TWI714149B - Temperature controlling circuit and temperature controlling system - Google Patents
Temperature controlling circuit and temperature controlling system Download PDFInfo
- Publication number
- TWI714149B TWI714149B TW108123034A TW108123034A TWI714149B TW I714149 B TWI714149 B TW I714149B TW 108123034 A TW108123034 A TW 108123034A TW 108123034 A TW108123034 A TW 108123034A TW I714149 B TWI714149 B TW I714149B
- Authority
- TW
- Taiwan
- Prior art keywords
- voltage
- current
- temperature
- heating
- temperature control
- Prior art date
Links
Images
Landscapes
- Control Of Resistance Heating (AREA)
Abstract
Description
本發明係關於一種溫度控制電路以及溫度控制系統,特別是關於一種利用電壓源或電流源進行加熱的溫度控制電路以及溫度控制系統。The present invention relates to a temperature control circuit and a temperature control system, in particular to a temperature control circuit and a temperature control system that use a voltage source or a current source for heating.
為了確保電子元件的品質,在電子元件製造完成後均需要經過充分的測試才能出貨。實務上,多數的電子元件的操作性能會受到環境溫度的影響,例如被動式元件在不同的環境溫度下可能會有不同的阻抗特性,或者發光二極體(LED或OLED等)在不同的環境溫度下可能會有不同的色溫。此外,電子元件的使用壽命也有可能因為長時間操作在高溫環境而有顯著地變化。因此,在測試電子元件的過程中時常需要將測試機台加熱,以檢查電子元件在各種環境溫度下的工作情況。In order to ensure the quality of electronic components, all electronic components need to be fully tested before they are shipped. In practice, the operating performance of most electronic components will be affected by ambient temperature. For example, passive components may have different impedance characteristics at different ambient temperatures, or light-emitting diodes (LED or OLED, etc.) may have different ambient temperatures. There may be different color temperatures. In addition, the service life of electronic components may also change significantly due to long-term operation in a high-temperature environment. Therefore, in the process of testing electronic components, it is often necessary to heat the testing machine to check the working conditions of the electronic components under various ambient temperatures.
為了加熱測試機台,一般會在測試機台上裝設溫度控制電路。所述溫度控制電路通常由數個電阻構成,並且利用電阻通電流後會發熱的特性,而有改變環境溫度的效果。然而,由於電阻普遍存在製造上的誤差,工程師不容易控制每一個電阻的發熱量,使得傳統的溫度控制電路經常有加熱不均勻的問題。此外,傳統的溫度控制電路中,電阻選用的歐姆值是預先決定的,若有加熱不均勻的情況也無法及時修正回來,缺少了動態調整的機制。因此,業界需要一種新的溫度控制電路,除了要能夠讓溫度控制電路內每一個位置均勻發熱,且也希望能有機會動態地調整個別位置的發熱量。In order to heat the test machine, a temperature control circuit is generally installed on the test machine. The temperature control circuit is usually composed of several resistors, and utilizes the characteristic that the resistors will generate heat after passing current, and have the effect of changing the ambient temperature. However, due to widespread manufacturing errors in resistors, it is not easy for engineers to control the amount of heat generated by each resistor, so that traditional temperature control circuits often suffer from uneven heating. In addition, in the traditional temperature control circuit, the ohmic value selected for the resistance is determined in advance. If there is uneven heating, it cannot be corrected in time, and it lacks a dynamic adjustment mechanism. Therefore, the industry needs a new temperature control circuit. In addition to being able to uniformly heat each position in the temperature control circuit, it also hopes to have the opportunity to dynamically adjust the heat generation of individual positions.
本發明提供一種溫度控制電路,利用多個電壓源以及電流控制單元同時發熱。因為多個電壓源以及電流控制單元均包含了可以控制的主動式元件,從而溫度控制電路能均勻發熱並實現動態調整的功能。The present invention provides a temperature control circuit that utilizes multiple voltage sources and current control units to generate heat at the same time. Because multiple voltage sources and current control units all contain active components that can be controlled, the temperature control circuit can evenly generate heat and realize the function of dynamic adjustment.
本發明提出一種溫度控制電路,所述溫度控制電路包含N個電壓源以及電流控制單元。所述N個電壓源串聯耦接於高電壓端與低電壓端之間的電流路徑中,所述N個電壓源中的第i個電壓源設定有第i個跨電壓,且高電壓端與低電壓端之間具有第一電壓差。電流控制單元串聯耦接所述N個電壓源,用以依據電流設定電壓調整流經電流路徑中的加熱電流,電流控制單元具有第二電壓差,第二電壓差係由第一電壓差與第1個跨電壓到第N個跨電壓決定。其中第i個電壓源發出的熱能關聯於加熱電流以及第i個跨電壓,電流控制單元發出的熱能關聯於加熱電流以及第二電壓差。N為自然數,i為不大於N的自然數。The present invention provides a temperature control circuit. The temperature control circuit includes N voltage sources and current control units. The N voltage sources are coupled in series in the current path between the high voltage terminal and the low voltage terminal, the i-th voltage source of the N voltage sources is set with the i-th cross voltage, and the high voltage terminal is connected to the There is a first voltage difference between the low voltage terminals. The current control unit is coupled to the N voltage sources in series for adjusting the heating current flowing in the current path according to the current setting voltage. The current control unit has a second voltage difference, and the second voltage difference is determined by the first voltage difference and the first voltage difference. The voltage from 1 to the Nth is determined. The thermal energy emitted by the i-th voltage source is related to the heating current and the i-th cross-voltage, and the thermal energy emitted by the current control unit is related to the heating current and the second voltage difference. N is a natural number, and i is a natural number not greater than N.
於一些實施例中,第i個電壓源可以包含電壓設定單元以及主動式元件。電壓設定單元用以設定參考值以及驅動信號,參考值用以決定所述第i個跨電壓。主動式元件耦接電壓設定單元,且主動式元件串聯耦接於電流路徑中,受控於驅動信號以選擇性地導通或截止電流路徑。其中主動式元件導通電流路徑時,主動式元件用以發出熱能,且發出的熱能關聯於加熱電流以及第i個跨電壓。此外,溫度控制電路更可以包含多個溫度偵測單元以及溫度控制單元。所述多個溫度偵測單元用以偵測所述多個加熱區域中的溫度,據以產生多個溫度偵測信號。溫度控制單元耦接所述多個溫度偵測單元與電流控制單元,用以比對所述多個溫度偵測信號與溫度參考信號,據以決定電流設定電壓。In some embodiments, the i-th voltage source may include a voltage setting unit and an active element. The voltage setting unit is used for setting a reference value and a driving signal, and the reference value is used for determining the i-th cross voltage. The active element is coupled to the voltage setting unit, and the active element is coupled in series in the current path, controlled by the driving signal to selectively turn on or off the current path. When the active element conducts the current path, the active element is used to emit thermal energy, and the emitted thermal energy is related to the heating current and the i-th cross-voltage. In addition, the temperature control circuit may further include a plurality of temperature detection units and temperature control units. The plurality of temperature detection units are used for detecting the temperature in the plurality of heating regions, and accordingly generate a plurality of temperature detection signals. The temperature control unit is coupled to the plurality of temperature detection units and the current control unit, and is used to compare the plurality of temperature detection signals with the temperature reference signal to determine the current setting voltage accordingly.
於一些實施例中,溫度控制單元更可以耦接所述多個N個電壓源,且溫度控制單元更用以決定每一個電壓源中的電壓設定單元設定的參考值。另外,所述N個電壓源與電流控制單元於同一面上排列成第一圖樣,且第一圖樣為對稱圖樣。In some embodiments, the temperature control unit may be further coupled to the plurality of N voltage sources, and the temperature control unit is further used to determine the reference value set by the voltage setting unit in each voltage source. In addition, the N voltage sources and current control units are arranged on the same surface in a first pattern, and the first pattern is a symmetrical pattern.
本發明提供一種溫度控制電路,利用多個電流源進行發熱,並且偵測每一個位置的溫度,據以控制每一個電流源中的主動式元件的發熱量。藉此,溫度控制電路能有效地控制每一個電流源的發熱量。The present invention provides a temperature control circuit that uses multiple current sources to generate heat, and detects the temperature of each position, so as to control the heat generation of active components in each current source. Thereby, the temperature control circuit can effectively control the heat generation of each current source.
本發明提出一種溫度控制電路,所述溫度控制電路包含多個電流源、多個溫度偵測單元以及溫度控制單元。所述多個電流源並聯耦接於高電壓端與低電壓端之間,每一個電流源具有主動式元件,所述主動式元件依據驅動信號調整流經的加熱電流。所述多個溫度偵測單元用以偵測多個加熱區域中的溫度,據以產生多個溫度偵測信號。溫度控制單元耦接所述多個溫度偵測單元與所述多個電流源,用以比對所述多個溫度偵測信號與溫度參考信號,據以決定每一個電流源的驅動信號。其中高電壓端與低電壓端之間具有第一電壓差,每一個電流源發出的熱能關聯於加熱電流以及第一電壓差。The present invention provides a temperature control circuit. The temperature control circuit includes a plurality of current sources, a plurality of temperature detection units, and a temperature control unit. The multiple current sources are coupled in parallel between the high voltage terminal and the low voltage terminal, and each current source has an active element, and the active element adjusts the heating current flowing through it according to the driving signal. The plurality of temperature detection units are used for detecting the temperature in the plurality of heating regions, and accordingly generate a plurality of temperature detection signals. The temperature control unit is coupled to the plurality of temperature detection units and the plurality of current sources, and is used to compare the plurality of temperature detection signals with a temperature reference signal to determine a driving signal of each current source. There is a first voltage difference between the high voltage terminal and the low voltage terminal, and the thermal energy emitted by each current source is related to the heating current and the first voltage difference.
本發明提供一種溫度控制系統,利用多個加熱器用以對載台加熱。因為每個加熱器均包含了可以控制的主動式元件,從而溫度控制系統能有效地控制載台上每一個位置的溫度。The present invention provides a temperature control system, which uses a plurality of heaters to heat a carrier. Because each heater contains active components that can be controlled, the temperature control system can effectively control the temperature of each position on the stage.
本發明提出一種溫度控制系統,所述溫度控制系統包含載台以及多個加熱器。所述載台具有承載面,且於承載面上定義有多個加熱區域。所述多個加熱器設置於加熱板上,加熱板相鄰於承載面,所述多個加熱器耦接於高電壓端與低電壓端之間,用以對所述多個加熱區域提供熱能。其中每一個加熱器具有主動式元件,且每一個加熱器至少依據參考值決定主動式元件的跨電壓,或至少依據電流設定電壓決定主動式元件的加熱電流,每一個加熱器發出的熱能關聯於跨電壓以及加熱電流。The present invention provides a temperature control system. The temperature control system includes a carrier and a plurality of heaters. The carrier has a bearing surface, and a plurality of heating areas are defined on the bearing surface. The plurality of heaters are arranged on the heating plate, the heating plate is adjacent to the bearing surface, and the plurality of heaters are coupled between the high voltage terminal and the low voltage terminal for providing heat energy to the plurality of heating regions . Each heater has an active element, and each heater determines the cross voltage of the active element at least according to a reference value, or at least determines the heating current of the active element according to the current setting voltage, and the heat energy emitted by each heater is related to Cross voltage and heating current.
綜上所述,本發明提供的溫度控制電路與溫度控制系統可以由具有主動式元件的多個加熱器構成,並且所述多個加熱器可以同時發熱。藉由控制加熱器中的主動式元件,從而溫度控制電路與溫度控制系統能均勻發熱並實現動態調整的功能。此外,溫度控制電路與溫度控制系統也可以偵測多個加熱區域的溫度,據以控制每一個加熱器中的主動式元件的發熱量。In summary, the temperature control circuit and temperature control system provided by the present invention can be composed of multiple heaters with active elements, and the multiple heaters can generate heat at the same time. By controlling the active components in the heater, the temperature control circuit and the temperature control system can evenly generate heat and realize the function of dynamic adjustment. In addition, the temperature control circuit and the temperature control system can also detect the temperature of multiple heating zones, thereby controlling the heating value of the active element in each heater.
下文將進一步揭露本發明之特徵、目的及功能。然而,以下所述者,僅為本發明之實施例,當不能以之限制本發明之範圍,即但凡依本發明申請專利範圍所作之均等變化及修飾,仍將不失為本發明之要意所在,亦不脫離本發明之精神和範圍,故應將視為本發明的進一步實施態樣。The features, objectives and functions of the present invention will be further disclosed below. However, the following are only examples of the present invention, and should not be used to limit the scope of the present invention, that is, all equivalent changes and modifications made in accordance with the scope of the patent application of the present invention will still be the essence of the present invention. Without departing from the spirit and scope of the present invention, it should be regarded as a further embodiment of the present invention.
請參閱圖1,圖1係繪示依據本發明一實施例之溫度控制電路的功能方塊圖。如圖1所示,本實施例示範的溫度控制電路1可以包含多個電壓源10、電流控制單元12、溫度偵測單元14以及溫度控制單元16。在此,溫度控制電路1係利用電壓源10與電流控制單元12同時發熱,使得電壓源10與電流控制單元12周圍的物件受熱輻射影響而達到加熱物件的效果。本實施例不限制電壓源10與電流控制單元12的形狀與大小,也不限制電壓源10與電流控制單元12的裝設位置,只要電壓源10與電流控制單元12可以同時用於發熱,即屬本實施例溫度控制電路1的範疇。實務上,溫度控制電路1可以用來對載台(未示於圖1)上的電子元件加熱,從而可以利用其他的測試裝置來檢測電子元件在各種環境溫度下的工作情況。Please refer to FIG. 1. FIG. 1 is a functional block diagram of a temperature control circuit according to an embodiment of the present invention. As shown in FIG. 1, the
以圖1繪示的例子來說,在溫度控制電路1的架構上,多個電壓源10與電流控制單元12是串聯耦接在同一個電流路徑(current path)中,所述電流路徑係指從高電壓端V1到低電壓端V2之間的電能傳遞路徑。由於多個電壓源10與電流控制單元12是串聯在一起的,可知流經多個電壓源10的電流,也會流經電流控制單元12,也就是流經電壓源10與電流控制單元12的電流(加熱電流)應是相同的。此外,本實施例不限制高電壓端V1與低電壓端V2實際的電壓範圍,只要高電壓端V1與低電壓端V2之間存在著電壓差(第一電壓差),即符合本實施例對於高電壓端V1與低電壓端V2的定義。於所屬技術領域具有通常知識者應可明白,高電壓端V1與低電壓端V2之間的電壓差係等於每個電壓源10的跨電壓加上電流控制單元12的的跨電壓(第二電壓差)總和。換句話說,第一電壓差可以關聯於串聯在電流路徑中的電壓源10數量。假設在每個電壓源10的跨電壓均相同的情況下,於所屬技術領域具有通常知識者應可明白,電壓源10的數量越多,第一電壓差有可能越大。Taking the example shown in FIG. 1 as an example, in the structure of the
另外,電壓源10與電流控制單元12發出的熱能,和電壓源10與電流控制單元12各自的操作功率有關係。實務上,操作功率通常可以用電壓和電流的乘積來表示,所稱電壓是指電壓源10或電流控制單元12兩端的跨電壓,而所述電流指的是流經電壓源10或電流控制單元12的加熱電流。因此可知,每個電壓源10發出的熱能應會相關於流經電壓源10的電流(加熱電流)以及電壓源10的跨電壓,而電流控制單元12發出的熱能也同樣會相關於流經電流控制單元12的電流(加熱電流)以及電流控制單元12的跨電壓(第二電壓差)。以實際操作來說,假設溫度控制電路1需要使多個電壓源10以及電流控制單元12發出相同的熱能,則可以將電壓源10與電流控制單元12設定在相同的操作功率。In addition, the thermal energy generated by the
如前所述,由於流經每個電壓源10的加熱電流大致上相同,因此只要將每個電壓源10的跨電壓設定成相同的,操作功率(跨電壓和加熱電流的乘積)便會是相同的,也就是多個串聯的電壓源10應可以發出相同的熱能。至於電流控制單元12的部分,因為電流控制單元12也是串聯連接在相同的電流路徑中,因此流經電壓源10和電流控制單元12的電流(加熱電流)應相同。此時,雖然電流控制單元12並非電壓源,沒有辦法直接設定跨電壓的數值,但由於高電壓端V1與低電壓端V2之間的電壓差(第一電壓差)已知,只要將第一電壓差減去所有電壓源10的跨電壓總和,仍可以簡單推算出來電流控制單元12的跨電壓(第二電壓差)。於一個例子中,如果電流控制單元12的跨電壓和每個電壓源10的跨電壓相同,則多個電壓源10以及電流控制單元12便能夠發出相同的熱能。As mentioned above, since the heating current flowing through each
舉例來說,假設高電壓端V1與低電壓端V2之間的第一電壓差是12V,電流路徑中串聯耦接了4個電壓源10和1個電流控制單元12。如果每個電壓源10的跨電壓為2.4V,則4個電壓源10的跨電壓總和為9.6V。此時,將第一電壓差12V減去跨電壓總和9.6V,可知電流控制單元12的跨電壓即為2.4V(和單一個電壓源10的跨電壓相同)。由此可知,如果將每個電壓源10以及電流控制單元12皆視為一個加熱器,只要把第一電壓差平均分配在每個加熱器上,便可以使所有的加熱器發出相同的熱能。當然,本實施例不以多個電壓源10以及電流控制單元12發出相同的熱能為限,實務上也有可能需要部份的電壓源10或電流控制單元12發出不同的熱能。For example, assuming that the first voltage difference between the high voltage terminal V1 and the low voltage terminal V2 is 12V, four
為了進一步說明本實施例示範的電壓源10,請一併參閱圖1與圖2,圖2係繪示依據本發明一實施例之電壓源的功能方塊圖。如圖所示,圖2係繪示圖1其中一個電壓源10的內部架構,電壓源10的兩端可表示為節點A和節點B,而節點A和節點B之間的電壓差即為電壓源10的跨電壓。於一個例子中,節點A可以用來連接前一個電壓源10的節點B,而節點B可以用來連接後一個電壓源10的節點A。當然,如果是排列在第一個的電壓源10,則第一個電壓源10的節點A可以連接到高電壓端V1,且第一個電壓源10的節點B可以連接到第二個電壓源10的節點A。如果是排列在最後一個的電壓源10,則最後一個電壓源10的節點A可以連接到前一個電壓源10的節點B,且最後一個電壓源10的節點B可以連接到電流控制單元12。值得一提的是,雖然圖1係繪示了電流控制單元12是串聯在多個電壓源10之後,但實際上本實施例並不限制電流控制單元12的排列順序,例如電流控制單元12也可以串聯在多個電壓源10之間。In order to further explain the
此外,圖2繪示的電壓源10可以包含電壓設定單元100、主動式元件102以及分壓單元104,且電壓設定單元100、主動式元件102以及分壓單元104可以並聯地耦接在節點A到節點B之間。電壓設定單元100用以設定參考值以及驅動信號,所述參考值可以提供給分壓單元104,並由分壓單元104決定節點A和節點B之間的電壓差(電壓源10的跨電壓)。實務上,電壓設定單元100可以是一個積體電路元件或晶片,且可以預先設定好參考值以及驅動信號的數值,或可以接收外部指示的參考值以及驅動信號,本實施例不加以限制。In addition, the
主動式元件102可以是一種雙極性電晶體(BJT)或場效電晶體(MOSFET),並且可以受控於電壓設定單元100。電壓設定單元100給出的驅動信號可以依據不同的主動式元件102而不同,例如電壓設定單元100可以給出驅動電流控制雙極性電晶體,或者電壓設定單元100可以給出驅動電壓控制場效電晶體。以主動式元件102是pnp型的雙極性電晶體為例,主動式元件102的基極(base)可以連接到電壓設定單元100,以接收驅動信號(例如用以驅動BJT的電流),主動式元件102的射極(emitter)可以連接到節點A,而主動式元件102的集極(collector)可以連接到節點B。當主動式元件102的基極接收到電壓設定單元100給的驅動信號加熱電流而導通時,幾乎所有的加熱電流都會流經主動式元件102,實務上可以不計流經電壓設定單元100以及分壓單元104的電流。換句話說,電壓源10即是藉由主動式元件102在提供熱能,且主動式元件102提供的熱能關聯於節點A和節點B之間的電壓差(電壓源10的跨電壓)以及加熱電流。The
另外,分壓單元104可以依據參考值決定節點A和節點B之間的電壓差。假設分壓單元104是由兩個電阻串聯組成,只要兩個串聯的電阻之間被給定所述參考值,於所屬技術領域具有通常知識者應可以反推節點A和節點B之間的電壓差。當然,本實施例不限制分壓單元104是由兩個電阻串聯組成,只要分壓單元104可以依據參考值決定節點A和節點B之間的電壓差,即屬本實施例電壓源10的範疇。於一個例子中,工程師可以藉由控制電壓設定單元100給出不同的參考值,即可以調整節點A和節點B之間的電壓差,也就是可以改變電壓源10的跨電壓。當然,分壓單元104也可以包含可程式的可變電阻,縱使參考值不變,工程師也可以藉由控制可變電阻的電阻值,改變反推出來的節點A和節點B之間的電壓差,也就是可以改變電壓源10的跨電壓。In addition, the
請繼續參閱圖1,圖1繪示的電流控制單元12可以受控於電流設定電壓以調整流經電流路徑中的加熱電流。實務上,電流控制單元12可以是一個電力開關,例如場效電晶體。於所屬技術領域具有通常知識者應可以明白,場效電晶體的電流相關於閘極(或控制極)的電壓,例如電流設定電壓越大,則加熱電流也可以越大。此外,本實施例並不限制溫度控制電路1必須要有溫度偵測單元14以及溫度控制單元16。換句話說,電流設定電壓可以由圖1繪示的溫度控制單元16提供,當然電流設定電壓也可以是預設的,從而不需要溫度偵測單元14以及溫度控制單元16。以圖1繪示的例子來說,溫度控制電路1可以有一個或多個溫度偵測單元14設置在載台(未示於圖1)上,用來偵測載台或是特定加熱區域的溫度,進而產生溫度偵測信號。接著,溫度控制單元16可以將溫度偵測信號比對溫度參考信號,來決定電流設定電壓的大小。Please continue to refer to FIG. 1. The
於一個例子中,溫度偵測單元14可以是任何溫度偵測器,例如可以是熱電偶式、電阻式的溫度偵測器,或由熱敏電阻組成的電路單元,本實施例不加以限制。為了要準確地偵測一個以上的加熱區域的溫度,實際上可以同時選用多個溫度偵測單元14在本實施例的溫度控制電路1。另外,溫度偵測單元14也可能可以應用攝影機來實現,例如紅外線測溫器。此時,攝影畫面中不同的區塊,可以對應到一個以上的加熱區域。換句話說,加熱區域的數量是可以被自由定義的,且加熱區域的數量和溫度偵測單元14的數量也不一定有對應關係,故本實施例在此不加以限制。In one example, the
以前述的例子來說,假設電流路徑中串聯耦接了4個電壓源10和1個電流控制單元12,一個或多個溫度偵測單元14可以設置在載台上的加熱區域中。在此,溫度偵測單元14給的溫度偵測信號是用來指示加熱區域的溫度,例如可以用溫度偵測信號的電壓來表示溫度的高低。當溫度控制單元16收到溫度偵測信號,並判斷溫度偵測信號小於溫度參考信號時,表示加熱區域的溫度低於一定門檻值,因此顯然需要提供加熱區域更多的熱能。據此,溫度控制單元16可以加大電流設定電壓,從而電流控制單元12可以受控於電流設定電壓而給出更大的加熱電流。此時,因為加熱電流提升了,基於前面的說明可知,電壓源10與電流控制單元12的操作功率也會隨著提高。藉此,本實施例的溫度控制電路1便可以在不更動電壓源10與電流控制單元12各自的跨電壓的情況下,提高電壓源10與電流控制單元12發出的熱能。Taking the foregoing example as an example, assuming that four
上述的手段中,由於提高了加熱電流,因此可以預期溫度控制電路1整體發出的熱能都會提高,但是本實施例不以此為限。例如多個溫度偵測單元14中,其中一部分的溫度偵測單元14偵測到了溫度不足的情況,而這個溫度不足的區域恰好可以對應到某一個或某幾個電壓源10時,本實施例也可以單獨地提高電壓源10或電流控制單元12發出的熱能。舉例來說,當溫度控制單元16判斷部分的溫度偵測信號小於溫度參考信號時,溫度控制單元16可以向溫度不足的區域對應到的電壓源10給出新的參考值。例如,溫度控制單元16可以發出控制命令給特定電壓源10的電壓設定單元100,使電壓設定單元100給出更高的參考值,從而加大了特定電壓源10的跨電壓。此時,因為特定電壓源10的跨電壓提升了,基於前面的說明可知,電壓源10的操作功率也會隨著提高。藉此,本實施例的溫度控制電路1便可以在不更動電壓源10的加熱電流的情況下,提高特定電壓源10發出的熱能。In the above-mentioned means, since the heating current is increased, it can be expected that the heat energy emitted by the
那麼,如果溫度不足的區域恰好可以對應到電流控制單元12時,雖然溫度控制單元16沒有辦法直接設定電流控制單元12的跨電壓,但是溫度控制單元16可以提高電壓源10與電流控制單元12整體的加熱電流,同時降低多個電壓源10的跨電壓。詳細來說,由前述說明可知,因為第一電壓差不變,降低多個電壓源10的跨電壓意味著電流控制單元12的跨電壓會升高。此時,由於電壓源10的跨電壓降低,為了避免電壓源10提供的熱量不足導致其他問題,溫度控制單元16可以藉由提高加熱電流,使得電壓源10發出的熱能大致不變。另外,也由於電流控制單元12的跨電壓與加熱電流同步被提升上來,恰好可以快速提高電流控制單元12發出的熱能,使得溫度不足的區域可以被加熱補償。Then, if the area with insufficient temperature can correspond to the
雖然圖1的例子示範了溫度控制電路1是由多個電壓源10和電流控制單元12發出熱能,但本發明並不限制發出熱能的元件。圖3係繪示依據本發明另一實施例之溫度控制電路的功能方塊圖。與圖1相同的是,圖3繪示的溫度控制電路2同樣可以包含一個或多個溫度偵測單元22以及溫度控制單元24,且同樣定義有高電壓端V1與低電壓端V2。其中,多個溫度偵測單元22同樣可以設置於多個加熱區域(未示於圖3)中,用以偵測所述多個加熱區域中的溫度,據以產生多個溫度偵測信號。溫度控制單元24同樣也可以比對所述多個溫度偵測信號與溫度參考信號以決定電流設定電壓。Although the example in FIG. 1 demonstrates that the
與圖1不相同的是,溫度控制電路2可以包含多個電流源20,多個電流源20係並聯耦接於高電壓端V1與低電壓端V2之間。如前一實施例所述,每一個電流源20同樣可以具有主動式元件(未示於圖3),且主動式元件同樣可以包含雙極性電晶體(BJT)或場效電晶體(MOSFET),從而可以依據電流設定電壓調整流經的加熱電流。當然,由於圖3繪示的每個電流源20都是並聯耦接於高電壓端V1與低電壓端V2之間,因此每個電流源20的跨電壓都是第一電壓差。也就是說,如果每個電流源20的加熱電流都是相同的,則每個電流源20可以有相同的操作功率,溫度控制電路2可以均勻地發熱。如果不同的電流源20之間設定不同的加熱電流,則不同的電流源20之間的操作功率將有所不同,可以使不同的電流源20發出不一樣的熱能。The difference from FIG. 1 is that the
為了說明前述溫度控制電路的應用情況,請一併參閱圖4、圖5與圖6,圖4係繪示依據本發明一實施例之溫度控制系統的架構示意圖,圖5係繪示依據本發明一實施例之加熱板的架構示意圖,圖6係繪示依據本發明一實施例之載台的架構示意圖。如圖所示,溫度控制系統3可以包含載台30以及加熱板32,載台30具有承載面30a,待測的電子元件(圖未示)可以放置在承載面30a上。加熱板32可以相鄰於承載面30a,或加熱板32可以大致上平行於承載面30a。如果加熱板32平行於承載面30a,則當電子元件放置在承載面30a上時,加熱板32基本上也可以平行於電子元件的一側表面,使得電子元件可以均勻地受熱。此外,加熱板32上可以設置有多個加熱器34,並且載台30上可以定義有多個加熱區域(圖未示)。電子元件數量較多時,每個加熱區域可以看成擺放一個電子元件的位置周圍,本實施例不加以限制。In order to illustrate the application of the aforementioned temperature control circuit, please refer to Figures 4, 5 and 6 together. Figure 4 is a schematic diagram showing the architecture of a temperature control system according to an embodiment of the present invention, and Figure 5 is a schematic diagram showing the temperature control system according to an embodiment of the present invention. A schematic structural diagram of a heating plate according to an embodiment. FIG. 6 is a schematic structural diagram of a carrier according to an embodiment of the present invention. As shown in the figure, the
在此,本實施例也示範了一個以上的溫度偵測單元36可以被設置於載台30,以較簡單的例子來說,一個溫度偵測單元36可以用來偵測一個加熱區域中的溫度。然而如前實施例說明的內容,溫度偵測單元36的數量和加熱區域的數量實際上不一定有對應關係,本實施例在此不予贅述。另外,多個加熱器34可以例如分別對應到圖1所繪示的多個電壓源10與電流控制單元12,或者多個加熱器34也可以例如分別對應到圖3所繪示的多個電流源20。本實施例在此不限制加熱器34的種類,只要加熱器34如同電壓源10、電流控制單元12與電流源20,包含了主動式元件(圖未示),即應符合本實施例加熱器34之範疇。換句話說,由於圖1所繪示的多個電壓源10與電流控制單元12可以同時使用主動式元件進行發熱,並且圖3所繪示的多個電流源20也是使用主動式元件進行發熱,因此均符合本實施例加熱器34的意義。在此,當加熱器34是圖1所繪示的電壓源10時,表示加熱器34可以由參考值決定主動式元件兩端的跨電壓。當加熱器34是圖1所繪示的電流控制單元12或者圖3所繪示的多個電流源20時,表示加熱器34可以由電流設定電壓決定主動式元件的加熱電流。如前所述,每一個加熱器34發出的熱能都會關聯於跨電壓以及加熱電流。Here, this embodiment also demonstrates that more than one
值得一提的是,圖5繪示了一種加熱器34排列於加熱板32上的形式(第一、第二、第三圖樣),而圖6繪示了一種溫度偵測單元36被設置於載台30的形式。實務上,加熱器34大致上會擺放在加熱板32上相鄰載台30那一側面,而溫度偵測單元36除了可以被擺放在載台30相鄰加熱器34那一側面(承載面30a),也可以被嵌入載台30內,本實施例在此不加以限制。所述側面可以是平面或立體的表面,本實施例在此不加以限制。另一方面,如圖所繪示的例子中,加熱器34可以對稱地排列於加熱板32,對稱排列的加熱器34有利於均勻地替加熱區域加熱。此外,溫度偵測單元36也可以對稱地被設置於載台30,但是加熱器34的排列位置和溫度偵測單元36的設置位置也不一定有對應關係。It is worth mentioning that FIG. 5 shows a form in which the
綜上所述,本發明提供的溫度控制電路與溫度控制系統可以由具有主動式元件的多個加熱器構成,並且所述多個加熱器可以同時發熱。藉由控制加熱器中的主動式元件,從而溫度控制電路與溫度控制系統能均勻發熱並實現動態調整的功能。此外,溫度控制電路與溫度控制系統也可以偵測多個加熱區域的溫度,據以控制每一個加熱器中的主動式元件的發熱量。In summary, the temperature control circuit and temperature control system provided by the present invention can be composed of multiple heaters with active elements, and the multiple heaters can generate heat at the same time. By controlling the active components in the heater, the temperature control circuit and the temperature control system can evenly generate heat and realize the function of dynamic adjustment. In addition, the temperature control circuit and the temperature control system can also detect the temperature of multiple heating zones, thereby controlling the heating value of the active element in each heater.
1:溫度控制電路
10:電壓源
100:電壓設定單元
102:主動式元件
104:分壓單元
12:電流控制單元
14:溫度偵測單元
16:溫度控制單元
2:溫度控制電路
20:電流源
22:溫度偵測單元
24:溫度控制單元
3:溫度控制系統
30:載台
30a:承載面32:加熱板
34:加熱器
36:溫度偵測單元
V1:高電壓端
V2:低電壓端
1: Temperature control circuit 10: Voltage source 100: Voltage setting unit 102: Active component 104: Voltage dividing unit 12: Current control unit 14: Temperature detection unit 16: Temperature control unit 2: Temperature control circuit 20: Current source 22 : Temperature detection unit 24: temperature control unit 3: temperature control system 30:
圖1係繪示依據本發明一實施例之溫度控制電路的功能方塊圖。FIG. 1 is a functional block diagram of a temperature control circuit according to an embodiment of the invention.
圖2係繪示依據本發明一實施例之電壓源的功能方塊圖。FIG. 2 is a functional block diagram of a voltage source according to an embodiment of the invention.
圖3係繪示依據本發明另一實施例之溫度控制電路的功能方塊圖。FIG. 3 is a functional block diagram of a temperature control circuit according to another embodiment of the invention.
圖4係繪示依據本發明一實施例之溫度控制系統的架構示意圖。4 is a schematic diagram showing the structure of a temperature control system according to an embodiment of the present invention.
圖5係繪示依據本發明一實施例之加熱板的架構示意圖。FIG. 5 is a schematic diagram showing the structure of a heating plate according to an embodiment of the invention.
圖6係繪示依據本發明一實施例之載台的架構示意圖。FIG. 6 is a schematic diagram showing the structure of a carrier according to an embodiment of the present invention.
無no
1:溫度控制電路 1: Temperature control circuit
10:電壓源 10: Voltage source
12:電流控制單元 12: Current control unit
14:溫度偵測單元 14: Temperature detection unit
16:溫度控制單元 16: temperature control unit
V1:高電壓端 V1: High voltage terminal
V2:低電壓端 V2: Low voltage side
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108123034A TWI714149B (en) | 2019-07-01 | 2019-07-01 | Temperature controlling circuit and temperature controlling system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108123034A TWI714149B (en) | 2019-07-01 | 2019-07-01 | Temperature controlling circuit and temperature controlling system |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI714149B true TWI714149B (en) | 2020-12-21 |
TW202102964A TW202102964A (en) | 2021-01-16 |
Family
ID=74669682
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108123034A TWI714149B (en) | 2019-07-01 | 2019-07-01 | Temperature controlling circuit and temperature controlling system |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI714149B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100031988A1 (en) * | 2001-02-09 | 2010-02-11 | Bell Lon E | High power density thermoelectric systems |
TW201403279A (en) * | 2012-07-05 | 2014-01-16 | Chroma Ate Inc | Temperature controller and thermal control platform |
TW201428247A (en) * | 2012-11-16 | 2014-07-16 | Dust Networks Inc | Precision temperature measurement devices, sensors, and methods |
CN105652919A (en) * | 2014-11-21 | 2016-06-08 | 深圳市科曼医疗设备有限公司 | Temperature control system |
CN106707025A (en) * | 2016-12-06 | 2017-05-24 | 河北工业大学 | Micro-area resistivity measurement device having temperature control function |
TW201818473A (en) * | 2016-08-19 | 2018-05-16 | 美商應用材料股份有限公司 | Substrate carrier with array of independently controllable heater elements |
CN109189124A (en) * | 2018-08-20 | 2019-01-11 | 中国科学院半导体研究所 | Temperature control chip, preparation method and the temperature control chip system comprising it |
-
2019
- 2019-07-01 TW TW108123034A patent/TWI714149B/en active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100031988A1 (en) * | 2001-02-09 | 2010-02-11 | Bell Lon E | High power density thermoelectric systems |
TW201403279A (en) * | 2012-07-05 | 2014-01-16 | Chroma Ate Inc | Temperature controller and thermal control platform |
TW201428247A (en) * | 2012-11-16 | 2014-07-16 | Dust Networks Inc | Precision temperature measurement devices, sensors, and methods |
CN105652919A (en) * | 2014-11-21 | 2016-06-08 | 深圳市科曼医疗设备有限公司 | Temperature control system |
TW201818473A (en) * | 2016-08-19 | 2018-05-16 | 美商應用材料股份有限公司 | Substrate carrier with array of independently controllable heater elements |
CN106707025A (en) * | 2016-12-06 | 2017-05-24 | 河北工业大学 | Micro-area resistivity measurement device having temperature control function |
CN109189124A (en) * | 2018-08-20 | 2019-01-11 | 中国科学院半导体研究所 | Temperature control chip, preparation method and the temperature control chip system comprising it |
Also Published As
Publication number | Publication date |
---|---|
TW202102964A (en) | 2021-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11877362B2 (en) | Light emitting diode thermal foldback control device and method | |
TWI384171B (en) | Thermal foldback control for a light-emitting diode | |
EP2077697B1 (en) | Lighting controller of lighting device for vehicle | |
US8648791B2 (en) | Backlight module and method of determining driving current thereof | |
US8564214B2 (en) | Circuits for sensing current levels within lighting apparatus | |
US20080238340A1 (en) | Method and apparatus for setting operating current of light emitting semiconductor element | |
KR101967950B1 (en) | Multi-channel LED driver with overheat protection capabilities | |
TW201121364A (en) | Light-emitting device | |
CN104679089B (en) | Step excess temperature for integrated LED driving chip compensates protection system and circuit | |
KR20080106234A (en) | Voltage controlled led light driver | |
JP2003188415A (en) | Led lighting device | |
DK3145278T3 (en) | Circuit structure for adjusting an LED color temperature curve | |
US20220197318A1 (en) | Temperature adjustment apparatus | |
US20140042910A1 (en) | Energy-saving illumination device having brightness adjusting module | |
US9468059B2 (en) | Light emitting device driving apparatus and illumination system including the same | |
JP2004299102A (en) | Illuminator, illumination head and power supply for use therein | |
TWI714149B (en) | Temperature controlling circuit and temperature controlling system | |
WO2013077067A1 (en) | Light source apparatus, image display apparatus, and method for controlling light source apparatus | |
CN110806767B (en) | Heating device, temperature control circuit and temperature control method thereof | |
KR20150116246A (en) | Apparatus of driving a light emitting device and a illumination system including the same | |
WO2006094590A1 (en) | Electric circuit and method for monitoring a temperature of a light emitting diode | |
CN112181027B (en) | Temperature control circuit and temperature control system | |
KR20150002131A (en) | Protection Circuit, Circuit Protection Method Using the same and Display Device | |
WO2014194064A1 (en) | Light emitting diode lighting device | |
KR102256633B1 (en) | Apparatus of driving a light emitting device and A ligjt emitting module including the same |