TWI713919B - Process control system and method - Google Patents
Process control system and method Download PDFInfo
- Publication number
- TWI713919B TWI713919B TW107138200A TW107138200A TWI713919B TW I713919 B TWI713919 B TW I713919B TW 107138200 A TW107138200 A TW 107138200A TW 107138200 A TW107138200 A TW 107138200A TW I713919 B TWI713919 B TW I713919B
- Authority
- TW
- Taiwan
- Prior art keywords
- batch
- deposition
- thickness
- machine
- target value
- Prior art date
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Landscapes
- Chemical Vapour Deposition (AREA)
Abstract
Description
本發明是有關於一種製程控制技術,且特別是有關於一種製程控制系統與方法。 The present invention relates to a process control technology, and particularly relates to a process control system and method.
沉積製程是半導體製程中最重要製程之一,例如化學氣相沉積(CVD)製程,通常是在機台內進行常壓或低壓的化學氣相沉積製程。目前已發展各種製程控制系統與方法來改善製程期間對於沉積膜層的品質與製程精確度。 The deposition process is one of the most important processes in the semiconductor process, such as a chemical vapor deposition (CVD) process, which is usually performed in a machine at atmospheric pressure or low pressure. At present, various process control systems and methods have been developed to improve the quality and process accuracy of deposited films during the process.
現有的製程控制方法往往著重於機台內部的控制以及機台本身的監控,對於機台之外的環境所造成的影響則沒有相應的解決辦法。由於外在環境中有許多不可控的因子,例如天氣變異與自然災害等,會直接或間接地影響機台內所進行的製程。譬如颱風會造成大氣壓力降低、地震會造成機台位移等。當這些不可控的因子發生且嚴重影響製程時,大多是採行停機的方式來避免產品品質不良。然而,一旦停機不但影響產品產期推移,還會造成堆貨狀態。 The existing process control methods often focus on the internal control of the machine and the monitoring of the machine itself, and there is no corresponding solution to the impact caused by the environment outside the machine. Because there are many uncontrollable factors in the external environment, such as weather variations and natural disasters, they will directly or indirectly affect the manufacturing process in the machine. For example, a typhoon can cause atmospheric pressure to drop, and an earthquake can cause machine displacement. When these uncontrollable factors occur and severely affect the manufacturing process, most of them use shutdown methods to avoid poor product quality. However, once the shutdown will not only affect the production period of the product, but also cause a stockpiling state.
本發明提供一種製程控制系統,可根據外在環境調整製程參數,以減少產品受外在環境影響的程度。 The present invention provides a process control system, which can adjust process parameters according to the external environment, so as to reduce the degree to which products are affected by the external environment.
本發明另提供一種製程控制方法,可根據外在環境中不可控的因子調控製程參數,以確保製程精確度。 The present invention also provides a process control method, which can adjust control process parameters based on uncontrollable factors in the external environment to ensure process accuracy.
本發明的製程控制系統,包括:機台、資料庫、目標值預測單元、先進製程控制(APC)單元以及製造執行單元。機台可對批次的多個晶圓進行化學氣相沉積製程。資料庫則用於儲存並提供所述機台的歷史資訊。目標值預測單元根據來自機台之外在環境的一感測器資訊與資料庫相關表單,求出沉積膜層的物理性質之目標值。先進製程控制單元根據來自上述資料庫的機台歷史資訊、批次的產品資訊以及來自上述目標值預測單元的物理性質之目標值來決定製程參數。製造執行單元根據來自先進製程控制單元的製程參數,驅動機台進行化學氣相沉積製程。 The process control system of the present invention includes: a machine, a database, a target value prediction unit, an advanced process control (APC) unit, and a manufacturing execution unit. The machine can perform chemical vapor deposition process on multiple wafers in batches. The database is used to store and provide historical information of the machine. The target value predicting unit obtains the target value of the physical properties of the deposited film according to a sensor information from the external environment of the machine and the related table of the database. The advanced process control unit determines the process parameters based on the machine history information from the database, the batch product information, and the target value of the physical property from the target value prediction unit. The manufacturing execution unit drives the machine to perform the chemical vapor deposition process according to the process parameters from the advanced process control unit.
本發明的製程控制方法,適用於對批次的多個晶圓進行化學氣相沉積製程。所述方法包括根據來自機台之外在環境的感測器資訊與資料庫相關表單,來求出沉積膜層的物理性質之目標值,再根據所述機台的歷史資訊、所述批次的產品資訊以及所述物理性質之所述目標值來決定製程參數,然後根據所述製程參數進行化學氣相沉積製程。 The process control method of the present invention is suitable for performing chemical vapor deposition processes on batches of multiple wafers. The method includes obtaining the target value of the physical properties of the deposited film according to the sensor information from the environment outside the machine and the database related table, and then according to the historical information of the machine, the batch The product information and the target value of the physical property determine the process parameters, and then the chemical vapor deposition process is performed according to the process parameters.
在本發明的各個實施例中,上述感測器資訊包括大氣壓力、酸鹼度、溫濕度、含鹽量或震度等外在環境因素。 In various embodiments of the present invention, the above-mentioned sensor information includes external environmental factors such as atmospheric pressure, pH, temperature and humidity, salt content, or vibration.
在本發明的各個實施例中,上述物理性質包括厚度、反射率、折射率(n值)或吸收係數(k值)。 In various embodiments of the present invention, the above-mentioned physical properties include thickness, reflectivity, refractive index (n value), or absorption coefficient (k value).
在本發明的各個實施例中,上述物理性質為厚度時,目標值是由下式(1)所算出:THK(T)=α+x(感測器資訊與資料庫相關表單) (1)式(1)中,α為所述化學氣相沉積製程下,所述沉積膜層的基本厚度值;x為在不同的所述感測器資訊下,所述沉積膜層的厚度調整值。 In each embodiment of the present invention, when the above physical property is thickness, the target value is calculated by the following formula (1): THK(T)=α+x (sensor information and database related table) (1) In formula (1), α is the basic thickness value of the deposited film under the chemical vapor deposition process; x is the adjusted value of the thickness of the deposited film under different sensor information.
在本發明的各個實施例中,上述製程參數與上述感測器資訊不相同。 In various embodiments of the present invention, the aforementioned process parameters are different from the aforementioned sensor information.
在本發明的各個實施例中,上述製程參數包括製程時間與製程溫度中的至少一者。 In various embodiments of the present invention, the aforementioned process parameters include at least one of process time and process temperature.
在本發明的各個實施例中,上述物理性質為厚度,則製程時間是由下式(2)所算出:
在本發明的各個實施例中,上述物理性質為厚度,則製程溫度是由下式(3)所算出:
在本發明的各個實施例中,上述機台包括常壓化學氣相沉積機台或低壓化學氣相沉積機台。 In various embodiments of the present invention, the above-mentioned machine includes a normal pressure chemical vapor deposition machine or a low pressure chemical vapor deposition machine.
在本發明的各個實施例中,上述批次的產品資訊包括產品片數和產品特徵值。 In various embodiments of the present invention, the product information of the batch includes the number of product pieces and product characteristic values.
在本發明的各個實施例中,上述機台的歷史資訊包括歷 史的沉積時間、沉積溫度、沉積厚度、沉積速率等。 In the various embodiments of the present invention, the historical information of the aforementioned machine includes History of deposition time, deposition temperature, deposition thickness, deposition rate, etc.
基於上述,本發明可藉由來自機台之外在環境的感測器資訊與資料庫相關表單,先求出沉積膜層的物理性質之目標值(例如,厚度、反射率、n值、k值等),再搭配機台的歷史資訊與批次的產品資訊來取得最佳的製程參數,以減小上述外在環境中不可控的因子(例如,大氣壓力、酸鹼度、溫濕度、含鹽量、震度等)對化學氣相沉積製程所造成的影響。因此,本發明的方法與系統可以有效地降低產品受外在環境的變異量、提高製程精確度,進而提高良率與產量。 Based on the above, the present invention can first obtain the target value of the physical properties of the deposited film (for example, thickness, reflectivity, n value, k Value, etc.), combined with historical information of the machine and batch product information to obtain the best process parameters to reduce the uncontrollable factors in the external environment (for example, atmospheric pressure, pH, temperature and humidity, salt The impact on the chemical vapor deposition process. Therefore, the method and system of the present invention can effectively reduce the variation of the product from the external environment, improve the accuracy of the manufacturing process, and thereby increase the yield and output.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.
100:製程控制系統 100: Process control system
101:晶圓 101: Wafer
102:機台 102: Machine
104:資料庫 104: database
106:目標值預測單元 106: Target value prediction unit
108:先進製程控制單元 108: Advanced Process Control Unit
110:製造執行單元 110: Manufacturing Execution Unit
S200、S202、S204、S300、S302、S400、S402、S404、S406、S408、S410:步驟 S200, S202, S204, S300, S302, S400, S402, S404, S406, S408, S410: steps
圖1是依照本發明的第一實施例的一種製程控制系統的方塊圖。 Fig. 1 is a block diagram of a process control system according to a first embodiment of the present invention.
圖2是依照本發明的第二實施例的一種製程控制方法的步驟圖。 2 is a step diagram of a process control method according to the second embodiment of the present invention.
圖3是本發明的實施例中的目標值預測單元的分析步驟簡圖。 Fig. 3 is a simplified diagram of the analysis steps of the target value prediction unit in the embodiment of the present invention.
圖4是本發明的實施例中的先進製程控制單元的分析步驟簡圖。 4 is a simplified diagram of the analysis steps of the advanced process control unit in the embodiment of the present invention.
圖1是依照本發明的第一實施例的一種製程控制系統的方塊圖。 Fig. 1 is a block diagram of a process control system according to a first embodiment of the present invention.
請參照圖1,本實施例的製程控制系統100基本包括機台102、資料庫104、目標值預測單元106、先進製程控制(APC)單元108以及製造執行單元110。
1, the
機台102可接收製造執行單元110所設定的製程參數,來對批次的多個晶圓101進行化學氣相沉積製程,並且於該次製程結束後將相關資訊傳送至資料庫104。所述機台102可為常壓化學氣相沉積(Atmospheric Pressure CVD)機台或低壓化學氣相沉積(Low-Pressure CVD)機台。
The
資料庫104則用於儲存並提供所述機台102的歷史資訊,例如儲存來自機台102的歷史資訊例如歷史的沉積時間、沉積溫度、沉積厚度、沉積速率等,並將這些歷史資訊提供給先進製程控制單元108或目標值預測單元106,以供運算使用。
The
而目標值預測單元106根據來自機台102之外在環境的一感測器資訊與資料庫相關表單,求出沉積膜層的物理性質之目標值。舉例來說,外在環境中有許多屬於不可控的因子,例如天氣變異與自然災害等,會直接或間接地影響機台102內所進行的製程。因此藉由相應的感測器取得的感測器資訊(例如,大氣壓力、酸鹼度、溫濕度、含鹽量或震度),反饋至目標值預測單元106
並根據資料庫104提供的相關表單來建立目標值。所述目標值是指沉積膜層在受到上述不可控的因子影響之下,其物理性質改變的數值。舉例來說,颱風會使外在環境的大氣壓力降低,而導致常壓化學氣相沉積的膜層厚度變薄,因此目標值即為厚度的變化值。在此情況下,目標值預測單元106可根據感測器資訊(如外在環境的大氣壓力值),對照資料庫104提供的相關表單,採用迴歸分析方法或其它適合的方式建立沉積膜層的厚度與大氣壓力值之關係,以提供給先進製程控制單元108進行分析。上述沉積膜層的物理性質除了厚度之外,還可以是反射率、折射率(n值)、吸收係數(k值)等。
The target
先進製程控制單元108根據來自資料庫104的機台的歷史資訊、批次的產品資訊以及來自目標值預測單元106的物理性質之目標值,能決定適當的製程參數,並將此製程參數傳送至製造執行單元110。在本實施例中,製程參數與上述感測器資訊不相同;譬如感測器資訊是大氣壓力值,則製程參數可能是製程時間與製程溫度,用以微調沉積膜層的厚度,但本發明並不限於此。
The advanced
製造執行單元110則根據來自先進製程控制單元108的所述製程參數,驅動機台102進行晶圓的化學氣相沉積製程。
The
圖2是依照本發明的第二實施例的一種製程控制方法的步驟圖。 2 is a step diagram of a process control method according to the second embodiment of the present invention.
在圖2中,先進行步驟S200,根據來自機台之外在環境的感測器資訊與資料庫相關表單來求出沉積膜層的物理性質之目
標值。而且,步驟S200可利用圖1的系統中的目標值預測單元106執行。
In FIG. 2, step S200 is performed first, and the physical properties of the deposited film are obtained according to the sensor information from the external environment of the machine and the database related tables.
Marked value. Moreover, step S200 can be performed by using the target
以下說明目標值預測單元106的分析流程,請參照圖3。在圖3中,先進行步驟S300,收集機台的歷史資訊及所有批次的產品資訊,其中所述歷史資訊例如歷史的沉積時間、沉積溫度、沉積厚度、沉積速率等;批次的產品資訊例如產品片數、產品特徵值等。然後,在步驟S302中,以迴歸分析的方法建立沉積膜層的物理性質與外在環境的感測器資訊之關係,其中沉積膜層的物理性質例如厚度、反射率、n值、k值等;感測器資訊例如大氣壓力、酸鹼度、溫濕度、含鹽量、震度等外在環境因素。
The following describes the analysis flow of the target
在一實施例中,步驟S200的目標值在物理性質為厚度時,可由下式(1)所算出:THK(T)=α+x(感測器資訊與資料庫相關表單) (1)式(1)中,α為所述化學氣相沉積製程下,沉積膜層的基本厚度值;x為在不同的感測器資訊下,所述沉積膜層的厚度調整值。 In one embodiment, when the physical property of the target value of step S200 is thickness, it can be calculated by the following formula (1): THK(T)=α+x (sensor information and database related table) (1) In (1), α is the basic thickness value of the deposited film under the chemical vapor deposition process; x is the adjusted value of the thickness of the deposited film under different sensor information.
然後,如圖2所示,進行步驟S202,根據機台的歷史資訊、批次的產品資訊以及步驟S200所得的物理性質之目標值來決定製程參數。而且,步驟S202可利用圖1的系統中的先進製程控制單元108執行。
Then, as shown in FIG. 2, step S202 is performed, and the process parameters are determined according to the historical information of the machine, the product information of the batch, and the target value of the physical property obtained in step S200. Moreover, step S202 can be executed by the advanced
以下說明先進製程控制單元108的分析流程,請參照圖4。在步驟S400中,接收以下資訊:1.批次的產品資訊、2.機台的歷史資訊、3.目標值預測單元所算出的沉積膜層的物理性質之目
標值(如步驟S200)。然後,可區分為前饋控制(步驟S402及步驟S404)與回饋控制(步驟S406及步驟S408)。所述的前饋控制為收集此批次的產品片數、產品特徵值等,如負載效應(loading effect)(步驟S402),並依據沉積膜層的物理性質之目標值,求出需補償的製程參數(步驟S404)。其中,在步驟S404中的製程參數例如製程時間或製程溫度或者製程時間與製程溫度,但本發明並不限於此,凡是能於製程期間調控沉積膜層的物理性質的參數皆能用於本發明。
The following describes the analysis flow of the advanced
所述的回饋控制部分則先接收機台之前生產過的資訊(即機台的歷史資訊)(步驟S406),再依據機台之前的生產結果,求出所需微調的製程參數(步驟S408)。因此,在步驟S410中,結合以上的前饋控制與回饋控制的數值取得最佳的製程參數。 The feedback control part first receives the information previously produced by the station (ie the historical information of the machine) (step S406), and then calculates the required fine-tuning process parameters based on the previous production results of the machine (step S408) . Therefore, in step S410, the above feedforward control and feedback control values are combined to obtain the best process parameters.
在一實施例中,若是物理性質為厚度,則先進製程控制單元108於步驟S404中對於製程時間的計算如下式(2)所示:
在一實施例中,若是物理性質為厚度,則先進製程控制單元108於步驟S404中對於製程溫度的計算如下式(3)所示:
之後,請再次參照圖2,進行步驟S204,根據步驟S202所取得的製程參數進行化學氣相沉積製程。而且,步驟S204可利用圖1的系統中的製造執行單元110執行。
After that, please refer to FIG. 2 again to perform step S204, and perform the chemical vapor deposition process according to the process parameters obtained in step S202. Moreover, step S204 may be executed by the
綜上所述,針對外在環境中不可控的因子,例如天氣變 異與自然災害等所造成的大氣壓力、酸鹼度、溫濕度、含鹽量、震度等變化,本發明提供一種控制系統與方法來取得相應的製程參數,以減小上述外在環境中不可控因子對於化學氣相沉積製程所造成的影響,並藉此提高製程精確度,以提高良率與產量。 In summary, for the uncontrollable factors in the external environment, such as weather Changes in atmospheric pressure, pH, temperature and humidity, salinity, earthquake intensity, etc. caused by different and natural disasters. The present invention provides a control system and method to obtain corresponding process parameters to reduce the above-mentioned uncontrollable factors in the external environment For the impact of the chemical vapor deposition process, and to improve the accuracy of the process to improve the yield and yield.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be determined by the scope of the attached patent application.
100:製程控制系統 100: Process control system
101:晶圓 101: Wafer
102:機台 102: Machine
104:資料庫 104: database
106:目標值預測單元 106: Target value prediction unit
108:先進製程控制單元 108: Advanced Process Control Unit
110:製造執行單元 110: Manufacturing Execution Unit
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107138200A TWI713919B (en) | 2018-10-29 | 2018-10-29 | Process control system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107138200A TWI713919B (en) | 2018-10-29 | 2018-10-29 | Process control system and method |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202016352A TW202016352A (en) | 2020-05-01 |
TWI713919B true TWI713919B (en) | 2020-12-21 |
Family
ID=71895549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107138200A TWI713919B (en) | 2018-10-29 | 2018-10-29 | Process control system and method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI713919B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI823689B (en) * | 2022-11-29 | 2023-11-21 | 友達光電股份有限公司 | Feature analysis method and system for feature analysis and optimized recommendation |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040127030A1 (en) * | 2002-12-31 | 2004-07-01 | Tokyo Electron Limited | Method and apparatus for monitoring a material processing system |
-
2018
- 2018-10-29 TW TW107138200A patent/TWI713919B/en active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040127030A1 (en) * | 2002-12-31 | 2004-07-01 | Tokyo Electron Limited | Method and apparatus for monitoring a material processing system |
Also Published As
Publication number | Publication date |
---|---|
TW202016352A (en) | 2020-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5292602B2 (en) | Advanced process control system and advanced process control method | |
US20140031968A1 (en) | Run-to-Run Control Utilizing Virtual Metrology in Semiconductor Manufacturing | |
KR101019459B1 (en) | Ranged fault signatures for fault diagnosis | |
TWI295755B (en) | Method, apparatus and system for dynamically adjusting a process target setting and computer readable program storage device and coded with instructions | |
US7603328B2 (en) | Dual-phase virtual metrology method | |
US7725208B2 (en) | Dynamic metrology schemes and sampling schemes for advanced process control in semiconductor processing | |
US7657339B1 (en) | Product-related feedback for process control | |
TWI600895B (en) | Method and apparatus for in-situ controlling a process | |
US11022968B2 (en) | Methods and systems for applying run-to-run control and virtual metrology to reduce equipment recovery time | |
US11984334B2 (en) | Anomaly detection method and system for manufacturing processes | |
KR20100017637A (en) | Metrics independent and recipe independent fault classes | |
US20190120610A1 (en) | Method and system for measuring thickness of thin film | |
TWI713919B (en) | Process control system and method | |
US9280151B2 (en) | Recipe management system and method | |
US8515567B2 (en) | Enhanced state estimation based upon information credibility | |
US20170278714A1 (en) | Control device, substrate processing system, substrate processing method, and program | |
US7324865B1 (en) | Run-to-run control method for automated control of metal deposition processes | |
Susto et al. | An information-theory and virtual metrology-based approach to run-to-run semiconductor manufacturing control | |
JP4600522B2 (en) | Process control apparatus and process control method | |
US10811325B2 (en) | Self-healing semiconductor wafer processing | |
TW202401302A (en) | Virtual metrology method based on convolutional autoencoder and transfer learning and system thereof | |
US7983776B2 (en) | System and method for matching silicon oxide thickness between similar process tools | |
TWI244018B (en) | System and method of control factor management | |
WO2013163791A1 (en) | Apparatus and method for detecting position of wafer | |
WO2016106890A1 (en) | Method for online real-time control on manufacturing process of display |