TWI708397B - Non-volatile memory device and operating method thereof - Google Patents

Non-volatile memory device and operating method thereof Download PDF

Info

Publication number
TWI708397B
TWI708397B TW108122014A TW108122014A TWI708397B TW I708397 B TWI708397 B TW I708397B TW 108122014 A TW108122014 A TW 108122014A TW 108122014 A TW108122014 A TW 108122014A TW I708397 B TWI708397 B TW I708397B
Authority
TW
Taiwan
Prior art keywords
voltage
volatile memory
zero
floating gate
layer
Prior art date
Application number
TW108122014A
Other languages
Chinese (zh)
Other versions
TW202101773A (en
Inventor
林媛宣
Original Assignee
卡比科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 卡比科技有限公司 filed Critical 卡比科技有限公司
Priority to TW108122014A priority Critical patent/TWI708397B/en
Application granted granted Critical
Publication of TWI708397B publication Critical patent/TWI708397B/en
Publication of TW202101773A publication Critical patent/TW202101773A/en

Links

Images

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

A non-volatile memory device includes a substrate layer, a first terminal, a second terminal, a floating gate layer and a contact layer. The first terminal is disposed on the substrate layer and is configured to receive a first voltage. The second terminal is disposed on the substrate layer and is configured to receive a second voltage. The floating gate layer is disposed on the substrate layer. The contact layer is disposed on the floating gate layer and is configured to receive a control voltage. When the non-volatile memory device is operated in a high-performance mode, the control voltage is set to a first high voltage, the first voltage is set to zero, and the second voltage is set to the first high voltage for performing a write operation. The control voltage is set to a negative voltage, the first voltage is set to zero, and the second voltage is set to a positive voltage for performing an erase operation.

Description

非揮發式記憶體及其操作方法 Non-volatile memory and its operation method

本揭示文件係關於一種非揮發式記憶體及其操作方法,特別是一種能夠根據使用需求而調整不同輸入電壓的非揮發式記憶體及其操作方法。 The present disclosure relates to a non-volatile memory and its operation method, in particular to a non-volatile memory and its operation method that can adjust different input voltages according to usage requirements.

可攜式資訊、通訊及消費性產品的普及,大大增加了對於記憶體的需求。此外,在嵌入式系統功能多樣化的趨勢下,由於記憶體操作特性及製程便利性,非揮發性記憶體更是被廣泛使用。 The popularity of portable information, communication and consumer products has greatly increased the demand for memory. In addition, under the trend of diversification of embedded system functions, non-volatile memory is widely used due to memory operating characteristics and process convenience.

為了使記憶體能配合商品需求,不論是高效率或是低功率的需求,記憶體本身會需要不同結構設計才能滿足不同的使用情況,降低了便利性。因此需要設計一種不需要改變記憶體結構也能滿足不同需求的記憶體。 In order for the memory to meet the needs of commodities, whether it is high-efficiency or low-power requirements, the memory itself needs different structural designs to meet different usage conditions, reducing convenience. Therefore, it is necessary to design a memory that can meet different needs without changing the memory structure.

本揭示文件的一實施例中,一種非揮發式記憶體包含基板層、第一端、第二端、浮動閘極層及接點層。第一端配置於基板層上,並用以接收第一電壓。第二端配置於 基板層上,並用以接收第二電壓。浮動閘極層配置於基板層上方。接點層配置於浮動閘極層上方,並用以接收控制電壓。當非揮發式記憶體操作於高效能模式時,控制電壓設定為第一高電壓,第一電壓設定為零,第二電壓設定為第一高電壓以進行寫入。控制電壓設定為負電壓,第一電壓設定零,第二電壓設定為正電壓以進行抹除。 In an embodiment of the present disclosure, a non-volatile memory includes a substrate layer, a first end, a second end, a floating gate layer, and a contact layer. The first end is configured on the substrate layer and used for receiving the first voltage. The second end is configured at On the substrate layer and used for receiving the second voltage. The floating gate layer is disposed above the substrate layer. The contact layer is disposed above the floating gate layer and used for receiving the control voltage. When the non-volatile memory is operating in the high-efficiency mode, the control voltage is set to the first high voltage, the first voltage is set to zero, and the second voltage is set to the first high voltage for writing. The control voltage is set to a negative voltage, the first voltage is set to zero, and the second voltage is set to a positive voltage for erasing.

本揭示文件的另一實施例中,一種非揮發式記憶體之操作方法包含下列操作:透過接點層接收控制電壓;透過第一端接收第一電壓;透過第二端接收第二電壓;操作於高效能模式時,透過將控制電壓設定為第一高電壓,第一電壓設定為零,第二電壓設定為第一高電壓以進行寫入;操作於高效能模式時,透過將控制電壓設定為負電壓,第一電壓設定為零,第二電壓設定為正電壓以進行抹除。 In another embodiment of the present disclosure, a non-volatile memory operating method includes the following operations: receiving a control voltage through a contact layer; receiving a first voltage through a first terminal; receiving a second voltage through a second terminal; operation In the high-efficiency mode, by setting the control voltage to the first high voltage, the first voltage to zero, and the second voltage to the first high voltage for writing; when operating in the high-efficiency mode, by setting the control voltage Is a negative voltage, the first voltage is set to zero, and the second voltage is set to a positive voltage for erasing.

綜上所述,非揮發式記憶體可依照實際使用情形設定不同的控制電壓、第一電壓及第二電壓,並根據控制電壓、第一電壓及第二電壓進行寫入或抹除。 In summary, the non-volatile memory can be set to different control voltages, first voltages, and second voltages according to actual usage conditions, and write or erase according to the control voltages, first voltages, and second voltages.

100‧‧‧非揮發性記憶體 100‧‧‧Non-volatile memory

110‧‧‧接點層 110‧‧‧Contact layer

120‧‧‧浮動閘極層 120‧‧‧Floating gate layer

130‧‧‧介電層 130‧‧‧Dielectric layer

140‧‧‧基板層 140‧‧‧Substrate layer

PG‧‧‧控制端 PG‧‧‧Control terminal

SL‧‧‧第一端 SL‧‧‧First end

BL‧‧‧第二端 BL‧‧‧Second end

HV、VDD‧‧‧電壓 HV, VDD‧‧‧Voltage

400‧‧‧操作方法 400‧‧‧Operation method

S410、S420、S430、S440、S450‧‧‧步驟 S410, S420, S430, S440, S450‧‧‧Step

第1圖繪示根據本揭示文件之一實施例的非揮發性記憶體的剖面圖。 FIG. 1 is a cross-sectional view of a non-volatile memory according to an embodiment of the present disclosure.

第2圖根據本揭示文件之一實施例的非揮發性記憶體的寫入操作示意圖。 FIG. 2 is a schematic diagram of a write operation of a non-volatile memory according to an embodiment of the disclosure.

第3圖根據本揭示文件之一實施例的非揮發性記憶體的抹除操作示意圖。 FIG. 3 is a schematic diagram of a non-volatile memory erasing operation according to an embodiment of the present disclosure.

第4圖根據本揭示文件之一實施例的非揮發性記憶體的寫入操作示意圖。 FIG. 4 is a schematic diagram of a write operation of a non-volatile memory according to an embodiment of the disclosure.

第5圖根據本揭示文件之一實施例的非揮發性記憶體的抹除操作示意圖。 FIG. 5 is a schematic diagram of a non-volatile memory erasing operation according to an embodiment of the present disclosure.

第6圖根據本揭示文件之一實施例的操作方法流程圖。 Fig. 6 is a flowchart of an operation method according to an embodiment of the present disclosure.

在本文中所使用的用詞『包含』、『具有』等等,均為開放性的用語,即意指『包含但不限於』。此外,本文中所使用之『及/或』,包含相關列舉項目中一或多個項目的任意一個以及其所有組合。 The terms "include", "have" and so on used in this article are all open terms, meaning "including but not limited to". In addition, the "and/or" used in this article includes any one of one or more of the related listed items and all combinations thereof.

於本文中,當一元件被稱為『連結』或『耦接』時,可指『電性連接』或『電性耦接』。『連結』或『耦接』亦可用以表示二或多個元件間相互搭配操作或互動。此外,雖然本文中使用『第一』、『第二』、…等用語描述不同元件,該用語僅是用以區別以相同技術用語描述的元件或操作。除非上下文清楚指明,否則該用語並非特別指稱或暗示次序或順位,亦非用以限定本揭示文件。 In this text, when an element is referred to as "connection" or "coupling", it can refer to "electrical connection" or "electrical coupling". "Link" or "coupling" can also be used to indicate mutual operation or interaction between two or more components. In addition, although terms such as “first”, “second”, etc. are used herein to describe different elements, the terms are only used to distinguish elements or operations described in the same technical terms. Unless the context clearly indicates, the terms do not specifically refer to or imply the order or sequence, nor are they used to limit this disclosure.

請參考第1圖,第1圖繪示根據本揭示文件之一實施例的非揮發性記憶體100的剖面圖。非揮發性記憶體100包含接點層110、浮動閘極層120(floating gate)、介 電層130、基板層140、控制端PG、第一端SL及第二端BL。接點層110用以接收控制端FG的控制電壓,第一端SL用以接收第一電壓,第二端BL用以接收第二電壓。 Please refer to FIG. 1. FIG. 1 is a cross-sectional view of a non-volatile memory 100 according to an embodiment of the present disclosure. The non-volatile memory 100 includes a contact layer 110, a floating gate layer 120 (floating gate), a dielectric The electrical layer 130, the substrate layer 140, the control terminal PG, the first terminal SL and the second terminal BL. The contact layer 110 is used for receiving the control voltage of the control terminal FG, the first terminal SL is used for receiving the first voltage, and the second terminal BL is used for receiving the second voltage.

非揮發性記憶體100是一種利用浮動閘極層120儲存電荷,達到記憶效果的一種記憶體,浮動閘極層120被介電層130所包圍著,介電層130是一種可被電極化的絕緣體,用以隔絕浮動閘極層120,而非揮發性記憶體100之電位的改變是利用浮動閘極層120內的電荷量來決定。 The non-volatile memory 100 is a kind of memory that uses the floating gate layer 120 to store charges to achieve a memory effect. The floating gate layer 120 is surrounded by a dielectric layer 130, which is a kind of that can be polarized. The insulator is used to isolate the floating gate layer 120, and the change of the potential of the non-volatile memory 100 is determined by the amount of charge in the floating gate layer 120.

當電子被注入到浮動閘極層120時,會使元件的臨界電壓(threshold voltage)增加,此時的操作可稱作寫入。相反地,當浮動閘極層120中的電子排出,則臨界電壓下降,此時的操作可稱作抹除。 When electrons are injected into the floating gate layer 120, the threshold voltage of the device will increase, and the operation at this time can be called writing. Conversely, when the electrons in the floating gate layer 120 are discharged, the threshold voltage drops, and the operation at this time can be called erasing.

非揮發性記憶體100的載子注入機制主要有兩種,第一種是FN穿隧(Fowler-Nordheim tunneling),第二種是熱電子注入。 There are two main carrier injection mechanisms for the non-volatile memory 100. The first is FN tunneling (Fowler-Nordheim tunneling), and the second is hot electron injection.

穿隧機制是量子力學中的概念,有別於古典力學,穿隧的電子不需要比位能障壁的能量高就有穿過位能障壁的機率存在。穿隧機率和位能障壁的寬度有關,寬度越小,電子穿隧的機率就越高。而隨著操作電壓上升,介電層130的等效寬度會越小,因此電子穿過介電層130的機率就會上升。 The tunneling mechanism is a concept in quantum mechanics. Unlike classical mechanics, the tunneling electron does not need to have a higher energy than the potential energy barrier to have the probability of passing through the potential energy barrier. The probability of tunneling is related to the width of the potential energy barrier. The smaller the width, the higher the probability of electron tunneling. As the operating voltage increases, the equivalent width of the dielectric layer 130 will be smaller, so the probability of electrons passing through the dielectric layer 130 will increase.

熱電子注入是當產生足夠的電場使電子有足夠的能量穿越位能障壁,相對於FN穿隧的速度較快。 Hot electron injection is when sufficient electric field is generated so that electrons have enough energy to cross the potential energy barrier, which is faster than FN tunneling.

於一實施例中,非揮發性記憶體100可以根據 實際使用需求操作於高效能模式或低功耗模式。有些時候非揮發性記憶體100會需要操作於需要高速的高效能模式,例如要求記憶體存取速度的情況。有些時候非揮發性記憶體100需要操作在能長時間操作的低功耗模式,例如需要長時間紀錄數據且要求省電的穿戴式裝置。 In one embodiment, the non-volatile memory 100 can be based on Actual use requires operation in high-efficiency mode or low-power mode. Sometimes the non-volatile memory 100 needs to be operated in a high-performance mode that requires high speed, such as a situation where memory access speed is required. Sometimes the non-volatile memory 100 needs to be operated in a low power consumption mode that can be operated for a long time, such as a wearable device that needs to record data for a long time and requires power saving.

請參考第2圖及第3圖,第2圖根據本揭示文件之一實施例的非揮發性記憶體100的寫入操作示意圖,第3圖根據本揭示文件之一實施例的非揮發性記憶體100的抹除操作示意圖。當非揮發性記憶體100操作於低功耗模式時,寫入及抹除的操作使用FN穿隧。 Please refer to FIG. 2 and FIG. 3. FIG. 2 is a schematic diagram of a write operation of the non-volatile memory 100 according to an embodiment of the present disclosure, and FIG. 3 is a schematic diagram of the non-volatile memory according to an embodiment of the present disclosure. A schematic diagram of the erasing operation of the body 100. When the non-volatile memory 100 is operated in a low power consumption mode, the write and erase operations use FN tunneling.

非揮發性記憶體100使用FN穿隧進行寫入時,將控制電壓設定為電壓HV,第一電壓設定為0V,第二電壓設定為0V以進行寫入。於此實施例中,電壓HV可以是一高電壓。 When the non-volatile memory 100 uses FN tunneling for writing, the control voltage is set to the voltage HV, the first voltage is set to 0V, and the second voltage is set to 0V for writing. In this embodiment, the voltage HV may be a high voltage.

應注意到,為了方便說明,第2圖的基板層140中以負號的圓形圖標作為電子的示例圖,不代表實際的數量或大小。控制電壓設定為電壓VDD,使基板層140內的電子穿隧到浮動閘極層120,如第2圖所示。 It should be noted that, for the convenience of description, the circular icon with a negative sign in the substrate layer 140 in FIG. 2 is used as an example of an electron, and does not represent the actual number or size. The control voltage is set to the voltage VDD, so that the electrons in the substrate layer 140 tunnel to the floating gate layer 120, as shown in FIG. 2.

非揮發性記憶體100使用FN穿隧進行抹除時,將控制電壓設定為0V,第一電壓設定為0V,第二電壓設定為電壓HV,使浮動閘極層120中的電子穿隧到基板層140的一端,例如電晶體中的汲極端,如第3圖所示。 When the non-volatile memory 100 is erased using FN tunneling, the control voltage is set to 0V, the first voltage is set to 0V, and the second voltage is set to voltage HV, so that the electrons in the floating gate layer 120 tunnel to the substrate One end of the layer 140, such as the drain terminal in the transistor, is as shown in FIG. 3.

請參考第4圖及第5圖,第4圖根據本揭示文件之一實施例的非揮發性記憶體100的寫入操作示意圖,第5 圖根據本揭示文件之一實施例的非揮發性記憶體100的抹除操作示意圖。當非揮發性記憶體100操作於高效能模式時,寫入及抹除的操作使用熱載子注入。 Please refer to FIG. 4 and FIG. 5. FIG. 4 is a schematic diagram of the writing operation of the non-volatile memory 100 according to an embodiment of the present disclosure. Figure is a schematic diagram of the erasing operation of the non-volatile memory 100 according to an embodiment of the present disclosure. When the non-volatile memory 100 is operated in a high-efficiency mode, the write and erase operations use hot carrier injection.

非揮發性記憶體100使用熱載子注入進行寫入時,將控制電壓設定為電壓VDD,第一電壓設定為0V,第二電壓設定為電壓VDD以進行寫入。於此實施例中,電壓VDD可以是一系統高電壓。 When the non-volatile memory 100 uses hot carrier injection for writing, the control voltage is set to the voltage VDD, the first voltage is set to 0V, and the second voltage is set to the voltage VDD for writing. In this embodiment, the voltage VDD can be a system high voltage.

應注意到,為了方便說明,第4圖的基板層140中以正號的圓形圖標作為電洞的示例圖,不代表實際的數量或大小。藉由將控制電壓設定為電壓VDD,第一電壓設定為0V,第二電壓設定為電壓VDD以產生水平電場及垂直電場,水平電場的增加會加速通道中電子的速度,當電子獲得足夠的能量時會增加電子穿隧的機率使電子進入浮動閘極層120,以及會在汲極端發生衝擊游離而產生電子電洞對,如第4圖所示。 It should be noted that, for the convenience of description, the circular icon with a positive sign in the substrate layer 140 in FIG. 4 is used as an example of the hole, which does not represent the actual number or size. By setting the control voltage to voltage VDD, the first voltage to 0V, and the second voltage to voltage VDD to generate a horizontal electric field and a vertical electric field, the increase of the horizontal electric field will accelerate the speed of electrons in the channel, and when the electrons get enough energy At this time, the probability of electron tunneling is increased to allow electrons to enter the floating gate layer 120, and impact ionization occurs at the drain terminal to generate electron-hole pairs, as shown in FIG. 4.

非揮發性記憶體100使用熱載子注入進行抹除時,藉由將控制電壓設定為電壓HV,第一電壓設定為0V,第二電壓設定為負的電壓HV,使浮動閘極層120與汲極端之間的能帶足夠歪斜,使浮動閘極層120內的電子與電洞結合以完成抹除,理解上如同電洞發生穿隧與浮動閘極層120內的電子結合,如第5圖所示。 When the non-volatile memory 100 is erased using hot carrier injection, the control voltage is set to voltage HV, the first voltage is set to 0V, and the second voltage is set to a negative voltage HV, so that the floating gate layer 120 and The energy band between the drain terminals is skewed enough to allow the electrons in the floating gate layer 120 to combine with holes to complete the erasure. It is understood that it is like tunneling through holes and the electrons in the floating gate layer 120 combine, as shown in Section 5. As shown in the figure.

請參考第6圖,第6圖根據本揭示文件之一實施例的操作方法400的流程圖。為使第6圖所示之操作方法400易於理解,請同時參考第2圖及第3圖。操作方法400包含步 驟S410、步驟S420、步驟S430、步驟S440及步驟S450。 Please refer to FIG. 6, which is a flowchart of an operation method 400 according to an embodiment of the present disclosure. To make the operation method 400 shown in Fig. 6 easy to understand, please refer to Figs. 2 and 3 at the same time. Operation method 400 contains steps Step S410, Step S420, Step S430, Step S440, and Step S450.

步驟S410,非揮發性記憶體100透過接點層110接收控制端PG的控制電壓。步驟S420,非揮發性記憶體100透過第一端SL接收第一電壓。步驟S430,非揮發性記憶體100透過第二端BL接收第二電壓。 In step S410, the non-volatile memory 100 receives the control voltage of the control terminal PG through the contact layer 110. In step S420, the non-volatile memory 100 receives the first voltage through the first terminal SL. In step S430, the non-volatile memory 100 receives the second voltage through the second terminal BL.

當非揮發性記憶體100操作於高效能模式時,執行步驟S440以進行寫入,執行步驟S450以進行抹除。步驟S440中,非揮發性記憶體100透過將控制電壓設定為高電壓,第一電壓設定為零,第二電壓設定為高電壓以進行寫入。例如,控制電壓及第二電壓設定為系統高電壓的電壓VDD,第一電壓設定為0V。步驟S450中,非揮發性記憶體100透過將控制電壓設定為負電壓,第一電壓設定為零,第二電壓設定為正電壓以進行寫入。例如控制電壓設定為負的電壓-HV,第一電壓設定為0V,第二電壓設定為電壓HV以進行抹除。 When the non-volatile memory 100 is operating in the high-performance mode, step S440 is executed for writing, and step S450 is executed for erasing. In step S440, the non-volatile memory 100 sets the control voltage to a high voltage, the first voltage is set to zero, and the second voltage is set to a high voltage for writing. For example, the control voltage and the second voltage are set to the system high voltage voltage VDD, and the first voltage is set to 0V. In step S450, the non-volatile memory 100 sets the control voltage to a negative voltage, the first voltage is set to zero, and the second voltage is set to a positive voltage for writing. For example, the control voltage is set to a negative voltage -HV, the first voltage is set to 0V, and the second voltage is set to voltage HV for erasing.

當非揮發性記憶體100操作於低功耗模式時,則將控制電壓、第一電壓及第二電壓設定對應的參數即可,不需要改變非揮發性記憶體100的內部結構即可實現。 When the non-volatile memory 100 is operated in the low power consumption mode, the control voltage, the first voltage, and the second voltage can be set to the corresponding parameters, which can be achieved without changing the internal structure of the non-volatile memory 100.

於一實施例中,非揮發性記憶體100可更一步設計成由NOR陣列排列,例如NOR型快閃記憶體(NOR flash memory),組成高密度記憶體,並且設計成差動式結構。差動式結構不需要額外的參考電流源來做比較,而是與自身產生的電流做比較,增加準確率。 In one embodiment, the non-volatile memory 100 can be further designed to be arranged in a NOR array, such as a NOR flash memory (NOR flash memory), to form a high-density memory, and to be designed as a differential structure. The differential structure does not require an additional reference current source for comparison, but compares with the current generated by itself to increase accuracy.

綜上所述,非揮發性記憶體根據實際應用,控 制不同的電壓以操作於高效能模式或低功耗模式而不需要改變內部的電晶體結構。使非揮發性記憶體能夠適用在不同需求的電子產品中。 In summary, non-volatile memory is controlled according to actual applications Different voltages can be used to operate in high-efficiency mode or low-power mode without changing the internal transistor structure. The non-volatile memory can be used in electronic products with different needs.

100‧‧‧非揮發性記憶體 100‧‧‧Non-volatile memory

110‧‧‧接點層 110‧‧‧Contact layer

120‧‧‧浮動閘極層 120‧‧‧Floating gate layer

130‧‧‧介電層 130‧‧‧Dielectric layer

140‧‧‧基板層 140‧‧‧Substrate layer

PG‧‧‧控制端 PG‧‧‧Control terminal

SL‧‧‧第一端 SL‧‧‧First end

BL‧‧‧第二端 BL‧‧‧Second end

Claims (8)

一種非揮發式記憶體,包含:一基板層;一第一端,配置於該基板層上,並用以接收一第一電壓;一第二端,配置於該基板層上,並用以接收一第二電壓;一浮動閘極層,配置於該基板層上方;以及一接點層,配置於該浮動閘極層上方,並用以接收一控制電壓;其中當該非揮發式記憶體操作於一高效能模式時,該控制電壓設定為一第一高電壓,該第一電壓設定為零,該第二電壓設定為該第一高電壓以進行寫入,該控制電壓設定為一負電壓,該第一電壓設定為零,該第二電壓設定為一正電壓以進行抹除,其中當該非揮發式記憶體操作於一低功耗模式時,該控制電壓設定為一第二高電壓,該第一電壓設定為零,該第二電壓設定為零以進行寫入,該控制電壓設定為零,該第一電壓設定為零,該第二電壓設定為該第二高電壓以進行抹除。 A non-volatile memory includes: a substrate layer; a first end arranged on the substrate layer and used for receiving a first voltage; a second end arranged on the substrate layer and used for receiving a first voltage; Two voltages; a floating gate layer disposed above the substrate layer; and a contact layer disposed above the floating gate layer and used to receive a control voltage; wherein when the non-volatile memory is operated in a high-performance In the mode, the control voltage is set to a first high voltage, the first voltage is set to zero, the second voltage is set to the first high voltage for writing, the control voltage is set to a negative voltage, the first The voltage is set to zero, the second voltage is set to a positive voltage for erasing, wherein when the non-volatile memory is operating in a low power consumption mode, the control voltage is set to a second high voltage, and the first voltage It is set to zero, the second voltage is set to zero for writing, the control voltage is set to zero, the first voltage is set to zero, and the second voltage is set to the second high voltage for erasing. 如請求項1所述之非揮發式記憶體,其中當該非揮發式記憶體操作於該低功耗模式時,藉由該控制電壓、該第一電壓及該第二電壓使該基板層中的電子進入到浮動閘極層以進行寫入。 The non-volatile memory according to claim 1, wherein when the non-volatile memory is operated in the low power consumption mode, the control voltage, the first voltage, and the second voltage make the substrate layer Electrons enter the floating gate layer for writing. 如請求項2所述之非揮發式記憶體,其中當該非揮發式記憶體操作於該低功耗模式時,藉由該控制電壓、該第一電壓及該第二電壓使該浮動閘極層中的電子移出到該基板層中以進行抹除。 The non-volatile memory according to claim 2, wherein when the non-volatile memory is operated in the low power consumption mode, the floating gate layer is made by the control voltage, the first voltage and the second voltage The electrons in it move out to the substrate layer to be erased. 如請求項3所述之非揮發式記憶體,其中當該非揮發式記憶體操作於該高效能模式時,該非揮發式記憶體藉由該控制電壓、該第一電壓及該第二電壓產生一橫向電場及一縱向電場使該基板層中的電子受到該橫向電場的加速並進入到該浮動閘極層以進行寫入。 The non-volatile memory according to claim 3, wherein when the non-volatile memory is operated in the high-performance mode, the non-volatile memory generates a voltage by the control voltage, the first voltage and the second voltage The horizontal electric field and a vertical electric field cause electrons in the substrate layer to be accelerated by the horizontal electric field and enter the floating gate layer for writing. 一種非揮發性記憶體之操作方法,包含:透過一接點層接收一控制電壓;透過一第一端接收一第一電壓;透過一第二端接收一第二電壓;操作於一高效能模式時,透過將該控制電壓設定為一第一高電壓,該第一電壓設定為零,該第二電壓設定為該第一高電壓以進行寫入;操作於該高效能模式時,透過將該控制電壓設定為一負電壓,該第一電壓設定為零,該第二電壓設定為一正電壓以進行抹除;操作於一低功耗模式時,透過將該控制電壓設定為一第二高電壓,該第一電壓設定為零,該第二電壓設定為零以進行寫入;以及操作於該低功耗模式時,透過該控制電壓設定為零, 該第一電壓設定為零,該第二電壓設定為該第二高電壓以進行抹除。 A method for operating a non-volatile memory includes: receiving a control voltage through a contact layer; receiving a first voltage through a first terminal; receiving a second voltage through a second terminal; operating in a high-performance mode When the control voltage is set to a first high voltage, the first voltage is set to zero, and the second voltage is set to the first high voltage for writing; when operating in the high-efficiency mode, through the The control voltage is set to a negative voltage, the first voltage is set to zero, and the second voltage is set to a positive voltage for erasing; when operating in a low power consumption mode, the control voltage is set to a second high Voltage, the first voltage is set to zero, and the second voltage is set to zero for writing; and when operating in the low power consumption mode, the control voltage is set to zero, The first voltage is set to zero, and the second voltage is set to the second high voltage for erasing. 如請求項5所述之操作方法,更包含:操作於該低功耗模式時,透過該控制電壓、該第一電壓及該第二電壓使一基板層中的電子進入到一浮動閘極層以進行寫入。 The operation method according to claim 5, further comprising: when operating in the low power consumption mode, allowing electrons in a substrate layer to enter a floating gate layer through the control voltage, the first voltage and the second voltage To write. 如請求項6所述之操作方法,更包含:操作於該低功耗模式時,藉由該控制電壓、該第一電壓及該第二電壓使該浮動閘極層中的電子移出到該基板層中以進行抹除。 The operation method according to claim 6, further comprising: when operating in the low power consumption mode, the electrons in the floating gate layer are moved out to the substrate by the control voltage, the first voltage and the second voltage Layer in order to erase. 如請求項7所述之操作方法,其中操作於該高效能模式時,透過將該控制電壓設定為該第一高電壓,該第一電壓設定為零,該第二電壓設定為該第一高電壓以進行寫入的步驟包含:藉由該控制電壓、該第一電壓及該第二電壓產生一橫向電場及一縱向電場使該基板層中的電子受到該橫向電場的加速並進入到該浮動閘極層以進行寫入。 The operation method according to claim 7, wherein when operating in the high-efficiency mode, the control voltage is set to the first high voltage, the first voltage is set to zero, and the second voltage is set to the first high The step of voltage for writing includes: generating a horizontal electric field and a vertical electric field by the control voltage, the first voltage and the second voltage so that the electrons in the substrate layer are accelerated by the horizontal electric field and enter the floating Gate layer for writing.
TW108122014A 2019-06-24 2019-06-24 Non-volatile memory device and operating method thereof TWI708397B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108122014A TWI708397B (en) 2019-06-24 2019-06-24 Non-volatile memory device and operating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108122014A TWI708397B (en) 2019-06-24 2019-06-24 Non-volatile memory device and operating method thereof

Publications (2)

Publication Number Publication Date
TWI708397B true TWI708397B (en) 2020-10-21
TW202101773A TW202101773A (en) 2021-01-01

Family

ID=74093945

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108122014A TWI708397B (en) 2019-06-24 2019-06-24 Non-volatile memory device and operating method thereof

Country Status (1)

Country Link
TW (1) TWI708397B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200620571A (en) * 2002-12-27 2006-06-16 Sharp Kk Semiconductor storage device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200620571A (en) * 2002-12-27 2006-06-16 Sharp Kk Semiconductor storage device

Also Published As

Publication number Publication date
TW202101773A (en) 2021-01-01

Similar Documents

Publication Publication Date Title
CN100490152C (en) Non-volatile memory cell and related operation method
TWI613655B (en) Non-volatile memory cell and method of operating the same
JP2003332475A (en) Electrically erasable programmable read only memory composed of single layer polycrystalline silicon
Tomiye et al. A novel 2-bit/cell MONOS memory device with a wrapped-control-gate structure that applies source-side hot-electron injection
JP2007142398A (en) Method of driving single-layer polysilicon nonvolatile memory cell
WO2010081310A1 (en) Gate-separated type flash memory with shared word line
JP2007123830A (en) Non-volatile semiconductor memory device
JP2010514196A (en) 2TNOR type nonvolatile memory cell array and data processing method for 2TNOR type nonvolatile memory
US20090086548A1 (en) Flash memory
US7190623B2 (en) Non-volatile memory cell and method of operating the same
TWI220252B (en) Method for programming, erasing and reading a flash memory cell
US20100214845A1 (en) Nand memory cell array, nand flash memory having nand memory cell array, data processing method for nand flash memory
Lane et al. Simulations of ultralow-power nonvolatile cells for random-access memory
CN105226065A (en) A kind of dibit SONOS memory and compiling, erasing and read method
US20170103813A1 (en) Effective programming method for non-volatile flash memory using junction band to band hot electron
TWI708397B (en) Non-volatile memory device and operating method thereof
US8593848B2 (en) Programming method for programming flash memory array structure
JPH1166873A (en) Writing and erasing method for flash memory
JP2002353345A (en) Semiconductor memory device and bulk area forming method
US20190189219A1 (en) Programming circuit and programming method of flash memory and flash memory
TWI804921B (en) Flash memory programming method
TWI389321B (en) Method for programing a nonvolatile memory
Yater et al. First-ever high-performance, low-power 32-bit microcontrollers with embedded nanocrystal flash and enhanced EEPROM memories
Song et al. Program/erase speed, endurance, retention, and disturbance characteristics of single-poly embedded flash cells
US7554851B2 (en) Reset method of non-volatile memory

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees