TWI709351B - 用於窄頻帶機器類型通訊之頻率內及頻率間測量技術 - Google Patents

用於窄頻帶機器類型通訊之頻率內及頻率間測量技術 Download PDF

Info

Publication number
TWI709351B
TWI709351B TW105132560A TW105132560A TWI709351B TW I709351 B TWI709351 B TW I709351B TW 105132560 A TW105132560 A TW 105132560A TW 105132560 A TW105132560 A TW 105132560A TW I709351 B TWI709351 B TW I709351B
Authority
TW
Taiwan
Prior art keywords
frequency
duration
intra
inter
frequency measurement
Prior art date
Application number
TW105132560A
Other languages
English (en)
Other versions
TW201717683A (zh
Inventor
黃銳
揚 唐
阿納托利 亞菲
Original Assignee
美商蘋果公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商蘋果公司 filed Critical 美商蘋果公司
Publication of TW201717683A publication Critical patent/TW201717683A/zh
Application granted granted Critical
Publication of TWI709351B publication Critical patent/TWI709351B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2666Acquisition of further OFDM parameters, e.g. bandwidth, subcarrier spacing, or guard interval length

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本發明描述一種有增強型機器類型通訊(eMTC)能力之使用者設備(UE)之裝備,其可操作以與一有eMTC能力之演進型節點B (eNB)在一無線網路上通訊。該裝備可包含一第一電路及一第二電路。該第一電路可操作以發起與一第一持續時間之一頻率內測量間隙長度(MGL)對應的一頻率內測量。該第二電路可操作以發起與一第二持續時間之一頻率間MGL對應的一頻率間測量。該第一持續時間可比該第二持續時間短。可藉由專用且分離的組態輸入建立該第一持續時間及該第二持續時間。該第二電路亦可操作以根據一頻率內測量間隙模式排程多個頻率內測量,且可操作以根據一頻率間測量間隙模式排程多個頻率間測量。

Description

用於窄頻帶機器類型通訊之頻率內及頻率間測量技術
本發明係有關於用於窄頻帶機器類型通訊之頻率內及頻率間測量技術。
發明背景 已實施或正推出多種無線蜂巢式通訊系統,包括第三代合作夥伴計劃(3GPP)全球行動電信系統(UMTS)、3GPP長期演進(LTE)系統、3GPP先進LTE (LTE-A)系統及第五代無線/第五代行動網路(5G)系統。下一代蜂巢式通訊系統可提供對窄頻帶(NB)使用者裝置之支援,該等裝置諸如機器類型通訊(MTC)裝置、物聯網(IoT)裝置或蜂巢式物聯網(CIoT)裝置。
依據本發明之一實施例,係特地提出一種具有增強型機器類型通訊(eMTC)能力之使用者設備(UE)的裝備,其可操作以在一無線網路上與一具有eMTC能力之演進型節點B (eNB)通訊,包含進行以下操作之一或多個處理器:發起與第一持續時間之頻率內測量間隙長度(MGL)對應的頻率內測量;及發起與第二持續時間之頻率間MGL對應的頻率間測量,在發起該頻率內測量之後將射頻(RF)鏈中之至少部分重調諧至伺服載波之中心6物理資源塊(PRB)。
較佳實施例之詳細說明 已實施多種無線蜂巢式通訊系統,包括第三代合作夥伴計劃(3GPP)全球行動電信系統(UMTS)、3GPP長期演進(LTE)系統及3GPP先進LTE (LTE-A)系統。下一代無線蜂巢式通訊系統正處於開發中,諸如第五代無線/第五代行動網路(5G)系統。此類下一代系統可提供對窄頻帶(NB)使用者裝置之支援,該等裝置諸如機器類型通訊(MTC)裝置、增強型MTC (eMTC)裝置、物聯網(IoT)裝置或蜂巢式物聯網(CIoT)裝置。
有eMTC能力之使用者設備(UE)及有eMTC能力之演進型節點B (eNB)可支援窄頻帶操作,其中UE可僅在全系統頻寬之一部分上操作。舉例而言,eMTC UE可支援在較大系統頻寬(例如,10兆赫茲(MHz))內之窄頻帶(例如,1.4 MHz)中之操作。相比於與3GPP規格之版本13 (結束日期2016-03-11 (SP-71))相容的MTC UE及與3GPP規格之版本12 (凍結期2015-03-13 (SP-67))相容的類別0 UE,此窄頻帶操作可降低eMTC UE之成本。
eMTC UE亦可支援窄頻帶操作之靈活頻率分配及跳頻,其中當前被調諧至一個6物理資源區塊(PRB)子頻帶之UE可跳頻至另一6-PRB子頻帶。因此,eMTC UE可調諧至一系統頻寬上之各種6-PRB子頻帶,包括該系統頻寬之固定中心6-PRB子頻帶及其他非中心6-PRB子頻帶。
同時,無線通訊系統通常可支援切換機制及程序,藉由該等切換機制及程序,與系統中一個小區之eNB耦合之UE可過渡至與系統中另一小區之eNB耦合。UE在移動至另一小區的同時保持以相同頻率操作之切換可被稱為頻率內切換。UE在移動至另一小區的同時改變成以不同頻率操作之切換可被稱為頻率間切換。
可在伺服載波之中心6-PRB子頻帶中傳輸主要同步信號(PSS)及次要同步信號(SSS)。eMTC UE可利用PSS及SSS傳輸以執行鄰近小區偵測(例如,依照切換)。因此,正在中心6-PRB子頻帶外之6-PRB子頻帶上操作的eMTC UE可經設置以將射頻(RF)鏈中之至少部分重調諧至中心6-PRB子頻帶,以支援切換程序。此外,eMTC UE可經設置以重調諧至中心6-PRB子頻帶以不僅用於頻率間切換,且亦用於頻率內切換。
本文中描述支援有eMTC能力之UE (其可為NB MTC UE)之頻率內測量及頻率間測量的機制及方法。在一些實施例中,可發起第一持續時間之頻率內測量,且可發起第二持續時間之頻率間測量。在一些實施例中,第一及第二持續時間可為獨立且可不同組態的。對於一些實施例,可根據頻率內測量間隙模式排程頻率內測量,且可根據頻率間測量間隙模式排程頻率間測量。在一些實施例中,在頻率內測量期間,可暫停下行鏈路(DL)操作、上行鏈路(UL)操作或兩者。(出於本發明之目的,頻率間測量間隙可包括頻率間測量及/或無線電存取技術間(RAT間)測量。)
在以下描述中,論述眾多細節以提供本發明之實施例之更透徹解釋。然而,熟習此項技術者將顯而易見,可在沒有此等特定細節之情況下實踐本發明之實施例。在其他情況下,以方塊圖形式而非詳細展示熟知結構及裝置以便避免混淆本發明之實施例。
應注意,在實施例之對應圖式中,藉由線來表示信號。一些線可較粗以指示更大數目之組成信號路徑,及/或在一或多個末端處具有箭頭以指示資訊流之方向。此等指示不意欲為限制性的。 確切而言,結合一或多個例示性實施例使用該等線以促進對電路或邏輯單元之更容易理解。 如藉由設計需求或偏好指示之任何所表示的信號實際上可包含可在任一方向上行進且可藉由任何合適類型之信號方案實施之一或多個信號。
貫穿本說明書,且在申請專利範圍中,術語「已連接」意謂已連接之事物之間的直接電氣、機械或磁性連接,而無任何中間裝置。術語「耦接」意謂已連接之事物之間的直接電氣、機械或磁性連接或經由一或多個被動式或主動式中間裝置進行之間接連接。術語「電路」或「模組」可指經配置以與彼此合作以提供所要功能之一或多個被動式及/或主動式組件。術語「信號」可指至少一種電流信號、電壓信號、磁信號或資料/時脈信號。「一」及「該」之含義包括多個參考物。「中」之含義包括「中」及「上」。
術語「實質上」、「接近」、「大約」、「近似」及「約」通常係指在目標值之+/-10%內。除非另外指定,否則使用序數形容詞「第一」、「第二」及「第三」等描述共同物件僅指示正參考類似物件之不同執行個體,且並不意欲暗示如此描述之物件必須處於給定序列,無論在時間上、空間上、等級上抑或以任何其他方式。
應理解,如此使用之術語在適當情況下可互換,使得本文中所描述之本發明的實施例(例如)能夠以除本文中所說明或以其他方式描述的彼等定向外的其他定向進行操作。
在說明書及申請專利範圍中,術語「左側」、「右側」、「前面」、「背面」、「頂部」、「底部」、「在……上」、「在……下」及其類似者(若存在)用於描述性目的且未必用於描述永久性相對位置。
出於實施例之目的,各種電路、模組及邏輯區塊中之電晶體為穿隧FET (TFET)。各種實施例的一些電晶體可包含金屬氧化物半導體(MOS)電晶體,其包括汲極端子、源極端子、閘極端子及主體端子。電晶體亦包括三閘極及FinFET電晶體、環繞式閘極圓柱形電晶體、方形線或矩形帶電晶體或實施電晶體功能性之其他裝置(類似碳奈米管或自旋電子學裝置)。MOSFET對稱源極及汲極端子,亦即,此處該等端子為相同端子且可互換地使用。另一方面,TFET裝置具有不對稱源極及汲極端子。熟習此項技術者將瞭解,在不脫離本發明範疇的情況下,例如雙極接面電晶體BJT PNP/NPN、BiCMOS、CMOS等之其他電晶體可用於一些電晶體。
出於本發明之目的,片語「A及/或B」及「A或B」意謂(A)、(B)或(A及B)。出於本發明之目的,片語「A、B及/或C」意謂(A)、(B)、(C)、(A及B)、(A及C)、(B及C)或(A、B及C)。
另外,本發明中論述的組合邏輯及順序邏輯的各種元件可同時涉及實體結構(諸如AND閘極、OR閘極或XOR閘極)或實施為所論述邏輯之布林(Boolean)等效物的邏輯結構之裝置的合成集合或以其他方式最佳化之集合。
另外,出於本發明之目的,術語「eNB」可指傳統eNB、eMTC eNB、下一代或5G eNB、mmWave eNB、mmWave小型小區、AP及/或用於無線通訊系統之另一基地台。出於本發明之目的,術語「UE」可指UE、eMTC UE、5G UE、mmWave UE、STA及/或用於無線通訊系統之另一行動終端。
下文所論述之eNB及/或UE的各種實施例可處理各種類型的一或多個傳輸內容。對傳輸內容之一些處理可包含解調變、解碼、偵測、剖析及/或以其他方式處置已接收到的傳輸內容。在一些實施例中,處理傳輸內容之eNB或UE可判定或識別與該傳輸內容相關聯之傳輸類型及/或條件。對於一些實施例,處理傳輸內容之eNB或UE可根據該傳輸內容的類型操作及/或可基於該傳輸內容的類型條件性地操作。處理傳輸內容之eNB或UE亦可識別該傳輸內容攜載之資料的一或多個值或欄位。處理傳輸內容可包含經由一或多層協定堆疊(其可以例如硬體及/或軟體配置之元件實施)移動該傳輸內容,諸如經由一或多層協定堆疊移動eNB或UE已接收到的傳輸內容。
下文所論述之eNB及/或UE的各種實施例亦可產生各種類型的一或多個傳輸內容。傳輸內容之一些產生可包含調變、編碼、格式化、組譯及/或以其他方式處置待傳輸之傳輸內容。在一些實施例中,產生傳輸內容之eNB或UE可建立與該傳輸內容相關聯之傳輸類型及/或條件。對於一些實施例,產生傳輸內容之eNB或UE可根據該傳輸內容的類型操作及/或可基於該傳輸內容的類型條件性地操作。產生傳輸內容之eNB或UE亦可判定該傳輸內容攜載之資料的一或多個值或欄位。產生傳輸內容可包含經由一或多層協定堆疊(其可以例如硬體及/或軟體配置之元件實施)移動該傳輸內容,諸如經由一或多層協定堆疊移動待由eNB或UE發送之傳輸內容。
1 說明根據本發明之一些實施例的無線通訊系統上之載波頻寬。頻譜部分100可涵蓋具有中心區域120之載波頻帶110。載波頻帶110之中心子頻帶130可處於中心區域120內,而載波頻帶110之非中心子頻帶140可處於中心區域120外部。
在一些實施例中,可將eMTC UE初始地調諧至中心子頻帶130,其可為載波頻帶110之在中心區域120內的中心6 PRB。稍後可將該eMTC UE調諧至非中心子頻帶140。舉例而言,可藉由載波頻帶110內之調頻將eMTC UE調諧至非中心子頻帶140。
2 說明根據本發明之一些實施例的無線通訊系統上之載波頻寬的一部分。頻譜部分200可涵蓋具有中心區域之載波頻帶。載波頻帶之中心子頻帶230可處於載波頻帶之中心6 PRB內且涵蓋載波頻帶之中心6 PRB,而載波頻帶之非中心子頻帶240可處於載波頻帶之中心6 PRB外部。
可將eMTC UE調諧至載波頻帶之中心6 PRB。eMTC UE接著可執行調頻到達載波頻帶之非中心子頻帶240,且可執行對應的重調諧235到達非中心子頻帶240。
隨後,在被調諧至非中心子頻帶240時,eMTC UE可執行(例如)自其當前小區至新小區之切換。在傳統LTE系統中,執行自UE之當前小區之子頻帶至新小區中具有相同頻率之子頻帶的切換之UE可能無法經設置以執行重調諧。然而,執行切換之eMTC UE可經設置以在新小區之中心6 PRB中利用PSS及SSS傳輸。因此,當經調諧至非中心子頻帶240之eMTC UE執行自其當前小區至新小區之切換時,eMTC UE可執行重調諧245到達中心6 PRB,此情形可准許eMTC UE有利地利用PSS及SSS傳輸。
3 說明根據本發明之一些實施例的無線通訊系統上之載波帶寬的若干部分。在情境300中,經調諧至子頻帶310之eMTC UE可執行重調諧315到達同一載波中之中心6 PRB 320。相反,在情境350中,經調諧至子頻帶360之eMTC UE可執行重調諧365到達另一載波中之子頻帶370。
在一些實施例中,重調諧315可與頻率內測量之測量間隙對應,而重調諧365可與頻率間測量之測量間隙對應。在一些實施例中,可以時分多工(TDM)方式分隔測量間隙。在一些實施例中,可藉由不同的接收(Rx)鏈分隔測量間隙。
頻率內測量之重調諧時間可明顯少於頻率間測量之重調諧時間。此轉而可與頻率內測量之快得多的RF重調諧時間有關。舉例而言,在一些實施例中,頻率內重調諧時間可持續少至1正交分頻多工(OFDM)符號,而頻率間測量可延續長達500微秒。此可引起頻率內情況與頻率間情況之間的測量間隙長度(MGL)不同。舉例而言,在一些實施例中,頻率內MGL可為5毫秒(ms),而頻率間MGL可為6 ms。
在一些實施例中,eMTC UE可藉由支援專用且分離的頻率內測量間隙及頻率間測量間隙而引起此等頻率內與頻率間測量差值,此可有利地幫助eMTC UE減少與所有類型之測量間隙相關聯的總體額外負擔。在一些實施例中,專用且分離的頻率內及頻率間測量間隙可藉由耦合至eMTC UE之網路的各種元素進行組態。在一些此類實施例中,網路可因此具有關於待用於頻率內測量及/或頻率間測量之間隙的資訊。
在一些實施例中,eMTC UE之頻率內MGL可與傳統LTE系統之頻率間MGL實質上相同或比其更短。舉例而言,eMTC UE之頻率內MGL的MGL可為5 ms (相比於傳統LTE系統之6 ms頻率間MGL)。對於一些實施例,eMTC UE之頻率間測量間隙可以類似於傳統LTE系統之頻率間測量間隙的方式進行組態。
同時,在各種實施例中,頻率間測量可使用Rx鏈,且因此可在頻率間測量間隙期間暫停DL操作。為避免與頻率間測量發生潛在干擾,同樣可暫停UL操作。相反,在頻率內測量間隙期間可不暫停DL操作及/或UL操作。對DL操作之暫停可取決於網路排程,且在一些實施例中,可不需要暫停UL操作。對於一些實施例,網路之關於待使用的專用且分離的頻率內及頻率間測量間隙之資訊可允許網路獨立地排程(及/或暫停) DL操作及/或UL操作。
對於一些實施例,eMTC UE之頻率內測量間隙重複週期(MGRP)可實質上類似於傳統LTE系統之頻率間MGRP,而在其他實施例中,eMTC UE之頻率內MGRP可不同於傳統LTE系統之頻率間MGRP。在一些實施例中,eMTC UE之頻率間MGRP可實質上類似於傳統LTE系統之頻率間MGRP。頻率間eMTC UE與傳統LTE網路之間的MGL及/或MGRP的類似性可有利地促進eMTC UE與傳統LTE網路之間的兼容性。舉例而言,MGL及/或MGRP之類似性可有利地促進用於測量間隙之額外負擔的維持。
在傳統LTE系統(諸如3GPP LTE-A系統)之測量間隙模式組態的上下文中,下表1提供eMTC UE可支援之(例如MGL及/或MGRP之)例示性測量間隙模式組態。下表1可根據(例如) TS 36.133 (歐洲電信標準協會(ETSI)技術規格(TS) 136 133 v12.7.0 (2015-06))併入來自「表8.1.2.1-1:UE支援之間隙模式組態」的項目。下表1可因此針對eMTC UE替換表8.1.2.1-1。                 表1:UE支援之間隙模式組態
Figure 105132560-A0304-0001
在一些實施例中,可採用專用且分離的測量間隙模式來排程頻率內測量及頻率間測量。對於一些實施例,可採用共用式測量間隙模式來排程頻率內測量及頻率間測量。對於各種實施例,亦可定義分佈式測量間隙模式,其中eMTC UE可針對更短時段之頻率內測量執行更頻繁的重調諧操作。與完成測量操作所必需之總時間進行權衡,此類操作可使得對eMTC UE之效能的延遲影響減小。
4 說明根據本發明之一些實施例的測量間隙模式。模式400可包含可由多個MGRP 430分隔之一或多個頻率內測量410及一或多個頻率間測量420。對於頻率內及頻率間兩種類型之各N次測量,模式400可包含數目M次頻率間測量。N次測量之其餘部分可因此為頻率內測量。因此,對於各N次測量,模式400可包含數目M次頻率間測量及數目N-M次頻率內測量。
在一些實施例中,可藉由網路排程模式400,該網路可指示待用於頻率內測量及頻率間測量之模式。可使用對MeasConfig資訊元素(IE)以及新MeasGapConfigEMTC IE之修改來排程模式400。因此,網路可建立用於頻率內測量及/或頻率間測量之專用且分離的測量間隙模式定義(及/或MGL及/或MGRP)。
相反,對於各種實施例,UE可判定並建立用於頻率內測量及/或頻率間測量之專用且分離的測量間隙模式定義(及/或MGL及/或MGRP)。 UE接著可配置及/或以其他方式向網路指示該等專用且分離的頻率內及/或頻率間測量間隙模式定義(及/或MGL及/或MGRP)。該等模式可有利地負責UE可具有之關於如何最佳地共用或拆分頻率內測量與頻率間測量之間的資源之資訊,該資訊可比網路具有之可比資訊更佳。
圖5 說明根據本發明之一些實施例的MeasConfig IE。MeasConfig IE 500可包含具有measGapConfig參數520之抽象語法記法(ASN) MeasConfig定義510。MeasConfig IE 500可根據(例如) TS 36.331 (ETSI TS 136 331 v10.7.0 (2012-11))併入來自「6.3.5測量資訊元素」之MeasConfig IE的材料,且MeasConfig IE 500之部分可替換「6.3.5測量資訊元素」中MeasConfig IE之部分。反過來,measGapConfig參數520可對應於MeasGapConfigEMTC IE。
圖6 說明根據本發明之一些實施例的MeasGapConfigEMTC IE。MeasGapConfigEMTC IE 600可包含ASN MeasGapConfigEMTC定義610。ASN MeasGapConfigEMTC定義610可具有interlacedPatternInter值620。根據(例如) TS 36.331 (ETSI TS 136 331 v10.7.0 (2012-11)),MeasGapConfigEMTC IE 600可在結構上類似於「6.3.5測量資訊元素」之MeasGapConfig IE。反過來,interlacedPatternInter值620可定義頻率內測量及頻率間測量之經排程模式。
舉例而言,就interlacedPatternInter 620而言,值「1110」可與「頻率內測量、頻率內測量、頻率內測量、頻率間測量」之模式對應。此類模式可實質上類似於 4 之頻率內及頻率間測量之模式400。
7 說明根據本發明之一些實施例的演進型節點B (eNB)及使用者設備(UE)。 7 包括可操作以與彼此及LTE網路之其他元件共存的eNB 710及UE 730之方塊圖。描述eNB 710及UE 730之高級簡化架構以免模糊該等實施例。應注意,在一些實施例中,eNB 710可為靜止非行動裝置。
eNB 710耦接至一或多個天線705,且UE 730以類似方式耦接至一或多個天線725。然而,在一些實施例中,eNB 710可併入有或包含天線705,且在各種實施例中,UE 730可併入有或包含天線725。
在一些實施例中,天線705及/或天線725可包含一或多個方向性或全向性天線,包括單極天線、偶極天線、迴圈天線、平片天線、微帶天線、共面波天線或適用於傳輸RF信號之其他類型天線。在一些MIMO (多輸入及多輸出)實施例中,將天線705分開以利用空間分集。
eNB 710及UE 730可操作以在諸如無線網路之網路上與彼此通訊。eNB 710及UE 730可經由無線通訊通道750與彼此通訊,該無線通訊通道具有自eNB 710至UE 730之下行鏈路路徑及自UE 730至eNB 710之上行鏈路路徑兩者。
7 中所說明,在一些實施例中,eNB 710可包括實體層電路712、MAC (媒體存取控制)電路714、處理器716、記憶體718及硬體處理電路720。熟習此項技術者將瞭解,除已展示之組件外,可使用未展示之其他組件以形成完整eNB。
在一些實施例中,實體層電路712包括收發器713以將信號提供至UE 730及自該UE提供信號。收發器713使用一或多個天線705將信號提供至UE或其他裝置及自UE或其他裝置提供信號。在一些實施例中,MAC電路714控制對無線媒體之存取。記憶體718可為或可包括一或多個儲存媒體,諸如磁性儲存媒體(例如,磁帶或磁碟)、光學儲存媒體(例如,光碟)、電子儲存媒體(例如,習知硬碟驅動機、固態磁碟機或基於快閃記憶體之儲存媒體)或任何有形儲存媒體或非暫時性儲存媒體。硬體處理電路720可包含邏輯裝置或電路以執行各種操作。在一些實施例中,處理器716及記憶體718經配置以執行硬體處理電路720之操作,諸如本文中參考eNB 710及/或硬體處理電路720內之邏輯裝置及電路描述之操作。
因此,在一些實施例中,eNB 710可為包含應用程式處理器、記憶體、一或多個天線埠及允許該應用程式處理器與另一裝置通訊之介面的裝置。
7 中亦所說明,在一些實施例中,UE 730可包括實體層電路732、MAC電路734、處理器736、記憶體738、硬體處理電路740、無線介面742及顯示器744。熟習此項技術者將瞭解,除已展示之組件外,可使用未展示之其他組件以形成完整UE。
在一些實施例中,實體層電路732包括收發器733以將信號提供至eNB 710 (以及其他eNB)及自eNB 710 (以及其他eNB)提供信號。收發器733使用一或多個天線725將信號提供至eNB或其他裝置及自eNB或其他裝置提供信號。在一些實施例中,MAC電路734控制對無線媒體之存取。記憶體738可為或可包括一或多個儲存媒體,諸如磁性儲存媒體(例如,磁帶或磁碟)、光學儲存媒體(例如,光碟)、電子儲存媒體(例如,習知硬碟驅動機、固態磁碟機或基於快閃記憶體之儲存媒體)或任何有形儲存媒體或非暫時性儲存媒體。無線介面742可經配置以允許處理器與另一裝置通訊.顯示器744可提供視覺及/或觸覺顯示以供使用者與UE 730相互作用,諸如觸控式螢幕顯示器。硬體處理電路740可包含邏輯裝置或電路以執行各種操作。在一些實施例中,處理器736及記憶體738可經配置以執行硬體處理電路740之操作,諸如本文中參考UE 730及/或硬體處理電路740內之邏輯裝置及電路描述之操作。
因此,在一些實施例中,UE 730可為包含應用程式處理器、記憶體、一或多個天線、允許該應用程式處理器與另一裝置通訊之無線介面以及觸控式螢幕顯示器之裝置。
7 之元件及其他圖式中具有相同名稱或參考數字之元件可以本文中關於任何此類圖式描述之方式操作或起作用(但此類元件之操作及功能不限於該等描述)。舉例而言, 8 及圖 10 亦描繪eNB、eNB之硬體處理電路、UE及/或UE之硬體處理電路的實施例,且關於 7 以及 8 及圖 10 描述之實施例可以本文中關於該等圖式中任一者描述之方式操作或起作用。
另外,儘管eNB 710及UE 730各自經描述為具有若干獨立的功能元件,但該等功能元件中之一或多者可合併且可由軟體配置之元件及/或其他硬體元件之組合實施。在本發明之一些實施例中,功能元件可指操作於一或多個處理元件上之一或多個程序。軟體及/或硬體配置之元件的實例包括數位信號處理器(DSP)、一或多個微處理器、DSP、場可規劃閘陣列(FPGA)、特殊應用積體電路(ASIC)、射頻積體電路(RFIC)等。
UE可包括下文論述之各種硬體處理電路(諸如 8 之硬體處理電路800),該等硬體處理電路又可包含可操作以執行各種操作之邏輯裝置及/或電路。舉例而言,參看 7 ,UE 730 (或其中的各種元件或組件(諸如硬體處理電路740)或其中的元件或組件之組合)可包括此等硬體處理電路中之部分或全部。
在一些實施例中,此等硬體處理電路內之一或多個裝置或電路可由軟體組態之元件及/或其他硬體元件之組合實施。舉例而言,處理器736 (及/或UE 730可包含之一或多個其他處理器)、記憶體738及/或UE 730之其他元件或組件(該等元件或組件可包括硬體處理電路740)可經配置以執行此等硬體處理電路之操作,諸如本文中參考此等硬體處理電路內之裝置及電路描述之操作。在一些實施例中,處理器736 (及/或UE 730可包含之一或多個其他處理器)可為基頻處理器。
下文論述可涉及UE 730及硬體處理電路740之各種方法。儘管參看 9 之流程圖900中之動作係按特定次序展示,但可修改動作之次序。因此,所說明之實施例可以不同次序來執行,且一些動作可並行地執行。 9 中所列之動作及/或操作中之一些可根據某些實施例而選用。所呈現之動作之編號係為清楚起見且並不意欲規定各種動作必須發生之操作次序。另外,來自各種流程之操作可以多種組合來利用。
此外,在一些實施例中,機器可讀儲存媒體可具有可執行指令,該等指令在經執行時使得UE 730及/或硬體處理電路740執行包含 9 之方法的操作。此類機器可讀儲存媒體可包括多種儲存媒體中之任一者,如磁性儲存媒體(例如,磁帶或磁碟)、光學儲存媒體(例如,光碟)、電子儲存媒體(例如,習知硬碟驅動機、固態磁碟機或基於快閃記憶體之儲存媒體)或任何其他有形儲存媒體或非暫時性儲存媒體。
在一些實施例中,一種裝備可包含用於執行 9 之方法的各種動作及/或操作之構件。
8 說明根據本發明之一些實施例的用於eMTC UE之用於頻率內測量及頻率間測量之硬體處理電路。可操作以與一或多個eNB在無線網路上通訊之UE 730 (或另一UE或行動手持話機)之裝備可包含硬體處理電路800。在一些實施例中,硬體處理電路800可包含一或多個天線埠805,其可操作以經由無線通訊通道(諸如無線通訊通道750)提供各種傳輸內容。天線埠805可耦接至一或多個天線807 (其可為天線725)。在一些實施例中,硬體處理電路800可併入有天線807,而在其他實施例中,硬體處理電路800可僅耦接至天線807。
天線埠805及天線807可操作以將信號自UE提供至無線通訊通道及/或eNB,且可可操作以將信號自eNB及/或無線通訊通道提供至UE。舉例而言,天線埠805及天線807可操作以將傳輸內容自UE 730提供至無線通訊通道750 (且自該無線通訊通道提供至eNB 710或另一eNB)。類似地,天線807及天線埠805可操作以將傳輸內容自無線通訊通道750 (且除該無線通訊通道外,自eNB 710或另一eNB)提供至UE 730。
參看 8 ,硬體處理電路800可包含第一電路810、第二電路820、第三電路830、第四電路840及第五電路850。第一電路810可操作以發起與第一持續時間之頻率內MGL對應的頻率內測量。第一電路810亦可操作以發起與第二持續時間之頻率間MGL對應的頻率間測量。
在一些實施例中,第一持續時間可比第二持續時間短。舉例而言,第一持續時間可大約為5 ms且第二持續時間可大約為6 ms。在其他實施例中,第一持續時間可大約與第二持續時間相同。對於一些實施例,第一持續時間及第二持續時間可大約與根據ETSI TS 136 133 v12.7.0 (2015-06)之頻率間測量的MGL持續時間相同。
在一些實施例中,第二電路820可操作以基於頻率內測量間隙組態輸入建立第一持續時間,且可操作以基於頻率間測量間隙組態輸入建立第二持續時間。對於一些實施例,第二電路820可操作以基於共同測量間隙組態輸入建立第一持續時間及第二持續時間。第二電路820可經由介面825將第一持續時間及/或第二持續時間提供至第一電路810。
對於一些實施例,第三電路830可操作以在發起頻率內測量之後將RF鏈中之至少部分重調諧至伺服載波之中心6 PRB。在一些實施例中,第四電路840可操作以在頻率內UL暫停啟用輸入被斷言時在頻率內測量期間暫停UL操作及/或DL操作。對於一些實施例,第四電路840可操作以在頻率內測量期間暫停UL操作及DL操作。
在一些實施例中,第一電路810可操作以根據頻率內測量間隙模式排程多個頻率內測量,且可操作以根據頻率間測量間隙模式排程多個頻率間測量。對於一些實施例,多個頻率內測量及多個頻率間測量為交錯模式之部分。
對於一些實施例,第五電路850可操作以處理來自組態交錯模式之eNB之傳輸內容。在一些實施例中,第一電路810可操作以至少部分基於頻率間測量歷史及頻率間測量歷史中之至少一者來建立交錯模式。在一些實施例中,第四電路840可經由介面845將DL操作暫停指示符及/或UL操作暫停指示符提供至其他電路(諸如第五電路850)。
在一些實施例中,第一電路810、第二電路820、第三電路830、第四電路840及第五電路850可被實施為獨立電路。在其他實施例中,第一電路810、第二電路820、第三電路830、第四電路840及第五電路850中之一或多者可在不更改實施例之本質的情況下合併且一起實施在一電路中。
9 說明根據本發明之一些實施例的用於eMTC UE之用於頻率內測量及頻率間測量的方法。方法900可包含發起步驟910及發起步驟915。方法900亦可包含建立步驟920、建立步驟925、建立步驟930、重調諧步驟940、暫停步驟950、暫停步驟960、排程步驟970、排程步驟975、處理步驟980及/或建立步驟990。
在發起步驟910中,可發起與第一持續時間之頻率內MGL對應的頻率內測量。在發起步驟915中,可發起與第二持續時間之頻率間MGL對應的頻率間測量。
在一些實施例中,第一持續時間可比第二持續時間短。舉例而言,第一持續時間可大約為5 ms且第二持續時間可大約為6 ms。在其他實施例中,第一持續時間可大約與第二持續時間相同。對於一些實施例,第一持續時間及第二持續時間可大約與根據ETSI TS 136 133 v12.7.0 (2015-06)之頻率間測量的MGL持續時間相同。
在建立步驟920中,可基於頻率內測量間隙組態輸入建立第一持續時間。在建立步驟925中,可基於頻率間測量間隙組態輸入建立第二持續時間。在建立步驟930中,可基於共同測量間隙組態輸入建立第一持續時間及第二持續時間。
在重調諧步驟940中,可在發起頻率內測量之後將RF鏈中之至少部分重調諧至伺服載波之中心6 PRB。在暫停步驟950中,可在頻率內UL暫停啟用輸入被斷言時在頻率內測量期間暫停UL操作,及/或可在頻率內DL暫停啟用輸入被斷言時在頻率內測量期間暫停DL操作。在暫停步驟960中,可在頻率內測量期間暫停UL操作及DL操作。
在排程步驟970中,可根據頻率內測量間隙模式排程多個頻率內測量。在排程步驟975中,可根據頻率間測量間隙模式排程多個頻率間測量。在一些實施例中,多個頻率內測量及多個頻率間測量可為交錯模式之部分。
在處理步驟980中,可處理來自組態交錯模式之eNB之傳輸內容。在建立步驟990中,可至少部分基於頻率間測量歷史及頻率間測量歷史中之至少一者來建立交錯模式。
10 說明根據本發明之一些實施例的UE裝置之實例組件。在一些實施例中,UE 裝置1000可包括至少如所展示耦接在一起之應用程式電路1002、基頻電路1004、射頻(RF)電路1006、前端模組(FEM)電路1008、低功率喚醒接收器(LP-WUR)及一或多個天線1010。在一些實施例中,UE 裝置1000可包括額外元件,諸如記憶體/儲存器、顯示器、攝像機、感測器及/或輸入/輸出(I/O)介面。
應用程式電路1002可包括一或多個應用程式處理器。舉例而言,應用程式電路1002可包括諸如(但不限於)一或多個單核心或多核心處理器之電路。該(該等)處理器可包括通用處理器與專用處理器(例如,圖形處理器、應用程式處理器等)之任何組合。該等處理器可與記憶體/儲存器耦接及/或可包括記憶體/儲存器,且可經組態以執行儲存於記憶體/儲存器中之指令以使得各種應用程式及/或作業系統能夠在系統上運行。
基頻電路1004可包括諸如(但不限於)一或多個單核心或多核心處理器之電路。基頻電路1004可包括一或多個基頻處理器及/或控制邏輯,以處理接收自RF電路1006之接收信號路徑的基頻信號且產生用於RF電路1006之傳輸信號路徑的基頻信號。基頻處理電路1004可與應用程式電路1002介接,從而產生並處理基頻信號且控制RF電路1006的操作。舉例而言,在一些實施例中,基頻電路1004可包括第二代(2G)基頻處理器1004A、第三代(3G)基頻處理器1004B、第四代(4G)基頻處理器1004C及/或其他現有代、開發中或未來待開發之代(例如,第五代(5G)、6G等)的其他基頻處理器1004D。基頻電路1004 (例如,基頻處理器1004A-D中之一或多者)可處置各種無線電控制功能,該等功能使得能夠經由RF電路1006與一或多個無線電網路通訊。無線電控制功能可包括(但不限於)信號調變/解調變、編碼/解碼、射頻移位等。在一些實施例中,基頻電路1004之調變/解調變電路可包括快速傅里葉變換(FFT)、預寫碼及/或群集映射/解映射功能性。在一些實施例中,基頻電路1004之編碼/解碼電路可包括卷積、咬尾卷積、渦輪碼、維特比(Viterbi)及/或低密度同位檢查(LDPC)編碼器/解碼器功能性。調變/解調變及編碼器/解碼器功能性之實施例不限於此等實例,且在其他實施例中可包括其他合適功能性。
在一些實施例中,基頻電路1004可包括協定堆疊之要素,諸如EUTRAN協定之要素,包括(例如)實體(PHY)、媒體存取控制(MAC)、無線電鏈路控制(RLC)、封包資料聚合協定(PDCP)及/或RRC要素。基頻電路1004之中央處理單元(CPU) 1004E可經組態以運行用於傳信PHY、MAC、RLC、PDCP及/或RRC層的協定堆疊之要素。在一些實施例中,基頻電路可包括一或多個音訊數位信號處理器(DSP) 1004F。音訊DSP 1004F可包括用於壓縮/解壓縮及回波消除之元件,且在其他實施例中可包括其他合適處理元件。基頻電路之組件可合適地組合於單一晶片、單一晶片組中,或在一些實施例中安置於同一電路板上。在一些實施例中,基頻電路1004及應用程式電路1002之構成組件中的一些或全部可一起實施於(諸如)系統單晶片(SOC)上。
在一些實施例中,基頻電路1004可提供與一或多種無線電技術相容之通訊。舉例而言,在一些實施例中,基頻電路1004可支援與演進型通用地面無線電存取網路(EUTRAN)及/或其他無線都會網路(WMAN)、無線區域網路(WLAN)、無線個人區域網路(WPAN)之通訊。基頻電路1004經組態以支援多於一個無線協定之無線電通訊之實施例可被稱作多模式基頻電路。
RF電路1006可使用經調變電磁輻射經由非固態媒體實現與無線網路之通訊。在各種實施例中,RF電路1006可包括交換器、濾波器、放大器等以促進與無線網路之通訊。RF電路1006可包括接收信號路徑,其可包括電路以降頻轉換接收自FEM電路1008之RF信號且將基頻信號提供至基頻電路1004。RF電路1006亦可包括傳輸信號路徑,其可包括電路以增頻轉換由基頻電路1004提供之基頻信號且將RF輸出信號提供至FEM電路1008以供傳輸。
在一些實施例中,RF電路1006可包括接收信號路徑及傳輸信號路徑。RF電路1006之接收信號路徑可包括混頻器電路1006A、放大器電路1006B及濾波器電路1006C。RF電路1006之傳輸信號路徑可包括濾波器電路1006C及混頻器電路1006A。RF電路1006亦可包括合成器電路1006D,其用於合成頻率以供接收信號路徑及傳輸信號路徑之混頻器電路1006A使用。在一些實施例中,接收信號路徑之混頻器電路1006A可經組態以基於由合成器電路1006D提供之經合成頻率而降頻轉換接收自FEM電路1008之RF信號。放大器電路1006B可經組態以放大經降頻轉換之信號,且濾波器電路1006C可為經組態以自經降頻轉換信號移除非所要信號從而產生輸出基頻信號的低通濾波器(LPF)或帶通濾波器(BPF)。輸出基頻信號可經提供至基頻電路1004以供進一步處理。在一些實施例中,輸出基頻信號可為零頻率基頻信號,但此並非為一要求。在一些實施例中,接收信號路徑之混頻器電路1006A可包含被動式混頻器,但實施例之範疇就此而言並不受限。
在一些實施例中,傳輸信號路徑之混頻器電路1006A可經組態以基於由合成器電路1006D提供之經合成頻率而增頻轉換輸入基頻信號從而產生用於FEM電路1008之RF輸出信號。基頻信號可由基頻電路1004提供且可由濾波器電路1006C濾波。濾波器電路1006C可包括低通濾波器(LPF),但實施例之範疇就此而言不受限制。
在一些實施例中,接收信號路徑之混頻器電路1006A及傳輸信號路徑之混頻器電路1006A可包括兩個或多於兩個混頻器,且可經配置以分別用於正交降頻轉換及/或增頻轉換。在一些實施例中,接收信號路徑之混頻器電路1006A及傳輸信號路徑之混頻器電路1006A可包括兩個或多於兩個混頻器,且可經配置以用於影像抑制(例如,Hartley影像抑制)。在一些實施例中,接收信號路徑之混頻器電路1006A及混頻器電路1006A可經配置以分別用於直接降頻轉換及/或直接增頻轉換。在一些實施例中,接收信號路徑之混頻器電路1006A及傳輸信號路徑之混頻器電路1006A可經組態用於超外差式運算。
在一些實施例中,輸出基頻信號及輸入基頻信號可為類比基頻信號,但實施例之範疇就此而言並不受限。在一些替代性實施例中,輸出基頻信號及輸入基頻信號可為數位基頻信號。在此等替代性實施例中,RF電路1006可包括類比至數位轉換器(ADC)及數位至類比轉換器(DAC)電路,且基頻電路1004可包括數位基頻介面以與RF電路1006通訊。
在一些雙模式實施例中,可提供分離的無線電IC電路以處理各頻譜之信號,但實施例之範疇就此而言並不受限。
在一些實施例中,合成器電路1006D可為分率N合成器或分率N/N+1合成器,但實施例之範疇就此而言並不受限,此係由於其他類型之頻率合成器可為合適的。舉例而言,合成器電路1006D可為△-δ合成器、頻率倍增器,或包含具有分頻器之鎖相迴路的合成器。
合成器電路1006D可經組態以基於頻率輸入及除法器控制輸入而合成輸出頻率以供RF電路1006之混頻器電路1006A使用。在一些實施例中,合成器電路1006D可為分率N/N+1合成器。
在一些實施例中,頻率輸出可由壓控振盪器(VCO)提供,但其並非為一要求。除法器控制輸入可由基頻電路1004或應用程式處理器1002根據所要輸出頻率來提供。在一些實施例中,可基於由應用程式處理器1002指示之通道自查找表判定除法器控制輸入(例如,N)。
RF電路1006之合成器電路1006D可包括除法器、延遲鎖定迴路(DLL)、多工器及相位累加器。在一些實施例中,除法器可為雙模數除法器(DMD),且相位累加器可為數位相位累加器(DPA)。在一些實施例中,DMD可經組態以將輸入信號除以N或N+1 (例如,基於進位輸出)以提供分率分頻比。在一些實例實施例中,DLL可包括一組級聯、可調諧、延遲元件,相位偵測器,電荷泵及D型正反器。在此等實施例中,延遲元件可經組態以將VCO時段斷裂為Nd個相等相位封包,其中Nd為延遲線中延遲元件的數目。以此方式,DLL提供負反饋以有助於確保經由延遲線之總延遲為一個VCO循環。
在一些實施例中,合成器電路1006D可經組態以產生載波頻率作為輸出頻率,而在其他實施例中,輸出頻率可為載波頻率之倍數(例如,兩倍之載波頻率、四倍之載波頻率)且結合正交產生器及除法器電路使用以產生在載波頻率下相對於彼此具有多個不同相位之多個信號。在一些實施例中,輸出頻率可為LO頻率(fLO)。在一些實施例中,RF電路1006可包括IQ/極性轉換器。
FEM電路1008可包括接收信號路徑,其可包括經組態以進行以下操作之電路:對接收自一或多個天線1010之RF信號進行操作、放大所接收信號及將所接收信號之放大版本提供至RF電路1006以供進一步處理。FEM電路1008亦可包括傳輸信號路徑,其可包括經組態以放大由RF電路1006提供之用於傳輸之信號以供一或多個天線1010中之一或多者傳輸的電路。
在一些實施例中,FEM電路1008可包括TX/RX開關以在傳輸模式與接收模式操作之間切換。FEM電路可包括接收信號路徑及傳輸信號路徑。FEM電路之接收信號路徑可包括低雜訊放大器(LNA)以放大所接收RF信號且提供經放大之所接收RF信號作為輸出(例如,至RF電路1006)。FEM電路1008之傳輸信號路徑可包括功率放大器(PA)以放大輸入RF信號(例如,由RF電路1006提供),及一或多個濾波器以產生RF信號以供後續傳輸(例如,由一或多個天線1010中之一或多者進行)。
在一些實施例中,UE 1000包含多個電力節省機制。若UE 1000處於RRC_Connected狀態,其中該UE在其預期不久將接收訊務時仍連接至eNB,則其在非作用中週期之後可鍵入被稱為不連續接收模式(DRX)之狀態。在此狀態期間,該裝置可在短暫時間間隔內關閉電源且由此節省電力。
若在經延伸時間週期內不存在資料訊務活動,則UE 1000可轉換至RRC_Idle狀態,其中該UE自網路斷開連接且不執行諸如通道品質反饋、切換等之操作。UE 1000進入極低功率狀態且其執行傳呼,其中該UE再次週期性地喚醒以收聽網路且接著再次關閉電源。由於該裝置在此狀態中可能無法接收資料,因此為了接收資料,其應轉換回至RRC_Connected狀態。
一種額外電力節省模式可允許裝置在長於傳呼間隔之週期內(介於數秒至若干小時範圍內)對網路不可用。在此時間期間,該裝置完全無法到達網路且可完全地關閉電源。在此時間期間發送之任何資料產生較大延遲且假定該延遲係可接受的。
本說明書中對「一實施例」、「一個實施例」、「一些實施例」或「其他實施例」之參考意謂結合實施例所描述之特定特徵、結構或特性包括於至少一些實施例中,但未必所有實施例。「一實施例」、「一個實施例」或「一些實施例」之各種表現形式未必皆指相同實施例。若說明書陳述「可」包括組件、特徵、結構或特性,則並非需要包括彼特定組件、特徵、結構或特性。在本說明書或申請專利範圍提及「一(a/an)」元件之情況下,並不意謂存在該等元件中之僅一者。在本說明書或申請專利範圍提及「一額外」元件之情況下,並不排除存在多於一個額外元件。
此外,在一或多個實施例中,可以任何合適方式組合特定特徵、結構、功能或特性。舉例而言,可在任何處組合第一實施例與第二實施例,與兩個實施例相關聯之特定特徵、結構、功能或特性並不彼此排他。
雖然結合本發明之特定實施例描述本發明,但一般熟習此項技術者根據前述描述將顯而易見此等實施例之許多替代例、修改及變化。舉例而言,其他記憶體架構(例如,動態RAM (DRAM))可使用所論述之實施例。本發明之實施例意欲涵蓋屬於所附申請專利範圍之廣泛範疇的所有此等替代例、修改及變化。
另外,為簡單地說明及論述起見,及為了不混淆本發明,所呈現之圖式內可能展示或可能未展示至積體電路(IC)晶片及其他組件之熟知電源/接地連接。另外,為了避免混淆本發明,且亦鑒於關於此等方塊圖配置之實施的細節高度取決於供實施本發明之平台(亦即,此等細節應良好地在熟習此項技術者之見識內)的事實,配置可以方塊圖形式展示。在闡述特定細節(例如,電路)以便描述本發明之實例實施例的情況下,熟習此項技術者應顯而易見,可在無此等特定細節之情況下或可在此等特定細節具有變化之情況下實踐本發明。因此,應將描述視為說明性而非限制性的。
以下實例係關於其他實施例。可在一或多個實施例中任何位置使用實例中之細節。本文所描述之裝備之所有視情況選用的特徵亦可關於方法或處理程序來實施。
實例1提供一種有增強型機器類型通訊(eMTC)能力之使用者設備(UE)的裝備,其可操作以與有eMTC能力之演進型節點B (eNB)在無線網路上通訊,該裝備包含進行以下操作之一或多個處理器:發起與第一持續時間之頻率內測量間隙長度(MGL)對應的頻率內測量;及發起與第二持續時間之頻率間MGL對應的頻率間測量,在發起該頻率內測量之後將射頻(RF)鏈中之至少部分重調諧至伺服載波之中心6物理資源塊(PRB)。
在實例2中,如實例1之裝備,其中該一或多個處理器進一步:基於頻率內測量間隙組態輸入建立第一持續時間;及基於頻率間測量間隙組態輸入建立第二持續時間。
在實例3中,如實例1之裝備,其中該一或多個處理器進一步:基於共同測量間隙組態輸入建立第一持續時間及第二持續時間。
在實例4中,如實例1至實例3中任一者之裝備,其中該一或多個處理器進一步:在頻率內UL暫停啟用輸入被斷言時在頻率內測量期間暫停上行鏈路(UL)操作。
在實例5中,如實例1至實例4中任一者之裝備,其中該一或多個處理器進一步:在頻率內DL暫停啟用輸入被斷言時在頻率內測量期間暫停下行鏈路(DL)操作。
在實例6中,如實例1至實例5中任一者之裝備,其中該一或多個處理器進一步:在頻率內測量期間暫停UL操作及下行鏈路(DL)操作。
在實例7中,如實例1至實例6中任一者之裝備,其中該第一持續時間比該第二持續時間短。
在實例8中,如實例1至實例7中任一者之裝備,其中該第一持續時間大約為5毫秒(ms)且該第二持續時間大約為6 ms。
在實例9中,如實例1至實例6中任一者之裝備,其中該第一持續時間大約與該第二持續時間相同。
在實例10中,如實例9之裝備,其中該第一持續時間及該第二持續時間大約與根據歐洲電信標準協會(ETSI)技術規格(TS) 136 133 v12.7.0 (2015-06)之頻率間測量的MGL持續時間相同。
在實例11中,如實例1至實例10中任一者之裝備,其中該一或多個處理器進一步:根據頻率內測量間隙模式排程多個頻率內測量;及根據頻率間測量間隙模式排程多個頻率間測量。
在實例12中,如實例11之裝備,其中該多個頻率內測量及該多個頻率間測量為交錯模式之部分。
在實例13中,如實例12之裝備,其中該一或多個處理器進一步:處理來自組態該交錯模式的eNB之傳輸內容。
在實例14中,如實例12之裝備,其中該一或多個處理器進一步:至少部分基於頻率間測量歷史及頻率間測量歷史中之至少一者來建立該交錯模式。
實例15提供一種有增強型機器類型通訊(eMTC)能力之使用者設備(UE)裝置,其包含應用程式處理器、記憶體、一或多個天線、允許該應用程式處理器與另一裝置通訊之無線介面以及觸控式螢幕顯示器,該UE裝置包括如實例1至實例14中任一者之裝備。
實例16提供一種方法,其包含:發起與第一持續時間之頻率內測量間隙長度(MGL)對應的頻率內測量;發起與第二持續時間之頻率間MGL對應的頻率間測量;基於頻率內測量間隙組態輸入建立該第一持續時間;及基於頻率間測量間隙組態輸入建立該第二持續時間。
在實例17中,如實例16之方法,其包含:基於共同測量間隙組態輸入建立該第一持續時間及該第二持續時間。
在實例18中,如實例16或實例17中任一者之方法,其包含:在發起該頻率內測量之後將射頻(RF)鏈中之至少部分重調諧至伺服載波之中心6物理資源塊(PRB)。
在實例19中,如實例16至實例18中任一者之方法,其包含:在頻率內UL暫停啟用輸入時在該頻率內測量期間暫停上行鏈路(UL)操作。
在實例20中,如實例16至實例19中任一者之方法,其包含:在頻率內DL暫停啟用輸入被斷言時在該頻率內測量期間暫停下行鏈路(DL)操作。
在實例21中,如實例16至實例20中任一者之方法,其包含:在該頻率內測量期間暫停UL操作及下行鏈路(DL)操作。
在實例22中,如實例16至實例21中任一者之方法,其中該第一持續時間比該第二持續時間短。
在實例23中,如實例16至實例22中任一者之方法,其中該第一持續時間大約為5毫秒(ms)且該第二持續時間大約為6 ms。
在實例24中,如實例16至實例21中任一者之方法,其中該第一持續時間大約與該第二持續時間相同。
在實例25中,如實例24之方法,其中該第一持續時間及該第二持續時間大約與根據歐洲電信標準協會(ETSI)技術規格(TS) 136 133 v12.7.0 (2015-06)之頻率間測量的MGL持續時間相同。
在實例26中,如實例16至實例25中任一者之方法,其包含:根據頻率內測量間隙模式排程多個頻率內測量;及根據頻率間測量間隙模式排程多個頻率間測量。
在實例27中,如實例26之方法,其中該多個頻率內測量及該多個頻率間測量為交錯模式之部分。
在實例28中,如實例27之方法,其包含:處理來自組態該交錯模式的eNB之傳輸內容。
在實例29中,如實例27之方法,其包含:至少部分基於頻率間測量歷史及頻率間測量歷史中之至少一者來建立該交錯模式。
實例30提供上面儲存有機器可執行指令之機器可讀儲存媒體,該等指令在經執行時使得一或多個處理器執行根據實例16至實例29中任一者中任一者之方法。
實例31提供一種有增強型機器類型通訊(eMTC)能力之使用者設備(UE)之裝備,其可操作以與有eMTC能力之演進型節點B (eNB)在無線網路上通訊,該裝備包含:用於發起與第一持續時間之頻率內測量間隙長度(MGL)對應的頻率內測量之構件;用於發起與第二持續時間之頻率間MGL對應的頻率間測量之構件;用於基於頻率內測量間隙組態輸入建立該第一持續時間之構件;及用於基於頻率間測量間隙組態輸入建立該第二持續時間之構件。
在實例32中,如實例31之裝備,其包含:用於基於共同測量間隙組態輸入建立該第一持續時間及該第二持續時間之構件。
在實例33中,如實例31或實例32中任一者之裝備,其包含:用於在發起該頻率內測量之後將射頻(RF)鏈中之至少部分重調諧至伺服載波之中心6物理資源塊(PRB)之構件。
在實例34中,如實例31至實例33中任一者之裝備,其包含:用於在頻率內UL暫停啟用輸入被斷言時在該頻率內測量期間暫停上行鏈路(UL)操作之構件。
在實例35中,如實例31至實例34中任一者之裝備,其包含:用於在頻率內DL暫停啟用輸入被斷言時在該頻率內測量期間暫停下行鏈路(DL)操作之構件。
在實例36中,如實例31至實例35中任一者之裝備,其包含:用於在該頻率內測量期間暫停UL操作及下行鏈路(DL)操作之構件。
在實例37中,如實例31至實例36中任一者之裝備,其中該第一持續時間比該第二持續時間短。
在實例38中,如實例31至實例37中任一者之裝備,其中該第一持續時間大約為5毫秒(ms)且該第二持續時間大約為6 ms。
在實例39中,如實例31至實例36中任一者之裝備,其中該第一持續時間大約與該第二持續時間相同。
在實例40中,如實例39之裝備,其中該第一持續時間及該第二持續時間大約與根據歐洲電信標準協會(ETSI)技術規格(TS) 136 133 v12.7.0 (2015-06)之頻率間測量的MGL持續時間相同。
在實例41中,如實例31至實例40中任一者之裝備,其包含:用於根據頻率內測量間隙模式排程多個頻率內測量之構件;及用於根據頻率間測量間隙模式排程多個頻率間測量之構件。
在實例42中,如實例41之裝備,其中該多個頻率內測量及該多個頻率間測量為交錯模式之部分。
在實例43中,如實例42之裝備,其包含:用於處理來自組態該交錯模式的eNB之傳輸內容之構件。
在實例44中,如實例42之裝備,其包含:用於至少部分基於頻率間測量歷史及頻率間測量歷史中之至少一者來建立該交錯模式之構件。
實例45提供具有機器可執行指令之機器可讀儲存媒體,該等指令在經執行時使得有增強型機器類型通訊(eMTC)能力之使用者設備(UE)的一或多個處理器執行包含以下之操作:發起與第一持續時間之頻率內測量間隙長度(MGL)對應的頻率內測量;發起與第二持續時間之頻率間MGL對應的頻率間測量;基於頻率內測量間隙組態輸入建立該第一持續時間;及基於頻率間測量間隙組態輸入建立該第二持續時間。
在實例46中,如實例45之機器可讀儲存媒體,該操作包含:基於共同測量間隙組態輸入建立該第一持續時間及該第二持續時間。
在實例47中,如實例45或實例46中任一者之機器可讀儲存媒體,該操作包含:在發起該頻率內測量之後將射頻(RF)鏈中之至少部分重調諧至伺服載波之中心6物理資源塊(PRB)。
在實例48中,如實例45至實例47中任一者之機器可讀儲存媒體,該操作包含:在頻率內UL暫停啟用輸入被斷言時在該頻率內測量期間暫停上行鏈路(UL)操作。
在實例49中,如實例45至實例48中任一者之機器可讀儲存媒體,該操作包含:在頻率內DL暫停啟用輸入被斷言時在該頻率內測量期間暫停下行鏈路(DL)操作。
在實例50中,如實例45至實例49中任一者之機器可讀儲存媒體,該操作包含:在該頻率內測量期間暫停UL操作及下行鏈路(DL)操作。
在實例51中,如實例45至實例50中任一者之機器可讀儲存媒體,其中該第一持續時間比該第二持續時間短。
在實例52中,如實例45至實例51中任一者之機器可讀儲存媒體,其中該第一持續時間大約為5毫秒(ms)且該第二持續時間大約為6 ms。
在實例53中,如實例45至實例50中任一者之機器可讀儲存媒體,其中該第一持續時間大約與該第二持續時間相同。
在實例54中,如實例53之機器可讀儲存媒體,其中該第一持續時間及該第二持續時間大約與根據歐洲電信標準協會(ETSI)技術規格(TS) 136 133 v12.7.0 (2015-06)之頻率間測量的MGL持續時間相同。
在實例55中,如實例45至實例54中任一者之機器可讀儲存媒體,該操作包含:根據頻率內測量間隙模式排程多個頻率內測量;及根據頻率間測量間隙模式排程多個頻率間測量。
在實例56中,如實例55之機器可讀儲存媒體,其中該多個頻率內測量及該多個頻率間測量為交錯模式之部分。
在實例57中,如實例56之機器可讀儲存媒體,該操作包含處理來自組態該交錯模式的eNB之傳輸內容。
在實例58中,如實例56之機器可讀儲存媒體,該操作包含至少部分基於頻率間測量歷史及頻率間測量歷史中之至少一者來建立該交錯模式。
實例59提供一種有增強型機器類型通訊(eMTC)能力之使用者設備(UE)裝置,其包含應用程式處理器、記憶體、一或多個天線、允許該應用程式處理器與另一裝置通訊之無線介面以及觸控式螢幕顯示器,該UE裝置包括包含一或多個處理器之裝備,該一或多個處理器進行以下操作:發起與第一持續時間之頻率內測量間隙長度(MGL)對應的頻率內測量;及發起與第二持續時間之頻率間MGL對應的頻率間測量。
在實例60中,如實例59之UE裝置,其中該一或多個處理器進一步:基於頻率內測量間隙組態輸入建立該第一持續時間;及基於頻率間測量間隙組態輸入建立該第二持續時間。
在實例61中,如實例59之UE裝置,其中該一或多個處理器進一步:基於共同測量間隙組態輸入建立該第一持續時間及該第二持續時間。
在實例62中,如實例59至實例61中任一者之UE裝置,其中該一或多個處理器進一步:在發起該頻率內測量之後將射頻(RF)鏈中之至少部分重調諧至伺服載波之中心6物理資源塊(PRB)。
在實例63中,如實例59至實例62中任一者之UE裝置,其中該一或多個處理器進一步:在頻率內UL暫停啟用輸入被斷言時在該頻率內測量期間暫停上行鏈路(UL)操作。
在實例64中,如實例59至實例63中任一者之UE裝置,其中該一或多個處理器進一步:在頻率內DL暫停啟用輸入被斷言時在該頻率內測量期間暫停下行鏈路(DL)操作。
在實例65中,如實例59至實例64中任一者之UE裝置,其中該一或多個處理器進一步:在該頻率內測量期間暫停UL操作及下行鏈路(DL)操作。
在實例66中,如實例59至實例65中任一者之UE裝置,其中該第一持續時間比該第二持續時間短。
在實例67中,如實例59至實例66中任一者之UE裝置,其中該第一持續時間大約為5毫秒(ms)且該第二持續時間大約為6 ms。
在實例68中,如實例59至實例65中任一者之UE裝置,其中該第一持續時間大約與該第二持續時間相同。
在實例69中,如實例68之UE裝置,其中該第一持續時間及該第二持續時間大約與根據歐洲電信標準協會(ETSI)技術規格(TS) 136 133 v12.7.0 (2015-06)之頻率間測量的MGL持續時間相同。
在實例70中,如實例59至實例69中任一者之UE裝置,其中該一或多個處理器進一步:根據頻率內測量間隙模式排程多個頻率內測量;及根據頻率間測量間隙模式排程多個頻率間測量。
在實例71中,如實例70之UE裝置,其中該多個頻率內測量及該多個頻率間測量為交錯模式之部分。
在實例72中,如實例71之UE裝置,其中該一或多個處理器進一步:處理來自組態該交錯模式的eNB之傳輸內容。
在實例73中,如實例71之UE裝置,其中該一或多個處理器進一步:至少部分基於頻率間測量歷史及頻率間測量歷史中之至少一者來建立該交錯模式。
實例74提供如實例1至實例14及實例31至實例44中任一者之裝備,其中該一或多個處理器包含基頻處理器。
實例75提供如實例1至實例14及實例31至實例44中任一者之裝備,其包含收發器電路以用於產生傳輸內容及處理傳輸內容。
提供發明摘要,其將允許讀者確定技術揭示內容之性質及要旨。發明摘要遵從該理解:其並不用以限制申請專利範圍之範疇或含義。以下申請專利範圍藉此併入至實施方式中,其中各技術方案就其自身而言作為單獨實施例。
100、200‧‧‧頻譜部分 110‧‧‧載波頻帶 120、230‧‧‧中心區域 130‧‧‧中心子頻帶 140、240‧‧‧非中心子頻帶 235、245、315、365‧‧‧重調諧 300、350‧‧‧情境 310、360、370‧‧‧子頻帶 320‧‧‧中心6物理資源快 400‧‧‧模式 410‧‧‧頻率內測量 420‧‧‧頻率間測量 430‧‧‧測量間隙重複週期 500‧‧‧MeasConfig資訊元素 510‧‧‧抽象語法記法MeasConfig定義 520‧‧‧measGapConfig參數 600‧‧‧MeasGapConfigEMTC資訊元素 610‧‧‧抽象語法記法MeasGapConfigEMTC定義 620‧‧‧interlacedPatternInter值 705、725、807、1010‧‧‧天線 710‧‧‧eNB 712、732‧‧‧實體層電路 713、733‧‧‧收發器 714、734‧‧‧媒體存取控制電路 716、736‧‧‧處理器 718、738‧‧‧記憶體 720、740、800‧‧‧硬體處理電路 730、1000‧‧‧使用者設備 742‧‧‧無線介面 744‧‧‧顯示器 750‧‧‧無線通訊通道 805‧‧‧天線埠 810‧‧‧第一電路 820‧‧‧第二電路 825、845‧‧‧介面 830‧‧‧第三電路 840‧‧‧第四電路 850‧‧‧第五電路 900‧‧‧流程圖 910、915‧‧‧發起步驟 920、925、930、990‧‧‧建立步驟 940‧‧‧重調諧步驟 950、960‧‧‧暫停步驟 970、975‧‧‧排程步驟 980‧‧‧處理步驟 1002‧‧‧應用程式電路 1004‧‧‧基頻電路 1004A‧‧‧第二代基頻處理器 1004B‧‧‧第三代基頻處理器 1004C‧‧‧第四代基頻處理器 1004D‧‧‧其他基頻處理器 1004E‧‧‧中央處理單元 1004F‧‧‧音訊數位信號處理器 1006‧‧‧射頻電路 1006A‧‧‧混頻器電路 1006B‧‧‧放大器電路 1006C‧‧‧濾波器電路 1006D‧‧‧合成器電路 1008‧‧‧前端模組電路
本發明之實施例將自下方給出之實施方式及本發明之各種實施例的隨附圖式而得到更充分地理解。然而,雖然該等圖式將輔助解釋及理解,但其僅為輔助且不應被視作將本發明限制於其中所描繪之特定實施例。
圖1 說明根據本發明之一些實施例的無線通訊系統上之載波頻寬。
圖2 說明根據本發明之一些實施例的無線通訊系統上之載波頻寬的一部分。
圖3 說明根據本發明之一些實施例的無線通訊系統上之載波帶寬的若干部分。
圖4 說明根據本發明之一些實施例的測量間隙模式。
圖5 說明根據本發明之一些實施例的MeasConfig資訊元素(IE)。
圖6 說明根據本發明之一些實施例的MeasGapConfigEMTC IE。
圖7 說明根據本發明之一些實施例的演進型節點B (eNB)及使用者設備(UE)。
8 說明根據本發明之一些實施例的用於增強型機器類型通訊(eMTC) UE以用於頻率內測量及頻率間測量之硬體處理電路。
9 說明根據本發明之一些實施例的用於eMTC UE之用於頻率內測量及頻率間測量的方法。
圖10 說明根據本發明之一些實施例的UE裝置之實例組件。
100‧‧‧頻譜部分
110‧‧‧載波頻帶
120‧‧‧中心區域
130‧‧‧中心子頻帶
140‧‧‧非中心子頻帶

Claims (19)

  1. 一種具有增強型機器類型通訊(eMTC)能力之使用者設備(UE)之裝備,其可操作以在一無線網路上與一具有eMTC能力之演進型節點B(eNB)通訊,包含:一或多個處理器,用以:發起與一第一持續時間之一頻率內測量間隙長度(MGL)對應的一頻率內測量;及發起與一第二持續時間之一頻率間MGL對應的一頻率間測量;在發起該頻率內測量之後將一射頻(RF)鏈中之至少部分重調諧至一伺服載波之一中心6物理資源塊(PRB)。
  2. 如請求項1之裝備,其中該一或多個處理器進一步用以:基於一頻率內測量間隙組態輸入建立該第一持續時間;及基於一頻率間測量間隙組態輸入建立該第二持續時間。
  3. 如請求項1之裝備,其中該一或多個處理器進一步用以:基於一共同測量間隙組態輸入建立該第一持續時間及該第二持續時間。
  4. 如請求項1之裝備,其中該一或多個處理器進一步用以:當一頻率內UL暫停啟用輸入被斷言時在該頻率內測量期間暫停上行鏈路(UL)操作。
  5. 如請求項1之裝備,其中該第一持續時間比該第二持續時間短。
  6. 如請求項1之裝備,其中該第一持續時間大約為5毫秒(ms)且該第二持續時間大約為6ms。
  7. 如請求項1之裝備,其中該第一持續時間大約與該第二持續時間相同。
  8. 如請求項7之裝備,其中該第一持續時間及該第二持續時間大約與根據歐洲電信標準協會(ETSI)技術規格(TS)136 133 v12.7.0(2015-06)之頻率間測量的一MGL持續時間相同。
  9. 如請求項1之裝備,其中該一或多個處理器進一步用以:根據一頻率內測量間隙模式排程多個頻率內測量;及根據一頻率間測量間隙模式排程多個頻率間測量。
  10. 如請求項9之裝備,其中該多個頻率內測量及該多個頻率間測量為一交錯模式之部分。
  11. 如請求項10之裝備,其中該一或多個處理器進一步用以:處理來自組態該交錯模式的該eNB之一傳輸內容。
  12. 如請求項10之裝備,其中該一或多個處理器進一步用以:至少部分基於一頻率間測量歷史及一頻率間測量歷史中之 至少一者來建立該交錯模式。
  13. 一種具有機器可執行指令之機器可讀儲存媒體,該等指令在經執行時使得一具有增強型機器類型通訊(eMTC)能力之使用者設備(UE)的一或多個處理器執行一操作,其包含:發起與一第一持續時間之一頻率內測量間隙長度(MGL)對應的一頻率內測量;發起與一第二持續時間之一頻率間MGL對應的一頻率間測量;基於一頻率內測量間隙組態輸入建立該第一持續時間;基於一頻率間測量間隙組態輸入建立該第二持續時間;及在發起該頻率內測量之後將一射頻(RF)鏈中之至少部分重調諧至一伺服載波之一中心6物理資源塊(PRB)。
  14. 如請求項13之機器可讀儲存媒體,其中該第一持續時間比該第二持續時間短。
  15. 如請求項13之機器可讀儲存媒體,該操作包含:根據一頻率內測量間隙模式排程多個頻率內測量;及根據一頻率間測量間隙模式排程多個頻率間測量。
  16. 一種具有增強型機器類型通訊(eMTC)能力之使用者設備(UE)裝置,其包含一應用程式處理器、一記憶體、一或多個天線、允許該應用程式處理器與另一裝置通訊之一無線介面以及一觸控式螢幕顯示器,該UE裝置包括一裝備,其包含:一或多個處理器,用以:發起與一第一持續時間之一頻率內測量間隙長度(MGL)對 應的一頻率內測量;發起與一第二持續時間之一頻率間MGL對應的一頻率間測量;及在發起該頻率內測量之後將一射頻(RF)鏈中之至少部分重調諧至一伺服載波之一中心6物理資源塊(PRB)。
  17. 如請求項16之UE裝置,其中該一或多個處理器進一步用以:基於一頻率內測量間隙組態輸入建立該第一持續時間;及基於一頻率間測量間隙組態輸入建立該第二持續時間。
  18. 如請求項16之UE裝置,其中該第一持續時間比該第二持續時間短。
  19. 如請求項16之UE裝置,其中該一或多個處理器進一步用以:根據一頻率內測量間隙模式排程多個頻率內測量;及根據一頻率間測量間隙模式排程多個頻率間測量。
TW105132560A 2015-11-09 2016-10-07 用於窄頻帶機器類型通訊之頻率內及頻率間測量技術 TWI709351B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562252983P 2015-11-09 2015-11-09
US62/252,983 2015-11-09
WOPCT/CN2016/088121 2016-07-01
PCT/CN2016/088121 WO2017080229A1 (en) 2015-11-09 2016-07-01 Intra-frequency and inter-frequency measurement for narrow band machine-type communication

Publications (2)

Publication Number Publication Date
TW201717683A TW201717683A (zh) 2017-05-16
TWI709351B true TWI709351B (zh) 2020-11-01

Family

ID=58694688

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105132560A TWI709351B (zh) 2015-11-09 2016-10-07 用於窄頻帶機器類型通訊之頻率內及頻率間測量技術

Country Status (3)

Country Link
US (1) US20190074918A1 (zh)
TW (1) TWI709351B (zh)
WO (1) WO2017080229A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030211A1 (ja) * 2016-08-09 2018-02-15 三菱電機株式会社 通信システム
WO2018030936A1 (en) * 2016-08-11 2018-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Network node, wireless device and methods therein relating to time division duplex configurations for narrowband internet of things
US11304208B2 (en) * 2016-11-14 2022-04-12 Telefonaktiebolaget Lm Ericsson (Publ) Inter-frequency measurements on FS3 SCells
US10588042B2 (en) * 2017-07-11 2020-03-10 Qualcomm Incorporated Transmission opportunities during measurement gaps
US11664951B2 (en) * 2017-08-10 2023-05-30 Apple Inc. Methods and arrangements for measurement gap configuration
JP7015920B2 (ja) 2017-11-17 2022-02-03 ノキア テクノロジーズ オーユー Nrにおけるrlmに対する間隔共有
CN111630918B (zh) * 2018-01-19 2023-08-25 上海诺基亚贝尔股份有限公司 用于新无线电管理测量的方法、设备和计算机可读介质
CN110312288B (zh) * 2018-03-27 2021-11-19 展讯通信(上海)有限公司 同频小区连续搜索处理方法、装置及用户设备
EP4213582A1 (en) 2020-08-31 2023-07-19 Ofinno, LLC Subsequent data information for small data transmission

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110274007A1 (en) * 2010-05-04 2011-11-10 Shiang-Jiun Lin Method of Handling Measurement Gap Configuration and Communication Device Thereof
US20130088985A1 (en) * 2011-10-06 2013-04-11 Lg Electronics Inc. Method for measuring a neighboring cell and an apparatus thereof
US20140204866A1 (en) * 2013-01-21 2014-07-24 Telefonaktiebolaget L M Ericsson Methods enabling enhanced receivers with a reduced need for gaps when handling interference

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8638682B2 (en) * 2009-10-01 2014-01-28 Qualcomm Incorporated Method and apparatus for conducting measurements when multiple carriers are supported
US20110199908A1 (en) * 2010-02-15 2011-08-18 Nokia Corporation Methods and Apparatuses for Measurement Gap Pattern for Carrier Aggregation
US9736648B2 (en) * 2012-03-13 2017-08-15 Lg Electronics Inc. Method for measuring location of user equipment in wireless access system and apparatus therefor
US11234234B2 (en) * 2013-08-12 2022-01-25 Telefonaktiebolaget Lm Ericsson (Publ) Clustered periodic gaps for measurements in a heterogeneous network
US9742647B2 (en) * 2014-01-31 2017-08-22 Telefonaktiebolaget Lm Ericsson (Publ) Reporting serving cell packet loss rate
US9716521B2 (en) * 2015-04-17 2017-07-25 Telefonaktiebolaget Lm Ericsson (Publ) Optimization of automatic gain control for narrow bandwidth operation
US11051193B2 (en) * 2015-07-22 2021-06-29 Qualcomm Incorporated Configurable measurement gap and window for machine type communications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110274007A1 (en) * 2010-05-04 2011-11-10 Shiang-Jiun Lin Method of Handling Measurement Gap Configuration and Communication Device Thereof
US20130088985A1 (en) * 2011-10-06 2013-04-11 Lg Electronics Inc. Method for measuring a neighboring cell and an apparatus thereof
US20140204866A1 (en) * 2013-01-21 2014-07-24 Telefonaktiebolaget L M Ericsson Methods enabling enhanced receivers with a reduced need for gaps when handling interference

Also Published As

Publication number Publication date
US20190074918A1 (en) 2019-03-07
WO2017080229A1 (en) 2017-05-18
TW201717683A (zh) 2017-05-16

Similar Documents

Publication Publication Date Title
TWI709351B (zh) 用於窄頻帶機器類型通訊之頻率內及頻率間測量技術
US11533675B2 (en) System and methods for system operation for narrowband-LTE for cellular IoT
US20190372719A1 (en) Design of downlink control information for wideband coverage enhancement
JP2024020464A (ja) キャリアコンポーネント単位ベースの拡張した測定ギャップ構成用のシグナリング
US11039330B2 (en) Method of measurement gap enhancement
US11576029B2 (en) Inter-frequency inter-public land mobile network (PLMN) discovery
US20200029349A1 (en) Maximum channel occupancy time sharing and co-existence
US11985020B2 (en) Configurability and signaling for half-tone shift
US10932185B2 (en) Transmitter and receiver for master information block over physical broadcast channel
WO2017100355A1 (en) Master information block and system information block transmissions in unlicensed spectrum
US20210266043A1 (en) System and method for system information transmission in stand-alone mmwave systems
WO2017192624A1 (en) Methods for multi-carrier operation with multiple anchor carriers in narrow-band internet-of-things
CN109076603B (zh) 用于上行链路传输的对话前监听
US11224023B2 (en) Timing advance for grantless uplink transmission
WO2017078842A1 (en) Method for improving uplink performance in unlicensed spectrum via energy detection threshold configuration
CN109417822B (zh) 用户设备的设备、用户设备装置和用于通信的方法
WO2018085702A1 (en) Enhancement of enhanced minimization of drive tests reporting
US20190116549A1 (en) License assisted access (laa) measurement requirements
WO2018053364A1 (en) Downlink physical broadcast channel design for beamforming systems
US20180279109A1 (en) Rrm requirement for d2d inter-carrier discovery gap
WO2017026986A1 (en) Fallback mechanism to detect enhanced coverage usage

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees