TWI715197B - Embedded smart antenna module of smart tv - Google Patents

Embedded smart antenna module of smart tv Download PDF

Info

Publication number
TWI715197B
TWI715197B TW108133315A TW108133315A TWI715197B TW I715197 B TWI715197 B TW I715197B TW 108133315 A TW108133315 A TW 108133315A TW 108133315 A TW108133315 A TW 108133315A TW I715197 B TWI715197 B TW I715197B
Authority
TW
Taiwan
Prior art keywords
smart
mode
wireless
throughput
antenna
Prior art date
Application number
TW108133315A
Other languages
Chinese (zh)
Other versions
TW202112082A (en
Inventor
陳柏宇
李銘佳
顏紅方
Original Assignee
泓博無線通訊技術有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泓博無線通訊技術有限公司 filed Critical 泓博無線通訊技術有限公司
Priority to TW108133315A priority Critical patent/TWI715197B/en
Application granted granted Critical
Publication of TWI715197B publication Critical patent/TWI715197B/en
Publication of TW202112082A publication Critical patent/TW202112082A/en

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

An embedded smart antenna module of a smart TV comprises a plurality of antennas, a wireless chip, a control unit, and an application unit. The plurality of antennas are connected to a wireless chip. The wireless chip having a plurality of modulation and coding schemes selects one of the modulation and coding schemes to receive and transmit wireless signal with a wireless device. The control unit is connected to the plurality of antennas to control a plurality of antenna modes. The application unit connecting with the wireless chip and the control unit has a throughput monitoring server. The application unit uses the control unit to switch the antenna modes. Based on the modulation and coding scheme selected by the wireless chip, the application unit stores the plurality of physical layer data rates corresponding the plurality of antenna modes as a mode sampling information, and accordingly one of the antenna modes having highest physical data rate is selected as a preferred antenna mode. A throughput monitoring client obtains the monitoring status of the throughput monitoring server according to the wireless device, and the throughput monitoring client remote controls the application unit to select the preferred antenna mode. Thus, the data rate can be increased.

Description

智能電視的內嵌式智能天線模塊 Embedded smart antenna module of smart TV

本發明有關於一種智能天線模塊,且特別是一種智能電視的內嵌式智能天線模塊。 The invention relates to a smart antenna module, and in particular to an embedded smart antenna module of a smart TV.

終端裝置在使用場域的無線傳輸吞吐量受到環境變化的影響相當大,使用者在使用終端裝置時未必能總是體驗到依據裝置所設計的吞吐量上限值所帶來的最高資料率的傳輸效能。並且,無線傳輸不但需要具有足夠運算處理能力的數位晶片以執行信號編碼與解碼,更需要對應提升的射頻電路配合足夠頻寬與高效率的天線(或天線系統)。實際上,無線產品供應商所能夠提供的無線產品的實際數據傳輸率上限不僅受限於各種射頻元件、類比模組與數位模組各自的效能限制,更有一大部分的原因是受限於的所有元件與模組硬體配合於軟體演算法的整合度。 The wireless transmission throughput of the terminal device in the field of use is greatly affected by environmental changes. When using the terminal device, the user may not always experience the highest data rate brought by the throughput limit designed by the device. Transmission efficiency. In addition, wireless transmission requires not only a digital chip with sufficient computing and processing capabilities to perform signal encoding and decoding, but also a correspondingly improved radio frequency circuit with an antenna (or antenna system) with sufficient bandwidth and high efficiency. In fact, the upper limit of the actual data transmission rate of wireless products provided by wireless product suppliers is not only limited by the respective performance limitations of various radio frequency components, analog modules and digital modules, but also a large part of the reason All components and module hardware cooperate with the integration of software algorithms.

在傳統的系統設計觀點讓在無線傳輸過程中,無線數據傳輸率的增加或減少主要是由無線晶片(wireless chip)的控制與通道狀態(外在的傳輸環境)決定,而射頻元件與天線元件是處於被動的地位,沒有任何掌控權。僅由無線晶片的觀點尋找提升數據傳輸率的解決方案仍是有諸多限制的。系統整合的結果更會顯著影響天線模塊(或稱為模組)的整體效能。對於現有智能電視的無 線收訊效能,由於即時性的高流量影音內容對於無線接收層面的需求,產業界不僅關心於提升瞬時的傳輸率最高值,期待無線裝置能夠同時在傳輸率與穩定性兩方面一併提升,也需要有能夠應對產品周遭環境狀態而提升無線傳輸品質的方案。 In the traditional system design point of view, in the process of wireless transmission, the increase or decrease of the wireless data transmission rate is mainly determined by the control of the wireless chip (wireless chip) and the channel state (external transmission environment), and the radio frequency components and antenna components It is in a passive position, without any control. There are still many limitations in finding a solution to increase the data transmission rate from the point of view of the wireless chip. The result of system integration will significantly affect the overall performance of the antenna module (or called the module). For existing smart TVs Line reception performance. Due to the demand for real-time high-flow audio and video content for wireless reception, the industry is not only concerned about increasing the maximum instantaneous transmission rate, but also expecting wireless devices to improve both transmission rate and stability. There is also a need for a solution that can respond to the environmental conditions around the product and improve the quality of wireless transmission.

為了解決前述的先前技術問題,本發明實施例提供一種智能電視的內嵌式智能天線模塊,安裝於智能電視,所述智能電視與無線裝置皆安置於空間場域,所述內嵌式智能天線模塊包括複數個天線、無線晶片、控制單元以及應用單元。複數個天線連接無線晶片,具有複數個天線模式,其中無線晶片具有複數個調變與編碼機制(MCS),無線晶片選擇使用複數個調變與編碼機制中的任一個且利用複數個天線而與無線裝置收發無線信號。控制單元連接複數個天線,用以控制複數個天線模式。應用單元連接無線晶片與控制單元,具有流量監測伺服器,應用單元利用控制單元切換複數個天線模式。基於無線晶片所選擇使用的調變與編碼機制,應用單元利用流量監測伺服器取得對應於每一個天線模式的物理層資料率。基於無線晶片所選擇使用的調變與編碼機制,應用單元將對應於複數個天線模式的複數個物理層資料率儲存為模式取樣資訊。基於無線晶片所選擇使用的調變與編碼機制,應用單元依據模式取樣資訊而挑選所述的複數個物理層資料率之中最高者所對應的天線模式以作為優選天線模式。流量監測用戶端依據無線裝置以取得流量監測伺服器的監測狀態,以及遙控應用單元挑選所述優選天線模式。 In order to solve the aforementioned prior technical problems, an embodiment of the present invention provides an embedded smart antenna module for a smart TV, which is installed in a smart TV. The smart TV and the wireless device are both installed in a spatial field. The embedded smart antenna The module includes multiple antennas, wireless chips, control units and application units. Multiple antennas are connected to the wireless chip and have multiple antenna modes. The wireless chip has multiple modulation and coding mechanisms (MCS). The wireless chip chooses to use any one of multiple modulation and coding mechanisms and uses multiple antennas to communicate with each other. The wireless device sends and receives wireless signals. The control unit is connected to a plurality of antennas to control the plurality of antenna modes. The application unit connects the wireless chip and the control unit, and has a flow monitoring server. The application unit uses the control unit to switch multiple antenna modes. Based on the modulation and encoding mechanism selected by the wireless chip, the application unit uses the traffic monitoring server to obtain the physical layer data rate corresponding to each antenna mode. Based on the modulation and coding mechanism selected by the wireless chip, the application unit stores a plurality of physical layer data rates corresponding to a plurality of antenna modes as mode sampling information. Based on the modulation and coding mechanism selected by the wireless chip, the application unit selects the antenna mode corresponding to the highest among the plurality of physical layer data rates as the preferred antenna mode according to the mode sampling information. The flow monitoring user terminal obtains the monitoring status of the flow monitoring server according to the wireless device, and the remote control application unit selects the preferred antenna mode.

綜上所述,本發明實施例提供一種智能電視的內嵌 式智能天線模塊,基於能夠在使用環境空間中的面對的可變情況做模式取樣手段,配合無線晶片運作時所挑選的調變與編碼機制的規格條件,能夠挑選所有天線模式中最好的作為優選天線模式,藉此對於影音資料的無線傳輸資料率的長時均速與穩定性提升有明顯助益,在智能電視產品方面具有很高的產業應用價值。 In summary, the embodiment of the present invention provides an embedded smart TV Smart antenna module, based on the mode sampling method that can face the variable conditions in the use environment space, with the specification conditions of the modulation and coding mechanism selected during the operation of the wireless chip, it can select the best of all antenna modes As the preferred antenna mode, it is obviously helpful to improve the long-term average speed and stability of the wireless transmission data rate of audio-visual data, and has high industrial application value in smart TV products.

為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明之詳細說明與附圖,但是此等說明與所附圖式僅是用來說明本發明,而非對本發明的權利範圍作任何的限制。 In order to further understand the features and technical content of the present invention, please refer to the following detailed descriptions and drawings about the present invention, but these descriptions and accompanying drawings are only used to illustrate the present invention, not the rights to the present invention The scope is subject to any restrictions.

1‧‧‧智能電視 1‧‧‧Smart TV

2‧‧‧智能電視的內嵌式智能天線模塊 2‧‧‧Embedded smart antenna module for smart TV

21‧‧‧天線 21‧‧‧antenna

22‧‧‧無線晶片 22‧‧‧Wireless chip

23‧‧‧控制單元 23‧‧‧Control Unit

24‧‧‧應用單元 24‧‧‧Application Unit

3‧‧‧無線裝置 3‧‧‧Wireless device

241‧‧‧流量監測伺服器 241‧‧‧Flow Monitoring Server

TF‧‧‧場域測試吞吐量 TF‧‧‧Field test throughput

PF‧‧‧場域測試物理層資料率 PF‧‧‧Field test physical layer data rate

TW‧‧‧工作模式吞吐量 TW‧‧‧Working mode throughput

PW‧‧‧工作模式物理層資料率 PW‧‧‧Working mode physical layer data rate

TT‧‧‧目標吞吐量 TT‧‧‧Target throughput

△‧‧‧預設值 △‧‧‧Default value

Fn‧‧‧場域測試信號 Fn‧‧‧Field test signal

Fn’‧‧‧外部影音資訊 Fn’‧‧‧External audiovisual information

S110、S120、S130、S140、S150、S151、S152、S153、S154、S160‧‧‧步驟 S110, S120, S130, S140, S150, S151, S152, S153, S154, S160‧‧‧Step

圖1是本發明實施例提供的智能電視的內嵌式智能天線模塊的方塊圖。 Fig. 1 is a block diagram of an embedded smart antenna module of a smart TV provided by an embodiment of the present invention.

圖2是本發明實施例提供的內嵌式智能天線模塊安裝於智能電視的應用場景示意圖。 FIG. 2 is a schematic diagram of an application scenario of an embedded smart antenna module installed in a smart TV provided by an embodiment of the present invention.

圖3是本發明另一實施例提供的內嵌式智能天線模塊安裝於智能電視的應用場景示意圖。 FIG. 3 is a schematic diagram of an application scenario of an embedded smart antenna module installed in a smart TV according to another embodiment of the present invention.

圖4是本發明實施例提供的智能電視的內嵌式智能天線模塊的控制方法的流程圖。 Fig. 4 is a flowchart of a method for controlling an embedded smart antenna module of a smart TV according to an embodiment of the present invention.

請參照圖1,本實施例提供智能電視的內嵌式智能天線模塊,智能電視的內嵌式智能天線模塊2安裝於智能電視1,所述智能電視1與無線裝置3皆安置於空間場域,所述空間場域例如 居家客廳、臥室、辦公室、展覽空間、大廳等建築室內場域。內嵌式智能天線模塊2例如使用符合IEEE 802.11標準的無線區域網路收發信號,例如是遵循於常見的WiFi(Wireless Fidelity)無線認證規範。所述內嵌式智能天線模塊2包括複數個天線21、無線晶片22、控制單元23以及應用單元24。複數個天線21連接與無線晶片22,具有複數個天線模式,其中無線晶片22具有複數個調變與編碼機制(MCS),無線晶片22選擇使用複數個調變與編碼機制中的任一個且利用複數個天線21而與無線裝置3收發無線信號。控制單元23連接複數個天線21,用以控制複數個天線模式。並且,控制單元23較佳的是獨立於無線晶片之外的微控制器(MCU)。應用單元24連接無線晶片22與控制單元23,具有流量監測伺服器241,並且流量監測伺服器241較佳的是安裝於智能電視1的Linux作業系統之中。應用單元24利用控制單元23切換複數個天線模式。基於無線晶片22所選擇使用的調變與編碼機制,應用單元24利用流量監測伺服器241取得對應於每一個天線模式的物理層資料率(physical data rate)。基於無線晶片22所選擇使用的調變與編碼機制,應用單元24將對應於複數個天線模式的複數個物理層資料率儲存為模式取樣資訊。基於無線晶片22所選擇使用的調變與編碼機制,應用單元24依據模式取樣資訊而挑選所述的複數個物理層資料率之中最高者所對應的天線模式以作為優選天線模式。流量監測用戶端4依據無線裝置3以取得流量監測伺服器241的監測狀態,以及遙控應用單元24挑選所述優選天線模式。流量監測用戶端4利用無線裝置3而與流量監測伺服器241進行連線,流量監測用戶端4可以是獨立於無線裝置3之外的一個裝置,流量監測用戶端4也可以改為 安裝於無線裝置3,後續圖2與圖3的實施例將會舉例說明。 1, this embodiment provides an embedded smart antenna module for a smart TV. The embedded smart antenna module 2 of the smart TV is installed on the smart TV 1. The smart TV 1 and the wireless device 3 are both installed in the space field. , The spatial field such as Building indoor areas such as living room, bedroom, office, exhibition space, hall, etc. The embedded smart antenna module 2 uses, for example, a wireless local area network that complies with the IEEE 802.11 standard to transmit and receive signals, for example, it complies with common WiFi (Wireless Fidelity) wireless certification specifications. The embedded smart antenna module 2 includes a plurality of antennas 21, a wireless chip 22, a control unit 23 and an application unit 24. A plurality of antennas 21 are connected to the wireless chip 22 and have a plurality of antenna modes. The wireless chip 22 has a plurality of modulation and coding mechanisms (MCS), and the wireless chip 22 selects any one of the plurality of modulation and coding mechanisms and utilizes A plurality of antennas 21 transmit and receive wireless signals with the wireless device 3. The control unit 23 is connected to a plurality of antennas 21 to control the plurality of antenna modes. Moreover, the control unit 23 is preferably a microcontroller (MCU) independent of the wireless chip. The application unit 24 is connected to the wireless chip 22 and the control unit 23, and has a flow monitoring server 241, and the flow monitoring server 241 is preferably installed in the Linux operating system of the smart TV 1. The application unit 24 uses the control unit 23 to switch a plurality of antenna modes. Based on the modulation and coding mechanism selected by the wireless chip 22, the application unit 24 uses the traffic monitoring server 241 to obtain the physical data rate corresponding to each antenna mode. Based on the modulation and coding mechanism selected by the wireless chip 22, the application unit 24 stores a plurality of physical layer data rates corresponding to a plurality of antenna modes as mode sampling information. Based on the modulation and coding mechanism selected by the wireless chip 22, the application unit 24 selects the antenna mode corresponding to the highest among the plurality of physical layer data rates as the preferred antenna mode according to the mode sampling information. The traffic monitoring client 4 obtains the monitoring status of the traffic monitoring server 241 according to the wireless device 3, and the remote control application unit 24 selects the preferred antenna mode. The flow monitoring client 4 uses the wireless device 3 to connect to the flow monitoring server 241. The flow monitoring client 4 can be a device independent of the wireless device 3, and the flow monitoring client 4 can also be changed to It is installed in the wireless device 3, and the following embodiments in FIG. 2 and FIG. 3 will be illustrated as examples.

上述挑選優選天線模式的依據可以是基於吞吐量(throughput)或物理層資料率。智能電視1無線接收影音資訊的效能受到其坐落於空間場域之中的位置的影響,也受到無線信號來源(無線裝置3)所坐落於空間場域的位置的影響,而空間場域的環境狀態也可能是動態變化的,因應坐落於空間場域的位置不同以及環境狀態的可能變化,能夠作為優選的(或者是最佳的)天線模式可能不相同,因此本發明的實施例設立重新挑選優選天線模式的機制。在本實施例中,先執行測試模式,流量監測伺服器241利用複數個天線21接收來自於無線裝置3的場域測試信號(Fn)(例如是一段測試用的影音資訊)以執行位於測試位置的場域測試模式,並取得場域測試模式的場域測試吞吐量(TF)與場域測試物理層資料率(PF),應用單元24儲存場域測試吞吐量(TF)與場域測試物理層資料率(PF)的關係比值,即TF/PF。然後,在智能電視1正常運作時(顯示電視影音),流量監測伺服器241利用複數個天線21接收來自於無線裝置3的遠端信號(電視影音)以執行位於測試位置的工作模式,並取得工作模式的工作模式吞吐量(TW)與工作模式物理層資料率(PW),應用單元24將工作模式物理層資料率(PW)與關係比值(TF/PF)相乘而獲得目標吞吐量(TT)。目標吞吐量(TT)是在場域測試模式獲得的可預期的吞吐量上限值,可以公式表示為:TT=PW*TF/PF。應用單元24監測工作模式吞吐量(TW)是否低於目標吞吐量(TT),當工作模式吞吐量(TW)高於或等於目標吞吐量(TT)則不需要重新挑選優選天線模式。當工作模式吞吐量(TW)低於目標吞吐量(TT),則應用單元24重新挑選優選天線模式。 The selection of the preferred antenna mode may be based on throughput or physical layer data rate. The performance of the smart TV 1 in wirelessly receiving audio-visual information is affected by its location in the spatial field, and also by the location of the wireless signal source (wireless device 3) in the spatial field. The environment of the spatial field The state may also change dynamically. Due to the different positions in the spatial field and the possible changes in the environmental state, the preferred (or optimal) antenna mode may be different. Therefore, the embodiment of the present invention sets up a new selection The mechanism of optimizing the antenna pattern. In this embodiment, the test mode is executed first. The traffic monitoring server 241 uses a plurality of antennas 21 to receive the field test signal (Fn) (for example, a piece of video and audio information for testing) from the wireless device 3 to execute the test position Field test mode, and obtain field test throughput (TF) and field test physical layer data rate (PF) of field test mode, application unit 24 stores field test throughput (TF) and field test physics The relationship ratio of layer data rate (PF), namely TF/PF. Then, when the smart TV 1 is operating normally (displaying TV audio and video), the traffic monitoring server 241 uses a plurality of antennas 21 to receive remote signals (TV audio and video) from the wireless device 3 to execute the working mode at the test location, and obtain The working mode throughput (TW) and the working mode physical layer data rate (PW) of the working mode, the application unit 24 multiplies the working mode physical layer data rate (PW) and the relational ratio (TF/PF) to obtain the target throughput ( TT). The target throughput (TT) is the upper limit of the expected throughput obtained in the field test mode, and can be expressed as: TT=PW*TF/PF. The application unit 24 monitors whether the working mode throughput (TW) is lower than the target throughput (TT), and when the working mode throughput (TW) is higher than or equal to the target throughput (TT), there is no need to reselect the preferred antenna mode. When the working mode throughput (TW) is lower than the target throughput (TT), the application unit 24 reselects the preferred antenna mode.

更進一步,當工作模式吞吐量(TW)低於目標吞吐量(TT)時,依據工作模式吞吐量(TW)與目標吞吐量(TT)的差異程度而有兩種不同判斷機制。當工作模式吞吐量(TW)低於目標吞吐量(TT),且工作模式吞吐量(TW)與目標吞吐量(TT)的差異大於或等於一個預設值(△),代表需要做更多的調整,則應用單元24改變無線晶片22所選擇使用的調變與編碼機制,並且基於改變後的調變與編碼機制,在模式取樣資訊中挑選最高的物理層資料率所對應的天線模式以作為更新後的優選天線模式。當工作模式吞吐量(TW)低於目標吞吐量(TT),且工作模式吞吐量(TW)與目標吞吐量(TT)的差異小於所述預設值(△),則應用單元24依據由無線晶片22所獲得的複數個天線21的接收信號強度指示(RSSI)與信雜比(SNR)以重新挑選優選天線模式,例如選擇具有使所有天線21的接收信號強度指示差異幅度最小的天線模式為優選天線模式,或者選擇以具有信雜比最大的天線模式為優選天線模式。對於上述的模式取樣資訊的細節,例如可將場域測試吞吐量(TF)與場域測試物理層資料率(PF)配合複數個天線21的接收狀態參數值(諸如接收信號強度指示、信雜比等等)一併做儲存。實際上,例如可儲存查找表(Look-Up Table,LUT),查找表的每一筆資料包括TF、PF(以及TF/PF)以及對應的接收信號強度指示、信雜比等等的天線21的狀態參數值。再者,也可依據已知的模式取樣資訊以內差或外插計算取得衍生的場域測試吞吐量(TF)、場域測試物理層資料率(PF)以及關係比值(TF/PF)。 Furthermore, when the working mode throughput (TW) is lower than the target throughput (TT), there are two different judgment mechanisms according to the degree of difference between the working mode throughput (TW) and the target throughput (TT). When the working mode throughput (TW) is lower than the target throughput (TT), and the difference between the working mode throughput (TW) and the target throughput (TT) is greater than or equal to a preset value (△), it means that more needs to be done The application unit 24 changes the modulation and coding mechanism selected by the wireless chip 22, and based on the changed modulation and coding mechanism, selects the antenna mode corresponding to the highest physical layer data rate in the mode sampling information. As the updated preferred antenna mode. When the working mode throughput (TW) is lower than the target throughput (TT), and the difference between the working mode throughput (TW) and the target throughput (TT) is less than the preset value (△), the application unit 24 is based on The received signal strength indicator (RSSI) and signal-to-noise ratio (SNR) of the plurality of antennas 21 obtained by the wireless chip 22 to reselect the preferred antenna mode, for example, select the antenna mode that minimizes the difference in received signal strength indicators of all antennas 21 Is the preferred antenna mode, or the antenna mode with the largest signal-to-noise ratio is selected as the preferred antenna mode. For the details of the aforementioned mode sampling information, for example, field test throughput (TF) and field test physical layer data rate (PF) can be matched with the receiving state parameter values of multiple antennas 21 (such as received signal strength indication, signal noise Than wait) for storage together. In fact, for example, a look-up table (LUT) can be stored. Each piece of data in the look-up table includes TF, PF (and TF/PF) and the corresponding received signal strength indicator, signal-to-noise ratio, etc. of the antenna 21 State parameter value. Furthermore, the derived field test throughput (TF), field test physical layer data rate (PF) and relational ratio (TF/PF) can also be obtained by internal difference or extrapolation calculation based on the known pattern sampling information.

再者,參照圖2,在一實施例中,無線裝置3可以是一個無線存取點,流量監測用戶端4與智能電視1分別與無線存取 點建立連線,流量監測用戶端4例如是一個智能手機(或者是個人電腦),此智能手機也安置於所述空間場域。流量監測用戶端4經由無線存取點傳送場域測試信號Fn至位於測試位置的智能電視1,換句話說,由智能手機傳送場域測試信號Fn給智能電視1,其中場域測試信號Fn是經由無線存取點所轉傳。場域測試信號Fn可以是流量監測用戶端4自己本身所儲存的影音資訊,也可以是從空間場域外部所得到的外部影音資訊Fn’(例如為影音串流、雲端或線上影片)。並且,智能電視1也可用以安置於空間場域的複數個測試位置,以獲得並儲存複數個場域測試吞吐量(TF)與複數個場域測試物理層資料率(PF)。 Furthermore, referring to FIG. 2, in an embodiment, the wireless device 3 may be a wireless access point, and the traffic monitoring client 4 and the smart TV 1 are connected to the wireless access point respectively. Click to establish a connection, the traffic monitoring client 4 is, for example, a smart phone (or a personal computer), and this smart phone is also placed in the space field. The traffic monitoring client 4 transmits the field test signal Fn to the smart TV 1 at the test location via the wireless access point. In other words, the smart phone transmits the field test signal Fn to the smart TV 1, where the field test signal Fn is Redirected via wireless access point. The field test signal Fn can be the audiovisual information stored by the traffic monitoring client 4 itself, or it can be the external audiovisual information Fn' obtained from outside the spatial field (for example, audiovisual streaming, cloud or online video). In addition, the smart TV 1 can also be used to place a plurality of test locations in a spatial field to obtain and store a plurality of field test throughput (TF) and a plurality of field test physical layer data rates (PF).

在另一實施例中,參照圖3,無線裝置3可以是一個無線存取點,流量監測用戶端4安裝於無線存取點,此時的流量監測用戶端4例如是無線存取點的一個應用程式。流量監測用戶端4利用無線存取點傳送場域測試信號Fn至智能電視1,場域測試信號Fn的來源是從空間場域外部所得到的外部影音資訊Fn’(例如為影音串流、雲端或線上影片)。智能電視1用以安置於空間場域的複數個測試位置,以獲得並儲存複數個場域測試吞吐量(TF)與複數個場域測試物理層資料率(PF)。圖3實施例的流量監測用戶端4也可以改為一個智能手機(或者是個人電腦),並且與無線存取點3建立連線。另外,不論流量監測用戶端4是否是安裝於無線存取點,或者流量監測用戶端4是一個與無線存取點連線的智能手機(或個人電腦),較佳的,為了達到更好的測試效果,在所述場域測試模式,流量監測用戶4端利用無線存取點傳送場域測試信號Fn至智能電視1以執行滿載測試。 In another embodiment, referring to FIG. 3, the wireless device 3 may be a wireless access point, and the traffic monitoring client 4 is installed at the wireless access point. At this time, the traffic monitoring client 4 is, for example, one of the wireless access points. application. The traffic monitoring client 4 uses the wireless access point to transmit the field test signal Fn to the smart TV 1. The source of the field test signal Fn is the external audio-visual information Fn' obtained from outside the space field (for example, audio-visual streaming, cloud Or online video). The smart TV 1 is used to place a plurality of test positions in a space field to obtain and store a plurality of field test throughput (TF) and a plurality of field test physical layer data rates (PF). The traffic monitoring client 4 in the embodiment of FIG. 3 can also be changed to a smart phone (or a personal computer) and establish a connection with the wireless access point 3. In addition, regardless of whether the traffic monitoring client 4 is installed on a wireless access point, or the traffic monitoring client 4 is a smart phone (or personal computer) connected to the wireless access point, it is better, in order to achieve better The test result is that in the field test mode, the traffic monitoring user 4 uses the wireless access point to transmit the field test signal Fn to the smart TV 1 to perform a full load test.

再者,依據使用情境和控制流程的邏輯,用以提升智能電視1的無線接收效果,請參照圖4,本實施例提供一種智能電視的內嵌式智能天線模塊的控制方法,所述方法包括以下步驟。首先,進行步驟S110,將智能電視1與無線裝置3皆安置於相同的一個空間場域,也就是視為將智能電視1安置於所述空間場域中的一個測試位置。所述場域例如辦公室、停車場、餐廳、住宅、商場。無線裝置3例如是無線存取點,智能電視1的電視信號來源是此無線存取點。然後,進行步驟S120,無線晶片22選擇使用複數個調變與編碼機制中的任一個且利用複數個天線21而與無線裝置3收發無線信號。其中,應用單元24利用控制單元23切換複數個天線模式。然後,進行步驟S130,基於無線晶片22所選擇使用的調變與編碼機制,應用單元24利用流量監測伺服器241取得對應於每一個天線模式的物理層資料率。接著進行步驟S140,基於無線晶片22所選擇使用的調變與編碼機制,應用單元24將對應於複數個天線模式的複數個物理層資料率儲存為模式取樣資訊。然後,進行步驟S150,基於無線晶片22所選擇使用的調變與編碼機制,應用單元24依據模式取樣資訊而挑選所述的複數個物理層資料率之中最高者所對應的天線模式以作為優選天線模式。 Furthermore, according to the logic of the usage scenario and the control flow, it is used to improve the wireless receiving effect of the smart TV 1. Please refer to FIG. 4. This embodiment provides a method for controlling an embedded smart antenna module of a smart TV. The method includes The following steps. Firstly, step S110 is performed to place the smart TV 1 and the wireless device 3 in the same spatial field, that is, as placing the smart TV 1 in a test position in the spatial field. The premises are for example offices, parking lots, restaurants, houses, shopping malls. The wireless device 3 is, for example, a wireless access point, and the TV signal source of the smart TV 1 is the wireless access point. Then, in step S120, the wireless chip 22 selects to use any one of a plurality of modulation and coding mechanisms and uses a plurality of antennas 21 to transmit and receive wireless signals with the wireless device 3. Among them, the application unit 24 utilizes the control unit 23 to switch a plurality of antenna modes. Then, step S130 is performed. Based on the modulation and coding mechanism selected by the wireless chip 22, the application unit 24 uses the traffic monitoring server 241 to obtain the physical layer data rate corresponding to each antenna mode. Then, step S140 is performed. Based on the modulation and coding mechanism selected by the wireless chip 22, the application unit 24 stores the plurality of physical layer data rates corresponding to the plurality of antenna modes as mode sampling information. Then, step S150 is performed. Based on the modulation and coding mechanism selected by the wireless chip 22, the application unit 24 selects the antenna mode corresponding to the highest among the plurality of physical layer data rates according to the mode sampling information as the preferred one. Antenna pattern.

在步驟S150中可分為數個子步驟:步驟151,判斷工作模式吞吐量(TW)是否低於目標吞吐量(TT)。當工作模式吞吐量(TW)高於或等於目標吞吐量(TT),回到步驟S151。當工作模式吞吐量(TW)低於目標吞吐量(TT),進行步驟S152的判斷,判斷工作模式吞吐量(TW)與目標吞吐量(TT)的差異。當工作模式吞吐量(TW)與目標吞吐量(TT)的差異大於或等於一個預設值(△),進行步 驟S153,應用單元24改變無線晶片22所選擇使用的調變與編碼機制,並且基於改變後的調變與編碼機制,在模式取樣資訊中挑選最高的物理層資料率所對應的天線模式以作為更新後的優選天線模式。當工作模式吞吐量(TW)與目標吞吐量(TT)的差異小於所述預設值(△),進行步驟S154,應用單元24依據由無線晶片22所獲得的複數個天線21的接收信號強度指示與信雜比以重新挑選優選天線模式。關於應用單元24依據由無線晶片22所獲得的複數個天線21的接收信號強度指示與信雜比以重新挑選優選天線模式的方式例如為:在每一個天線模式中判斷每一個天線21彼此的接收信號強度指示的差異值,選擇具有最小的差異值的天線模式作為更新後的優選天線模式。又例如,在每一個天線模式中判斷每一個天線21的信雜比,選擇所有天線21的信雜比的平均值最大者的天線模式作為更新後的優選天線模式。 Step S150 can be divided into several sub-steps: Step 151, it is determined whether the working mode throughput (TW) is lower than the target throughput (TT). When the working mode throughput (TW) is higher than or equal to the target throughput (TT), return to step S151. When the working mode throughput (TW) is lower than the target throughput (TT), the judgment of step S152 is performed to judge the difference between the working mode throughput (TW) and the target throughput (TT). When the difference between the working mode throughput (TW) and the target throughput (TT) is greater than or equal to a preset value (△), step In step S153, the application unit 24 changes the modulation and coding mechanism selected by the wireless chip 22, and based on the changed modulation and coding mechanism, selects the antenna mode corresponding to the highest physical layer data rate in the mode sampling information as The updated preferred antenna mode. When the difference between the working mode throughput (TW) and the target throughput (TT) is less than the preset value (△), step S154 is performed, and the application unit 24 is based on the received signal strength of the plurality of antennas 21 obtained by the wireless chip 22 Indicate and signal-to-noise ratio to reselect the preferred antenna mode. The application unit 24 re-selects the preferred antenna mode according to the received signal strength indicator and the signal-to-noise ratio of the plurality of antennas 21 obtained by the wireless chip 22, for example: judging the reception of each antenna 21 in each antenna mode For the difference value indicated by the signal strength, the antenna mode with the smallest difference value is selected as the updated preferred antenna mode. For another example, the signal-to-noise ratio of each antenna 21 is determined in each antenna mode, and the antenna mode with the largest average value of the signal-to-noise ratios of all antennas 21 is selected as the updated preferred antenna mode.

接著,在步驟S153或步驟S154之後,進行步驟S160,流量監測用戶端4依據無線裝置3以取得流量監測伺服器241的監測狀態,以及遙控應用單元24挑選所述優選天線模式。步驟S160是讓使用者可監控或設定智能電視1的內嵌式智能天線模塊2,例如使用智能手機作為流量監測用戶端4,或者利用安裝於無線存取點的流量監測用戶端4對內嵌式智能天線模塊2作監控。每一次將智能電視1在空間場域中所在位置改變之後,都可以再次進行步驟S120至步驟S160,使得不論在何位置的智能電視1的無線接收效果都達到最佳化。並且,每一次執行步驟S110至步驟S140,每一個測試位置也可利用無線室內定位技術取得定位點,可將定位點的資料與對應的關係比值一併作儲存,若將模式取樣資訊以查找表 的方式儲存,查找表的每一筆資料包括TF、PF、TF/PF,以及對應的定位點。 Then, after step S153 or step S154, step S160 is performed. The traffic monitoring client 4 obtains the monitoring status of the traffic monitoring server 241 according to the wireless device 3, and the remote control application unit 24 selects the preferred antenna mode. Step S160 is to allow the user to monitor or set the embedded smart antenna module 2 of the smart TV 1. For example, use a smart phone as the traffic monitoring client 4, or use the traffic monitoring client 4 installed in a wireless access point to monitor the built-in Smart antenna module 2 for monitoring. Each time the position of the smart TV 1 in the spatial field is changed, steps S120 to S160 can be performed again, so that the wireless reception effect of the smart TV 1 at any position is optimized. In addition, each time step S110 to step S140 are executed, each test location can also use wireless indoor positioning technology to obtain a positioning point. The data of the positioning point and the corresponding relationship ratio can be stored together. If the mode sampling information is used to look up the table Stored in the way, each piece of data in the lookup table includes TF, PF, TF/PF, and the corresponding anchor point.

綜上所述,本發明實施例提供一種智能電視的內嵌式智能天線模塊,基於能夠在使用環境空間中的面對的可變情況做模式取樣手段,配合無線晶片運作時所挑選的調變與編碼機制的規格條件,能夠挑選所有天線模式中最好的作為優選天線模式,藉此對於影音資料的無線傳輸資料率的長時均速與穩定性提升有明顯助益,在智能電視產品方面具有很高的產業應用價值。並且,流量監測用戶端可以是使用者的手機或個人電腦,對於流量的模式取樣不但可以藉由無線存取點施作,也可以利用使用者的手機(或個人電腦),以兼顧於智能電視可由一般的(常見的室內定點固定式的)無線存取點收取影音或者是由使用者隨身的裝置(如手機)收取影音的兩種變通情況,是兼顧彈性應用層面的使用者體驗品質提升方案。 In summary, the embodiment of the present invention provides an embedded smart antenna module for a smart TV, which is based on the mode sampling method that can face the variable conditions in the use environment space, and cooperates with the modulation selected during the operation of the wireless chip. With the specification conditions of the coding mechanism, the best antenna mode can be selected as the preferred antenna mode, which will obviously help the long-term average speed and stability of the wireless transmission data rate of audio and video data. In terms of smart TV products It has high industrial application value. In addition, the flow monitoring client can be the user’s mobile phone or personal computer. The flow pattern sampling can be done not only by wireless access points, but also by the user’s mobile phone (or personal computer) to take into account the smart TV. There are two alternatives for receiving video and audio from a general (common indoor fixed-point fixed) wireless access point or from a user's portable device (such as a mobile phone). It is a solution for improving the user experience quality that takes into account the flexibility of the application. .

以上所述僅為本發明之實施例,其並非用以侷限本發明之專利範圍。 The above are only the embodiments of the present invention, and they are not intended to limit the patent scope of the present invention.

1‧‧‧智能電視 1‧‧‧Smart TV

2‧‧‧智能電視的內嵌式智能天線模塊 2‧‧‧Embedded smart antenna module for smart TV

21‧‧‧天線 21‧‧‧antenna

22‧‧‧無線晶片 22‧‧‧Wireless chip

23‧‧‧控制單元 23‧‧‧Control Unit

24‧‧‧應用單元 24‧‧‧Application Unit

3‧‧‧無線裝置 3‧‧‧Wireless device

241‧‧‧流量監測伺服器 241‧‧‧Flow Monitoring Server

Claims (9)

一種智能電視的內嵌式智能天線模塊,安裝於該智能電視,該智能電視與一無線裝置皆安置於一空間場域,該內嵌式智能天線模塊包括:一無線晶片;複數個天線,連接該無線晶片,具有複數個天線模式,其中該無線晶片具有複數個調變與編碼機制(MCS),該無線晶片選擇使用該些調變與編碼機制中的任一個且利用該些天線而與該無線裝置收發無線信號;一控制單元,連接該些天線,用以控制該些天線模式;以及一應用單元,連接該無線晶片與該控制單元,具有一流量監測伺服器,該應用單元利用該控制單元切換該些天線模式;其中,基於該無線晶片所選擇使用的該調變與編碼機制,該應用單元利用該流量監測伺服器取得對應於每一個該天線模式的一物理層資料率;其中,基於該無線晶片所選擇使用的該調變與編碼機制,該應用單元將對應於該些天線模式的該些物理層資料率儲存為一模式取樣資訊;其中,基於該無線晶片所選擇使用的該調變與編碼機制,該應用單元依據該模式取樣資訊而挑選該些物理層資料率之中最高者所對應的該天線模式以作為一優選天線模式;其中,一流量監測用戶端依據該無線裝置以取得該流量監測伺服器的監測狀態,以及遙控該應用單元挑選該優選天線模式;其中,該流量監測伺服器利用該些天線接收來自於該無線裝置的一場域測試信號以執行位於一測試位置的一場域測試模式,並取得該場域測試模式的一場域測試吞吐量與一場域測試物理層 資料率,該應用單元儲存該場域測試吞吐量與該場域測試物理層資料率的一關係比值;其中,該流量監測伺服器利用該些天線接收來自於該無線裝置的一遠端信號以執行位於該測試位置的一工作模式,並取得該工作模式的一工作模式吞吐量與一工作模式物理層資料率,該應用單元將該工作模式物理層資料率與該關係比值相乘而獲得一目標吞吐量;其中,該應用單元監測該工作模式吞吐量是否低於該目標吞吐量,當該工作模式吞吐量低於該目標吞吐量,則該應用單元重新挑選該優選天線模式。 An embedded smart antenna module of a smart TV is installed on the smart TV. The smart TV and a wireless device are both installed in a spatial field. The embedded smart antenna module includes: a wireless chip; a plurality of antennas connected The wireless chip has a plurality of antenna modes, wherein the wireless chip has a plurality of modulation and coding mechanisms (MCS), the wireless chip selects any one of the modulation and coding mechanisms and uses the antennas to interact with the The wireless device sends and receives wireless signals; a control unit connected to the antennas to control the antenna modes; and an application unit connected to the wireless chip and the control unit, having a flow monitoring server, and the application unit uses the control The unit switches the antenna modes; wherein, based on the modulation and encoding mechanism selected by the wireless chip, the application unit uses the traffic monitoring server to obtain a physical layer data rate corresponding to each antenna mode; wherein, Based on the modulation and coding mechanism selected by the wireless chip, the application unit stores the physical layer data rates corresponding to the antenna modes as a mode sampling information; wherein, based on the selected wireless chip According to the modulation and coding mechanism, the application unit selects the antenna mode corresponding to the highest physical layer data rate according to the mode sampling information as a preferred antenna mode; wherein, a traffic monitoring client terminal is based on the wireless device In order to obtain the monitoring status of the flow monitoring server, and remotely control the application unit to select the preferred antenna mode; wherein, the flow monitoring server uses the antennas to receive field test signals from the wireless device to execute a test position Field test mode, and obtain the field test throughput and field test physical layer of the field test mode Data rate, the application unit stores a relational ratio between the field test throughput and the field test physical layer data rate; wherein, the traffic monitoring server uses the antennas to receive a remote signal from the wireless device to Execute a working mode at the test position, and obtain a working mode throughput and a working mode physical layer data rate of the working mode, and the application unit multiplies the working mode physical layer data rate by the relation ratio to obtain a Target throughput; wherein, the application unit monitors whether the working mode throughput is lower than the target throughput, and when the working mode throughput is lower than the target throughput, the application unit reselects the preferred antenna mode. 根據請求項第1項所述之智能電視的內嵌式智能天線模塊,其中當該工作模式吞吐量低於該目標吞吐量,且該工作模式吞吐量與該目標吞吐量的差異大於或等於一預設值,則該應用單元改變該無線晶片所選擇使用的該調變與編碼機制,並且基於改變後的該調變與編碼機制,在該模式取樣資訊中挑選最高的該物理層資料率所對應的該天線模式以作為更新後的該優選天線模式。 The embedded smart antenna module of the smart TV according to claim 1, wherein when the working mode throughput is lower than the target throughput, and the difference between the working mode throughput and the target throughput is greater than or equal to one With the default value, the application unit changes the modulation and coding mechanism selected by the wireless chip, and based on the changed modulation and coding mechanism, selects the highest physical layer data rate in the mode sampling information The corresponding antenna mode is used as the updated preferred antenna mode. 根據請求項第1項所述之智能電視的內嵌式智能天線模塊,其中當該工作模式吞吐量低於該目標吞吐量,且該工作模式吞吐量與該目標吞吐量的差異小於一預設值,則該應用單元依據由該無線晶片所獲得的該些天線的接收信號強度指示與信雜比以重新挑選該優選天線模式。 The embedded smart antenna module of the smart TV according to claim 1, wherein when the working mode throughput is lower than the target throughput, and the difference between the working mode throughput and the target throughput is less than a preset Value, the application unit reselects the preferred antenna mode according to the received signal strength indication and the signal-to-noise ratio of the antennas obtained by the wireless chip. 根據請求項第1項所述之智能電視的內嵌式智能天線模塊,其中該無線裝置是一無線存取點,該流量監測用戶端與該智能電視分別與該無線存取點建立連線,該流量監測用戶端經由該無線存取點傳送該場域測試信號至位於該測試位置的該智能電視,該智能電視用以安置於該空間場域的複數個測試位置,以獲得並儲存 複數個場域測試吞吐量與複數個場域測試物理層資料率。 The embedded smart antenna module of a smart TV according to claim 1, wherein the wireless device is a wireless access point, and the traffic monitoring client and the smart TV establish connections with the wireless access point respectively, The traffic monitoring client transmits the field test signal to the smart TV located at the test location via the wireless access point, and the smart TV is used to place a plurality of test locations in the spatial field to obtain and store Multiple field test throughput and multiple field test physical layer data rate. 根據請求項第1項所述之智能電視的內嵌式智能天線模塊,其中該無線裝置是一無線存取點,該流量監測用戶端安裝於該無線存取點,且該流量監測用戶端利用該無線存取點傳送一場域測試信號至該智能電視,該智能電視用以安置於該空間場域的複數個測試位置,以獲得並儲存複數個場域測試吞吐量與複數個場域測試物理層資料率。 The embedded smart antenna module of the smart TV according to claim 1, wherein the wireless device is a wireless access point, the traffic monitoring client is installed at the wireless access point, and the traffic monitoring client uses The wireless access point transmits a field test signal to the smart TV, and the smart TV is used to place a plurality of test positions in the space field to obtain and store a plurality of field test throughputs and a plurality of field test physics Layer data rate. 根據請求項第4項或第5項所述之智能電視的內嵌式智能天線模塊,其中在該場域測試模式,該流量監測用戶端利用該無線存取點傳送該場域測試信號至該智能電視以執行滿載測試。 The embedded smart antenna module of the smart TV according to claim 4 or 5, wherein in the field test mode, the traffic monitoring client uses the wireless access point to transmit the field test signal to the Smart TV to perform a full load test. 根據請求項第4項所述之智能電視的內嵌式智能天線模塊,其中該流量監測用戶端是一智能手機或一個人電腦。 The embedded smart antenna module of the smart TV according to claim 4, wherein the traffic monitoring client is a smart phone or a personal computer. 根據請求項第1項所述之智能電視的內嵌式智能天線模塊,其中該控制單元是獨立於該無線晶片之外的一微控制器。 The embedded smart antenna module of the smart TV according to claim 1, wherein the control unit is a microcontroller independent of the wireless chip. 根據請求項第1項所述之智能電視的內嵌式智能天線模塊,其中該流量監測伺服器安裝於該智能電視的Linux作業系統。 The embedded smart antenna module of the smart TV according to claim 1, wherein the traffic monitoring server is installed in the Linux operating system of the smart TV.
TW108133315A 2019-09-12 2019-09-12 Embedded smart antenna module of smart tv TWI715197B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108133315A TWI715197B (en) 2019-09-12 2019-09-12 Embedded smart antenna module of smart tv

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108133315A TWI715197B (en) 2019-09-12 2019-09-12 Embedded smart antenna module of smart tv

Publications (2)

Publication Number Publication Date
TWI715197B true TWI715197B (en) 2021-01-01
TW202112082A TW202112082A (en) 2021-03-16

Family

ID=75237268

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108133315A TWI715197B (en) 2019-09-12 2019-09-12 Embedded smart antenna module of smart tv

Country Status (1)

Country Link
TW (1) TWI715197B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080175189A1 (en) * 2007-01-21 2008-07-24 Broadcom Corporation Transmit scheme adaptation for wireless data transmissions
US20100177664A1 (en) * 2009-01-14 2010-07-15 Canon Kabushiki Kaisha Methods for configuring sender and receiver antennas, corresponding storage means and nodes
US20140223490A1 (en) * 2013-02-07 2014-08-07 Shanghai Powermo Information Tech. Co. Ltd. Apparatus and method for intuitive user interaction between multiple devices
US20140310742A1 (en) * 2013-04-16 2014-10-16 Samsung Electronics Co., Ltd. Display apparatus, and method and apparatus for setting up and controlling the same
US20140334322A1 (en) * 2009-03-13 2014-11-13 Ruckus Wireless, Inc. Adjustment of radiation patterns utilizing a position sensor
CN106331122A (en) * 2016-08-29 2017-01-11 河源市新天彩科技有限公司 WLAN (Wireless Local Area Network) network monitoring system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080175189A1 (en) * 2007-01-21 2008-07-24 Broadcom Corporation Transmit scheme adaptation for wireless data transmissions
US20100177664A1 (en) * 2009-01-14 2010-07-15 Canon Kabushiki Kaisha Methods for configuring sender and receiver antennas, corresponding storage means and nodes
US20140334322A1 (en) * 2009-03-13 2014-11-13 Ruckus Wireless, Inc. Adjustment of radiation patterns utilizing a position sensor
US20140223490A1 (en) * 2013-02-07 2014-08-07 Shanghai Powermo Information Tech. Co. Ltd. Apparatus and method for intuitive user interaction between multiple devices
US20140310742A1 (en) * 2013-04-16 2014-10-16 Samsung Electronics Co., Ltd. Display apparatus, and method and apparatus for setting up and controlling the same
CN106331122A (en) * 2016-08-29 2017-01-11 河源市新天彩科技有限公司 WLAN (Wireless Local Area Network) network monitoring system

Also Published As

Publication number Publication date
TW202112082A (en) 2021-03-16

Similar Documents

Publication Publication Date Title
US9445032B2 (en) Auto-pairing control device
JP4191397B2 (en) Information processing system and information processing apparatus
CN102684721B (en) For the device of radio communication
US8763051B2 (en) Method and apparatus for receiving signal
KR100942061B1 (en) Method and apparatus for wireless transmitting the display signals and the display device thereof
CN104115498B (en) device and method for wireless display
US10439894B2 (en) Communication apparatus, display apparatus and method of controlling the same
JP2013541877A (en) Remote control device transcoder available cloud
CA2788655A1 (en) Connection priority services for data communication between two devices
KR101379254B1 (en) System and method for wireless communication having a device coordinator selection capability
CN103702061A (en) Automatic adjustment method of resolution of video call of intelligent terminal
US9860901B2 (en) Transmission of data to reception devices
KR20190097228A (en) Distributed Indoor Smart Antenna System for OTA Television Reception
WO2006026861A1 (en) System, method and apparatus for adaptive video surveillance over power lines
CN104012080A (en) Video transmitter, video transmission method, and program
TWI715197B (en) Embedded smart antenna module of smart tv
US9912984B2 (en) Devices and methods for obtaining media stream with adaptive resolutions
US9491772B2 (en) Methods and systems for placeshifting data with interference mitigation
CN110581969B (en) Embedded intelligent antenna module of intelligent television
US20190090125A1 (en) Information processing apparatus, information processing method, and source apparatus
US10624000B2 (en) Digital wireless intercom with user-selectable audio codecs
TWI710226B (en) Method and terminal device for selecting modulation and coding scheme based on multiple antennas control
JP4736889B2 (en) Information processing system and information processing apparatus
CN110636099A (en) Control method, device, equipment and system of electronic equipment
CN102064988A (en) Home network system