TWI715230B - 缺值補償方法、缺值補償系統及非暫態電腦可讀取媒體 - Google Patents
缺值補償方法、缺值補償系統及非暫態電腦可讀取媒體 Download PDFInfo
- Publication number
- TWI715230B TWI715230B TW108135586A TW108135586A TWI715230B TW I715230 B TWI715230 B TW I715230B TW 108135586 A TW108135586 A TW 108135586A TW 108135586 A TW108135586 A TW 108135586A TW I715230 B TWI715230 B TW I715230B
- Authority
- TW
- Taiwan
- Prior art keywords
- data
- value
- data section
- section
- generate
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 46
- 238000012549 training Methods 0.000 claims description 23
- 230000007547 defect Effects 0.000 claims description 15
- 238000001514 detection method Methods 0.000 claims description 4
- 238000010586 diagram Methods 0.000 abstract description 19
- 230000002159 abnormal effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000001052 transient effect Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000010845 search algorithm Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/22—Matching criteria, e.g. proximity measures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/23—Updating
- G06F16/2365—Ensuring data consistency and integrity
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/23—Updating
- G06F16/2379—Updates performed during online database operations; commit processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/10—Pre-processing; Data cleansing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/04—Inference or reasoning models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/72—Data preparation, e.g. statistical preprocessing of image or video features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/74—Image or video pattern matching; Proximity measures in feature spaces
- G06V10/761—Proximity, similarity or dissimilarity measures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/06—Recognition of objects for industrial automation
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Software Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computing Systems (AREA)
- Databases & Information Systems (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Mathematical Physics (AREA)
- Medical Informatics (AREA)
- Computational Linguistics (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Multimedia (AREA)
- Computer Security & Cryptography (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
一種缺值補償方法,包含藉由感測器輸入感測訊號,其中感測訊號包含複數個資料區段,歷史資料庫包含複數個歷史資料區段;從歷史資料區段中搜尋與第一資料區段相似的歷史資料區段以產生複數個候選資料區段;根據第一資料區段以及候選資料區段分別計算複數個資料關係圖;利用特徵辨識模型根據資料關係圖分別計算複數個相似度值,並選擇最大相似度值對應的候選資料區段作為樣本資料區段;以及利用樣本資料區段中的資料補償第一資料區段中的資料以產生補償後的資料區段。
Description
本案是有關於一種缺值補償方法、缺值補償系統及非暫態電腦可讀取媒體,且特別是有關於一種設備資料缺值補償方法、設備資料缺值補償系統及非暫態電腦可讀取媒體。
工廠產線關鍵設備一般而言會設置感測器來偵測設備的電壓、電流、溫度、震動幅度等資料,作為設備運轉狀態評估。然而,感測器在收集設備訊號時,可能因為電源異常、電磁干擾、感測器過熱等外在因素,導致收集到的資料具有缺值。具有缺值的資料可能會導致在判斷設備狀態時產生誤判的情況,進一步造成產線的良率下降或是產線被迫停止等情況。因此如何針對訊號的缺值進行補償以降低誤判的機率是本領域待解決的問題。
為達成上述目的,本案之第一態樣是在提供一種缺值補償方法,此方法包含以下步驟:藉由感測器輸入感測訊號,其中感測訊號包含複數個資料區段,歷史資料庫包含複數個歷史資料區段;從歷史資料區段中搜尋與第一資料區段相似的歷史資料區段以產生複數個候選資料區段,其中第一資料區段係資料區段的其中之一;根據第一資料區段以及候選資料區段分別計算複數個資料關係圖;利用特徵辨識模型根據資料關係圖分別計算複數個相似度值,並選擇最大相似度值對應的候選資料區段作為樣本資料區段;以及利用樣本資料區段中的資料補償第一資料區段中的資料以產生補償後的資料區段。
本案之第二態樣是在提供一種缺值補償系統,其包含:儲存裝置以及處理器。處理器與儲存裝置電性連接。儲存裝置用以儲存感測訊號以及歷史資料庫,其中,感測訊號包含複數個資料區段,歷史資料庫包含複數個歷史資料區段。處理器包含:樣本搜尋單元、關係圖產生單元以及缺值補償單元。樣本搜尋單元用以從歷史資料區段中搜尋與第一資料區段相似的歷史資料區段以產生複數個候選資料區段,其中第一資料區段係資料區段的其中之一。關係圖產生單元與樣本搜尋單元電性連接,用以根據第一資料區段以及候選資料區段分別計算複數個資料關係圖。缺值補償單元與關係圖產生單元電性連接,用以利用特徵辨識模型根據資
料關係圖分別計算複數個相似度值,並選擇最大相似度值對應的候選資料區段作為樣本資料區段;以及利用樣本資料區段中的資料補償第一資料區段中的資料以產生補償後的資料區段。
本案之第三態樣是在提供一種非暫態電腦可讀取媒體包含至少一指令程序,由處理器執行至少一指令程序以實行缺值補償方法,其包含以下步驟:藉由感測器輸入感測訊號,其中感測訊號包含複數個資料區段,歷史資料庫包含複數個歷史資料區段;從歷史資料區段中搜尋與第一資料區段相似的歷史資料區段以產生複數個候選資料區段,其中第一資料區段係資料區段的其中之一;根據第一資料區段以及候選資料區段分別計算複數個資料關係圖;利用特徵辨識模型根據資料關係圖分別計算複數個相似度值,並選擇最大相似度值對應的候選資料區段作為樣本資料區段;以及利用樣本資料區段中的資料補償第一資料區段中的資料以產生補償後的資料區段。
本發明之缺值補償方法、缺值補償系統及非暫態電腦可讀取媒體,其主要係改進以往具有缺值的訊號可能會導致在判斷設備狀態時產生誤判的問題,從歷史資料庫中搜尋較相近的候選訊號,再利用交叉遞歸圖分析與具有缺值的訊號最相似的候選訊號以產生樣本訊號,再利用樣本訊號對具有缺值的訊號進行補償,以達到降低誤判機率的功效。
100‧‧‧缺值補償系統
110‧‧‧儲存裝置
130‧‧‧處理器
131‧‧‧缺值偵測單元
132‧‧‧樣本搜尋單元
133‧‧‧關係圖產生單元
134‧‧‧缺值補償單元
135‧‧‧特徵辨識模型建立單元
DB1‧‧‧歷史資料庫
200、500‧‧‧缺值補償方法
Img1、Img2、Img3‧‧‧資料關係圖
S210~S280、S281~S283、S510~S550、S551~S554‧‧‧步驟
為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:第1A圖係根據本案之一些實施例所繪示之一種缺值補償系統的示意圖;第1B圖係根據本案之一些實施例所繪示之一種缺值補償系統的示意圖;第2圖係根據本案之一些實施例所繪示之缺值補償方法的流程圖;第3A圖係根據本案之一些實施例所繪示之資料關係圖的示意圖;第3B圖係根據本案之一些實施例所繪示之資料關係圖的示意圖;第3C圖係根據本案之一些實施例所繪示之資料關係圖的示意圖;第4圖係根據本案之一些實施例所繪示之步驟S280的流程圖;第5圖係根據本案之一些實施例所繪示之缺值補償方法的流程圖;以及第6圖係根據本案之一些實施例所繪示之步驟S550的流程圖。
以下揭示提供許多不同實施例或例證用以實施
本發明的不同特徵。特殊例證中的元件及配置在以下討論中被用來簡化本揭示。所討論的任何例證只用來作為解說的用途,並不會以任何方式限制本發明或其例證之範圍和意義。此外,本揭示在不同例證中可能重複引用數字符號且/或字母,這些重複皆為了簡化及闡述,其本身並未指定以下討論中不同實施例且/或配置之間的關係。
請參閱第1A圖。第1A圖係根據本案之一些實施例所繪示之一種缺值補償系統100的示意圖。如第1A圖所繪示,缺值補償方法100包含儲存裝置110以及處理器130。處理器130電性連接至儲存裝置110,儲存裝置110用以儲存感測訊號、歷史資料庫DB1以及特徵辨識模型。於一實施例中,感測訊號以及歷史資料庫DB1中儲存的歷史監控訊號皆是來自設備上裝設的感測器所感測到的設備運轉狀態資訊,舉例而言感測訊號可以是溫度、壓差、震動、電流等偵測器產生的感測訊號。
承上述,如第1A圖所示,處理器130包含缺值偵測單元131、樣本搜尋單元132、關係圖產生單元133、缺值補償單元134以及特徵辨識模型建立單元135。樣本搜尋單元132與缺值偵測單元131以及關係圖產生單元133電性連接,缺值補償單元134與關係圖產生單元133以及特徵辨識模型建立單元135電性連接。處理器130用以偵測感測訊號中缺少資料值的時點,並利用與感測訊號相近的歷史訊號補償感測訊號中缺少的資料值。
於另一實施例中,第1B圖係根據本案之一些實
施例所繪示之一種缺值補償系統100的示意圖。第1B圖所示的實施例與第1A圖所示的實施例的差異在於,缺值偵測單元131的連接方式。如第1B圖所示,缺值偵測單元131與關係圖產生單元133以及缺值補償單元134電性連接。
於本發明各實施例中,處理器130可以實施為積體電路如微控制單元(microcontroller)、微處理器(microprocessor)、數位訊號處理器(digital signal processor)、特殊應用積體電路(application specific integrated circuit,ASIC)、邏輯電路或其他類似元件或上述元件的組合。儲存裝置110可以實施為記憶體、硬碟、隨身碟、記憶卡等。
請參閱第2圖。第2圖係根據本案之一些實施例所繪示之缺值補償方法200的流程圖。於一實施例中,第2圖所示之缺值補償方法200可以應用於第1A圖及第1B圖的缺值補償系統100上,處理器130用以根據下列缺值補償方法200所描述之步驟,偵測感測訊號中缺少資料值的時點,並利用與感測訊號相近的歷史訊號補償感測訊號中缺少的資料值。
承上述,缺值補償方法200首先執行步驟S210,藉由感測器輸入感測訊號。其中,感測訊號包含複數個資料區段,歷史資料庫DB1包含複數個歷史資料區段。於一實施例中,每個設備皆包含複數個類型不同的感測器,可以是檢測設備的溫度、壓差、震動或電流狀態的感測器,在此以壓差為例。舉例而言,感測壓差的感測器每分可以偵
測到1024筆資料,一個資料區段可以是1分鐘的感測訊號,意即一個資料區段具有1024筆資料。於另一實施例中,一個資料區段可以是3分鐘的感測訊號,意即一個資料區段具有3072筆資料。然而,本揭示不限於此。值得注意的是感測訊號與歷史監控訊號皆是具有時序關係的資料訊號。
承上述,缺值補償方法200執行步驟S220,偵測第一資料區段缺少資料值的至少一時點以及第一資料區段缺少資料值的數量,根據數量計算第一資料區段對應的資料缺損比率。其中,第一資料區段是多個資料區段的其中之一。於一實施例中,首先偵測第一資料區段中的缺值數量,舉例而言,如果第一資料區段中有200筆的資料具有缺值,以第一資料區段中有1024筆資料為例,第一資料區段對應的資料缺損比率即是(200/1024)*100%=19.5%。
承上述,缺值補償方法200執行步驟S230,判斷資料缺損比率是否大於門檻值,如果資料缺損比率大於門檻值,進一步執行步驟S240,根據時序關係計算至少一時點對應的資料值,以產生至少一時點對應的第一資料值。接續上方實施例,假設門檻值為10%,第一資料區段對應的資料缺損比率大於門檻值,因此要先對缺少資料的時點進行補值。舉例而言,第一資料區段S1如《表一》所示,《表一》僅示出時點T1~時點T5的資料值,本揭示不限於此。
承上述,第一資料區段S1於時點T2之處具有缺值,並且資料缺損比率大於門檻值,因此利用內插法補償時點T2的資料值,計算出的時點T2的資料值為8.6315,意即時點T2的第一資料值為8.6315。值得注意的是,資料缺損比率大於門檻值表示資料缺損過大有可能影響到後續的操作,因此先利用內插法補償缺失的資料值以得到暫時的第一資料值。
承上述,缺值補償方法200執行步驟S250,從歷史資料區段中搜尋與第一資料區段相似的歷史資料區段以產生複數個候選資料區段。值得注意的是,如果資料缺損比率小於或等於門檻值,表示資料缺損的程度在容忍範圍之內,因此會直接執行步驟S250的操作。於一實施例中,如果感測訊號為設備A的壓差訊號,則在歷史資料庫DB1中找尋設備A過往的壓差訊號來對第一資料區段的缺值進行補償。舉例而言,多個歷史資料區段如《表二》所示,《表二》僅示出時點T1~時點T5的資料值,本揭示不限於此。
承上述,可以利用貪婪演算法(Greedy
algorithm)找出與第一資料區段相似的一或多個候選資料區段。值得注意的是,也可以利用其他搜尋演算法找出與第一資料區段相似的候選資料區段,本揭示不限於此。經過步驟S250的操作後,《表二》所示的歷史資料區段SC1、SC2及SC5因為與第一資料區段S1較為相似,因此被選為候選資料區段。
承上述,缺值補償方法200執行步驟S260,根據第一資料區段以及候選資料區段分別計算複數個資料關係圖。於一實施例中,利用交叉遞歸圖(Cross Recurrence Plot,CRP)分別計算第一資料區段S1與候選資料區段SC1、SC2及SC5之間的相似程度。交叉遞歸圖可以用來分析兩個系統之間的相似程度,當兩個系統越相似時,於交叉遞歸圖上會呈現有越明顯的對角線圖案。因此,可以利用對角線段的長短來判定兩個系統間的相似程度。
承上述,請參考第3A圖~第3C圖,第3A圖係根據本案之一些實施例所繪示之資料關係圖Img1的示意圖,第3B圖係根據本案之一些實施例所繪示之資料關係圖Img2的示意圖,以及第3C圖係根據本案之一些實施例所繪示之資料關係圖Img3的示意圖。於一實施例中,資料關係圖Img1為根據第一資料區段S1與候選資料區段SC1所產生的交叉遞歸圖,資料關係圖Img2為根據第一資料區段S1與候選資料區段SC2所產生的交叉遞歸圖,以及資料關係圖Img3為根據第一資料區段S1與候選資料區段SC5所產生的交叉遞歸圖。
承上述,缺值補償方法200執行步驟S270,利用特徵辨識模型根據資料關係圖分別計算複數個相似度值,並選擇最大相似度值對應的候選資料區段作為樣本資料區段。承上述,執行步驟S270之前,需先建立特徵辨識模型。於一實施例中,將多個訓練影像以及每一訓練影像對應的特徵值作為訓練資料,並輸入卷積神經網路(Convolutional Neural Networks,CNN)中。其中,訓練影像為包含有多種對角線圖樣的影像,特徵值則是將訓練影像中對角線圖樣轉換成數值表示,換句話說訓練影像中對角線圖樣越長,特徵值會越高。值得注意的是,利用訓練影像及特徵值作為訓練資料所產生的特徵辨識模型,可以用來計算步驟S260產生的資料關係圖對應的相似度值。
接續前述實施例,如第3A圖~第3C圖所示,資料關係圖Img1、Img2以及Img3中濾除了對角線圖樣以外的影像內容,資料關係圖Img1中的對角線圖案相較於資料關係圖Img2中的對角線圖案較長,因此候選資料區段SC1與候選資料區段SC2相比,候選資料區段SC1與第一資料區段S1較為相關,候選資料區段SC1的相似度值也會大於候選資料區段SC2的相似度值。
接著,資料關係圖Img3中的對角線圖案相較於資料關係圖Img1中的對角線圖案較長,換言之,資料關係圖Img3中的對角線圖案分離的線段較少,因此候選資料區段SC5與候選資料區段SC1相比,候選資料區段SC5與第一資料區段S1較為相關。候選資料區段SC5的相似度值也會
大於候選資料區段SC1的相似度值,因此候選資料區段SC5也會被選為樣本資料區段。
承上述,缺值補償方法200執行步驟S280,利用樣本資料區段中的資料補償第一資料區段中的資料以產生補償後的資料區段。請一併參考第4圖,第4圖係根據本案之一些實施例所繪示之步驟S280的流程圖。缺值補償方法200進一步執行步驟S281,計算樣本資料區段中至少一時點對應的斜率值。接續前述實施例,於第一資料區段S1中缺少時點T2的資料值,因此在找到樣本資料區段後,可以利用樣本資料區段於時點T2的資料值來補償第一資料區段S1中時點T2缺少的資料值。因此,樣本資料區段中時點T2的斜率為0.551。
承上述,缺值補償方法200進一步執行步驟S282,根據斜率值計算第一資料區段中至少一時點對應的資料值,以產生至少一時點對應的第二資料值,以及步驟S283,利用第二資料值調整第一資料值以產生補償後的資料區段。接續前述實施例,根據樣本資料區段中時點T2的斜率可以計算出第一資料區段S1中時點T2的資料值為8.78。因此補償後的資料區段如《表三》所示。由於樣本資料區段是與第一資料區段最為相似的資料區段,因此利用樣本資料區段計算出第一資料區段S1中的缺值,相較於利用內插法的計算,可以更貼近原本的資料值。
於另一實施例中,請參閱第5圖。第5圖係根據本案之一些實施例所繪示之缺值補償方法500的流程圖。缺值補償方法500首先執行步驟S510,藉由感測器輸入感測訊號。於此實施例中,步驟S510的操作與步驟S210類似,在此不再贅述。接著,缺值補償方法500執行步驟S520,從歷史資料區段中搜尋與第一資料區段相似的歷史資料區段以產生複數個候選資料區段。於此實施例中,步驟S520的操作與步驟S250類似,在此不再贅述。
承上述,缺值補償方法500的實施例與缺值補償方法200的實施例,差異在於缺少步驟S220~S240的操作。於此實施例中,不計算資料缺損比率,直接根據具有缺損資料的資料區段從歷史資料庫DB1中搜尋候選資料區段。
接著,缺值補償方法500執行步驟S530,根據第一資料區段以及候選資料區段分別計算複數個資料關係圖。於此實施例中,步驟S530的操作與步驟S260類似,在此不再贅述。
接著,缺值補償方法500執行步驟S540,利用特徵辨識模型根據資料關係圖分別計算複數個相似度值,並選擇最大相似度值對應的候選資料區段作為樣本資料區段。於此實施例中,步驟S540的操作與步驟S270類似,在此不再贅述。
接著,缺值補償方法500執行步驟S550,利用樣本資料區段中的資料補償第一資料區段中的資料以產生
補償後的資料區段。請一併參考第6圖,第6圖係根據本案之一些實施例所繪示之步驟S550的流程圖。缺值補償方法500進一步執行步驟S551,偵測第一資料區段缺少資料值的至少一時點。於此實施例中,從歷史資料庫DB1中找尋到樣本資料區段後,需要進一步偵測第一資料區段中缺少資料值的時點,以對缺少的資料值進行補償。
接著,缺值補償方法500進一步執行步驟S552,計算樣本資料區段中至少一時點對應的斜率值。於此實施例中,步驟S552的操作與步驟S281類似,在此不再贅述。
接著,缺值補償方法500進一步執行步驟S553,根據斜率值計算第一資料區段中至少一時點對應的資料值,以產生至少一時點對應的第一資料值。於此實施例中,步驟S553的操作與步驟S282類似,在此不再贅述。當偵測出第一資料區段中缺少資料值的時點後,進一步計算樣本資料區段中時點對應的斜率值,根據計算出的斜率值可以用來補償第一資料區段中缺少資料的時點的資料值。
接著,缺值補償方法500進一步執行步驟S554,根據第一資料值產生補償後的資料區段。在經由上述的操作之後,可以產生補償後的資料區段。值得注意的是,補償後的資料區段是用來進行後續資料分析時的輸入資料,換句話說,在分析設備的監控訊號是否有發生異常的相關技術中,輸入資料的準確與否,會對於後續的判斷有很大的影響,因此,如果輸入資料可以盡量還原缺損的資料也可
以有助於提升判斷設備是否發生異常的準確率。
由上述本案之實施方式可知,主要係改進以往具有缺值的訊號可能會導致在判斷設備狀態時產生誤判的問題,從歷史資料庫中搜尋較相近的候選訊號,再利用交叉遞歸圖分析與具有缺值的訊號最相似的候選訊號以產生樣本訊號,再利用樣本訊號對具有缺值的訊號進行補償,以達到降低誤判機率的功效。
另外,上述例示包含依序的示範步驟,但該些步驟不必依所顯示的順序被執行。以不同順序執行該些步驟皆在本揭示內容的考量範圍內。在本揭示內容之實施例的精神與範圍內,可視情況增加、取代、變更順序及/或省略該些步驟。
雖然本案已以實施方式揭示如上,然其並非用以限定本案,任何熟習此技藝者,在不脫離本案之精神和範圍內,當可作各種之更動與潤飾,因此本案之保護範圍當視後附之申請專利範圍所界定者為準。
100‧‧‧缺值補償系統
110‧‧‧儲存裝置
130‧‧‧處理器
131‧‧‧缺值偵測單元
132‧‧‧樣本搜尋單元
133‧‧‧關係圖產生單元
134‧‧‧缺值補償單元
135‧‧‧特徵辨識模型建立單元
DB1‧‧‧歷史資料庫
Claims (11)
- 一種缺值補償方法,包含:藉由一感測器輸入一感測訊號,其中該感測訊號包含複數個資料區段,一歷史資料庫包含複數個歷史資料區段;從該些歷史資料區段中搜尋與一第一資料區段相似的歷史資料區段以產生複數個候選資料區段,其中該第一資料區段係該些資料區段的其中之一;根據該第一資料區段以及該些候選資料區段分別計算複數個資料關係圖;輸入複數個訓練影像以及每一該訓練影像對應的一特徵值;利用該些訓練影像以及該些訓練影像對應的該特徵值作為訓練資料,以產生該特徵辨識模型;利用一特徵辨識模型根據該些資料關係圖分別計算複數個相似度值,並選擇最大的該相似度值對應的候選資料區段作為一樣本資料區段;以及利用該樣本資料區段中的資料補償該第一資料區段中的資料以產生補償後的資料區段。
- 如請求項1所述的缺值補償方法,其中,每一該資料區段以及每一該歷史資料區段的資料值具有一時序關係。
- 如請求項2所述的缺值補償方法,更包含: 偵測該第一資料區段缺少資料值的至少一時點以及該第一資料區段缺少資料值的一數量;根據該數量計算該第一資料區段對應的一資料缺損比率,判斷該資料缺損比率是否大於一門檻值;以及如果該資料缺損比率大於該門檻值,根據該時序關係計算該至少一時點對應的資料值,以產生該至少一時點對應的一第一資料值。
- 如請求項3所述的缺值補償方法,其中,利用該樣本資料區段中的資料補償該第一資料區段中的資料以產生補償後的資料區段,更包含:計算該樣本資料區段中該至少一時點對應的一斜率值;根據該斜率值計算該第一資料區段中該至少一時點對應的資料值,以產生該至少一時點對應的一第二資料值;以及利用該第二資料值調整該第一資料值以產生補償後的資料區段。
- 如請求項1所述的缺值補償方法,其中,利用該樣本資料區段中的資料補償該第一資料區段中的資料以產生補償後的資料區段,更包含:偵測該第一資料區段缺少資料值的至少一時點;計算該樣本資料區段中該至少一時點對應的資料值的一斜率值; 根據該斜率值計算該第一資料區段中該至少一時點對應的資料值,以產生該至少一時點對應的一第一資料值;以及根據該第一資料值產生補償後的資料區段。
- 一種缺值補償系統,包含:一儲存裝置,用以儲存一感測訊號以及一歷史資料庫,其中,該感測訊號包含複數個資料區段,該歷史資料庫包含複數個歷史資料區段;一處理器,與該儲存裝置電性連接,該處理器包含:一樣本搜尋單元,用以從該些歷史資料區段中搜尋與一第一資料區段相似的歷史資料區段以產生複數個候選資料區段,其中該第一資料區段係該些資料區段的其中之一;一關係圖產生單元,與該樣本搜尋單元電性連接,用以根據該第一資料區段以及該些候選資料區段分別計算複數個資料關係圖;一特徵辨識模型建立單元,與缺值補償單元電性連接,用以輸入複數個訓練影像以及每一該訓練影像對應的一特徵值;以及利用該些訓練影像以及該些訓練影像對應的該特徵值作為訓練資料,以產生該特徵辨識模型;以及一缺值補償單元,與該關係圖產生單元電性連接,用以利用一特徵辨識模型根據該些資料關係圖分別計算複數個相似度值,並選擇最大的該相似度值對 應的候選資料區段作為一樣本資料區段;以及利用該樣本資料區段中的資料補償該第一資料區段中的資料以產生補償後的資料區段。
- 如請求項6所述的缺值補償系統,其中,每一該資料區段以及每一該歷史資料區段的資料值具有一時序關係。
- 如請求項7所述的缺值補償系統,更包含:一缺值偵測單元,與樣本搜尋單元電性連接,用以偵測該第一資料區段缺少資料值的至少一時點以及該第一資料區段缺少資料值的一數量;根據該數量計算該第一資料區段對應的一資料缺損比率,判斷該資料缺損比率是否大於一門檻值;以及如果該資料缺損比率大於該門檻值,根據該時序關係計算該至少一時點對應的資料值,以產生該至少一時點對應的一第一資料值。
- 如請求項8所述的缺值補償系統,其中,該缺值補償單元更用以計算該樣本資料區段中該至少一時點對應的一斜率值;根據該斜率值計算該第一資料區段中該至少一時點對應的資料值,以產生該至少一時點對應的一第二資料值;以及利用該第二資料值調整該第一資料值以產生補償後的資料區段。
- 如請求項6所述的缺值補償系統,其中,該 缺值補償單元更用以偵測該第一資料區段缺少資料值的至少一時點;計算該樣本資料區段中該至少一時點對應的資料值的一斜率值;根據該斜率值計算該第一資料區段中該至少一時點對應的資料值,以產生該至少一時點對應的一第一資料值;以及根據該第一資料值產生補償後的資料區段。
- 一種非暫態電腦可讀取媒體,包含至少一指令程序,由一處理器執行該至少一指令程序以實行一缺值補償方法,其包含:藉由一感測器輸入一感測訊號,其中該感測訊號包含複數個資料區段,一歷史資料庫包含複數個歷史資料區段;從該些歷史資料區段中搜尋與一第一資料區段相似的歷史資料區段以產生複數個候選資料區段,其中該第一資料區段係該些資料區段的其中之一;根據該第一資料區段以及該些候選資料區段分別計算複數個資料關係圖;輸入複數個訓練影像以及每一該訓練影像對應的一特徵值;利用該些訓練影像以及該些訓練影像對應的該特徵值作為訓練資料,以產生該特徵辨識模型;利用一特徵辨識模型根據該些資料關係圖分別計算複數個相似度值,並選擇最大的該相似度值對應的候選資料區段作為一樣本資料區段;以及 利用該樣本資料區段中的資料補償該第一資料區段中的資料以產生補償後的資料區段。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108135586A TWI715230B (zh) | 2019-10-01 | 2019-10-01 | 缺值補償方法、缺值補償系統及非暫態電腦可讀取媒體 |
CN201911021491.7A CN112598015A (zh) | 2019-10-01 | 2019-10-25 | 缺值补偿方法、缺值补偿系统及非暂态计算机可读取媒体 |
US16/675,236 US11341124B2 (en) | 2019-10-01 | 2019-11-06 | Missing data compensation method, missing data compensation system, and non-transitory computer-readable medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108135586A TWI715230B (zh) | 2019-10-01 | 2019-10-01 | 缺值補償方法、缺值補償系統及非暫態電腦可讀取媒體 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI715230B true TWI715230B (zh) | 2021-01-01 |
TW202115511A TW202115511A (zh) | 2021-04-16 |
Family
ID=75162046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108135586A TWI715230B (zh) | 2019-10-01 | 2019-10-01 | 缺值補償方法、缺值補償系統及非暫態電腦可讀取媒體 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11341124B2 (zh) |
CN (1) | CN112598015A (zh) |
TW (1) | TWI715230B (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112990380B (zh) * | 2021-05-11 | 2021-08-03 | 物鼎安全科技(武汉)有限公司 | 物联网缺失数据的填充方法及系统 |
CN113568898B (zh) * | 2021-07-30 | 2024-07-09 | 浙江华云信息科技有限公司 | 电力数据漏点补全方法、装置、设备及可读存储介质 |
CN114022311B (zh) * | 2021-11-16 | 2024-07-02 | 东北大学 | 基于时序条件生成对抗网络的综合能源系统数据补偿方法 |
KR20230075260A (ko) * | 2021-11-22 | 2023-05-31 | 에스케이플래닛 주식회사 | 센서의 문맥 인식 기반 결측값을 보간하기 위한 장치 및 이를 위한 방법 |
CN116433857B (zh) * | 2023-03-22 | 2024-03-01 | 中交公路长大桥建设国家工程研究中心有限公司 | 一种桥梁工程地质的三维数据可视化方法及系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201126361A (en) * | 2010-01-25 | 2011-08-01 | Amcad Biomed Corp | Method for retrieving a tumor contour of an image processing system |
TWM479482U (zh) * | 2014-01-24 | 2014-06-01 | Samebest Co Ltd | 書本辨識檢索教學系統 |
TW201423439A (zh) * | 2012-12-10 | 2014-06-16 | Chunghwa Telecom Co Ltd | 計算隨機誤差的方法與系統 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103246702B (zh) * | 2013-04-02 | 2016-01-06 | 大连理工大学 | 一种基于分段形态表示的工业序列数据缺失的填补方法 |
CN106156260B (zh) * | 2015-04-28 | 2020-01-21 | 阿里巴巴集团控股有限公司 | 一种数据缺失修补的方法和装置 |
EP3514908B1 (en) * | 2018-01-22 | 2022-02-09 | Hitachi Energy Switzerland AG | Methods and devices for condition classification of power network assets |
CN109445972B (zh) * | 2018-09-21 | 2022-11-04 | 深圳供电局有限公司 | 数据修复方法、装置、设备和存储介质 |
-
2019
- 2019-10-01 TW TW108135586A patent/TWI715230B/zh active
- 2019-10-25 CN CN201911021491.7A patent/CN112598015A/zh active Pending
- 2019-11-06 US US16/675,236 patent/US11341124B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201126361A (en) * | 2010-01-25 | 2011-08-01 | Amcad Biomed Corp | Method for retrieving a tumor contour of an image processing system |
TW201423439A (zh) * | 2012-12-10 | 2014-06-16 | Chunghwa Telecom Co Ltd | 計算隨機誤差的方法與系統 |
TWM479482U (zh) * | 2014-01-24 | 2014-06-01 | Samebest Co Ltd | 書本辨識檢索教學系統 |
Also Published As
Publication number | Publication date |
---|---|
CN112598015A (zh) | 2021-04-02 |
US11341124B2 (en) | 2022-05-24 |
TW202115511A (zh) | 2021-04-16 |
US20210097060A1 (en) | 2021-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI715230B (zh) | 缺值補償方法、缺值補償系統及非暫態電腦可讀取媒體 | |
Papernot et al. | Extending defensive distillation | |
US20150356421A1 (en) | Method for Learning Exemplars for Anomaly Detection | |
CN105637432A (zh) | 识别被监控实体的异常行为 | |
CN112788066A (zh) | 物联网设备的异常流量检测方法、系统及存储介质 | |
KR20200072169A (ko) | 머신러닝을 이용한 이상징후 탐지 방법 및 시스템 | |
JP6183449B2 (ja) | システム分析装置、及び、システム分析方法 | |
CN112241605B (zh) | 声振信号构造cnn特征矩阵的断路器储能过程状态辨识方法 | |
CN113093985B (zh) | 传感器数据链路异常检测方法、装置和计算机设备 | |
US11138303B2 (en) | Electronic device with fingerprint sensing function and fingerprint image processing method | |
JPWO2014132612A1 (ja) | システム分析装置、及び、システム分析方法 | |
CN108667684A (zh) | 一种基于局部向量点积密度的数据流异常检测方法 | |
Wan et al. | LFRNet: Localizing, focus, and refinement network for salient object detection of surface defects | |
CN105335422A (zh) | 舆情信息的告警方法及装置 | |
CN116113952A (zh) | 用于图像的属于分布内度量的分布之间的距离 | |
CN117708738A (zh) | 基于多模态变量相关性的传感器时序异常检测方法及系统 | |
Zhang et al. | Convolutional neural network based two-layer transfer learning for bearing fault diagnosis | |
CN116232761B (zh) | 基于shapelet的网络异常流量检测方法及系统 | |
CN110770753B (zh) | 高维数据实时分析的装置和方法 | |
US10372719B2 (en) | Episode mining device, method and non-transitory computer readable medium of the same | |
KR102486463B1 (ko) | 열화에 따른 시계열 데이터를 이용한 실시간 이상 감지 방법 및 그를 위한 장치 | |
Yang et al. | PLSAV: Parallel loop searching and verifying for loop closure detection | |
Deepa et al. | A Reduced Feature-Set OCR System to Recognize Handwritten Tamil Characters using SURF Local Descriptor | |
CN111159961A (zh) | 一种基于曲线数据的异常检测方法及系统 | |
Chen et al. | A multimode anomaly detection method based on oc-elm for aircraft engine system |