TWI717007B - Titanium alloy plate and manufacturing method thereof - Google Patents

Titanium alloy plate and manufacturing method thereof Download PDF

Info

Publication number
TWI717007B
TWI717007B TW108132315A TW108132315A TWI717007B TW I717007 B TWI717007 B TW I717007B TW 108132315 A TW108132315 A TW 108132315A TW 108132315 A TW108132315 A TW 108132315A TW I717007 B TWI717007 B TW I717007B
Authority
TW
Taiwan
Prior art keywords
blank
forging
titanium alloy
heating temperature
heat treatment
Prior art date
Application number
TW108132315A
Other languages
Chinese (zh)
Other versions
TW202111135A (en
Inventor
常傳賢
廖國鈞
Original Assignee
大田精密工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大田精密工業股份有限公司 filed Critical 大田精密工業股份有限公司
Priority to TW108132315A priority Critical patent/TWI717007B/en
Application granted granted Critical
Publication of TWI717007B publication Critical patent/TWI717007B/en
Publication of TW202111135A publication Critical patent/TW202111135A/en

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Forging (AREA)

Abstract

一種鈦合金板材,以其總重為100wt%計算,該鈦合金板材包括以下成份:5~7wt%的鋁、3~5wt%的釩、0.04~0.13wt%的釓、0.2wt%以下的鐵、0.03wt%以下的氮、0.015wt%以下的氫、0.2wt%以下的氧、0.05wt%以下的碳、平衡量的鈦,以及不可避免之雜質。本發明之鋁合金材料藉由添加釓(Gd),並佐以軋製工法的搭配,製造出具有更高強度及延展性的新型鋁合金板材。 A titanium alloy sheet, calculated based on its total weight as 100wt%, the titanium alloy sheet comprising the following ingredients: 5-7wt% aluminum, 3-5wt% vanadium, 0.04-0.13wt% gamma, 0.2wt% or less iron , 0.03wt% or less nitrogen, 0.015wt% or less hydrogen, 0.2wt% or less oxygen, 0.05wt% or less carbon, balance titanium, and unavoidable impurities. The aluminum alloy material of the present invention is added with gamma (Gd) and combined with a rolling method to produce a new type of aluminum alloy sheet with higher strength and ductility.

Description

鈦合金板材及其製造方法 Titanium alloy plate and manufacturing method thereof

本發明是有關於一種鈦合金板材及其製造方法,且特別是有關於一種具有更佳的強度及延展性的鈦合金板材及其製造方法。 The present invention relates to a titanium alloy sheet and a manufacturing method thereof, and in particular to a titanium alloy sheet having better strength and ductility and a manufacturing method thereof.

高爾夫球桿頭需要有極強的強度與韌性,因為桿頭時常以極高的揮桿速度來撞擊高爾夫球,且基於性能方面考量,桿頭外殼通常越輕越好,才能有更多的配重空間,因此打擊面的厚度通常介於2~4mm之間,這進一步的加深了對於材料性能的考驗,所以對於桿頭方面的材料選用,條件通常極為苛刻。 Golf club heads need to have strong strength and toughness, because the club heads often hit the golf ball with extremely high swing speeds, and based on performance considerations, the lighter the club head shell is, the better. Because of the heavy space, the thickness of the striking surface is usually between 2~4mm, which further deepens the test of material performance, so the conditions for the selection of materials for the head are usually extremely harsh.

之前本申請人之專利文獻(TW申請號:108116204)提出一種高爾夫桿頭之鈦合金滾軋板,以特殊工法搭配專用合金,製造出高耐腐蝕性、高抗拉及降伏強度、及高韌性等特質之鈦合金板,其說明書可併入本文作為參考(Incorporated by Reference)。然而,由於產業競爭與持續創新的需求,追求更高強度、更優秀的材料為本公司努力的方向。因此,便有需要提供一種在強度及延展性方面有更加高的效能與品質的的鈦合金板材及其製造方法。 The applicant’s previous patent document (TW application number: 108116204) proposes a titanium alloy rolled plate for golf club heads, which is made with a special construction method and special alloy to produce high corrosion resistance, high tensile and yield strength, and high toughness For titanium alloy plates with other characteristics, the specification can be incorporated herein as a reference (Incorporated by Reference). However, due to industry competition and the demand for continuous innovation, the pursuit of higher strength and better materials is the direction of the company's efforts. Therefore, there is a need to provide a titanium alloy sheet and its manufacturing method with higher performance and quality in terms of strength and ductility.

本發明之一目的是提供一種具有更佳的強度及延展性的鈦合金板材及其製造方法。 One purpose of the present invention is to provide a titanium alloy sheet with better strength and ductility and a method for manufacturing the same.

依據上述之目的,本發明提供一種鈦合金板材,以其總重為100wt%計算,該鈦合金板材包括以下成份:5~7wt%的鋁、3~5wt%的釩、0.04~0.13wt%的釓、0.2% wt以下的鐵、0.03wt%以下的氮、0.015wt%以下的氫、0.2wt%以下的氧、0.05wt%以下的 碳、平衡量的鈦,以及不可避免之雜質。 According to the above-mentioned purpose, the present invention provides a titanium alloy sheet, calculated based on its total weight as 100wt%, the titanium alloy sheet includes the following ingredients: 5-7wt% aluminum, 3-5wt% vanadium, 0.04~0.13wt% Gamma, 0.2% wt or less iron, 0.03 wt% or less nitrogen, 0.015 wt% or less hydrogen, 0.2 wt% or less oxygen, 0.05 wt% or less Carbon, balance of titanium, and unavoidable impurities.

本發明更提供一種鈦合金板材製造方法,包括下列步驟:對含有鈦、鋁、鋁、釩及釓的各個材料進行一熔煉製程,以形成一鑄錠;對該鑄錠進行一鍛造製程(forging process)而形成一板胚:以及對該板胚進行一軋製製程(rolling process)而形成一鈦合金板材,其中該軋製製程包括:進行一第一熱處理步驟:在加熱温度1000±100℃之間,將該板胚進行滾軋,使該板胚之原始厚度減至第一厚度;進行一第二熱處理步驟:在加熱温度750±50℃之間,將該第一熱處理步驟後之板胚進行滾軋,使該板胚之第一厚度減至第二厚度;進行一第三熱處理步驟:在加熱温度1000±100℃之間,將該第二熱處理步驟後之板胚進行水淬;以及進行一第四熱處理步驟:在加熱温度750±50℃之間,將該第三熱處理步驟後之板胚進行換向滾軋,使該板胚之第二厚度減至第三厚度;其中該鈦合金板材包括以下成份:5~7wt%的鋁、3~5wt%的釩、0.04~0.13wt%的釓、0.2%wt以下的鐵、0.03wt%以下的氮、0.015wt%以下的氫、0.2wt%以下的氧、0.05wt%以下的碳、平衡量的鈦,以及不可避免之雜質。 The present invention further provides a titanium alloy sheet manufacturing method, which includes the following steps: performing a smelting process on each material containing titanium, aluminum, aluminum, vanadium, and gamma to form an ingot; performing a forging process on the ingot. process) to form a slab: and perform a rolling process on the slab to form a titanium alloy sheet, wherein the rolling process includes: performing a first heat treatment step: at a heating temperature of 1000±100°C In the meantime, the blank is rolled to reduce the original thickness of the blank to the first thickness; a second heat treatment step is performed: at a heating temperature of 750±50°C, the plate after the first heat treatment step The blank is rolled to reduce the first thickness of the blank to the second thickness; a third heat treatment step is performed: the blank after the second heat treatment step is water quenched at a heating temperature of 1000±100°C; And performing a fourth heat treatment step: at a heating temperature of 750±50°C, the blank after the third heat treatment step is reversed rolled to reduce the second thickness of the blank to the third thickness; wherein The titanium alloy sheet includes the following ingredients: 5~7wt% aluminum, 3~5wt% vanadium, 0.04~0.13wt% gamma, 0.2%wt or less iron, 0.03wt% or less nitrogen, 0.015wt% or less hydrogen, 0.2wt% or less oxygen, 0.05wt% or less carbon, balance titanium, and unavoidable impurities.

本發明之鋁合金材料藉由添加釓(Gd),並佐以軋製工法的搭配,製造出具有更高強度及延展性的新型鋁合金板材。本發明鈦合金板材對比業界常用鋁合金(Ti-6Al-4V),擁有更佳的強度及延展性。 The aluminum alloy material of the present invention is added with gamma (Gd) and combined with a rolling method to produce a new type of aluminum alloy sheet with higher strength and ductility. Compared with the commonly used aluminum alloy (Ti-6Al-4V) in the industry, the titanium alloy sheet of the present invention has better strength and ductility.

S100‧‧‧步驟 S100‧‧‧Step

S200‧‧‧步驟 S200‧‧‧Step

S210‧‧‧第一鍛造步驟 S210‧‧‧First forging step

S220‧‧‧第二鍛造步驟 S220‧‧‧Second forging step

S230‧‧‧第三鍛造步驟 S230‧‧‧The third forging step

S240‧‧‧第四鍛造步驟 S240‧‧‧Fourth forging step

S250‧‧‧第五鍛造步驟 S250‧‧‧Fifth forging step

S300‧‧‧步驟 S300‧‧‧Step

S310‧‧‧第一熱處理步驟 S310‧‧‧The first heat treatment step

S320‧‧‧第二熱處理步驟 S320‧‧‧Second heat treatment step

S330‧‧‧第三熱處理步驟 S330‧‧‧The third heat treatment step

S340‧‧‧第四熱處理步驟 S340‧‧‧The fourth heat treatment step

圖1為本發明之一實施例的鈦合金板材製造方法之流程示意圖。 Fig. 1 is a schematic flow chart of a method for manufacturing a titanium alloy sheet according to an embodiment of the present invention.

圖2為本發明之鍛造製程之流程示意圖。 Figure 2 is a schematic diagram of the forging process of the present invention.

圖3為本發明之軋製製程之流程示意圖。 Figure 3 is a schematic flow diagram of the rolling process of the present invention.

圖4為業界常用鋁合金(Ti-6Al-4V)之金相圖(光學顯微鏡-1000倍)。 Figure 4 is a metallographic image (optical microscope-1000 times) of aluminum alloy (Ti-6Al-4V) commonly used in the industry.

圖5為本發明鈦合金材料之金相圖(光學顯微鏡-1000倍)。 Figure 5 is a metallographic diagram of the titanium alloy material of the present invention (optical microscope-1000 times).

為讓本發明之上述目的、特徵和特點能更明顯易懂,茲配合圖式將本發明相關實施例詳細說明如下。 In order to make the above-mentioned objectives, features and characteristics of the present invention more obvious and understandable, the relevant embodiments of the present invention are described in detail below in conjunction with the drawings.

圖1為本發明之一實施例的鈦合金板材製造方法之流程示意圖。該鈦合金板材製造方法,包括下列步驟:在步驟S100中,對含有鈦、鋁、釩及釓的各個材料進行一熔煉製程,以形成一鑄錠。在本實施例中,該熔煉製程可採用海綿鈦、鈦鋁合金、鋁釩合金及氧化釓進行真空電弧自耗熔煉。在另一實施例中,該熔煉製程也可採用純鈦、純鋁、純釩及純釓進行真空電弧自耗熔煉。該真空自耗電弧是指利用直流電源在電極與放置於銅坩堝底板之間產生電弧,電弧產生高熱熔化電極,電極不斷下降溶化,在水冷銅坩堝內形成熔池,熔化的金屬完成速凝、結晶、成錠。 Fig. 1 is a schematic flow chart of a method for manufacturing a titanium alloy sheet according to an embodiment of the present invention. The method for manufacturing a titanium alloy sheet includes the following steps: in step S100, a smelting process is performed on each material containing titanium, aluminum, vanadium, and gamma to form an ingot. In this embodiment, the smelting process may use sponge titanium, titanium aluminum alloy, aluminum-vanadium alloy, and gamma oxide for vacuum arc consumable smelting. In another embodiment, the smelting process can also use pure titanium, pure aluminum, pure vanadium, and pure gamma to perform vacuum arc consumable smelting. The vacuum consumable arc refers to the use of a DC power supply to generate an arc between the electrode and the bottom plate placed on the copper crucible. The arc generates high heat to melt the electrode. The electrode continues to drop and melt, forming a molten pool in the water-cooled copper crucible, and the molten metal is quickly solidified. , Crystallization and ingot formation.

舉例,該熔煉製程以海綿鈦、鈦鋁合金、鋁釩合金、氧化釓為原料配置合金料,各組成分依照設計質量配比後,進行真空自耗熔煉爐熔煉,熔煉次數為3次,一次錠直徑為120mm,二次錠直徑為170mm,三次錠直徑為220mm。鑄錠生產工藝流程如下:海綿鈦→挑料→混料→布料→壓制電極→電極組焊→熔煉→鑄錠處理、分析檢驗→入庫。根據所確定的工藝路線、合金化方式及所制定的試製方案熔煉出直徑Φ 220mm的鑄錠。鑄錠扒除表面污染層及皮下氣孔缺陷後,在距離鑄錠冒口和底部均為50mm位置,取化學成分和氣體分析樣品。採用標準方法,完成了成分檢測,結果見表1。可見,鑄錠中各主要元素及雜質元素均滿足試製要求,成分控制達到了預期目標。 For example, the smelting process uses sponge titanium, titanium aluminum alloy, aluminum vanadium alloy, and gamma oxide as raw materials to configure alloy materials. After each composition is proportioned according to the designed mass ratio, it is smelted in a vacuum consumable smelting furnace. The number of smelting is 3 times. The ingot diameter is 120mm, the secondary ingot diameter is 170mm, and the tertiary ingot diameter is 220mm. The ingot production process is as follows: sponge titanium → material picking → material mixing → cloth → pressing electrode → electrode assembly welding → melting → ingot processing, analysis and inspection → storage. According to the determined process route, alloying method and the developed trial production plan, an ingot with a diameter of Φ 220mm is smelted. After the surface contamination layer and subcutaneous pore defects are removed from the ingot, the chemical composition and gas analysis samples are taken at a position 50 mm from the riser and bottom of the ingot. Using standard methods, the component detection was completed, and the results are shown in Table 1. It can be seen that all the main elements and impurity elements in the ingot meet the trial production requirements, and the composition control has reached the expected goal.

Figure 108132315-A0305-02-0005-1
Figure 108132315-A0305-02-0005-1
Figure 108132315-A0101-12-0004-2
Figure 108132315-A0101-12-0004-2

在步驟S200中,對該鑄錠進行一鍛造製程(forging process)而形成一板胚。舉例,採用的鍛造設備為800噸快鍛機,加熱爐温度控制精度±10℃。圖2為本發明之鍛造製程之流程示意圖。該鍛造製程包括:進行一第一鍛造步驟S210,開坯:在加熱温度1180±20℃之間,將該鑄錠進行一鐓粗一拔長,鍛後空冷,且修磨去除其表面裂紋及部分氧化皮,以形成一坯料;進行一第二鍛造步驟S220,坯料改鍛:在加熱温度980±10℃之間,將該第一鍛造步驟S210後之坯料進行一鐓粗一拔長,鍛後空冷,且修磨去除其表面裂紋及部分氧化皮;進行一第三鍛造步驟S230,坯料改鍛:在加熱温度960±10℃之間,將該第二鍛造步驟S220後之坯料進行一鐓粗一拔長,鍛後空冷,且修磨去除其表面裂紋及部分氧化皮;進行一第四鍛造步驟S240,坯料改鍛:在加熱温度940±10℃之間,將該第三鍛造步驟S230後之坯料進行一鐓粗一拔長,鍛後回爐;以及進行一第五鍛造步驟S250,在加熱温度:820±40℃之間,將該第四鍛造步驟S240後之坯料進行單向壓下及四周整形交替操作,並鍛製成尺寸為400mmx300mmx60mm的板坯。 In step S200, a forging process is performed on the ingot to form a blank. For example, the forging equipment used is an 800-ton fast forging machine, and the temperature control accuracy of the heating furnace is ±10°C. Figure 2 is a schematic diagram of the forging process of the present invention. The forging process includes: performing a first forging step S210, billeting: upsetting and drawing the ingot at a heating temperature of 1180±20°C, air cooling after forging, and grinding to remove surface cracks and cracks. Part of the oxide scale to form a blank; a second forging step S220 is performed, and the blank is forged: at a heating temperature of 980±10°C, the blank after the first forging step S210 is subjected to an upsetting and stretching, and forging After air cooling, and grinding to remove surface cracks and partial oxide scales; perform a third forging step S230, the blank is forged: at a heating temperature of 960±10°C, the blank after the second forging step S220 is subjected to an upsetting Rough-stretching, air cooling after forging, and grinding to remove surface cracks and partial oxide scale; a fourth forging step S240 is performed, and the blank is forged: at a heating temperature of 940±10°C, the third forging step S230 The next billet is subjected to an upsetting and drawing length, and is returned to the furnace after forging; and a fifth forging step S250 is performed, at a heating temperature of 820±40°C, the billet after the fourth forging step S240 is unidirectionally pressed It is operated alternately with round shaping, and forged into a slab with a size of 400mmx300mmx60mm.

在步驟S300中,對該板胚進行一軋製製程(rolling process)而形成一鈦合金板材。舉例,採用軋輥寬度為400mm的小型軋板機完成板材軋製。該板坯採用高温箱式電阻爐加熱,在熱軋試驗機組軋機上軋製。使用數字電位差計對箱式電阻爐進行温度校訂,保證温度偏差±10℃。 In step S300, a rolling process is performed on the blank to form a titanium alloy plate. For example, a small rolling mill with a roll width of 400mm is used to complete sheet rolling. The slab is heated by a high-temperature box-type resistance furnace and rolled on the rolling mill of the hot rolling test unit. Use a digital potentiometer to calibrate the temperature of the box-type resistance furnace to ensure a temperature deviation of ±10°C.

圖3為本發明之軋製製程之流程示意圖。在本實施例中,該軋製製程包括:進行一第一熱處理步驟S310:在加熱温度1000±100℃之間,將該板胚進行滾軋,使該板胚之原始厚度減至第一厚度,例如δ60mm→δ30mm;進行一第二熱處理步驟S320:在加熱温度750±50℃之間,將該第一熱處理步驟S310後之板胚進行滾軋,使該板胚之第一厚度減至第二厚度,例如δ30mm→δ15mm;進行一第三熱處理步驟S330:在加熱温度1000±100℃之間,將該第二熱處理步驟S320後之板胚進行水淬,例如水淬30分鐘;以及進行一第四熱處理步驟S340:在加熱温度750±50℃之間,將該第三熱處理步驟S330後之板胚進行換向滾軋,使該板胚之第二厚度減至第三厚度,例如δ15mm→δ4±0.6mm。搭配鈦合金之新的成份比例,本發明之新的軋製製程可再提升鈦合金板材具有更佳的強度與延展性。 Figure 3 is a schematic flow diagram of the rolling process of the present invention. In this embodiment, the rolling process includes: performing a first heat treatment step S310: rolling the plate blank at a heating temperature of 1000±100°C to reduce the original thickness of the plate blank to the first thickness , For example, δ60mm→δ30mm; perform a second heat treatment step S320: between the heating temperature of 750±50°C, the blank after the first heat treatment step S310 is rolled to reduce the first thickness of the blank to the first Two thickness, for example δ30mm→δ15mm; perform a third heat treatment step S330: perform water quenching of the blank after the second heat treatment step S320 at a heating temperature of 1000±100°C, for example, water quenching for 30 minutes; and perform a The fourth heat treatment step S340: between the heating temperature of 750±50°C, the blank after the third heat treatment step S330 is reversing rolling to reduce the second thickness of the blank to the third thickness, for example δ15mm→ δ4±0.6mm. With the new composition ratio of the titanium alloy, the new rolling process of the present invention can further enhance the titanium alloy sheet to have better strength and ductility.

該鈦合金板材包括以下成份:5~7wt%的鋁、3~5wt%的釩、0.04~0.13wt%的釓、0.2%以下的鐵、0.03wt%以下的氮、0.015wt%以下的氫、0.2wt%以下的氧、0.05wt%以下的碳、平衡量的鈦,以及不可避免之雜質,如表2。本發明藉由添加稀土元素:釓(Gd),並佐以軋製工法(即壓延工法)的搭配,製造出具有更高強度的新型鈦合金材料。 The titanium alloy sheet includes the following components: 5~7wt% aluminum, 3~5wt% vanadium, 0.04~0.13wt% gamma, 0.2% or less iron, 0.03wt% or less nitrogen, 0.015wt% or less hydrogen, Oxygen below 0.2wt%, carbon below 0.05wt%, balance titanium, and unavoidable impurities are shown in Table 2. In the present invention, a new type of titanium alloy material with higher strength is manufactured by adding a rare earth element: gamma (Gd), and the combination of a rolling method (ie, a rolling method).

Figure 108132315-A0305-02-0007-2
Figure 108132315-A0305-02-0007-2

本發明添加少量的稀土元素釓(Gd),並以特殊軋製工法使其晶粒產生方向性,進而使材料特定的方向大幅提升強度,並利用適當的退火方式使其材料因軋製工法降低的延伸率回復,進而獲得高強度且高延展性的鈦合金材料。圖4為業界常用 鈦合金(Ti-6Al-4V)之金相圖,圖5為本發明鈦合金材料之金相圖,圖5顯示添加微量的釓(Gd)會使晶粒細化,因此在後續的熱壓軋或熱處理都能獲得更細緻的晶粒,這也是提升強度關鍵。 The invention adds a small amount of rare earth element gamma (Gd), and uses a special rolling method to make the crystal grains directional, thereby greatly increasing the strength of the material in a specific direction, and using appropriate annealing methods to reduce the material due to the rolling method Recovery of elongation, and obtain high strength and high ductility titanium alloy material. Figure 4 is commonly used in the industry The metallographic diagram of the titanium alloy (Ti-6Al-4V). Figure 5 is the metallographic diagram of the titanium alloy material of the present invention. Figure 5 shows that the addition of a small amount of gamma (Gd) will refine the grains, so in the subsequent hot pressing Rolling or heat treatment can obtain finer grains, which is also the key to improving strength.

釓(Gd)元素容易沉積在鈦合金材料晶界處,而鈦合金材料在經熱壓軋與熱處理時再晶界處的釓(Gd)會限制與阻礙晶粒的成長,使得處理後的鈦合金最終能保有更細緻的晶粒,進而提升鈦合金材料的物性與品質。添加釓(Gd)元素也能抑制壓延時鈦合金材料邊角產生的裂縫延展,改善業界常用鈦合金(Ti-6Al-4V)的得料率不佳的情況,能讓板材更容易軋製,一般情況下鈦合金(Ti-6Al-4V)的得料率並不高,約只有6-7成,額添加微量釓(Gd)時得料率能提升至8成。 The gamma (Gd) element is easy to deposit at the grain boundaries of titanium alloy materials, and the gamma (Gd) at the grain boundaries during the hot rolling and heat treatment of titanium alloy materials will restrict and hinder the growth of grains, making the treated titanium The alloy can ultimately retain finer grains, thereby improving the physical properties and quality of titanium alloy materials. The addition of gamma (Gd) element can also suppress the crack extension caused by the corners of titanium alloy materials during rolling, improve the poor material yield of titanium alloys (Ti-6Al-4V) commonly used in the industry, and make the plate easier to roll. Under the circumstances, the yield rate of titanium alloy (Ti-6Al-4V) is not high, only about 60% to 70%, and the yield rate can be increased to 80% when a trace amount of gamma (Gd) is added.

本發明之鈦合金材料的α/β轉換溫度為約950℃~990℃,麻田散鐵轉換的起始溫度(Ms)為800℃~840℃之間,本發明之鈦合金板材使用溫度處於麻田散鐵轉換溫度(Ms)之下700℃~800℃左右,由於溫度處於麻田散鐵轉換的起始溫度(Ms)之下,鈦合金材料內部晶粒容易析出大量的強化相,藉由強化相的析出使得鈦合金板材強度提升。 The α/β conversion temperature of the titanium alloy material of the present invention is about 950°C to 990°C, and the starting temperature (Ms) for the conversion of scattered iron in Matian is between 800°C and 840°C. Below the scattered iron conversion temperature (Ms), about 700℃~800℃, because the temperature is below the starting temperature (Ms) of the Asada scattered iron conversion, a large number of strengthening phases are easily precipitated in the internal grains of the titanium alloy material. The precipitation makes the strength of the titanium alloy sheet increase.

以表1之實施例1的鈦合金成分比例為例,在約4.5mm板材上取樣橫向(L)與縱向(T)拉伸試樣各5支,在室溫下進行拉伸測試,測試結果見表3。可見,T方向有遠高於業界常用鈦合金(Ti-6Al-4V)的機械性質,而高爾夫球頭製作打擊面板時會根據切割方向的不同而影響性能,以T方向切割面板能確保球頭擁有最佳的機械性質。 Taking the titanium alloy composition ratio of Example 1 in Table 1 as an example, 5 transverse (L) and longitudinal (T) tensile samples were sampled on a plate of about 4.5 mm, and the tensile test was carried out at room temperature. The test results See Table 3. It can be seen that the T-direction has much higher mechanical properties than the commonly used titanium alloy (Ti-6Al-4V) in the industry. When the golf head makes the striking panel, the performance will be affected according to the cutting direction. Cutting the panel in the T direction can ensure the ball head Have the best mechanical properties.

Figure 108132315-A0305-02-0008-3
Figure 108132315-A0305-02-0008-3
Figure 108132315-A0305-02-0009-5
Figure 108132315-A0305-02-0009-5

本發明之鈦合金材料藉由添加釓(Gd),並佐以軋製工法的搭配,製造出具有更高強度及延展性的新型鈦合金板材。由表4可見本發明鈦合金板材對比業界常用鈦合金(Ti-6Al-4V),擁有更佳的強度及延展性。 The titanium alloy material of the present invention is added with gamma (Gd) and combined with a rolling method to produce a new type of titanium alloy sheet with higher strength and ductility. It can be seen from Table 4 that the titanium alloy sheet of the present invention has better strength and ductility than the commonly used titanium alloy (Ti-6Al-4V) in the industry.

Figure 108132315-A0305-02-0009-6
Figure 108132315-A0305-02-0009-6

綜上所述,乃僅記載本發明為呈現解決問題所採用的技術手段之較佳實施方式或實施例而已,並非用來限定本發明專利實施之範圍。即凡與本發明專利申請範圍文義相符,或依本發明專利範圍所做的均等變化與修飾,皆為本發明專利範圍所涵蓋。 To sum up, it only describes the preferred implementations or examples of the technical means adopted by the present invention to solve the problems, and is not used to limit the scope of implementation of the patent of the present invention. That is to say, all the equivalent changes and modifications made in accordance with the scope of the patent application of the present invention or made in accordance with the scope of the patent of the present invention are covered by the scope of the present patent.

S100‧‧‧步驟 S100‧‧‧Step

S200‧‧‧步驟 S200‧‧‧Step

S300‧‧‧步驟 S300‧‧‧Step

Claims (8)

一種鈦合金板材,以其總重為100wt%計算,該鈦合金板材由以下成份所組成:5~7wt%的鋁、3~5wt%的釩、0.04~0.13wt%的釓、0.07~0.2wt%的鐵、0.006~0.03wt%的氮、0.0051~0.015wt%的氫、0.009~0.2wt%的氧、0.022~0.05wt%的碳、平衡量的鈦,以及不可避免之雜質。 A titanium alloy sheet, calculated based on its total weight as 100wt%, the titanium alloy sheet is composed of the following components: 5-7wt% aluminum, 3-5wt% vanadium, 0.04-0.13wt% gamma, 0.07-0.2wt % Iron, 0.006~0.03wt% nitrogen, 0.0051~0.015wt% hydrogen, 0.009~0.2wt% oxygen, 0.022~0.05wt% carbon, balance titanium, and inevitable impurities. 根據專利申請範圍第1項所述之鈦合金板材,其中該鈦合金板材的抗拉強度介在170~182KSI之間,且該鈦合金板材的延伸率介在12~19%之間。 According to the titanium alloy sheet according to item 1 of the scope of patent application, the tensile strength of the titanium alloy sheet is between 170 and 182 KSI, and the elongation of the titanium alloy sheet is between 12 and 19%. 一種鈦合金板材製造方法,包括下列步驟:對含有鈦、鋁、鋁、釩及釓的各個材料進行一熔煉製程,以形成一鑄錠;對該鑄錠進行一鍛造製程(forging process)而形成一板胚,其中該鍛造製程包括:進行一第一鍛造步驟:在加熱温度1180±20℃之間,將該鑄錠進行一鐓粗一拔長,鍛後空冷,且修磨去除其表面裂紋及部分氧化皮,以形成一坯料;進行一第二鍛造步驟:在加熱温度980±10℃之間,將該第一鍛造步驟後之坯料進行一鐓粗一拔長,鍛後空冷,且修磨去除其表面裂紋及部分氧化皮;進行一第三鍛造步驟:在加熱温度960±10℃之間,將該第二鍛造步驟後之坯料進行一鐓粗一拔長,鍛後空冷,且修磨去除其表面裂紋及部分氧化皮;進行一第四鍛造步驟:在加熱温度940±10℃之間,將該第三鍛造步驟後之坯料進行一鐓粗一拔長,鍛後回爐;以及進行一第五鍛造步驟:在加熱温度:820±40℃之間,將該第四鍛造步驟後之坯料進行單向壓下及四周整形交替操作,並鍛製成該板坯;以及 對該板胚進行一軋製製程(rolling process)而形成一鈦合金板材,其中該軋製製程包括:進行一第一熱處理步驟:在加熱温度1000±100℃之間,將該板胚進行滾軋,使該板胚之原始厚度減至第一厚度;進行一第二熱處理步驟:在加熱温度750±50℃之間,將該第一熱處理步驟後之板胚進行滾軋,使該板胚之第一厚度減至第二厚度;進行一第三熱處理步驟:在加熱温度1000±100℃之間,將該第二熱處理步驟後之板胚進行水淬;以及進行一第四熱處理步驟:在加熱温度750±50℃之間,將該第三熱處理步驟後之板胚進行換向滾軋,使該板胚之第二厚度減至第三厚度;其中該鈦合金板材包括以下成份:5~7wt%的鋁、3~5wt%的釩、0.04~0.13wt%的釓、0.07~0.2wt%的鐵、0.006~0.03wt%的氮、0.0051~0.015wt%下的氫、0.009~0.2wt%的氧、0.022~0.05wt%的碳、平衡量的鈦,以及不可避免之雜質。 A method for manufacturing a titanium alloy sheet includes the following steps: performing a smelting process on each material containing titanium, aluminum, aluminum, vanadium, and gamma to form an ingot; performing a forging process on the ingot to form A slab, wherein the forging process includes: performing a first forging step: at a heating temperature of 1180±20°C, the ingot is upset and elongated, air-cooled after forging, and ground cracks are removed by grinding And part of the oxide scale to form a blank; perform a second forging step: at a heating temperature of 980±10°C, the blank after the first forging step is upset and elongated, and after forging, it is air cooled and repaired. Grinding to remove surface cracks and part of the oxide scale; perform a third forging step: at a heating temperature of 960±10°C, the blank after the second forging step is upset and elongated, after forging, air-cooled and repaired Grinding to remove surface cracks and partial oxide scales; performing a fourth forging step: upsetting and drawing the blank after the third forging step at a heating temperature of 940±10°C, and returning it to the furnace after forging; and A fifth forging step: at a heating temperature of 820±40°C, the blank after the fourth forging step is subjected to one-way pressing and peripheral shaping alternate operations, and forging into the slab; and A rolling process is performed on the plate blank to form a titanium alloy plate, wherein the rolling process includes: performing a first heat treatment step: rolling the plate blank at a heating temperature of 1000±100°C Rolling to reduce the original thickness of the blank to the first thickness; perform a second heat treatment step: at a heating temperature of 750±50°C, roll the blank after the first heat treatment step to make the blank The first thickness is reduced to the second thickness; a third heat treatment step is performed: the blank after the second heat treatment step is water quenched at a heating temperature of 1000±100°C; and a fourth heat treatment step is performed: The heating temperature is between 750±50℃, and the blank after the third heat treatment step is reversed rolled to reduce the second thickness of the blank to the third thickness; wherein the titanium alloy plate includes the following components: 5~ 7wt% aluminum, 3~5wt% vanadium, 0.04~0.13wt% gamma, 0.07~0.2wt% iron, 0.006~0.03wt% nitrogen, 0.0051~0.015wt% hydrogen, 0.009~0.2wt% Oxygen, 0.022~0.05wt% carbon, balance titanium, and unavoidable impurities. 根據專利申請範圍第3項所述之鈦合金板材製造方法,其中該熔煉製程包括:採用海綿鈦、鈦鋁合金、鋁釩合金及氧化釓進行真空電弧自耗熔煉。 According to the titanium alloy sheet manufacturing method described in item 3 of the scope of patent application, the smelting process includes: using sponge titanium, titanium aluminum alloy, aluminum vanadium alloy, and gyrium oxide for vacuum arc consumable smelting. 根據專利申請範圍第3項所述之鈦合金板材製造方法,其中該熔煉製程包括:採用純鈦、純鋁、純釩及純釓進行真空電弧自耗熔煉。 According to the titanium alloy sheet manufacturing method described in item 3 of the scope of patent application, the smelting process includes: using pure titanium, pure aluminum, pure vanadium and pure gamma to perform vacuum arc consumable smelting. 根據專利申請範圍第3項所述之鈦合金板材製造方法,其中該鈦合金板材溫度處於Ms轉換溫度之下700℃~800℃。 According to the titanium alloy sheet manufacturing method described in item 3 of the scope of patent application, the temperature of the titanium alloy sheet is 700°C to 800°C below the Ms transition temperature. 根據專利申請範圍第6項所述之鈦合金板材製造方法,其中該鈦合金板材的抗拉強度介在170~182KSI之間,且該鈦合金板材的延伸率介在12~19%之間。 According to the titanium alloy sheet manufacturing method described in item 6 of the scope of patent application, the tensile strength of the titanium alloy sheet is between 170 and 182 KSI, and the elongation of the titanium alloy sheet is between 12 and 19%. 一種鈦合金板材製造方法,包括下列步驟: 對含有鈦、鋁、鋁、釩及釓的各個材料進行一熔煉製程,以形成一鑄錠;對該鑄錠進行一鍛造製程(forging process)而形成一板胚,其中該鍛造製程包括:進行一第一鍛造步驟:在加熱温度1180±20℃之間,將該鑄錠進行一鐓粗一拔長,鍛後空冷,且修磨去除其表面裂紋及部分氧化皮,以形成一坯料;進行一第二鍛造步驟:在加熱温度980±10℃之間,將該第一鍛造步驟後之坯料進行一鐓粗一拔長,鍛後空冷,且修磨去除其表面裂紋及部分氧化皮;進行一第三鍛造步驟:在加熱温度960±10℃之間,將該第二鍛造步驟後之坯料進行一鐓粗一拔長,鍛後空冷,且修磨去除其表面裂紋及部分氧化皮;進行一第四鍛造步驟:在加熱温度940±10℃之間,將該第三鍛造步驟後之坯料進行一鐓粗一拔長,鍛後回爐;以及進行一第五鍛造步驟:在加熱温度:820±40℃之間,將該第四鍛造步驟後之坯料進行單向壓下及四周整形交替操作,並鍛製成該板坯;以及對該板胚進行一軋製製程(rolling process)而形成一鈦合金板材,其中該軋製製程包括:進行一第一熱處理步驟:在加熱温度1000±100℃之間,將該板胚進行滾軋,使該板胚之原始厚度減至第一厚度;進行一第二熱處理步驟:在加熱温度750±50℃之間,將該第一熱處理步驟後之板胚進行滾軋,使該板胚之第一厚度減至第二厚度;進行一第三熱處理步驟:在加熱温度1000±100℃之間,將該第二熱處理步驟後之板胚進行水淬;以及 進行一第四熱處理步驟:在加熱温度750±50℃之間,將該第三熱處理步驟後之板胚進行換向滾軋,使該板胚之第二厚度減至第三厚度;其中該鈦合金板材由以下成份所組成:5~7wt%的鋁、3~5wt%的釩、0.04~0.13wt%的釓、0.07~0.2%的鐵、0.006~0.03wt%的氮、0.0051~0.015wt%的氫、0.009~0.2wt%的氧、0.022~0.05wt%的碳、平衡量的鈦,以及不可避免之雜質。 A method for manufacturing a titanium alloy plate includes the following steps: A smelting process is performed on each material containing titanium, aluminum, aluminum, vanadium, and gamma to form an ingot; a forging process is performed on the ingot to form a blank, wherein the forging process includes: A first forging step: at a heating temperature of 1180±20°C, the ingot is subjected to one upsetting and one drawing, after forging, air cooling, and grinding to remove surface cracks and partial oxide scales to form a blank; A second forging step: at a heating temperature of 980±10°C, the blank after the first forging step is upset and elongated, air-cooled after forging, and ground cracks and some oxide scales are removed by grinding; A third forging step: at a heating temperature of 960±10°C, the blank after the second forging step is upset and elongated, air-cooled after forging, and ground cracks and partial oxide scale are removed by grinding; A fourth forging step: at a heating temperature of 940±10°C, the blank after the third forging step is upset and drawn, forged and then returned to the furnace; and a fifth forging step: at the heating temperature: 820 Within ±40°C, the blank after the fourth forging step is subjected to one-way pressing and peripheral shaping alternate operations, and forged into the slab; and the blank is formed by a rolling process A titanium alloy sheet, wherein the rolling process includes: performing a first heat treatment step: rolling the blank at a heating temperature of 1000±100°C to reduce the original thickness of the blank to the first thickness; Perform a second heat treatment step: roll the blank after the first heat treatment step at a heating temperature of 750±50°C to reduce the first thickness of the blank to the second thickness; perform a third heat treatment Step: Water quenching the blank after the second heat treatment step at a heating temperature of 1000±100°C; and Carry out a fourth heat treatment step: at a heating temperature of 750±50°C, the plate blank after the third heat treatment step is reverse-rolled to reduce the second thickness of the plate blank to the third thickness; wherein the titanium The alloy sheet consists of the following ingredients: 5~7wt% aluminum, 3~5wt% vanadium, 0.04~0.13wt% gamma, 0.07~0.2% iron, 0.006~0.03wt% nitrogen, 0.0051~0.015wt% Hydrogen, 0.009~0.2wt% oxygen, 0.022~0.05wt% carbon, balance titanium, and inevitable impurities.
TW108132315A 2019-09-06 2019-09-06 Titanium alloy plate and manufacturing method thereof TWI717007B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108132315A TWI717007B (en) 2019-09-06 2019-09-06 Titanium alloy plate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108132315A TWI717007B (en) 2019-09-06 2019-09-06 Titanium alloy plate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TWI717007B true TWI717007B (en) 2021-01-21
TW202111135A TW202111135A (en) 2021-03-16

Family

ID=75237203

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108132315A TWI717007B (en) 2019-09-06 2019-09-06 Titanium alloy plate and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI717007B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090035172A1 (en) * 2005-05-23 2009-02-05 Heinz Sibum Titanium Alloy
TW201436892A (en) * 2013-03-29 2014-10-01 Ota Precision Ind Co Ltd Titanium alloy rolling plate of golf club head and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090035172A1 (en) * 2005-05-23 2009-02-05 Heinz Sibum Titanium Alloy
TW201436892A (en) * 2013-03-29 2014-10-01 Ota Precision Ind Co Ltd Titanium alloy rolling plate of golf club head and manufacturing method thereof

Also Published As

Publication number Publication date
TW202111135A (en) 2021-03-16

Similar Documents

Publication Publication Date Title
CN112626372B (en) Titanium alloy sheet material and method for producing same
TWI684646B (en) Titanium alloy plate and its manufacturing method
CN109112423B (en) Super-thick alloy steel plate with excellent low-temperature toughness and preparation method thereof
JP2020500108A (en) Gear rack steel plate having a maximum thickness of 177.8 mm manufactured by continuous casting billet and method for manufacturing the same
CN106987744A (en) A kind of wear-resistant aluminum alloy and its preparation technology
JP2022544646A (en) Ultra-thin, ultra-high-strength steel wire, wire rod, and method for manufacturing wire rod
CN107604222A (en) It is a kind of can ageing strengthening Al Mg systems alloy and preparation method thereof
CN102000954A (en) Method for manufacturing continuous pipe mill retained mandrel
CN113042565A (en) High-quality GH2132 alloy bar for fasteners and production method thereof
CN113846247A (en) W-Mo-Co reinforced high-temperature alloy hot-rolled bar and preparation method thereof
CN115896419A (en) Preparation method and application of GH2132 alloy bar
CN115852267A (en) High-strength high-conductivity low-expansion iron-nickel-molybdenum alloy wire and production method thereof
CN108441613A (en) A kind of anti-white point control method of age-hardening plastic mould steel
CN114561517A (en) Low-density high-ductility steel and preparation method and application thereof
CN108588540B (en) Method for manufacturing nuclear power 1Cr15Ni36W3Ti alloy forged and rolled bar
TWI777652B (en) Titanium alloy plate and method for the same having an impact strength layer and a flexible layer
TWI717007B (en) Titanium alloy plate and manufacturing method thereof
CN112647022A (en) High-silicon stainless steel pipe and preparation process thereof
JP6666957B2 (en) Alloy for golf club head and method of manufacturing golf club head using the same
JP6060914B2 (en) Cold rolled steel sheet and method for producing the same
CN114000027B (en) UNS N08120 forged ring and manufacturing method thereof
CN113293317B (en) Preparation method of pure nickel plate with high cold formability
CN113637871A (en) Method for manufacturing hot-forming titanium alloy for golf tool
TWI701343B (en) Titanium alloy plate and golf club head
TWI761253B (en) High-strength maraging steel plate and method for manufacturing the same