TWI712471B - Mechanical arm system and mechanical arm control method - Google Patents

Mechanical arm system and mechanical arm control method Download PDF

Info

Publication number
TWI712471B
TWI712471B TW108144001A TW108144001A TWI712471B TW I712471 B TWI712471 B TW I712471B TW 108144001 A TW108144001 A TW 108144001A TW 108144001 A TW108144001 A TW 108144001A TW I712471 B TWI712471 B TW I712471B
Authority
TW
Taiwan
Prior art keywords
torque
control unit
rigid mechanical
rotation angle
rigid
Prior art date
Application number
TW108144001A
Other languages
Chinese (zh)
Other versions
TW202122226A (en
Inventor
蔡清雄
鄭銘揚
許忠湛
陳家慧
黃浩倫
趙冠舜
Original Assignee
台達電子工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台達電子工業股份有限公司 filed Critical 台達電子工業股份有限公司
Priority to TW108144001A priority Critical patent/TWI712471B/en
Application granted granted Critical
Publication of TWI712471B publication Critical patent/TWI712471B/en
Publication of TW202122226A publication Critical patent/TW202122226A/en

Links

Images

Abstract

A mechanical arm system includes at least two arm axes, at least two control devices and at least two motor devices. Each of the control devices includes a first control unit, a mechanical arm control unit and a driving unit. The first control unit receives an end position command to output a first torque signal. The mechanical arm control unit includes a rigid mechanical unit and a model mechanical unit. The rigid mechanical unit receives the first torque signal to obtain a rigid mechanical torque, and the model mechanical unit receives the rigid mechanical torque and operates the flexible mechanical model to establish the mechanical arm model for obtaining the target torque, and the target position signal is output according to the target torque. The driving unit generates a driving signal according to the target position signal to adjust a rotation angle of the corresponding motor device.

Description

機械手臂系統及機械手臂控制方法Mechanical arm system and mechanical arm control method

本發明是有關於一種機械式手臂系統,特別是有關於具有分散式控制系統的機械式手臂系統及其控制方法。The present invention relates to a mechanical arm system, in particular to a mechanical arm system with a distributed control system and a control method thereof.

隨著機械式手臂系統的技術發展,機械式手臂系統已經廣泛地運用於工業界及製造業等。為了應付未來工業4.0的需求,機械式手臂系統的精準度及運用範圍等需求也逐漸地提高。With the technological development of mechanical arm systems, mechanical arm systems have been widely used in industry and manufacturing. In order to meet the needs of future Industry 4.0, the accuracy and scope of application of the robotic arm system are gradually increasing.

然而,目前的機械式手臂系統過度仰賴中央處理系統(例如:中央處理單元或中央控制單元等)執行各種運算。隨者製造業的需求提高,所以目前的機械式手臂系統都具有多個手臂軸的設計。由於具有多個手臂軸的機械式手臂系統的每一個手臂軸的運算不盡相同,所以機械式手臂系統的中央處理系統負擔的運算量將越來越重,以致於中央處理系統可能因運算量過大而無法負擔。However, current robotic arm systems rely too much on a central processing system (for example, a central processing unit or a central control unit, etc.) to perform various operations. As the demands of the manufacturing industry increase, current robotic arm systems have multiple arm axis designs. Since the calculation of each arm axis of a mechanical arm system with multiple arm axes is different, the central processing system of the mechanical arm system will have more and more calculations, so that the central processing system may be affected by the amount of calculations. Too big to be affordable.

另外,目前的機械式手臂系統的每一手臂軸都具有處理器(或控制單元、控制晶片、其他控制裝置)等。由於中央處理系統負責大部分機械式手臂系統的運算,所以每一手臂軸中的處理器常常處於閒置狀態。如此一來,目前的機械式手臂系統之控制方法容易造成硬體資源的浪費及成本提高。此外,由於中央處理系統負責大部分機械式手臂系統的運算,所以中央處理系統也難以額外負責其他功能。也就是說,目前的機械式手臂系統之架構難以進行更廣泛的應用及設計。In addition, each arm axis of the current robotic arm system has a processor (or control unit, control chip, other control device) and so on. Since the central processing system is responsible for most of the calculations of the mechanical arm system, the processor in each arm axis is often in an idle state. As a result, the current control method of the mechanical arm system is prone to waste of hardware resources and increase in cost. In addition, since the central processing system is responsible for most of the calculations of the robotic arm system, it is difficult for the central processing system to additionally be responsible for other functions. In other words, the current architecture of the robotic arm system is difficult to be widely used and designed.

有鑑於此,本發明提出一種具有分散式控制系統的機械式手臂系統。透過每一個手臂軸的控制裝置進行獨立地計算各軸之運算,減輕中央處理系統的運算負擔。如此一來,本發明的機械式手臂系統可以最大化地利用硬體資源、減輕成本及增加應用的範圍。In view of this, the present invention proposes a mechanical arm system with a distributed control system. Through the control device of each arm axis, the calculation of each axis is independently calculated, reducing the calculation burden of the central processing system. In this way, the robotic arm system of the present invention can maximize the use of hardware resources, reduce costs, and increase the scope of application.

一種機械手臂系統包括至少二手臂軸、至少二控制裝置及至少二馬達裝置,其中該等控制裝置分別控制所對應的該等馬達裝置以分別調整所對應的該等手臂軸之位置。其中每一該等控制裝置包括:第一控制單元、機械手臂控制單元、驅動單元及量測處理單元。第一控制單元接收末端位置命令以輸出第一轉矩訊號。機械手臂控制單元包括剛性機械單元及模型機械單元。剛性機械單元接收第一轉矩訊號並運行剛性機械模型以取得剛性機械轉矩。模型機械單元接收剛性機械轉矩並運行撓性機械模型以建立機械手臂模型以取得目標轉矩,並且依據目標轉矩輸出目標位置訊號。驅動單元依據該目標位置訊號產生驅動訊號以調整所對應的馬達裝置之旋轉角度。量測處理單元用以量測所對應的馬達裝置之旋轉角度、旋轉速度及旋轉加速度。其中至少二控制裝置之一者的機械手臂控制單元中的剛性機械單元接收至少二控制裝置的其他者所對應的該些馬達裝置之旋轉角度、旋轉速度及旋轉加速度,以調整剛性機械模型以改變剛性機械轉矩。A mechanical arm system includes at least two arm shafts, at least two control devices and at least two motor devices, wherein the control devices respectively control the corresponding motor devices to adjust the positions of the corresponding arm shafts. Each of these control devices includes: a first control unit, a robotic arm control unit, a driving unit, and a measurement processing unit. The first control unit receives the end position command to output the first torque signal. The robotic arm control unit includes a rigid mechanical unit and a model mechanical unit. The rigid mechanical unit receives the first torque signal and runs the rigid mechanical model to obtain the rigid mechanical torque. The model mechanical unit receives the rigid mechanical torque and runs the flexible mechanical model to build the robot arm model to obtain the target torque, and output a target position signal according to the target torque. The driving unit generates a driving signal according to the target position signal to adjust the rotation angle of the corresponding motor device. The measurement processing unit is used to measure the rotation angle, rotation speed, and rotation acceleration of the corresponding motor device. The rigid mechanical unit in the robotic arm control unit of one of the at least two control devices receives the rotation angle, rotation speed, and rotation acceleration of the motor devices corresponding to the other of the at least two control devices to adjust the rigid mechanical model to change Rigid mechanical torque.

一種機械手臂系統包括一手臂軸、耦接於該手臂軸之一馬達裝置及耦接於該馬達裝置之一控制裝置。該控制裝置包括:第一控制單元、機械手臂控制單元、驅動單元及量測處理單元。第一控制單元接收末端位置命令訊號以輸出第一轉矩訊號。機械手臂控制單元包括剛性機械單元及模型機械單元。剛性機械單元接收第一轉矩訊號並運行剛性機械模型以取得剛性機械轉矩。模型機械單元接收剛性機械轉矩並運行撓性機械模型以建立機械手臂模型以取得目標轉矩,並且依據該目標轉矩輸出目標位置訊號。驅動單元依據目標位置訊號產生驅動訊號以調整馬達裝置之旋轉角度。量測處理單元用以量測馬達裝置以輸出馬達裝置之運動參數,其中運動參數包括旋轉角度、旋轉速度及旋轉加速度。剛性機械單元接收馬達裝置之運動參數以調整剛性機械模型以改變剛性機械轉矩。A mechanical arm system includes an arm shaft, a motor device coupled to the arm shaft, and a control device coupled to the motor device. The control device includes: a first control unit, a robotic arm control unit, a drive unit, and a measurement processing unit. The first control unit receives the end position command signal to output the first torque signal. The robotic arm control unit includes a rigid mechanical unit and a model mechanical unit. The rigid mechanical unit receives the first torque signal and runs the rigid mechanical model to obtain the rigid mechanical torque. The model mechanical unit receives the rigid mechanical torque and runs the flexible mechanical model to build the mechanical arm model to obtain the target torque, and outputs a target position signal according to the target torque. The driving unit generates a driving signal according to the target position signal to adjust the rotation angle of the motor device. The measurement processing unit is used to measure the motor device to output motion parameters of the motor device, where the motion parameters include rotation angle, rotation speed, and rotation acceleration. The rigid mechanical unit receives the motion parameters of the motor device to adjust the rigid mechanical model to change the rigid mechanical torque.

一種機械手臂控制方法由機械手臂系統所執行。機械手臂系統包括至少二手臂軸、至少二控制裝置及至少二馬達裝置。該等控制裝置分別控制所對應的該等馬達裝置以分別調整所對應的該等手臂軸之位置。其中每一該等控制裝置執行該機械手臂控制方法包括以下步驟:接收末端位置命令訊號以輸出第一轉矩訊號。接收第一轉矩訊號並運行剛性機械模型以取得剛性機械轉矩。接收剛性機械轉矩並運行撓性機械模型以建立機械手臂模型以取得目標轉矩。依據目標轉矩輸出目標位置訊號。依據目標位置訊號產生驅動訊號以調整所對應的馬達裝置之旋轉角度。量測所對應的該馬達裝置之旋轉角度、旋轉速度及旋轉加速度。其中至少二控制裝置之一者接收至少二控制裝置的其他者所對應的該些馬達裝置之旋轉角度、旋轉速度及旋轉加速度,以調整剛性機械模型以改變剛性機械轉矩。A robotic arm control method is executed by the robotic arm system. The robotic arm system includes at least two arm shafts, at least two control devices, and at least two motor devices. The control devices respectively control the corresponding motor devices to adjust the positions of the corresponding arm shafts respectively. Each of the control devices executing the robot control method includes the following steps: receiving an end position command signal to output a first torque signal. Receive the first torque signal and run the rigid machine model to obtain the rigid machine torque. Receive the rigid mechanical torque and run the flexible mechanical model to build the robot arm model to obtain the target torque. The target position signal is output according to the target torque. According to the target position signal, a driving signal is generated to adjust the rotation angle of the corresponding motor device. Measure the corresponding rotation angle, rotation speed and rotation acceleration of the motor device. One of the at least two control devices receives the rotation angle, the rotation speed, and the rotation acceleration of the motor devices corresponding to the other of the at least two control devices, so as to adjust the rigid mechanical model to change the rigid mechanical torque.

參考附圖來描述本發明,其中在所有附圖中使用相同的附圖標記來表示相似或等效的元件。附圖不是按比例繪製的,而是僅用於說明本發明。本發明的幾個形態如下描述,並參考示例應用作為說明。應該理解的是,闡述了許多具體細節、關係和方法以提供對本發明的全面了解。然而,相關領域的普通技術人員將容易認識到,本發明可以被實行即便在沒有一個或多個具體細節的情況下或沒有利用其他方法來實施本發明。在其他情況下,未詳細示出習知的結構或操作以避免模糊本發明。本發明不受所示的行為或事件的順序所限制,因為一些行為可能以不同的順序發生和/或與其他行為或事件同時發生。此外,並非所有說明的行為或事件都需要根據本發明的方法來實施。The present invention is described with reference to the drawings, in which the same reference numerals are used in all the drawings to indicate similar or equivalent elements. The drawings are not drawn to scale, but merely serve to illustrate the invention. Several aspects of the present invention are described below, with reference to example applications for explanation. It should be understood that many specific details, relationships, and methods are set forth to provide a comprehensive understanding of the present invention. However, those of ordinary skill in the relevant art will readily recognize that the present invention can be implemented even without one or more specific details or without using other methods to implement the present invention. In other cases, the conventional structure or operation is not shown in detail to avoid obscuring the present invention. The present invention is not limited by the order of the actions or events shown, as some actions may occur in a different order and/or simultaneously with other actions or events. In addition, not all the described actions or events need to be implemented according to the method of the present invention.

以下說明是本發明的實施例。其目的是要舉例說明本發明的一般性的原則,不應視為本發明之限制,本發明之範圍當以申請專利範圍所界定者為準。The following description is an embodiment of the present invention. Its purpose is to exemplify the general principles of the present invention, and should not be regarded as a limitation of the present invention. The scope of the present invention should be defined by the scope of the patent application.

第1圖所示為根據習知技術之一實施例的機械手臂系統400之架構圖。如第1圖所示,在傳統的機械手臂系統400中,當中央控制單元接收運動控制命令C1時,中央控制單元400a依據運動控制命令C1進行每一個手臂軸運動的計算,並且輸出每一手臂軸之轉矩命令C2給手臂軸之控制裝置400b。在手臂軸之控制裝置400b中至包括多個手臂控制裝置,例如:第一至第三手臂控制裝置401b~403b。第一至第三手臂控制裝置401b~403b根據每一手臂軸之轉矩命令C2輸出每一手臂軸之馬達電流命令C3,以驅動每一手臂軸之馬達裝置。然後,手臂軸之控制裝置400b偵測每一手臂軸之運動狀態。中央控制單元400a透過手臂軸之控制裝置400b接收每一個手臂軸之運動狀態C4。由此可知,傳統的機械手臂系統400主要由中央控制單元400a負擔每一個手臂軸的運算。FIG. 1 is a structural diagram of a robotic arm system 400 according to an embodiment of the prior art. As shown in Figure 1, in the traditional robotic arm system 400, when the central control unit receives the motion control command C1, the central control unit 400a calculates the movement of each arm axis according to the motion control command C1, and outputs each arm The shaft torque command C2 is given to the control device 400b of the arm shaft. The arm axis control device 400b includes a plurality of arm control devices, such as the first to third arm control devices 401b to 403b. The first to third arm control devices 401b~403b output the motor current command C3 of each arm axis according to the torque command C2 of each arm axis to drive the motor device of each arm axis. Then, the arm axis control device 400b detects the movement state of each arm axis. The central control unit 400a receives the movement state C4 of each arm axis through the arm axis control device 400b. It can be seen that, in the traditional robotic arm system 400, the central control unit 400a is mainly responsible for the calculation of each arm axis.

傳統的機械手臂系統400明顯地沒有善用每一個手臂軸之控制裝置400b的硬體資源。另外,由於現在市場上的需求多樣化,機械手臂系統的手臂軸數量需要更有彈性的調整。然而,因為傳統的機械手臂系統400的中央控制單元400a的硬體資源有限,所以無法讓傳統的機械手臂系統400能夠被更有彈性地設計。另外,如第1圖所示,由於轉矩命令C2及手臂軸之運動狀態C4之傳送路徑繁複且冗長,所以容易造成資料的延遲。因此,中央控制單元的計算結果難以即時反映機械手臂系統的實際運動狀態。The traditional robotic arm system 400 obviously does not make good use of the hardware resources of the control device 400b for each arm axis. In addition, due to the diversified demands on the market, the number of arm axes of the robotic arm system needs to be adjusted more flexibly. However, because the hardware resources of the central control unit 400a of the traditional robotic arm system 400 are limited, the traditional robotic arm system 400 cannot be designed more flexibly. In addition, as shown in Fig. 1, since the transmission path of the torque command C2 and the movement state C4 of the arm shaft is complicated and lengthy, it is easy to cause data delay. Therefore, it is difficult for the calculation result of the central control unit to immediately reflect the actual motion state of the robotic arm system.

此外,傳統的機械手臂系統400之控制方法也較不適用於具有撓性的機械手臂。具有撓性的機械手臂在移動的過程中,機械手臂之末端位置會產生震盪現象。傳統的機械手臂系統400由於資料延遲之故,難以反應高頻率手臂軸之末端位置之震盪現象,所以傳統的機械手臂系統400的精準度難以提升。In addition, the conventional control method of the robotic arm system 400 is also less suitable for flexible robotic arms. When a flexible robot arm moves, the end position of the robot arm will oscillate. The traditional robotic arm system 400 is difficult to respond to the oscillation phenomenon of the end position of the high-frequency arm shaft due to the data delay, so the accuracy of the traditional robotic arm system 400 is difficult to improve.

第2圖所示為根據本發明之一實施例的機械手臂系統500之架構圖。如第2圖所示,機械手臂系統500包括至少二手臂軸(300a及300b)、至少二控制裝置(100a及100b)及至少二馬達裝置(200a及200b)。其中,該等控制裝置分別控制所對應的該等馬達裝置以分別調整所對應的該等手臂軸之位置。也就是說,於此實施例中,控制裝置100a控制馬達裝置200a,以調整手臂軸300a的位置。控制裝置100b控制馬達裝置200b,以調整手臂軸300b的位置。特別注意的是,在此實施例中,第2圖所繪示的手臂軸、控制裝置及馬達裝置之數量僅用於說明本發明,但本發明不限於此。FIG. 2 is a structural diagram of a robotic arm system 500 according to an embodiment of the invention. As shown in Figure 2, the robotic arm system 500 includes at least two arm shafts (300a and 300b), at least two control devices (100a and 100b), and at least two motor devices (200a and 200b). Wherein, the control devices respectively control the corresponding motor devices to adjust the positions of the corresponding arm shafts respectively. That is, in this embodiment, the control device 100a controls the motor device 200a to adjust the position of the arm shaft 300a. The control device 100b controls the motor device 200b to adjust the position of the arm shaft 300b. It is particularly noted that in this embodiment, the number of arm shafts, control devices, and motor devices shown in Figure 2 are only used to illustrate the present invention, but the present invention is not limited thereto.

機械手臂系統500中的每一個控制裝置(100a及100b)包括:第一控制單元(120a或120b)、機械手臂控制單元(130a或130b)、驅動單元(180a或180b)及量測處理單元(190a或190b)。於此實施例中,控制裝置100a包括:第一控制單元120a、機械手臂控制單元130a、驅動單元180a及量測處理單元190a,並且機械手臂控制單元130a還包括剛性機械單元140a及模型機械單元160a。控制裝置100b包括:第一控制單元120b、機械手臂控制單元130b、驅動單元180b及量測處理單元190b,並且機械手臂控制單元130b還包括剛性機械單元140b及模型機械單元160b。以下將詳述機械手臂系統500的操作方法。Each control device (100a and 100b) in the robotic arm system 500 includes: a first control unit (120a or 120b), a robotic arm control unit (130a or 130b), a driving unit (180a or 180b), and a measurement processing unit ( 190a or 190b). In this embodiment, the control device 100a includes: a first control unit 120a, a robotic arm control unit 130a, a driving unit 180a, and a measurement processing unit 190a, and the robotic arm control unit 130a also includes a rigid mechanical unit 140a and a model mechanical unit 160a . The control device 100b includes a first control unit 120b, a robotic arm control unit 130b, a driving unit 180b, and a measurement processing unit 190b, and the robotic arm control unit 130b also includes a rigid mechanical unit 140b and a model mechanical unit 160b. The operation method of the robotic arm system 500 will be described in detail below.

於此實施例中,由於控制裝置100a及100b之架構及操作方法相同,因此本發明僅說明控制裝置100a的操作方法,並且不另外贅述控制裝置100b的操作方法。In this embodiment, since the structure and operation method of the control devices 100a and 100b are the same, the present invention only describes the operation method of the control device 100a, and the operation method of the control device 100b is not described in detail.

在第2圖中,當控制裝置100a中的第一控制單元120a接收末端位置命令S1a以輸出第一轉矩訊號τ1。其中,本領域之普通技術人員可以了解第一控制單元120a具有速度控制器(未圖示)及位置控制器(未圖示)等。因此,第一控制單元120a可以依據末端位置命令S1a取得目標旋轉角度,並且透過速度控制器及位置控制器,分別計算出目標旋轉加速度及目標旋轉速度。也就是說,於一些實施例中,第一控制單元120a輸出的第一轉矩訊號τ1包括目標旋轉角度、目標旋轉速度及目標旋轉加速度。由於本領域之普通技術人員可以了解第一控制單元120a的操作原理,故本發明不再贅述。In Figure 2, when the first control unit 120a in the control device 100a receives the end position command S1a to output the first torque signal τ1. Among them, those of ordinary skill in the art can understand that the first control unit 120a has a speed controller (not shown), a position controller (not shown), and so on. Therefore, the first control unit 120a can obtain the target rotation angle according to the end position command S1a, and calculate the target rotation acceleration and the target rotation speed through the speed controller and the position controller, respectively. That is, in some embodiments, the first torque signal τ1 output by the first control unit 120a includes a target rotation angle, a target rotation speed, and a target rotation acceleration. Since those of ordinary skill in the art can understand the operating principle of the first control unit 120a, the present invention will not be repeated.

機械手臂控制單元130a中的剛性機械單元140a具有一剛性機械方程式。當剛性機械單元140a接收來自第一控制單元120a的第一轉矩訊號τ1時,剛性機械單元140a會依據第一轉矩訊號τ1的目標旋轉角度、目標旋轉速度及目標旋轉加速度運行剛性機械方程式以建立剛性機械模型。剛性機械單元140a完成剛性機械模型之後,剛性機械單元140a依據剛性機械模型計算出剛性機械轉矩τ2,並且傳送剛性機械轉矩τ2至機械手臂控制單元130a中的模型機械單元160a。The rigid mechanical unit 140a in the robotic arm control unit 130a has a rigid mechanical equation. When the rigid mechanical unit 140a receives the first torque signal τ1 from the first control unit 120a, the rigid mechanical unit 140a runs the rigid mechanical equation according to the target rotation angle, target rotation speed, and target rotation acceleration of the first torque signal τ1 to Build a rigid mechanical model. After the rigid mechanical unit 140a completes the rigid mechanical model, the rigid mechanical unit 140a calculates the rigid mechanical torque τ2 according to the rigid mechanical model, and transmits the rigid mechanical torque τ2 to the model mechanical unit 160a in the robot arm control unit 130a.

模型機械單元160a接收剛性機械轉矩τ2(及/或其他馬達裝置,例如:馬達裝置200b,的旋轉角度及旋轉速度),並且運行撓性機械方程式以建立機械手臂模型。模型機械單元160a完成機械手臂模型之後,模型機械單元160a依據機械手臂模型計算出目標轉矩。然後,模型機械單元160a依據目標轉矩輸出目標位置訊號S2給驅動單元180a。驅動單元180a依據目標位置訊號S2輸出驅動訊號S3給對應於控制裝置100a的馬達裝置200a,以調整馬達裝置200a之旋轉角度以改變對應於控制裝置100a的手臂軸300a之位置。The model mechanical unit 160a receives the rigid mechanical torque τ2 (and/or the rotation angle and the rotation speed of other motor devices, such as the motor device 200b), and runs a flexible mechanical equation to build a mechanical arm model. After the model mechanical unit 160a completes the robot arm model, the model mechanical unit 160a calculates the target torque according to the robot arm model. Then, the model mechanical unit 160a outputs a target position signal S2 to the driving unit 180a according to the target torque. The driving unit 180a outputs a driving signal S3 to the motor device 200a corresponding to the control device 100a according to the target position signal S2 to adjust the rotation angle of the motor device 200a to change the position of the arm shaft 300a corresponding to the control device 100a.

當驅動單元180a依據目標位置訊號S2調整馬達裝置200a之旋轉角度時,控制裝置100a中的量測處理單元190a會量測與計算馬達裝置200a的運動參數,包括旋轉角度

Figure 02_image001
、旋轉速度
Figure 02_image005
及旋轉加速度
Figure 02_image009
。於此實施例中,量測處理單元190a具有速度控制器(未圖示)及位置控制器(未圖示)。因此,量測處理單元190a量測馬達裝置200a的旋轉角度
Figure 02_image001
,並依據旋轉角度
Figure 02_image001
使用位置控制器及速度控制器分別計算出馬達裝置200a的旋轉速度
Figure 02_image005
及旋轉加速度
Figure 02_image009
。量測處理單元190a將馬達裝置200a的運動參數(旋轉角度
Figure 02_image001
、旋轉速度
Figure 02_image005
及旋轉加速度
Figure 02_image009
)傳送給剛性機械單元140a。另外,量測處理單元190a輸出馬達裝置200a的運動參數(旋轉角度
Figure 02_image001
、旋轉速度
Figure 02_image005
及旋轉加速度
Figure 02_image009
)給機械手臂系統500中的其他控制裝置,例如:控制裝置100b中的剛性機械單元140b。 When the driving unit 180a adjusts the rotation angle of the motor device 200a according to the target position signal S2, the measurement processing unit 190a in the control device 100a will measure and calculate the motion parameters of the motor device 200a, including the rotation angle
Figure 02_image001
,spinning speed
Figure 02_image005
And rotational acceleration
Figure 02_image009
. In this embodiment, the measurement processing unit 190a has a speed controller (not shown) and a position controller (not shown). Therefore, the measurement processing unit 190a measures the rotation angle of the motor device 200a
Figure 02_image001
, And based on the rotation angle
Figure 02_image001
Use the position controller and the speed controller to calculate the rotation speed of the motor device 200a
Figure 02_image005
And rotational acceleration
Figure 02_image009
. The measurement processing unit 190a converts the motion parameter (rotation angle) of the motor device 200a
Figure 02_image001
,spinning speed
Figure 02_image005
And rotational acceleration
Figure 02_image009
) Is transmitted to the rigid mechanical unit 140a. In addition, the measurement processing unit 190a outputs the motion parameter (rotation angle) of the motor device 200a
Figure 02_image001
,spinning speed
Figure 02_image005
And rotational acceleration
Figure 02_image009
) To other control devices in the robotic arm system 500, such as the rigid mechanical unit 140b in the control device 100b.

特別注意的是,於此實施例中,由於本發明僅繪示控制裝置100a及100b作為範例,所以量測處理單元190a輸出旋轉角度

Figure 02_image001
、旋轉速度
Figure 02_image005
及旋轉加速度
Figure 02_image009
給控制裝置100b中的剛性機械單元140b,並且量測處理單元190b輸出旋轉角度
Figure 02_image003
、旋轉速度
Figure 02_image007
及旋轉加速度
Figure 02_image011
給控制裝置100a中的剛性機械單元140a。但是本發明不限於此。在其他一些實施例中,當機械手臂系統具有多個控制裝置(或至少二控制裝置)以控制多個馬達裝置(或至少二馬達裝置)以調整多個手臂軸(或至少二手臂軸)之位置時,多個控制裝置之一者量測的旋轉角度、旋轉速度及旋轉加速度,會傳送至其他控制裝置之剛性機械單元。也就是說,多個控制裝置之一者之剛性機械單元會接收來自其他控制裝置量測的旋轉角度、旋轉速度及旋轉加速度。 It is particularly noted that in this embodiment, since the present invention only shows the control devices 100a and 100b as examples, the measurement processing unit 190a outputs the rotation angle
Figure 02_image001
,spinning speed
Figure 02_image005
And rotational acceleration
Figure 02_image009
To the rigid mechanical unit 140b in the control device 100b, and the measurement processing unit 190b outputs the rotation angle
Figure 02_image003
,spinning speed
Figure 02_image007
And rotational acceleration
Figure 02_image011
To the rigid mechanical unit 140a in the control device 100a. But the present invention is not limited to this. In some other embodiments, when the robotic arm system has multiple control devices (or at least two control devices) to control multiple motor devices (or at least two motor devices) to adjust multiple arm shafts (or at least two arm shafts) In position, the rotation angle, rotation speed and rotation acceleration measured by one of the multiple control devices will be transmitted to the rigid mechanical unit of the other control device. In other words, the rigid mechanical unit of one of the multiple control devices receives the rotation angle, rotation speed, and rotation acceleration measured from other control devices.

於此實施例中,剛性機械單元140a接收馬達裝置200a的運動參數(旋轉角度

Figure 02_image001
、旋轉速度
Figure 02_image005
及旋轉加速度
Figure 02_image009
)及馬達裝置200b的運動參數(旋轉角度
Figure 02_image003
、旋轉速度
Figure 02_image007
及旋轉加速度
Figure 02_image011
)之後,剛性機械單元140a依據馬達裝置200a及200b的運動參數運行剛性機械方程式以調整剛性機械模型,並且改變剛性機械轉矩τ2給模型機械單元160a。模型機械單元160a則會依據已改變的剛性機械轉矩τ2調整機械手臂模型以改變目標轉矩與目標位置。 In this embodiment, the rigid mechanical unit 140a receives the motion parameter (rotation angle) of the motor device 200a
Figure 02_image001
,spinning speed
Figure 02_image005
And rotational acceleration
Figure 02_image009
) And the motion parameters of the motor device 200b (rotation angle
Figure 02_image003
,spinning speed
Figure 02_image007
And rotational acceleration
Figure 02_image011
) Afterwards, the rigid mechanical unit 140a runs rigid mechanical equations according to the motion parameters of the motor devices 200a and 200b to adjust the rigid mechanical model, and changes the rigid mechanical torque τ2 to the model mechanical unit 160a. The model mechanical unit 160a adjusts the robot arm model according to the changed rigid mechanical torque τ2 to change the target torque and the target position.

此時,模型機械單元160a依據已改變的目標轉矩輸出第一回授訊號S4給第一控制單元120a。當第一控制單元120a判斷末端位置命令S1a及第一回授訊號S4之相差沒有落入第一誤差範圍時,第一控制單元120a調整第一轉矩訊號τ1的大小給剛性機械單元140a。在一些實施例中,第一誤差範圍介於0~5%。At this time, the model mechanical unit 160a outputs the first feedback signal S4 to the first control unit 120a according to the changed target torque. When the first control unit 120a determines that the difference between the end position command S1a and the first feedback signal S4 does not fall within the first error range, the first control unit 120a adjusts the magnitude of the first torque signal τ1 to the rigid mechanical unit 140a. In some embodiments, the first error range is between 0~5%.

剛性機械單元140a根據已調整的第一轉矩訊號τ1重新運行剛性機械方程式以調整剛性機械模型,使得剛性機械轉矩τ2被改變。在一些實施例中,當第一控制單元120a依據第一誤差範圍改變第一轉矩訊號τ1給剛性機械單元140a時,剛性機械單元140a依據已調整的第一轉矩訊號τ1中的目標旋轉角度、目標旋轉速度及目標旋轉加速度運行剛性機械方程式以改變剛性機械轉矩τ2。The rigid mechanical unit 140a re-runs the rigid mechanical equation according to the adjusted first torque signal τ1 to adjust the rigid mechanical model so that the rigid mechanical torque τ2 is changed. In some embodiments, when the first control unit 120a changes the first torque signal τ1 to the rigid mechanical unit 140a according to the first error range, the rigid mechanical unit 140a depends on the adjusted target rotation angle in the first torque signal τ1 , The target rotation speed and target rotation acceleration run the rigid machine equation to change the rigid machine torque τ2.

模型機械單元160a再依據被改變的剛性機械轉矩τ2輸出目標位置訊號S2給驅動單元180a以調整馬達裝置200a之旋轉角度。然後量測處理單元190a再量測馬達裝置200a之運動參數(旋轉角度

Figure 02_image001
、旋轉速度
Figure 02_image005
及旋轉加速度
Figure 02_image009
),並且重複前面所述之操作方法。 The model mechanical unit 160a then outputs a target position signal S2 to the drive unit 180a according to the changed rigid mechanical torque τ2 to adjust the rotation angle of the motor device 200a. Then the measurement processing unit 190a measures the motion parameters (rotation angle) of the motor device 200a
Figure 02_image001
,spinning speed
Figure 02_image005
And rotational acceleration
Figure 02_image009
), and repeat the operation method described above.

於一些實施例中,本發明所提的剛性機械單元(140a、140b)及模型機械單元(160a、160b)分別可以是具有運算功能的組件,例如:中央處理單元(CPU)、控制器、處理器、控制晶片等,但本發明不限於此。在其他一些實施例中,機械手臂控制單元(130a、130b)可以是具有運算功能的組件,例如:中央處理單元(CPU)、控制器、處理器、控制晶片等,並且剛性機械單元(140a、140b)及模型機械單元(160a、160b)可以是設置於機械手臂控制單元(130a、130b)中的韌體或軟體,但本發明不限於此。In some embodiments, the rigid mechanical unit (140a, 140b) and the model mechanical unit (160a, 160b) mentioned in the present invention can be components with computing functions, such as: central processing unit (CPU), controller, processing Device, control chip, etc., but the present invention is not limited to this. In some other embodiments, the robotic arm control unit (130a, 130b) may be a component with computing functions, such as a central processing unit (CPU), a controller, a processor, a control chip, etc., and a rigid mechanical unit (140a, 140b) and the model mechanical unit (160a, 160b) can be firmware or software provided in the robot arm control unit (130a, 130b), but the invention is not limited thereto.

由此可知,在本發明中,機械手臂系統500中的機械手臂控制單元130a及130b扮演核心的角色。以下將詳述機械手臂控制單元130a及130b的操作原理及方法。It can be seen that, in the present invention, the robot arm control units 130a and 130b in the robot arm system 500 play the core role. The operating principles and methods of the robotic arm control units 130a and 130b will be described in detail below.

第3圖所示為根據本發明之一實施例之機械手臂系統500中之機械手臂控制單元130a之架構圖。在本發明中,由於機械手臂控制單元130a及130b之操作方法及原理相同,因此本發明僅說明機械手臂控制單元130a的操作原理,並且不另外贅述機械手臂控制單元130b。以下請同時參照第2圖及第3圖,以說明本發明的實施例。FIG. 3 is a block diagram of the robot arm control unit 130a in the robot arm system 500 according to an embodiment of the invention. In the present invention, since the operating methods and principles of the robotic arm control units 130a and 130b are the same, the present invention only describes the operating principles of the robotic arm control unit 130a, and the robotic arm control unit 130b is not described in detail. Please refer to FIG. 2 and FIG. 3 at the same time to illustrate the embodiments of the present invention.

在機械手臂控制單元130a中,當剛性機械單元140a接收來自第一控制單元120a的第一轉矩訊號τ1時,剛性機械單元140a會依據第一轉矩訊號τ1的目標旋轉角度、目標旋轉速度及目標旋轉加速度運行剛性機械方程式以建立剛性機械模型。其中剛性機械方程式如下計算式(1)所示:

Figure 02_image013
(1)。 In the robot arm control unit 130a, when the rigid mechanical unit 140a receives the first torque signal τ1 from the first control unit 120a, the rigid mechanical unit 140a will base on the target rotation angle, target rotation speed and the first torque signal τ1. The target rotational acceleration runs the rigid machine equation to build the rigid machine model. The equation of rigid machinery is shown in the following formula (1):
Figure 02_image013
(1).

在計算式(1)中,其中M、C、G及F皆為矩陣。矩陣M(

Figure 02_image015
) n×n包括以下元素:旋轉角度(
Figure 02_image015
),並且矩陣M(
Figure 02_image015
) n×n為n行及n列的矩陣,並且矩陣M(
Figure 02_image015
) n×n與旋轉加速度(
Figure 02_image017
)相乘之結果可以代表手臂軸的慣性力。矩陣C(
Figure 02_image015
,
Figure 02_image019
) n×1包括以下元素:旋轉角度(
Figure 02_image015
)及旋轉速度(
Figure 02_image019
),並且矩陣C(
Figure 02_image015
,
Figure 02_image019
) n×1為n行及1列的矩陣,並且矩陣C(
Figure 02_image015
,
Figure 02_image019
) n×1可以代表手臂軸的科氏力(或向心力)。矩陣G(
Figure 02_image015
) n×1包括以下元素:旋轉角度(
Figure 02_image015
)參數,並且矩陣G(
Figure 02_image015
) n×1為n行及1列的矩陣,並且矩陣G(
Figure 02_image015
) n×1可以代表手臂軸的重力。矩陣F(
Figure 02_image019
) n×1包括以下元素:旋轉速度(
Figure 02_image019
)參數,並且矩陣F(
Figure 02_image019
) n×1為n行及1列的矩陣,並且矩陣F(
Figure 02_image019
) n×1可以代表手臂軸的動摩擦力。然後,依據前面所述,剛性機械單元140a對手臂軸的慣性力、手臂軸的科氏力(或向心力)、手臂軸的重力及手臂軸的動摩擦力進行相加以建立剛性機械模型。剛性機械單元140a對手臂軸的慣性力、手臂軸的科氏力(或向心力)、手臂軸的重力及手臂軸的動摩擦力進行相加以取得一總和,並且該總和作為剛性機械轉矩之大小。在一些實施例中,傳統的機械手臂系統可以藉由DH參數法取得轉換矩陣。然後,對轉換矩陣進行微分後,執行Lagrage-Euler方程式的推導以取得計算式(1)中的矩陣M、C、G及F。其中。於一些實施例中,馬達裝置的多個動力參數包括:慣性力(矩陣M)、科氏立與向心力(矩陣C)、重力(矩陣G)及動摩擦力(矩陣F),但本發明不限於此。由於本領域之普通技術人員可以透過上述的方法取得計算式(1)中的矩陣M、C、G及F,故本發明不再重複敘述。 In the calculation formula (1), M, C, G and F are all matrices. Matrix M(
Figure 02_image015
) n×n includes the following elements: rotation angle (
Figure 02_image015
), and the matrix M(
Figure 02_image015
) n×n is a matrix with n rows and n columns, and the matrix M(
Figure 02_image015
) n×n and rotational acceleration (
Figure 02_image017
) The result of multiplication can represent the inertial force of the arm axis. Matrix C(
Figure 02_image015
,
Figure 02_image019
) n×1 includes the following elements: rotation angle (
Figure 02_image015
) And rotation speed (
Figure 02_image019
), and matrix C(
Figure 02_image015
,
Figure 02_image019
) n×1 is a matrix with n rows and 1 column, and the matrix C(
Figure 02_image015
,
Figure 02_image019
) n×1 can represent the Coriolis force (or centripetal force) of the arm axis. Matrix G(
Figure 02_image015
) n×1 includes the following elements: rotation angle (
Figure 02_image015
) Parameters, and the matrix G(
Figure 02_image015
) n×1 is a matrix with n rows and 1 column, and the matrix G(
Figure 02_image015
) n×1 can represent the gravity of the arm axis. Matrix F(
Figure 02_image019
) n×1 includes the following elements: rotation speed (
Figure 02_image019
) Parameters, and the matrix F(
Figure 02_image019
) n×1 is a matrix with n rows and 1 column, and the matrix F(
Figure 02_image019
) n×1 can represent the dynamic friction of the arm shaft. Then, according to the foregoing, the rigid mechanical unit 140a adds the inertial force of the arm shaft, the Coriolis force (or centripetal force) of the arm shaft, the gravity of the arm shaft and the dynamic friction force of the arm shaft to establish a rigid mechanical model. The rigid mechanical unit 140a adds the inertial force of the arm shaft, the Coriolis force (or centripetal force) of the arm shaft, the gravity of the arm shaft and the dynamic friction force of the arm shaft to obtain a sum, and the sum is used as the magnitude of the rigid mechanical torque. In some embodiments, the traditional robotic arm system can obtain the conversion matrix by the DH parameter method. Then, after the conversion matrix is differentiated, the Lagrage-Euler equation is derived to obtain the matrices M, C, G, and F in the calculation formula (1). among them. In some embodiments, the multiple dynamic parameters of the motor device include: inertial force (matrix M), Coriolis and centripetal force (matrix C), gravity (matrix G) and dynamic friction (matrix F), but the invention is not limited to this. Since a person of ordinary skill in the art can obtain the matrices M, C, G, and F in the calculation formula (1) through the above-mentioned method, the present invention will not repeat the description.

在第3圖中,剛性機械單元140a首先將第一轉矩訊號τ1的目標旋轉角度、目標旋轉速度及目標旋轉加速度代入剛性機械方程式(如計算式(1)所示),以取得剛性機械模型,而後取得剛性機械轉矩τ2。In Figure 3, the rigid machine unit 140a first substitutes the target rotation angle, target rotation speed, and target rotation acceleration of the first torque signal τ1 into the rigid machine equation (as shown in equation (1)) to obtain a rigid machine model , And then obtain the rigid mechanical torque τ2.

於一些實施例中,當剛性機械單元140a初次接收第一轉矩訊號τ1時,量測處理單元190a還沒有輸出馬達裝置200a的運動參數(旋轉角度

Figure 02_image001
、旋轉速度
Figure 02_image005
及旋轉加速度
Figure 02_image009
),並且量測處理單元190b還沒有輸出馬達裝置200b的運動參數(旋轉角度
Figure 02_image003
、旋轉速度
Figure 02_image007
及旋轉加速度
Figure 02_image011
)。此時,剛性機械單元140a依據第一轉矩訊號τ1中的目標旋轉角度、目標旋轉速度及目標旋轉加速度,根據剛性機械方程式(如計算式(1)所示)以取得矩陣M、C、G及F,並且使用矩陣M、C、G及F定義或建立剛性機械模型,並且使用剛性機械模型以取得剛性機械轉矩τ2。也就是說,當剛性機械單元140a初次接收第一轉矩訊號τ1時,剛性機械單元140a中的參數
Figure 02_image021
Figure 02_image009
分別為第一轉矩訊號τ1的目標旋轉角度、目標旋轉速度及目標旋轉加速度,並且參數
Figure 02_image023
Figure 02_image011
為零。在其他一些實施例,由於馬達裝置200b的位置與起始位置之間有偏移,使得馬達裝置200b的起始的旋轉角度
Figure 02_image003
不為零。 In some embodiments, when the rigid mechanical unit 140a receives the first torque signal τ1 for the first time, the measurement processing unit 190a has not output the motion parameter (rotation angle) of the motor device 200a.
Figure 02_image001
,spinning speed
Figure 02_image005
And rotational acceleration
Figure 02_image009
), and the measurement processing unit 190b has not output the motion parameter (rotation angle
Figure 02_image003
,spinning speed
Figure 02_image007
And rotational acceleration
Figure 02_image011
). At this time, the rigid mechanical unit 140a obtains the matrices M, C, G according to the rigid mechanical equation (as shown in formula (1)) according to the target rotation angle, target rotation speed, and target rotation acceleration in the first torque signal τ1 And F, and use the matrices M, C, G, and F to define or establish a rigid machine model, and use the rigid machine model to obtain the rigid machine torque τ2. That is, when the rigid mechanical unit 140a receives the first torque signal τ1 for the first time, the parameters in the rigid mechanical unit 140a
Figure 02_image021
and
Figure 02_image009
Are the target rotation angle, target rotation speed, and target rotation acceleration of the first torque signal τ1, and the parameters
Figure 02_image023
and
Figure 02_image011
Is zero. In some other embodiments, due to the offset between the position of the motor device 200b and the starting position, the initial rotation angle of the motor device 200b is
Figure 02_image003
Not zero.

模型機械單元160a接收剛性機械轉矩τ2以輸出目標位置訊號S2給驅動單元180a,使得馬達裝置200a及200b開始旋轉。當馬達裝置200a及200b開始旋轉時,量測處理裝置190a及190b開始輸出馬達裝置200a及200b的運動參數。The model mechanical unit 160a receives the rigid mechanical torque τ2 to output the target position signal S2 to the drive unit 180a, so that the motor devices 200a and 200b start to rotate. When the motor devices 200a and 200b start to rotate, the measurement processing devices 190a and 190b start to output the motion parameters of the motor devices 200a and 200b.

由於本發明的機械手臂系統500具有至少兩個手臂軸(例如:300a及300b),所以機械手臂控制單元130a除了計算馬達裝置200a之運動參數,還需要同時計算馬達裝置200b之運動參數(旋轉角度

Figure 02_image003
、旋轉速度
Figure 02_image007
、旋轉加速度
Figure 02_image011
)。也就是說,在計算式(1)中,矩陣M、C、G及F中需要加入馬達裝置200a及馬達裝置200b之運動參數。 Since the robot arm system 500 of the present invention has at least two arm axes (for example: 300a and 300b), the robot arm control unit 130a not only calculates the motion parameters of the motor device 200a, but also needs to calculate the motion parameters (rotation angle) of the motor device 200b.
Figure 02_image003
,spinning speed
Figure 02_image007
, Rotation acceleration
Figure 02_image011
). In other words, in the calculation formula (1), the motion parameters of the motor device 200a and the motor device 200b need to be added to the matrices M, C, G, and F.

因此,在第3圖中,矩陣M 11(

Figure 02_image001
,
Figure 02_image003
, I 1 , I 2 )代表為馬達裝置200a的第一慣性力,並且 I 1 I 2 分別為馬達裝置200a的慣性常數及馬達裝置200b的慣性常數,並且
Figure 02_image001
Figure 02_image003
分別為馬達裝置200a之旋轉角度及馬達裝置200b之旋轉角度。矩陣M 12(
Figure 02_image001
,
Figure 02_image003
, I 2 )
Figure 02_image025
代表為馬達裝置200a對應馬達裝置200b的第二慣性力,並且
Figure 02_image011
為馬達裝置200b旋轉加速度
Figure 02_image011
。矩陣C 1(
Figure 02_image001
,
Figure 02_image003
,
Figure 02_image027
I 1 , I 2 )代表為馬達裝置200a的科氏力(或向心力)。矩陣G 1(
Figure 02_image001
,
Figure 02_image003
,
Figure 02_image029
I 1 , I 2 )代表為馬達裝置200a所承受手臂軸300a的重力。矩陣F 1(
Figure 02_image005
)代表為馬達裝置200a的動摩擦力。 Therefore, in Figure 3, the matrix M 11 (
Figure 02_image001
,
Figure 02_image003
, I 1 , I 2 ) represent the first inertial force of the motor device 200a, and I 1 and I 2 are the inertia constants of the motor device 200a and the motor device 200b, respectively, and
Figure 02_image001
and
Figure 02_image003
These are the rotation angle of the motor device 200a and the rotation angle of the motor device 200b. Matrix M 12 (
Figure 02_image001
,
Figure 02_image003
, I 2 )
Figure 02_image025
Represents the second inertial force of the motor device 200a corresponding to the motor device 200b, and
Figure 02_image011
Is the rotation acceleration of the motor device 200b
Figure 02_image011
. Matrix C 1 (
Figure 02_image001
,
Figure 02_image003
,
Figure 02_image027
I 1 , I 2 ) represent the Coriolis force (or centripetal force) of the motor device 200a. Matrix G 1 (
Figure 02_image001
,
Figure 02_image003
,
Figure 02_image029
I 1 , I 2 ) represent the gravity of the arm shaft 300a borne by the motor device 200a. Matrix F 1 (
Figure 02_image005
) Represents the dynamic friction of the motor device 200a.

於此實施例中,馬達裝置200a的慣性常數 I 1 及馬達裝置200b的慣性常數 I 2 ,分別是馬達裝置200a及馬達裝置200b的轉動慣量(或稱慣性力矩)。本領域之普通技術人員可以了解:依據手臂軸的質量及質心位置及馬達裝置的質量及轉軸之位置,可以計算出馬達裝置的慣性常數 I 1 及慣性常數 I 2 。由於手臂軸的質量及質心位置及馬達裝置的質量及轉軸之位置為固定,所以慣性常數 I 1 及慣性常數 I 2 為定值。於此實施例中,慣性常數 I 1 及慣性常數 I 2 的大小可以直接設置於剛性機械單元140a中的剛性機械方程式(計算式(1))。 In this embodiment, the inertia constant I 1 of the motor device 200 a and the inertia constant I 2 of the motor device 200 b are the moments of inertia (or moment of inertia) of the motor device 200 a and the motor device 200 b, respectively. Those of ordinary skill in the art can understand that the inertia constant I 1 and the inertia constant I 2 of the motor device can be calculated according to the mass and the position of the center of mass of the arm shaft and the mass of the motor device and the position of the rotating shaft. Since the mass and center of mass position of the arm shaft and the mass of the motor device and the position of the rotating shaft are fixed, the inertia constant I 1 and the inertial constant I 2 are fixed values. In this embodiment, the magnitudes of the inertia constant I 1 and the inertia constant I 2 can be directly set in the rigid machine equation (calculation formula (1)) in the rigid machine unit 140a.

然後,根據計算式(1),剛性機械單元140a將第一慣性力(矩陣M 11*

Figure 02_image009
)、第二慣性力(矩陣M 12*
Figure 02_image011
)、科氏力(矩陣C 1)、重力(矩陣G 1)及動摩擦力(矩陣F 1)彼此相加以建立剛性機械模型,並且取得一總和以作為剛性機械轉矩τ2。剛性機械單元140a傳送剛性機械轉矩τ2給模型機械單元160a。 Then, according to formula (1), the rigid mechanical unit 140a calculates the first inertial force (matrix M 11 *
Figure 02_image009
), the second inertial force (matrix M 12 *
Figure 02_image011
), Coriolis force (matrix C 1 ), gravity (matrix G 1 ) and dynamic friction force (matrix F 1 ) are added to each other to establish a rigid machine model, and a total is obtained as the rigid machine torque τ2. The rigid mechanical unit 140a transmits the rigid mechanical torque τ2 to the model mechanical unit 160a.

在一實施例中,模型機械單元160a包括撓性機械模型及機械手臂模型,其中模型機械單元160a建立撓性機械模型及機械手臂模型的方法詳述如下。在模型機械單元160a中,當模型機械單元160a接收來自剛性機械單元140a的剛性機械轉矩τ2時,模型機械單元160a透過撓性機械方程式以取得撓性機械轉矩。其中撓性機械方程式如下計算式(2)所示:

Figure 02_image031
(2)。 本領域之普通技術人員可依據文獻1(C. Sun, W. He, and J. Hong, “Neural Network Control of a Flexible Robotic Manipulator Using the Lumped Spring-Mass Model,” IEEE Transactions on Systems, Man, and Cybernetics),進行運算以取得計算式(2)。 In one embodiment, the model mechanical unit 160a includes a flexible mechanical model and a mechanical arm model, and the method for establishing the flexible mechanical model and the mechanical arm model by the model mechanical unit 160a is detailed as follows. In the model mechanical unit 160a, when the model mechanical unit 160a receives the rigid mechanical torque τ2 from the rigid mechanical unit 140a, the model mechanical unit 160a obtains the flexible mechanical torque through the flexible mechanical equation. The equation of flexible machinery is shown in the following formula (2):
Figure 02_image031
(2). Those of ordinary skill in the art can refer to Literature 1 (C. Sun, W. He, and J. Hong, “Neural Network Control of a Flexible Robotic Manipulator Using the Lumped Spring-Mass Model,” IEEE Transactions on Systems, Man, and Cybernetics), perform calculations to obtain formula (2).

在計算式(2)中,ξ代表為手臂軸(300a或300b)的末端位置的偏移角度,並且

Figure 02_image033
代表為手臂軸(300a或300b)的末端位置的偏移速度。D nxn(
Figure 02_image033
)為阻尼作用力,以及K nxn(ξ)為彈簧作用力。模型機械單元160a依據撓性機械方程式(計算式(2))計算出撓性機械轉矩,並依據撓性機械方程式建立撓性機械模型。在建立撓性機械模型之後,模型機械單元160a將剛性機械方程式(如計算式(1))及撓性機械方程式(如計算式(2))相加以建立機械手臂模型,並且模型機械單元160a將上述之剛性機械轉矩及撓性機械轉矩之總和做為目標轉矩。也就是說,目標轉矩為計算式(1)及計算式(2)之總和,如下計算式(3)所示:
Figure 02_image035
(3)。 In the calculation formula (2), ξ represents the offset angle of the end position of the arm shaft (300a or 300b), and
Figure 02_image033
It represents the offset speed of the end position of the arm axis (300a or 300b). D nxn (
Figure 02_image033
) Is the damping force, and K nxn (ξ) is the spring force. The model mechanical unit 160a calculates the flexible mechanical torque according to the flexible mechanical equation (calculation formula (2)), and establishes the flexible mechanical model according to the flexible mechanical equation. After the flexible machine model is established, the model machine unit 160a adds the rigid machine equation (such as equation (1)) and the flexible machine equation (such as equation (2)) to build a robot arm model, and the model machine unit 160a adds The sum of the above rigid mechanical torque and flexible mechanical torque is used as the target torque. In other words, the target torque is the sum of the calculation formula (1) and the calculation formula (2), as shown in the following calculation formula (3):
Figure 02_image035
(3).

於此實施例中,模型機械單元160a可依據計算式(3)建立機械手臂模型。然後,模型機械單元160a可以將計算式(3)進行移項及積分,即可以取得計算式(4)如下:

Figure 02_image037
(4)。 In this embodiment, the model mechanical unit 160a can establish a robot arm model according to the calculation formula (3). Then, the model mechanical unit 160a can shift and integrate the calculation formula (3), that is, the calculation formula (4) can be obtained as follows:
Figure 02_image037
(4).

接者,對計算式(4)進行積分即可以取得計算式(5),並且對計算式(5)進行積分即可以取得計算式(6)。

Figure 02_image039
(5)
Figure 02_image040
(6)。 Next, by integrating the calculation formula (4), the calculation formula (5) can be obtained, and the calculation formula (5) can be obtained by integrating the calculation formula (6).
Figure 02_image039
(5)
Figure 02_image040
(6).

當剛性機械單元140a依據第一轉矩訊號τ1輸出剛性機械轉矩τ2時,模型機械單元160a可以透過計算式(6)由目標轉矩取得目標位置,並輸出目標位置訊號S2給驅動單元180a。When the rigid mechanical unit 140a outputs the rigid mechanical torque τ2 according to the first torque signal τ1, the model mechanical unit 160a can obtain the target position from the target torque through the calculation formula (6), and output the target position signal S2 to the driving unit 180a.

另外,透過計算式(3)~(6),機械手臂控制單元130a依據馬達裝置200a及200b之運動參數計算出手臂軸300a之位置(或馬達裝置200a的旋轉角度)。然後,模型機械單元160a依據手臂軸300a之位置(或馬達裝置200a的旋轉角度)輸出第一回授訊號S4給第一控制單元120a。也就是說,剛性機械單元140a接收馬達裝置200a及200b的運動參數後,運行計算式(1)並輸出剛性機械轉矩τ2給模型機械單元160a。模型機械單元160a接收剛性機械轉矩τ2後,運行計算式(3)~(6)取得手臂軸300a之位置(或馬達裝置200a的旋轉角度)。然後,模型機械單元160a依據手臂軸300a之位置輸出第一回授訊號S4給第一控制單元120a。In addition, through calculation formulas (3) to (6), the robot arm control unit 130a calculates the position of the arm shaft 300a (or the rotation angle of the motor device 200a) according to the motion parameters of the motor devices 200a and 200b. Then, the model mechanical unit 160a outputs the first feedback signal S4 to the first control unit 120a according to the position of the arm shaft 300a (or the rotation angle of the motor device 200a). That is, after the rigid machine unit 140a receives the motion parameters of the motor devices 200a and 200b, it runs the calculation formula (1) and outputs the rigid machine torque τ2 to the model machine unit 160a. After receiving the rigid mechanical torque τ2, the model mechanical unit 160a runs the calculation formulas (3) to (6) to obtain the position of the arm shaft 300a (or the rotation angle of the motor device 200a). Then, the model mechanical unit 160a outputs the first feedback signal S4 to the first control unit 120a according to the position of the arm shaft 300a.

當第一控制單元120a判斷末端位置命令S1a及第一回授訊號S4之相差沒有落入第一誤差範圍Δθ時,第一控制單元120a調整第一轉矩訊號τ1的大小給剛性機械單元140a。此時,剛性機械單元140a重複執行上述之操作方法。When the first control unit 120a determines that the phase difference between the end position command S1a and the first feedback signal S4 does not fall within the first error range Δθ, the first control unit 120a adjusts the magnitude of the first torque signal τ1 to the rigid mechanical unit 140a. At this time, the rigid mechanical unit 140a repeatedly executes the above-mentioned operation method.

第4圖所示為根據本發明之其他一些實施例之機械手臂系統600之架構圖。於此實施例中,由於量測處理單元190a及190b分別被設置於馬達裝置200a及200b中,故沒有繪示於第4圖中。另外,第4圖中,馬達裝置200b被設置為控制機械手臂系統600之手臂軸300b,並且手臂軸300b位於機械手臂系統600的末端位置。在實際應用中,由於手臂軸300b位於機械手臂系統600的末端位置,所以手臂軸300b都會被安裝末端效應器(end effector),例如:機械夾爪等。於此實施例中,第一控制單元(120a及120b)、剛性機械單元140a、模型機械單元(160a及160b)之操作原理及方法,已詳述於前,故不在此贅述。FIG. 4 shows the architecture diagram of the robotic arm system 600 according to some other embodiments of the present invention. In this embodiment, since the measurement processing units 190a and 190b are provided in the motor devices 200a and 200b, respectively, they are not shown in FIG. 4. In addition, in FIG. 4, the motor device 200b is configured to control the arm shaft 300b of the robot arm system 600, and the arm shaft 300b is located at the end of the robot arm system 600. In practical applications, since the arm shaft 300b is located at the end position of the robotic arm system 600, the arm shaft 300b will be equipped with an end effector, such as a mechanical gripper. In this embodiment, the operating principles and methods of the first control unit (120a and 120b), the rigid mechanical unit 140a, and the model mechanical unit (160a and 160b) have been described in detail above, so they will not be repeated here.

於此實施例中,由於馬達裝置200b用於控制位於機械手臂系統600之末端位置之手臂軸300b,所以馬達裝置200b的控制可部分忽略馬達裝置200a及手臂軸300a的運動參數。因此剛性機械單元140b中的剛性機械方程式中之部分矩陣不同於剛性機械單元140a。In this embodiment, since the motor device 200b is used to control the arm shaft 300b at the end position of the robotic arm system 600, the control of the motor device 200b can partially ignore the motion parameters of the motor device 200a and the arm shaft 300a. Therefore, the partial matrix in the rigid mechanical equation in the rigid mechanical unit 140b is different from the rigid mechanical unit 140a.

承上所述,剛性機械單元140b中的第一慣性力(矩陣M 22)及重力(矩陣G 2)可以不受手臂軸300a的影響。因此,如第4圖所示,矩陣M 22具有以下參數:馬達裝置200b旋轉角度

Figure 02_image003
及馬達裝置200b的慣性常數 I 2 。矩陣G 2具有以下參數:馬達裝置200b旋轉角度
Figure 02_image003
及馬達裝置200b的慣性常數 I 2 。 As mentioned above, the first inertial force (matrix M 22 ) and gravity (matrix G 2 ) in the rigid mechanical unit 140b may not be affected by the arm axis 300a. Therefore, as shown in Figure 4, the matrix M 22 has the following parameters: the rotation angle of the motor device 200b
Figure 02_image003
And the inertia constant I 2 of the motor device 200b. The matrix G 2 has the following parameters: the rotation angle of the motor device 200b
Figure 02_image003
And the inertia constant I 2 of the motor device 200b.

另外,在剛性機械單元140b中,矩陣M 21(

Figure 02_image001
,
Figure 02_image003
, I 2 )
Figure 02_image042
代表為手臂軸300b對應手臂軸300a的第二慣性力,其中
Figure 02_image009
為馬達裝置200a旋轉加速度。 In addition, in the rigid mechanical unit 140b, the matrix M 21 (
Figure 02_image001
,
Figure 02_image003
, I 2 )
Figure 02_image042
Represents the second inertial force of arm axis 300b corresponding to arm axis 300a, where
Figure 02_image009
Is the rotational acceleration of the motor device 200a.

於此實施例中,剛性機械單元140a及剛性機械單元140b中的科氏力(矩陣C1及C2)參考的參數相同,包括旋轉角度

Figure 02_image001
、旋轉速度
Figure 02_image005
、旋轉角度
Figure 02_image003
、旋轉速度
Figure 02_image007
、馬達裝置200a的慣性常數 I 1 (代表為手臂軸300a的慣性常數)及馬達裝置200b的慣性常數 I 2 (代表為手臂軸300b的慣性常數)。矩陣F 1(
Figure 02_image007
)代表為手臂軸300a的動摩擦力,矩陣F 1(
Figure 02_image007
)中的
Figure 02_image007
為馬達裝置200b之旋轉速度。 In this embodiment, the Coriolis force (matrix C1 and C2) in the rigid mechanical unit 140a and the rigid mechanical unit 140b refer to the same parameters, including the rotation angle
Figure 02_image001
,spinning speed
Figure 02_image005
,Rotation angle
Figure 02_image003
,spinning speed
Figure 02_image007
The inertia constant I 1 of the motor device 200a (representing the inertia constant of the arm shaft 300a) and the inertia constant I 2 of the motor device 200b (representing the inertia constant of the arm shaft 300b). Matrix F 1 (
Figure 02_image007
) Represents the dynamic friction force of the arm axis 300a, the matrix F 1 (
Figure 02_image007
)middle
Figure 02_image007
Is the rotation speed of the motor device 200b.

於此實施例中,驅動單元180a及180b也具有回授控制系統。由於驅動單元180a及180b之控制方法相同,所以本發明謹說明驅動單元180a之操作方法。In this embodiment, the driving units 180a and 180b also have a feedback control system. Since the control methods of the driving units 180a and 180b are the same, the present invention only describes the operation method of the driving unit 180a.

驅動單元180a包括第二控制單元182a及驅動電路184a。第二控制單元182a耦接目標位置訊號S2及剛性機械轉矩τ2以輸出第二轉矩訊號τ3給驅動電路184a。驅動電路184a依據第二轉矩訊號τ3輸出驅動訊號S3。The driving unit 180a includes a second control unit 182a and a driving circuit 184a. The second control unit 182a is coupled to the target position signal S2 and the rigid mechanical torque τ2 to output the second torque signal τ3 to the driving circuit 184a. The driving circuit 184a outputs a driving signal S3 according to the second torque signal τ3.

當該第二控制單元182a判斷目標位置訊號S2與馬達裝置200a的旋轉角度

Figure 02_image001
之相差沒有落入第二誤差範圍時,第二控制單元182a調整第二轉矩訊號τ3之大小。在一些實施例中,第二誤差範圍介於0~5%。 When the second control unit 182a determines the target position signal S2 and the rotation angle of the motor device 200a
Figure 02_image001
When the phase difference does not fall within the second error range, the second control unit 182a adjusts the magnitude of the second torque signal τ3. In some embodiments, the second error range is between 0~5%.

第5圖所示為根據本發明之其他一些實施例的機械手臂系統800之架構圖。在此實施例中,機械手臂系統800包括單一手臂軸300a、耦接於手臂軸300a之馬達裝置200a及耦接於該馬達裝置200a之控制裝置700。在此實施例中,控制裝置700之架構及操作方法相同於第2圖所示的控制裝置100a及100b,故不再此贅述。在各個實施例中,量測處理單元190a可以設置於控制裝置700中,或是控制裝置700之外,但本發明不限於此。FIG. 5 shows the architecture diagram of the robotic arm system 800 according to some other embodiments of the present invention. In this embodiment, the robotic arm system 800 includes a single arm shaft 300a, a motor device 200a coupled to the arm shaft 300a, and a control device 700 coupled to the motor device 200a. In this embodiment, the structure and operation method of the control device 700 are the same as the control devices 100a and 100b shown in FIG. In various embodiments, the measurement processing unit 190a may be provided in the control device 700 or outside the control device 700, but the present invention is not limited thereto.

另外,相同於第3圖所示的控制裝置100a,控制裝置700中的剛性機械單元740同樣具有剛性機械方程式。然而,由於機械手臂系統700僅具有單一手臂軸,所以不需要考慮其他手臂軸的運動狀態。因此,剛性機械單元740中的剛性機械方程式不會有第二慣性力。由於剛性機械單元740中的剛性機械方程式不需要考慮其他手臂軸的運動狀態,所以其他馬達裝置的運動參數也可以忽略。In addition, similar to the control device 100a shown in FIG. 3, the rigid machine unit 740 in the control device 700 also has a rigid machine equation. However, since the robotic arm system 700 only has a single arm axis, there is no need to consider the motion states of other arm axes. Therefore, the rigid mechanical equation in the rigid mechanical unit 740 will not have a second inertial force. Since the rigid mechanical equation in the rigid mechanical unit 740 does not need to consider the motion state of other arm shafts, the motion parameters of other motor devices can also be ignored.

於此實施例中,第一控制單元120a依據末端位置命令S1輸出第一轉矩訊號τ1。在一開始,剛性機械單元740接收第一控制單元120a輸出的第一轉矩訊號τ1以輸出剛性機械轉矩τ2。模型機械單元160a接收剛性機械轉矩τ2以輸出目標位置訊號S2給驅動單元180a。驅動單元180a依據目標位置訊號S2調整馬達裝置200a的旋轉角度。In this embodiment, the first control unit 120a outputs the first torque signal τ1 according to the end position command S1. At the beginning, the rigid mechanical unit 740 receives the first torque signal τ1 output by the first control unit 120a to output the rigid mechanical torque τ2. The model mechanical unit 160a receives the rigid mechanical torque τ2 to output the target position signal S2 to the driving unit 180a. The driving unit 180a adjusts the rotation angle of the motor device 200a according to the target position signal S2.

量測處理單元190a量測到馬達裝置200a的運動參數(旋轉角度

Figure 02_image001
、旋轉速度
Figure 02_image005
及旋轉加速度
Figure 02_image009
),並傳送運動參數給剛性機械單元740。此時,剛性機械單元740依據馬達裝置200a的運動參數(旋轉角度
Figure 02_image001
、旋轉速度
Figure 02_image005
及旋轉加速度
Figure 02_image009
)調整剛性機械轉矩τ2給模型機械單元160a。模型機械單元160a依據已調整的剛性機械轉矩τ2改變目標位置訊號S2給驅動單元180a。 The measurement processing unit 190a measures the motion parameter (rotation angle) of the motor device 200a
Figure 02_image001
,spinning speed
Figure 02_image005
And rotational acceleration
Figure 02_image009
), and transmit the motion parameters to the rigid mechanical unit 740. At this time, the rigid mechanical unit 740 depends on the motion parameter (rotation angle) of the motor device 200a
Figure 02_image001
,spinning speed
Figure 02_image005
And rotational acceleration
Figure 02_image009
) Adjust the rigid mechanical torque τ2 to the model mechanical unit 160a. The model mechanical unit 160a changes the target position signal S2 to the drive unit 180a according to the adjusted rigid mechanical torque τ2.

在其他一些實施例中,模型機械單元160a依據已調整的剛性機械轉矩τ2輸出第一回授訊號S4給第一控制單元120a。接著,第一控制單元的操作方法已詳述於第2圖至第4圖中,故不再贅述。In some other embodiments, the model mechanical unit 160a outputs the first feedback signal S4 to the first control unit 120a according to the adjusted rigid mechanical torque τ2. Next, the operation method of the first control unit has been described in detail in FIGS. 2 to 4, so it is not repeated here.

第6圖所示為根據本發明之一實施例之機械手臂系統500之控制方法900之流程圖。請同時參照第2圖及第6圖以說明以下各個實施例。在第6圖中,控制方法900可以由第2圖所示之機械系統500之控制裝置100a及100b分別執行。於此實施例中,由於控制裝置100a及100b操作控制方法900之流程相同,所以本發明謹說明控制裝置100a操作控制方法900之流程。FIG. 6 is a flowchart of a control method 900 of the robotic arm system 500 according to an embodiment of the invention. Please refer to Fig. 2 and Fig. 6 at the same time to explain the following embodiments. In Figure 6, the control method 900 can be executed by the control devices 100a and 100b of the mechanical system 500 shown in Figure 2 respectively. In this embodiment, since the control devices 100a and 100b have the same operation control method 900, the present invention only describes the operation control method 900 of the control device 100a.

在第6圖中,控制裝置100a由步驟905開始執行。控制裝置100a中的第一控制單元120a接收末端位置命令訊號S1a,並輸出第一轉矩訊號τ1。於此實施例中,第一轉矩訊號τ1包括目標旋轉角度、目標旋轉速度及目標旋轉加速度。然後控制裝置100a繼續執行步驟910。In Figure 6, the control device 100a starts execution at step 905. The first control unit 120a in the control device 100a receives the end position command signal S1a and outputs the first torque signal τ1. In this embodiment, the first torque signal τ1 includes a target rotation angle, a target rotation speed, and a target rotation acceleration. Then the control device 100a continues to perform step 910.

在步驟910中,控制裝置100a中的剛性機械單元140a接收第一轉矩訊號中的目標旋轉角度、目標旋轉速度及目標旋轉加速度,並且運行剛性機械方程式(計算式(1))以建立剛性機械模型。完成建立剛性機械模型之後,剛性機械單元140a運行剛性機械模型取得一總和以作為剛性機械轉矩τ2。然後控制裝置100a繼續執行步驟915。In step 910, the rigid machine unit 140a in the control device 100a receives the target rotation angle, target rotation speed, and target rotation acceleration in the first torque signal, and runs the rigid machine equation (calculation formula (1)) to establish the rigid machine model. After completing the establishment of the rigid machine model, the rigid machine unit 140a runs the rigid machine model to obtain a sum as the rigid machine torque τ2. Then the control device 100a continues to perform step 915.

在步驟915中,控制裝置100a中的模型機械單元160a接收剛性機械轉矩τ2。同時,模型機械單元160a運行撓性方程式(計算式(2))以建立撓性機械模型以取得撓性機械轉矩。模型機械單元160a將剛性機械轉矩τ2及撓性機械轉矩相加以取得計算式(3),並透過計算式(3)建立機械手臂模型。模型機械單元160a再透過機械手臂模型取得目標轉矩。然後,模型機械單元160a繼續執行步驟920。In step 915, the model mechanical unit 160a in the control device 100a receives the rigid mechanical torque τ2. At the same time, the model mechanical unit 160a runs the flexible equation (calculation formula (2)) to establish a flexible mechanical model to obtain the flexible mechanical torque. The model mechanical unit 160a adds the rigid mechanical torque τ2 and the flexible mechanical torque to obtain the calculation formula (3), and establishes the robot arm model through the calculation formula (3). The model mechanical unit 160a then obtains the target torque through the robot arm model. Then, the model mechanical unit 160a continues to perform step 920.

在步驟920中,模型機械單元160a依據目標轉矩輸出目標位置訊號S2給驅動單元180a。在步驟925中,驅動單元180a依據目標位置訊號S2產生驅動訊號S3給馬達裝置200a,以調整馬達裝制200a的旋轉角度。然後控制裝置100a繼續執行步驟930。In step 920, the model mechanical unit 160a outputs a target position signal S2 to the driving unit 180a according to the target torque. In step 925, the driving unit 180a generates a driving signal S3 to the motor device 200a according to the target position signal S2 to adjust the rotation angle of the motor device 200a. Then the control device 100a continues to perform step 930.

在步驟930中,控制裝置100a中的量測處理單元190a量測馬達裝置200a的旋轉角度

Figure 02_image001
,並計算出馬達裝置200a的旋轉速度
Figure 02_image005
及旋轉加速度
Figure 02_image009
,並且量測處理單元190a傳送馬達裝置200a的運動參數(旋轉角度
Figure 02_image001
、旋轉速度
Figure 02_image005
及旋轉加速度
Figure 02_image009
)給剛性機械單元140a。 In step 930, the measurement processing unit 190a in the control device 100a measures the rotation angle of the motor device 200a
Figure 02_image001
, And calculate the rotation speed of the motor device 200a
Figure 02_image005
And rotational acceleration
Figure 02_image009
, And the measurement processing unit 190a transmits the motion parameter (rotation angle) of the motor device 200a
Figure 02_image001
,spinning speed
Figure 02_image005
And rotational acceleration
Figure 02_image009
) To the rigid mechanical unit 140a.

在步驟935中,至少二控制裝置之一者(如控制裝置100a)接收至少二控制裝置的其他者(如控制裝置100b)所對應的該些馬達裝置之旋轉角度、旋轉速度及旋轉加速度,例如:馬達裝置200b的旋轉角度

Figure 02_image003
、旋轉速度
Figure 02_image007
及旋轉加速度
Figure 02_image011
(以下稱為馬達裝置200b的運動參數)。 In step 935, one of the at least two control devices (such as the control device 100a) receives the rotation angle, rotation speed, and rotation acceleration of the motor devices corresponding to the other of the at least two control devices (such as the control device 100b), for example :The rotation angle of the motor device 200b
Figure 02_image003
,spinning speed
Figure 02_image007
And rotational acceleration
Figure 02_image011
(Hereinafter referred to as the motion parameters of the motor device 200b).

在步驟940中,調整至少二控制裝置之一者(控制裝置100a)的剛性機械模型以改變剛性機械轉矩。控制裝置100a中的剛性機械單元140a接收馬達裝置200a及馬達裝置200b的運動參數,並運行剛性機械方程式(計算式(1))以調整剛性機械模型。剛性機械單元140a再依據已調整的剛性機械模型改變剛性機械轉矩τ2的大小給模型機械單元160a。In step 940, the rigid mechanical model of one of the at least two control devices (control device 100a) is adjusted to change the rigid mechanical torque. The rigid machine unit 140a in the control device 100a receives the motion parameters of the motor device 200a and the motor device 200b, and runs the rigid machine equation (equation (1)) to adjust the rigid machine model. The rigid mechanical unit 140a then changes the rigid mechanical torque τ2 to the model mechanical unit 160a according to the adjusted rigid mechanical model.

在步驟945中,模型機械單元160a接收已改變的剛性機械轉矩τ2,並且運行計算式(3)以調整機械手臂模型,並且改變目標轉矩。模型機械單元160a依據已改變的目標轉矩,並運行計算式(6)估算手臂軸300a的位置以輸出第一回授訊號S4給第一控制單元120a。In step 945, the model mechanical unit 160a receives the changed rigid mechanical torque τ2, and runs the calculation formula (3) to adjust the robot arm model and change the target torque. The model mechanical unit 160a estimates the position of the arm shaft 300a based on the changed target torque and runs the calculation formula (6) to output the first feedback signal S4 to the first control unit 120a.

在步驟950中,第一控制單元120a判斷末端位置命令S1a及第一回授訊號S4之一相差是否落入第一誤差範圍。如果該相差沒有落入第一誤差範圍,第一控制單元120a調整第一轉矩訊號S1給剛性機械單元140a,並且控制裝置100a由步驟910開始重複執行接下來的步驟915~950。In step 950, the first control unit 120a determines whether the difference between the end position command S1a and the first feedback signal S4 falls within the first error range. If the phase difference does not fall within the first error range, the first control unit 120a adjusts the first torque signal S1 to the rigid mechanical unit 140a, and the control device 100a starts from step 910 to repeatedly execute the next steps 915 to 950.

在步驟950中,如果該相差落入第一誤差範圍,第一控制單元120a將維持固定的第一轉矩訊號S1給剛性機械單元140a。為了簡化第6圖,本發明沒有將此步驟繪示於第6圖中。In step 950, if the phase difference falls within the first error range, the first control unit 120a will maintain a fixed first torque signal S1 to the rigid mechanical unit 140a. In order to simplify Figure 6, this step is not shown in Figure 6 in the present invention.

綜上所述,本發明的機械式手臂系統透過各個手臂軸所對應的控制裝置(如:控制裝置100a及100b)完成機械式手臂系統的操作,並非機械手臂系統中的中央控制器。如此一來,機械手臂系統中的中央控制器(未圖示)僅須完成訊號傳遞之功能。例如:中央控制器將控制裝置量測到的馬達裝置之運動參數,傳送到其他的控制裝置中的剛性機械單元。中央控制器仍具有額外的運算能力,使得中央控制器可以用於更多其他的應用,例如:雲端計算、影像處理、網路的連結等。因此,本發明的機械式手臂系統可以應用於更廣泛的用途,並且進行更彈性化的設計。In summary, the robotic arm system of the present invention completes the operation of the robotic arm system through the control devices (such as the control devices 100a and 100b) corresponding to each arm axis, and is not a central controller in the robotic arm system. In this way, the central controller (not shown) in the robotic arm system only needs to perform the function of signal transmission. For example: the central controller transmits the motion parameters of the motor device measured by the control device to the rigid mechanical units in other control devices. The central controller still has additional computing power, so that the central controller can be used for more other applications, such as cloud computing, image processing, and network connections. Therefore, the robotic arm system of the present invention can be applied to a wider range of applications and can be designed with more flexibility.

另外,由於本發明充分利用各個手臂軸的處理器(如控制裝置100a及100b),本發明也解決硬體資源浪費等問題,並且達到明顯的降低成本等優勢。In addition, since the present invention makes full use of the processors of each arm axis (such as the control devices 100a and 100b), the present invention also solves the problems of waste of hardware resources and achieves obvious advantages such as cost reduction.

雖然本發明以較佳實施例揭露如上,然其並非用以限定本發明,任何本領域具有通常技術知識者,在不違背本發明精神和範圍的情況下,可做些許變動與替代,因此本發明之保護範圍當應視隨後所附之申請專利範圍所界定者為準。Although the present invention is disclosed in preferred embodiments as above, it is not intended to limit the present invention. Anyone with ordinary technical knowledge in the art can make some changes and substitutions without departing from the spirit and scope of the present invention. Therefore, this The scope of protection of the invention shall be determined by the scope of the subsequent patent application.

本文使用的術語僅用於描述特定實施例,而不旨在限制本發明。如本文所使用的,除非上下文另外明確指出,否則單數形式「一」、「一個」和「該」也包含複數形式。此外,就術語「包括」 、「包含」 、「具有」或其他變化用法被用於詳細描述和/或請求項,這些術語旨在以類似於術語「包含」的方式具有相同意思。The terms used herein are only used to describe specific embodiments and are not intended to limit the present invention. As used herein, unless the context clearly indicates otherwise, the singular forms "a", "an" and "the" also include plural forms. In addition, as far as the terms "include," "include," "have," or other variations are used in detailed descriptions and/or claims, these terms are intended to have the same meaning in a manner similar to the term "include".

400a:中央控制單元 400b:手臂軸之控制裝置 401b~403b:第一至第三手臂軸控制裝置 500、600、800:機械式手臂系統 100a、100b:控制裝置 120a、120b:第一控制單元 140a、140b、740:剛性機械單元 160a、160b:模型機械單元 180a、180b:驅動單元 182a:第二控制單元 184a:驅動電路 190a、190b:量測處理單元 200a、200b:馬達裝置 300a、300b:手臂軸 C1:運動控制命令 C2:每一手臂軸之轉矩命令 C3:每一手臂軸之馬達電流命令 S1、S1a、S1b:末端位置命令 S2:目標位置訊號 S3:驅動訊號 F1:第一轉矩訊號 τ1:第一轉矩訊號 τ2:剛性機械轉矩 τ3:第二轉矩訊號

Figure 02_image001
Figure 02_image003
:旋轉角度
Figure 02_image005
Figure 02_image007
:旋轉速度
Figure 02_image009
Figure 02_image011
:旋轉加速度 Δθ:第一誤差範圍 900:控制方法 905~955:步驟 400a: central control unit 400b: arm axis control device 401b~403b: first to third arm axis control device 500, 600, 800: mechanical arm system 100a, 100b: control device 120a, 120b: first control unit 140a , 140b, 740: rigid mechanical unit 160a, 160b: model mechanical unit 180a, 180b: drive unit 182a: second control unit 184a: drive circuit 190a, 190b: measurement processing unit 200a, 200b: motor device 300a, 300b: arm Axis C1: Motion control command C2: Torque command for each arm axis C3: Motor current command for each arm axis S1, S1a, S1b: End position command S2: Target position signal S3: Drive signal F1: First torque Signal τ1: first torque signal τ2: rigid mechanical torque τ3: second torque signal
Figure 02_image001
,
Figure 02_image003
:Rotation angle
Figure 02_image005
,
Figure 02_image007
:spinning speed
Figure 02_image009
,
Figure 02_image011
: Rotation acceleration Δθ: First error range 900: Control method 905~955: Step

第1圖所示為根據習知技術之一實施例的機械手臂系統之架構圖。 第2圖所示為根據本發明之一實施例的機械手臂系統之架構圖。 第3圖所示為根據本發明之一實施例之機械手臂系統中之機械手臂控制單元之架構圖。 第4圖所示為根據本發明之其他一些實施例之機械手臂系統之架構圖。 第5圖所示為根據本發明之其他一些實施例的機械手臂系統之架構圖。 第6圖所示為根據本發明之一實施例之機械手臂系統之控制方法之流程圖。 FIG. 1 shows the architecture diagram of the robotic arm system according to an embodiment of the prior art. Figure 2 shows the architecture diagram of the robotic arm system according to an embodiment of the invention. FIG. 3 shows the architecture diagram of the robot arm control unit in the robot arm system according to an embodiment of the present invention. Figure 4 shows the architecture diagram of the robotic arm system according to some other embodiments of the present invention. Figure 5 shows the architecture diagram of the robotic arm system according to some other embodiments of the present invention. Figure 6 is a flow chart of the control method of the robotic arm system according to an embodiment of the present invention.

500:機械式手臂系統 500: Mechanical arm system

100a、100b:控制裝置 100a, 100b: control device

120a、120b:第一控制單元 120a, 120b: the first control unit

140a、140b:剛性機械單元 140a, 140b: rigid mechanical unit

160a、160b:模型機械單元 160a, 160b: model mechanical unit

180a、180b:驅動單元 180a, 180b: drive unit

182a:第二控制單元 182a: second control unit

184a:驅動電路 184a: drive circuit

190a、190b:量測處理單元 190a, 190b: measurement processing unit

200a、200b:馬達裝置 200a, 200b: Motor device

300a、300b:手臂軸 300a, 300b: arm axis

S1a、S1b:末端位置命令 S1a, S1b: End position command

S2:目標位置訊號 S2: Target position signal

S3:驅動訊號 S3: Drive signal

F1:第一轉矩訊號 F1: The first torque signal

τ1:第一轉矩訊號 τ1: The first torque signal

τ2:剛性機械轉矩 τ2: rigid mechanical torque

τ3:第二轉矩訊號 τ3: The second torque signal

q 1q 2:旋轉角度 q 1 , q 2 : rotation angle

Figure 108144001-A0305-02-0003-7
Figure 108144001-A0305-02-0003-8
:旋轉速度
Figure 108144001-A0305-02-0003-7
,
Figure 108144001-A0305-02-0003-8
:spinning speed

Figure 108144001-A0305-02-0003-9
Figure 108144001-A0305-02-0003-10
:旋轉加速度
Figure 108144001-A0305-02-0003-9
,
Figure 108144001-A0305-02-0003-10
: Rotation acceleration

Claims (20)

一種機械手臂系統,包括至少二手臂軸、至少二控制裝置及至少二馬達裝置,其中該等控制裝置分別控制所對應的該等馬達裝置以分別調整所對應的該等手臂軸之位置,其中每一該等控制裝置包括:一第一控制單元,接收一末端位置命令以輸出一第一轉矩訊號;一機械手臂控制單元,包括一剛性機械模型及一撓性機械模型,其中該機械手臂控制單元接收該第一轉矩訊號以透過該剛性機械模型取得一剛性機械轉矩,並且依據該剛性機械轉矩及該撓性機械模型建立一機械手臂模型以取得一目標轉矩,並且依據該目標轉矩輸出一目標位置訊號;一驅動單元,依據該目標位置訊號產生一驅動訊號以調整所對應的該馬達裝置之一旋轉角度;以及一量測處理單元,用以量測所對應的該馬達裝置之該旋轉角度、一旋轉速度及一旋轉加速度;其中該至少二控制裝置之一者的該機械手臂控制單元接收該至少二控制裝置的其他者所對應的該些馬達裝置之旋轉角度、旋轉速度及旋轉加速度,以調整該剛性機械模型以改變該剛性機械轉矩。 A mechanical arm system includes at least two arm shafts, at least two control devices, and at least two motor devices, wherein the control devices respectively control the corresponding motor devices to adjust the positions of the corresponding arm shafts, wherein each One of the control devices includes: a first control unit that receives an end position command to output a first torque signal; a robotic arm control unit that includes a rigid mechanical model and a flexible mechanical model, wherein the robotic arm controls The unit receives the first torque signal to obtain a rigid mechanical torque through the rigid mechanical model, and establishes a mechanical arm model based on the rigid mechanical torque and the flexible mechanical model to obtain a target torque, and according to the target Torque outputs a target position signal; a driving unit generates a driving signal according to the target position signal to adjust a rotation angle of the corresponding motor device; and a measurement processing unit for measuring the corresponding motor The rotation angle, a rotation speed and a rotation acceleration of the device; wherein the robotic arm control unit of one of the at least two control devices receives the rotation angle and rotation of the motor devices corresponding to the other of the at least two control devices Speed and rotational acceleration to adjust the rigid mechanical model to change the rigid mechanical torque. 如申請專利範圍第1項所述之機械手臂系統,其中該機械手臂控制單元依據已改變之該剛性機械轉矩調整該機械手 臂模型以改變該目標轉矩,並輸出一第一回授訊號給該第一控制單元;當該第一控制單元判斷該末端位置命令及該第一回授訊號之一相差沒有落入一第一誤差範圍時,該第一控制單元調整該第一轉矩訊號。 The robot arm system described in the first item of the scope of patent application, wherein the robot arm control unit adjusts the robot arm according to the changed rigid mechanical torque The arm model is used to change the target torque and output a first feedback signal to the first control unit; when the first control unit determines that the end position command and one of the first feedback signal does not fall into a first When there is an error range, the first control unit adjusts the first torque signal. 如申請專利範圍第1項所述之機械手臂系統,其中該機械手臂控制單元運行一剛性機械方程式以計算並相加所對應的該馬達裝置之多個動力參數並取得該多個動力參數之一總和,其中該機械手臂控制單元將該總和作為該剛性機械轉矩。 The robot arm system described in the first item of the scope of patent application, wherein the robot arm control unit runs a rigid mechanical equation to calculate and add the corresponding power parameters of the motor device and obtain one of the power parameters A sum, wherein the robot arm control unit uses the sum as the rigid mechanical torque. 如申請專利範圍第3項所述之機械手臂系統,其中該機械手臂控制單元接收該至少二控制裝置之一者所對應的該馬達裝置之該旋轉角度、該至少二控制裝置的其他者所對應的該些馬達裝置之該旋轉角度,並透過運行該剛性機械方程式以取得該多個動力參數之一第一慣性力。 The robotic arm system described in item 3 of the scope of patent application, wherein the robotic arm control unit receives the rotation angle of the motor device corresponding to one of the at least two control devices, and the other one of the at least two control devices corresponds to The rotation angle of the motor devices is obtained by running the rigid mechanical equation to obtain a first inertial force of one of the plurality of power parameters. 如申請專利範圍第4項所述之機械手臂系統,其中該機械手臂控制單元接收該至少二控制裝置之一者所對應的該馬達裝置之該旋轉角度、該至少二控制裝置的其他者所對應的該些馬達裝置之該旋轉角度、該旋轉加速度,並透過運行該剛性機械方程式以取得該多個動力參數之一第二慣性力。 The robotic arm system described in claim 4, wherein the robotic arm control unit receives the rotation angle of the motor device corresponding to one of the at least two control devices, and the other one of the at least two control devices corresponds to The rotation angle and the rotation acceleration of the motor devices are operated to obtain a second inertial force of one of the plurality of power parameters by running the rigid mechanical equation. 如申請專利範圍第5項所述之機械手臂系統,其中該機械手臂控制單元接收該至少二控制裝置之一者所對應的該馬達裝置之該旋轉角度、該至少二控制裝置的其他者所對應的該些馬達裝置之該旋轉角度,並透過運行該剛性機械方程式以取得該 多個動力參數之一重力。 The robotic arm system described in item 5 of the scope of patent application, wherein the robotic arm control unit receives the rotation angle of the motor device corresponding to one of the at least two control devices, and the other one of the at least two control devices corresponds to The rotation angle of the motor devices of the, and obtain the rotation angle by running the rigid mechanical equation Gravity, one of multiple dynamic parameters. 如申請專利範圍第3項所述之機械手臂系統,其中該機械手臂控制單元接收該至少二控制裝置之一者所對應的該馬達裝置之該旋轉角度,並透過運行該剛性機械方程式以取得該多個動力參數之一第一慣性力。 For the robotic arm system described in item 3 of the scope of patent application, the robotic arm control unit receives the rotation angle of the motor device corresponding to one of the at least two control devices, and obtains the rigid mechanical equation by running the rigid mechanical equation The first inertial force is one of the multiple dynamic parameters. 如申請專利範圍第7項所述之機械手臂系統,其中該機械手臂控制單元接收該至少二控制裝置之一者所對應的該馬達裝置之該旋轉角度、該至少二控制裝置的其他者所對應的該些馬達裝置之該旋轉角度及該旋轉加速度,並透過運行該剛性機械方程式以取得該多個動力參數之一第二慣性力。 The robotic arm system described in claim 7, wherein the robotic arm control unit receives the rotation angle of the motor device corresponding to one of the at least two control devices, and the other one of the at least two control devices corresponds to The rotation angle and the rotation acceleration of the motor devices are operated to obtain a second inertial force of one of the plurality of power parameters by running the rigid mechanical equation. 如申請專利範圍第8項所述之機械手臂系統,其中該機械手臂控制單元接收該至少二控制裝置之一者所對應的該馬達裝置之該旋轉角度,並透過運行該剛性機械方程式以取得該多個動力參數之一重力。 For the robotic arm system described in claim 8, wherein the robotic arm control unit receives the rotation angle of the motor device corresponding to one of the at least two control devices, and obtains the rigid mechanical equation by running Gravity, one of multiple dynamic parameters. 如申請專利範圍第3項所述之機械手臂系統,其中該機械手臂控制單元接收該至少二控制裝置之一者所對應的該馬達裝置之該旋轉角度、該旋轉速度、以及該至少二控制裝置的其他者所對應的該些馬達裝置之該旋轉角度及該旋轉速度,並透過運行該剛性機械方程式以取得該多個動力參數之一科氏力(或向心力)。 The robotic arm system described in claim 3, wherein the robotic arm control unit receives the rotation angle, the rotation speed, and the at least two control devices of the motor device corresponding to one of the at least two control devices Coriolis force (or centripetal force) of one of the plurality of power parameters is obtained by running the rigid mechanical equation corresponding to the rotation angle and the rotation speed of the motor devices. 如申請專利範圍第3項所述之機械手臂系統,其中該機械手臂控制單元接收該至少二控制裝置之一者所對應的該 馬達裝置之該旋轉速度,並透過運行該剛性機械方程式以取得該多個動力參數之一動摩擦力。 For the robotic arm system described in item 3 of the scope of patent application, the robotic arm control unit receives the corresponding one of the at least two control devices The rotation speed of the motor device is used to obtain a dynamic friction force of one of the plurality of power parameters by running the rigid mechanical equation. 如申請專利範圍第2項所述之機械手臂系統,其中該驅動單元包括一第二控制單元及一驅動電路,其中該第二控制單元耦接該剛性機械轉矩及該目標位置訊號以輸出一第二轉矩訊號給該驅動電路以輸出該驅動訊號。 For the robot arm system described in claim 2, wherein the driving unit includes a second control unit and a driving circuit, and the second control unit is coupled to the rigid mechanical torque and the target position signal to output a The second torque signal is provided to the driving circuit to output the driving signal. 如申請專利範圍第12項所述之機械手臂系統,當該第二控制單元判斷該目標位置訊號與該馬達裝置的該旋轉角度之一相差沒有落入一第二誤差範圍時,該第二控制單元調整該第二轉矩訊號。 For the robotic arm system described in item 12 of the scope of patent application, when the second control unit determines that the target position signal and one of the rotation angles of the motor device do not fall within a second error range, the second control The unit adjusts the second torque signal. 一種機械手臂系統,包括一手臂軸、耦接於該手臂軸之一馬達裝置及耦接於該馬達裝置之一控制裝置,其中該控制裝置包括:一第一控制單元,接收一末端位置命令訊號以輸出一第一轉矩訊號;一機械手臂控制單元,包括一剛性機械模型及一撓性機械模型,其中該機械手臂控制單元接收該第一轉矩訊號以透過該剛性機械模型取得一剛性機械轉矩,並且依據該剛性機械轉矩及該撓性機械模型建立一機械手臂模型以取得一目標轉矩,並且依據該目標轉矩輸出一目標位置訊號;一驅動單元,依據該目標位置訊號產生一驅動訊號以調整該馬達裝置之一旋轉角度;以及 一量測處理單元,用以量測該馬達裝置以輸出該馬達裝置之運動參數,其中該運動參數包括該旋轉角度、一旋轉速度及一旋轉加速度;其中該機械手臂控制單元接收該馬達裝置之該運動參數以調整該剛性機械模型以改變該剛性機械轉矩。 A robotic arm system includes an arm shaft, a motor device coupled to the arm shaft, and a control device coupled to the motor device, wherein the control device includes: a first control unit that receives an end position command signal To output a first torque signal; a robot arm control unit, including a rigid machine model and a flexible machine model, wherein the robot arm control unit receives the first torque signal to obtain a rigid machine through the rigid machine model Torque, and establish a robot arm model based on the rigid mechanical torque and the flexible mechanical model to obtain a target torque, and output a target position signal according to the target torque; a drive unit generates a target position signal according to the target torque A driving signal to adjust a rotation angle of the motor device; and A measurement processing unit for measuring the motor device to output motion parameters of the motor device, wherein the motion parameters include the rotation angle, a rotation speed, and a rotation acceleration; wherein the robot arm control unit receives the motor device The motion parameter is used to adjust the rigid mechanical model to change the rigid mechanical torque. 如申請專利範圍第14項所述之機械手臂系統,其中該機械手臂控制單元依據已改變之該剛性機械轉矩調整該機械手臂模型以改變該目標轉矩,並輸出一第一回授訊號給該第一控制單元;當該第一控制單元判斷該末端位置命令及該第一回授訊號之一相差沒有落入一第一誤差範圍時,該第一控制單元調整該第一轉矩訊號。 For example, the robot arm system described in claim 14, wherein the robot arm control unit adjusts the robot arm model according to the changed rigid mechanical torque to change the target torque, and outputs a first feedback signal to The first control unit; when the first control unit determines that the end position command and the first feedback signal does not fall within a first error range, the first control unit adjusts the first torque signal. 如申請專利範圍第14項所述之機械手臂系統,其中該機械手臂控制單元運行一剛性機械方程式以計算並相加手臂軸之多個動力參數並取得該多個動力參數之一總和,其中該機械手臂控制單元將該總和作為該剛性機械轉矩。 For example, the robot arm system described in claim 14, wherein the robot arm control unit runs a rigid mechanical equation to calculate and add a plurality of dynamic parameters of the arm axis and obtain a sum of one of the plurality of dynamic parameters, wherein the The robot arm control unit uses the sum as the rigid mechanical torque. 如申請專利範圍第16項所述之機械手臂系統,其中該機械手臂控制單元接收該馬達裝置之該旋轉角度,並透過運行該剛性機械方程式以取得該多個動力參數之一慣性力。 In the robotic arm system described in claim 16, wherein the robotic arm control unit receives the rotation angle of the motor device, and obtains an inertial force of one of the plurality of power parameters by running the rigid mechanical equation. 如申請專利範圍第17項所述之機械手臂系統,其中該機械手臂控制單元接收該馬達裝置之該旋轉角度,並透過運行該剛性機械方程式以取得該多個動力參數之一重力;該機械手臂控制單元接收該馬達裝置的該旋轉角度及該旋轉 速度,並透過運行該剛性機械方程式以取得一科氏力;以及該機械手臂控制單元接收該馬達裝置的該旋轉速度,並透過運行該剛性機械方程式以取得該多個動力參數之一動摩擦力。 For the robotic arm system described in claim 17, wherein the robotic arm control unit receives the rotation angle of the motor device, and obtains gravity, one of the plurality of power parameters, by running the rigid mechanical equation; the robotic arm The control unit receives the rotation angle and the rotation of the motor device And obtain a Coriolis force by running the rigid mechanical equation; and the robot arm control unit receives the rotation speed of the motor device, and obtains a dynamic friction force of one of the plurality of power parameters by running the rigid mechanical equation. 一種機械手臂控制方法,由一機械手臂系統所執行,其中該機械手臂系統包括至少二手臂軸、至少二控制裝置及至少二馬達裝置,其中該等控制裝置分別控制所對應的該等馬達裝置以分別調整所對應的該等手臂軸之位置,其中每一該等控制裝置執行該機械手臂控制方法包括:接收一末端位置命令訊號以輸出一第一轉矩訊號;接收該第一轉矩訊號並運行一剛性機械模型以取得一剛性機械轉矩;依據該剛性機械轉矩及一撓性機械模型建立一機械手臂模型以取得一目標轉矩;依據該目標轉矩輸出一目標位置訊號;依據該目標位置訊號產生一驅動訊號以調整所對應的該馬達裝置之一旋轉角度;以及量測所對應的該馬達裝置之該旋轉角度、一旋轉速度及一旋轉加速度;其中該至少二控制裝置之一者接收該至少二控制裝置的其他者所對應的該些馬達裝置之旋轉角度、旋轉速度及旋轉加速度,以調整該至少二控制裝置之一者的該剛性機械模型以改變該剛性機械轉矩。 A robot arm control method is executed by a robot arm system, wherein the robot arm system includes at least two arm shafts, at least two control devices, and at least two motor devices, wherein the control devices respectively control the corresponding motor devices Adjusting the positions of the corresponding arm shafts respectively, wherein each of the control devices executes the robotic arm control method including: receiving an end position command signal to output a first torque signal; receiving the first torque signal and Run a rigid mechanical model to obtain a rigid mechanical torque; establish a mechanical arm model based on the rigid mechanical torque and a flexible mechanical model to obtain a target torque; output a target position signal according to the target torque; The target position signal generates a driving signal to adjust a corresponding rotation angle of the motor device; and measures the rotation angle, a rotation speed, and a rotation acceleration of the corresponding motor device; wherein one of the at least two control devices Receiving the rotation angle, rotation speed and rotation acceleration of the motor devices corresponding to the other of the at least two control devices to adjust the rigid mechanical model of one of the at least two control devices to change the rigid mechanical torque. 如申請專利範圍第19項所述之機械手臂控制方法,更包括:依據已改變之該剛性機械轉矩調整該機械手臂模型以改變該目標轉矩以輸出一第一回授訊號;當判斷該末端位置命令及該第一回授訊號之一相差沒有落入一第一誤差範圍時,調整該第一轉矩訊號。 For example, the robot arm control method described in item 19 of the scope of patent application further includes: adjusting the robot arm model according to the changed rigid mechanical torque to change the target torque to output a first feedback signal; When the difference between the end position command and the first feedback signal does not fall within a first error range, the first torque signal is adjusted.
TW108144001A 2019-12-03 2019-12-03 Mechanical arm system and mechanical arm control method TWI712471B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108144001A TWI712471B (en) 2019-12-03 2019-12-03 Mechanical arm system and mechanical arm control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108144001A TWI712471B (en) 2019-12-03 2019-12-03 Mechanical arm system and mechanical arm control method

Publications (2)

Publication Number Publication Date
TWI712471B true TWI712471B (en) 2020-12-11
TW202122226A TW202122226A (en) 2021-06-16

Family

ID=74669876

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108144001A TWI712471B (en) 2019-12-03 2019-12-03 Mechanical arm system and mechanical arm control method

Country Status (1)

Country Link
TW (1) TWI712471B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1120077C (en) * 1997-05-28 2003-09-03 株式会社安川电机 Robot control method and device
TW200533485A (en) * 2003-12-26 2005-10-16 Yaskawa Denki Seisakusho Kk Robot controller
CN105479459A (en) * 2015-12-29 2016-04-13 深圳市汇川技术股份有限公司 Zero-force control method and system for robot
CN106457560A (en) * 2014-06-02 2017-02-22 株式会社神户制钢所 Robot control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1120077C (en) * 1997-05-28 2003-09-03 株式会社安川电机 Robot control method and device
TW200533485A (en) * 2003-12-26 2005-10-16 Yaskawa Denki Seisakusho Kk Robot controller
CN106457560A (en) * 2014-06-02 2017-02-22 株式会社神户制钢所 Robot control device
CN105479459A (en) * 2015-12-29 2016-04-13 深圳市汇川技术股份有限公司 Zero-force control method and system for robot

Also Published As

Publication number Publication date
TW202122226A (en) 2021-06-16

Similar Documents

Publication Publication Date Title
JP3883544B2 (en) Robot control apparatus and robot control method
US10042343B2 (en) Control device and speed reducer system
US9014849B2 (en) Robotic device, method for controlling robotic device, and computer program
WO2011036750A1 (en) Robot controller
JP2020078247A (en) Drive device, actuator unit, robot device, drive device control method, actuator unit control method, and robot device control method
TW201914788A (en) Load estimation gravity compensation method for mechanical arm and load estimation gravity compensation system wherein the load estimation gravity compensation system comprises a load estimating module and a gravity compensating module
JPS63314606A (en) Controller for articulated robot
WO2022193639A1 (en) Mechanical arm, and trajectory planning method and apparatus therefor
JP2012139807A (en) Robot and method for removing noise of robot
JP6565034B2 (en) Control device and reduction gear system
CN108406765B (en) Impedance control method for open-chain multi-arm robot
WO2022121003A1 (en) Robot control method and device, computer-readable storage medium, and robot
TWI712471B (en) Mechanical arm system and mechanical arm control method
CN109108981A (en) A kind of parallel robot impedance adjustment based on disturbance observer
CN111037562B (en) Robot control method and device and robot
JP5869991B2 (en) Drive device
JPH10128688A (en) Non-interfering control method of robot
US11613011B2 (en) Mechanical arm system and mechanical arm control method
JP5411687B2 (en) Robot control device
US10727104B2 (en) Control apparatus
JP2004082243A (en) Actuator control device and method
WO2019216416A1 (en) Deflection amount estimation device, robot control device, and deflection amount estimation method
TWI714462B (en) External force estimation system for delta robot and method thereof
TWI755688B (en) Fault detection system for delta robot and method thereof
CN116277034B (en) Robot control method and device for coping with load change and electronic equipment