TWI715343B - Antenna device based on modified rotman lens - Google Patents

Antenna device based on modified rotman lens Download PDF

Info

Publication number
TWI715343B
TWI715343B TW108145090A TW108145090A TWI715343B TW I715343 B TWI715343 B TW I715343B TW 108145090 A TW108145090 A TW 108145090A TW 108145090 A TW108145090 A TW 108145090A TW I715343 B TWI715343 B TW I715343B
Authority
TW
Taiwan
Prior art keywords
port array
output port
antenna device
cavity
input port
Prior art date
Application number
TW108145090A
Other languages
Chinese (zh)
Other versions
TW202123537A (en
Inventor
周錫增
張晨毅
廖昌倫
Original Assignee
中華電信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中華電信股份有限公司 filed Critical 中華電信股份有限公司
Priority to TW108145090A priority Critical patent/TWI715343B/en
Application granted granted Critical
Publication of TWI715343B publication Critical patent/TWI715343B/en
Publication of TW202123537A publication Critical patent/TW202123537A/en

Links

Images

Abstract

An antenna device based on a modified Rotman lens is provided. The antenna device includes a dielectric substrate and a conductor layer. The conductor layer is disposed on a surface of the dielectric substrate, wherein the conductor layer includes an input port array, an output port array, and a cavity. The cavity connects the input port array to the output port array and includes a reflective structure, wherein the reflective structure forms a symmetry axis of the output port array and a virtual output port array, wherein the virtual output port array corresponds to an output port array of a conventional Rotman lens.

Description

基於改良型羅特曼透鏡的天線裝置 Antenna device based on improved Rotman lens

本發明是有關於一種天線裝置,且特別是有關於一種基於改良型羅特曼透鏡的天線裝置。 The present invention relates to an antenna device, and more particularly to an antenna device based on an improved Rotman lens.

為因應IoT時代的來臨,5G技術的發展將藉由更大頻寬來提高傳輸速率並降低通訊延遲。而相較於現行LTE頻段,5G因採用高頻段頻譜進行資料傳輸,傳輸過程的路徑損失將降低細胞覆蓋率,故巨量天線系統以及波束成形技術將是不可或缺的。羅特曼透鏡(Rotman lens)波束成形網路憑藉其寬阻抗頻寬且低天線波束指向偏斜等特性,相比其他波束成形技術具有相當的優勢。再者,由於羅特曼透鏡可結合基材來實現,在設計巨量天線系統時可避免使用大量數位相移器以降低製作成本。然而,羅特曼透鏡的工作原理是基於時域的波束成形機制。相較於頻域的相控電路設計,羅特曼透鏡的電路往往具有結構尺寸龐大的問題。 In response to the advent of the IoT era, the development of 5G technology will increase the transmission rate and reduce communication delays through greater bandwidth. Compared with the current LTE frequency band, 5G uses high-frequency spectrum for data transmission, and the path loss in the transmission process will reduce the cell coverage, so massive antenna systems and beamforming technology will be indispensable. Rotman lens (Rotman lens) beamforming network has considerable advantages over other beamforming technologies due to its wide impedance bandwidth and low antenna beam pointing deflection. Furthermore, since the Rotman lens can be implemented in combination with the substrate, the use of a large number of digital phase shifters can be avoided when designing a large number of antenna systems to reduce manufacturing costs. However, the working principle of the Rotman lens is based on the beamforming mechanism in the time domain. Compared with the phase-controlled circuit design in the frequency domain, the Rotman lens circuit often has the problem of huge structure size.

本發明提供一種基於改良型羅特曼透鏡的天線裝置,可顯著地降低羅特曼透鏡之腔體的尺寸。 The present invention provides an antenna device based on an improved Rotman lens, which can significantly reduce the size of the cavity of the Rotman lens.

本發明的一種基於改良型羅特曼透鏡的天線裝置,包括介電基板以及導體層。導體層設置在介電基板的表面,其中導體層包括輸入埠陣列、輸出埠陣列以及腔體。腔體連接輸入埠陣列和輸出埠陣列並且包括反射結構,其中在設計上,反射結構所在的軸線將視作輸出埠陣列與虛擬輸出埠陣列的對稱軸,而虛擬輸出埠陣列對應於傳統羅特曼透鏡的輸出埠陣列。 An antenna device based on an improved Rotman lens of the present invention includes a dielectric substrate and a conductor layer. The conductor layer is arranged on the surface of the dielectric substrate, and the conductor layer includes an input port array, an output port array and a cavity. The cavity connects the input port array and the output port array and includes a reflection structure. In design, the axis of the reflection structure will be regarded as the symmetry axis of the output port array and the virtual output port array. The virtual output port array corresponds to the traditional Roth The output port array of the Mann lens.

在本發明的一實施例中,上述的輸入埠陣列的第一中垂線與輸出埠陣列的第二中垂線垂直。 In an embodiment of the present invention, the first vertical line of the input port array is perpendicular to the second vertical line of the output port array.

在本發明的一實施例中,上述的輸入埠陣列的第一中垂線與反射結構的法線之間的第一夾角為45度,並且輸出埠陣列的第二中垂線與反射結構的法線之間的第二夾角為45度。 In an embodiment of the present invention, the first included angle between the first vertical line of the input port array and the normal line of the reflective structure is 45 degrees, and the second vertical line of the output port array and the normal line of the reflective structure The second angle between them is 45 degrees.

在本發明的一實施例中,上述的導體層更包括虛設埠。虛設埠連接腔體,其中虛設埠的第一中垂線與反射結構之間的第一銳角小於輸出埠陣列的輸出埠的第二中垂線與反射結構之間的第二銳角。 In an embodiment of the present invention, the aforementioned conductive layer further includes dummy ports. The dummy port is connected to the cavity, wherein the first acute angle between the first vertical line of the dummy port and the reflective structure is smaller than the second acute angle between the second vertical line of the output ports of the output port array and the reflective structure.

在本發明的一實施例中,上述的導體層更包括漸變線變換器。漸變線變換器將輸入埠陣列中的輸入埠或輸出埠陣列中的輸出埠連接至腔體。 In an embodiment of the present invention, the aforementioned conductor layer further includes a tapered line transformer. The tapered line converter connects the input port in the input port array or the output port in the output port array to the cavity.

在本發明的一實施例中,上述的漸變線變換器包括直接連接至輸入埠或輸出埠的第一部位以及直接連接至腔體的第二部 位,其中第一部位的阻抗為50歐姆。 In an embodiment of the present invention, the above-mentioned tapered line converter includes a first part directly connected to the input port or output port and a second part directly connected to the cavity Bit, the impedance of the first part is 50 ohms.

在本發明的一實施例中,上述的天線裝置,更包括接地層。接地層設置在介電基板的相對於表面的第二表面。 In an embodiment of the present invention, the aforementioned antenna device further includes a ground layer. The ground layer is provided on the second surface of the dielectric substrate opposite to the surface.

在本發明的一實施例中,上述的導體層通過通孔以電性耦接至接地層,從而使反射結構符合全反射的邊界條件。 In an embodiment of the present invention, the aforementioned conductor layer is electrically coupled to the ground layer through the through hole, so that the reflective structure meets the boundary condition of total reflection.

在本發明的一實施例中,上述的天線裝置的輸入訊號的波長經配置以使反射結構符合全反射的邊界條件。 In an embodiment of the present invention, the wavelength of the input signal of the aforementioned antenna device is configured so that the reflective structure meets the boundary condition of total reflection.

在本發明的一實施例中,上述的導體層為金屬波導及印刷電路的其中之一。 In an embodiment of the present invention, the aforementioned conductor layer is one of a metal waveguide and a printed circuit.

基於上述,本發明的天線裝置可利用反射結構改變輸入埠陣列與輸出埠陣列之間的路徑,藉以縮小羅特曼透鏡的尺寸。 Based on the above, the antenna device of the present invention can use the reflective structure to change the path between the input port array and the output port array, thereby reducing the size of the Rotman lens.

1:羅特曼透鏡 1: Rotman lens

2:天線陣列 2: antenna array

3:線路 3: line

10、310:輸入埠陣列 10.310: Input port array

11、12、13、14、311、312、313、314:輸入埠 11, 12, 13, 14, 311, 312, 313, 314: input port

20、330:輸出埠陣列 20, 330: output port array

21、22、23、24、25、26、331、332、333、334、335、336:輸出埠 21, 22, 23, 24, 25, 26, 331, 332, 333, 334, 335, 336: output port

30、40:虛設埠陣列 30, 40: dummy port array

50、350:腔體 50, 350: cavity

100:天線裝置 100: Antenna device

210:導體層 210: Conductor layer

220:介電基板 220: Dielectric substrate

230:接地層 230: Ground layer

240:通孔 240: Through hole

320:虛擬輸出埠陣列 320: Virtual output port array

321、322、323、324、325、326:虛擬輸出埠 321, 322, 323, 324, 325, 326: virtual output port

340:虛設埠 340: Dummy Port

351:虛擬腔體 351: Virtual Cavity

360:反射結構 360: reflective structure

600:漸變線變換器 600: gradient line converter

610:漸變線變換器的第一部位 610: The first part of the gradient line converter

620:漸變線變換器的第二部位 620: The second part of the gradient line converter

700、800、1000、1100:中垂線 700, 800, 1000, 1100: perpendicular

900:法線 900: Normal

θ1、θ2:夾角 θ1, θ2: included angle

θ3、θ4:銳角 θ3, θ4: acute angle

圖1繪示一種羅特曼透鏡與天線陣列的示意圖。 Figure 1 shows a schematic diagram of a Rotman lens and an antenna array.

圖2繪示羅特曼透鏡的俯視圖。 Figure 2 shows a top view of a Rotman lens.

圖3根據本發明的實施例繪示一種基於改良型羅特曼透鏡的天線裝置的側視圖。 FIG. 3 illustrates a side view of an antenna device based on an improved Rotman lens according to an embodiment of the present invention.

圖4根據本發明的實施例繪示導體層的俯視圖。 FIG. 4 shows a top view of a conductive layer according to an embodiment of the present invention.

圖5A繪示基於羅特曼透鏡的天線裝置的效能的示意圖。 FIG. 5A is a schematic diagram showing the performance of the antenna device based on Rotman lens.

圖5B根據本發明的實施例繪示基於改良型羅特曼透鏡的天線裝置的效能的示意圖。 5B is a schematic diagram illustrating the performance of an antenna device based on an improved Rotman lens according to an embodiment of the present invention.

圖6根據本發明的實施例繪示羅特曼透鏡的漸變線變換器的示意圖。 Fig. 6 illustrates a schematic diagram of a gradient line converter of a Rotman lens according to an embodiment of the present invention.

圖1繪示一種羅特曼透鏡1與天線陣列2的示意圖。羅特曼透鏡1包括輸入埠陣列10、輸出埠陣列20以及腔體50。輸出埠陣列20通過多個線路3電性耦接至天線陣列2,其中所述多個線路3例如是微帶傳輸線路或同軸傳輸線路等。多個線路3中的每一線路之長度需依據羅特曼公式加以計算,而非等長的。羅特曼透鏡1的波束成形機制如圖1所示,當輸入訊號經由輸入埠陣列10中的其中一個輸入埠輸入時,輸入訊號會進入腔體50,並以類似點波源型式向四周傳播,其中該輸入埠與輸出埠陣列20的每個輸出埠之間的路徑長度並非一致的,此特性能使輸出埠陣列20的每一輸出埠所接收到的訊號具有不同的相位。接著,由輸出埠陣列20的每一輸出埠所輸出的輸出訊號在經過基於羅特曼公式所設計的多個線路3時,各個輸出訊號的相位可分別被所述多個線路3調整,激發天線陣列2的各個天線的權重,從而使天線陣列2所輻射的能量能聚焦在特定的方向,從而達到波束成形的功效。 FIG. 1 shows a schematic diagram of a Rotman lens 1 and an antenna array 2. The Rotman lens 1 includes an input port array 10, an output port array 20 and a cavity 50. The output port array 20 is electrically coupled to the antenna array 2 through a plurality of lines 3, where the plurality of lines 3 are, for example, microstrip transmission lines or coaxial transmission lines. The length of each of the multiple lines 3 needs to be calculated according to Rotman's formula, rather than equal lengths. The beamforming mechanism of the Rotman lens 1 is shown in Fig. 1. When an input signal is input through one of the input ports in the input port array 10, the input signal enters the cavity 50 and propagates around in a form similar to a point wave source. The path length between the input port and each output port of the output port array 20 is not the same. This feature makes the signal received by each output port of the output port array 20 have a different phase. Then, when the output signal output by each output port of the output port array 20 passes through the multiple circuits 3 designed based on Rotman's formula, the phase of each output signal can be adjusted by the multiple circuits 3 to stimulate The weight of each antenna of the antenna array 2 is such that the energy radiated by the antenna array 2 can be focused in a specific direction, thereby achieving the effect of beamforming.

圖2繪示羅特曼透鏡1的俯視圖。如上所述,羅特曼透鏡1可包括具有輸入埠(即:輸入埠11、12、13和14)的輸入埠陣列10以及具有多個輸出埠(即:輸出埠21、22、23、24、25 和26)的輸出埠陣列20。此外,羅特曼透鏡1更可包括分別具有多個虛設埠(dummy port)的虛設埠陣列30和虛設埠陣列40。虛設埠陣列30或虛設埠陣列40用以吸收傳播至羅特曼透鏡1兩側的能量,避免訊號在腔體50內經過多次反射而形成多重路徑訊號,藉以降低多重訊號路徑對天線陣列2的各個天線的權重的影響。 FIG. 2 shows a top view of the Rotman lens 1. As mentioned above, the Rotman lens 1 may include an input port array 10 having input ports (ie: input ports 11, 12, 13 and 14) and a plurality of output ports (ie: output ports 21, 22, 23, 24). , 25 And 26) the output port array 20. In addition, the Rotman lens 1 may further include a dummy port array 30 and a dummy port array 40 each having a plurality of dummy ports. The dummy port array 30 or the dummy port array 40 is used to absorb the energy propagated to both sides of the Rotman lens 1 to prevent the signal from being reflected multiple times in the cavity 50 to form a multipath signal, thereby reducing the effect of multiple signal paths on the antenna array 2 The influence of the weight of each antenna.

此外,羅特曼透鏡1是基於實時延遲(true time delay)的原理所設計,因此,訊號在羅特曼透鏡1的腔體50的傳播路徑長度與訊號的波長之比值將會隨著操作頻率的變化而有所改變,而此一特性使得羅特曼透鏡1的輸出的相位可隨著操作頻率的改變而自動地調整。因此,基於改良型羅特曼透鏡1所產生的波束成形訊號將不會隨著操作頻率改變而有所偏移,並且始終能保持在固定的方向。 In addition, the Rotman lens 1 is designed based on the principle of true time delay. Therefore, the ratio of the propagation path length of the signal in the cavity 50 of the Rotman lens 1 to the wavelength of the signal will increase with the operating frequency. This feature allows the phase of the output of the Rotman lens 1 to be adjusted automatically as the operating frequency changes. Therefore, the beamforming signal generated by the modified Rotman lens 1 will not shift with the change of the operating frequency, and can always remain in a fixed direction.

由圖1可知,輸入埠陣列10以及輸出埠陣列20分別設置在羅特曼透鏡1之腔體50的兩端,並且腔體50還需額外地設置虛設埠陣列30和虛設埠陣列40。因此,羅特曼透鏡1將佔據相當大的面積。隨著市面上的電子產品逐漸朝向微小化設計,羅特曼透鏡1的應用場景將會逐漸地被限縮。因應於此,本發明提出一種基於改良型羅特曼透鏡的天線裝置,可縮小羅特曼透鏡的尺寸,從而減少天線裝置的體積。 It can be seen from FIG. 1 that the input port array 10 and the output port array 20 are respectively disposed at both ends of the cavity 50 of the Rotman lens 1, and the cavity 50 needs to be additionally provided with a dummy port array 30 and a dummy port array 40. Therefore, the Rotman lens 1 will occupy a considerable area. As electronic products on the market gradually move towards miniaturization, the application scenarios of the Rotman lens 1 will gradually be limited. In response to this, the present invention provides an antenna device based on an improved Rotman lens, which can reduce the size of the Rotman lens, thereby reducing the size of the antenna device.

圖3根據本發明的實施例繪示一種基於改良型羅特曼透鏡的天線裝置100的側視圖。天線裝置100可包含導體層210、介電基板220以及接地層230,其中導體層210設置在介電基板220 的一表面,並且接地層230設置在介電基板220的另一表面。導體層210例如為金屬波導(metal waveguide)或印刷電路(printed circuit),本發明不限於此。在本實施例中,導體層210是一種改良型羅特曼透鏡。 FIG. 3 illustrates a side view of an antenna device 100 based on an improved Rotman lens according to an embodiment of the present invention. The antenna device 100 may include a conductive layer 210, a dielectric substrate 220, and a ground layer 230, wherein the conductive layer 210 is disposed on the dielectric substrate 220 The ground layer 230 is disposed on the other surface of the dielectric substrate 220. The conductor layer 210 is, for example, a metal waveguide (metal waveguide) or a printed circuit (printed circuit), and the present invention is not limited thereto. In this embodiment, the conductor layer 210 is an improved Rotman lens.

圖4根據本發明的實施例繪示導體層210的俯視圖。導體層210可包括輸入埠陣列310、輸出埠陣列330、虛設埠340以及腔體350。輸入埠陣列310可包括輸入埠311、312、313和314。輸出埠陣列330可包括輸出埠331、332、333、334、335和336。 FIG. 4 shows a top view of the conductive layer 210 according to an embodiment of the present invention. The conductor layer 210 may include an input port array 310, an output port array 330, a dummy port 340, and a cavity 350. The input port array 310 may include input ports 311, 312, 313, and 314. The output port array 330 may include output ports 331, 332, 333, 334, 335, and 336.

腔體350連接輸入埠陣列310以及輸出埠陣列330,並且腔體350包括反射結構360。 The cavity 350 is connected to the input port array 310 and the output port array 330, and the cavity 350 includes a reflective structure 360.

圖4還繪示了虛擬腔體351以及虛擬輸出埠陣列320,以方便說明導體層210的原理。其中虛擬輸出埠陣列320對應於圖2所示之羅特曼透鏡1的輸出埠陣列20,包括虛擬輸出埠321、322、323、324、325和326,而虛擬腔體351對應於圖2所示之羅特曼透鏡1的腔體50。為了減少圖2所示之羅特曼透鏡1的面積,本發明圖2所示之羅特曼透鏡1的腔體50之中設置一反射結構360。反射結構360從腔體50之中分割出腔體350,並且反射結構360構成輸出埠陣列330與虛擬輸出埠陣列320的對稱軸。輸入埠陣列310的中垂線700與輸出埠陣列330的中垂線800垂直,中垂線700與反射結構360的法線900之間的夾角θ1(即:入射角)為45度,並且中垂線800與反射結構360的法線900之間的夾角θ2(即:反射角)為45度。 FIG. 4 also shows the virtual cavity 351 and the virtual output port array 320 to facilitate the explanation of the principle of the conductor layer 210. The virtual output port array 320 corresponds to the output port array 20 of the Rotman lens 1 shown in FIG. 2, and includes virtual output ports 321, 322, 323, 324, 325, and 326, and the virtual cavity 351 corresponds to the output port array 20 shown in FIG. The cavity 50 of the Rotman lens 1 is shown. In order to reduce the area of the Rotman lens 1 shown in FIG. 2, a reflection structure 360 is provided in the cavity 50 of the Rotman lens 1 shown in FIG. 2 of the present invention. The reflection structure 360 divides the cavity 350 from the cavity 50, and the reflection structure 360 forms the symmetry axis of the output port array 330 and the virtual output port array 320. The vertical line 700 of the input port array 310 is perpendicular to the vertical line 800 of the output port array 330, the angle θ1 (that is, the incident angle) between the vertical line 700 and the normal 900 of the reflective structure 360 is 45 degrees, and the vertical line 800 is perpendicular to The included angle θ2 (ie, the reflection angle) between the normal lines 900 of the reflective structure 360 is 45 degrees.

天線裝置100的輸入訊號或反射結構360需經調整而使反射結構360符合全反射的邊界條件。舉例來說,天線裝置100的輸入訊號的波長可經配置以使反射結構360符合全反射的邊界條件。舉另一例來說,導體層210與接地層230之間可設置如圖3所示的通孔(via)240。導體層210可通過通孔240電性耦接至接地層230,從而使反射結構360符合全反射的邊界條件。 The input signal of the antenna device 100 or the reflection structure 360 needs to be adjusted so that the reflection structure 360 meets the boundary condition of total reflection. For example, the wavelength of the input signal of the antenna device 100 can be configured so that the reflective structure 360 meets the boundary condition of total reflection. For another example, a via 240 as shown in FIG. 3 can be provided between the conductive layer 210 and the ground layer 230. The conductive layer 210 can be electrically coupled to the ground layer 230 through the via 240, so that the reflective structure 360 meets the boundary condition of total reflection.

當一輸入訊號從輸入埠陣列310發送後,該輸入訊號通過未設置反射結構360的虛擬腔體351傳輸到虛擬輸出埠陣列320的路徑長度將與該輸入訊號經反射結構360的反射而通過腔體350傳輸到輸出埠陣列330的路徑長度相同。舉例來說,若虛擬輸出埠陣列320中的虛擬輸出埠321對應於輸出埠陣列330中的輸出埠331,則輸入埠陣列310中的輸入埠311與虛擬輸出埠321之間的路徑長度將相同於輸入埠311與輸出埠331之間的路徑長度。 When an input signal is sent from the input port array 310, the path length of the input signal transmitted through the virtual cavity 351 without the reflection structure 360 to the virtual output port array 320 will be the same as the input signal reflected by the reflection structure 360 and passed through the cavity. The length of the path from the body 350 to the output port array 330 is the same. For example, if the virtual output port 321 in the virtual output port array 320 corresponds to the output port 331 in the output port array 330, the path length between the input port 311 and the virtual output port 321 in the input port array 310 will be the same The length of the path between the input port 311 and the output port 331.

在一實施例中,導體層210還包括虛設埠340。虛設埠340連接腔體350,其中虛設埠340的中垂線1000與反射結構360之間的銳角θ3小於輸出埠陣列330的任一輸出埠之中垂線與反射結構360之間的銳角。舉例來說,虛設埠340的中垂線1000與反射結構360之間的銳角θ3小於輸出埠陣列330的輸出埠336的中垂線1100與反射結構360之間的銳角θ4。虛設埠340可吸收腔體350中的大部分的反射訊號。相較於如圖2所示的羅特曼透鏡1,導體層210僅需設置單一個虛設埠340即可達到與羅特曼透鏡1 的虛設埠陣列30和40相似的功效,如圖5A和5B所示。 In an embodiment, the conductive layer 210 further includes a dummy port 340. The dummy port 340 is connected to the cavity 350, wherein the acute angle θ3 between the vertical line 1000 of the dummy port 340 and the reflective structure 360 is smaller than the acute angle between the vertical line of any output port of the output port array 330 and the reflective structure 360. For example, the acute angle θ3 between the vertical line 1000 of the dummy port 340 and the reflective structure 360 is smaller than the acute angle θ4 between the vertical line 1100 of the output port 336 of the output port array 330 and the reflective structure 360. The dummy port 340 can absorb most of the reflected signal in the cavity 350. Compared with the Rotman lens 1 shown in FIG. 2, the conductor layer 210 only needs to provide a single dummy port 340 to achieve the same effect as the Rotman lens 1 Similar effects of the dummy port arrays 30 and 40 are shown in Figures 5A and 5B.

圖5A繪示基於羅特曼透鏡1的天線裝置的效能的示意圖。圖5B根據本發明的實施例繪示基於改良型羅特曼透鏡的天線裝置100的效能的示意圖。由圖5A和5B可知,輸入埠11與對應的輸入埠311的增益的峰值位置(約為18度)相近。同樣地,輸入埠12與對應的輸入埠312的增益的峰值位置(約為6度)相近、輸入埠13與對應的輸入埠313的增益的峰值位置(約為-6度)相近並且輸入埠14與對應的輸入埠314的增益的峰值位置(約為-18度)相近。換句話說,如圖4所示的導體層210可使用較小的面積而達到與如圖2所示的羅特曼透鏡1相似的功效。 FIG. 5A shows a schematic diagram of the performance of the antenna device based on the Rotman lens 1. 5B is a schematic diagram illustrating the performance of the antenna device 100 based on the modified Rotman lens according to an embodiment of the present invention. It can be seen from FIGS. 5A and 5B that the peak position (about 18 degrees) of the gain of the input port 11 and the corresponding input port 311 are similar. Similarly, the peak position of the gain of the input port 12 and the corresponding input port 312 (approximately 6 degrees) is close, the peak position of the gain of the input port 13 and the corresponding input port 313 (approximately -6 degrees) are close, and the input port 14 is close to the peak position (approximately -18 degrees) of the gain of the corresponding input port 314. In other words, the conductor layer 210 shown in FIG. 4 can use a smaller area to achieve a similar effect to the Rotman lens 1 shown in FIG. 2.

輸入埠陣列310的每一輸入埠以及輸出埠陣列330的每一輸出埠都可通過類似錐形結構的漸變線變換器(tapered-line transformers)連接至腔體350。圖6根據本發明的實施例繪示羅特曼透鏡的漸變線變換器600的示意圖。以輸入埠313為例,輸入埠313可通過漸變線變換器600連接至腔體350。漸變線變換器600可包括直接連接至輸入埠或輸出埠的第一部位610以及直接連接至腔體的第二部位620。第一部位610的阻抗例如為50歐姆。 Each input port of the input port array 310 and each output port of the output port array 330 may be connected to the cavity 350 through tapered-line transformers having a tapered structure. FIG. 6 illustrates a schematic diagram of a gradient line converter 600 of a Rotman lens according to an embodiment of the present invention. Taking the input port 313 as an example, the input port 313 can be connected to the cavity 350 through the tapered line converter 600. The tapered line converter 600 may include a first part 610 directly connected to the input port or output port and a second part 620 directly connected to the cavity. The impedance of the first part 610 is, for example, 50 ohms.

綜上所述,本發明提供一種基於改良型羅特曼透鏡的天線裝置,可顯著地降低羅特曼透鏡之腔體的尺寸。本發明的羅特曼透鏡包含反射結構,將輸入埠陣列與輸出埠陣列之間的路徑轉向,從而藉由增加腔體寬度的方式來減少腔體長度。相較於一般的羅特曼透鏡,本發明的羅特曼透鏡可以將虛設埠極少化,並且 在維持傳輸效能的同時有效地減少羅特曼透鏡的尺寸。此外,天線裝置的導體層可通過通孔以電性連接至接地層,從而使羅特曼透鏡的腔體內的反射結構符合全反射的邊界條件,藉以降低訊號的傳輸能量的損耗。 In summary, the present invention provides an antenna device based on an improved Rotman lens, which can significantly reduce the size of the cavity of the Rotman lens. The Rotman lens of the present invention includes a reflective structure to divert the path between the input port array and the output port array, thereby reducing the length of the cavity by increasing the width of the cavity. Compared with a general Rotman lens, the Rotman lens of the present invention can minimize the number of dummy ports, and It effectively reduces the size of the Rotman lens while maintaining the transmission efficiency. In addition, the conductor layer of the antenna device can be electrically connected to the ground layer through the through hole, so that the reflective structure in the cavity of the Rotman lens meets the boundary condition of total reflection, thereby reducing the loss of signal transmission energy.

210:導體層 210: Conductor layer

310:輸入埠陣列 310: Input port array

311、312、313、314:輸入埠 311, 312, 313, 314: input port

320:虛擬輸出埠陣列 320: Virtual output port array

321、322、323、324、325、326:虛擬輸出埠 321, 322, 323, 324, 325, 326: virtual output port

330:輸出埠陣列 330: output port array

331、332、333、334、335、336:輸出埠 331, 332, 333, 334, 335, 336: output port

340:虛設埠 340: Dummy Port

350:腔體 350: Cavity

351:虛擬腔體 351: Virtual Cavity

360:反射結構 360: reflective structure

700、800、1000、1100:中垂線 700, 800, 1000, 1100: perpendicular

900:法線 900: Normal

θ1、θ2:夾角 θ1, θ2: included angle

θ3、θ4:銳角 θ3, θ4: acute angle

Claims (8)

一種基於改良型羅特曼透鏡的天線裝置,包括:介電基板;以及導體層,設置在所述介電基板的表面,其中所述導體層包括:輸入埠陣列;輸出埠陣列;以及腔體,連接所述輸入埠陣列和所述輸出埠陣列並且包括反射結構;其中所述輸入埠陣列的第一中垂線與所述輸出埠陣列的第二中垂線垂直;其中所述輸入埠陣列的第一中垂線與所述反射結構的法線之間的第一夾角為45度,並且所述輸出埠陣列的第二中垂線與所述反射結構的所述法線之間的第二夾角為45度。 An antenna device based on an improved Rotman lens, comprising: a dielectric substrate; and a conductor layer disposed on the surface of the dielectric substrate, wherein the conductor layer includes: an input port array; an output port array; and a cavity , Connecting the input port array and the output port array and including a reflective structure; wherein the first vertical line of the input port array is perpendicular to the second vertical line of the output port array; wherein the first vertical line of the input port array The first included angle between a vertical line and the normal line of the reflective structure is 45 degrees, and the second included angle between the second vertical line of the output port array and the normal line of the reflective structure is 45 degrees. degree. 如申請專利範圍第1項所述的天線裝置,其中所述導體層更包括:虛設埠,連接所述腔體,其中所述虛設埠的第一中垂線與所述反射結構之間的第一銳角小於所述輸出埠陣列的輸出埠的第二中垂線與所述反射結構之間的第二銳角。 The antenna device according to claim 1, wherein the conductor layer further includes: a dummy port connected to the cavity, wherein the first vertical line between the first vertical line of the dummy port and the reflective structure The acute angle is smaller than the second acute angle between the second vertical line of the output ports of the output port array and the reflective structure. 如申請專利範圍第1項所述的天線裝置,其中所述導體層更包括:漸變線變換器,將所述輸入埠陣列中的輸入埠或所述輸出埠陣列中的輸出埠連接至所述腔體。 According to the antenna device described in claim 1, wherein the conductor layer further includes: a tapered line converter, which connects the input port in the input port array or the output port in the output port array to the Cavity. 如申請專利範圍第3項所述的天線裝置,其中所述漸變線變換器包括直接連接至所述輸入埠或所述輸出埠的第一部位以及直接連接至所述腔體的第二部位,其中所述第一部位的阻抗為50歐姆。 The antenna device according to item 3 of the scope of patent application, wherein the tapered line converter includes a first part directly connected to the input port or the output port and a second part directly connected to the cavity, The impedance of the first part is 50 ohms. 如申請專利範圍第1項所述的天線裝置,更包括:接地層,設置在所述介電基板的相對於所述表面的第二表面。 The antenna device described in item 1 of the scope of patent application further includes: a ground layer disposed on a second surface of the dielectric substrate opposite to the surface. 如申請專利範圍第5項所述的天線裝置,其中所述導體層通過通孔以電性耦接至所述接地層,從而使所述反射結構符合全反射的邊界條件。 According to the antenna device described in item 5 of the scope of patent application, the conductor layer is electrically coupled to the ground layer through a through hole, so that the reflective structure meets the boundary condition of total reflection. 如申請專利範圍第1項所述的天線裝置,其中所述天線裝置的輸入訊號的波長經配置以使所述反射結構符合全反射的邊界條件。 The antenna device according to the first item of the scope of patent application, wherein the wavelength of the input signal of the antenna device is configured so that the reflection structure meets the boundary condition of total reflection. 如申請專利範圍第1項所述的天線裝置,其中所述導體層為金屬波導及印刷電路的其中之一。 The antenna device according to the first item of the patent application, wherein the conductor layer is one of a metal waveguide and a printed circuit.
TW108145090A 2019-12-10 2019-12-10 Antenna device based on modified rotman lens TWI715343B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108145090A TWI715343B (en) 2019-12-10 2019-12-10 Antenna device based on modified rotman lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108145090A TWI715343B (en) 2019-12-10 2019-12-10 Antenna device based on modified rotman lens

Publications (2)

Publication Number Publication Date
TWI715343B true TWI715343B (en) 2021-01-01
TW202123537A TW202123537A (en) 2021-06-16

Family

ID=75237167

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108145090A TWI715343B (en) 2019-12-10 2019-12-10 Antenna device based on modified rotman lens

Country Status (1)

Country Link
TW (1) TWI715343B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7724197B1 (en) * 2007-04-30 2010-05-25 Planet Earth Communications, Llc Waveguide beam forming lens with per-port power dividers
US20150180133A1 (en) * 2008-08-22 2015-06-25 Duke University Metamaterial waveguide lens
CN110212309A (en) * 2019-06-19 2019-09-06 西安电子科技大学 The conformal lens antenna of optical transform multi-beam

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7724197B1 (en) * 2007-04-30 2010-05-25 Planet Earth Communications, Llc Waveguide beam forming lens with per-port power dividers
US20150180133A1 (en) * 2008-08-22 2015-06-25 Duke University Metamaterial waveguide lens
EP2700125B1 (en) * 2011-04-21 2017-06-14 Duke University A metamaterial waveguide lens
CN110212309A (en) * 2019-06-19 2019-09-06 西安电子科技大学 The conformal lens antenna of optical transform multi-beam

Also Published As

Publication number Publication date
TW202123537A (en) 2021-06-16

Similar Documents

Publication Publication Date Title
KR101498335B1 (en) Intergrated millimeter wave phase shifter and method
US8259027B2 (en) Differential feed notch radiator with integrated balun
JP4469009B2 (en) Method and apparatus for improving performance in a waveguide-based spatial power combiner
WO2015135153A1 (en) Array antenna
CN101277139A (en) Broadband beam steering antenna
EP3361570B1 (en) Split ring resonator antenna
KR100538822B1 (en) Broadband Phase Shifter Using a Coupled Line and Parallel Open/Short Stubs
US20140104135A1 (en) Radiating element for an active array antenna consisting of elementary tiles
Sbarra et al. A novel Rotman lens in SIW technology
WO2015003381A1 (en) 3x3 butler matrix and 5x6 butler matrix
KR100980678B1 (en) Phase shifter
Cao et al. Ka-Band multibeam patch antenna array fed by spoof-surface-plasmon-polariton Butler matrix
TWI715343B (en) Antenna device based on modified rotman lens
CN117374607A (en) Microwave/millimeter wave double-frequency circularly polarized antenna with multiplexing patch/transmission array structure
CN109378592B (en) Broadband antenna array feed network with stable beam width and low side lobe
TWI600209B (en) Antenna reset circuit
Van Messem et al. Substrate integrated components for passive millimeterwave-frequency beamforming networks
Messaoudene et al. Performance improvement of multilayer butler matrix for UWB beamforming antenna
CN103606754B (en) Thin substrate phase amplitude corrects accurate Yagi spark gap difference beam planar horn antenna
Wood et al. Linear tapered slot antenna with substrate integrated waveguide feed
Ningsih et al. Design and analysis of wideband nonuniform branch line coupler and its application in a wideband butler matrix
Sakakibara et al. Rotman-lens-feeding double-layer low-profile multibeam millimeter-wave microstrip antenna using bow-tie waveguide microstrip connections
Sun et al. Design of X-band antenna system with three beams
Ding et al. On-chip millimeter wave Rat-race Hybrid and Marchand Balun in IBM 0.13 um BiCMOS technology
Hernandez et al. On the design of wideband monostatic STAR systems with spherically stratified lenses