TWI711839B - Miniaturized short-distance optical system - Google Patents

Miniaturized short-distance optical system Download PDF

Info

Publication number
TWI711839B
TWI711839B TW108132484A TW108132484A TWI711839B TW I711839 B TWI711839 B TW I711839B TW 108132484 A TW108132484 A TW 108132484A TW 108132484 A TW108132484 A TW 108132484A TW I711839 B TWI711839 B TW I711839B
Authority
TW
Taiwan
Prior art keywords
phase
optical system
light
partially
display screen
Prior art date
Application number
TW108132484A
Other languages
Chinese (zh)
Other versions
TW202111388A (en
Inventor
洪淩桂
施富斌
游鴻文
Original Assignee
雙瑩科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 雙瑩科技股份有限公司 filed Critical 雙瑩科技股份有限公司
Priority to TW108132484A priority Critical patent/TWI711839B/en
Application granted granted Critical
Publication of TWI711839B publication Critical patent/TWI711839B/en
Publication of TW202111388A publication Critical patent/TW202111388A/en

Links

Images

Abstract

本發明提供一種微型化短距離光學系統,其依序包括一顯示屏、一反射式偏振元件、一第一相位延遲片、一部分穿透部分反射元件、至少一光學元件及設於上述元件任一側之一透鏡。光學元件可為一圓偏振片或是一第二相位延遲片及一線偏振片之組合。顯示屏輸出影像並發出光線後,光線在反射式偏振元件及部分穿透部分反射元件之間反射兩次,使光線通過第一相位延遲片三次,當光線經過三次相位延遲後,經過第三次相位延遲的光線穿透該部分穿透部分反射元件,並通過光學元件進行第四次相位延遲,最後經過四次相位延遲的光線經由一透鏡導入至少一人眼中,而僅設置單一透鏡可讓本發明之光學系統整體厚度更小,達到微型化之目的。The present invention provides a miniaturized short-distance optical system, which sequentially includes a display screen, a reflective polarizing element, a first phase retarder, a part of the penetrating part of the reflective element, at least one optical element, and any of the above elements One lens on the side. The optical element can be a circular polarizer or a combination of a second phase retarder and a linear polarizer. After the display screen outputs the image and emits light, the light is reflected twice between the reflective polarizing element and the partially penetrating and partially reflective element, and the light passes through the first phase retarder three times. After the light passes through the third phase retardation, it passes through the third time. The phase-delayed light penetrates the part of the reflective element, and undergoes a fourth phase delay through the optical element. Finally, the phase-delayed light is guided into at least one eye through a lens, and only a single lens allows the present invention The overall thickness of the optical system is smaller, achieving the purpose of miniaturization.

Description

微型化短距離光學系統Miniaturized short-distance optical system

本發明係有關一種光學系統,特別是指一種可應用於頭戴顯示器之微型化短距離光學系統。The present invention relates to an optical system, in particular to a miniaturized short-distance optical system that can be applied to a head-mounted display.

頭戴顯示器(Head-mounted display)是用於顯示圖像及色彩的設備,通常是用眼罩或頭盔的形式,將顯示屏貼近使用者的眼睛,通過光路調整焦距以在近距離中對眼睛投射畫面,產生虛擬實境的效果,增加配戴者的臨場感。Head-mounted display (Head-mounted display) is a device used to display images and colors, usually in the form of an eye mask or a helmet. The display is placed close to the user's eyes, and the focus is adjusted through the optical path to project the eyes at close range The screen produces the effect of virtual reality and increases the wearer’s sense of presence.

第1圖所示為虛擬實境的頭戴顯示器之光學系統示意圖,顯示屏10投射出影像,經過一段光程為d的光路後入射至光學模組23,此光學模組23為單一透鏡或多個透鏡之組合,用以將影像導入至使用者的人眼24中,假設光程d為40mm,而頭戴顯示器的長度為光程d 加上光學模組的厚度、適眼距、外殼等,其總和對於戴在頭上的眼罩和頭盔而言略顯笨重,對使用者的鼻樑、頭頂、頸部都會造成負擔無法久戴,故而目前技術係致力於將頭戴顯示器中光學系統的長度縮短,以使頭戴顯示器的厚度縮小,便於使用者配戴使用。Figure 1 shows a schematic diagram of the optical system of a head-mounted display in virtual reality. The display screen 10 projects an image, which passes through a light path with an optical path of d and then enters the optical module 23. The optical module 23 is a single lens or The combination of multiple lenses is used to guide the image into the user’s eyes 24, assuming that the optical path d is 40mm, and the length of the head-mounted display is the optical path d plus the thickness of the optical module, eye distance, and housing Etc., the sum of which is slightly cumbersome for eye masks and helmets worn on the head, and will cause a burden on the bridge of the nose, top of the head, and neck of the user and cannot be worn for a long time. Therefore, the current technology department is committed to reducing the length of the optical system It is shortened to reduce the thickness of the head mounted display, which is convenient for users to wear and use.

因此,本發明即提出一種微型化短距離光學系統,除了可將光學系統的距離縮短之外,更可擴大視場,有效解決上述該等問題,具體架構及其實施方式容後詳述。Therefore, the present invention proposes a miniaturized short-distance optical system, which can not only shorten the distance of the optical system, but also expand the field of view, effectively solving the above-mentioned problems. The specific structure and implementation methods will be detailed later.

本發明之主要目的在提供一種微型化短距離光學系統,其在顯示屏前和光學模組之間設置反射式偏振元件、相位延遲片、部分穿透部分反射元件等光學元件,利用光線的相位延遲及多次反射達到近似或相同長度的光程,藉以縮短顯示屏和光學模組之間的距離,最終可用以將頭戴顯示器微型化。The main purpose of the present invention is to provide a miniaturized short-distance optical system, in which optical elements such as reflective polarizing elements, phase retarders, partially penetrating and partially reflective elements are arranged between the front of the display screen and the optical module, and the phase of light is utilized. The delay and multiple reflections reach approximately or the same length of the optical path, thereby shortening the distance between the display screen and the optical module, and finally can be used to miniaturize the head-mounted display.

本發明之另一目的在提供一種微型化短距離光學系統,其係在反射式偏振元件、第一相位延遲片、部分穿透部分反射元件、第二相位延遲片及線偏振片中任一元件之任一側設置單一片透鏡,在調節焦距之前提下更可達到微型化之目的。Another object of the present invention is to provide a miniaturized short-distance optical system, which is in any one of the reflective polarizing element, the first phase retarder, the partially penetrating partially reflective element, the second phase retarder, and the linear polarizer A single lens is set on either side of the lens, which can be miniaturized before adjusting the focus.

本發明之再一目的在提供一種微型化短距離光學系統,其可應用於頭戴顯示器、遊戲機等產品上之廣角鏡頭或廣角目鏡,僅利用單一透鏡進行焦距調節,可最大化使裝置的厚度縮短,達到短距離、視場大、具有良好的像差校正等優點。Another object of the present invention is to provide a miniaturized short-distance optical system, which can be applied to wide-angle lenses or wide-angle eyepieces on head-mounted displays, game consoles, etc., using only a single lens for focal length adjustment, which can maximize the thickness of the device Shorten, achieve short distance, large field of view, good aberration correction and other advantages.

為達上述目的,本發明提供一種微型化短距離光學系統,包括:一顯示屏,輸出影像並發出偏振或非偏振之光線;一反射式偏振元件,對應該顯示屏設置,使該光線部分穿透、部分反射;一第一相位延遲片,對應該反射式偏振元件設置,接收部分穿透該反射式偏振元件之該光線,並進行第一次相位延遲;一部分穿透部分反射元件,對應該第一相位延遲片設置,使經第一次相位延遲之該光線部分穿透該部分穿透部分反射元件,部分則反射回該第一相位延遲片進行第二次及第三次相位延遲;至少一光學元件,對應該部分穿透部分反射元件設置,接收部分穿透該部分穿透部分反射元件且經過該第二、第三次相位延遲之該光線,並進行第四次相位延遲,再讓經過第四次相位延遲之光線通過而只經過兩次相位延遲的光線無法通過;以及一透鏡,設於該反射式偏振元件、該第一相位延遲片、該部分穿透部分反射元件及該光學元件中任一元件之任一側,以調節焦距,並將影像導入至少一人眼中。In order to achieve the above objective, the present invention provides a miniaturized short-distance optical system, including: a display screen, which outputs images and emits polarized or unpolarized light; and a reflective polarizing element is set corresponding to the display screen so that the light partially penetrates Transparent and partially reflective; a first phase retarder is set corresponding to the reflective polarizing element, receives the light partially penetrating the reflective polarizing element, and performs the first phase retardation; part penetrating the partially reflective element, corresponding The first phase retarder is arranged so that part of the light that has undergone the first phase retardation penetrates the part of the reflective element, and part is reflected back to the first phase retarder for second and third phase retardation; An optical element is provided corresponding to the partially penetrating partially reflective element, receiving the light partially penetrating the partially penetrating partially reflective element and passing the second and third phase delays, and performing the fourth phase delay, and then let The light that has passed the fourth phase retardation passes but the light that has only passed the second phase retardation cannot pass; and a lens provided on the reflective polarizing element, the first phase retarder, the partially penetrating partially reflective element, and the optical Either side of any element in the element to adjust the focus and lead the image into the eyes of at least one person.

根據本發明之實施例,該顯示屏與至透鏡之間以及該透鏡至該人眼之間更可包括一至多片平板玻璃。According to an embodiment of the present invention, between the display screen and the lens and between the lens and the human eye may further include one or more pieces of flat glass.

根據本發明之實施例,該光學元件包括:一第二相位延遲片,對應該部分穿透部分反射元件設置,接收部分穿透該部分穿透部分反射元件且經過該第二、第三次相位延遲之該光線,並進行第四次相位延遲;以及一線偏振片,對應該第二相位延遲片設置,該線偏振片係用以讓只經過兩次相位延遲的光線不要通過,並讓經過第四次相位延遲之光線通過。According to an embodiment of the present invention, the optical element includes: a second phase retarder disposed corresponding to the partially penetrating partially reflective element, the receiving portion penetrating the partially penetrating partially reflective element and passing through the second and third phases The light is retarded, and the fourth phase retardation is performed; and a linear polarizer is set corresponding to the second phase retarder. The linear polarizer is used to prevent the light that has only undergone two phase delays from passing through, and to allow the The light with four phase delay passes through.

根據本發明之實施例,該光學元件為一圓偏振片。According to an embodiment of the present invention, the optical element is a circular polarizer.

根據本發明之實施例,該部分穿透部分反射元件所反射回該第一相位延遲片之光線經過該第一相位延遲片的第二次相位延遲後,通過該第一相位延遲片到達該反射式偏振元件,並在該反射式偏振元件上完成反射,讓該光線再反射回該第一相位延遲片並進行第三次相位延遲,接著光線穿過該第一相位延遲片及該部分穿透部分反射元件到達該第二相位延遲片,且該透鏡可設於該第二相位延遲片及該線偏振片中任一者之任一側。According to an embodiment of the present invention, the partially penetrating partially reflective element and the light reflected back to the first phase retarder passes through the second phase retardation of the first phase retarder, and then reaches the reflection through the first phase retarder. Type polarizing element, and complete reflection on the reflective polarizing element, so that the light is reflected back to the first phase retarder and undergoes a third phase retardation, and then the light passes through the first phase retarder and the partial penetration The partially reflective element reaches the second phase retarder, and the lens can be arranged on either side of the second phase retarder and the linear polarizer.

根據本發明之實施例,該第一、第二、第三、第四次相位延遲皆增加1/4波長的奇數倍的相位延遲,使到達該人眼之光線共延遲一個波長的整數倍。According to an embodiment of the present invention, the first, second, third, and fourth phase retardation are all increased by an odd multiple of 1/4 wavelength, so that the light reaching the human eye is retarded by an integer multiple of a wavelength. .

根據本發明之實施例,該顯示屏送出並進入該反射式偏振元件之該光線為偏振光時,其可為線偏振光、圓偏振光或其他偏振態,且該顯示屏及該反射式偏振元件之間更可依據該顯示屏之偏振情況可增加至少一線偏振片、圓偏振片或相位延遲片以調整該顯示屏之偏振態,新增之材質可為薄膜材料或為光學鍍膜等以塗佈、鍍膜或黏合等的形式設置於該顯示屏或該反射式偏振元件上。該線偏振光經過該第一相位延遲片後可轉換成左圓偏振光或右圓偏振光。According to an embodiment of the present invention, when the light emitted from the display screen and enters the reflective polarizing element is polarized light, it can be linearly polarized light, circularly polarized light or other polarization states, and the display screen and the reflective polarized light According to the polarization of the display, at least one linear polarizer, circular polarizer or phase retarder can be added between the components to adjust the polarization state of the display. The new material can be thin film materials or optical coatings. The form of cloth, coating or bonding is arranged on the display screen or the reflective polarizing element. The linearly polarized light can be converted into left circularly polarized light or right circularly polarized light after passing through the first phase retarder.

根據本發明之實施例,該顯示屏之可視範圍半徑為H, 該光學系統之總長為TTL,該眼睛到該光學系統之最近元件表面中心之距離為E,該光學系統之半視場角為𝜔,則

Figure 02_image001
,且
Figure 02_image003
,且
Figure 02_image005
。 According to an embodiment of the present invention, the visible radius of the display screen is H, the total length of the optical system is TTL, the distance from the eye to the center of the closest element surface of the optical system is E, and the half-field angle of the optical system is 𝜔, then
Figure 02_image001
And
Figure 02_image003
And
Figure 02_image005
.

根據本發明之實施例,該光學系統之有效焦距為F,該透鏡靠近該眼睛之一側之曲率半徑為R 1,靠近該顯示屏之一側之曲率半徑為R 2

Figure 02_image007
。 According to an embodiment of the present invention, the effective focal length of the optical system is F, the radius of curvature of the side of the lens close to the eye is R 1 , and the radius of curvature of the side close to the display screen is R 2 ,
Figure 02_image007
.

本發明提供一種微型化短距離光學系統,其應用於頭戴顯示器,特別是頭戴顯示器的虛擬實境系統,由於是戴在使用者的頭上,若體積太大、太長則難以固定在使用者的頭部而會受重力影響下墜,更會對使用者的頭部和頸部造成負擔,因此頭戴顯示器的大小愈小愈好,特別是長度必須縮短,而本發明之目的即在於利用複數光學元件將光線進行多次反射,更在這些光學元件之間僅設置單一透鏡調節焦距,在相同長度之光程下使整體光學系統縮短,以達到將頭戴顯示器微型化之目的。The present invention provides a miniaturized short-distance optical system, which is applied to a head-mounted display, especially a virtual reality system of a head-mounted display. Since it is worn on the user's head, it is difficult to fix it in use if the volume is too large and too long. The head of the user will fall under the influence of gravity, which will also burden the head and neck of the user. Therefore, the size of the head mounted display is as small as possible, especially the length must be shortened. The purpose of the present invention is to use Multiple optical elements reflect light multiple times, and only a single lens is arranged between these optical elements to adjust the focal length, so that the overall optical system is shortened under the same length of optical path, so as to achieve the purpose of miniaturizing the head-mounted display.

請同時參考第2圖及第3圖,其分別為本發明微型化短距離光學系統之一實施例之示意圖及分解圖,在本發明微型化短距離光學系統中,於一顯示屏10和至少一人眼24之間依序包括一反射式偏振元件12、一第一相位延遲片14、一部分穿透部分反射元件16、一第二相位延遲片18、一線偏振片20及一透鏡22,其中,顯示屏10係輸出影像並發出光線,此光線為偏振光或非偏振光,當光線是偏振光時,此該偏振光可為線偏振光、圓偏振光或其他偏振態,在此實施例中,光線為線偏振光,進一步而言,此實施例中之線偏振光之偏振方向係與光路垂直;反射式偏振元件12係對應顯示屏10設置,接收顯示屏10所發出之偏振光,並將該偏振光部分穿透、部分反射,特別是本發明所採用之反射式偏振元件12包含與光路垂直和平行兩種偏振方向,可使垂直之偏振光穿透,水平偏振光反射;第一相位延遲片14係對應反射式偏振元件12設置,用以接收從反射式偏振元件12部分穿透之偏振光,並進行第一次、第二次及第三次相位延遲,其中第一次及第三次相位延遲之偏振光係向人眼24的方向,而第二次相位延遲之偏振光則是向顯示屏10之方向;部分穿透部分反射元件16係對應該第一相位延遲片14設置,接收通過第一相位延遲片14之光線並將通過之光線部分反射、部分穿透;第二相位延遲片18係對應部分穿透部分反射元件16設置,接收部分穿透該部分穿透部分反射元件16之光線,並進行第四次相位延遲;線偏振片20對應第二相位延遲片18設置,線偏振片20係用以讓只經過兩次相位延遲的偏振光不要通過並只讓經過四次相位延遲之偏振光通過,而透鏡22設置於上述光學系統中任一元件之任一側,將影像導入人眼24中。Please also refer to Figures 2 and 3, which are respectively a schematic diagram and an exploded view of an embodiment of the miniaturized short-distance optical system of the present invention. In the miniaturized short-distance optical system of the present invention, a display screen 10 and at least A human eye 24 includes a reflective polarizing element 12, a first phase retarder 14, a partly penetrating partially reflective element 16, a second phase retarder 18, a linear polarizer 20, and a lens 22 in sequence. Among them, The display screen 10 outputs images and emits light. The light is polarized or unpolarized. When the light is polarized, the polarized light can be linearly polarized, circularly polarized or other polarization states. In this embodiment , The light is linearly polarized light. Furthermore, the polarization direction of the linearly polarized light in this embodiment is perpendicular to the optical path; the reflective polarizing element 12 is set corresponding to the display screen 10, and receives the polarized light emitted by the display screen 10, and Partially penetrate and partially reflect the polarized light, especially the reflective polarizing element 12 used in the present invention includes two polarization directions perpendicular to and parallel to the optical path, allowing vertical polarized light to penetrate and horizontally polarized light to reflect; The phase retarder 14 is set corresponding to the reflective polarizing element 12 to receive the polarized light partially penetrated by the reflective polarizing element 12, and perform the first, second and third phase retardation, of which the first and The polarized light of the third phase retardation is in the direction of the human eye 24, and the polarized light of the second phase retardation is in the direction of the display screen 10; the partially penetrating partially reflective element 16 is set corresponding to the first phase retarder 14 , Receives the light passing through the first phase retarder 14 and partially reflects and partially penetrates the light passing through; the second phase retarder 18 is set corresponding to the partially penetrating partially reflective element 16, and the receiving portion penetrates the partially penetrating partially reflective element The light from the element 16 is retarded for the fourth time; the linear polarizer 20 is set corresponding to the second retarder 18, and the linear polarizer 20 is used to prevent the polarized light that has only undergone two phase retardation from passing through and only let it pass through four The polarized light with the sub-phase retardation passes through, and the lens 22 is arranged on any side of any element in the above-mentioned optical system to guide the image into the human eye 24.

在本發明中所設置之單一透鏡22,其可為凸透鏡,如第3圖所示,透鏡22可設於反射式偏振元件12、第一相位延遲片14、部分穿透部分反射元件16、第二相位延遲片18及線偏振片20中之任一側,作用在於調節焦距,不論設在上述任意二光學元件之間,最終可達到縮短光學系統的效果,而在第2圖之實施例中,透鏡22係設於線偏振片20之左側,靠近人眼24。The single lens 22 provided in the present invention can be a convex lens. As shown in Figure 3, the lens 22 can be provided on the reflective polarizing element 12, the first phase retarder 14, the partially penetrating partially reflective element 16, the second Either side of the two-phase retarder 18 and the linear polarizer 20 is used to adjust the focal length. No matter it is placed between any two optical elements mentioned above, the optical system can be shortened eventually. In the embodiment in Figure 2, , The lens 22 is arranged on the left side of the linear polarizer 20, close to the human eye 24.

特別的是,本發明中第一相位延遲片14之快慢軸與反射式偏振元件12之穿透軸夾45度角,可增加1/4波長的相位延遲。In particular, in the present invention, the fast and slow axis of the first retarder 14 and the transmission axis of the reflective polarizer 12 are angled at 45 degrees, which can increase the phase retardation of 1/4 wavelength.

此外,本發明中之透鏡22可為非球面透鏡、菲涅爾透鏡(Fresnel lens)或多片透鏡之組合。In addition, the lens 22 in the present invention can be an aspheric lens, a Fresnel lens, or a combination of multiple lenses.

本發明中具體之步驟流程請參考第4A圖至第4C圖,首先於第4A圖中,顯示屏10輸出影像,並發出偏振光到反射式偏振元件12,反射式偏振元件12使該偏振光部分穿透至第一相位延遲片14、部分則反射回顯示屏10,而穿透反射式偏振元件12的部分穿透之偏振光經過第一相位延遲片14之後,會進行第一次相位延遲,再到達部分穿透部分反射元件16;接著請參考第4B圖,經過第一次相位延遲的偏振光在部分穿透部分反射元件16處部分穿透,部分則反射回第一相位延遲片14進行第二次相位延遲,此處之部分穿透部分反射元件16的偏振光為能量損失,而經過第一次相位延遲的偏振光穿透第一相位延遲片14後到達反射式偏振元件12;接著請再參考第4C圖,反射式偏振元件12將經過第二次相位延遲的偏振光進行反射,反射回第一相位延遲片14,進行第三次相位延遲,再經過部分穿透部分反射元件16,其部分穿透的偏振光(經過第三次相位延遲)到達第二相位延遲片18,並進行第四次相位延遲;接著,經第四次相位延遲的偏振光穿透第二相位延遲片18,在線偏振片20進行篩選,只讓經過四次相位延遲之偏振光通過線偏振片20,並被透鏡22導入至少一人眼24中。Please refer to Figures 4A to 4C for the specific steps of the present invention. First, in Figure 4A, the display screen 10 outputs an image and emits polarized light to the reflective polarizing element 12. The reflective polarizing element 12 makes the polarized light Part of the polarized light that penetrates to the first phase retarder 14 and part is reflected back to the display screen 10, and the partially penetrated polarized light that penetrates the reflective polarizer 12 passes through the first phase retarder 14, and undergoes the first phase retardation , And then reach the partially penetrating partially reflective element 16; then please refer to Figure 4B, the polarized light after the first phase retardation partially penetrates at the partially penetrating partially reflective element 16, and part is reflected back to the first phase retarder 14 Perform a second phase retardation, where the polarized light partially penetrating the partially reflective element 16 is energy loss, and the polarized light that has passed the first phase retardation penetrates the first phase retarder 14 and then reaches the reflective polarizer 12; Please refer to Figure 4C again. The reflective polarizing element 12 reflects the polarized light that has undergone the second phase retardation, and reflects it back to the first phase retarder 14 for the third phase retardation, and then passes through the partially penetrating and partially reflective element. 16. The partially penetrated polarized light (after the third phase retardation) reaches the second phase retardation plate 18 and undergoes the fourth phase retardation; then, the polarized light after the fourth phase retardation penetrates the second phase retardation The film 18 is screened by the linear polarizer 20 so that only the polarized light that has undergone four phase retardations passes through the linear polarizer 20 and is guided by the lens 22 into at least one human eye 24.

由於本發明中第一相位延遲片14及第二相位延遲片18皆為1/4波長的相位延遲的奇數倍,故經過四次相位延遲後共延遲1個波長的整數倍。Since the first phase retarder 14 and the second phase retarder 18 in the present invention are both odd multiples of the phase retardation of 1/4 wavelength, the retardation is an integer multiple of 1 wavelength after four phase retardations.

線偏振光通過第一相位延遲片14後會轉變成圓偏振光,包括左圓偏振光或右圓偏振光兩種。但當部分圓偏振光被部分穿透部分反射元件16反射回第一相位延遲片14後,又會變為線偏振光,之後雖然還會再通過第一相位延遲片14並轉換成圓偏振光,然而通過第二相位延遲片18後,仍會轉換成回線偏振光。The linearly polarized light passes through the first phase retarder 14 and is converted into circularly polarized light, including left circularly polarized light or right circularly polarized light. However, when part of the circularly polarized light is reflected back to the first phase retarder 14 by the partially penetrating and partially reflective element 16, it will become linearly polarized light, although it will pass through the first phase retarder 14 and be converted into circularly polarized light. However, after passing through the second phase retarder 18, it will still be converted into linearly polarized light.

在顯示屏10及反射式偏振元件12之間,更可依據顯示屏10之偏振情況增加至少一線偏振片、圓偏振片或相位延遲片,以調整顯示屏10之偏振態,而新增之材質可為薄膜材料或為光學鍍膜等,其係以塗佈、鍍膜或黏合等形式設置於顯示屏10或反射式偏振元件12上。Between the display screen 10 and the reflective polarizing element 12, at least one linear polarizer, circular polarizer or phase retarder can be added according to the polarization of the display screen 10 to adjust the polarization state of the display screen 10, and the new material It can be a thin film material or an optical coating, etc., which are provided on the display screen 10 or the reflective polarizing element 12 in the form of coating, coating, or bonding.

本發明可達到較大視角、系統距離縮短及良好像差校正之效果,請參考第2圖,其中透鏡22為L,其有效焦距為f,光學系統之有效焦距為F,光學系統之半視場角為𝜔,顯示屏10的可視範圍半徑為H,R 1~R 2分別為透鏡22左右兩面之曲率半徑,眼睛(光圈)到光學系統之最近元件表面中心距離為E,光學系統之總長為TTL,可得到以下公式:

Figure 02_image001
(1)
Figure 02_image003
(2)
Figure 02_image007
(3)
Figure 02_image005
(4) 上述公式(3)可達到良好的像差校正,而公式(1)、(2)、(4)則可達到較大視角、系統距離縮短(輕薄化)之優點。 The present invention can achieve the effects of larger viewing angle, shorter system distance and good aberration correction. Please refer to Figure 2. The lens 22 is L, its effective focal length is f, the effective focal length of the optical system is F, and the half-view of the optical system The field angle is 𝜔, the visible range radius of the display screen 10 is H, R 1 ~ R 2 are the curvature radii of the left and right sides of the lens 22 respectively, the distance from the eye (aperture) to the center of the nearest element surface of the optical system is E, the total length of the optical system For TTL, the following formula can be obtained:
Figure 02_image001
(1)
Figure 02_image003
(2)
Figure 02_image007
(3)
Figure 02_image005
(4) The above formula (3) can achieve good aberration correction, while the formulas (1), (2), (4) can achieve the advantages of larger viewing angle and shorter system distance (light and thin).

第2圖之實施態樣可得到具體之實驗數據如下表一: f = 24.646 H = 17 2ω= 93.4° f1 = 24.646 TTL = 22.7   表面 Radius 厚度 Nd Vd 半徑 透鏡 stop 無限 (Infinity) 10     2   2 48.50639387 4.28 1.49000 57.4 15.5 L1 3 -15.78174855 0.5     17.5 4 無限 0.3 1.49000 57.4 17.5   5 無限 0.5 1.52000 64.2 17.5   6 無限 6.42     17.5   7 無限 0..08 1.49000 57.4 17.5   8 無限 0.5 1.52000 64.2 17.5   9 無限 0.12 1.49000 57.4 17.5   10 無限                  非球面              係數 透鏡面 K A B C D E   2 3.595 2.661E-05 -4.933E-08 -2.615E-10 -5.620E-13 9.260E-17   3 -5.158 -9.933E-05 7.300E-07 -2.227E-09 0.000E+00 0.000E+00   表一 Specific experimental data can be obtained from the implementation mode in Figure 2 as shown in Table 1: f = 24.646 H = 17 2ω = 93.4° f1 = 24.646 TTL = 22.7 surface Radius thickness Nd Vd radius lens stop Infinity 10 2 2 48.50639387 4.28 1.49000 57.4 15.5 L1 3 -15.78174855 0.5 17.5 4 unlimited 0.3 1.49000 57.4 17.5 5 unlimited 0.5 1.52000 64.2 17.5 6 unlimited 6.42 17.5 7 unlimited 0..08 1.49000 57.4 17.5 8 unlimited 0.5 1.52000 64.2 17.5 9 unlimited 0.12 1.49000 57.4 17.5 10 unlimited Aspherical lens surface K A B C D E 2 3.595 2.661E-05 -4.933E-08 -2.615E-10 -5.620E-13 9.260E-17 3 -5.158 -9.933E-05 7.300E-07 -2.227E-09 0.000E+00 0.000E+00 Table I

上表中之A、B、C、D、E等為非球面公式中之參數,非球面公式為

Figure 02_image009
,其中C=1/R,R為曲率半徑。此外,表中f為光學系統之有效焦距,𝜔為光學系統之半視場角,H為顯示屏的可視範圍半徑,f1為透鏡的有效焦距,Nd為折射率(Refractive index),Vd為阿貝數(Abbe number)或色散係數(V-number)。 A, B, C, D, E, etc. in the above table are the parameters in the aspheric formula, the aspheric formula is
Figure 02_image009
, Where C=1/R, R is the radius of curvature. In addition, in the table, f is the effective focal length of the optical system, 𝜔 is the half angle of view of the optical system, H is the visible radius of the display screen, f1 is the effective focal length of the lens, Nd is the Refractive index, and Vd is A Abbe number (Abbe number) or dispersion coefficient (V-number).

本發明中,反射式偏振元件12及部分穿透部分反射元件16可為在透鏡22上塗佈一層具反射式偏振功能之鍍膜,或是本身具反射式偏振功能之鏡片或為薄膜形式的光學材料貼在透鏡22上,因此,本發明可將反射式偏振元件12貼附在第一相位延遲片14上、將反射式偏振元件12貼附在透鏡22上、將部分穿透部分反射元件16貼附在第一相位延遲片14上、將部分穿透部分反射元件16貼附在第二相位延遲片18上、將部分穿透部分反射元件16貼附在透鏡22上等等,從而產生多種不同實施態樣。In the present invention, the reflective polarizing element 12 and the partially penetrating and partially reflective element 16 can be coated on the lens 22 with a coating with a reflective polarization function, or a lens with a reflective polarization function or an optical film in the form of a film. The material is attached to the lens 22. Therefore, the present invention can attach the reflective polarizing element 12 to the first phase retarder 14, attach the reflective polarizing element 12 to the lens 22, and partially penetrate the partially reflective element 16. Attached to the first phase retarder 14, attaching the partially penetrating partially reflective element 16 to the second phase retarder 18, attaching the partially penetrating partially reflective element 16 to the lens 22, etc., so as to produce a variety of Different implementation styles.

除了第2圖之實施態樣之外,以下在第5A圖至第5C圖中說明其他多種不同之透鏡22配置方式之實施態樣,但此些實施態樣並非限制本發明中透鏡22之配置方法,只要是在反射式偏振元件12、第一相位延遲片14、部分穿透部分反射元件16、第二相位延遲片18及線偏振片20中至少一者之任一側設置透鏡22的結構便包含在本發明之範圍內。In addition to the implementation aspects of Fig. 2, the following describes the implementation aspects of various different configurations of the lens 22 in Figs. 5A to 5C, but these implementation aspects do not limit the arrangement of the lens 22 in the present invention The method, as long as it is a structure in which at least one of the reflective polarizing element 12, the first phase retarder 14, the partially penetrating partially reflective element 16, the second phase retarder 18, and the linear polarizer 20 is provided with a lens 22 It is included in the scope of the present invention.

在第5A圖所示之實施例中,透鏡22設在第一相位延遲片14和部分穿透部分反射元件16之間,此部分穿透部分反射元件16設置在透鏡22上,此外,本發明可將第二相位延遲片18與線偏振片20設為一體,舉例而言,如第5A圖所示,第二相位延遲片18與線偏振片20在同一透鏡22的同一側,可等效於圓偏振片之功能,則可將第二相位延遲片18及線偏振片20利用一圓偏振片取代。本實施例中另在偏振光入射人眼24之前增設一平板玻璃26,以起到保護的作用。此實施例之具體數據如下表二: f = 24.79 H = 17 2ω =82.3° f1 = 135.1 TTL = 32.47   表面 Radius 厚度 Index Abbe. 半徑 透鏡 stop 無限 (Infinity) 10     2   2 無限 0.5 1.52000 64.0 21   3 無限 0.3 1.49000 57.4 21   4 無限 0.5     21   5 88.03425936 4.34 1.49000 70.4 21 L1 6 -260.8417997 5.13     21 7 無限 0.08 1.49000 57.4 21   8 無限 0.12 1.49000 57.4 21   9 無限 0.5 1.52000 64.0 21   10 無限 11     21   11 無限                     非球面             係數 透鏡面 K A B C   5 0.000 5.83E-07 1.48E-09 0.00E+00   6 0.000 3.17E-07 7.74E-09 6.75E-13   表二 In the embodiment shown in Figure 5A, the lens 22 is provided between the first phase retarder 14 and the partially penetrating partially reflective element 16, and the partially penetrating partially reflective element 16 is provided on the lens 22. In addition, the present invention The second phase retarder 18 and the linear polarizer 20 can be integrated. For example, as shown in FIG. 5A, the second phase retarder 18 and the linear polarizer 20 are on the same side of the same lens 22, which can be equivalent For the function of the circular polarizer, the second phase retarder 18 and the linear polarizer 20 can be replaced by a circular polarizer. In this embodiment, a plate glass 26 is additionally added before the polarized light enters the human eye 24 for protection. The specific data of this embodiment are as follows in Table 2: f = 24.79 H = 17 2ω =82.3° f1 = 135.1 TTL = 32.47 surface Radius thickness Index Abbe. radius lens stop Infinity 10 2 2 unlimited 0.5 1.52000 64.0 twenty one 3 unlimited 0.3 1.49000 57.4 twenty one 4 unlimited 0.5 twenty one 5 88.03425936 4.34 1.49000 70.4 twenty one L1 6 -260.8417997 5.13 twenty one 7 unlimited 0.08 1.49000 57.4 twenty one 8 unlimited 0.12 1.49000 57.4 twenty one 9 unlimited 0.5 1.52000 64.0 twenty one 10 unlimited 11 twenty one 11 unlimited Aspherical lens surface K A B C 5 0.000 5.83E-07 1.48E-09 0.00E+00 6 0.000 3.17E-07 7.74E-09 6.75E-13 Table II

第5B圖所示為另一實施例,反射式偏振元件12設在第一相位延遲片14上,透鏡22設於第一相位延遲片14及部分穿透部分反射元件16之間,與第5A圖之實施例相同的是,第二相位延遲片18及線偏振片20可利用一圓偏振片取代,並在偏振光入射人眼24之前增設一平板玻璃26。此實施例之具體數據如下表三: f = 23.3 H = 17 2ω = 98.39° f1 = 158.4 TTL = 33.3   表面 Radius 厚度 Nd Vd 半徑 透鏡 stop 無限 (Infinity) 10     2   2 無限 0.5 1.52000 64.0 20     3 無限 0.3 1.49000 57.4 20 4 無限 0.5     20   5 77.53033929 5.5 1.49000 70.4 20 L1 6 無限 0.08 1.49000 57.4 20 7 無限 0.12 1.49000 57.4 20   8 無限 16.3     20   9 無限           表三 Figure 5B shows another embodiment. The reflective polarizing element 12 is provided on the first phase retarder 14, and the lens 22 is provided between the first phase retarder 14 and the partially penetrating partially reflective element 16, and the fifthA The embodiment in the figure is the same, the second phase retarder 18 and the linear polarizer 20 can be replaced by a circular polarizer, and a flat glass 26 is added before the polarized light enters the human eye 24. The specific data of this embodiment are as follows in Table 3: f = 23.3 H = 17 2ω = 98.39° f1 = 158.4 TTL = 33.3 surface Radius thickness Nd Vd radius lens stop Infinity 10 2 2 unlimited 0.5 1.52000 64.0 20 3 unlimited 0.3 1.49000 57.4 20 4 unlimited 0.5 20 5 77.53033929 5.5 1.49000 70.4 20 L1 6 unlimited 0.08 1.49000 57.4 20 7 unlimited 0.12 1.49000 57.4 20 8 unlimited 16.3 20 9 unlimited Table Three

第5C圖之實施例中,透鏡22設於反射式偏振元件12及第一相位延遲片14之間,此實施例的反射式偏振元件12設置於透鏡22右側,部分穿透部分反射元件16則可設置於第一相位延遲片14之左側或第二相位延遲片18之右側,與第5A圖之實施例相同的是,第二相位延遲片18及線偏振片20可利用一圓偏振片取代,並在偏振光入射人眼24之前增設一平板玻璃26。此實施例之具體數據如下表四: f = 21.86 H = 17 2ω = 96.4 ° f1 = 107.4 TTL = 25.38   表面 Radius 厚度 Nd Vd 半徑 透鏡 stop 無限 (Infinity) 10     2   2 無限 0.5 1.52000 64.0 21.3   3 無限 0.3 1.49000 57.4 21.3   4 無限 0.5 1.52000 64.2 21.3   5 無限 0.08 1.49000 57.4 21.3     6 無限 4.7     21.3 7 151.8207853 6 1.49000 70.4 21.3 L1 8 -79.34731414 3.3     21.3 9 無限                 非球面               係數 透鏡面 K A B C D   7 32.684 -4.961E-07 -3.690E-09 -1.327E-12 -3.377E-15   8 -0.380 -2.352E-07 3.054E-10 0.000E+00 0.000E+00   表四 In the embodiment shown in FIG. 5C, the lens 22 is provided between the reflective polarizing element 12 and the first phase retarder 14. The reflective polarizing element 12 of this embodiment is provided on the right side of the lens 22, and the partial reflective element 16 is partially penetrated. It can be arranged on the left side of the first phase retarder 14 or the right side of the second phase retarder 18. The second phase retarder 18 and the linear polarizer 20 can be replaced by a circular polarizer, which is the same as the embodiment in Fig. 5A. A flat glass 26 is added before the polarized light enters the human eye 24. The specific data of this embodiment are as follows in Table 4: f = 21.86 H = 17 2ω = 96.4 ° f1 = 107.4 TTL = 25.38 surface Radius thickness Nd Vd radius lens stop Infinity 10 2 2 unlimited 0.5 1.52000 64.0 21.3 3 unlimited 0.3 1.49000 57.4 21.3 4 unlimited 0.5 1.52000 64.2 21.3 5 unlimited 0.08 1.49000 57.4 21.3 6 unlimited 4.7 21.3 7 151.8207853 6 1.49000 70.4 21.3 L1 8 -79.34731414 3.3 21.3 9 unlimited Aspherical lens surface K A B C D 7 32.684 -4.961E-07 -3.690E-09 -1.327E-12 -3.377E-15 8 -0.380 -2.352E-07 3.054E-10 0.000E+00 0.000E+00 Table Four

本發明利用偏振原理將光路在光學系統內做內部折反射達到將光學系統長度縮短的效果,如第2圖及第5A圖至第5C圖之實施例所示,圖中偏振光從顯示屏10發出後至人眼24前的光學模組(圖中未示)之光學路徑經過多次的反射,假設光線從顯示屏10到光學模組的每一次反射的長度加總後的光程為d,與第1圖之先前技術中顯示屏10到光學模組23的光程d幾近相同,但由於在第2圖及第5A圖至第5C圖之實施例中,偏振光從顯示屏10發出後,至人眼24前之光學模組的這段光路是經過多次反射加總而得到的,因此實際上從顯示屏10到光學模組的長度會遠小於第1圖中從顯示屏10到光學模組23的長度,達到縮短光學系統之長度的目的。The present invention uses the principle of polarization to internally refract and reflect the optical path in the optical system to achieve the effect of shortening the length of the optical system. As shown in the embodiment in Figure 2 and Figure 5A to Figure 5C, the polarized light is emitted from the display screen 10. The optical path of the optical module (not shown in the figure) after it is emitted to the human eye 24 undergoes multiple reflections. It is assumed that the total length of each reflection of the light from the display screen 10 to the optical module is d , It is almost the same as the optical path d from the display screen 10 to the optical module 23 in the prior art in FIG. 1, but because in the embodiment of FIG. 2 and FIG. 5A to FIG. 5C, the polarized light passes from the display screen 10 After being emitted, the section of light path to the optical module in front of the human eye 24 is obtained by the sum of multiple reflections. Therefore, in fact, the length from the display screen 10 to the optical module is much smaller than that from the display screen in Figure 1. 10 to the length of the optical module 23 to shorten the length of the optical system.

下表五為第2圖、第5A~5C圖之實施例套入上述公式(1)~(4)之計算結果。   第2圖之實施例 第5A圖之實施例 第5B圖之實施例 第5C圖之實施例

Figure 02_image011
1.34 1.91 1.96 1.49
Figure 02_image013
0.75 1.32 1.37 0.9
Figure 02_image015
1.44 0.61 0.55 0.65
Figure 02_image017
1.49 0.98 1.02 1.28
表五 The following table 5 shows the calculation results of the embodiment of Fig. 2 and Fig. 5A~5C with the above formulas (1)~(4). Example of Figure 2 Example of Figure 5A Example of Figure 5B Example of Figure 5C
Figure 02_image011
1.34 1.91 1.96 1.49
Figure 02_image013
0.75 1.32 1.37 0.9
Figure 02_image015
1.44 0.61 0.55 0.65
Figure 02_image017
1.49 0.98 1.02 1.28
Table 5

綜上所述,本發明所提供之微型化短距離光學系統係在顯示屏後、光學模組前依序擺放複數光學元件,利用光線多次反射達到光學系統的長度縮短之目的,且利用相位延遲片進行四次相位延遲,使偏振光的偏振態最後到達光學模組時與一開始從顯示屏發射的偏振態相位延遲一個波長的整數倍。本發明更利用單一透鏡之設計達到短距離微型化之目的,且仍可保持良好的像差校正,適用於廣角鏡頭或廣角目鏡,視角可達50度以上。In summary, the miniaturized short-distance optical system provided by the present invention is to place a plurality of optical elements in sequence behind the display screen and in front of the optical module, using multiple reflections of light to achieve the purpose of shortening the length of the optical system, and using The phase retarder performs four phase delays, so that when the polarization state of the polarized light finally reaches the optical module, the phase of the polarization state emitted from the display screen is delayed by an integer multiple of a wavelength. The invention further utilizes the design of a single lens to achieve the purpose of miniaturization at a short distance while still maintaining good aberration correction. It is suitable for wide-angle lenses or wide-angle eyepieces, and the viewing angle can reach 50 degrees or more.

唯以上所述者,僅為本發明之較佳實施例而已,並非用來限定本發明實施之範圍。故即凡依本發明申請範圍所述之特徵及精神所為之均等變化或修飾,均應包括於本發明之申請專利範圍內。Only the above are merely preferred embodiments of the present invention, and are not used to limit the scope of the present invention. Therefore, all equivalent changes or modifications made in accordance with the characteristics and spirit of the application scope of the present invention shall be included in the patent application scope of the present invention.

10:顯示屏 12:反射式偏振元件 14:第一相位延遲片 16:部分穿透部分反射元件 18:第二相位延遲片 20:線偏振片 22:透鏡 23:光學模組 24:人眼 26:平板玻璃 10: Display 12: Reflective polarization element 14: The first phase retarder 16: Partially penetrated partly reflective element 18: The second phase retarder 20: Linear polarizer 22: lens 23: Optical module 24: Human Eye 26: flat glass

第1圖為先前技術中頭戴顯示器的顯示屏與人眼之間光程之示意圖。 第2圖為本發明微型化短距離光學系統之一實施例之示意圖。 第3圖為本發明微型化短距離光學系統之一實施例之分解圖 第4A圖至第4C圖為本發明微型化短距離光學系統之步驟流程圖。 第5A圖至第5C圖為本發明微型化短距離光學系統中單一透鏡之不同配置之實施例示意圖。 Figure 1 is a schematic diagram of the optical path between the display screen of the head mounted display and the human eye in the prior art. Figure 2 is a schematic diagram of an embodiment of the miniaturized short-distance optical system of the present invention. Figure 3 is an exploded view of an embodiment of the miniaturized short-distance optical system of the present invention Figures 4A to 4C are flow charts of the steps of the miniaturized short-distance optical system of the present invention. 5A to 5C are schematic diagrams of different configurations of a single lens in the miniaturized short-distance optical system of the present invention.

10:顯示屏 10: Display

12:反射式偏振元件 12: Reflective polarization element

14:第一相位延遲片 14: The first phase retarder

16:部分穿透部分反射元件 16: Partially penetrated partly reflective element

18:第二相位延遲片 18: The second phase retarder

20:線偏振片 20: Linear polarizer

22:透鏡 22: lens

24:人眼 24: Human Eye

Claims (12)

一種微型化短距離光學系統,包括:一顯示屏,輸出影像並發出偏振或非偏振之光線;一反射式偏振元件,對應該顯示屏設置,使該光線部分穿透、部分反射;一第一相位延遲片,對應該反射式偏振元件設置,接收部分穿透該反射式偏振元件之該光線,並進行第一次相位延遲;一部分穿透部分反射元件,對應該第一相位延遲片設置,使經該第一次相位延遲之該光線部分穿透該部分穿透部分反射元件,部分則反射回該第一相位延遲片進行第二次及第三次相位延遲;至少一光學元件,對應該部分穿透部分反射元件設置,接收部分穿透該部分穿透部分反射元件且經過該第二、第三次相位延遲之該光線,並進行第四次相位延遲,再讓經過第四次相位延遲之光線通過而只經過兩次相位延遲的光線無法通過;以及一透鏡,設於該反射式偏振元件、該第一相位延遲片、該部分穿透部分反射元件及該光學元件中任一者之任一側,將該顯示屏所輸出之該影像導入至少一人眼中,其中,顯示屏之可視範圍半徑為H,該光學系統之總長為TTL,該眼睛到該光學系統之最近元件表面中心距離為E,0.3
Figure 108132484-A0305-02-0016-1
3.2。
A miniaturized short-distance optical system, including: a display screen, which outputs images and emits polarized or unpolarized light; a reflective polarizing element, arranged corresponding to the display screen, so that the light partially penetrates and partially reflects; The phase retarder is set corresponding to the reflective polarizing element, receives the light partially penetrating the reflective polarizing element, and performs the first phase retardation; part penetrating the partially reflective element, corresponding to the first phase retarder setting, Part of the light that has undergone the first phase delay penetrates the part of the reflection element, and part of it is reflected back to the first phase retarder for the second and third phase delays; at least one optical element corresponds to the part The partially penetrating reflective element is arranged to receive the light partially penetrating the partially penetrating element and passing through the second and third phase delays, and perform the fourth phase delay, and then let the light after the fourth phase delay Light passes through but only two phase delays cannot pass through; and a lens arranged on any of the reflective polarizing element, the first phase retarder, the partially penetrating partially reflective element, and the optical element On one side, lead the image output by the display screen into at least one eye, where the visible radius of the display screen is H, the total length of the optical system is TTL, and the distance from the eye to the center of the closest element surface of the optical system is E , 0.3
Figure 108132484-A0305-02-0016-1
3.2.
如請求項1所述之微型化短距離光學系統,其中該人眼至該透鏡之間可包括一至多片平板玻璃,且該透鏡至該顯示屏之間更可包括一至多片平板玻璃,並可於該平板玻璃上設置對應的一至多個光學元 件,其材質可為薄膜材料或為光學鍍膜等以塗佈、鍍膜或黏合等的形式設置於該平板玻璃上。 The miniaturized short-distance optical system according to claim 1, wherein between the human eye and the lens can include one or more pieces of flat glass, and between the lens and the display screen can further include one or more pieces of flat glass, and One or more optical elements can be set on the flat glass The material can be a thin-film material or an optical coating, etc., which are arranged on the flat glass in the form of coating, coating or bonding. 如請求項1所述之微型化短距離光學系統,其中該光學元件包括:一第二相位延遲片,對應該部分穿透部分反射元件設置,接收部分穿透該部分穿透部分反射元件且經過該第二、第三次相位延遲之該光線,並進行第四次相位延遲;以及一線偏振片,對應該第二相位延遲片設置,該線偏振片係用以讓只經過兩次相位延遲的光線不要通過,並讓經過第四次相位延遲之光線通過。 The miniaturized short-distance optical system according to claim 1, wherein the optical element includes: a second phase retarder disposed corresponding to the partially penetrating partially reflective element, and the receiving portion penetrates the partially penetrating partially reflective element and passes through The second and third phase retardation of the light, and the fourth phase retardation; and a linear polarizer, corresponding to the second phase retarder, the linear polarizer is used to allow only two phase retardation Do not let light pass through, and let light passing through the fourth phase delay. 如請求項1所述之微型化短距離光學系統,其中該光學元件可為一圓偏振片。 The miniaturized short-distance optical system according to claim 1, wherein the optical element may be a circular polarizer. 如請求項3所述之微型化短距離光學系統,其中該部分穿透部分反射元件所反射回該第一相位延遲片之光線經過該第一相位延遲片的第二次相位延遲後,通過該第一相位延遲片到達該反射式偏振元件,並在該反射式偏振元件上完成反射,讓該光線再反射回該第一相位延遲片並進行第三次相位延遲,接著該光線再穿過該第一相位延遲片及該部分穿透部分反射元件到達該第二相位延遲片,且該透鏡可設於該第二相位延遲片及該線偏振片中任一者之任一側。 The miniaturized short-distance optical system according to claim 3, wherein the light that partially penetrates the partially reflective element and is reflected back to the first phase retarder passes through the second phase retardation of the first phase retarder. The first phase retarder reaches the reflective polarizing element and completes reflection on the reflective polarizing element, so that the light is reflected back to the first retarder for a third phase retardation, and then the light passes through the The first phase retarder and the partially penetrating partially reflective element reach the second phase retarder, and the lens can be arranged on either side of the second phase retarder and the linear polarizer. 如請求項3所述之微型化短距離光學系統,其中該第一、第二、第三、第四次相位延遲皆增加1/4波長的奇數倍的相位延遲,使到達該人眼之該光線共延遲一個波長的整數倍。 The miniaturized short-distance optical system according to claim 3, wherein the first, second, third, and fourth phase delays are all increased by an odd multiple of 1/4 wavelength, so as to reach the human eye The light is delayed by an integer multiple of a wavelength. 如請求項1所述之微型化短距離光學系統,其中該顯示屏送出並進入該反射式偏振元件之該光線為偏振光時,其可為線偏振光、圓偏振光或其他偏振態,且該顯示屏及該反射式偏振元件之間更可依據該 顯示屏之偏振情況增加一個或複數個線偏振片、圓偏振片或相位延遲片以調整該顯示屏之偏振態,其可為薄膜材料或為光學鍍膜等以塗佈、鍍膜或黏合等的形式設置於該顯示屏或該反射式偏振元件上。 The miniaturized short-distance optical system according to claim 1, wherein when the light emitted from the display screen and entering the reflective polarizing element is polarized light, it can be linearly polarized light, circularly polarized light or other polarization states, and The display screen and the reflective polarizing element can be based on the The polarization of the display screen adds one or more linear polarizers, circular polarizers or phase retarders to adjust the polarization state of the display, which can be thin film materials or optical coatings in the form of coating, coating or bonding, etc. It is arranged on the display screen or the reflective polarizing element. 如請求項7所述之微型化短距離光學系統,其中該線偏振光經過該第一相位延遲片後轉換成左圓偏振光或右圓偏振光。 The miniaturized short-distance optical system according to claim 7, wherein the linearly polarized light is converted into left circularly polarized light or right circularly polarized light after passing through the first phase retarder. 如請求項1所述之微型化短距離光學系統,其中該顯示屏之可視範圍半徑為H,該光學系統之總長為TTL,0.9
Figure 108132484-A0305-02-0018-2
2.9。
The miniaturized short-distance optical system according to claim 1, wherein the visible range radius of the display screen is H, and the total length of the optical system is TTL, 0.9
Figure 108132484-A0305-02-0018-2
2.9.
如請求項1所述之微型化短距離光學系統,其中該光學系統之有效焦距為F,該透鏡靠近該眼睛之一側之曲率半徑為R1,靠近該顯示屏之一側之曲率半徑為R2,0.4
Figure 108132484-A0305-02-0018-3
1.95。
The miniaturized short-distance optical system according to claim 1, wherein the effective focal length of the optical system is F, the radius of curvature of the side of the lens close to the eye is R 1 , and the radius of curvature of the side close to the display screen is R 2 , 0.4
Figure 108132484-A0305-02-0018-3
1.95.
如請求項1所述之微型化短距離光學系統,其中該光學系統之有效焦距為F,該光學系統之半視場角為ω,該光學系統之總長為TTL,0.3
Figure 108132484-A0305-02-0018-4
2.7。
The miniaturized short-distance optical system according to claim 1, wherein the effective focal length of the optical system is F, the half angle of view of the optical system is ω, and the total length of the optical system is TTL, 0.3
Figure 108132484-A0305-02-0018-4
2.7.
如請求項1所述之微型化短距離光學系統,其中該透鏡可為非球面透鏡、菲涅爾透鏡或多片透鏡之組合。 The miniaturized short-distance optical system according to claim 1, wherein the lens may be an aspheric lens, a Fresnel lens, or a combination of multiple lenses.
TW108132484A 2019-09-09 2019-09-09 Miniaturized short-distance optical system TWI711839B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108132484A TWI711839B (en) 2019-09-09 2019-09-09 Miniaturized short-distance optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108132484A TWI711839B (en) 2019-09-09 2019-09-09 Miniaturized short-distance optical system

Publications (2)

Publication Number Publication Date
TWI711839B true TWI711839B (en) 2020-12-01
TW202111388A TW202111388A (en) 2021-03-16

Family

ID=74670123

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108132484A TWI711839B (en) 2019-09-09 2019-09-09 Miniaturized short-distance optical system

Country Status (1)

Country Link
TW (1) TWI711839B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016003746A1 (en) * 2014-06-30 2016-01-07 Microsoft Technology Licensing, Llc Eyepiece for near eye display system
CN105572894A (en) * 2016-01-28 2016-05-11 深圳多哚新技术有限责任公司 Short-distance optical amplifier module, short-distance optical amplification method and short-distance optical amplification system
CN105629472A (en) * 2016-01-28 2016-06-01 深圳多哚新技术有限责任公司 Short-distance optical amplification module group, amplification method, and amplification system
CN108873334A (en) * 2018-06-19 2018-11-23 平行现实(杭州)科技有限公司 A kind of ultra thin optical amplification mould group and amplification system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016003746A1 (en) * 2014-06-30 2016-01-07 Microsoft Technology Licensing, Llc Eyepiece for near eye display system
CN105572894A (en) * 2016-01-28 2016-05-11 深圳多哚新技术有限责任公司 Short-distance optical amplifier module, short-distance optical amplification method and short-distance optical amplification system
CN105629472A (en) * 2016-01-28 2016-06-01 深圳多哚新技术有限责任公司 Short-distance optical amplification module group, amplification method, and amplification system
CN108873334A (en) * 2018-06-19 2018-11-23 平行现实(杭州)科技有限公司 A kind of ultra thin optical amplification mould group and amplification system

Also Published As

Publication number Publication date
TW202111388A (en) 2021-03-16

Similar Documents

Publication Publication Date Title
KR102455328B1 (en) Augmented reality device and optical system therefor
CN104656258B (en) The nearly optics of the eye display device of the adjustable curved surface waveguide of diopter
US9671614B2 (en) See-through eyepiece for head wearable display
CN211698435U (en) Optical imaging system and head-mounted display equipment
US8259239B2 (en) Polarized head-mounted projection display
US9915823B1 (en) Lightguide optical combiner for head wearable display
US6563648B2 (en) Compact wide field of view imaging system
CN214751111U (en) Ultra-short distance ocular lens system
CN107065181B (en) Optical system of virtual reality equipment
US9389422B1 (en) Eyepiece for head wearable display using partial and total internal reflections
TWM596873U (en) Optical system of miniature head-mounted display
CN210776039U (en) Miniaturized short-distance optical system
TWM591624U (en) Short distance optical system
TWM615839U (en) Ultra short distance eyepiece system
CN113391447A (en) Optical system of miniature head-mounted display
TWM587756U (en) Miniaturized short-distance optical system
TWM614817U (en) Optical system for miniaturized head-mounted display device
CN210776034U (en) Short-distance optical system
TWI656358B (en) Optical system of miniaturized head-mounted display
TW202134734A (en) Optical system of miniature head-mounted display achieving an optical distance with a similar length by virtue of the phase delay and multiple reflection of rays
CN211826725U (en) Optical system of miniature head-mounted display
TWI711838B (en) Short distance optical system
TWI797563B (en) Ultra short distance eyepiece system
KR20130116548A (en) Optical system for see-through type head mounted display
TWI711839B (en) Miniaturized short-distance optical system