image009
…(1)It should be noted that the number of light shielding layers in the light screening structure 50 is not limited to the two layers shown in FIG. 1 and FIG. 2. In some embodiments, the light screening structure 50 may include n light-shielding layers, and n is a positive integer greater than or equal to 2. Among these light-shielding layers, the aperture of each light-passing part in the k-th light-shielding layer is WO k , the width of the focused beam L at the k-th light-shielding layer is Ak , and the ratio of WO k to Ak is Q k
Figure 02_image007
, K is a positive integer less than or equal to n. That is, in these embodiments, the light screening structure 50 can satisfy the following conditions (hereinafter referred to as formula (1)), and the geometric mean of the ratio Q k is greater than 0.6 and less than or equal to 1.8:
Figure 02_image009
…(1)

在此,每個通光部的孔徑WOk 皆小於聚光結構41的外徑D(即,WOk >D,外徑D測量自聚光結構41的弧面與透光層20之頂面交界處至另一遠端交界處之水平距離)。當光篩選結構50滿足前述公式(1)時,可得到較佳的成像品質,後方將透過實施例與比較例進行說明。Here, the aperture WO k of each light-passing part is smaller than the outer diameter D of the light-concentrating structure 41 (ie, WO k >D, the outer diameter D measures the arc surface of the self-concentrating structure 41 and the top surface of the light-transmitting layer 20 The horizontal distance from the junction to another remote junction). When the light screening structure 50 satisfies the aforementioned formula (1), better imaging quality can be obtained, which will be described later through the embodiment and the comparative example.

此外,如第2圖所示,聚光束L位於第k層遮光層之處的寬度Ak 可根據三角等比關係計算得知。亦即,聚光束L位於第k層遮光層之處的寬度Ak 可滿足以下條件(公式(2)):

Figure 02_image011
…(2)In addition, as shown in Fig. 2, the width Ak of the spot where the focused beam L is located on the k-th light-shielding layer can be calculated according to the triangular proportional relationship. That is, the focused beam in the width L A k at the k-th layer of the light-shielding layer may satisfy the following condition (equation (2)):
Figure 02_image011
…(2)

在此,f為聚光結構41的焦距,LH為聚光結構41的最大厚度(測量自聚光結構41的弧頂點41T至透光層20的頂面20T),Hk 為第k層遮光層與聚光結構41的對焦位置(即,焦點F)的距離(例如,第一遮光層31與聚光結構41的焦點F的距離為H1 ,而第二遮光層32與聚光結構41的焦點F的距離為H2 ),感光元件11位於焦點F處。Here, f is the focal length of the concentrating structure 41, LH is the maximum thickness of the concentrating structure 41 (measured from the arc apex 41T of the concentrating structure 41 to the top surface 20T of the light-transmitting layer 20), and H k is the shading layer of the k The distance between the layer and the focusing position (ie, the focal point F) of the light-concentrating structure 41 (for example, the distance between the first light-shielding layer 31 and the focal point F of the light-concentrating structure 41 is H 1 , and the second light-shielding layer 32 and the light-concentrating structure 41 The distance of the focal point F is H 2 ), and the photosensitive element 11 is located at the focal point F.

在一些實施例中,若要達到更佳的成像品質,第k層遮光層中每個通光部的孔徑WOk 可滿足以下條件(公式(3)),即每個通光部的孔徑WOk 介於聚光束L位於第k層遮光層之處的寬度Ak 之乘積0.6與1.8之間:

Figure 02_image013
…(3)In some embodiments, in order to achieve better imaging quality, the aperture WO k of each light-passing part in the k-th shading layer can satisfy the following condition (formula (3)), that is, the aperture WO k of each light-passing part k is between 0.6 and 1.8 of the product of the width A k where the focused beam L is located on the k-th shading layer:
Figure 02_image013
…(3)

雖然在第2圖所示的實施例中,聚光束L的對焦位置(即,焦點F)位於對應的感光元件11的頂表面上,但本揭露實施例並非以此為限。第4圖顯示根據本揭露另一實施例之成像模組102的部分剖面示意圖。第5圖顯示根據本揭露又一實施例之成像模組104的部分剖面示意圖。第1、2圖繪示感光元件11位於聚光結構41的焦點F的型態(即,焦點型);第4圖、第5圖繪示感光元件11遠離聚光結構41的焦點F的型態(即,離焦型)。在第4圖、第5圖的實施例中,孔徑WO1 大於或等於孔徑WO2 (WO1 ≥WO2 ),且孔徑WO1 的中心對準孔徑WO2 的中心,聚光結構41(微透鏡)的弧頂點41T、孔徑WO1 的中心、孔徑WO2 的中心、感光元件11的中心、聚光束L的焦點F相互對準且位於同一軸線上。Although in the embodiment shown in FIG. 2, the focus position (ie, the focus F) of the focused beam L is located on the top surface of the corresponding photosensitive element 11, the embodiment of the disclosure is not limited to this. FIG. 4 shows a schematic partial cross-sectional view of an imaging module 102 according to another embodiment of the disclosure. FIG. 5 shows a schematic partial cross-sectional view of an imaging module 104 according to another embodiment of the disclosure. Figures 1 and 2 show the type of the photosensitive element 11 at the focal point F of the condensing structure 41 (ie, the focal point type); Figures 4 and 5 show the type of the photosensitive element 11 away from the focal point F of the condensing structure 41 State (ie, defocus type). In the embodiment shown in Figures 4 and 5, the aperture WO 1 is greater than or equal to the aperture WO 2 (WO 1 ≥WO 2 ), and the center of the aperture WO 1 is aligned with the center of the aperture WO 2 , and the light-concentrating structure 41 (micro lens) arc point 41T, the central aperture WO 1, WO 2 the central aperture, the center of the photosensitive member 11, the focal point of the focused beam F L mutually aligned and positioned on the same axis.

在第4圖、第5圖所示的實施例中,每個聚光束L的焦點F與對應的感光元件11的頂表面具有一距離HS。在一些實施例中,聚光束L的焦點F與感光元件11的頂表面的距離HS可滿足以下條件(後方將稱為公式(4)):

Figure 108137852-A0305-02-0017-1
In the embodiments shown in FIGS. 4 and 5, the focal point F of each focused beam L has a distance HS from the top surface of the corresponding photosensitive element 11. In some embodiments, the distance HS between the focal point F of the condensed beam L and the top surface of the photosensitive element 11 may satisfy the following conditions (hereinafter referred to as formula (4)):
Figure 108137852-A0305-02-0017-1

在此,WS為感光元件的最小寬度。此外,定義焦點F為的位置為0,當感光元件11在焦點F下方(即第4圖所示之成像模組102),焦點F與對應的感光元件11的頂表面的距離HS<0(離焦型,例如HS=-25μm);當感光元件11在焦點F上方(即第5圖所示之成像模組104),HS>0(離焦型,例如HS=+25μm)。 Here, WS is the minimum width of the photosensitive element. In addition, the position where the focal point F is defined is 0. When the photosensitive element 11 is below the focal point F (ie, the imaging module 102 shown in Figure 4), the distance between the focal point F and the top surface of the corresponding photosensitive element 11 HS<0 ( Defocus type, for example HS=-25μm); when the photosensitive element 11 is above the focal point F (ie the imaging module 104 shown in Figure 5), HS>0 (defocus type, for example HS=+25μm).

以下提供多個本揭露實施例之成像模組的具體規格,並提供多個比較例之成像模組的具體規格與本揭露實施例進行比較。 The specific specifications of the imaging modules of a number of embodiments of the disclosure are provided below, and the specific specifications of the imaging modules of a plurality of comparative examples are provided for comparison with the embodiments of the disclosure.

以實施例1舉例說明(搭配第1、2圖焦點型(HS=0)之成像模組100),相鄰二聚光結構41的中心間距P為50.0μm(微米),聚光結構41的曲率半徑R為40.0μm,聚光結構41的外徑D為40.0μm,且聚光結構41的最大厚度LH為5.36μm。透光層20的折射率N為1.57,第一遮光層31與聚光結構41的焦點F的距離H1為48.93μm,第二遮光層32與聚光結構41的焦點F的距離H2為18.93μm。聚光束L位於第一遮光層31之處的寬度A1為19.78μm,聚光束L位於第二遮光層32之處的寬度A2為7.66μm。第一通光部31O的孔徑WO1 為19.78 μm,第二通光部32O的孔徑WO2 為7.66 μm,即WO1 與A1 的比值Q1 為1,WO2 與A2 的比值Q2 為1。Q1 與Q2 的幾何平均數

Figure 02_image017
。感光元件11的最小寬度WS為30 μm。Taking Example 1 as an example (with the imaging module 100 of the focal type (HS=0) in Figures 1 and 2), the center-to-center distance P of adjacent dicondensing structures 41 is 50.0 μm (micrometers). The radius of curvature R is 40.0 μm, the outer diameter D of the concentrating structure 41 is 40.0 μm, and the maximum thickness LH of the concentrating structure 41 is 5.36 μm. The refractive index N of the light-transmitting layer 20 is 1.57, the distance H 1 between the first light-shielding layer 31 and the focal point F of the light-concentrating structure 41 is 48.93 μm, and the distance H 2 between the second light-shielding layer 32 and the focal point F of the light-concentrating structure 41 is 18.93μm. The width A 1 of the focused beam L at the first light shielding layer 31 is 19.78 μm, and the width A 2 of the focused beam L at the second light shielding layer 32 is 7.66 μm. The first light passing portion 31O WO aperture 1 is 19.78 μm, the second portion of light through the aperture WO 32O and 2 is 7.66 μm, i.e. WO ratio of 1 and Q 1 is A 1 1, WO 2 and the ratio of A 2 Q 2 Is 1. Geometric mean of Q 1 and Q 2
Figure 02_image017
. The minimum width WS of the photosensitive element 11 is 30 μm.

實施例1至實施例4的具體規格請參照下列表一,且所有實施例均滿足前述之公式(1)。具體而言,實施例1至實施例4之成像模組的結構可參考第1圖與第2圖所示之成像模組100,且實施例1至實施例4均滿足前述之公式(1)。Please refer to the following Table 1 for the specific specifications of Examples 1 to 4, and all the examples satisfy the aforementioned formula (1). Specifically, the structure of the imaging module in Embodiments 1 to 4 can refer to the imaging module 100 shown in Fig. 1 and Fig. 2, and all embodiments 1 to 4 satisfy the aforementioned formula (1) .

表一   實施例1 實施例2 實施例3 實施例4 N 1.57 1.57 1.57 1.57 P (μm) 50 50 50 50 R (μm) 40 40 40 40 D (μm) 40 40 40 40 LH (μm) 5.36 5.36 5.36 5.36 H1 (μm) 48.93 48.93 48.93 48.93 H2 (μm) 18.93 18.93 18.93 18.93 HS (um) 0 0 0 0 A1 (μm) 19.78 19.78 19.78 19.78 A2 (μm) 7.66 7.66 7.66 7.66 WO1 (μm) 19.78 15.82 35.6 19.78 WO2 (μm) 7.66 6.12 13.78 19.78 Q1 1 0.8 1.8 1 Q2 1 0.8 1.8 2.59

Figure 02_image019
1 0.8 1.8 1.293 WS (μm) 30 30 30 30 Table I Example 1 Example 2 Example 3 Example 4 N 1.57 1.57 1.57 1.57 P (μm) 50 50 50 50 R (μm) 40 40 40 40 D (μm) 40 40 40 40 LH (μm) 5.36 5.36 5.36 5.36 H 1 (μm) 48.93 48.93 48.93 48.93 H 2 (μm) 18.93 18.93 18.93 18.93 HS (um) 0 0 0 0 A 1 (μm) 19.78 19.78 19.78 19.78 A 2 (μm) 7.66 7.66 7.66 7.66 WO 1 (μm) 19.78 15.82 35.6 19.78 WO 2 (μm) 7.66 6.12 13.78 19.78 Q 1 1 0.8 1.8 1 Q 2 1 0.8 1.8 2.59
Figure 02_image019
1 0.8 1.8 1.293
WS (μm) 30 30 30 30

比較例1至比較例3的具體規格請參照下列表二,且所有比較例均不滿足前述之公式(1)。具體而言,比較例1至比較例3之成像模組的結構可參考第1圖與第2圖所示之成像模組100(焦點型,HS=0),但比較例1至比較例3均不滿足前述之公式(1)。比較例1的

Figure 02_image021
係公式(1)的臨界值,但不符合公式(1)。For the specific specifications of Comparative Example 1 to Comparative Example 3, please refer to Table 2 below, and all the comparative examples do not satisfy the aforementioned formula (1). Specifically, the structure of the imaging module of Comparative Example 1 to Comparative Example 3 can refer to the imaging module 100 (focus type, HS=0) shown in Figure 1 and Figure 2, but Comparative Example 1 to Comparative Example 3 None of the above formula (1) is satisfied. Of comparative example 1
Figure 02_image021
It is the critical value of formula (1), but does not meet formula (1).

表二   比較例1 比較例2 比較例3 N 1.57 1.57 1.57 P (μm) 50 50 50 R (μm) 40 40 40 D (μm) 40 40 40 LH (μm) 5.36 5.36 5.36 H1 (μm) 48.93 48.93 48.93 H2 (μm) 18.93 18.93 18.93 HS (um) 0 0 0 A1 (μm) 19.78 19.78 19.78 A2 (μm) 7.66 7.66 7.66 WO1 (μm) 11.86 39.56 30 WO2 (μm) 4.6 15.3 30 Q1 0.6 2 1.52 Q2 0.6 2 3.92

Figure 02_image019
0.6 2 2.972 WS (μm) 30 30 30 Table II Comparative example 1 Comparative example 2 Comparative example 3 N 1.57 1.57 1.57 P (μm) 50 50 50 R (μm) 40 40 40 D (μm) 40 40 40 LH (μm) 5.36 5.36 5.36 H 1 (μm) 48.93 48.93 48.93 H 2 (μm) 18.93 18.93 18.93 HS (um) 0 0 0 A 1 (μm) 19.78 19.78 19.78 A 2 (μm) 7.66 7.66 7.66 WO 1 (μm) 11.86 39.56 30 WO 2 (μm) 4.6 15.3 30 Q 1 0.6 2 1.52 Q 2 0.6 2 3.92
Figure 02_image019
0.6 2 2.972
WS (μm) 30 30 30

當第一通光部31O的孔徑WO1 與聚光束L位於第一遮光層31之處的寬度A1 相等,第二通光部32O的孔徑WO2 與聚光束L位於第二遮光層32之處的寬度A2 相等(即,Q1 =Q2 =1,且

Figure 02_image017
),符合公式(1),可視為理想值。亦即,以實施例1的具體規格製成的成像模組可為一理想的成像模組(即可獲得最佳的成像品質)。第6圖顯示以實施例1(實施例1之成像模組的結構可參考第1圖與第2圖所示之成像模組100)的具體規格製成的成像模組的角度篩選分布曲線。第6圖的橫軸為角度,縱軸為收光效率(單位:百分比)。在0度時,收光效率達到90 %,即表示當光源以0度入射時,感光元件11所接收的光通量比上入射光源的光通量值為0.9,即為90 %。如第6圖所示,當光源以0~10度入射時的收光效率極值達到90 %,而以10~90度入射時的雜訊低於10 %。When the aperture WO 1 of the first light-passing portion 31O is equal to the width A 1 where the focused beam L is located on the first light shielding layer 31, the aperture WO 2 of the second light-passing portion 32O and the focused beam L are located between the second light shielding layer 32 The width A 2 at the position is equal (ie, Q 1 =Q 2 =1, and
Figure 02_image017
), in accordance with formula (1), can be regarded as an ideal value. That is, the imaging module made with the specific specifications of Embodiment 1 can be an ideal imaging module (that is, the best imaging quality can be obtained). FIG. 6 shows the angular screening distribution curve of the imaging module made with the specific specifications of Embodiment 1 (for the structure of the imaging module in Embodiment 1, refer to the imaging module 100 shown in FIG. 1 and FIG. 2). In Figure 6, the horizontal axis is the angle, and the vertical axis is the light collection efficiency (unit: percentage). At 0 degrees, the light collection efficiency reaches 90%, which means that when the light source is incident at 0 degrees, the luminous flux received by the photosensitive element 11 is 0.9, that is, 90%. As shown in Figure 6, when the light source is incident from 0 to 10 degrees, the extreme value of the light collection efficiency reaches 90%, and the noise when incident from 10 to 90 degrees is less than 10%.

可透過與實施例1的角度篩選分布曲線進行比較,判斷成像模組是否可具有良好的成像品質(即可具有較高的解析度)。在此,所述良好的成像品質須滿足主要訊號強度大於原始訊號強度的30 %(收光效率大於30 %)、未出現大角度的雜訊干擾(雜訊強度小於主要訊號強度的10 %)及主要訊號的波束角(半功率角;beam angle;指於垂直光束中心線之一平面上,光強度等於50 %最大光強度的二個方向之間的夾角)小於10度。一般而言,當感光元件11位於多層結構(例如,空氣透光層、遮光層等元件)下方時,主要訊號的波束角需要小於10度才能解析200 μm寬度的生物辨識訊號(例如,指紋訊號)。若主要訊號的波束角大於10度,可能使指紋訊號互相重疊導致無法解析生物辨識訊號。It can be judged whether the imaging module can have a good imaging quality (that is, a higher resolution) by comparing with the angle screening distribution curve of Example 1. Here, the good image quality must satisfy that the main signal strength is greater than 30% of the original signal strength (receiving efficiency is greater than 30%), and no large-angle noise interference (noise strength is less than 10% of the main signal strength) And the beam angle of the main signal (half power angle; beam angle; refers to the angle between two directions at which the light intensity is equal to 50% of the maximum light intensity on a plane perpendicular to the center line of the beam) is less than 10 degrees. Generally speaking, when the photosensitive element 11 is located under a multilayer structure (e.g., air-transmissive layer, light-shielding layer, etc.), the beam angle of the main signal needs to be less than 10 degrees to resolve the 200 μm width biometric signal (e.g., fingerprint signal). ). If the beam angle of the main signal is greater than 10 degrees, the fingerprint signals may overlap each other and the biometric signal cannot be resolved.

簡言之,在0~10度的範圍內,收光能量之訊號強度大於原始訊號強度的30 %(即收光效率大於30 %),在10~90度的範圍內,雜訊強度小於主要訊號強度的10 %,且主要訊號的波束角小於10度,即可判斷成像模組具有良好的成像品質。In short, in the range of 0~10 degrees, the signal intensity of the received light energy is greater than 30% of the original signal intensity (ie, the receiving efficiency is greater than 30%), and in the range of 10~90 degrees, the noise intensity is less than the main If the signal intensity is 10%, and the main signal beam angle is less than 10 degrees, it can be judged that the imaging module has good imaging quality.

第7圖顯示以實施例2(實施例2之成像模組的結構可參考第1圖與第2圖所示之成像模組100)的具體規格製成的成像模組的角度篩選分布曲線。如第7圖所示之實施例2(

Figure 02_image023
,符合公式(1))的角度篩選分布曲線結果,在0度時收光效率達到50 %,當光源以0~10度入射時的收光效率極值達到50 %(收光效率大於30 %),且主要訊號的波束角小於10度,而以10~90度入射時的雜訊低於10 %,因此可判斷實施例2之成像模組具有良好的成像品質。FIG. 7 shows the angular screening distribution curve of the imaging module made with the specific specifications of Embodiment 2 (the structure of the imaging module in Embodiment 2 can refer to the imaging module 100 shown in FIG. 1 and FIG. 2). Example 2 as shown in Figure 7 (
Figure 02_image023
, In accordance with the results of the angle screening distribution curve of formula (1)), the light collection efficiency reaches 50% at 0 degrees, and the extreme value of light collection efficiency reaches 50% when the light source is incident from 0 to 10 degrees (the light collection efficiency is greater than 30% ), and the beam angle of the main signal is less than 10 degrees, and the noise when incident at 10 to 90 degrees is less than 10%. Therefore, it can be judged that the imaging module of Embodiment 2 has good imaging quality.

第8圖顯示以比較例1的具體規格製成的成像模組的角度篩選分布曲線。如第8圖所示之比較例1(

Figure 02_image025
,不符合公式(1))的角度篩選分布曲線結果,當光源以0~10度入射時的極值不到30 %(收光效率小於30 %),即感光元件接收的光線強度不足,因此可判斷比較例1之成像模組不具有良好的成像品質。Figure 8 shows the angular screening distribution curve of the imaging module made with the specific specifications of Comparative Example 1. As shown in Figure 8 of Comparative Example 1 (
Figure 02_image025
, Does not meet the results of the angle screening distribution curve of formula (1)), when the light source is incident from 0 to 10 degrees, the extreme value is less than 30% (light collection efficiency is less than 30%), that is, the light intensity received by the photosensitive element is insufficient, so It can be judged that the imaging module of Comparative Example 1 does not have good imaging quality.

第9圖顯示以實施例3(實施例3之成像模組的結構可參考第1圖與第2圖所示之成像模組100)的具體規格製成的成像模組的角度篩選分布曲線。如第9圖所示之實施例3(

Figure 02_image027
,符合公式(1))的角度篩選分布曲線結果,當光源以0~10度入射時的收光效率極值達到95 %(收光效率大於30 %),且主要訊號的波束角小於10度。雖然在約30度與約55度處出現雜訊干擾,但雜訊強度小於主要訊號的10 %,因此仍可判斷成像模組具有良好的成像品質。FIG. 9 shows the angular screening distribution curve of the imaging module made with the specific specifications of Embodiment 3 (for the structure of the imaging module of Embodiment 3, refer to the imaging module 100 shown in FIG. 1 and FIG. 2). Example 3 as shown in Figure 9 (
Figure 02_image027
,According to the results of the angle screening distribution curve of formula (1)), when the light source is incident from 0 to 10 degrees, the extreme value of the light collection efficiency reaches 95% (the light collection efficiency is greater than 30%), and the beam angle of the main signal is less than 10 degrees . Although noise interference occurs at about 30 degrees and about 55 degrees, the noise intensity is less than 10% of the main signal, so it can still be judged that the imaging module has good imaging quality.

第10圖顯示以比較例2的具體規格製成的成像模組的角度篩選分布曲線。如第10圖所示,比較例1(

Figure 02_image029
,不符合公式(1))的角度篩選分布曲線結果,當光源以0~10度入射時的收光效率極值達到95 %。然而,在30度與52度出現雜訊干擾,且在52度出現的雜訊強度大於主要訊號的10 %(即出現串擾(cross talk)),因此可判斷比較例2之成像模組不具有良好的成像品質。Figure 10 shows the angular screening distribution curve of the imaging module made with the specific specifications of Comparative Example 2. As shown in Figure 10, Comparative Example 1 (
Figure 02_image029
, The angle screening distribution curve result that does not meet the formula (1)), when the light source is incident from 0 to 10 degrees, the extreme value of the light collection efficiency reaches 95%. However, noise interference occurs at 30 degrees and 52 degrees, and the noise intensity at 52 degrees is greater than 10% of the main signal (cross talk), so it can be judged that the imaging module of Comparative Example 2 does not have Good imaging quality.

實施例5至實施例8的具體規格請參照下列表三,且所有實施例均滿足前述之公式(1)與公式(4)。具體而言,實施例5、實施例6之成像模組的結構可參考第4圖所示之成像模組102(離焦型HS=-25),實施例7、實施例8之成像模組的結構可參考第5圖所示之成像模組104(離焦型HS=+25)且實施例5至實施例8均滿足前述之公式(1)與公式(4)。Please refer to the following Table 3 for the specific specifications of Embodiment 5 to Embodiment 8, and all the embodiments satisfy the aforementioned formula (1) and formula (4). Specifically, the structure of the imaging module of the embodiment 5 and the embodiment 6 can refer to the imaging module 102 (defocus type HS=-25) shown in Figure 4, and the imaging module of the embodiment 7 and embodiment 8. Refer to the imaging module 104 (defocus HS=+25) shown in Fig. 5 for the structure of, and all embodiments 5 to 8 satisfy the aforementioned formula (1) and formula (4).

表三   實施例5 實施例6 實施例7 實施例8 N 1.57 1.57 1.57 1.57 P (μm) 50 50 50 50 R (μm) 40 40 40 40 D (μm) 40 40 40 40 LH (μm) 5.36 5.36 5.36 5.36 H1 (μm) 28.93 28.93 78.93 78.93 H2 (μm) -16.1 -16.1 48.93 48.93 HS (um) -25 -25 25 25 A1 (μm) 11.7 11.7 31.86 31.86 A2 (μm) 6.5 6.5 19.78 19.78 WO1 (μm) 11.7 21.06 31.86 25.49 WO2 (μm) 6.5 11.7 19.78 15.82 Q1 1 1.8 1 0.8 Q2 1 1.8 1 0.8

Figure 02_image019
1 1.8 1 0.8 WS (μm) 10 10 10 10 Table Three Example 5 Example 6 Example 7 Example 8 N 1.57 1.57 1.57 1.57 P (μm) 50 50 50 50 R (μm) 40 40 40 40 D (μm) 40 40 40 40 LH (μm) 5.36 5.36 5.36 5.36 H 1 (μm) 28.93 28.93 78.93 78.93 H 2 (μm) -16.1 -16.1 48.93 48.93 HS (um) -25 -25 25 25 A 1 (μm) 11.7 11.7 31.86 31.86 A 2 (μm) 6.5 6.5 19.78 19.78 WO 1 (μm) 11.7 21.06 31.86 25.49 WO 2 (μm) 6.5 11.7 19.78 15.82 Q 1 1 1.8 1 0.8 Q 2 1 1.8 1 0.8
Figure 02_image019
1 1.8 1 0.8
WS (μm) 10 10 10 10

第11圖顯示以實施例6(實施例6之成像模組的結構可參考第4圖所示之成像模組102)的具體規格製成的成像模組的角度篩選分布曲線。如第11圖所示之實施例6(

Figure 02_image027
,符合公式(1),此數值為臨界值)的角度篩選分布曲線結果,當光源以0~10度入射時的收光效率極值達到90 %(收光效率大於30 %),且主要訊號的波束角小於10度,而以10~90度入射時的雜訊低於10 %,因此可判斷實施例6之成像模組具有良好的成像品質。Fig. 11 shows the angular screening distribution curve of the imaging module made with the specific specifications of the embodiment 6 (the structure of the imaging module of the embodiment 6 can refer to the imaging module 102 shown in Fig. 4). Example 6 shown in Figure 11 (
Figure 02_image027
, In accordance with formula (1), this value is the critical value) of the angle screening distribution curve results, when the light source is incident from 0 to 10 degrees, the extreme value of the light collection efficiency reaches 90% (the light collection efficiency is greater than 30%), and the main signal The beam angle of is less than 10 degrees, and the noise when incident at 10 to 90 degrees is less than 10%. Therefore, it can be judged that the imaging module of Embodiment 6 has good imaging quality.

第12圖顯示以實施例8(實施例8之成像模組的結構可參考第5圖所示之成像模組104)的具體規格製成的成像模組的角度篩選分布曲線。如第12圖所示之實施例8(

Figure 02_image023
,符合公式(1))的角度篩選分布曲線結果,當光源以0~10度入射時的收光效率極值達到60 %(收光效率大於30 %),且主要訊號的波束角小於10度,而以10~90度入射時的雜訊低於10 %,因此可判斷實施例8之成像模組具有良好的成像品質。Figure 12 shows the angular screening distribution curve of the imaging module made with the specific specifications of the embodiment 8 (the structure of the imaging module of the embodiment 8 can refer to the imaging module 104 shown in Figure 5). Example 8 as shown in Figure 12 (
Figure 02_image023
,According to formula (1)) of the angle screening distribution curve results, when the light source is incident from 0 to 10 degrees, the extreme value of the light collection efficiency reaches 60% (the light collection efficiency is greater than 30%), and the beam angle of the main signal is less than 10 degrees , And the noise when incident at 10 to 90 degrees is less than 10%, so it can be judged that the imaging module of Embodiment 8 has good imaging quality.

要注意的是,雖然在前述實施例中,皆以遮光層的數量為兩層(即第一遮光層31與第二遮光層32)進行說明,但本揭露實施例並非以此為限。It should be noted that although in the foregoing embodiments, the number of light-shielding layers is two layers (ie, the first light-shielding layer 31 and the second light-shielding layer 32), the embodiments of the disclosure are not limited thereto.

第13圖顯示根據本揭露另一實施例之成像模組106的部分剖面示意圖。與第1圖、第2圖所示之成像模組100的不同之處在於,第13圖所示之成像模組106可進一步包含一第三遮光層33。第三遮光層33設置於透光層20內,且第三遮光層33位於第二遮光層32與感光元件11之間。在一些實施例中,第三遮光層33的材料可和第一遮光層31或第二遮光層32相同或類似,但本揭露實施例並非以此為限。此外,如第13圖所示,第三遮光層33可具有第三通光部33O,第三通光部33O的孔徑為WO3 ,且第三遮光層33與聚光結構41的焦點F的距離為H3 ,孔徑WO1 大於或等於孔徑WO2 ,孔徑WO2 大於或等於孔徑WO3 (WO1 ≥WO2 ≥WO3 ),且孔徑WO1 的中心對準孔徑WO2 的中心與孔徑WO3 的中心,聚光結構41(微透鏡)的弧頂點41T、孔徑WO1 的中心、孔徑WO2 的中心、孔徑WO3 的中心、感光元件11的中心、聚光束L的焦點F相互對準且位於同一軸線上。聚光束L位於第一遮光層31之處的寬度為A1 ,聚光束L位於第二遮光層32之處的寬度為A2 ,聚光束L位於第三遮光層33之處的寬度為A3 ,WO1 與A1 的比值為Q1 (

Figure 02_image001
),WO2 與A2 的比值為Q2 (
Figure 02_image003
),WO3 與A3 的比值為Q3 (
Figure 02_image031
),Q1 、Q2 與Q3 的幾何平均數大於0.6且小於或等於1.8(
Figure 02_image033
),滿足前述之公式(1)。FIG. 13 shows a schematic partial cross-sectional view of an imaging module 106 according to another embodiment of the disclosure. The difference from the imaging module 100 shown in FIGS. 1 and 2 is that the imaging module 106 shown in FIG. 13 may further include a third light shielding layer 33. The third light shielding layer 33 is disposed in the light transmitting layer 20, and the third light shielding layer 33 is located between the second light shielding layer 32 and the photosensitive element 11. In some embodiments, the material of the third light-shielding layer 33 may be the same as or similar to the first light-shielding layer 31 or the second light-shielding layer 32, but the embodiment of the disclosure is not limited thereto. In addition, as shown in Figure 13, the third light-shielding layer 33 may have a third light-passing portion 33O, the aperture of the third light-passing portion 33O is WO 3 , and the third light-shielding layer 33 and the focal point F of the light-concentrating structure 41 The distance is H 3 , the aperture WO 1 is greater than or equal to the aperture WO 2 , the aperture WO 2 is greater than or equal to the aperture WO 3 (WO 1 ≥WO 2 ≥WO 3 ), and the center of the aperture WO 1 is aligned with the center of the aperture WO 2 and the aperture The center of WO 3 , the arc apex 41T of the condensing structure 41 (microlens), the center of the aperture WO 1 , the center of the aperture WO 2 , the center of the aperture WO 3 , the center of the photosensitive element 11, and the focal point F of the focused beam L are mutually opposed Accurate and on the same axis. The width of the focused light beam L at the first light shielding layer 31 is A 1 , the width of the focused light beam L at the second light shielding layer 32 is A 2 , and the width of the focused light beam L at the third light shielding layer 33 is A 3 , The ratio of WO 1 to A 1 is Q 1 (
Figure 02_image001
), the ratio of WO 2 to A 2 is Q 2 (
Figure 02_image003
), the ratio of WO 3 to A 3 is Q 3 (
Figure 02_image031
), the geometric mean of Q 1 , Q 2 and Q 3 is greater than 0.6 and less than or equal to 1.8 (
Figure 02_image033
), which satisfies the aforementioned formula (1).

實施例9至實施例12的具體規格請參照下列表四,且所有實施例均滿足前述之公式(1)。具體而言,實施例9至實施例12之成像模組的結構可參考第13圖所示之成像模組106(焦點型,HS=0),且實施例9至實施例12均滿足前述之公式(1)。For specific specifications of Examples 9 to 12, please refer to Table 4 below, and all examples satisfy the aforementioned formula (1). Specifically, the structure of the imaging module of Embodiment 9 to Embodiment 12 can refer to the imaging module 106 (focus type, HS=0) shown in Figure 13, and Embodiments 9 to 12 meet the aforementioned requirements Formula 1).

表四   實施例9 實施例10 實施例11 實施例12 N 1.57 1.57 1.57 1.57 P (μm) 50 50 50 50 R (μm) 40 40 40 40 D (μm) 40 40 40 40 LH (μm) 5.36 5.36 5.36 5.36 H1 (μm) 78.93 78.93 78.93 78.93 H2 (μm) 48.93 48.93 48.93 48.93 H3 (μm) 18.93 18.93 18.93 18.93 HS (um) 0 0 0 0 A1 (μm) 31.92 31.92 31.92 31.92 A2 (μm) 19.78 19.78 19.78 19.78 A3 (μm) 7.66 7.66 7.66 7.66 WO1 (μm) 31.92 25.54 47.88 19.78 WO2 (μm) 19.78 15.82 29.67 19.78 WO3 (μm) 7.66 6.12 11.49 19.78 Q1 1 0.8 1.5 0.62 Q2 1 0.8 1.5 1 Q3 1 0.8 1.5 1.57

Figure 02_image035
1 0.8 1.5 0.99 WS (μm) 30 30 30 30 Table Four Example 9 Example 10 Example 11 Example 12 N 1.57 1.57 1.57 1.57 P (μm) 50 50 50 50 R (μm) 40 40 40 40 D (μm) 40 40 40 40 LH (μm) 5.36 5.36 5.36 5.36 H 1 (μm) 78.93 78.93 78.93 78.93 H 2 (μm) 48.93 48.93 48.93 48.93 H 3 (μm) 18.93 18.93 18.93 18.93 HS (um) 0 0 0 0 A 1 (μm) 31.92 31.92 31.92 31.92 A 2 (μm) 19.78 19.78 19.78 19.78 A 3 (μm) 7.66 7.66 7.66 7.66 WO 1 (μm) 31.92 25.54 47.88 19.78 WO 2 (μm) 19.78 15.82 29.67 19.78 WO 3 (μm) 7.66 6.12 11.49 19.78 Q 1 1 0.8 1.5 0.62 Q 2 1 0.8 1.5 1 Q 3 1 0.8 1.5 1.57
Figure 02_image035
1 0.8 1.5 0.99
WS (μm) 30 30 30 30

比較例4至比較例7的具體規格請參照下列表五,且所有比較例均不滿足前述之公式(1)。具體而言,比較例4至比較例7之成像模組的結構可參考第13圖所示之成像模組106,但比較例4至比較例7均不滿足前述之公式(1)。For the specific specifications of Comparative Example 4 to Comparative Example 7, please refer to Table 5 below, and all the comparative examples do not satisfy the aforementioned formula (1). Specifically, the structure of the imaging module of Comparative Example 4 to Comparative Example 7 can refer to the imaging module 106 shown in FIG. 13, but none of Comparative Example 4 to Comparative Example 7 satisfies the aforementioned formula (1).

表五   比較例4 比較例5 比較例6 比較例7 N 1.57 1.57 1.57 1.57 P (μm) 50 50 50 50 R (μm) 40 40 40 40 D (μm) 40 40 40 40 LH (μm) 5.36 5.36 5.36 5.36 H1 (μm) 78.93 78.93 78.93 78.93 H2 (μm) 48.93 48.93 48.93 48.93 H3 (μm) 18.93 18.93 18.93 18.93 HS (um) 0 0 0 0 A1 (μm) 31.92 31.92 31.92 31.92 A2 (μm) 19.78 19.78 19.78 19.78 A3 (μm) 7.66 7.66 7.66 7.66 WO1 (μm) 19.15 60.65 31.92 7.66 WO2 (μm) 11.68 37.58 31.92 7.66 WO3 (μm) 4.6 15.55 31.92 7.66 Q1 0.6 1.9 1 0.24 Q2 0.6 1.9 1.61 0.39 Q3 0.6 1.9 4.17 1

Figure 02_image035
0.6 1.9 1.89 0.45 WS (μm) 30 30 30 30 Table 5 Comparative example 4 Comparative example 5 Comparative example 6 Comparative example 7 N 1.57 1.57 1.57 1.57 P (μm) 50 50 50 50 R (μm) 40 40 40 40 D (μm) 40 40 40 40 LH (μm) 5.36 5.36 5.36 5.36 H 1 (μm) 78.93 78.93 78.93 78.93 H 2 (μm) 48.93 48.93 48.93 48.93 H 3 (μm) 18.93 18.93 18.93 18.93 HS (um) 0 0 0 0 A 1 (μm) 31.92 31.92 31.92 31.92 A 2 (μm) 19.78 19.78 19.78 19.78 A 3 (μm) 7.66 7.66 7.66 7.66 WO 1 (μm) 19.15 60.65 31.92 7.66 WO 2 (μm) 11.68 37.58 31.92 7.66 WO 3 (μm) 4.6 15.55 31.92 7.66 Q 1 0.6 1.9 1 0.24 Q 2 0.6 1.9 1.61 0.39 Q 3 0.6 1.9 4.17 1
Figure 02_image035
0.6 1.9 1.89 0.45
WS (μm) 30 30 30 30

第14圖顯示以實施例10(實施例10之成像模組的結構可參考第13圖所示之成像模組106)的具體規格製成的成像模組的角度篩選分布曲線。如第14圖所示之實施例10(

Figure 02_image037
,符合公式(1))的角度篩選分布曲線結果,當光源以0~10度入射時的收光效率極值達到50 %(收光效率大於30 %),且主要訊號的波束角小於10度,而以10~90度入射時的雜訊低於10 %,因此可判斷實施例10之成像模組具有良好的成像品質。Fig. 14 shows the angular screening distribution curve of the imaging module made with the specific specifications of the embodiment 10 (the structure of the imaging module of the embodiment 10 can refer to the imaging module 106 shown in Fig. 13). Example 10 as shown in Figure 14 (
Figure 02_image037
,According to the results of the angle screening distribution curve of formula (1)), when the light source is incident from 0 to 10 degrees, the extreme value of the light collection efficiency reaches 50% (the light collection efficiency is greater than 30%), and the beam angle of the main signal is less than 10 degrees , And the noise when incident at 10 to 90 degrees is less than 10%. Therefore, it can be judged that the imaging module of Embodiment 10 has good imaging quality.

第15圖顯示以實施例11(實施例11之成像模組的結構可參考第13圖所示之成像模組106)的具體規格製成的成像模組的角度篩選分布曲線。如第15圖所示之實施例11(

Figure 02_image039
,符合公式(1))的角度篩選分布曲線結果,當光源以0~10度入射時的收光效率極值達到95 %(收光效率大於30 %),且主要訊號的波束角小於10度,雖然在約34度與約62度處出現雜訊干擾,但雜訊強度小於主要訊號的10 %,因此仍可判斷實施例11之成像模組具有良好的成像品質。Figure 15 shows the angular screening distribution curve of the imaging module made with the specific specifications of the embodiment 11 (the structure of the imaging module of the embodiment 11 can refer to the imaging module 106 shown in Figure 13). Example 11 shown in Figure 15 (
Figure 02_image039
,According to the results of the angle screening distribution curve of formula (1)), when the light source is incident from 0 to 10 degrees, the extreme value of the light collection efficiency reaches 95% (the light collection efficiency is greater than 30%), and the beam angle of the main signal is less than 10 degrees Although noise interference occurs at about 34 degrees and about 62 degrees, the noise intensity is less than 10% of the main signal. Therefore, it can be judged that the imaging module of Embodiment 11 has good imaging quality.

第16圖顯示以比較例4的具體規格製成的成像模組的角度篩選分布曲線。如第16圖所示之比較例4(

Figure 02_image041
,此數值為臨界值,不符合公式(1))的角度篩選分布曲線結果,當光源以0~10度入射時的極值不到30 %(收光效率小於30 %),即感光元件接收的光線強度不足,因此可判斷比較例4之成像模組不具有良好的成像品質。Figure 16 shows the angular screening distribution curve of the imaging module made with the specific specifications of Comparative Example 4. As shown in Figure 16 in Comparative Example 4 (
Figure 02_image041
, This value is a critical value and does not comply with the angle screening distribution curve result of formula (1)). When the light source is incident at 0-10 degrees, the extreme value is less than 30% (light collection efficiency is less than 30%), that is, the photosensitive element receives The light intensity is insufficient, so it can be judged that the imaging module of Comparative Example 4 does not have good imaging quality.

第17圖顯示以比較例6的具體規格製成的成像模組的角度篩選分布曲線。如第17圖所示之比較例6(

Figure 02_image043
)的角度篩選分布曲線結果,當光源以0~10度入射時的收光效率極值達到95 %,然而,主要訊號的波束角大於10度,在10度時,收光效率仍有80%,會造成串擾,因此可判斷比較例6之成像模組不具有良好的成像品質。Figure 17 shows the angular screening distribution curve of the imaging module made with the specific specifications of Comparative Example 6. As shown in Figure 17 in Comparative Example 6 (
Figure 02_image043
) Angle screening distribution curve results, when the light source is incident from 0 to 10 degrees, the extreme value of the light collection efficiency reaches 95%. However, the beam angle of the main signal is greater than 10 degrees, at 10 degrees, the light collection efficiency is still 80% , Will cause crosstalk, so it can be judged that the imaging module of Comparative Example 6 does not have good imaging quality.

第18圖顯示根據本揭露又一實施例之成像模組108的部分剖面示意圖。與第13圖所示之成像模組106的不同之處在於,第18圖所示之成像模組108可進一步包含一第四遮光層34。第四遮光層34設置於透光層20內,且第四遮光層34位於第三遮光層33與感光元件11之間。在一些實施例中,第四遮光層34的材料可和第一遮光層31、第二遮光層32或第三遮光層33相同或類似,但本揭露實施例並非以此為限。此外,如第18圖所示,第四遮光層34可具有第四通光部34O,第四通光部34O的孔徑為WO4 ,且第四遮光層34與聚光結構41的焦點F的距離為H4 。孔徑WO1 大於或等於孔徑WO2 ,孔徑WO2 大於或等於孔徑WO3 ,孔徑WO3 大於或等於孔徑WO4 (WO1 ≥WO2 ≥WO3 ≥WO4 ),且孔徑WO1 的中心對準孔徑WO2 的中心、孔徑WO3 的中心與孔徑WO4 的中心,聚光結構41(微透鏡)的弧頂點41T、孔徑WO1 的中心、孔徑WO2 的中心、孔徑WO3 的中心、孔徑WO4 的中心、感光元件11的中心、聚光束L的焦點F相互對準且位於同一軸線上。感光元件11位於焦點F上,為焦點型(HS=0)的成像模組108。聚光束L位於第一遮光層31之處的寬度為A1 ,聚光束L位於第二遮光層32之處的寬度為A2 ,聚光束L位於第三遮光層33之處的寬度為A3 ,聚光束L位於第四遮光層34之處的寬度為A4 ,WO1 與A1 的比值為Q1 (

Figure 02_image001
),WO2 與A2 的比值為Q2 (
Figure 02_image003
),WO3 與A3 的比值為Q3 (
Figure 02_image031
),WO4 與A4 的比值為Q4 (
Figure 02_image045
),Q1 、Q2 、Q3 與Q4 的幾何平均數大於0.6且小於或等於1.8(
Figure 02_image047
),符合前述公式(1)。FIG. 18 shows a schematic partial cross-sectional view of an imaging module 108 according to another embodiment of the disclosure. The difference from the imaging module 106 shown in FIG. 13 is that the imaging module 108 shown in FIG. 18 may further include a fourth light shielding layer 34. The fourth light shielding layer 34 is disposed in the light transmitting layer 20, and the fourth light shielding layer 34 is located between the third light shielding layer 33 and the photosensitive element 11. In some embodiments, the material of the fourth light shielding layer 34 may be the same as or similar to the first light shielding layer 31, the second light shielding layer 32 or the third light shielding layer 33, but the embodiment of the disclosure is not limited thereto. In addition, as shown in Figure 18, the fourth light-shielding layer 34 may have a fourth light-passing portion 34O, the aperture of the fourth light-passing portion 34O is WO 4 , and the fourth light-shielding layer 34 and the focal point F of the light-concentrating structure 41 The distance is H 4 . The aperture WO 1 is greater than or equal to the aperture WO 2 , the aperture WO 2 is greater than or equal to the aperture WO 3 , and the aperture WO 3 is greater than or equal to the aperture WO 4 (WO 1 ≥WO 2 ≥WO 3 ≥WO 4 ), and the center of the aperture WO 1 The center of the quasi-aperture WO 2 , the center of the aperture WO 3 and the center of the aperture WO 4 , the arc apex 41T of the focusing structure 41 (microlens), the center of the aperture WO 1 , the center of the aperture WO 2 , the center of the aperture WO 3 , The center of the aperture WO 4 , the center of the photosensitive element 11, and the focal point F of the focused beam L are aligned with each other and are located on the same axis. The photosensitive element 11 is located on the focal point F and is a focal point (HS=0) imaging module 108. The width of the focused light beam L at the first light shielding layer 31 is A 1 , the width of the focused light beam L at the second light shielding layer 32 is A 2 , and the width of the focused light beam L at the third light shielding layer 33 is A 3 , The width of the focused beam L at the fourth light-shielding layer 34 is A 4 , and the ratio of WO 1 to A 1 is Q 1 (
Figure 02_image001
), the ratio of WO 2 to A 2 is Q 2 (
Figure 02_image003
), the ratio of WO 3 to A 3 is Q 3 (
Figure 02_image031
), the ratio of WO 4 to A 4 is Q 4 (
Figure 02_image045
), the geometric mean of Q 1 , Q 2 , Q 3 and Q 4 is greater than 0.6 and less than or equal to 1.8 (
Figure 02_image047
), in line with the aforementioned formula (1).

實施例13至實施例16的具體規格請參照下列表六,且所有實施例均滿足前述之公式(1)。具體而言,實施例13至實施例16之成像模組的結構可參考第18圖所示之成像模組108(四層遮光層與焦點型(HS=0)),且實施例13至實施例16均滿足前述之公式(1)。Please refer to Table 6 below for the specific specifications of Embodiment 13 to Embodiment 16, and all the embodiments satisfy the aforementioned formula (1). Specifically, the structure of the imaging module of Embodiment 13 to Embodiment 16 can refer to the imaging module 108 (four-layer shading layer and focus type (HS=0)) shown in FIG. 18, and embodiment 13 to implementation Example 16 satisfies the aforementioned formula (1).

Figure 108137852-A0305-02-0031-1
Figure 108137852-A0305-02-0031-1
Figure 108137852-A0305-02-0032-2
Figure 108137852-A0305-02-0032-2

比較例8至比較例11的具體規格請參照下列表七,且所有比較例均不滿足前述之公式(1)。具體而言,比較例8至比較例11之成像模組的結構可參考第18圖所示之成像模組108,但比較例8至比較例11均不滿足前述之公式(1)。比較例8、10之Qn值的幾何平均數(0.6、1.83)分別接近公式(1)的上下限臨界值。 For the specific specifications of Comparative Example 8 to Comparative Example 11, please refer to Table 7 below, and all the comparative examples do not satisfy the aforementioned formula (1). Specifically, the structure of the imaging module of Comparative Example 8 to Comparative Example 11 can refer to the imaging module 108 shown in FIG. 18, but none of Comparative Example 8 to Comparative Example 11 satisfies the aforementioned formula (1). The geometric mean (0.6, 1.83) of the Q n values of Comparative Examples 8 and 10 are respectively close to the upper and lower critical values of the formula (1).

Figure 108137852-A0305-02-0032-3
Figure 108137852-A0305-02-0032-3
Figure 108137852-A0305-02-0033-2
Figure 108137852-A0305-02-0033-2

第19圖顯示以實施例15(實施例15之成像模組的結構可參考第18圖所示之成像模組108)的具體規格製成的成像模組的角度篩選分布曲線。如第19圖所示之實施例15(

Figure 02_image051
,符合公式(1))的角度篩選分布曲線結果,當光源以0~10度入射時的收光效率極值達到95 %(收光效率大於30 %),且主要訊號的波束角小於10度,雖然在約33度與約62度處出現雜訊干擾,但雜訊強度小於主要訊號的10 %,因此仍可判斷實施例15之成像模組具有良好的成像品質。Figure 19 shows the angular screening distribution curve of the imaging module made with the specific specifications of the embodiment 15 (the structure of the imaging module of the embodiment 15 can refer to the imaging module 108 shown in Figure 18). Example 15 shown in Figure 19 (
Figure 02_image051
,According to the results of the angle screening distribution curve of formula (1)), when the light source is incident from 0 to 10 degrees, the extreme value of the light collection efficiency reaches 95% (the light collection efficiency is greater than 30%), and the beam angle of the main signal is less than 10 degrees Although noise interference occurs at about 33 degrees and about 62 degrees, the noise intensity is less than 10% of the main signal. Therefore, it can be judged that the imaging module of Embodiment 15 has good imaging quality.

第20圖顯示以實施例16(實施例16之成像模組的結構可參考第18圖所示之成像模組108)的具體規格製成的成像模組的角度篩選分布曲線。如第20圖所示之實施例16(

Figure 02_image053
,符合公式(1))的角度篩選分布曲線結果,當光源以0~10度入射時的收光效率極值達到55 %(收光效率大於30 %),且主要訊號的波束角小於10度,而以10~90度入射時的雜訊低於10 %,因此可判斷實施例16之成像模組具有良好的成像品質。Figure 20 shows the angular screening distribution curve of the imaging module made with the specific specifications of the embodiment 16 (the structure of the imaging module of the embodiment 16 can refer to the imaging module 108 shown in Figure 18). As shown in Figure 20 in the embodiment 16 (
Figure 02_image053
,According to the results of the angle screening distribution curve of formula (1)), when the light source is incident from 0 to 10 degrees, the extreme value of the light collection efficiency reaches 55% (the light collection efficiency is greater than 30%), and the beam angle of the main signal is less than 10 degrees , And the noise when incident at 10 to 90 degrees is less than 10%, so it can be judged that the imaging module of Embodiment 16 has good imaging quality.

第21圖顯示以比較例10的具體規格製成的成像模組的角度篩選分布曲線。如第21圖所示之比較例10(

Figure 02_image055
,不符合公式(1))的角度篩選分布曲線結果,當光源以0~10度入射時的收光效率極值達到95 %,然而,主要訊號的波束角大於10度,在10度時,收光效率仍有80%,會造成串擾,因此可判斷比較例10之成像模組不具有良好的成像品質。Figure 21 shows the angular screening distribution curve of the imaging module made with the specific specifications of Comparative Example 10. As shown in Figure 21, Comparative Example 10 (
Figure 02_image055
, The result of the angle screening distribution curve that does not meet the formula (1)), when the light source is incident from 0 to 10 degrees, the extreme value of the light collection efficiency reaches 95%. However, the beam angle of the main signal is greater than 10 degrees. At 10 degrees, The light collection efficiency is still 80%, which will cause crosstalk. Therefore, it can be judged that the imaging module of Comparative Example 10 does not have good imaging quality.

第22圖顯示以比較例11的具體規格製成的成像模組的角度篩選分布曲線。如第22圖所示之比較例11(

Figure 02_image057
,不符合公式(1))的角度篩選分布曲線結果,當光源以0~10度入射時的極值不到10 %(收光效率小於30 %),即感光元件接收的光線強度不足,因此可判斷比較例11之成像模組不具有良好的成像品質。Figure 22 shows the angular screening distribution curve of the imaging module made with the specific specifications of Comparative Example 11. As shown in Figure 22, Comparative Example 11 (
Figure 02_image057
, Does not meet the results of the angle screening distribution curve of formula (1)), when the light source is incident from 0 to 10 degrees, the extreme value is less than 10% (light collection efficiency is less than 30%), that is, the light intensity received by the photosensitive element is insufficient, so It can be judged that the imaging module of Comparative Example 11 does not have good imaging quality.

第23圖顯示根據本揭露一實施例之生物辨識裝置1的示意圖。生物辨識裝置1可用以辨識生物體之一部位的生物特徵,例如指紋、靜脈或虹膜等。如第23圖所示,生物辨識裝置1可包含一基板60、一光源70以及第1圖所示之成像模組100。光源70設置於基板60上,用以發出光線至生物體(如第23圖所示的手指),而成像模組100可用以接收光源70的光線。舉例來說,光源70可例如為是發光二極體,其可發出光線投射至生物體的特徵點(例如,指紋),且特徵點可反射光線(或以光耦合、光散射等其他機制)至成像模組100內,使成像模組100可獲得此特徵點的影像。FIG. 23 shows a schematic diagram of the biometric identification device 1 according to an embodiment of the disclosure. The biometric identification device 1 can be used to identify biometric features of a part of a living body, such as fingerprints, veins, or iris. As shown in FIG. 23, the biometric device 1 may include a substrate 60, a light source 70, and the imaging module 100 shown in FIG. The light source 70 is disposed on the substrate 60 to emit light to a living body (such as a finger as shown in FIG. 23), and the imaging module 100 can be used to receive light from the light source 70. For example, the light source 70 may be a light-emitting diode, which can emit light to be projected to a characteristic point of a biological body (for example, a fingerprint), and the characteristic point may reflect light (or other mechanisms such as light coupling, light scattering, etc.) Into the imaging module 100, the imaging module 100 can obtain the image of the characteristic point.

在一些實施例中,光源70可設置於成像模組100的至少一側。舉例來說,光源70可圍繞於成像模組100的周圍,但本揭露實施例並非以此為限。要注意的是,第23圖所示的成像模組100也可以替換為第4圖所示之成像模組102、第5圖所示之成像模組104、第13圖所示之成像模組106或第18圖所示之成像模組108,在此不多加贅述。In some embodiments, the light source 70 may be disposed on at least one side of the imaging module 100. For example, the light source 70 can surround the imaging module 100, but the embodiment of the disclosure is not limited to this. It should be noted that the imaging module 100 shown in Figure 23 can also be replaced with the imaging module 102 shown in Figure 4, the imaging module 104 shown in Figure 5, and the imaging module shown in Figure 13 106 or the imaging module 108 shown in FIG. 18 will not be repeated here.

此外,雖然第23圖所示之實施例以反射式的生物辨識裝置作說明,但本揭露實施例並非以此為限。在其他實施例中,依據光源70的位置不同,生物辨識裝置1也可為穿透式(從生物體上方發光)或散射式(從生物體側向發光)。In addition, although the embodiment shown in FIG. 23 uses a reflective biometric device for description, the embodiment of the disclosure is not limited to this. In other embodiments, depending on the position of the light source 70, the biometric identification device 1 may also be of the transmissive type (lighting from above the biological body) or scattering type (lighting from the side of the biological body).

在一些實施例中,生物辨識裝置1可進一步包括一蓋板80,蓋板80設置於光源70與成像模組100之上。舉例來說,蓋板80可為一玻璃蓋板,但本揭露實施例並非以此為限。In some embodiments, the biometric identification device 1 may further include a cover 80, and the cover 80 is disposed on the light source 70 and the imaging module 100. For example, the cover 80 may be a glass cover, but the embodiment of the disclosure is not limited thereto.

綜上所述,藉由將本揭露實施例之光篩選結構滿足公式(1),且使聚光束的焦點與感光元件的頂表面的距離滿足公式(4),可有助於成像模組與使用其的生物辨識裝置的薄型化。此外,也助於降低串擾以提升辨識生物體之特徵點的精準度。To sum up, by satisfying the formula (1) for the light screening structure of the embodiment of the disclosure, and making the distance between the focal point of the condensing beam and the top surface of the photosensitive element satisfy the formula (4), it can help the imaging module and Thinning of the biometric device using it. In addition, it also helps to reduce crosstalk to improve the accuracy of identifying feature points of organisms.

以上概述數個實施例的部件,以便在本揭露所屬技術領域中具有通常知識者可以更理解本揭露實施例的觀點。在本揭露所屬技術領域中具有通常知識者應該理解,他們能以本揭露實施例為基礎,設計或修改其他製程和結構以達到與在此介紹的實施例相同之目的及/或優勢。在本揭露所屬技術領域中具有通常知識者也應該理解到,此類等效的結構並無悖離本揭露的精神與範圍,且他們能在不違背本揭露之精神和範圍之下,做各式各樣的改變、取代和替換。因此,本揭露之保護範圍當視後附之申請專利範圍所界定者為準。另外,雖然本揭露已以數個較佳實施例揭露如上,然其並非用以限定本揭露。The components of the several embodiments are summarized above so that those with ordinary knowledge in the technical field of the present disclosure can better understand the viewpoints of the embodiments of the present disclosure. Those with ordinary knowledge in the technical field of the present disclosure should understand that they can design or modify other processes and structures based on the embodiments of the present disclosure to achieve the same purpose and/or advantages as the embodiments described herein. Those with ordinary knowledge in the technical field to which this disclosure belongs should also understand that such equivalent structures do not depart from the spirit and scope of this disclosure, and they can do everything without departing from the spirit and scope of this disclosure. Various changes, substitutions and replacements. Therefore, the scope of protection of this disclosure shall be subject to the scope of the attached patent application. In addition, although the present disclosure has been disclosed in several preferred embodiments as described above, it is not intended to limit the present disclosure.

整份本說明書對特徵、優點或類似語言的引用並非意味可以利用本揭露實現的所有特徵和優點應該是或者在本揭露的任何單個實施例中。相對地,涉及特徵和優點的語言被理解為其意味著結合實施例描述的特定特徵、優點或特性包括在本揭露的至少一個實施例中。因而,在整份說明書中對特徵和優點以及類似語言的討論可以但不一定代表相同的實施例。Reference to features, advantages, or similar language throughout this specification does not mean that all the features and advantages that can be achieved with the present disclosure should be or be in any single embodiment of the present disclosure. In contrast, language related to features and advantages is understood as meaning that a particular feature, advantage, or characteristic described in conjunction with the embodiment is included in at least one embodiment of the present disclosure. Thus, the discussion of features and advantages and similar language throughout the specification may but does not necessarily represent the same embodiment.

再者,在一個或多個實施例中,可以任何合適的方式組合本揭露的所描述的特徵、優點和特性。根據本文的描述,相關領域的技術人員將意識到,可在沒有特定實施例的一個或多個特定特徵或優點的情況下實現本揭露。在其他情況下,在某些實施例中可辨識附加的特徵和優點,這些特徵和優點可能不存在於本揭露的所有實施例中。Furthermore, in one or more embodiments, the described features, advantages, and characteristics of the present disclosure may be combined in any suitable manner. Based on the description herein, those skilled in the relevant art will realize that the present disclosure can be implemented without one or more specific features or advantages of a specific embodiment. In other cases, additional features and advantages can be recognized in certain embodiments, and these features and advantages may not exist in all embodiments of the present disclosure.

1:生物辨識裝置 100、102、104、106、108:成像模組 10:感光陣列 11:感光元件 20:透光層 20T:頂面 31:第一遮光層 31O:第一通光部 32:第二遮光層 32O:第二通光部 33:第三遮光層 33O:第三通光部 34:第四遮光層 34O:第四通光部 40:聚光陣列 41:聚光結構 41T:弧頂點 50:光篩選結構 60:基板 70:光源 80:蓋板 A1:聚光束位於第一遮光層之處的寬度 A2:聚光束位於第二遮光層之處的寬度 A3:聚光束位於第三遮光層之處的寬度 A4:聚光束位於第四遮光層之處的寬度 D:聚光結構的外徑 F:焦點 f:聚光結構的焦距 H1:第一遮光層與聚光結構的焦點的距離 H2:第二遮光層與聚光結構的焦點的距離 H3:第三遮光層與聚光結構的焦點的距離 H4:第四遮光層與聚光結構的焦點的距離 HS:聚光束的焦點與感光元件的頂表面的距離 L:聚光束 LH:聚光結構的最大厚度 N:透光層的折射率 P:中心間距 R:曲率半徑 U:感光單元 WO1:第一通光部的孔徑 WO2:第二通光部的孔徑 WO3:第三通光部的孔徑 WO4:第四通光部的孔徑 WS:感光元件的最小寬度1: Biometric identification device 100, 102, 104, 106, 108: imaging module 10: photosensitive array 11: photosensitive element 20: light transmitting layer 20T: top surface 31: first light shielding layer 31O: first light passing part 32: Second light-shielding layer 32O: second light-passing part 33: third light-shielding layer 33O: third light-passing part 34: fourth light-shielding layer 34O: fourth light-passing part 40: light-condensing array 41: light-concentrating structure 41T: arc Vertex 50: light screening structure 60: substrate 70: light source 80: cover plate A 1 : the width of the spot where the focused beam is located at the first shading layer A 2 : the width of the spot where the spot beam is located at the second shading layer A 3 : the spot where the beam is located at the third light shielding layers width a 4: the width D of the focused beam is located at the fourth light blocking layers: an outer diameter F of the condenser structure: focus f: focal length of the condensing structure H 1: a first light-shielding layer and the condenser the configuration of the focus distance H 2: focal distance of the second light-shielding layer and the condenser structure H 3: 4 and the focal point of the third light-shielding layer concentrator structures distance H: focal distance of the fourth light-shielding layer and the condenser structure HS: the distance between the focal point of the focused beam and the top surface of the photosensitive element L: the focused beam LH: the maximum thickness of the focused structure N: the refractive index of the light-transmitting layer P: the center distance R: the radius of curvature U: the photosensitive unit WO 1 : the first The aperture of a light-passing part WO 2 : the aperture of the second light-passing part WO 3 : the aperture of the third light-passing part WO 4 : the aperture of the fourth light-passing part WS: the minimum width of the photosensitive element

以下將配合所附圖式詳述本揭露實施例。應注意的是,各種特徵部件並未按照比例繪製且僅用以說明例示。事實上,元件的尺寸可能經放大或縮小,以清楚地表現出本揭露實施例的技術特徵。 第1圖顯示根據本揭露一實施例之成像模組的部分剖面示意圖。 第2圖顯示第1圖之成像模組的部分放大示意圖。 第3A圖至第3D圖顯示不同態樣的聚光結構的示意圖。 第4圖顯示根據本揭露另一實施例之成像模組的部分剖面示意圖。 第5圖顯示根據本揭露又一實施例之成像模組的部分剖面示意圖。 第6圖顯示以實施例1的具體規格製成的成像模組的角度篩選分布曲線。 第7圖顯示以實施例2的具體規格製成的成像模組的角度篩選分布曲線。 第8圖顯示以比較例1的具體規格製成的成像模組的角度篩選分布曲線。 第9圖顯示以實施例3的具體規格製成的成像模組的角度篩選分布曲線。 第10圖顯示以比較例2的具體規格製成的成像模組的角度篩選分布曲線。 第11圖顯示以實施例6的具體規格製成的成像模組的角度篩選分布曲線。 第12圖顯示以實施例8的具體規格製成的成像模組的角度篩選分布曲線。 第13圖顯示根據本揭露另一實施例之成像模組的部分剖面示意圖。 第14圖顯示以實施例10的具體規格製成的成像模組的角度篩選分布曲線。 第15圖顯示以實施例11的具體規格製成的成像模組的角度篩選分布曲線。 第16圖顯示以比較例4的具體規格製成的成像模組的角度篩選分布曲線。 第17圖顯示以比較例6的具體規格製成的成像模組的角度篩選分布曲線。 第18圖顯示根據本揭露又一實施例之成像模組的部分剖面示意圖。 第19圖顯示以實施例15的具體規格製成的成像模組的角度篩選分布曲線。 第20圖顯示以實施例16的具體規格製成的成像模組的角度篩選分布曲線。 第21圖顯示以比較例10的具體規格製成的成像模組的角度篩選分布曲線。 第22圖顯示以比較例11的具體規格製成的成像模組的角度篩選分布曲線。 第23圖顯示根據本揭露一實施例之生物辨識裝置的示意圖。The embodiments of the present disclosure will be described in detail below in conjunction with the accompanying drawings. It should be noted that the various characteristic components are not drawn to scale and are only used for illustrative purposes. In fact, the size of the element may be enlarged or reduced to clearly show the technical features of the embodiment of the disclosure. FIG. 1 shows a schematic partial cross-sectional view of an imaging module according to an embodiment of the disclosure. Figure 2 shows a partially enlarged schematic diagram of the imaging module of Figure 1. Figures 3A to 3D show schematic diagrams of different light-concentrating structures. FIG. 4 shows a schematic partial cross-sectional view of an imaging module according to another embodiment of the disclosure. FIG. 5 shows a schematic partial cross-sectional view of an imaging module according to another embodiment of the disclosure. Figure 6 shows the angular screening distribution curve of the imaging module made with the specific specifications of Example 1. Figure 7 shows the angular screening distribution curve of the imaging module made with the specific specifications of Example 2. Figure 8 shows the angular screening distribution curve of the imaging module made with the specific specifications of Comparative Example 1. Figure 9 shows the angular screening distribution curve of the imaging module made with the specific specifications of Example 3. Figure 10 shows the angular screening distribution curve of the imaging module made with the specific specifications of Comparative Example 2. Figure 11 shows the angular screening distribution curve of the imaging module made with the specific specifications of Example 6. Figure 12 shows the angular screening distribution curve of the imaging module made with the specific specifications of Example 8. FIG. 13 shows a schematic partial cross-sectional view of an imaging module according to another embodiment of the disclosure. Figure 14 shows the angular screening distribution curve of the imaging module made with the specific specifications of Example 10. Figure 15 shows the angular screening distribution curve of the imaging module made with the specific specifications of Example 11. Figure 16 shows the angular screening distribution curve of the imaging module made with the specific specifications of Comparative Example 4. Figure 17 shows the angular screening distribution curve of the imaging module made with the specific specifications of Comparative Example 6. FIG. 18 shows a schematic partial cross-sectional view of an imaging module according to another embodiment of the disclosure. Figure 19 shows the angular screening distribution curve of the imaging module made with the specific specifications of Example 15. Figure 20 shows the angular screening distribution curve of the imaging module made with the specific specifications of Example 16. Figure 21 shows the angular screening distribution curve of the imaging module made with the specific specifications of Comparative Example 10. Figure 22 shows the angular screening distribution curve of the imaging module made with the specific specifications of Comparative Example 11. FIG. 23 shows a schematic diagram of a biometric identification device according to an embodiment of the disclosure.

100:成像模組 100: imaging module

10:感光陣列 10: photosensitive array

11:感光元件 11: photosensitive element

20:透光層 20: light transmitting layer

31:第一遮光層 31: The first shading layer

31O:第一通光部 31O: the first light part

32:第二遮光層 32: second shading layer

32O:第二通光部 32O: the second light part

40:聚光陣列 40: Condenser array

41:聚光結構 41: Concentrating structure

50:光篩選結構 50: Light screening structure

P:中心間距 P: Center spacing

U:感光單元 U: photosensitive unit

Claims (13)

一種成像模組,包括:一感光元件;以及一光篩選結構,設置於該感光元件上,該光篩選結構包括:一透光層;一第一遮光層,設置於該透光層內,且該第一遮光層具有一第一通光部;一第二遮光層,設置於該透光層內並位於該第一遮光層與該感光元件之間,且該第二遮光層具有一第二通光部;及一聚光結構,設置於該透光層上;其中該第一通光部與該第二通光部對應於該感光元件設置,光通過該聚光結構產生一聚光束,該第一通光部的孔徑為WO1,該第二通光部的孔徑為WO2,該聚光束位於該第一遮光層之處的寬度為A1,該聚光束位於該第二遮光層之處的寬度為A2,WO1與A1的比值為Q1,WO2與A2的比值為Q2,Q1與Q2的幾何平均數大於0.6且小於或等於1.8。 An imaging module includes: a photosensitive element; and a light screening structure arranged on the photosensitive element, the light screening structure comprising: a light transmitting layer; a first light shielding layer arranged in the light transmitting layer, and The first light-shielding layer has a first light-passing portion; a second light-shielding layer is disposed in the light-transmitting layer and is located between the first light-shielding layer and the photosensitive element, and the second light-shielding layer has a second And a light-condensing structure disposed on the light-transmitting layer; wherein the first light-passing part and the second light-passing part are arranged corresponding to the photosensitive element, and the light passes through the light-concentrating structure to generate a condensed beam, The aperture of the first light-passing part is WO 1 , the aperture of the second light-passing part is WO 2 , the width of the condensed light beam at the first light-shielding layer is A 1 , and the condensed light beam is located on the second light-shielding layer The width of the place is A 2 , the ratio of WO 1 to A 1 is Q 1 , the ratio of WO 2 to A 2 is Q 2 , and the geometric mean of Q 1 and Q 2 is greater than 0.6 and less than or equal to 1.8. 如申請專利範圍第1項所述之成像模組,其中該聚光束的焦點位於該感光元件的頂表面上。 According to the imaging module described in claim 1, wherein the focal point of the condensed beam is located on the top surface of the photosensitive element. 如申請專利範圍第1項所述之成像模組,其中該聚光束的焦點與該感光元件的頂表面具有一距離。 According to the imaging module described in claim 1, wherein the focal point of the condensing beam is at a distance from the top surface of the photosensitive element. 如申請專利範圍第3項所述之成像模組,其中 該感光元件的最小寬度為WS,該聚光結構的焦距為f,該聚光結構的外徑為D,該聚光結構的最大厚度為LH,且該聚光束的焦點與該感光元件的頂表面的距離HS滿足以下條件:
Figure 108137852-A0305-02-0041-17
The imaging module described in item 3 of the scope of patent application, wherein the minimum width of the photosensitive element is WS, the focal length of the concentrating structure is f, the outer diameter of the concentrating structure is D, and the maximum thickness of the concentrating structure Is LH, and the distance HS between the focal point of the focused beam and the top surface of the photosensitive element satisfies the following conditions:
Figure 108137852-A0305-02-0041-17
如申請專利範圍第1項所述之成像模組,其中該聚光結構的焦距為f,該聚光結構的外徑為D,該聚光結構的最大厚度為LH,該第一遮光層與該聚光結構的焦點的距離為H1,該第二遮光層與該聚光結構的焦點的距離為H2,且該第一通光部的孔徑WO1與該第二通光部的孔徑WO2滿足以下條件:
Figure 108137852-A0305-02-0041-18
According to the imaging module described in item 1 of the scope of patent application, the focal length of the concentrating structure is f, the outer diameter of the concentrating structure is D, the maximum thickness of the concentrating structure is LH, and the first light shielding layer and The focal point distance of the light-concentrating structure is H 1 , the distance between the second light-shielding layer and the focal point of the light-concentrating structure is H 2 , and the aperture WO 1 of the first light-passing part and the aperture of the second light-passing part WO 2 meets the following conditions:
Figure 108137852-A0305-02-0041-18
如申請專利範圍第1項所述之成像模組,其中該聚光結構為一微透鏡結構、一微角椎結構、一微梯形結構或一折射率漸變結構。 According to the imaging module described in item 1 of the scope of patent application, the light-concentrating structure is a microlens structure, a micro-cone structure, a micro-trapezoid structure or a refractive index gradient structure. 一種成像模組,包括:一感光陣列,包括複數個感光元件;以及一光篩選結構,設置於該感光陣列上,該光篩選結構包括:一透光層;複數個遮光層,設置於該透光層內,每該遮光層具有複數個通光部;及 一聚光陣列,設置於該透光層上,且該聚光陣列包括複數個聚光結構;其中該些通光部對應於該些感光元件設置,光通過該聚光陣列產生複數聚光束,該光篩選結構包括n層遮光層,n為大於或等於2的正整數,在該n層遮光層中,第k層遮光層中每該通光部的孔徑為WOk,每該聚光束位於該第k層遮光層之處的寬度為Ak,WOk與Ak的比值為Qk,k為小於或等於n的正整數,且該光篩選結構滿足以下條件:
Figure 108137852-A0305-02-0042-19
An imaging module includes: a photosensitive array, including a plurality of photosensitive elements; and a light screening structure, arranged on the photosensitive array, the light screening structure includes: a light-transmitting layer; In the light layer, each light-shielding layer has a plurality of light-passing parts; and a light-concentrating array is arranged on the light-transmitting layer, and the light-concentrating array includes a plurality of light-concentrating structures; wherein the light-passing parts correspond to the The light-sensitive elements are arranged, and the light passes through the light-condensing array to generate multiple condensed beams. The light screening structure includes n layers of light-shielding layers, where n is a positive integer greater than or equal to 2. In the n-layer light-shielding layers, the k-th light-shielding layer The aperture of each light-passing part is WO k , the width of each focused beam at the k-th light-shielding layer is Ak , the ratio of WO k to Ak is Q k , and k is a positive integer less than or equal to n , And the light screening structure meets the following conditions:
Figure 108137852-A0305-02-0042-19
如申請專利範圍第7項所述之成像模組,其中該光篩選結構包括n層遮光層,n為大於或等於2的正整數,在該n層遮光層中,第k層遮光層中每該通光部的孔徑為WOk,每該聚光結構的焦距為f,每該聚光結構的外徑為D,每該聚光結構的最大厚度為LH,該第k層遮光層與每該聚光結構的焦點的距離為Hk,且每該通光部的孔徑WOk滿足以下條件:
Figure 108137852-A0305-02-0042-20
The imaging module as described in item 7 of the scope of patent application, wherein the light screening structure includes n layers of light-shielding layers, and n is a positive integer greater than or equal to 2. In the n-layers of light-shielding layers, each of the k-th light-shielding layers The aperture of the light-passing part is WO k , the focal length of each light-concentrating structure is f, the outer diameter of each light-concentrating structure is D, the maximum thickness of each light-concentrating structure is LH, and the k-th light-shielding layer is connected to each The focal distance of the light-concentrating structure is H k , and the aperture WO k of each light-passing part satisfies the following conditions:
Figure 108137852-A0305-02-0042-20
如申請專利範圍第8項所述之成像模組,其中每該感光元件的最小寬度為WS,且每該聚光束的焦點與對應的感光元件的頂表面的距離HS滿足以下條件:
Figure 108137852-A0305-02-0042-21
In the imaging module described in item 8 of the scope of patent application, the minimum width of each photosensitive element is WS, and the distance HS between the focal point of each condensed beam and the top surface of the corresponding photosensitive element satisfies the following conditions:
Figure 108137852-A0305-02-0042-21
如申請專利範圍第7項所述之成像模組,其 中該感光陣列為一維陣列或二維陣列,而該聚光陣列為一維陣列或二維陣列。 Such as the imaging module described in item 7 of the scope of patent application, which The photosensitive array is a one-dimensional array or a two-dimensional array, and the concentrating array is a one-dimensional array or a two-dimensional array. 一種生物辨識裝置,包括:一基板;一光源,設置於該基板上,用以發出光線至一生物體;以及如申請專利範圍第1~10項中任一項所述之成像模組,用以接收該光源的光線。 A biometric identification device includes: a substrate; a light source arranged on the substrate to emit light to a living object; and the imaging module as described in any one of items 1 to 10 in the scope of patent application for Receive the light from the light source. 如申請專利範圍第11項所述之生物辨識裝置,其中該光源設置於該成像模組的至少一側。 The biometric identification device described in item 11 of the scope of patent application, wherein the light source is arranged on at least one side of the imaging module. 如申請專利範圍第11項所述之生物辨識裝置,更包括:一蓋板,設置於該光源與該成像模組之上。As described in item 11 of the scope of patent application, the biometric identification device further includes: a cover plate disposed on the light source and the imaging module.
TW108137852A 2019-01-11 2019-10-21 Image module and biometric device using the same TWI717868B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201911291307.0A CN111435213B (en) 2019-01-11 2019-12-16 Imaging module and biometric device using the same
US16/730,634 US11113502B2 (en) 2019-01-11 2019-12-30 Image module and biometric device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962791126P 2019-01-11 2019-01-11
US62/791,126 2019-01-11

Publications (2)

Publication Number Publication Date
TW202026744A TW202026744A (en) 2020-07-16
TWI717868B true TWI717868B (en) 2021-02-01

Family

ID=73004856

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108137852A TWI717868B (en) 2019-01-11 2019-10-21 Image module and biometric device using the same

Country Status (1)

Country Link
TW (1) TWI717868B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI783581B (en) * 2021-07-19 2022-11-11 友達光電股份有限公司 Light-controlling structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8853758B2 (en) * 2011-03-14 2014-10-07 Sony Corporation Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus
CN106068563A (en) * 2015-01-13 2016-11-02 索尼公司 Solid state image pickup device, the manufacture method of solid state image pickup device and electronic equipment
TW201814333A (en) * 2016-09-30 2018-04-16 光寶電子(廣州)有限公司 Filter assembly and camera module having the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8853758B2 (en) * 2011-03-14 2014-10-07 Sony Corporation Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus
CN106068563A (en) * 2015-01-13 2016-11-02 索尼公司 Solid state image pickup device, the manufacture method of solid state image pickup device and electronic equipment
TW201814333A (en) * 2016-09-30 2018-04-16 光寶電子(廣州)有限公司 Filter assembly and camera module having the same

Also Published As

Publication number Publication date
TW202026744A (en) 2020-07-16

Similar Documents

Publication Publication Date Title
CN111435213B (en) Imaging module and biometric device using the same
JP7007309B2 (en) Plenoptic sensor
CN109389023B (en) Biometric identification device
CN210038821U (en) Optical fingerprint identification device and electronic equipment
WO2021073016A1 (en) Fingerprint recognition device and electronic apparatus
KR101410002B1 (en) Image sensing apparatus with artificial ommatidia and Manufacturing method for artificial ommatidia unit
TWI652626B (en) Biometric device
WO2021036101A1 (en) Fingerprint recognition apparatus and electronic device
US6606198B2 (en) Lens array
US20060145197A1 (en) CMOS image sensor and method for fabricating the same
CN110555367B (en) Optical fingerprint sensing module
JP6035744B2 (en) Solid-state image sensor
US20060011932A1 (en) Complementary metal oxide semiconductor image sensor and method for fabricating the same
US7884397B2 (en) Solid-state image sensor and method for producing the same
TWI717868B (en) Image module and biometric device using the same
KR102614907B1 (en) Image sensor and method to produce image sensor
JP6613648B2 (en) Solid-state imaging device and electronic device
WO2021215201A1 (en) Electronic apparatus
WO2021082680A1 (en) Optical image collection structure, method for distinguishing between true and false biological features, and electronic device
KR20100067982A (en) Image sensor and method for fabricating the same
TWM377018U (en) Flip chip type image capturing module
JP6801230B2 (en) Solid-state image sensor and electronic equipment
JP6311771B2 (en) Solid-state image sensor
CN211480030U (en) Thin optical fingerprint identification device
CN113645376B (en) Microlens array camera module and manufacturing method thereof