TWI707387B - Silicon-on-insulator field effect transistor and manufacturing method thereof - Google Patents

Silicon-on-insulator field effect transistor and manufacturing method thereof Download PDF

Info

Publication number
TWI707387B
TWI707387B TW108124759A TW108124759A TWI707387B TW I707387 B TWI707387 B TW I707387B TW 108124759 A TW108124759 A TW 108124759A TW 108124759 A TW108124759 A TW 108124759A TW I707387 B TWI707387 B TW I707387B
Authority
TW
Taiwan
Prior art keywords
layer
insulating layer
effect transistor
silicon
ion implantation
Prior art date
Application number
TW108124759A
Other languages
Chinese (zh)
Other versions
TW202103222A (en
Inventor
王水進
陳湘怡
黃以芹
黃雅琪
江孟學
Original Assignee
國立成功大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立成功大學 filed Critical 國立成功大學
Priority to TW108124759A priority Critical patent/TWI707387B/en
Application granted granted Critical
Publication of TWI707387B publication Critical patent/TWI707387B/en
Publication of TW202103222A publication Critical patent/TW202103222A/en

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

A silicon-on-insulator field effect transistor includes a substrate, an ion implantation region, and a gate structure. The substrate includes a semiconductor substrate, an insulating layer, and a semiconductor layer. The semiconductor substrate has a first conductive type. The insulating layer is disposed on the semiconductor substrate. The semiconductor layer is disposed on the insulating layer. The semiconductor layer has a second conductive type, a first surface, and a second surface opposite the first surface. The first conductive type is different from the second conductive type. The ion implantation region is disposed at the bottom of the semiconductor layer and has the first conductive type. The gate structure is disposed on the first surface of the semiconductor layer. The gate structure includes a gate dielectric layer and a gate. The gate is disposed on the gate dielectric layer.

Description

絕緣層上矽之場效電晶體及其製造方法Field effect transistor of silicon on insulating layer and manufacturing method thereof

本發明是有關於一種絕緣層上矽之場效電晶體,且特別是有關於一種絕緣層上矽之場效電晶體,具有配置於半導體層的底部的離子佈植區。The present invention relates to a field effect transistor with silicon on an insulating layer, and particularly relates to a field effect transistor with silicon on an insulating layer, which has an ion implantation area disposed at the bottom of a semiconductor layer.

在目前半導體產業中,相較於三維的鰭式場效電晶體(fin field-effect transistor,FinFET),平面的全空乏絕緣層上矽(fully depleted silicon on insulator,FD-SOI)之場效電晶體可採用較低的製造成本製作出與FinFET相似性能的場效電晶體。In the current semiconductor industry, compared with the three-dimensional fin field-effect transistor (FinFET), the planar fully depleted silicon on insulator (FD-SOI) field-effect transistor A field-effect transistor with similar performance to FinFET can be made with lower manufacturing cost.

雖然現階段較受矚目的FD-SOI之場效電晶體包括超薄通道場效電晶體(ultra-thin-body field effect transistor,UTBFET)與掘入式場效電晶體(recessed channel field effect transistor,RCFET),但是UTBFET於通道結構的厚度低於25 nm的製造成本高昂,而RCFET除了其源極/通道/汲極結構並非共平面外,其通道層厚度也無法精準控制且可能會有因為電漿蝕刻而造成的結構傷害。Although the field-effect transistors of FD-SOI that have attracted more attention at this stage include ultra-thin-body field effect transistor (UTBFET) and recessed channel field effect transistor (RCFET) ), but the manufacturing cost of UTBFET with channel structure thickness of less than 25 nm is high. In addition to the fact that the source/channel/drain structure of RCFET is not coplanar, the thickness of the channel layer cannot be precisely controlled and may be caused by plasma Structural damage caused by etching.

本發明提供一種絕緣層上矽之場效電晶體,具有利用離子佈植薄化的通道層,進而可提升閘極控制力、降低漏電電流、降低次臨界擺幅(SS)以及減少汲極引發能障降低(drain induced barrier lowering,DIBL)效應。The present invention provides a field-effect transistor of silicon on an insulating layer, which has a channel layer thinned by ion implantation, which can improve gate control, reduce leakage current, reduce subcritical swing (SS), and reduce drain initiation Drain induced barrier lowering (DIBL) effect.

本發明提供一種絕緣層上矽之場效電晶體的製造方法,用於製造上述的絕緣層上矽之場效電晶體,具有製造成本低的優點。The present invention provides a method for manufacturing a field-effect transistor of silicon on an insulating layer, which is used for manufacturing the above-mentioned field-effect transistor of silicon on an insulating layer, and has the advantage of low manufacturing cost.

本發明的絕緣層上矽之場效電晶體,包括基板、離子佈植區以及閘極結構。基板包括半導體基底、絕緣層以及半導體層。半導體基底具有第一導電型。絕緣層配置於半導體基底上。半導體層配置於絕緣層上。半導體層具有第二導電型、第一表面以及相對第一表面的第二表面。第一導電型與第二導電型不同。離子佈植區配置於半導體層的底部,且具有第一導電型。閘極結構配置於半導體層的第一表面上。閘極結構包括閘介電層以及閘極。閘極配置於閘介電層上。The silicon field effect transistor on the insulating layer of the present invention includes a substrate, an ion implantation area and a gate structure. The substrate includes a semiconductor base, an insulating layer, and a semiconductor layer. The semiconductor substrate has a first conductivity type. The insulating layer is configured on the semiconductor substrate. The semiconductor layer is disposed on the insulating layer. The semiconductor layer has a second conductivity type, a first surface, and a second surface opposite to the first surface. The first conductivity type is different from the second conductivity type. The ion implantation area is disposed at the bottom of the semiconductor layer and has the first conductivity type. The gate structure is disposed on the first surface of the semiconductor layer. The gate structure includes a gate dielectric layer and a gate. The gate electrode is arranged on the gate dielectric layer.

在本發明的一實施例中,上述的離子佈植區與半導體層的第一表面之間具有一距離為1.5 nm至10 nm。In an embodiment of the present invention, a distance between the ion implantation area and the first surface of the semiconductor layer is 1.5 nm to 10 nm.

在本發明的一實施例中,上述的閘極結構於半導體基底上的正投影重疊於離子佈植區於半導體基底上的正投影。In an embodiment of the present invention, the orthographic projection of the gate structure on the semiconductor substrate overlaps the orthographic projection of the ion implantation region on the semiconductor substrate.

在本發明的一實施例中,上述的閘極結構於半導體基底上的正投影面積小於等於離子佈植區於半導體基底上的正投影面積。In an embodiment of the present invention, the orthographic projection area of the aforementioned gate structure on the semiconductor substrate is less than or equal to the orthographic projection area of the ion implantation region on the semiconductor substrate.

在本發明的一實施例中,上述的離子佈植區接觸絕緣層,且與半導體層的第二表面切齊。In an embodiment of the present invention, the aforementioned ion implantation region is in contact with the insulating layer and is aligned with the second surface of the semiconductor layer.

在本發明的一實施例中,上述的離子佈植區的長度為10 nm至140 nm。In an embodiment of the present invention, the length of the aforementioned ion implantation region is 10 nm to 140 nm.

在本發明的一實施例中,上述的半導體層與半導體基板分別位於絕緣層的相對兩側。In an embodiment of the present invention, the aforementioned semiconductor layer and the semiconductor substrate are respectively located on opposite sides of the insulating layer.

本發明的絕緣層上矽之場效電晶體的製造方法,包括以下步驟。首先,提供一基板。基板包括基板包括半導體基底、絕緣層以及半導體層。半導體基底具有第一導電型。絕緣層配置於半導體基底上。半導體層配置於絕緣層上。半導體層具有第二導電型、第一表面以及相對第一表面的第二表面。第一導電型與第二導電型不同。接著,形成離子佈植區於半導體層的底部,且離子佈植區具有第一導電型。然後,形成閘極結構於半導體層的第一表面上。閘極結構包括閘介電層以及閘極,且閘極配置於閘介電層上。The method for manufacturing a silicon field-effect transistor on an insulating layer of the present invention includes the following steps. First, provide a substrate. The substrate includes a substrate including a semiconductor base, an insulating layer, and a semiconductor layer. The semiconductor substrate has a first conductivity type. The insulating layer is configured on the semiconductor substrate. The semiconductor layer is disposed on the insulating layer. The semiconductor layer has a second conductivity type, a first surface, and a second surface opposite to the first surface. The first conductivity type is different from the second conductivity type. Next, an ion implantation area is formed at the bottom of the semiconductor layer, and the ion implantation area has the first conductivity type. Then, a gate structure is formed on the first surface of the semiconductor layer. The gate structure includes a gate dielectric layer and a gate electrode, and the gate electrode is disposed on the gate dielectric layer.

在本發明的一實施例中,上述形成離子佈植區於半導體層的底部的步驟包括以下步驟。形成光阻圖案於基板的半導體層上。對光阻圖案所暴露出的部分半導體層進行離子佈植程序。移除光阻圖案。In an embodiment of the present invention, the step of forming the ion implantation region at the bottom of the semiconductor layer includes the following steps. A photoresist pattern is formed on the semiconductor layer of the substrate. Perform ion implantation procedures on part of the semiconductor layer exposed by the photoresist pattern. Remove the photoresist pattern.

在本發明的一實施例中,上述的離子佈植程序的參數包括:佈植能量為2 keV至20 keV,佈植劑量為10 12cm -2至10 14cm -2,角度為0度至60度,退火溫度為900 ℃至1100 ℃,退火時間小於60秒。 In an embodiment of the present invention, the parameters of the aforementioned ion implantation program include: implantation energy is 2 keV to 20 keV, implantation dose is 10 12 cm -2 to 10 14 cm -2 , and angle is 0 degree to 60 degrees, annealing temperature is 900 ℃ to 1100 ℃, annealing time is less than 60 seconds.

在本發明的一實施例中,上述的離子佈植程序的參數包括:佈植能量為9.5 keV,佈植劑量為8×10 13cm -2,角度為60度,退火溫度為1050 ℃,退火時間為5秒。 In an embodiment of the present invention, the parameters of the above ion implantation program include: implantation energy is 9.5 keV, implantation dose is 8×10 13 cm -2 , angle is 60 degrees, annealing temperature is 1050 ℃, annealing The time is 5 seconds.

在本發明的一實施例中,上述的離子佈植區的佈植雜質為硼、鋁、鎵、磷、砷、銻、氧或氮。In an embodiment of the present invention, the implantation impurity of the ion implantation area is boron, aluminum, gallium, phosphorus, arsenic, antimony, oxygen or nitrogen.

在本發明的一實施例中,上述形成閘極結構於半導體層的第一表面上的步驟包括以下步驟。依序形成介電層以及閘極材料層於基板的半導體層上。形成光阻圖案於閘極材料層上。移除由光阻圖案所暴露出的部分閘極材料層以及其下方的部分介電層,以形成閘極以及閘介電層。In an embodiment of the present invention, the step of forming the gate structure on the first surface of the semiconductor layer includes the following steps. A dielectric layer and a gate material layer are sequentially formed on the semiconductor layer of the substrate. A photoresist pattern is formed on the gate material layer. A part of the gate material layer exposed by the photoresist pattern and a part of the dielectric layer under it are removed to form a gate and a gate dielectric layer.

在本發明的一實施例中,上述的絕緣層上矽之場效電晶體的製造方法還包括以下步驟。形成間隙壁材料於基板上,以覆蓋半導體層、光阻圖案、閘極的側壁以及閘介電層的側壁。移除部分間隙壁材料以及光阻圖案,以形成間隙壁。In an embodiment of the present invention, the above-mentioned method for manufacturing a field-effect transistor of silicon on an insulating layer further includes the following steps. A spacer material is formed on the substrate to cover the semiconductor layer, the photoresist pattern, the sidewall of the gate electrode and the sidewall of the gate dielectric layer. Remove part of the spacer material and the photoresist pattern to form the spacer.

基於上述,在本發明的絕緣層上矽之場效電晶體及其製造方法中,藉由在半導體層(通道層)的底部形成離子佈植區來薄化半導體層(通道層)的厚度,進而使得本發明的絕緣層上矽之場效電晶體具有可提升閘極控制力、降低漏電電流、降低次臨界擺幅以及減少汲極引發能障降低效應的功效。Based on the above, in the field-effect transistor of silicon on the insulating layer and its manufacturing method of the present invention, the thickness of the semiconductor layer (channel layer) is thinned by forming an ion implantation region at the bottom of the semiconductor layer (channel layer), Furthermore, the silicon field-effect transistor on the insulating layer of the present invention has the effects of improving gate control, reducing leakage current, reducing subcritical swing, and reducing the energy barrier reduction effect caused by drain.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.

圖1A至圖1G繪示為本發明一實施例的一種絕緣層上矽之場效電晶體的製造流程的剖面示意圖。圖1H繪示為圖1G的立體示意圖。1A to 1G are schematic cross-sectional views showing a manufacturing process of a silicon-on-insulating field effect transistor according to an embodiment of the invention. Fig. 1H is a schematic perspective view of Fig. 1G.

請參照圖1A,首先,提供一基板120。在本實施例中,基板120包括半導體基底122、絕緣層124以及半導體層126。半導體基底122具有第一導電型。絕緣層124配置於半導體基底122上。半導體層126配置於絕緣層124上,且半導體層126具有第二導電型、第一表面126a以及相對第一表面126a的第二表面126b。其中,第一導電型與第二導電型不同。半導體層126與半導體基底122分別位於絕緣層124的相對兩側。舉例來說,本實施例的半導體基底122例如是具有P型半導體的矽基底,絕緣層124例如是氧化矽層,半導體層126例如是N型半導體層,但不以此為限。在其他實施例中,半導體基底也可以是具有N型半導體的矽基底,而半導體層也可以是P型半導體層。此外,在本實施例中,半導體層126的厚度例如是25 nm。絕緣層124的厚度例如是25 nm。Please refer to FIG. 1A. First, a substrate 120 is provided. In this embodiment, the substrate 120 includes a semiconductor base 122, an insulating layer 124, and a semiconductor layer 126. The semiconductor substrate 122 has a first conductivity type. The insulating layer 124 is disposed on the semiconductor substrate 122. The semiconductor layer 126 is disposed on the insulating layer 124, and the semiconductor layer 126 has a second conductivity type, a first surface 126a, and a second surface 126b opposite to the first surface 126a. Among them, the first conductivity type is different from the second conductivity type. The semiconductor layer 126 and the semiconductor substrate 122 are respectively located on opposite sides of the insulating layer 124. For example, the semiconductor substrate 122 of this embodiment is, for example, a silicon substrate with a P-type semiconductor, the insulating layer 124 is, for example, a silicon oxide layer, and the semiconductor layer 126 is, for example, an N-type semiconductor layer, but it is not limited thereto. In other embodiments, the semiconductor substrate may also be a silicon substrate with an N-type semiconductor, and the semiconductor layer may also be a P-type semiconductor layer. In addition, in this embodiment, the thickness of the semiconductor layer 126 is, for example, 25 nm. The thickness of the insulating layer 124 is, for example, 25 nm.

接著,請參照圖1B,在半導體層126的第一表面126a上形成光阻圖案130,以使光阻圖案130暴露出的部分半導體層126,並定義出後續所形成的離子佈植區127的長度L1。接著,利用最佳化的離子佈植程序的參數,對光阻圖案130所暴露出的部分半導體層126進行離子佈植程序I,以將與半導體層126不同導電型的佈植雜質摻雜至半導體層126的底部。而後,移除光阻圖案130,以形成具有第一導電型的離子佈植區127於半導體層126的底部。此時,可將半導體層126的左右兩側且不包含離子佈植區127的區域當作是源極區128以及汲極區129。Next, referring to FIG. 1B, a photoresist pattern 130 is formed on the first surface 126a of the semiconductor layer 126 so that a portion of the semiconductor layer 126 exposed by the photoresist pattern 130 and defines the ion implantation region 127 to be formed subsequently Length L1. Next, using the optimized parameters of the ion implantation procedure, the ion implantation procedure I is performed on the part of the semiconductor layer 126 exposed by the photoresist pattern 130 to dope implant impurities of a different conductivity type from the semiconductor layer 126 to The bottom of the semiconductor layer 126. Then, the photoresist pattern 130 is removed to form an ion implantation region 127 having the first conductivity type at the bottom of the semiconductor layer 126. At this time, the regions on the left and right sides of the semiconductor layer 126 that do not include the ion implantation region 127 can be regarded as the source region 128 and the drain region 129.

在本實施例中,佈植雜質例如是硼,但不以此為限。也就是說,在其他實施例中,佈植雜質也可以是鋁、鎵、磷、砷、銻、氧或氮,只要能使摻雜後的離子佈植區127的導電型與半導體層126的導電型不同即可。此外,關於最佳化的離子佈植程序的參數,將於後續的實施例中進行說明。In this embodiment, the implantation impurity is, for example, boron, but it is not limited thereto. That is to say, in other embodiments, the implantation impurity can also be aluminum, gallium, phosphorus, arsenic, antimony, oxygen, or nitrogen, as long as the conductivity type of the doped ion implantation region 127 is compatible with the semiconductor layer 126 The conductivity type is different. In addition, the parameters of the optimized ion implantation program will be described in subsequent embodiments.

進一步來說,在本實施例中,具有第一導電型的離子佈植區127可位於半導體層126的底部。在一些實施例中,離子佈植區127也可接觸絕緣層124,且與半導體層126的第二表面126b切齊。此外,離子佈植區127與半導體層126的第一表面126a之間具有一距離,且距離例如是1.5 nm至10 nm。離子佈植區127的長度L1例如是10 nm至140 nm。較佳地,離子佈植區127的長度L1為120 nm。Furthermore, in this embodiment, the ion implantation region 127 having the first conductivity type may be located at the bottom of the semiconductor layer 126. In some embodiments, the ion implantation region 127 may also contact the insulating layer 124 and be aligned with the second surface 126 b of the semiconductor layer 126. In addition, there is a distance between the ion implantation region 127 and the first surface 126a of the semiconductor layer 126, and the distance is, for example, 1.5 nm to 10 nm. The length L1 of the ion implantation region 127 is, for example, 10 nm to 140 nm. Preferably, the length L1 of the ion implantation region 127 is 120 nm.

然後,請參照圖1C,在半導體層126的第一表面126a上依序形成介電層141以及閘極材料層143。在本實施例中,介電層141的材料例如是高介電常數材料,但不以此為限。形成介電層141的方法例如是化學氣相沉積法或是原子層沉積,但不以此為限。閘極材料層143的材料包括多晶矽或金屬材料,例如是Al、Cu、W、Ti、Ta、TiN、TiAl、TiAlN、TaN、TaC、TiC、NiSi、CoSi、其他合適的金屬材料或其組合。閘極材料層143的形成方法例如是物理氣相沉積法、化學氣相沉積法或是原子層沉積,但不以此為限。Then, referring to FIG. 1C, a dielectric layer 141 and a gate material layer 143 are sequentially formed on the first surface 126a of the semiconductor layer 126. In this embodiment, the material of the dielectric layer 141 is, for example, a high dielectric constant material, but it is not limited thereto. The method of forming the dielectric layer 141 is, for example, chemical vapor deposition or atomic layer deposition, but is not limited thereto. The material of the gate material layer 143 includes polysilicon or metal materials, such as Al, Cu, W, Ti, Ta, TiN, TiAl, TiAlN, TaN, TaC, TiC, NiSi, CoSi, other suitable metal materials or combinations thereof. The formation method of the gate material layer 143 is, for example, physical vapor deposition, chemical vapor deposition, or atomic layer deposition, but is not limited thereto.

請參照圖1D至圖1E,在閘極材料層143上形成光阻圖案131,以暴露出部分閘極材料層143。接著,以光阻圖案131作為罩幕,並例如是以蝕刻的方式,移除由光阻圖案131所暴露出的部分閘極材料層143以及其下方的部分介電層141,以形成閘介電層142以及閘極144。在本實施例中,可將閘介電層142以及閘極144當作是閘極結構140,其中閘極結構140配置於半導體層126的第一表面126a上,且閘極144配置於閘介電層142上。在本實施例中,閘介電層142的介電層厚度t ox例如是3 nm。在一些實施例中,閘極結構140於半導體基底122上的正投影重疊於離子佈植區127於半導體基底122上的正投影,且閘極結構140於半導體基底122上的正投影面積小於等於離子佈植區127於半導體基底122上的正投影面積。此外,由於對應於閘極結構140下方的半導體層126可當作是通道層,此外,由於對應於閘極結構140下方的半導體層126可當作是通道層,因此,本實施例藉由形成離子佈植區127而薄化了通道層的厚度,因而使得本實施例的初始通道層的通道厚度t ch變為有效通道厚度D,而有效通道厚度D也是離子佈植區127與半導體層126的第一表面126a之間的距離,也就是說,本實施例的通道層的通道厚度t ch從25 nm薄化至有效通道厚度D,例如是1.5 nm至10 nm。 1D to 1E, a photoresist pattern 131 is formed on the gate material layer 143 to expose a part of the gate material layer 143. Then, the photoresist pattern 131 is used as a mask, and for example, by etching, a part of the gate material layer 143 exposed by the photoresist pattern 131 and a part of the dielectric layer 141 below it are removed to form a gate dielectric The electrical layer 142 and the gate 144. In this embodiment, the gate dielectric layer 142 and the gate electrode 144 can be regarded as the gate structure 140, wherein the gate structure 140 is disposed on the first surface 126a of the semiconductor layer 126, and the gate electrode 144 is disposed on the gate dielectric On the electrical layer 142. In this embodiment, the dielectric layer thickness t ox of the gate dielectric layer 142 is, for example, 3 nm. In some embodiments, the orthographic projection of the gate structure 140 on the semiconductor substrate 122 overlaps the orthographic projection of the ion implantation region 127 on the semiconductor substrate 122, and the orthographic projection area of the gate structure 140 on the semiconductor substrate 122 is less than or equal to The orthographic projection area of the ion implantation region 127 on the semiconductor substrate 122. In addition, since the semiconductor layer 126 under the gate structure 140 can be regarded as a channel layer, in addition, since the semiconductor layer 126 under the gate structure 140 can be regarded as a channel layer, this embodiment is formed by forming The ion implantation region 127 thins the thickness of the channel layer, so that the channel thickness t ch of the initial channel layer of this embodiment becomes the effective channel thickness D, and the effective channel thickness D is also the ion implantation region 127 and the semiconductor layer 126 The distance between the first surfaces 126a, that is, the channel thickness t ch of the channel layer in this embodiment is reduced from 25 nm to the effective channel thickness D, for example, 1.5 nm to 10 nm.

請參照圖1F,在基板120上形成間隙壁材料150,以使間隙壁材料150共形地覆蓋半導體層126的第一表面126a、光阻圖案131、閘極144的側壁以及閘介電層142的側壁。在本實施例中,間隙壁材料150例如是絕緣材料,包括氧化矽、氮化矽、氮氧化矽或其組合。間隙壁材料150的形成方法例如是化學氣相沉積法,但不以此為限。1F, a spacer material 150 is formed on the substrate 120 so that the spacer material 150 conformally covers the first surface 126a of the semiconductor layer 126, the photoresist pattern 131, the sidewalls of the gate electrode 144, and the gate dielectric layer 142 The sidewall. In this embodiment, the spacer material 150 is, for example, an insulating material, including silicon oxide, silicon nitride, silicon oxynitride, or a combination thereof. The formation method of the spacer material 150 is, for example, a chemical vapor deposition method, but is not limited thereto.

請同時參照圖1G與圖1H,以非等向性蝕刻的方式移除部分間隙壁材料150以及光阻圖案131,以暴露出閘極144的頂面以及部分半導體層126的第一表面126a,並形成間隙壁151。在本實施例中,間隙壁151覆蓋閘極144的側壁以及閘介電層142的側壁。至此,已製造完成本實施例的絕緣層上矽之場效電晶體100。1G and 1H at the same time, part of the spacer material 150 and the photoresist pattern 131 are removed by an anisotropic etching to expose the top surface of the gate electrode 144 and part of the first surface 126a of the semiconductor layer 126. And a spacer 151 is formed. In this embodiment, the spacer 151 covers the sidewalls of the gate electrode 144 and the sidewalls of the gate dielectric layer 142. So far, the silicon-on-insulating field effect transistor 100 of this embodiment has been manufactured.

簡言之,本實施例的絕緣層上矽之場效電晶體100包括基板120、離子佈植區127以及閘極結構140。基板120包括半導體基底122、絕緣層124以及半導體層126。半導體基底122具有第一導電型。絕緣層124配置於半導體基底122上。半導體層126配置於絕緣層124上。半導體層126具有第二導電型、第一表面126a以及相對第一表面126a的第二表面126b。第一導電型與第二導電型不同。離子佈植區127配置於半導體層126的底部,且具有第一導電型。閘極結構140配置於半導體層126的第一表面126a上。閘極結構140包括閘介電層142以及閘極144。閘極144配置於閘介電層142上。In short, the silicon-on-insulating field-effect transistor 100 of this embodiment includes a substrate 120, an ion implantation region 127, and a gate structure 140. The substrate 120 includes a semiconductor base 122, an insulating layer 124, and a semiconductor layer 126. The semiconductor substrate 122 has a first conductivity type. The insulating layer 124 is disposed on the semiconductor substrate 122. The semiconductor layer 126 is disposed on the insulating layer 124. The semiconductor layer 126 has a second conductivity type, a first surface 126a, and a second surface 126b opposite to the first surface 126a. The first conductivity type is different from the second conductivity type. The ion implantation region 127 is disposed at the bottom of the semiconductor layer 126 and has the first conductivity type. The gate structure 140 is disposed on the first surface 126 a of the semiconductor layer 126. The gate structure 140 includes a gate dielectric layer 142 and a gate 144. The gate electrode 144 is disposed on the gate dielectric layer 142.

實施例Example

實施例Example 11 : 離子佈植程序的參數最佳化Parameter optimization of ion implantation program

以下採用不同的模擬分析來對離子佈植程序的參數進行最佳化,以使本實施例的絕緣層上矽之場效電晶體,具有可提升閘極控制力、降低漏電電流、降低次臨界擺幅(SS)以及減少汲極引發能障降低效應(DIBL)的效果。離子佈植程序的參數包括佈植能量(Energy)、佈植劑量(Dosage)、角度(Tilt degree)、晶圓旋轉次數、退火溫度(Temp.)、退火時間(Time)。The following uses different simulation analysis to optimize the parameters of the ion implantation process, so that the silicon field-effect transistor on the insulating layer of this embodiment can improve gate control, reduce leakage current, and reduce subcriticality. Swing (SS) and reducing the drain induced energy barrier reduction effect (DIBL) effect. The parameters of the ion implantation program include implantation energy (Energy), implantation dose (Dosage), angle (Tilt degree), wafer rotation number, annealing temperature (Temp.), annealing time (Time).

具體來說,以下的模擬分析是利用2016版本Sentaurus TCAD (technology computer aided design)軟體進行模擬。元件尺寸結構則依循ITRS 90 nm節點製程藍圖規範,所採用的通道長度為90 nm,通道厚度為25 nm,閘極與汲極的最高電壓為1.2 V。於所有TCAD模擬過程均已加入量子侷限(quantum confinement, QC)效應模式以充分反映奈米結構之特殊特性。於電特性方面,閘極結構採用金屬/SiO 2(t ox=3 nm)結構。此外,離子佈植程序的參數的模擬範圍為:佈植能量(Energy)為2~180keV、佈植劑量(Dosage)為10 11~10 16cm -2、角度(Tilt degree)為0 o~90 o、退火溫度(Temp.)為900~1100℃、退火時間(Time)為60秒以下。佈植雜質為硼 Specifically, the following simulation analysis is performed using the 2016 version of Sentaurus TCAD (technology computer aided design) software. The component size structure follows the ITRS 90 nm node process blueprint specification. The channel length used is 90 nm, the channel thickness is 25 nm, and the maximum gate and drain voltage is 1.2 V. Quantum confinement (QC) effect mode has been added to all TCAD simulation processes to fully reflect the special characteristics of nanostructures. In terms of electrical characteristics, the gate structure adopts a metal/SiO 2 (t ox =3 nm) structure. In addition, the simulation range of the parameters of the ion implantation program is: implantation energy (Energy) is 2~180keV, implantation dose (Dosage) is 10 11 ~10 16 cm -2 , and angle (Tilt degree) is 0 o ~90 o , annealing temperature (Temp.) is 900~1100℃, annealing time (Time) is 60 seconds or less. Planting impurity is boron

圖2A與圖2B分別為不同的佈植能量對絕緣層上矽之場效電晶體的轉移特性、SS以及DIBL的關係圖。表1為不同的佈植能量對絕緣層上矽之場效電晶體的電特性參數的模擬結果。2A and FIG. 2B are diagrams showing the relationship between different implantation energy and the transfer characteristics of silicon field effect transistors on the insulating layer, SS and DIBL, respectively. Table 1 shows the simulation results of the electrical characteristic parameters of the silicon field-effect transistor on the insulating layer with different implantation energy.

表1 Dosage (cm -2) Energy (keV) WF (eV) I on(A) I off(A) I on/I off SS (mV/dec) DIBL (mV/V) 8.0×10 13 3.98 4.459 2.81×10 -5 1.99×10 -12 1.41×10 7 76.7 159.1 3.99 4.457 2.77×10 -5 2.25×10 -12 1.23×10 7 77.5 190.4 4.00 4.488 2.98×10 -5 1.27×10 -12 2.35×10 7 74.9 129.6 4.01 4.479 2.81×10 -5 2.10×10 -12 1.34×10 7 77.1 133.0 4.02 4.505 2.98×10 -5 1.16×10 -12 2.57×10 7 74.6 106.9 Table 1 Dosage (cm -2 ) Energy (keV) WF (eV) I on (A) I off (A) I on /I off SS (mV/dec) DIBL (mV/V) 8.0×10 13 3.98 4.459 2.81×10 -5 1.99×10 -12 1.41×10 7 76.7 159.1 3.99 4.457 2.77×10 -5 2.25×10 -12 1.23×10 7 77.5 190.4 4.00 4.488 2.98×10 -5 1.27×10 -12 2.35×10 7 74.9 129.6 4.01 4.479 2.81×10 -5 2.10×10 -12 1.34×10 7 77.1 133.0 4.02 4.505 2.98×10 -5 1.16×10 -12 2.57×10 7 74.6 106.9

由圖2A、圖2B以及表1的結果可知,相較於佈植能量(Energy)為3.98、3.99、4.00、4.01 keV,佈植能量為4.02 keV 時的絕緣層上矽之場效電晶體有較佳的元件特性,也就是具有較低的漏電電流(I off=1.16×10 -12A)、較高的電流開關比(I on/I off=2.57×10 7)、較小的次臨界擺幅(SS=74.6 mV/dec)以及較少的汲極引發能障降低效應(DIBL=106.9 mV/V)。 From the results of Figure 2A, Figure 2B and Table 1, it can be seen that compared to the implantation energy (Energy) of 3.98, 3.99, 4.00, 4.01 keV, the implantation energy of 4.02 keV, the silicon field effect transistor on the insulating layer has Better device characteristics, that is, a lower leakage current (I off =1.16×10 -12 A), a higher current on-off ratio (I on /I off = 2.57×10 7 ), and a smaller subcritical Swing (SS=74.6 mV/dec) and less drain lead to energy barrier reduction effect (DIBL=106.9 mV/V).

圖3A與圖3B分別為不同的佈植劑量對絕緣層上矽之場效電晶體的轉移特性、SS以及DIBL的關係圖。表2為不同的佈植劑量對絕緣層上矽之場效電晶體的電特性參數的模擬結果。3A and 3B are the relationship diagrams of the transfer characteristics, SS and DIBL of silicon field effect transistors on the insulating layer with different implant doses. Table 2 shows the simulation results of different implant doses on the electrical characteristics of silicon field-effect transistors on the insulating layer.

表2 Energy (keV) Dosage (cm -2) WF (eV) I on(A) I off(A) I on/I off SS (mV/dec) DIBL (mV/V) 4.02 7.0×10 13 5.149 5.53×10 -5 1.01×10 -11 5.48×10 7 92.9 93.9 7.5×10 13 4.790 5.24×10 -5 1.50×10 -12 3.49×10 7 80.0 61.7 8.0×10 13 4.505 2.98×10 -5 1.16×10 -12 2.57×10 7 74.6 106.9 8.3×10 13 4.155 1.99×10 -5 5.33×10 -10 3.73×10 4 157.0 707.8 8.5×10 13 3.900 1.31×10 -5 2.02×10 -9 6.49×10 3 178.3 1546.9 Table 2 Energy (keV) Dosage (cm -2 ) WF (eV) I on (A) I off (A) I on /I off SS (mV/dec) DIBL (mV/V) 4.02 7.0×10 13 5.149 5.53×10 -5 1.01×10 -11 5.48×10 7 92.9 93.9 7.5×10 13 4.790 5.24×10 -5 1.50×10 -12 3.49×10 7 80.0 61.7 8.0×10 13 4.505 2.98×10 -5 1.16×10 -12 2.57×10 7 74.6 106.9 8.3×10 13 4.155 1.99×10 -5 5.33×10 -10 3.73×10 4 157.0 707.8 8.5×10 13 3.900 1.31×10 -5 2.02×10 -9 6.49×10 3 178.3 1546.9

由圖3A、圖3B以及表2的結果可知,相較於佈植劑量(Dosage)為7.0×10 13、7.5×10 13、8.3×10 13、8.5×10 13cm -2,佈植劑量為8.0×10 13cm -2時的絕緣層上矽之場效電晶體有較佳的元件特性,也就是具有相對低的漏電電流(I off=1.16×10 -12A)、相對高的電流開關比(I on/I off=2.57×10 7)、較小的次臨界擺幅(SS=74.6 mV/dec)以及相對少的汲極引發能障降低效應(DIBL=106.9 mV/V)。 From the results in Figure 3A, Figure 3B and Table 2, it can be seen that compared to the implantation dose (Dosage) of 7.0×10 13 , 7.5×10 13 , 8.3×10 13 , 8.5×10 13 cm -2 , the implantation dose is The silicon field effect transistor on the insulating layer at 8.0×10 13 cm -2 has better device characteristics, that is, it has relatively low leakage current (I off =1.16×10 -12 A) and relatively high current switching The ratio (I on /I off =2.57×10 7 ), the smaller subcritical swing (SS=74.6 mV/dec), and the relatively small drain cause the energy barrier reduction effect (DIBL=106.9 mV/V).

此外,在離子佈植程序的參數中,離子佈植的角度及晶圓旋轉次數也會影響佈植的位置和形狀,進而間接影響電場強度分布以及通道靜電性能。表3為晶圓旋轉次數為4次(表示晶圓每隔90度將進行一次離子佈植)時,不同的離子佈植的角度對絕緣層上矽之場效電晶體的電特性參數的模擬結果。表4為晶圓旋轉次數為0次時,不同的離子佈植的角度對絕緣層上矽之場效電晶體的電特性參數的模擬結果。In addition, in the parameters of the ion implantation procedure, the angle of ion implantation and the number of wafer rotations will also affect the position and shape of the implantation, which indirectly affects the electric field intensity distribution and channel electrostatic performance. Table 3 shows the simulation of the electrical characteristic parameters of the silicon field-effect transistor on the insulating layer with different ion implantation angles when the number of wafer rotations is 4 (indicating that the wafer will undergo ion implantation every 90 degrees) result. Table 4 shows the simulation results of the electrical characteristic parameters of the silicon field-effect transistor on the insulating layer with different ion implantation angles when the number of wafer rotations is 0.

表3 (晶圓旋轉次數為4次) Dosage (cm -2) Energy (keV) Tilt (degree) WF (eV) I on(A) I off(A) I on/I off SS (mV/dec) DIBL (mV/V) 8.0×10 13 4.02 0 4.505 2.98 ×10 -5 1.16 ×10 -12 2.57 ×10 7 74.6 106.9 5.25 30 4.400 1.61 ×10 -5 1.37 ×10 -12 1.18 ×10 7 171.5 133.9 4 45 4.600 3.92 ×10 -5 2.03 ×10 -12 1.93 ×10 7 81.1 70.4 3.7 60 4.600 4.73 ×10 -5 2.15 ×10 -12 2.20 ×10 7 81.9 70.4 Table 3 (The number of wafer rotations is 4) Dosage (cm -2 ) Energy (keV) Tilt (degree) WF (eV) I on (A) I off (A) I on /I off SS (mV/dec) DIBL (mV/V) 8.0×10 13 4.02 0 4.505 2.98 ×10 -5 1.16 ×10 -12 2.57 ×10 7 74.6 106.9 5.25 30 4.400 1.61 ×10 -5 1.37 ×10 -12 1.18 ×10 7 171.5 133.9 4 45 4.600 3.92 ×10 -5 2.03 ×10 -12 1.93 ×10 7 81.1 70.4 3.7 60 4.600 4.73 ×10 -5 2.15 ×10 -12 2.20 ×10 7 81.9 70.4

表4 (晶圓旋轉次數為0次) Dosage (cm -2) Energy (keV) Tilt (degree) WF (eV) I on(A) I off(A) I on/I off SS (mV/dec) DIBL (mV/V) 8.0×10 13 4.02 0 4.591 3.76 ×10 -5 5.48 ×10 -13 3.86 ×10 7 73.3 74.7 7 30 4.463 3.22 ×10 -5 8.11 ×10 -13 3.97 ×10 7 73.2 116.5 8.5 45 4.612 4.97 ×10 -5 4.01 ×10 -13 1.24 ×10 8 72.9 54.7 9.5 60 4.600 4.91 ×10 -5 3.83 ×10 -13 1.28 ×10 8 72.5 54.7 9.8 65 4.362 2.80 ×10 -5 1.75 ×10 -13 1.60 ×10 7 85.1 96.5 13.5 75 4.610 6.07 ×10 -5 3.36 ×10 -13 1.81 ×10 8 72.5 54.7 Table 4 (The number of wafer rotations is 0) Dosage (cm -2 ) Energy (keV) Tilt (degree) WF (eV) I on (A) I off (A) I on /I off SS (mV/dec) DIBL (mV/V) 8.0×10 13 4.02 0 4.591 3.76 ×10 -5 5.48 ×10 -13 3.86 ×10 7 73.3 74.7 7 30 4.463 3.22 ×10 -5 8.11 ×10 -13 3.97 ×10 7 73.2 116.5 8.5 45 4.612 4.97 ×10 -5 4.01 ×10 -13 1.24 ×10 8 72.9 54.7 9.5 60 4.600 4.91 ×10 -5 3.83 ×10 -13 1.28 ×10 8 72.5 54.7 9.8 65 4.362 2.80 ×10 -5 1.75 ×10 -13 1.60 ×10 7 85.1 96.5 13.5 75 4.610 6.07 ×10 -5 3.36 ×10 -13 1.81 ×10 8 72.5 54.7

由表3以及表4的結果可知,在相同佈植能量(4.02 keV)的情況下,相較於晶圓旋轉次數為4次,晶圓旋轉次數為0次時的絕緣層上矽之場效電晶體有較佳元件特性。此外,在晶圓旋轉次數為0次的情況下,雖然相較於角度為0、30、45、60、65度,角度為75度時的絕緣層上矽之場效電晶體有較佳元件特性。但是依據離子佈植的角度對絕緣層上矽之場效電晶體中的離子濃度分布的模擬結果(未繪示)中,相較於角度為60度,角度75 度時的離子佈植區之形狀較不完整。因此,根據上述的模擬結果可知,最佳之離子佈植程序的參數為:晶圓旋轉次數0次、角度為60度且能量為9.5 keV。此時,絕緣層上矽之場效電晶體有較佳的元件特性,也就是具有較低的漏電電流(I off=3.83×10 -13A)、較高的電流開關比(I on/I off=1.28×10 8)、較小的次臨界擺幅(SS=72.5 mV/dec)以及較少的汲極引發能障降低效應(DIBL=54.7 mV/V)。 From the results in Table 3 and Table 4, it can be seen that under the same implantation energy (4.02 keV), the field effect of silicon on the insulating layer when the number of wafer rotations is 0 compared to 4 wafer rotations Transistor has better component characteristics. In addition, when the number of wafer rotations is 0, although the angle is 0, 30, 45, 60, 65 degrees, the silicon field effect transistor on the insulating layer at the angle of 75 degrees has better components characteristic. However, in the simulation results (not shown) of the ion concentration distribution in the field-effect transistor of silicon on the insulating layer according to the angle of ion implantation, compared with the angle of 60 degrees, the ion implantation area at an angle of 75 degrees The shape is less complete. Therefore, according to the above simulation results, the parameters of the optimal ion implantation program are: the number of wafer rotations is 0, the angle is 60 degrees, and the energy is 9.5 keV. At this time, the silicon field effect transistor on the insulating layer has better device characteristics, that is, it has a lower leakage current (I off =3.83×10 -13 A) and a higher current on-off ratio (I on /I off =1.28×10 8 ), a smaller subcritical swing (SS=72.5 mV/dec), and a smaller drain cause the energy barrier reduction effect (DIBL=54.7 mV/V).

然後,為抑制退火時之離子佈植擴散,於退火時會摻入氮氣來減緩原子擴散。因此,在離子佈植程序的參數中,退火溫度以及退火時間也會影響離子佈植的效果。Then, in order to suppress the diffusion of ion implantation during annealing, nitrogen gas is added during annealing to slow down the diffusion of atoms. Therefore, among the parameters of the ion implantation program, the annealing temperature and annealing time will also affect the effect of ion implantation.

圖4A與圖4B分別為不同的退火溫度對絕緣層上矽之場效電晶體的I off、I on/I off、SS以及DIBL的關係圖。圖5A與圖5B分別為不同的退火時間對絕緣層上矽之場效電晶體的I off、I on/I off、SS以及DIBL的關係圖。表5為不同的退火溫度對絕緣層上矽之場效電晶體的電特性參數的模擬結果。表6為不同的退火時間對絕緣層上矽之場效電晶體的電特性參數的模擬結果。 4A and FIG. 4B are the relationship diagrams of I off , I on /I off , SS and DIBL of the silicon field effect transistor on the insulating layer at different annealing temperatures. 5A and FIG. 5B are the relationship diagrams of I off , I on /I off , SS and DIBL of the silicon field effect transistor on the insulating layer with different annealing times. Table 5 shows the simulation results of the electrical characteristic parameters of the silicon field-effect transistor on the insulating layer at different annealing temperatures. Table 6 shows the simulation results of the electrical characteristic parameters of the silicon field effect transistor on the insulating layer with different annealing times.

表5 (佈植劑量為8.0×10 13cm -2,佈植能量為9.5 keV) Gas Tilt (degree) Temp. (°C) WF (eV) I on(A) I off(A) I on/I off SS (mV/dec) DIBL (mV/V) N 2 60 900 4.315 2.86 ×10 -5 4.77 ×10 -12 6.00 ×10 6 82.7 207.8 950 4.353 2.97 ×10 -5 2.46 ×10 -12 1.21 ×10 7 77.8 168.7 1000 4.456 3.52 ×10 -5 6.01 ×10 -13 5.86 ×10 7 72.5 87.8 1050 4.616 5.22 ×10 -5 3.93 ×10 -13 1.33 ×10 8 73.0 51.3 1100 4.911 7.13 ×10 -5 2.81 ×10 -12 2.54 ×10 7 84.5 64.3 Table 5 (The implantation dose is 8.0×10 13 cm -2 and the implantation energy is 9.5 keV) Gas Tilt (degree) Temp. (°C) WF (eV) I on (A) I off (A) I on /I off SS (mV/dec) DIBL (mV/V) N 2 60 900 4.315 2.86 ×10 -5 4.77 ×10 -12 6.00 ×10 6 82.7 207.8 950 4.353 2.97 ×10 -5 2.46 ×10 -12 1.21 ×10 7 77.8 168.7 1000 4.456 3.52 ×10 -5 6.01 ×10 -13 5.86 ×10 7 72.5 87.8 1050 4.616 5.22 ×10 -5 3.93 ×10 -13 1.33 ×10 8 73.0 51.3 1100 4.911 7.13 ×10 -5 2.81 ×10 -12 2.54 ×10 7 84.5 64.3

表6 (佈植劑量為8.0×10 13cm -2,佈植能量為9.5 keV,退火溫度為1050℃) Gas Tilt (degree) Time (sec) WF (eV) I on(A) I off(A) I on/I off SS (mV/dec) DIBL (mV/V) N 2 60 5 4.616 5.22 ×10 -5 3.93 ×10 -13 1.33 ×10 8 73.0 51.3 10 4.775 6.67 ×10 -5 1.65 ×10 -13 4.04 ×10 8 78.6 54.8 30 5.128 6.96 ×10 -5 6.31 ×10 -12 1.10 ×10 7 90.2 80.9 60 5.369 6.48 ×10 -5 1.10 ×10 -11 5.89 ×10 6 94.3 96.5 Table 6 (The implantation dose is 8.0×10 13 cm -2 , the implantation energy is 9.5 keV, and the annealing temperature is 1050℃) Gas Tilt (degree) Time (sec) WF (eV) I on (A) I off (A) I on /I off SS (mV/dec) DIBL (mV/V) N 2 60 5 4.616 5.22 ×10 -5 3.93 ×10 -13 1.33 ×10 8 73.0 51.3 10 4.775 6.67 ×10 -5 1.65 ×10 -13 4.04 ×10 8 78.6 54.8 30 5.128 6.96 ×10 -5 6.31 ×10 -12 1.10 ×10 7 90.2 80.9 60 5.369 6.48 ×10 -5 1.10 ×10 -11 5.89 ×10 6 94.3 96.5

由圖4A、圖4B以及表5的結果可知,在氮氣退火環境下,相較於退火溫度為900、950、1000、1100℃,退火溫度為1050℃時的絕緣層上矽之場效電晶體有較佳元件特性。接著,由圖5A、圖5B以及表6的結果可知,在退火溫度為1050℃的氮氣退火環境下,相較於退火時間為10、30、60秒(sec),退火時間為5秒時的絕緣層上矽之場效電晶體有較佳元件特性。因此,於退火時摻入氮氣並將退火溫度設定為1050 oC且退火時間為5秒時有最佳元件特性,也就是具有相對低的漏電電流(I off=3.93×10 -13A)、相對高的電流開關比(I on/I off=1.33×10 8)、較小的次臨界擺幅(SS=73.0 mV/dec)以及較少的汲極引發能障降低效應(DIBL=51.3 mV/V)。 From the results in Figure 4A, Figure 4B and Table 5, it can be seen that in a nitrogen annealing environment, compared to the annealing temperature of 900, 950, 1000, 1100 ℃, the annealing temperature of the silicon field effect transistor on the insulating layer at 1050 ℃ Have better component characteristics. Next, from the results in Figures 5A, 5B, and Table 6, it can be seen that in a nitrogen annealing environment at an annealing temperature of 1050°C, compared to the annealing time of 10, 30, and 60 seconds (sec), the annealing time is 5 seconds. The silicon field effect transistor on the insulating layer has better device characteristics. Therefore, when nitrogen is added during annealing and the annealing temperature is set to 1050 o C and the annealing time is 5 seconds, the best device characteristics are obtained, that is, it has relatively low leakage current (I off =3.93×10 -13 A), Relatively high current switching ratio (I on /I off =1.33×10 8 ), small subcritical swing (SS=73.0 mV/dec), and less drain lead to energy barrier reduction effect (DIBL=51.3 mV /V).

基於上述,在本實施例中,離子佈植程序的參數可例如是佈植能量為2 keV至20 keV、佈植劑量為10 12cm -2至10 14cm -2、角度為0度至60度、退火溫度為900 ℃至1100 ℃且退火時間小於60秒。較佳地,離子佈植程序的參數是佈植能量為9.5 keV、佈植劑量為8×10 13cm -2、角度為60度、退火溫度為1050 ℃且退火時間為5秒。 Based on the above, in this embodiment, the parameters of the ion implantation program can be, for example, implantation energy of 2 keV to 20 keV, implantation dose of 10 12 cm -2 to 10 14 cm -2 , and angle of 0° to 60 The annealing temperature is 900 ℃ to 1100 ℃ and the annealing time is less than 60 seconds. Preferably, the parameters of the ion implantation procedure are implantation energy of 9.5 keV, implantation dose of 8×10 13 cm -2 , angle of 60 degrees, annealing temperature of 1050° C. and annealing time of 5 seconds.

real Give example 22 :比較本實施例的絕緣層上矽之場效電晶體以及習知的: Compare the silicon field effect transistor on the insulating layer of this embodiment and the conventional 超薄通道場效電晶體Ultra-thin channel field effect transistor (UTBFET)(UTBFET) 、掘入式場效電晶體, Boring field effect transistor (RCFET)(RCFET)

以下的模擬分析是利用2016版本Sentaurus TCAD (technology computer aided design)軟體進行模擬。元件尺寸結構則依循ITRS 90 nm節點製程藍圖規範,所採用的通道長度L2為90 nm,通道厚度t ch為10~25 nm,閘極與汲極的最高電壓為1.2 V。於所有TCAD模擬過程均已加入量子侷限(quantum confinement, QC)效應模式以充分反映奈米結構之特殊特性。於電特性方面,為求合理與公平比較,以下的實例1(本實施例的絕緣層上矽之場效電晶體)、比較例1(UTBFET)、比較例2(UTBFET)以及比較例3(RCFET)的閘極結構皆採用金屬/SiO 2(t ox=3 nm)結構。於轉移特性曲線及元件特性參數比較上,使四種元件之臨界電壓V th皆藉由調整閘極金屬功函數WF而使之盡可能相等,或使四種元件之閘極金屬功函數皆藉由調整臨界電壓而使之盡可能相等。 The following simulation analysis is performed using the 2016 version of Sentaurus TCAD (technology computer aided design) software. The component size structure follows the ITRS 90 nm node process blueprint specification. The channel length L2 used is 90 nm, the channel thickness t ch is 10-25 nm, and the maximum gate and drain voltage is 1.2 V. Quantum confinement (QC) effect mode has been added to all TCAD simulation processes to fully reflect the special characteristics of nanostructures. In terms of electrical characteristics, for reasonable and fair comparison, the following example 1 (the field-effect transistor of silicon on the insulating layer of this example), comparative example 1 (UTBFET), comparative example 2 (UTBFET) and comparative example 3 ( The gate structure of the RCFET adopts a metal/SiO 2 (t ox =3 nm) structure. In the comparison of the transfer characteristic curve and the device characteristic parameters, the threshold voltage V th of the four devices are adjusted to be as equal as possible by adjusting the gate metal work function WF, or the gate metal work functions of the four devices are all used Adjust the threshold voltage to make it as equal as possible.

表7為實例1(本實施例的絕緣層上矽之場效電晶體)、比較例1(UTBFET)、比較例2(UTBFET)以及比較例3(RCFET)在模擬分析中所採用之結構參數。Table 7 shows the structural parameters used in the simulation analysis of Example 1 (the field effect transistor of silicon on the insulating layer of this embodiment), Comparative Example 1 (UTBFET), Comparative Example 2 (UTBFET) and Comparative Example 3 (RCFET) .

表7 元件 L2 (nm) W (μm) t ox (nm) t ch (nm) N A(cm -3) N D(cm -3) 實例1 90 1 3 25 1×10 19 1×10 19 比較例1 25 比較例2 10 比較例3 10 Table 7 element L2 (nm) W (μm) t ox (nm) t ch (nm) N A (cm -3 ) N D (cm -3 ) Example 1 90 1 3 25 1×10 19 1×10 19 Comparative example 1 25 Comparative example 2 10 Comparative example 3 10

詳細來說,實例1為本實施例的絕緣層上矽之場效電晶體100,如圖1H所示。絕緣層上矽之場效電晶體100包括基板120、離子佈植區127以及閘極結構140。基板120包括P型半導體基底122、絕緣層124以及N型半導體層126。N型半導體層126配置於絕緣層124以及P型半導體基底122上。閘極結構140(包括閘介電層142以及閘極144)配置於N型半導體層126上。離子佈植區127配置於半導體層126的底部。此外,將半導體層126的左右兩側且不包含離子佈植區127的區域當作是源極區128以及汲極區129。將對應於閘極結構140下方的半導體層126當作是通道層,且通道層具有通道長度L2為90 nm、通道寬度W為1 μm、通道厚度t ch為25 nm。閘介電層142具有介電層厚度t ox為3 nm。離子佈植區127與半導體層126之間的距離(有效通道厚度D)為10 nm,且離子佈植區127的長度L1為120 nm。 Specifically, Example 1 is the silicon-on-insulating field effect transistor 100 of this embodiment, as shown in FIG. 1H. The silicon-on-insulation field effect transistor 100 includes a substrate 120, an ion implantation region 127, and a gate structure 140. The substrate 120 includes a P-type semiconductor base 122, an insulating layer 124, and an N-type semiconductor layer 126. The N-type semiconductor layer 126 is disposed on the insulating layer 124 and the P-type semiconductor substrate 122. The gate structure 140 (including the gate dielectric layer 142 and the gate electrode 144) is disposed on the N-type semiconductor layer 126. The ion implantation region 127 is disposed at the bottom of the semiconductor layer 126. In addition, the regions on the left and right sides of the semiconductor layer 126 that do not include the ion implantation region 127 are regarded as the source region 128 and the drain region 129. The semiconductor layer 126 under the gate structure 140 is regarded as a channel layer, and the channel layer has a channel length L2 of 90 nm, a channel width W of 1 μm, and a channel thickness t ch of 25 nm. The gate dielectric layer 142 has a dielectric layer thickness tox of 3 nm. The distance (effective channel thickness D) between the ion implantation area 127 and the semiconductor layer 126 is 10 nm, and the length L1 of the ion implantation area 127 is 120 nm.

比較例1為超薄通道場效電晶體(UTBFET),如圖6A所示。超薄通道場效電晶體200包括基板220以及閘極結構240。基板220包括P型半導體基底222、絕緣層224以及N型半導體層226。N型半導體層226配置於絕緣層224以及P型半導體基底222上。閘極結構240(包括閘介電層242以及閘極244)配置於N型半導體層226上。此外,將半導體層226的左右兩側的區域當作是源極區228以及汲極區229。將對應於閘極結構240下方的半導體層226當作是通道層,且通道層具有通道長度L2為90 nm、通道寬度W為1 μm、通道厚度t ch為25 nm。閘介電層242具有介電層厚度t ox為3 nm。 Comparative Example 1 is an ultra-thin channel field effect transistor (UTBFET), as shown in FIG. 6A. The ultra-thin channel field effect transistor 200 includes a substrate 220 and a gate structure 240. The substrate 220 includes a P-type semiconductor base 222, an insulating layer 224, and an N-type semiconductor layer 226. The N-type semiconductor layer 226 is disposed on the insulating layer 224 and the P-type semiconductor substrate 222. The gate structure 240 (including the gate dielectric layer 242 and the gate electrode 244) is disposed on the N-type semiconductor layer 226. In addition, the regions on the left and right sides of the semiconductor layer 226 are regarded as the source region 228 and the drain region 229. The semiconductor layer 226 corresponding to the gate structure 240 is regarded as a channel layer, and the channel layer has a channel length L2 of 90 nm, a channel width W of 1 μm, and a channel thickness t ch of 25 nm. The gate dielectric layer 242 has a dielectric layer thickness tox of 3 nm.

比較例2為超薄通道場效電晶體與比較例1的為超薄通道場效電晶體200相似,兩者不同之處在於:比較例2的超薄通道場效電晶體的通道厚度t ch為10 nm。 Comparative example 2 is an ultra-thin channel field effect transistor. Similar to the ultra-thin channel field effect transistor 200 of Comparative Example 1, the difference between the two is: the channel thickness t ch of the ultra-thin channel field effect transistor of Comparative Example 2 It is 10 nm.

比較例3為掘入式場效電晶體(RCFET),如圖6B所示。掘入式場效電晶體300包括基板320以及閘極結構340。基板320包括P型半導體基底322、絕緣層324以及N型半導體層326。N型半導體層326配置於絕緣層324以及P型半導體基底322上。閘極結構340(包括閘介電層342以及閘極344)配置於N型半導體層326上。此外,將半導體層326的左右兩側的區域當作是源極區328以及汲極區329。將對應於閘極結構340下方的半導體層326當作是通道層,且通道層具有通道長度L2為90 nm、通道寬度W為1 μm、通道厚度t ch為10 nm。閘介電層342具有介電層厚度t ox為3 nm。 Comparative example 3 is a boring field effect transistor (RCFET), as shown in FIG. 6B. The tunnel field effect transistor 300 includes a substrate 320 and a gate structure 340. The substrate 320 includes a P-type semiconductor base 322, an insulating layer 324, and an N-type semiconductor layer 326. The N-type semiconductor layer 326 is disposed on the insulating layer 324 and the P-type semiconductor substrate 322. The gate structure 340 (including the gate dielectric layer 342 and the gate electrode 344) is disposed on the N-type semiconductor layer 326. In addition, the regions on the left and right sides of the semiconductor layer 326 are regarded as the source region 328 and the drain region 329. The semiconductor layer 326 under the gate structure 340 is regarded as a channel layer, and the channel layer has a channel length L2 of 90 nm, a channel width W of 1 μm, and a channel thickness t ch of 10 nm. The gate dielectric layer 342 has a dielectric layer thickness tox of 3 nm.

圖7A為實例1、比較例1、比較例2以及比較例3於相同臨界電壓下的轉移特性的關係圖。圖7B為實例1、比較例1、比較例2以及比較例3於相同功函數下的轉移特性的關係圖。圖7C為實例1、比較例2以及比較例3的DIBL、SS以及I on/I off的關係圖。表8為實例1、比較例1、比較例2以及比較例3於相同臨界電壓下的電特性參數的模擬結果。表9為實例1、比較例1、比較例2以及比較例3於相同功函數下的電特性參數的模擬結果。 FIG. 7A is a graph of the transfer characteristics of Example 1, Comparative Example 1, Comparative Example 2, and Comparative Example 3 under the same threshold voltage. FIG. 7B is a graph of the transfer characteristics of Example 1, Comparative Example 1, Comparative Example 2, and Comparative Example 3 under the same work function. 7C is a diagram showing the relationship between DIBL, SS, and I on /I off in Example 1, Comparative Example 2, and Comparative Example 3. Table 8 shows the simulation results of the electrical characteristic parameters of Example 1, Comparative Example 1, Comparative Example 2, and Comparative Example 3 under the same threshold voltage. Table 9 shows the simulation results of the electrical characteristic parameters of Example 1, Comparative Example 1, Comparative Example 2, and Comparative Example 3 under the same work function.

表8 (臨界電壓V th=0.5 V) 元件 t ch (nm) I on(A) I off(A) I on/I off SS (mV/dec) DIBL (mV/V) 實例1 25 5.22×10 -5 3.93×10 -13 1.33×10 8 73.0 51.3 比較例1 25 1.29×10 -3 1.10×10 -3 1.17 - - 比較例2 10 8.60×10 -5 1.20×10 -11 7.17×10 6 76.9 45.2 比較例3 10 1.36×10 -5 1.21×10 -11 1.12×10 6 78.6 45.2 Table 8 (Critical voltage V th =0.5 V) element t ch (nm) I on (A) I off (A) I on /I off SS (mV/dec) DIBL (mV/V) Example 1 25 5.22×10 -5 3.93×10 -13 1.33×10 8 73.0 51.3 Comparative example 1 25 1.29×10 -3 1.10×10 -3 1.17 - - Comparative example 2 10 8.60×10 -5 1.20×10 -11 7.17×10 6 76.9 45.2 Comparative example 3 10 1.36×10 -5 1.21×10 -11 1.12×10 6 78.6 45.2

表9 (功函數WF=5.1 eV (Au)) 元件 t ch (nm) Vth (V) I on(A) I off(A) I on/I off SS (mV/dec) DIBL (mV/V) 實例1 25 0.98 1.09×10 -5 1.84×10 -15 5.92×10 9 73.1 51.3 比較例1 25 - 1.21×10 -3 1.03×10 -3 1.17 - - 比較例2 10 -0.76 3.87×10 -4 9.84×10 -5 3.93 547.4 53.0 比較例3 10 -0.78 4.02×10 -4 1.05×10 -4 3.83 552.4 44.3 Table 9 (Work function WF=5.1 eV (Au)) element t ch (nm) Vth (V) I on (A) I off (A) I on /I off SS (mV/dec) DIBL (mV/V) Example 1 25 0.98 1.09×10 -5 1.84×10 -15 5.92×10 9 73.1 51.3 Comparative example 1 25 - 1.21×10 -3 1.03×10 -3 1.17 - - Comparative example 2 10 -0.76 3.87×10 -4 9.84×10 -5 3.93 547.4 53.0 Comparative example 3 10 -0.78 4.02×10 -4 1.05×10 -4 3.83 552.4 44.3

由圖7A至圖7C、表8以及表9的結果可知,相較於比較例1、比較例2、比較例3,實例1具有較佳的元件特性。也就是說,實例1具有良好的導通電流(I on=5.22×10 -5A)、相當低的漏電電流(I off=3.93×10 -13A)、極高的電流開關比(I on/I off=1.33×10 8A)、較小的次臨界擺幅(SS=73.0 mV/dec) 以及較少的汲極引發能障降低效應(DIBL=51.3 mV/V)。 From the results of FIGS. 7A to 7C, Table 8 and Table 9, it can be seen that compared to Comparative Example 1, Comparative Example 2, and Comparative Example 3, Example 1 has better device characteristics. In other words, Example 1 has a good on-current (I on =5.22×10 -5 A), a relatively low leakage current (I off =3.93×10 -13 A), and a very high current on-off ratio (I on / I off =1.33×10 8 A), a smaller subcritical swing (SS=73.0 mV/dec) and a smaller drain lead to an energy barrier reduction effect (DIBL=51.3 mV/V).

此外,根據漏電流分布的模擬結果(未繪示)可知,於元件關閉狀態下(V GS=0與V DS=1.2 V),比較例1因通道提供了較大的漏電流傳導空間(漏電流分布區域之厚度約為25 nm),因而具有極大的漏電流(1.10×10 -3A)且無法關閉。反之,由於實例1可藉由其離子佈植區將漏電電流傳導區域阻斷,因而具有較低的漏電電流(3.93×10 -13A),且其值相較於比較例1低了9個階次,明顯具有降低漏電電流的效果。 In addition, according to the simulation results of leakage current distribution (not shown), it can be seen that when the device is turned off (V GS =0 and V DS =1.2 V), Comparative Example 1 provides a larger leakage current conduction space (leakage current). The thickness of the current distribution area is about 25 nm), so it has a large leakage current (1.10×10 -3 A) and cannot be turned off. Conversely, because Example 1 can block the leakage current conduction area by its ion implantation area, it has a lower leakage current (3.93×10 -13 A), and its value is 9 lower than that of Comparative Example 1. The order obviously has the effect of reducing the leakage current.

值得說明的是,在本實施例的絕緣層上矽之場效電晶體中,利用離子佈植程序以及最佳化的離子佈植程序的參數在通道層的底部形成離子佈植區,藉此薄化了通道層的厚度,且使得本實施例的絕緣層上矽之場效電晶體具有提升閘極控制力、降低漏電電流、降低次臨界擺幅(SS)以及減少汲極引發能障降低(drain induced barrier lowering,DIBL)效應的功效。換言之,藉由在通道層的底部形成離子佈植區(薄化通道層的厚度),可使得本實施例的絕緣層上矽之場效電晶體的技術節點(元件特性)從90nm大幅提升至28nm。It is worth noting that in the field-effect transistor of silicon on the insulating layer of the present embodiment, the ion implantation procedure and the optimized ion implantation procedure parameters are used to form an ion implantation area at the bottom of the channel layer, thereby The thickness of the channel layer is thinned, and the silicon field-effect transistor on the insulating layer of this embodiment can improve gate control, reduce leakage current, reduce subcritical swing (SS), and reduce drain-induced energy barrier reduction (drain induced barrier lowering, DIBL) effect. In other words, by forming an ion implantation area (thinning the thickness of the channel layer) at the bottom of the channel layer, the technology node (device characteristics) of the silicon field-effect transistor on the insulating layer of this embodiment can be greatly improved from 90nm to 28nm.

綜上所述,在本發明的絕緣層上矽之場效電晶體及其製造方法中,藉由在半導體層(通道層)的底部形成離子佈植區來薄化半導體層(通道層)的厚度,進而使得本發明的絕緣層上矽之場效電晶體具有可提升閘極控制力、降低漏電電流、降低次臨界擺幅以及減少汲極引發能障降低效應的功效。In summary, in the field-effect transistor of silicon on the insulating layer and its manufacturing method of the present invention, the semiconductor layer (channel layer) is thinned by forming an ion implantation area at the bottom of the semiconductor layer (channel layer) The thickness, in turn, enables the silicon-on-insulating field-effect transistor of the present invention to improve gate control, reduce leakage current, reduce subcritical swing, and reduce the energy barrier reduction effect caused by drain.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be determined by the scope of the attached patent application.

100:絕緣層上矽之場效電晶體 120、220、320:基板 122、222、322:半導體基底 124、224、324:絕緣層 126、226、326:半導體層 126a:第一表面 126b:第二表面 127:離子佈植區 128、228、328:源極區 129、229、329:汲極區 130、131:光阻圖案 140、240、340:閘極結構 141:介電層 142、242、342:閘介電層 143:閘極材料層 144、244、344:閘極 150:間隙壁材料 151:間隙壁 200:超薄通道場效電晶體 300:掘入式場效電晶體 D:有效通道厚度 I:離子佈植程序 L1:長度 L2:通道長度 tch:通道厚度 tox:介電層厚度 W:通道寬度100: field effect transistors of silicon on the insulating layer 120, 220, 320: substrate 122, 222, 322: semiconductor substrate 124, 224, 324: insulating layer 126, 226, 326: semiconductor layer 126a: first surface 126b: first Second surface 127: ion implantation area 128, 228, 328: source area 129, 229, 329: drain area 130, 131: photoresist pattern 140, 240, 340: gate structure 141: dielectric layer 142, 242 , 342: gate dielectric layer 143: gate material layer 144, 244, 344: gate 150: spacer material 151: spacer 200: ultra-thin channel field effect transistor 300: tunnel field effect transistor D: effective Channel thickness I: ion implantation program L1: length L2: channel length t ch : channel thickness t ox : dielectric layer thickness W: channel width

圖1A至圖1G繪示為本發明一實施例的一種絕緣層上矽之場效電晶體的製造流程的剖面示意圖。 圖1H繪示為圖1G的立體示意圖。 圖2A與圖2B分別為不同的佈植能量對絕緣層上矽之場效電晶體的轉移特性、SS以及DIBL的關係圖。 圖3A與圖3B分別為不同的佈植劑量對絕緣層上矽之場效電晶體的轉移特性、SS以及DIBL的關係圖。 圖4A與圖4B分別為不同的退火溫度對絕緣層上矽之場效電晶體的I off、I on/I off、SS以及DIBL的關係圖。 圖5A與圖5B分別為不同的退火時間對絕緣層上矽之場效電晶體的I off、I on/I off、SS以及DIBL的關係圖。 圖6A為比較例1的超薄通道場效電晶體(UTBFET)的立體示意圖。 圖6B為比較例3的掘入式場效電晶體(RCFET)的立體示意圖。 圖7A為實例1、比較例1、比較例2以及比較例3於相同臨界電壓下的轉移特性的關係圖。 圖7B為實例1、比較例1、比較例2以及比較例3於相同功函數下的轉移特性的關係圖。 圖7C為實例1、比較例2以及比較例3的DIBL、SS以及I on/I off的關係圖。 1A to 1G are schematic cross-sectional views showing a manufacturing process of a silicon-on-insulating field effect transistor according to an embodiment of the invention. Fig. 1H is a schematic perspective view of Fig. 1G. 2A and FIG. 2B are diagrams showing the relationship between different implantation energy and the transfer characteristics of silicon field effect transistors on the insulating layer, SS and DIBL, respectively. 3A and 3B are the relationship diagrams of the transfer characteristics, SS and DIBL of silicon field effect transistors on the insulating layer with different implant doses. 4A and FIG. 4B are the relationship diagrams of I off , I on /I off , SS and DIBL of the silicon field effect transistor on the insulating layer at different annealing temperatures. 5A and FIG. 5B are the relationship diagrams of I off , I on /I off , SS and DIBL of the silicon field effect transistor on the insulating layer with different annealing times. 6A is a three-dimensional schematic diagram of an ultra-thin channel field effect transistor (UTBFET) of Comparative Example 1. FIG. 6B is a three-dimensional schematic diagram of the RCFET of Comparative Example 3. FIG. FIG. 7A is a graph of the transfer characteristics of Example 1, Comparative Example 1, Comparative Example 2, and Comparative Example 3 under the same threshold voltage. FIG. 7B is a graph of the transfer characteristics of Example 1, Comparative Example 1, Comparative Example 2, and Comparative Example 3 under the same work function. 7C is a diagram showing the relationship between DIBL, SS, and I on /I off in Example 1, Comparative Example 2, and Comparative Example 3.

100:絕緣層上矽之場效電晶體 100: Field effect transistor of silicon on the insulating layer

120:基板 120: substrate

122:半導體基底 122: Semiconductor substrate

124:絕緣層 124: Insulation layer

126:半導體層 126: Semiconductor layer

126a:第一表面 126a: first surface

126b:第二表面 126b: second surface

127:離子佈植區 127: Ion implantation area

128:源極區 128: source region

129:汲極區 129: Drain Area

140:閘極結構 140: gate structure

142:閘介電層 142: Gate Dielectric Layer

144:閘極 144: Gate

151:間隙壁 151: Clearance Wall

D:有效通道厚度 D: Effective channel thickness

L1:長度 L1: length

Claims (14)

一種絕緣層上矽之場效電晶體,包括: 一基板,包括: 一半導體基底,具有一第一導電型; 一絕緣層,配置於該半導體基底上;以及 一半導體層,配置於該絕緣層上,具有一第二導電型、一第一表面以及相對該第一表面的一第二表面,其中該第一導電型與該第二導電型不同; 一離子佈植區,配置於該半導體層的底部,具有該第一導電型;以及 一閘極結構,配置於該半導體層的該第一表面上,包括一閘介電層以及一閘極,其中該閘極配置於該閘介電層上。 A field effect transistor of silicon on an insulating layer, comprising: A substrate, including: A semiconductor substrate having a first conductivity type; An insulating layer disposed on the semiconductor substrate; and A semiconductor layer, disposed on the insulating layer, having a second conductivity type, a first surface, and a second surface opposite to the first surface, wherein the first conductivity type is different from the second conductivity type; An ion implantation area disposed at the bottom of the semiconductor layer and having the first conductivity type; and A gate structure is arranged on the first surface of the semiconductor layer, and includes a gate dielectric layer and a gate electrode, wherein the gate electrode is arranged on the gate dielectric layer. 如申請專利範圍第1項所述的絕緣層上矽之場效電晶體,其中該離子佈植區與該半導體層的該第一表面之間具有一距離,且該距離為1.5 nm至10 nm。The field-effect transistor of silicon on the insulating layer according to claim 1, wherein there is a distance between the ion implantation area and the first surface of the semiconductor layer, and the distance is 1.5 nm to 10 nm . 如申請專利範圍第1項所述的絕緣層上矽之場效電晶體,其中該閘極結構於該半導體基底上的正投影重疊於該離子佈植區於該半導體基底上的正投影。The field-effect transistor of silicon-on-insulating layer described in claim 1, wherein the orthographic projection of the gate structure on the semiconductor substrate overlaps the orthographic projection of the ion implantation area on the semiconductor substrate. 如申請專利範圍第3項所述的絕緣層上矽之場效電晶體,其中該閘極結構於該半導體基底上的正投影面積小於等於該離子佈植區於該半導體基底上的正投影面積。The silicon-on-insulating field-effect transistor described in claim 3, wherein the orthographic area of the gate structure on the semiconductor substrate is less than or equal to the orthographic area of the ion implantation area on the semiconductor substrate . 如申請專利範圍第1項所述的絕緣層上矽之場效電晶體,其中該離子佈植區接觸該絕緣層,且與該半導體層的該第二表面切齊。The field effect transistor of silicon on the insulating layer according to the first item of the scope of patent application, wherein the ion implantation region is in contact with the insulating layer and is aligned with the second surface of the semiconductor layer. 如申請專利範圍第1項所述的絕緣層上矽之場效電晶體,其中該離子佈植區的長度為10 nm至140 nm。In the field effect transistor of silicon on the insulating layer as described in item 1 of the scope of patent application, the length of the ion implantation region is 10 nm to 140 nm. 如申請專利範圍第1項所述的絕緣層上矽之場效電晶體,其中該半導體層與該半導體基板分別位於該絕緣層的相對兩側。According to the first item of the scope of patent application, the silicon-on-insulating field effect transistor, wherein the semiconductor layer and the semiconductor substrate are respectively located on opposite sides of the insulating layer. 一種絕緣層上矽之場效電晶體的製造方法,包括: 提供一基板,該基板包括: 一半導體基底,具有一第一導電型; 一絕緣層,配置於該半導體基底上;以及 一半導體層,配置於該絕緣層上,具有一第二導電型、一第一表面以及相對該第一表面的一第二表面,其中該第一導電型與該第二導電型不同; 形成一離子佈植區於該半導體層的底部,該離子佈植區具有該第一導電型;以及 形成一閘極結構於該半導體層的該第一表面上,該閘極結構包括一閘介電層以及一閘極,且該閘極配置於該閘介電層上。 A method for manufacturing a silicon field-effect transistor on an insulating layer includes: A substrate is provided, and the substrate includes: A semiconductor substrate having a first conductivity type; An insulating layer disposed on the semiconductor substrate; and A semiconductor layer, disposed on the insulating layer, having a second conductivity type, a first surface, and a second surface opposite to the first surface, wherein the first conductivity type is different from the second conductivity type; Forming an ion implantation area at the bottom of the semiconductor layer, the ion implantation area having the first conductivity type; and A gate structure is formed on the first surface of the semiconductor layer, the gate structure includes a gate dielectric layer and a gate, and the gate is disposed on the gate dielectric layer. 如申請專利範圍第8項所述的絕緣層上矽之場效電晶體的製造方法,其中形成該離子佈植區於該半導體層的底部的步驟包括: 形成一光阻圖案於該基板的該半導體層上; 對該光阻圖案所暴露出的部分該半導體層進行一離子佈植程序;以及 移除該光阻圖案。 According to the method for manufacturing a field-effect transistor of silicon on an insulating layer as described in item 8 of the scope of patent application, the step of forming the ion implantation region at the bottom of the semiconductor layer includes: Forming a photoresist pattern on the semiconductor layer of the substrate; Performing an ion implantation process on the part of the semiconductor layer exposed by the photoresist pattern; and Remove the photoresist pattern. 如申請專利範圍第9項所述的絕緣層上矽之場效電晶體的製造方法,其中該離子佈植程序的參數包括:佈植能量為2 keV至20 keV,佈植劑量為10 12cm -2至10 14cm -2,角度為0度至60度,退火溫度為900 ℃至1100 ℃,退火時間小於60秒。 As described in item 9 of the scope of patent application, the method for manufacturing a field-effect transistor of silicon on an insulating layer, wherein the parameters of the ion implantation procedure include: implantation energy of 2 keV to 20 keV, implantation dose of 10 12 cm -2 to 10 14 cm -2 , the angle is 0 degrees to 60 degrees, the annealing temperature is 900 ℃ to 1100 ℃, and the annealing time is less than 60 seconds. 如申請專利範圍第9項所述的絕緣層上矽之場效電晶體的製造方法,其中該離子佈植程序的參數包括:佈植能量為9.5 keV,佈植劑量為8×10 13cm -2,角度為60度,退火溫度為1050 ℃,退火時間為5秒。 The method of manufacturing a field effect transistor is of the silicon on the insulating layer of the range as defined in claim 9, wherein the parameters of the ion implantation process comprising: implanting energy of 9.5 keV, implantation dose of 8 × 10 13 cm - 2. The angle is 60 degrees, the annealing temperature is 1050 ℃, and the annealing time is 5 seconds. 如申請專利範圍第8項所述的絕緣層上矽之場效電晶體的製造方法,其中該離子佈植區的佈植雜質為硼、鋁、鎵、磷、砷、銻、氧或氮。According to item 8 of the scope of patent application, the method for manufacturing a field-effect transistor of silicon on an insulating layer, wherein the implanted impurity in the ion implantation area is boron, aluminum, gallium, phosphorus, arsenic, antimony, oxygen or nitrogen. 如申請專利範圍第8項所述的絕緣層上矽之場效電晶體的製造方法,其中形成該閘極結構於該半導體層的該第一表面上的步驟包括: 依序形成一介電層以及一閘極材料層於該基板的該半導體層上; 形成一光阻圖案於該閘極材料層上;以及 移除由該光阻圖案所暴露出的部分該閘極材料層以及其下方的部分該介電層,以形成該閘極以及該閘介電層。 The method for manufacturing a field-effect transistor of silicon on an insulating layer as described in claim 8, wherein the step of forming the gate structure on the first surface of the semiconductor layer includes: Sequentially forming a dielectric layer and a gate material layer on the semiconductor layer of the substrate; Forming a photoresist pattern on the gate material layer; and Removing a part of the gate material layer exposed by the photoresist pattern and a part of the dielectric layer under the photoresist pattern to form the gate and the gate dielectric layer. 如申請專利範圍第13項所述的絕緣層上矽之場效電晶體的製造方法,還包括: 形成一間隙壁材料於該基板上,以覆蓋該半導體層、該光阻圖案、該閘極的側壁以及該閘介電層的側壁;以及 移除部分該間隙壁材料以及該光阻圖案,以形成一間隙壁。 As described in item 13 of the scope of patent application, the method for manufacturing a field-effect transistor of silicon on an insulating layer also includes: Forming a spacer material on the substrate to cover the semiconductor layer, the photoresist pattern, the sidewall of the gate electrode and the sidewall of the gate dielectric layer; and Remove part of the spacer material and the photoresist pattern to form a spacer.
TW108124759A 2019-07-12 2019-07-12 Silicon-on-insulator field effect transistor and manufacturing method thereof TWI707387B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108124759A TWI707387B (en) 2019-07-12 2019-07-12 Silicon-on-insulator field effect transistor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108124759A TWI707387B (en) 2019-07-12 2019-07-12 Silicon-on-insulator field effect transistor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TWI707387B true TWI707387B (en) 2020-10-11
TW202103222A TW202103222A (en) 2021-01-16

Family

ID=74091399

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108124759A TWI707387B (en) 2019-07-12 2019-07-12 Silicon-on-insulator field effect transistor and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI707387B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI571936B (en) * 2011-10-26 2017-02-21 聯華電子股份有限公司 Structure of field effect transistor with fin structure and fabricating method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI571936B (en) * 2011-10-26 2017-02-21 聯華電子股份有限公司 Structure of field effect transistor with fin structure and fabricating method thereof

Also Published As

Publication number Publication date
TW202103222A (en) 2021-01-16

Similar Documents

Publication Publication Date Title
US20220262951A1 (en) Semiconductor Structure and Methods of Forming Same
US9450097B2 (en) Methods for doping Fin field-effect transistors and Fin field-effect transistor
US8703593B2 (en) Techniques for FinFET doping
US8053839B2 (en) Doping of semiconductor fin devices
TWI498950B (en) Semiconductor device and method thereof
TWI478218B (en) Semiconductor devices and methods for making semiconductor devices having metal gate stacks
US20150255557A1 (en) Semiconductor device and method for manufacturing the same
TW201637081A (en) Forming punch-through stopper regions in finFET devices
CN109216458A (en) Semiconductor devices and its manufacturing method
CN107919324B (en) Method for forming semiconductor device
CN109087864B (en) Semiconductor device and method of forming the same
US9761662B1 (en) Active area shapes reducing device size
US10056261B2 (en) P type MOSFET
CN110391285B (en) Semiconductor structure and forming method thereof
CN109216192B (en) Semiconductor device and method of forming the same
TWI707387B (en) Silicon-on-insulator field effect transistor and manufacturing method thereof
CN110858544A (en) Semiconductor device and method of forming the same
US11563085B2 (en) Transistors with separately-formed source and drain
CN107579108B (en) Method for forming semiconductor structure
CN110556337A (en) Semiconductor device and method of forming the same
WO2012079304A1 (en) Mos transistor and manufacturing method thereof
CN108022879B (en) Multi-threshold voltage transistor and forming method thereof
CN106328528B (en) Method for forming semiconductor structure
CN110718463A (en) Tunneling field effect transistor and forming method thereof
Qin Plasma doping (PLAD) for advanced memory device manufacturing