TWI707121B - An alternating notch configuration for spacing heat transfer sheets - Google Patents

An alternating notch configuration for spacing heat transfer sheets Download PDF

Info

Publication number
TWI707121B
TWI707121B TW105132794A TW105132794A TWI707121B TW I707121 B TWI707121 B TW I707121B TW 105132794 A TW105132794 A TW 105132794A TW 105132794 A TW105132794 A TW 105132794A TW I707121 B TWI707121 B TW I707121B
Authority
TW
Taiwan
Prior art keywords
heat transfer
petal
lobe
transfer sheet
longitudinal axis
Prior art date
Application number
TW105132794A
Other languages
Chinese (zh)
Other versions
TW201814233A (en
Inventor
奈森 T 艾金森
詹姆士 D 席柏德
傑弗瑞 C 尤威爾
傑弗瑞 M 歐柏伊
Original Assignee
美商傲華公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商傲華公司 filed Critical 美商傲華公司
Priority to TW105132794A priority Critical patent/TWI707121B/en
Publication of TW201814233A publication Critical patent/TW201814233A/en
Application granted granted Critical
Publication of TWI707121B publication Critical patent/TWI707121B/en

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A heat transfer sheet for a rotary regenerative heat exchanger includes a plurality of rows of heat transfer surfaces each being aligned with a longitudinal axis extending between first and second ends thereof. The heat transfer surfaces have a height relative to a central plane of the heat transfer sheet. The heat transfer sheet includes one or more notch configurations for spacing the heat transfer sheets apart from one another. Each of the notch configurations are positioned between adjacent rows of heat transfer surfaces. The notch configurations include one or more lobes connected to one another, positioned in a common flow channel and extending away from the central plane and one or more lobes extending away from the central plane in an opposite direction and being coaxial. The lobes have a height relative to the central plane that is greater than the height of the heat transfer surfaces.

Description

用於隔開熱傳片之交錯凹槽組態Staggered groove configuration for separating heat transfer plates

本發明係關於用於將熱量自一煙道氣體串流傳遞至一燃燒空氣串流之旋轉再生空氣預熱器之熱傳片,且更特定而言係關於具有用於使毗鄰熱傳片彼此隔開之一交錯凹槽組態且具有一經改良熱傳效率之熱傳片。The present invention relates to heat transfer fins of a rotating regeneration air preheater for transferring heat from a stream of flue gas to a stream of combustion air, and more particularly to the heat transfer fins for making adjacent heat transfer fins mutually A heat transfer sheet with a staggered groove configuration and an improved heat transfer efficiency.

旋轉再生空氣預熱器通常用來將熱量自排出一熔爐之一煙道氣體串流傳遞至一傳入燃燒空氣串流以改良熔爐之效率。習知預熱器包含一熱傳片總成,該熱傳片總成包含在一籃中彼此上下堆疊之複數個熱傳片。該等熱傳片自煙道氣體串流吸收熱量且將此熱量傳遞至燃燒空氣串流。預熱器進一步包含具有界定裝納一各別熱傳片總成之隔間之徑向隔板或隔膜之一轉子。預熱器包含延伸跨越該預熱器之上部面及下部面以將該預熱器劃分成一或多個氣體扇區及空氣扇區之扇形板。熱煙道氣體串流及燃燒空氣串流同時經引導穿過各別扇區。轉子使煙道氣體及燃燒空氣扇區旋轉進出煙道氣體串流及燃燒空氣串流以加熱且然後冷卻熱傳片,藉此加熱燃燒空氣串流並冷卻煙道氣體串流。 用於此等預熱器之習知熱傳片通常藉由成形壓製或輥壓一鋼材之一片而製成。典型熱傳片包含形成於其中以彼此隔開地定位毗鄰片且提供籃中之複數個熱傳片之總成之結構完整性之片隔開構件。毗鄰對片隔開構件形成通道以供煙道氣體或燃燒空氣流動穿過。一些熱傳片在片隔開構件之間包含起伏圖案以阻礙通道之一部分中之流動且藉此產生增大熱傳效率之紊流。然而,典型片隔開構件具有允許煙道氣體或燃燒空氣在高速下不間斷地且在具有極少紊流或不具有紊流之情況下流動穿過由該等片隔開構件形成之敞開側子通道之一組態。作為不間斷高速流動之一結果,自煙道氣體或燃燒空氣至片隔開構件之熱傳遞係最小的。通常已知,產生穿過複數個熱傳片(諸如穿過由毗鄰片隔開構件界定且在毗鄰片隔開構件之間的通道)之紊流增大跨越預熱器之壓降。另外,已發現,由熱傳片之突然輪廓改變所致的流動方向之突然改變增大壓降且形成流動停滯區域或區帶,該等流動停滯區域或區帶往往導致顆粒(例如,灰分)在流動停滯區域中之一累積。此進一步增大跨越預熱器之壓降。此增大之壓降因推動燃燒空氣穿過預熱器所需之風扇功率增大而降低預熱器之整體效率。預熱器之效率亦因使煙道氣體及燃燒空氣扇區旋轉進出煙道氣體及燃燒空氣串流所需之功率增大而隨著籃中之熱傳片總成之重量增大而降低。 因此,需要具有增大之熱傳效率與低壓降特性之經改良輕質熱傳片。Rotary regeneration air preheaters are generally used to transfer heat from a stream of flue gas discharged from a furnace to a stream of incoming combustion air to improve the efficiency of the furnace. The conventional preheater includes a heat transfer sheet assembly including a plurality of heat transfer sheets stacked on top of each other in a basket. The heat transfer fins absorb heat from the flue gas stream and transfer this heat to the combustion air stream. The preheater further includes a rotor with a radial baffle or diaphragm defining a compartment containing a separate heat transfer fin assembly. The preheater includes a fan-shaped plate extending across the upper and lower surfaces of the preheater to divide the preheater into one or more gas sectors and air sectors. The hot flue gas stream and the combustion air stream are simultaneously guided through each sector. The rotor rotates the flue gas and combustion air sectors in and out of the flue gas stream and the combustion air stream to heat and then cool the heat transfer fins, thereby heating the combustion air stream and cooling the flue gas stream. The conventional heat transfer sheets used in these preheaters are usually made by forming, pressing or rolling a piece of steel. A typical heat transfer sheet includes sheet partition members formed therein to position adjacent sheets spaced apart from each other and provide the structural integrity of the assembly of the plurality of heat transfer sheets in the basket. The adjacent pair of partition members form a channel for flue gas or combustion air to flow through. Some heat transfer sheets include undulating patterns between the sheet partition members to hinder the flow in a portion of the channel and thereby generate turbulence that increases the heat transfer efficiency. However, the typical sheet partitioning member has a feature that allows flue gas or combustion air to flow uninterruptedly at high speeds and with little or no turbulence through the open sides formed by the sheet partitioning members. One of the channels is configured. As a result of the uninterrupted high-speed flow, the heat transfer from the flue gas or combustion air to the partition member is minimal. It is generally known that generating turbulence through a plurality of heat transfer fins, such as through channels defined by and between adjacent fin partition members, increases the pressure drop across the preheater. In addition, it has been found that the sudden change in the flow direction caused by the sudden contour change of the heat transfer sheet increases the pressure drop and forms stagnant flow areas or zones, which often lead to particles (eg, ash) Accumulate in one of the areas of stagnant flow. This further increases the pressure drop across the preheater. This increased pressure drop reduces the overall efficiency of the preheater due to the increased fan power required to push the combustion air through the preheater. The efficiency of the preheater is also reduced due to the increase in the power required to rotate the flue gas and combustion air sector into and out of the flue gas and combustion air stream, as the weight of the heat transfer fin assembly in the basket increases. Therefore, there is a need for improved lightweight heat transfer fins with increased heat transfer efficiency and low pressure drop characteristics.

本文中揭示一種用於一旋轉再生熱交換器之熱傳片。該熱傳片上包含複數列熱傳表面。該複數列中之每一者與在該熱傳片之一進口端與一出口端之間延伸之一縱軸對準。該等熱傳表面相對於該熱傳片之一中心平面具有一第一高度。該熱傳片包含用於使該等熱傳片彼此隔開之一或多個凹槽組態。該等凹槽組態定位於毗鄰列熱傳表面之間。該等凹槽組態包含:一或多個第一瓣,其沿一第一方向延伸遠離該中心平面;及一或多個第二瓣,其沿與該第一方向相反之一第二方向延伸遠離該中心平面。該等第一瓣及第二瓣相對於該中心平面各自具有一第二高度。該第二高度大於該第一高度。該等第一瓣及該等第二瓣彼此連接且處於一共同流動通道中。在一項實施例中,該等第一瓣及該等第二瓣沿著平行於該縱軸之一軸而彼此同軸。 本文中亦揭示一種用於一旋轉再生熱交換器之熱傳總成。該熱傳總成包含彼此上下堆疊之兩個或兩個以上熱傳片。該等熱傳片中之每一者包含複數列熱傳表面。該等列中之每一者與在該熱傳總成之一進口端與一出口端之間延伸之一縱軸對準。該等熱傳表面相對於該熱傳片之一中心平面具有一第一高度。該等熱傳片中之每一者包含用於使該等熱傳片彼此隔開之一或多個凹槽組態。該等凹槽組態中之每一者定位於毗鄰列熱傳表面之間。該等凹槽組態中之每一者包含:一或多個第一瓣,其沿一第一方向延伸遠離該中心平面;及一或多個第二瓣,其沿與該第一方向相反之一第二方向延伸遠離該中心平面。該等第一瓣及該等第二瓣彼此連接且處於一共同流動通道中。該等第一瓣及該等第二瓣中之每一者相對於該中心平面具有一第二高度。該第二高度大於該第一高度。該等熱傳片中之一第一者之第一瓣嚙合該等熱傳片中之一第二者之熱傳表面;且該等熱傳片中之一第二者之第二瓣嚙合該第一熱傳片之熱傳表面,以在該等熱傳片之間界定一流動路徑。該流動路徑自該進口端延伸至該出口端。在一項實施例中,該等第一瓣及該等第二瓣沿著平行於該縱軸之一軸而彼此同軸。 在一項實施例中,該凹槽組態包含由連接該等第一瓣中之一者與該等第二瓣中之一者之一過渡區所界定之一或多個流動轉向組態。該過渡區經形成呈一弓形及/或扁平形狀。該等第一瓣及/或該等第二瓣經形成具有一S形及/或C形剖面。 在一項實施例中,該等熱傳表面包含成角度地偏離該縱軸之起伏表面。 本文中亦揭示一種熱交換器片堆疊。該熱交換器片堆疊包含一或多個第一熱傳片。該等第一熱傳片中之每一者包含沿著該第一熱傳片延伸且相對於穿過該堆疊之一流動方向以一第一角度定向之一第一起伏表面。該等第一熱傳片亦包含沿著該第一熱傳片延伸且相對於穿過該堆疊之該流動方向以一第二角度定向之一第二起伏表面,該第一角度與該第二角度係不同的,舉例而言呈一人字形圖案。該熱傳片堆疊進一步包含一或多個第二熱傳片。該等第二熱傳片中之每一者界定複數個凹槽組態,該複數個凹槽組態沿著平行於預期流動方向在至少一個第二熱傳片之一第一端與一第二端之間延伸之一縱軸延伸以用於使該第一熱傳片與該等第二熱傳片中之一毗鄰者隔開。該等凹槽組態中之一或多者包含:一或多個第一瓣,其沿一第一方向延伸遠離該第二熱傳片之一中心平面;及一或多個第二瓣,其沿與該第一方向相反之一第二方向延伸遠離該中心平面。該等第一瓣及該等第二瓣彼此連接且處於一共同流動通道中。該等第一瓣中之一或多者嚙合該第一起伏表面及/或該第二起伏表面之一部分;及/或該等第二瓣中之一或多者嚙合該第一起伏表面及/或該第二起伏表面之一部分,以在該第一熱傳片與該第二熱傳片之間界定一流動路徑。在一項實施例中,該等第一瓣及該等第二瓣沿著平行於該縱軸之一軸而彼此同軸。 本文中進一步揭示一種用於一熱傳片堆疊之隔片。該隔片包含複數個凹槽組態,該複數個凹槽組態沿著平行於預期流動方向在該隔片之一第一端與一第二端之間延伸之一縱軸延伸以用於使毗鄰熱傳片彼此隔開。該等凹槽組態包含:一或多個第一瓣,其沿一第一方向延伸遠離該隔片之一中心平面;及/或一或多個第二瓣,其沿與該第一方向相反之一第二方向延伸遠離該中心平面。該等第一瓣及該等第二瓣彼此連接且處於一共同流動通道中。在一項實施例中,該等第一瓣及該等第二瓣沿著平行於該縱軸之一軸而彼此同軸。 在一項實施例中,該隔片之該凹槽組態包含由連接該等第一瓣中之一者與該等第二瓣中之一者之一過渡區所界定之一或多個流動轉向組態。 在一項實施例中,該等過渡區中之連續過渡區彼此隔開達2至8英寸之一距離。 在一項實施例中,該等過渡區中之一或多者(例如,至少一者)界定0.25至2.5英寸之一縱向距離。 在一項實施例中,該等凹槽組態中之毗鄰凹槽組態彼此隔開達垂直於該縱軸所量測之1.25至6英寸。 在一項實施例中,該等組態界定5:1至20:1的該凹槽組態之一高度與連續過渡區之間的一縱向間距之一比率。 在一項實施例中,該等凹槽組態界定1.0:1至4.0:1的該組態之一高度與該熱傳表面之一高度之一比率。 在一項實施例中,該等起伏表面界定複數個起伏峰,該等起伏峰中之毗鄰起伏峰隔開達一預定距離,且預定距離與該第一高度之一比率係3.0:1至15.0:1。This article discloses a heat transfer fin for a rotary regenerative heat exchanger. The heat transfer sheet includes a plurality of rows of heat transfer surfaces. Each of the plurality of rows is aligned with a longitudinal axis extending between an inlet end and an outlet end of the heat transfer sheet. The heat transfer surfaces have a first height relative to a center plane of the heat transfer sheet. The heat transfer sheet includes one or more groove configurations for separating the heat transfer sheets from each other. The groove configurations are positioned between adjacent rows of heat transfer surfaces. The groove configurations include: one or more first lobes extending away from the central plane in a first direction; and one or more second lobes extending in a second direction opposite to the first direction Extend away from the central plane. The first lobes and the second lobes each have a second height relative to the center plane. The second height is greater than the first height. The first lobes and the second lobes are connected to each other and are in a common flow channel. In one embodiment, the first lobes and the second lobes are coaxial with each other along an axis parallel to the longitudinal axis. This article also discloses a heat transfer assembly for a rotary regenerative heat exchanger. The heat transfer assembly includes two or more heat transfer fins stacked on top of each other. Each of the heat transfer sheets includes a plurality of rows of heat transfer surfaces. Each of the rows is aligned with a longitudinal axis extending between an inlet end and an outlet end of the heat transfer assembly. The heat transfer surfaces have a first height relative to a center plane of the heat transfer sheet. Each of the heat transfer fins includes one or more groove configurations for separating the heat transfer fins from each other. Each of the groove configurations is positioned between adjacent rows of heat transfer surfaces. Each of the groove configurations includes: one or more first lobes that extend away from the central plane in a first direction; and one or more second lobes that are opposite to the first direction A second direction extends away from the central plane. The first lobes and the second lobes are connected to each other and are in a common flow channel. Each of the first lobes and the second lobes has a second height relative to the center plane. The second height is greater than the first height. The first flap of the first one of the heat transfer fins engages the heat transfer surface of the second one of the heat transfer fins; and the second flap of the second one of the heat transfer fins engages the The heat transfer surface of the first heat transfer sheet defines a flow path between the heat transfer sheets. The flow path extends from the inlet end to the outlet end. In one embodiment, the first lobes and the second lobes are coaxial with each other along an axis parallel to the longitudinal axis. In one embodiment, the groove configuration includes one or more flow diversion configurations defined by a transition zone connecting one of the first lobes and one of the second lobes. The transition zone is formed into an arcuate and/or flat shape. The first petals and/or the second petals are formed to have an S-shaped and/or C-shaped cross section. In one embodiment, the heat transfer surfaces include undulating surfaces that are angularly offset from the longitudinal axis. A stack of heat exchanger fins is also disclosed herein. The stack of heat exchanger fins includes one or more first heat transfer fins. Each of the first heat transfer sheets includes a first undulating surface extending along the first heat transfer sheet and oriented at a first angle with respect to a flow direction through the stack. The first heat transfer fins also include a second undulating surface extending along the first heat transfer fin and oriented at a second angle with respect to the flow direction through the stack, the first angle and the second undulating surface The angles are different, for example, in a herringbone pattern. The stack of heat transfer fins further includes one or more second heat transfer fins. Each of the second heat transfer fins defines a plurality of groove configurations that are parallel to the expected flow direction at a first end and a first end of at least one second heat transfer fin A longitudinal axis extending between the two ends is used to separate the first heat transfer fin from the adjacent one of the second heat transfer fins. One or more of the groove configurations include: one or more first lobes that extend away from a central plane of the second heat transfer sheet in a first direction; and one or more second lobes, It extends away from the central plane in a second direction opposite to the first direction. The first lobes and the second lobes are connected to each other and are in a common flow channel. One or more of the first lobes engage the first undulating surface and/or a portion of the second undulating surface; and/or one or more of the second lobes engage the first undulating surface and/or Or a part of the second undulating surface to define a flow path between the first heat transfer sheet and the second heat transfer sheet. In one embodiment, the first lobes and the second lobes are coaxial with each other along an axis parallel to the longitudinal axis. This article further discloses a spacer for a stack of heat transfer fins. The spacer includes a plurality of groove configurations, and the plurality of groove configurations extend along a longitudinal axis extending between a first end and a second end of the spacer parallel to the expected flow direction for Separate adjacent heat transfer fins from each other. The groove configurations include: one or more first lobes extending away from a central plane of the spacer along a first direction; and/or one or more second lobes extending along the first direction The opposite second direction extends away from the central plane. The first lobes and the second lobes are connected to each other and are in a common flow channel. In one embodiment, the first lobes and the second lobes are coaxial with each other along an axis parallel to the longitudinal axis. In one embodiment, the groove configuration of the spacer includes one or more flows defined by a transition zone connecting one of the first lobes and one of the second lobes Turn to configuration. In one embodiment, successive ones of the transition regions are separated from each other by a distance of one from 2 to 8 inches. In one embodiment, one or more of the transition regions (eg, at least one) defines a longitudinal distance of 0.25 to 2.5 inches. In one embodiment, adjacent groove configurations among the groove configurations are spaced apart from each other by 1.25 to 6 inches measured perpendicular to the longitudinal axis. In one embodiment, the configurations define a ratio of a height of the groove configuration to a longitudinal spacing between the continuous transition areas from 5:1 to 20:1. In one embodiment, the groove configurations define a ratio of a height of the configuration to a height of the heat transfer surface from 1.0:1 to 4.0:1. In one embodiment, the undulating surfaces define a plurality of undulating peaks, adjacent undulating peaks of the undulating peaks are separated by a predetermined distance, and a ratio of the predetermined distance to the first height is 3.0:1 to 15.0 :1.

如圖1中所展示,大體用編號10指定一旋轉再生空氣預熱器(下文中稱為「預熱器」)。預熱器10包含可旋轉地安裝於一轉子柱16上之一轉子總成12。轉子總成12定位於一外殼14中且相對於外殼14而旋轉。舉例而言,轉子總成12可沿由箭頭R指示之方向繞轉子柱16之一軸A旋轉。轉子總成12包含自轉子柱16徑向延伸至轉子總成12之一外周邊之隔板18 (例如,隔膜)。毗鄰對隔板18界定用於接納一熱傳總成1000之各別隔間20。熱傳總成1000中之每一者包含彼此上下堆疊(舉例而言,參見展示兩個熱傳片之一堆疊之圖4A及圖4B)之複數個熱傳片100及/或200 (舉例而言,分別參見圖2A及圖3A)。 如圖1中所展示,外殼14包含一煙道氣體進口管22及一煙道氣體出口管24以用於使經加熱煙道氣體流動穿過預熱器10。外殼14進一步包含一空氣進口管26及一空氣出口管28以用於使燃燒空氣流動穿過預熱器10。預熱器10包含毗鄰於轉子總成12之一上部面而延伸跨越外殼14之一上部扇形板30A。預熱器10包含毗鄰於轉子總成12之下部面而延伸跨越外殼14之一下部扇形板30B。上部扇形板30A在煙道氣體進口管22與空氣出口管28之間延伸且連結至煙道氣體進口管22及空氣出口管28。下部扇形板30B在煙道氣體出口管24與空氣進口管26之間延伸且連結至煙道氣體出口管24及空氣進口管26。上部扇形板30A與下部扇形板30B分別藉由一圓周板30C而彼此連結。上部扇形板30A及下部扇形板30B將預熱器10劃分成一空氣扇區32及一氣體扇區34。 如圖1中圖解說明,標記為「A」之箭頭指示一煙道氣體串流36穿過轉子總成12之氣體扇區34之方向。標記為「B」之箭頭指示一燃燒空氣串流38穿過轉子總成12之空氣扇區32之方向。煙道氣體串流36透過煙道氣體進口管22而進入且將熱量傳遞至安裝於隔間20中之熱傳總成1000。經加熱熱傳總成1000旋轉進入至預熱器10之空氣扇區32中。然後,儲存於熱傳總成1000中之熱量經傳遞至透過空氣進口管26而進入之燃燒空氣串流38。因此,自進入至預熱器10中之熱煙道氣體串流36所吸收之熱量用於加熱熱傳總成1000,熱傳總成1000繼而又加熱進入預熱器10之燃燒空氣串流38。 如圖2A、圖2B、圖2C及圖5A中圖解說明,熱傳片100包含複數列(例如,圖2A中圖解說明兩列F及G)熱傳表面310。熱傳表面310之列F及G與沿平行於煙道氣體及燃燒空氣之流動(如分別由箭頭A及B指示)之一方向在熱傳片100之一第一端100X與一第二端100Y之間延伸之一縱軸L對準。當熱傳片100在空氣扇區32中時,第一端100X係用於燃燒空氣串流38之一進口且第二端100Y係用於燃燒空氣串流38之一出口。當熱傳片100在氣體扇區34中時,第一端100X係用於煙道氣體串流36之一出口且第二端100Y係用於煙道氣體串流36之一進口。熱傳表面310相對於熱傳片100之一中心平面CP具有一第一高度H1,如圖2B中所展示。在一項實施例中,熱傳表面310由成角度地偏離縱軸L之起伏表面界定,如本文中進一步所描述。 如圖2A、圖2B、圖2C及圖5A中圖解說明,熱傳片100包含用於使熱傳片100彼此隔開之複數個凹槽組態110,如本文中參考圖4B進一步所描述。凹槽組態110中之一者定位於熱傳表面之列F與列G之間。凹槽組態110中之另一者定位於熱傳表面310之列F與另一毗鄰列(未展示)之間;且凹槽組態110中之又一者定位於熱傳表面310之列G與又一毗鄰列(未展示)之間。凹槽組態110中之每一者平行於縱軸L且在熱傳片100之第一端100X與第二端100Y之間沿著熱傳片100縱向延伸。如本文中參考圖4B進一步所描述,凹槽組態嚙合毗鄰熱傳片100之熱傳表面310以使熱傳片100彼此隔開且在熱傳片100之間界定一流動通路P。 如圖2A及圖5A中所展示,凹槽組態110包含統稱為一交錯全凹槽設計之四個瓣組態,該等瓣組態包含沿著縱軸L1及L2彼此連接之毗鄰雙瓣,如本文中參考圖2A及圖2C進一步所描述。舉例而言,一個雙瓣由第一瓣160L及第二瓣170R界定;且另一縱向對準且倒轉雙瓣由第二瓣170L及第一瓣160R界定。因此,凹槽組態110具有一S形剖面。 如圖5A中所展示,凹槽組態110中之每一者皆處於由平行於縱軸L1及L2之縱向邊界線L100及L200 (展示為虛線)界定之一共同流動通道中。該共同流動通道界定煙道氣體36及燃燒空氣38在流動通路P (關於流動通路P之一實例,參見圖4B)中之一局域化縱向流動。如圖5A中所展示,共同流動通道具有在縱向邊界線L100與L200之間所量測之一寬度D100。在一項實施例中,寬度D100約等於凹槽組態110之寬度D101。在一項實施例中,寬度D100介於凹槽組態之寬度D101之1.0倍與1.1倍之間。在一項實施例中,寬度D100介於凹槽組態之寬度之1.0倍與1.2倍之間。 四個瓣組態中之一者為一第一瓣組態。該第一瓣組態由沿一第一方向延伸遠離中心平面CP之複數個第一瓣160L界定。第一瓣160L處於共同流動通道中。在圖5A中所圖解說明之實施例中,第一瓣160L沿著一第一縱軸L1彼此隔開且彼此同軸地對準(例如,第一瓣160L中之一者經定位接近第一端100X (參見圖2A),且第一瓣160L中之一第二者經定位接近第二端100Y (參見圖2A))。第一瓣160L與第二瓣170L縱向隔開且同軸地對準,且橫向毗鄰於第二瓣170R中之一者。 四個瓣組態中之另一者為一第二瓣組態。該第二瓣組態由沿第一方向延伸遠離中心平面CP之複數個第一瓣160R界定。第一瓣160R處於共同流動通道中。在圖5A中所圖解說明之實施例中,第一瓣160R沿著一第二縱軸L2彼此縱向隔開且彼此同軸地對準。第一瓣160R與第二瓣170R縱向隔開且同軸地對準,且橫向毗鄰於第二瓣170L中之一者。 四個瓣組態中之另一者為一第三瓣組態。該第三瓣組態由沿一第二方向延伸遠離中心平面CP之複數個第二瓣170L界定。第二瓣170L處於共同流動通道中。在圖5A中所圖解說明之實施例中,第二瓣170L沿著第一縱軸L1彼此縱向隔開且彼此同軸地對準(例如,第二瓣170L中之一者定位於經定位接近第一端100X之第一瓣160L與經定位接近第二端100Y之第一瓣160L之間)。第二方向與第一方向相反。第二瓣170L與第一瓣160L縱向隔開且同軸地對準,且橫向毗鄰於第一瓣160R中之一者。 四個瓣組態中之另一者為一第四瓣組態。該第四瓣組態由沿第二方向延伸遠離中心平面CP之複數個第二瓣170R界定。第二瓣170R處於共同流動通道中。在圖5A中所圖解說明之實施例中,第二瓣170R沿著第二縱軸L2彼此縱向隔開且彼此同軸地對準(例如,第二瓣170R中之一者經定位接近第一端100X,且第二瓣170R中之另一者經定位接近第二端100Y,其中第一瓣160R中之一者定位於此兩者之間)。第二瓣170R與第一瓣160R縱向隔開且同軸地對準,且橫向毗鄰於第一瓣160L中之一者。 因此,第一瓣160L及160R沿第一方向延伸遠離熱傳片100之一第一面112;且第二瓣170L及170R沿第二方向延伸遠離熱傳片100之一第二面114。毗鄰凹槽組態110係由熱傳表面310之列F或G中之一者分離且在一S形剖面與一倒轉S形剖面之間跨越熱傳片100橫向(例如,垂直於軸L)交錯。 如圖5A中所展示,第一瓣160L中之每一者縱向毗鄰於沿著平行於熱傳片100之縱軸L之軸L1對準之第二瓣170L中之一者。因此,第一瓣160L及第二瓣170L同軸且經組態呈一交錯縱向圖案,在該交錯縱向圖案中,第一瓣160L沿第一方向(離開圖5A中之頁面)背離中心平面CP且第二瓣170L沿第二方向(進入圖5A中之頁面)背離中心平面。同樣地,在圖5A中所展示之實施例中,第一瓣160R及第二瓣170R同軸且處於共同流動通道中。第一瓣160R及第二瓣170R經組態呈一交錯縱向圖案,在該交錯縱向圖案中,第一瓣160R沿第一方向背離中心平面CP且第二瓣170R沿第二方向背離中心平面CP。另外,第一瓣160L及第二瓣170R沿橫向於縱軸之一方向彼此毗鄰;且第一瓣160R及第二瓣170L沿橫向於縱軸L之一方向彼此毗鄰。 如圖2A中所展示,第一瓣160L及160R中之每一者及第二瓣170L及170R中之每一者在平行於縱軸L之縱向方向上沿著片延伸一長度L6。 雖然三個瓣(即,兩個第一瓣160L及一個第二瓣170L)展示為沿著軸L1且介於第一端100X與第二端100Y之間;且三個瓣(即,兩個第二瓣170R及一個第一瓣160L)展示為沿著軸L2且介於第一端100X與第二端100Y之間,但本發明並不限於此,此乃因取決於針對預熱器之設計參數在第一端100X與第二端100Y之間可採用任何數目個第一瓣160R、160L及第二瓣170R及170L。 如圖2B中所展示,第一瓣160L及160R以及第二瓣170L及170R相對於中心平面CP具有一第二高度H2。第二高度H2大於第一高度H1。雖然第一瓣160L及160R以及第二瓣170L及170R全部展示並描述為具有第二高度H2,但本發明並不限於此,此乃因第一瓣160L及160R以及第二瓣170L及170R較之彼此可具有不同高度(例如,如圖2F中所展示之H2及/或H3)(例如,第一瓣160L及160R以及第二瓣170L及170R中之任一者或兩者相對於中心平面具有第二高度H2或一第三高度H3,如圖2F中所展示,其中H3小於H2)。 如圖2C中所圖解說明,凹槽組態110中之每一者包含由縱向連接第一瓣160L與第二瓣170L之一過渡區140L以及縱向連接第一瓣160R與第二瓣170R之一過渡區140R所界定之一流動轉向組態(例如,一流動停滯減緩路徑)。過渡區140L在第一瓣160L與第二瓣170L之間沿著軸L1延伸一預定長度L5;且過渡區140R在第一瓣160R與第二瓣170R之間沿著軸L2延伸預定長度L5。在一項實施例中,過渡區140L及140R藉由使熱傳片塑性變形而形成。流動轉向組態(例如,一流動停滯減緩路徑)進一步由流動路徑之方向之平滑徹底改變界定以減小或消除局域化低速流動區域(例如,漩渦)以防止顆粒(例如,灰分)之累積。流動轉向組態(例如,一流動停滯減緩路徑)使得其中能夠出現一紊流型態。共同流動通道之寬度D100經組態以允許紊流型態在過渡區140L及/或140R中或者以其他方式在第一瓣160L、160R與第二瓣170L、170R中之任意者之間不形成任何流動停滯區域之情況下出現。因此,過渡區140L及140R與第一瓣160L、160R及第二瓣170L、170R中之各別者彼此緊密接近。因此,共同流動通道之寬度D100具有足以消除(亦即,足夠窄)進入至熱傳表面310之區域中之旁路流量之一預定量值。另外,凹槽組態110及共同流動通道經組態以消除穿過流動通路P之局域化管道或隧道中之煙道氣體36及燃燒空氣38之直通高速旁路。穿過流動通路P之局域化管道或隧道中之煙道氣體36及燃燒空氣38之此直通高速旁路降低熱傳片100之熱傳效能。 如圖5A中所展示,過渡區140L及140R處於共同流動通道中。在圖5A中所展示之實施例中,過渡區140L與第一瓣160L及第二瓣170L同軸;且過渡區140R與第一瓣160R及第二瓣170R同軸。 雖然在圖2A及圖5A中,第一瓣160L、第一過渡區140L及第二瓣170L展示並描述為同軸的,但本發明並不限於此,此乃因第一瓣160L、第一過渡區140L及/或第二瓣170L可偏離彼此及縱軸L1;及/或第一瓣160R、第二過渡區140R及/或第二瓣170R可偏離彼此及縱軸L2。舉例而言,圖5B之熱傳片100’圖解說明:第一瓣160L’、第一過渡區140L’及/或第二瓣170L’處於共同流動通道中,且第一瓣160L’及第二瓣170L’垂直於縱軸L1而偏離,且過渡區140L’連接第一瓣160L’與第二瓣170L’並成角度地偏離縱軸L1,且過渡區140L’之一部分交叉縱軸L1。圖5B亦圖解說明:第一瓣160R’、第二過渡區140R’及/或第二瓣170R’處於共同流動通道中,且第一瓣160R’及第二瓣170R’垂直於縱軸L2而偏離,且過渡區140R’連接第一瓣160R’與第二瓣170R’並成角度地偏離縱軸L2,且過渡區140R’之一部分交叉縱軸L2。如圖5B中所展示,共同流動通道具有寬度D100,且1)第一瓣160L、第一過渡區140L及/或第二瓣170L及2)第一瓣160R、第二過渡區140R及/或第二瓣170R在小於或等於寬度D100之一寬度D101’內。圖5C之熱傳片100’’圖解說明:第一瓣160L’’、第一過渡區140L’’及/或第二瓣170L’’處於共同流動通道中,且第一瓣160L’’及第二瓣170L’’成角度地偏離縱軸L1,且第一瓣160L’’及第二瓣170L’’之一部分交叉縱軸L1,且過渡區140L’’連接第一瓣160L’’與第二瓣170L’’。圖5C亦圖解說明:第一瓣160R’’、第二過渡區140R’’及/或第二瓣170R’’處於共同流動通道中,且第一瓣160R’’及第二瓣170R’’成角度地偏離縱軸L2,且第一瓣160R’’及第二瓣170R’’之一部分交叉縱軸L2,且過渡區140R’’連接第一瓣160R’’與第二瓣170R’’。如圖5C中所展示,共同流動通道具有寬度D100,且1)第一瓣160L、第一過渡區140L及/或第二瓣170L及2)第一瓣160R、第二過渡區140R及/或第二瓣170R在小於或等於寬度D100之一寬度D101’’內。 凹槽組態110中之每一者跨越整個熱傳片100延伸一總累積縱向長度。凹槽組態110中之每一者之總累積長度為第一瓣160L及第二瓣170L之長度L6之總和加上過渡區140L之長度L5之總和。凹槽組態110中之每一者之總累積長度亦為第一瓣160R及第二瓣170R之長度L6之總和加上過渡區140R之長度L5之總和。雖然凹槽組態展示並描述為跨越整個熱傳片100延伸一總累積長度,但本發明並不限於此,此乃因任何凹槽組態110可延伸跨越小於整個熱傳片,舉例而言,介於熱傳片100之總長度之90%與100%之間、介於熱傳片100之總長度之80%與91%之間、介於熱傳片100之總長度之70%與81%之間、介於熱傳片100之總長度之60%與71%之間或介於熱傳片100之總長度之50%與61%之間。如圖2C中所展示,過渡區140L包含:1)一弓形部分145L,其自第一瓣160L之一峰160LP延伸;2)一過渡表面141L (例如,扁平或弓形表面),其自弓形部分145L過渡;及3)一弓形部分143R,其自過渡表面141L過渡至第二瓣170L之一谷170LV。同樣地,過渡區140R包含:1)一弓形部分143R,其自第一瓣160R之一峰160RP延伸;2)一過渡表面141R (例如,扁平或弓形表面),其自弓形部分143R過渡;及3)一弓形部分145R,其自過渡表面141R過渡至第二瓣170R之一谷170RV。在一項實施例中,過渡區140L與140R彼此縱向對準(即,呈一並排組態)。在一項實施例中,過渡區140L與140R彼此縱向偏離(例如,分別沿著縱軸L1及L2錯列)。在一項實施例中,過渡區140L及140R中之一者或兩者具有與中心平面CP同軸且定位於各別弓形部分143R與145R或143L與145L之間的筆直部分,如本文中關於針對交錯半凹槽組態之圖3E、圖3F及圖3G所展示及描述。 發明者已驚訝地發現,與僅自熱傳片之一側延伸之先前技術片隔開構件相比,過渡區140L及140R提供煙道氣體36及燃燒空氣38在流動通路P中之流動方向之平滑轉向,該等平滑轉向產生紊流及本文中所描述之熱傳片100之增大之熱傳效率。熱傳片100亦在不明顯增大跨越熱傳片100之壓力損失之情況下提供足夠結構支撐並維持毗鄰熱傳片100之間的間距。 如圖3A、圖3B及圖6A中所圖解說明,用編號200指定一熱傳片之另一實施例。熱傳片200包含複數列(例如,圖3A中圖解說明兩列F及G)熱傳表面310。熱傳表面310之列F及G與沿平行於煙道氣體及燃燒空氣之流動(如分別由箭頭A及B指示)之一方向在熱傳片200之一第一端200X與第二端200Y之間延伸之一縱軸L對準。當熱傳片200在空氣扇區32中時,第一端200X係用於燃燒空氣串流38之一進口且第二端200Y係用於燃燒空氣串流38之一出口。當熱傳片200在氣體扇區34中時,第一端200X係用於煙道氣體串流36之一出口且第二端200Y係用於煙道氣體串流36之一進口。熱傳表面310相對於熱傳片200之一中心平面CP具有一第一高度H1,如圖3C中所展示。在一項實施例中,熱傳表面310由成角度地偏離縱軸L之起伏表面界定,如本文中進一步所描述。 如圖3A、圖3B及圖6A中所圖解說明,類似於圖4B中針對凹槽組態110所展示,熱傳片200包含用於使熱傳片200彼此隔開之複數個凹槽組態210。凹槽組態210中之一者定位於熱傳表面310之列F與列G之間。凹槽組態210中之另一者定位於熱傳表面310之列F與另一毗鄰列(未展示)之間;且凹槽組態210中之又一者定位於熱傳表面310之列G與又一毗鄰列(未展示)之間。凹槽組態210中之每一者平行於縱軸L且在熱傳片200之第一端200X與第二端200Y之間沿著熱傳片200縱向延伸。類似於圖4B中針對凹槽組態110所展示,凹槽組態210嚙合毗鄰熱傳片200之熱傳表面310以使熱傳片200彼此隔開且在熱傳片200之間界定一流動通路P。 如圖3A中所展示,凹槽組態210包含稱為一交錯半凹槽組態之一瓣組態,該瓣組態包含複數個第一瓣260及複數個第二瓣270。第一瓣260及第二瓣270中之毗鄰瓣沿著縱軸L3彼此連接。第一瓣260及第二瓣270中之另一組毗鄰瓣沿著與縱軸L3橫向隔開之縱軸L4彼此連接。凹槽組態210之第一瓣260及第二瓣270係具有一C形剖面之單瓣。 如圖3A中所展示,一組第一瓣260沿一第一方向(在圖6A中,第一方向為離開頁面)延伸遠離中心平面CP。如圖6A中所展示,第一瓣260處於邊界線(在圖6A中展示為虛線) L100與L200之間所界定之一第一共同流動通道中。共同流動通道具有一寬度D100。在圖6A中所展示之實施例中,第一瓣260沿著縱軸L3彼此同軸地對準。另一組第一瓣260沿第一方向延伸遠離中心平面CP。如圖6A中所展示,另一組瓣260處於邊界線L100與L200之間所界定之一第二共同流動通道中。另一共同流動通道具有一寬度D100。在圖6A中所展示之實施例中,另一組瓣260沿著縱軸L4彼此同軸地對準。 在一項實施例中,寬度D100約等於凹槽組態210之寬度D101。在一項實施例中,寬度D100介於凹槽組態210之寬度D101之1.0倍與1.1倍之間。在一項實施例中,寬度D100介於凹槽組態210之寬度之1.0倍與1.2倍之間。 如圖3A中所展示,一組第二瓣270沿一第二方向(在圖6A中,第二方向為進入頁面)延伸遠離中心平面CP。如圖6A中所展示,第二瓣270處於由邊界線L100與L200界定之一第一共同流動通道中。在圖6A中所展示之實施例中,第二瓣270沿著縱軸L3彼此同軸地對準。另一組第二瓣270沿第二方向延伸遠離中心平面CP。如圖6A中所展示,另一組瓣270處於第二共同流動通道中。在圖6A中所展示之實施例中,另一組第二瓣270沿著縱軸L4彼此同軸地對準。第二方向與第一方向相反。因此,第一瓣260沿第一方向延伸遠離熱傳片200之一第一面212;且第二瓣270沿第二方向延伸遠離熱傳片200之一第二面214。 如圖3A及圖6A中所展示,凹槽組態210及因此第一瓣260及第二瓣270處於第一共同流動通道中。第一共同流動通道中之第一瓣260及第二瓣270彼此連接、彼此同軸且經組態呈一交錯縱向圖案,在該交錯縱向圖案中,第一瓣260沿第一方向背離中心平面CP且第二瓣270沿第二方向背離中心平面且沿著縱軸L3同軸地對準。另外,另一組第一瓣260及第二瓣270 (即,另一凹槽組態210)處於第二共同流動通道中。第二共同流動通道中之另一組第一瓣260及第二瓣270彼此同軸且經組態呈一交錯縱向圖案,在該交錯縱向圖案中,第一瓣260沿第一方向背離中心平面CP且第二瓣270沿第二方向背離中心平面且沿著縱軸L4同軸地對準。 與縱軸L3對準之第一瓣260縱向偏離與縱軸L4對準之第一瓣260。與縱軸L4對準之第一瓣260縱向偏離與縱軸L3對準之第一瓣260。同樣地,與縱軸L3對準之第二瓣270縱向偏離與縱軸L4對準之第二瓣270;且與縱軸L4對準之第二瓣270縱向偏離與縱軸L3對準之第二瓣270。因此,在橫向於縱軸L3及L4之一方向上,第一瓣260與第二瓣270中之一者對準。在橫向於縱軸L3及L4之一方向上,第一瓣260與第二瓣270藉由熱傳表面310而彼此隔開。 類似於圖2B中針對凹槽組態110所展示,第一瓣260及第二瓣270相對於中心平面CP具有一第二高度H2。第二高度H2大於熱傳表面310之第一高度H1。雖然第一瓣260及第二瓣270全部展示並描述為具有第二高度H2,但本發明並不限於此,此乃因第一瓣260、第二瓣270較之彼此可具有不同高度。 如圖3B中所圖解說明,凹槽組態210中之每一者包含由縱向連接與縱軸L3對準之第一瓣260與第二瓣270之一過渡區240所界定之一流動轉向組態。同樣地,凹槽組態210包含由縱向連接與縱軸L4對準之第一瓣260與第二瓣270之一過渡區240所界定之一流動轉向組態。過渡區240在第一瓣260與第二瓣270之間沿著軸L3延伸一預定長度L5。沿著縱軸L4對準之第一瓣260與第二瓣270具有類似於沿著縱軸L3對準之過渡區240之一過渡區240。在一項實施例中,凹槽組態210之沿著縱軸L3及縱軸L4之過渡區240彼此縱向偏離。在一項實施例中,凹槽組態210之沿著縱軸L3及縱軸L4之過渡區240彼此縱向對準(即,呈一並排組態)。在一項實施例中,過渡區240藉由使熱傳片200塑性變形而形成。 流動轉向組態(即,過渡區240)係(舉例而言)一流動停滯減緩路徑且進一步由流動路徑之方向之平滑徹底改變界定以減小或消除局域化低速流動區域(例如,漩渦)以防止顆粒(例如,灰分)之累積。流動轉向組態(例如,一流動停滯減緩路徑)使得其中能夠出現一紊流型態。流動通道之寬度D100經組態以允許紊流型態在過渡區240中或者以其他方式在第一瓣260與第二瓣270中之任意者之間不形成任何流動停滯區域之情況下出現。因此,過渡區240與第一瓣260及第二瓣270中之各別者彼此緊密接近。因此,共同流動通道之寬度D100具有足以消除(亦即,足夠窄)進入至熱傳表面310之區域中之旁路流量之一預定量值。另外,凹槽組態210及共同流動通道經組態以消除穿過流動通路P之局域化管道或隧道中之煙道氣體36及燃燒空氣38之直通高速旁路。穿過流動通路P之局域化管道或隧道中之煙道氣體36及燃燒空氣38之此直通高速旁路降低熱傳片200之熱傳效能。 如圖3B中所展示,過渡區240包含:1)一弓形部分245,其自第一瓣260之一峰260P延伸;2)一過渡表面241 (例如,圖3G中所展示之扁平表面或圖3C中所展示之弓形表面),其自弓形部分245過渡;及3)一弓形部分243,其自過渡表面241過渡至第二瓣270之一谷270V。在圖3D中所展示之一項實施例中,用扁平或筆直部分243’及245’替換弓形部分243及245,且用一過渡點241’替換過渡表面241。 在圖3E、圖3F及圖3G中所展示之一項實施例中,過渡區240包含與中心平面CP同軸之一經延伸筆直區段241T。如圖3E及圖3F中所展示,筆直區段241T在毗鄰弓形部分243與245之間延伸。如圖3G中所展示,筆直區段241T在筆直區段243’與245’之間延伸。在一項實施例中,筆直區段241T為縱向距離L7之約5%。在一項實施例中,筆直區段241T大於縱向距離L7之0%。在一項實施例中,筆直區段241T為縱向距離L7之約5%至25%。在一項實施例中,筆直區段241T為縱向距離L7之約5%至100%。在一項實施例中,筆直區段241T大於縱向距離L7之100%。 發明者已驚訝地發現,與僅自熱傳片之一側延伸之先前技術片隔開構件相比,過渡區240提供煙道氣體36及燃燒空氣38在流動通路P中之流動方向之平滑流動轉向,該等平滑流動轉向產生紊流及本文中所描述之熱傳片200之增大之熱傳效率。熱傳片200亦在不明顯增大跨越熱傳片200之壓力損失之情況下提供足夠結構支撐並維持毗鄰熱傳片200之間的間距。 如圖6A中所展示,一第一組過渡區240處於第一共同流動通道中;且另一組過渡區240處於第二共同流動通道中。在圖6A中所展示之實施例中,對於第一共同流動通道,第一組過渡區240與第一瓣260及第二瓣270同軸。第二組過渡區240與第一瓣260及第二瓣270同軸。 雖然在圖3A及圖6A中,第一流動通道中之第一瓣260、第一組過渡區240及第二瓣270展示並描述為同軸的,但本發明並不限於此,此乃因第一共同流動通道中之第一瓣260、第一組過渡區240及/或第二瓣270可偏離彼此及縱軸L3。雖然在圖3A及圖6A中,第二流動通道中之第一瓣260、第二組過渡區240及第二瓣270展示並描述為同軸的,但本發明並不限於此,此乃因第二共同流動通道中之第一瓣260、第二組過渡區240及/或第二瓣270可偏離彼此及縱軸L4。舉例而言,圖6B之熱傳片200’圖解說明:第一共同流動通道中之第一瓣260’及第二瓣270’垂直於縱軸L3而偏離,且過渡區240’連接第一瓣260’與第二瓣270’並成角度地偏離縱軸L3,且過渡區240’之一部分交叉縱軸L3。圖6B亦圖解說明:第二共同流動通道中之第一瓣260及第二瓣270’垂直於縱軸L4而偏離,且過渡區240’連接第一瓣260’與第二瓣270’並成角度地偏離縱軸L4,且過渡區240’之一部分交叉縱軸L4。如圖6B中所展示,第一共同流動通道具有寬度D100,且第一瓣260’、第一組過渡區240’及第二瓣270’在小於或等於寬度D100之一寬度D101’內。如圖6B中所展示,第二共同流動通道具有寬度D100,且第一瓣260’、第二組過渡區240’及第二瓣270’在小於或等於寬度D100之一寬度D101’內。 圖6C之熱傳片200’’圖解說明:第一共同流動通道中之第一瓣260’’、第一組過渡區240’’及第二瓣270’’成角度地偏離縱軸L3,且其等之一部分交叉縱軸L3;且第二共同流動通道中之第一瓣260’’、第二組過渡區240’’及第二瓣270’’成角度地偏離縱軸L4,且其等之一部分交叉縱軸L4。圖6C亦圖解說明:第一組過渡區240’’中之各別者使毗鄰第一瓣260’’與第二瓣270’’在第一流動通道中彼此連接;且第二組過渡區240’’中之各別者使第一瓣260’’與第二瓣270’’在第二流動通道中彼此連接。如圖6C中所展示,第一共同流動通道具有寬度D100,且該第一共同流動通道中之第一瓣260’’、第一組過渡區240’’及第二瓣270’’在小於或等於寬度D100之一寬度D101’’內。如圖6C中所展示,第二共同流動通道具有寬度D100,且該第二共同流動通道中之第一瓣260’’、第二組過渡區240’’及第二瓣270’’在小於或等於寬度D100之一寬度D101’’內。 熱傳片100及200可由預定尺寸之金屬片或板製造,該預定尺寸諸如用於且適於製作符合其將安裝在其中之工廠之所需要求之預熱器10之長度、寬度及厚度。在一項實施例中,利用具有提供本文中所揭示之組態所必需之輪廓之一單組捲邊輥而在一單輥製造製程中製造熱傳片。在一項實施例中,熱傳片100及200塗覆有一適合塗層(諸如搪瓷),該塗層使熱傳片100及200變得稍微較厚且亦防止金屬片基板與煙道氣體直接接觸。此等塗層防止或減輕由於熱傳片100及200在預熱器10中操作時曝露於之煙灰、灰分或可凝蒸氣所致之侵蝕。 參考圖2A及圖3A,熱傳表面310由成角度地偏離縱軸L之起伏表面界定。舉例而言,列F之起伏表面按一角度θ偏離縱軸;且列G之起伏表面按一角度δ偏離縱軸。在一項實施例中,角度θ與角度δ相等且自縱軸L反向延伸。在一項實施例中,角度θ及角度δ介於相對於縱軸及/或凹槽組態110或210所量測之45度與負45度之間。在一項實施例中,熱傳表面310包含扁平部分。在一項實施例中,起伏表面具有彼此隔開達介於0.35至0.85英寸之範圍內之一距離310D之起伏峰310P。在一項實施例中,高度H1為0.050至0.40英寸,其中高度H1不包含熱傳片100或200之厚度。在一項實施例中,起伏表面310具有3.0:1至15.0:1的起伏峰310P之間的間距距離310D與高度H1 (不包含熱傳片之厚度)之一比率。在一項實施例中,熱傳片100及200具有1.0:1.0至4.0:1.0的凹槽之高度H2 (不包含熱傳片之厚度)與起伏之高度H1 (不包含熱傳片之厚度)之一比率。在一項實施例中,高度H2為0.15至0.50英寸,此不包含熱傳片之厚度。 如圖4A及圖4B中所展示,兩個熱傳片100彼此上下堆疊以形成熱傳總成1000之一部分。熱傳片100’之第一瓣160L中之一者之峰160LP嚙合熱傳片100之熱傳表面310之一部分;且熱傳片100之第二瓣170R中之一者之一谷170RV嚙合熱傳片100’之熱傳表面310。雖然展示並描述兩個熱傳片100,但任何數目個熱傳片100及/或200可彼此上下堆疊以形成熱傳總成1000。 熱傳片100及200以及其總成1000在本文中大體描述為一平分型空氣預熱器。然而,本發明包含用於其他空氣預熱器組態(諸如但不限於一三分或四分型空氣預熱器)之各種熱傳片100及200之組態及堆疊。 如圖2D中所展示,大體用編號400指定熱傳片之另一實施例。熱傳片400類似於圖2A之熱傳片100。因此,用類似元件符號指定類似元件,但其中第一位數字「1」被數字「4」替換。熱傳片400與熱傳片100不同之處在於熱傳片400不具有凹槽組態110。因此,熱傳片400包含複數列(例如,圖2D中圖解說明兩列F及G)熱傳表面410。熱傳表面410之列F及G與沿平行於煙道氣體及燃燒空氣之流動(如分別由箭頭A及B指示)之一方向在熱傳片400之一第一端400X與一第二端400Y之間延伸之一縱軸L對準。熱傳表面410相對於熱傳片100之一中心平面CP具有一第一高度H1,如圖2D中所展示。在一項實施例中,熱傳表面410由成角度地偏離縱軸L之起伏表面界定。 類似於本文中針對起伏表面310描述般組態起伏表面410。舉例而言,列F 之起伏表面410按一角度θ偏離縱軸;且列G之起伏表面410按一角度δ偏離縱軸。在一項實施例中,角度θ及角度δ相等且自縱軸L反向延伸。在一項實施例中,角度θ及角度δ介於相對於縱軸所量測之45度與負45度之間。如圖2D中所展示,列F之起伏表面410及列G之起伏表面410沿著一縱軸M彼此合併。 如圖2E及圖7A中所展示,大體用編號500指定熱傳片之另一實施例。熱傳片500類似於圖2A之熱傳片100。因此,用類似元件符號指定類似元件,但其中第一位數字「1」被數字「5」替換。熱傳片500與熱傳片100不同之處在於熱傳片400不具有類似於圖2A中所圖解說明之起伏表面310之斜角起伏表面且為一隔開熱傳片。因此,熱傳片500包含類似於上文參考圖2A所描述之凹槽組態110 (交錯全凹槽組態)及/或本文中參考圖3A所描述之凹槽組態210 (例如,交錯半凹槽組態)的彼此以一並排組態定位之複數個凹槽組態510。因此,凹槽組態510沿橫向於(例如,垂直於)縱軸L之一方向彼此合併。過渡區540L及540R展示為彼此縱向對準(即,呈一並排組態),然而在另一實施例中,過渡區540L及540R彼此縱向偏離(例如,分別沿著縱軸L1及L2錯列)。在一項實施例中,類似於圖5B之熱傳片100’而組態圖7B之熱傳片500’。在一項實施例中,類似於圖5C之熱傳片100’’而組態圖7C之熱傳片500’’。 如圖4C及圖4D中所展示,展示一熱傳總成1000’,其中熱傳片400中之一者定位於熱傳片500及500’中之兩者之間且嚙合熱傳片500及500’中之兩者。凹槽組態510之一或多個部分嚙合列F (圖2D)中之起伏表面410及/或列G (圖2D)中之起伏表面410之一部分以使熱傳片400彼此隔開且界定流動路徑P’。舉例而言,如圖4D中所展示:1)瓣570R之谷570RV嚙合起伏表面410之部分(例如,起伏峰410P);2)瓣570L之谷570LV嚙合起伏表面410之部分(例如,起伏峰410P);3)瓣560L之峰560LP嚙合起伏表面410之部分(例如,起伏峰410P);且4)瓣560R之起伏峰560RP嚙合起伏表面410之部分(例如,起伏峰410P)。 下列實例量化發明者已驚訝地發現的與先前技術熱傳片相比提供所要且經改良熱傳效率之熱傳片100及200之例示性實施例之特性。實例 1 如圖2A中所展示,沿著縱軸L1對準之連續過渡區140L彼此隔開達2至8英寸之一縱向距離L6;及/或沿著縱軸L2對準之連續過渡區140R彼此隔開達2至8英寸之縱向距離L6。同樣地,如圖3A中所展示,沿著縱軸L3對準之連續過渡區240彼此隔開達2至8英寸之一縱向距離L7;及/或沿著縱軸L4對準之連續過渡區240彼此隔開達2至8英寸之一縱向距離L7。實例 2 如圖2C中所展示,熱傳片100之過渡區140L及/或140R具有0.25至2.5英寸之一縱向距離L5。如圖3B中所展示,熱傳片200之過渡區240具有0.25至2.5英寸之一縱向距離L5。實例 3 如圖2A中所展示,毗鄰凹槽組態110彼此隔開達在垂直於熱傳片100之縱軸L之一方向上所量測的1.25至6英寸之一距離L8。如圖3A中所展示,毗鄰凹槽組態210彼此隔開達在垂直於熱傳片200之縱軸L之一方向上所量測的1.25至6英寸之一距離L8。實例 4 如圖2A中所展示,凹槽組態110界定5:1至20:1的連續過渡區140L或140R之間的縱向距離L6與凹槽組態110之高度H2 (不包含熱傳片之厚度)之一比率。凹槽組態210界定5:1至20:1的連續過渡區240之間的縱向距離L7與凹槽組態210之高度H2 (不包含熱傳片之厚度)之一比率。 雖然已參考本發明之特定實施例揭示並描述本發明,但應注意,可做出其他變動及修改,且預期以下申請專利範圍將該等變動及修改涵蓋於本發明之真實範疇內。As shown in FIG. 1, a rotary regeneration air preheater (hereinafter referred to as a "preheater") is generally designated by the number 10. The preheater 10 includes a rotor assembly 12 rotatably mounted on a rotor column 16. The rotor assembly 12 is positioned in a housing 14 and rotates relative to the housing 14. For example, the rotor assembly 12 can rotate around an axis A of the rotor column 16 in the direction indicated by the arrow R. The rotor assembly 12 includes a diaphragm 18 (for example, a diaphragm) extending radially from the rotor column 16 to an outer periphery of the rotor assembly 12. The adjacent pair of partitions 18 define respective compartments 20 for receiving a heat transfer assembly 1000. Each of the heat transfer assembly 1000 includes a plurality of heat transfer sheets 100 and/or 200 (for example, see FIGS. 4A and 4B showing one of two heat transfer sheets stacked) stacked on top of each other In other words, see Figure 2A and Figure 3A respectively). As shown in FIG. 1, the housing 14 includes a flue gas inlet tube 22 and a flue gas outlet tube 24 for flowing the heated flue gas through the preheater 10. The housing 14 further includes an air inlet pipe 26 and an air outlet pipe 28 for flowing combustion air through the preheater 10. The preheater 10 includes an upper sector plate 30A adjacent to an upper surface of the rotor assembly 12 and extending across the housing 14. The preheater 10 includes a lower sector plate 30B adjacent to the lower surface of the rotor assembly 12 and extending across the housing 14. The upper sector plate 30A extends between the flue gas inlet pipe 22 and the air outlet pipe 28 and is connected to the flue gas inlet pipe 22 and the air outlet pipe 28. The lower fan-shaped plate 30B extends between the flue gas outlet pipe 24 and the air inlet pipe 26 and is connected to the flue gas outlet pipe 24 and the air inlet pipe 26. The upper sector plate 30A and the lower sector plate 30B are connected to each other by a circumferential plate 30C, respectively. The upper sector plate 30A and the lower sector plate 30B divide the preheater 10 into an air sector 32 and a gas sector 34. As illustrated in FIG. 1, the arrow labeled "A" indicates the direction of a flue gas stream 36 passing through the gas sector 34 of the rotor assembly 12. The arrow labeled "B" indicates the direction of a combustion air stream 38 passing through the air sector 32 of the rotor assembly 12. The flue gas stream 36 enters through the flue gas inlet pipe 22 and transfers heat to the heat transfer assembly 1000 installed in the compartment 20. The heated heat transfer assembly 1000 rotates into the air sector 32 of the preheater 10. Then, the heat stored in the heat transfer assembly 1000 is transferred to the combustion air stream 38 entering through the air inlet pipe 26. Therefore, the heat absorbed from the hot flue gas stream 36 entering the preheater 10 is used to heat the heat transfer assembly 1000, which in turn heats the combustion air stream 38 entering the preheater 10 . As illustrated in FIGS. 2A, 2B, 2C, and 5A, the heat transfer sheet 100 includes a plurality of rows (for example, two rows F and G are illustrated in FIG. 2A) of heat transfer surfaces 310. The rows F and G of the heat transfer surface 310 are parallel to the flow of flue gas and combustion air (as indicated by arrows A and B, respectively) at a first end 100X and a second end of the heat transfer sheet 100 A longitudinal axis L extending between 100Y is aligned. When the heat transfer sheet 100 is in the air sector 32, the first end 100X is used for an inlet of the combustion air stream 38 and the second end 100Y is used for an outlet of the combustion air stream 38. When the heat transfer sheet 100 is in the gas sector 34, the first end 100X is used for an outlet of the flue gas stream 36 and the second end 100Y is used for an inlet of the flue gas stream 36. The heat transfer surface 310 has a first height H1 relative to a center plane CP of the heat transfer sheet 100, as shown in FIG. 2B. In one embodiment, the heat transfer surface 310 is defined by an undulating surface that is angularly offset from the longitudinal axis L, as described further herein. As illustrated in FIGS. 2A, 2B, 2C, and 5A, the heat transfer sheet 100 includes a plurality of groove configurations 110 for separating the heat transfer sheets 100 from each other, as further described herein with reference to FIG. 4B. One of the groove configurations 110 is positioned between row F and row G of the heat transfer surface. The other of the groove configurations 110 is positioned between the row F of the heat transfer surface 310 and another adjacent row (not shown); and the other of the groove configurations 110 is positioned between the row G of the heat transfer surface 310 and Between another adjacent column (not shown). Each of the groove configurations 110 is parallel to the longitudinal axis L and extends longitudinally along the heat transfer sheet 100 between the first end 100X and the second end 100Y of the heat transfer sheet 100. As further described herein with reference to FIG. 4B, the groove configuration engages the heat transfer surface 310 adjacent to the heat transfer fins 100 to separate the heat transfer fins 100 from each other and define a flow path P between the heat transfer fins 100. As shown in FIGS. 2A and 5A, the groove configuration 110 includes four lobes that are collectively referred to as a staggered full groove design. The lobes include adjacent double lobes connected to each other along the longitudinal axes L1 and L2. , As further described herein with reference to FIGS. 2A and 2C. For example, one double lobe is defined by a first lobe 160L and a second lobe 170R; and another longitudinally aligned and inverted double lobe is defined by a second lobe 170L and a first lobe 160R. Therefore, the groove configuration 110 has an S-shaped cross-section. As shown in FIG. 5A, each of the groove configurations 110 is in a common flow channel defined by longitudinal boundary lines L100 and L200 (shown as dashed lines) parallel to the longitudinal axes L1 and L2. The common flow path defines a localized longitudinal flow of the flue gas 36 and the combustion air 38 in the flow path P (for an example of the flow path P, see FIG. 4B). As shown in FIG. 5A, the common flow channel has a width D100 measured between the longitudinal boundary lines L100 and L200. In one embodiment, the width D100 is approximately equal to the width D101 of the groove configuration 110. In one embodiment, the width D100 is between 1.0 and 1.1 times the width D101 of the groove configuration. In one embodiment, the width D100 is between 1.0 and 1.2 times the width of the groove configuration. One of the four lobe configurations is a first lobe configuration. The first lobe configuration is defined by a plurality of first lobes 160L extending away from the central plane CP in a first direction. The first flap 160L is in the common flow channel. In the embodiment illustrated in FIG. 5A, the first lobes 160L are spaced apart from each other along a first longitudinal axis L1 and are coaxially aligned with each other (e.g., one of the first lobes 160L is positioned close to the first end 100X (see FIG. 2A), and the second one of the first petals 160L is positioned close to the second end 100Y (see FIG. 2A)). The first petal 160L and the second petal 170L are longitudinally spaced apart and coaxially aligned, and laterally abut one of the second petals 170R. The other of the four lobe configurations is a second lobe configuration. The second lobe configuration is defined by a plurality of first lobes 160R extending away from the center plane CP in the first direction. The first valve 160R is in the common flow channel. In the embodiment illustrated in FIG. 5A, the first lobes 160R are longitudinally spaced from each other along a second longitudinal axis L2 and are coaxially aligned with each other. The first petal 160R and the second petal 170R are longitudinally spaced apart and coaxially aligned, and laterally abut one of the second petals 170L. The other of the four lobe configurations is a third lobe configuration. The third lobe configuration is defined by a plurality of second lobes 170L extending away from the central plane CP in a second direction. The second lobe 170L is in the common flow channel. In the embodiment illustrated in FIG. 5A, the second lobes 170L are longitudinally spaced apart from each other along the first longitudinal axis L1 and are coaxially aligned with each other (e.g., one of the second lobes 170L is positioned close to the first Between the first petal 160L at one end 100X and the first petal 160L positioned close to the second end 100Y). The second direction is opposite to the first direction. The second petal 170L is longitudinally spaced apart from and coaxially aligned with the first petal 160L, and laterally abuts one of the first petals 160R. The other of the four lobe configurations is a fourth lobe configuration. The fourth lobe configuration is defined by a plurality of second lobes 170R extending away from the center plane CP in the second direction. The second petal 170R is in the common flow channel. In the embodiment illustrated in FIG. 5A, the second lobes 170R are longitudinally spaced apart from each other along the second longitudinal axis L2 and are coaxially aligned with each other (e.g., one of the second lobes 170R is positioned close to the first end 100X, and the other of the second lobes 170R is positioned close to the second end 100Y, where one of the first lobes 160R is positioned between the two). The second petal 170R is longitudinally spaced from the first petal 160R and aligned coaxially, and laterally abuts one of the first petals 160L. Therefore, the first petals 160L and 160R extend away from the first surface 112 of the heat transfer sheet 100 in the first direction; and the second petals 170L and 170R extend away from the second surface 114 of the heat transfer sheet 100 in the second direction. The adjacent groove configuration 110 is separated by one of the rows F or G of the heat transfer surface 310 and crosses the heat transfer sheet 100 transversely (for example, perpendicular to the axis L) between an S-shaped section and an inverted S-shaped section staggered. As shown in FIG. 5A, each of the first lobes 160L is longitudinally adjacent to one of the second lobes 170L aligned along an axis L1 parallel to the longitudinal axis L of the heat transfer sheet 100. Therefore, the first lobe 160L and the second lobe 170L are coaxial and configured in a staggered longitudinal pattern in which the first lobe 160L is away from the central plane CP in the first direction (away from the page in FIG. 5A) and The second petal 170L faces away from the center plane in the second direction (entering the page in FIG. 5A). Likewise, in the embodiment shown in FIG. 5A, the first lobe 160R and the second lobe 170R are coaxial and in a common flow channel. The first lobe 160R and the second lobe 170R are configured to form a staggered longitudinal pattern in which the first lobe 160R is away from the center plane CP in the first direction and the second lobe 170R is away from the center plane CP in the second direction . In addition, the first petal 160L and the second petal 170R are adjacent to each other in a direction transverse to the longitudinal axis; and the first petal 160R and the second petal 170L are adjacent to each other in a direction transverse to the longitudinal axis L. As shown in FIG. 2A, each of the first lobes 160L and 160R and each of the second lobes 170L and 170R extend a length L6 along the sheet in a longitudinal direction parallel to the longitudinal axis L. Although three lobes (ie, two first lobes 160L and one second lobe 170L) are shown along axis L1 and between the first end 100X and the second end 100Y; and three lobes (ie, two The second petal 170R and one first petal 160L) are shown along the axis L2 and between the first end 100X and the second end 100Y, but the present invention is not limited to this, because it depends on the preheater The design parameters can adopt any number of first lobes 160R, 160L and second lobes 170R and 170L between the first end 100X and the second end 100Y. As shown in FIG. 2B, the first lobes 160L and 160R and the second lobes 170L and 170R have a second height H2 relative to the center plane CP. The second height H2 is greater than the first height H1. Although the first lobes 160L and 160R and the second lobes 170L and 170R are all shown and described as having the second height H2, the present invention is not limited to this, because the first lobes 160L and 160R and the second lobes 170L and 170R are more May have different heights from each other (for example, H2 and/or H3 as shown in FIG. 2F) (for example, either or both of the first lobes 160L and 160R and the second lobes 170L and 170R are relative to the central plane It has a second height H2 or a third height H3, as shown in Figure 2F, where H3 is smaller than H2). As illustrated in FIG. 2C, each of the groove configurations 110 includes a transition region 140L that connects the first lobe 160L and the second lobe 170L longitudinally and one of the first lobe 160R and the second lobe 170R longitudinally. The transition zone 140R defines a flow turning configuration (for example, a flow stagnation mitigation path). The transition region 140L extends a predetermined length L5 along the axis L1 between the first lobe 160L and the second lobe 170L; and the transition region 140R extends a predetermined length L5 along the axis L2 between the first lobe 160R and the second lobe 170R. In one embodiment, the transition regions 140L and 140R are formed by plastically deforming heat transfer fins. The flow turning configuration (for example, a flow stagnation mitigation path) is further defined by a smooth and radical change in the direction of the flow path to reduce or eliminate the localized low-speed flow area (for example, vortex) to prevent accumulation of particles (for example, ash) . The flow turning configuration (for example, a flow stagnation mitigation path) enables a turbulent flow pattern to appear therein. The width D100 of the common flow channel is configured to allow turbulence patterns to not form in the transition zone 140L and/or 140R or otherwise between the first lobes 160L, 160R and the second lobes 170L, 170R Appears in any situation where the flow is stagnant. Therefore, the transition regions 140L and 140R and each of the first lobes 160L, 160R and the second lobes 170L, 170R are in close proximity to each other. Therefore, the width D100 of the common flow channel has a predetermined value that is sufficient to eliminate (ie, narrow enough) the bypass flow into the region of the heat transfer surface 310. In addition, the groove configuration 110 and the common flow channel are configured to eliminate the direct high-speed bypass of the flue gas 36 and the combustion air 38 in the localized pipe or tunnel passing through the flow path P. This direct high-speed bypass of the flue gas 36 and the combustion air 38 in the localized pipe passing through the flow path P or the tunnel reduces the heat transfer efficiency of the heat transfer fin 100. As shown in Figure 5A, the transition regions 140L and 140R are in a common flow channel. In the embodiment shown in FIG. 5A, the transition zone 140L is coaxial with the first and second lobes 160L and 170L; and the transition zone 140R is coaxial with the first and second lobes 160R and 170R. Although in FIGS. 2A and 5A, the first lobe 160L, the first transition region 140L, and the second lobe 170L are shown and described as coaxial, the present invention is not limited to this, because the first lobe 160L, the first transition The regions 140L and/or the second petal 170L may be offset from each other and the longitudinal axis L1; and/or the first petal 160R, the second transition region 140R, and/or the second petal 170R may be offset from each other and the longitudinal axis L2. For example, the heat transfer sheet 100' of FIG. 5B illustrates that the first lobe 160L', the first transition region 140L', and/or the second lobe 170L' are in a common flow channel, and the first lobe 160L' and the second lobe The petals 170L' deviate perpendicular to the longitudinal axis L1, and the transition region 140L' connects the first lobe 160L' and the second lobe 170L' and is angularly offset from the longitudinal axis L1, and a portion of the transition region 140L' crosses the longitudinal axis L1. FIG. 5B also illustrates that the first petal 160R', the second transition region 140R', and/or the second petal 170R' are in the common flow channel, and the first petal 160R' and the second petal 170R' are perpendicular to the longitudinal axis L2. The transition zone 140R' connects the first lobe 160R' and the second lobe 170R' and is angularly offset from the longitudinal axis L2, and a portion of the transition zone 140R' crosses the longitudinal axis L2. As shown in FIG. 5B, the common flow channel has a width D100, and 1) a first lobe 160L, a first transition zone 140L, and/or a second lobe 170L and 2) a first lobe 160R, a second transition zone 140R, and/or The second lobe 170R is within a width D101' which is less than or equal to the width D100. The heat transfer sheet 100" of FIG. 5C illustrates that the first petal 160L", the first transition region 140L" and/or the second petal 170L" are in the common flow channel, and the first petal 160L" and the second petal The two lobes 170L" are angularly offset from the longitudinal axis L1, and a part of the first lobe 160L" and the second lobe 170L" cross the longitudinal axis L1, and the transition zone 140L" connects the first lobe 160L" and the second lobe 160L"170L''. Figure 5C also illustrates that the first valve 160R", the second transition region 140R" and/or the second valve 170R" are in the common flow channel, and the first valve 160R" and the second valve 170R" form Angularly deviate from the longitudinal axis L2, and a portion of the first lobe 160R" and the second lobe 170R" cross the longitudinal axis L2, and the transition region 140R" connects the first lobe 160R" and the second lobe 170R". As shown in FIG. 5C, the common flow channel has a width D100, and 1) a first lobe 160L, a first transition zone 140L, and/or a second lobe 170L and 2) a first lobe 160R, a second transition zone 140R, and/or The second lobe 170R is within a width D101" that is less than or equal to the width D100. Each of the groove configurations 110 extends a total cumulative longitudinal length across the entire heat transfer sheet 100. The total cumulative length of each of the groove configurations 110 is the sum of the length L6 of the first lobe 160L and the second lobe 170L plus the sum of the length L5 of the transition zone 140L. The total cumulative length of each of the groove configurations 110 is also the sum of the length L6 of the first lobe 160R and the second lobe 170R plus the sum of the length L5 of the transition zone 140R. Although the groove configuration is shown and described as extending a total cumulative length across the entire heat transfer sheet 100, the present invention is not limited to this, because any groove configuration 110 can extend less than the entire heat transfer sheet, for example , Between 90% and 100% of the total length of the heat transfer sheet 100, between 80% and 91% of the total length of the heat transfer sheet 100, between 70% of the total length of the heat transfer sheet 100 and Between 81%, between 60% and 71% of the total length of the heat transfer sheet 100, or between 50% and 61% of the total length of the heat transfer sheet 100. As shown in FIG. 2C, the transition zone 140L includes: 1) an arcuate portion 145L extending from a peak 160LP of the first petal 160L; 2) a transition surface 141L (for example, a flat or arcuate surface), which extends from the arcuate portion 145L Transition; and 3) an arcuate portion 143R, which transitions from the transition surface 141L to a valley 170LV of the second petal 170L. Similarly, the transition zone 140R includes: 1) an arcuate portion 143R extending from a peak 160RP of the first petal 160R; 2) a transition surface 141R (for example, a flat or arcuate surface) that transitions from the arcuate portion 143R; and 3 ) An arcuate portion 145R that transitions from the transition surface 141R to a valley 170RV of the second petal 170R. In one embodiment, the transition regions 140L and 140R are longitudinally aligned with each other (ie, in a side-by-side configuration). In one embodiment, the transition regions 140L and 140R are longitudinally offset from each other (eg, staggered along the longitudinal axes L1 and L2, respectively). In one embodiment, one or both of the transition regions 140L and 140R has a straight portion coaxial with the central plane CP and positioned between the respective arcuate portions 143R and 145R or 143L and 145L, as described herein with respect to The staggered half-groove configuration is shown and described in Figure 3E, Figure 3F and Figure 3G. The inventors have surprisingly found that, compared with the prior art sheet partitioning member extending from only one side of the heat transfer sheet, the transition regions 140L and 140R provide the flow direction of the flue gas 36 and the combustion air 38 in the flow path P Smooth turns, which generate turbulence and the increased heat transfer efficiency of the heat transfer fins 100 described herein. The heat transfer fins 100 also provide sufficient structural support and maintain the spacing between adjacent heat transfer fins 100 without significantly increasing the pressure loss across the heat transfer fins 100. As illustrated in FIGS. 3A, 3B, and 6A, another embodiment of a heat transfer sheet is designated by the number 200. The heat transfer sheet 200 includes a plurality of rows (for example, two rows F and G are illustrated in FIG. 3A) of heat transfer surfaces 310. The rows F and G of the heat transfer surface 310 are parallel to the flow of flue gas and combustion air (as indicated by arrows A and B, respectively) at a first end 200X and a second end 200Y of a heat transfer sheet 200 A longitudinal axis L extending between is aligned. When the heat transfer fin 200 is in the air sector 32, the first end 200X is used for an inlet of the combustion air stream 38 and the second end 200Y is used for an outlet of the combustion air stream 38. When the heat transfer sheet 200 is in the gas sector 34, the first end 200X is used for an outlet of the flue gas stream 36 and the second end 200Y is used for an inlet of the flue gas stream 36. The heat transfer surface 310 has a first height H1 relative to a center plane CP of the heat transfer sheet 200, as shown in FIG. 3C. In one embodiment, the heat transfer surface 310 is defined by an undulating surface that is angularly offset from the longitudinal axis L, as described further herein. As illustrated in FIGS. 3A, 3B, and 6A, similar to the groove configuration 110 shown in FIG. 4B, the heat transfer sheet 200 includes a plurality of groove configurations for separating the heat transfer sheet 200 from each other 210. One of the groove configurations 210 is positioned between the row F and the row G of the heat transfer surface 310. The other of the groove configurations 210 is positioned between the row F of the heat transfer surface 310 and another adjacent row (not shown); and the other of the groove configurations 210 is positioned between the row G and the row G of the heat transfer surface 310 Between another adjacent column (not shown). Each of the groove configurations 210 is parallel to the longitudinal axis L and extends longitudinally along the heat transfer sheet 200 between the first end 200X and the second end 200Y of the heat transfer sheet 200. Similar to the groove configuration 110 shown in FIG. 4B, the groove configuration 210 engages the heat transfer surface 310 adjacent to the heat transfer fins 200 to separate the heat transfer fins 200 from each other and define a flow between the heat transfer fins 200 Access P. As shown in FIG. 3A, the groove configuration 210 includes a lobe configuration called a staggered half groove configuration, which includes a plurality of first lobes 260 and a plurality of second lobes 270. The adjacent ones of the first petal 260 and the second petal 270 are connected to each other along the longitudinal axis L3. Another set of adjacent lobes of the first petal 260 and the second petal 270 are connected to each other along a longitudinal axis L4 that is laterally spaced from the longitudinal axis L3. The first petal 260 and the second petal 270 of the groove configuration 210 are single petals with a C-shaped cross-section. As shown in FIG. 3A, a set of first lobes 260 extend away from the central plane CP along a first direction (in FIG. 6A, the first direction is away from the page). As shown in FIG. 6A, the first petal 260 is in a first common flow channel defined between the boundary line (shown as a dashed line in FIG. 6A) L100 and L200. The common flow channel has a width D100. In the embodiment shown in Figure 6A, the first lobes 260 are coaxially aligned with each other along the longitudinal axis L3. Another set of first lobes 260 extend away from the center plane CP in the first direction. As shown in FIG. 6A, another set of petals 260 is in a second common flow channel defined between boundary lines L100 and L200. The other common flow channel has a width D100. In the embodiment shown in Figure 6A, another set of petals 260 are coaxially aligned with each other along the longitudinal axis L4. In one embodiment, the width D100 is approximately equal to the width D101 of the groove configuration 210. In one embodiment, the width D100 is between 1.0 and 1.1 times the width D101 of the groove configuration 210. In one embodiment, the width D100 is between 1.0 and 1.2 times the width of the groove configuration 210. As shown in FIG. 3A, a set of second lobes 270 extend away from the center plane CP in a second direction (in FIG. 6A, the second direction is the entry page). As shown in FIG. 6A, the second petal 270 is in a first common flow channel defined by the boundary lines L100 and L200. In the embodiment shown in Figure 6A, the second lobes 270 are coaxially aligned with each other along the longitudinal axis L3. Another set of second lobes 270 extend away from the center plane CP in the second direction. As shown in Figure 6A, another set of petals 270 is in the second common flow channel. In the embodiment shown in FIG. 6A, another set of second lobes 270 are coaxially aligned with each other along the longitudinal axis L4. The second direction is opposite to the first direction. Therefore, the first petal 260 extends away from the first surface 212 of the heat transfer sheet 200 in the first direction; and the second petal 270 extends away from the second surface 214 of the heat transfer sheet 200 in the second direction. As shown in FIGS. 3A and 6A, the groove configuration 210 and therefore the first petal 260 and the second petal 270 are in the first common flow channel. The first petal 260 and the second petal 270 in the first common flow channel are connected to each other, are coaxial with each other, and are configured to form a staggered longitudinal pattern. In the staggered longitudinal pattern, the first petal 260 is away from the central plane CP in the first direction And the second petal 270 is away from the center plane in the second direction and aligned coaxially along the longitudinal axis L3. In addition, another set of the first petal 260 and the second petal 270 (ie, another groove configuration 210) is in the second common flow channel. The other set of first petals 260 and second petals 270 in the second common flow channel are coaxial with each other and are configured in a staggered longitudinal pattern. In the staggered longitudinal pattern, the first petal 260 is away from the central plane CP in the first direction And the second petal 270 is away from the center plane in the second direction and aligned coaxially along the longitudinal axis L4. The first petal 260 aligned with the longitudinal axis L3 is longitudinally offset from the first petal 260 aligned with the longitudinal axis L4. The first petal 260 aligned with the longitudinal axis L4 is longitudinally offset from the first petal 260 aligned with the longitudinal axis L3. Similarly, the second petal 270 aligned with the longitudinal axis L3 is longitudinally offset from the second petal 270 aligned with the longitudinal axis L4; and the second petal 270 aligned with the longitudinal axis L4 is longitudinally offset from the first petal aligned with the longitudinal axis L3 Two petals 270. Therefore, in a direction transverse to the longitudinal axis L3 and L4, one of the first petal 260 and the second petal 270 are aligned. In a direction transverse to the longitudinal axes L3 and L4, the first petal 260 and the second petal 270 are separated from each other by the heat transfer surface 310. Similar to the groove configuration 110 shown in FIG. 2B, the first lobe 260 and the second lobe 270 have a second height H2 relative to the center plane CP. The second height H2 is greater than the first height H1 of the heat transfer surface 310. Although the first petal 260 and the second petal 270 are all shown and described as having the second height H2, the present invention is not limited to this, because the first petal 260 and the second petal 270 may have different heights than each other. As illustrated in FIG. 3B, each of the groove configurations 210 includes a flow diversion group defined by a transition region 240 of the first petal 260 and the second petal 270 aligned longitudinally with the longitudinal axis L3 state. Similarly, the groove configuration 210 includes a flow diversion configuration defined by a transition region 240 of the first petal 260 and the second petal 270 that are longitudinally connected and aligned with the longitudinal axis L4. The transition area 240 extends a predetermined length L5 between the first petal 260 and the second petal 270 along the axis L3. The first petal 260 and the second petal 270 aligned along the longitudinal axis L4 have a transition region 240 similar to the transition region 240 aligned along the longitudinal axis L3. In one embodiment, the transition regions 240 of the groove configuration 210 along the longitudinal axis L3 and the longitudinal axis L4 are longitudinally offset from each other. In one embodiment, the transition regions 240 of the groove configuration 210 along the longitudinal axis L3 and the longitudinal axis L4 are longitudinally aligned with each other (ie, in a side-by-side configuration). In one embodiment, the transition zone 240 is formed by plastically deforming the heat transfer sheet 200. The flow turning configuration (ie, the transition zone 240) is, for example, a flow stagnation mitigation path and is further defined by a smooth and radical change in the direction of the flow path to reduce or eliminate localized low-velocity flow areas (e.g., vortices) To prevent the accumulation of particles (for example, ash). The flow turning configuration (for example, a flow stagnation mitigation path) enables a turbulent flow pattern to appear therein. The width D100 of the flow channel is configured to allow turbulent flow patterns to occur in the transition zone 240 or otherwise between any of the first petal 260 and the second petal 270 without any flow stagnation area. Therefore, the transition region 240 and each of the first petal 260 and the second petal 270 are close to each other. Therefore, the width D100 of the common flow channel has a predetermined value that is sufficient to eliminate (ie, narrow enough) the bypass flow into the region of the heat transfer surface 310. In addition, the groove configuration 210 and the common flow channel are configured to eliminate the direct high-speed bypass of the flue gas 36 and the combustion air 38 in the localized pipe or tunnel passing through the flow path P. The direct high-speed bypass of the flue gas 36 and the combustion air 38 in the localized pipe passing through the flow path P or the tunnel reduces the heat transfer efficiency of the heat transfer fin 200. As shown in FIG. 3B, the transition region 240 includes: 1) an arcuate portion 245 extending from a peak 260P of the first petal 260; 2) a transition surface 241 (for example, the flat surface shown in FIG. 3G or the flat surface shown in FIG. 3C The arcuate surface shown in)), which transitions from the arcuate portion 245; and 3) an arcuate portion 243, which transitions from the transition surface 241 to the valley 270V of the second petal 270. In one embodiment shown in Figure 3D, the arcuate portions 243 and 245 are replaced with flat or straight portions 243' and 245', and the transition surface 241 is replaced with a transition point 241'. In one embodiment shown in FIGS. 3E, 3F, and 3G, the transition region 240 includes an extended straight section 241T that is coaxial with the center plane CP. As shown in FIGS. 3E and 3F, the straight section 241T extends between adjacent arcuate portions 243 and 245. As shown in Figure 3G, straight section 241T extends between straight sections 243' and 245'. In one embodiment, the straight section 241T is about 5% of the longitudinal distance L7. In one embodiment, the straight section 241T is greater than 0% of the longitudinal distance L7. In one embodiment, the straight section 241T is about 5% to 25% of the longitudinal distance L7. In one embodiment, the straight section 241T is about 5% to 100% of the longitudinal distance L7. In one embodiment, the straight section 241T is greater than 100% of the longitudinal distance L7. The inventors have surprisingly found that, compared with the prior art sheet partition member extending from only one side of the heat transfer sheet, the transition zone 240 provides a smooth flow of the flue gas 36 and the combustion air 38 in the flow path P Turning, these smooth flow turns generate turbulence and the increased heat transfer efficiency of the heat transfer fins 200 described herein. The heat transfer fins 200 also provide sufficient structural support and maintain the spacing between adjacent heat transfer fins 200 without significantly increasing the pressure loss across the heat transfer fins 200. As shown in FIG. 6A, a first set of transition zones 240 are in the first common flow channel; and another set of transition zones 240 are in the second common flow channel. In the embodiment shown in FIG. 6A, for the first common flow channel, the first set of transition regions 240 are coaxial with the first 260 and second 270 lobes. The second set of transition regions 240 are coaxial with the first petal 260 and the second petal 270. Although in FIGS. 3A and 6A, the first valve 260, the first set of transition regions 240, and the second valve 270 in the first flow channel are shown and described as coaxial, the present invention is not limited to this. The first lobes 260, the first set of transition regions 240, and/or the second lobes 270 in a common flow channel may deviate from each other and the longitudinal axis L3. Although in FIGS. 3A and 6A, the first petal 260, the second set of transition regions 240, and the second petal 270 in the second flow channel are shown and described as coaxial, the present invention is not limited to this, because the first The first lobes 260, the second set of transition regions 240, and/or the second lobes 270 in the two common flow channels may be offset from each other and the longitudinal axis L4. For example, the heat transfer sheet 200' of FIG. 6B illustrates that the first petal 260' and the second petal 270' in the first common flow channel deviate perpendicularly to the longitudinal axis L3, and the transition region 240' connects the first petal 260' is angularly offset from the longitudinal axis L3 with the second petal 270', and a portion of the transition region 240' crosses the longitudinal axis L3. FIG. 6B also illustrates that the first petal 260 and the second petal 270' in the second common flow channel deviate perpendicular to the longitudinal axis L4, and the transition region 240' connects the first petal 260' and the second petal 270' and forms It is angularly offset from the longitudinal axis L4, and a portion of the transition zone 240' crosses the longitudinal axis L4. As shown in FIG. 6B, the first common flow channel has a width D100, and the first petal 260', the first set of transition regions 240', and the second petal 270' are within a width D101' that is less than or equal to the width D100. As shown in FIG. 6B, the second common flow channel has a width D100, and the first petal 260', the second set of transition regions 240', and the second petal 270' are within a width D101' that is less than or equal to the width D100. The heat transfer sheet 200" of FIG. 6C illustrates that the first petal 260", the first set of transition regions 240" and the second petal 270" in the first common flow channel are angularly offset from the longitudinal axis L3, and A part of them crosses the longitudinal axis L3; and the first petal 260", the second set of transition regions 240" and the second petal 270" in the second common flow channel are angularly offset from the longitudinal axis L4, and they are equal One part crosses the longitudinal axis L4. FIG. 6C also illustrates: each of the first set of transition regions 240" connects adjacent first petals 260" and second petals 270" to each other in the first flow channel; and the second set of transition regions 240 Each of'' connects the first petal 260'' and the second petal 270'' to each other in the second flow channel. As shown in FIG. 6C, the first common flow channel has a width D100, and the first valve 260", the first set of transition regions 240" and the second valve 270" in the first common flow channel are smaller than or Within the width D101" which is equal to the width D100. As shown in FIG. 6C, the second common flow channel has a width D100, and the first valve 260", the second set of transition regions 240" and the second valve 270" in the second common flow channel are smaller than or Within the width D101" which is equal to the width D100. The heat transfer sheets 100 and 200 can be made of metal sheets or plates of predetermined sizes such as the length, width, and thickness of the preheater 10 used and suitable for making the preheater 10 that meets the required requirements of the factory in which it will be installed. In one embodiment, the heat transfer sheet is manufactured in a single-roll manufacturing process using a single set of crimping rolls having the necessary profile to provide the configuration disclosed herein. In one embodiment, the heat transfer fins 100 and 200 are coated with a suitable coating (such as enamel), which makes the heat transfer fins 100 and 200 slightly thicker and also prevents direct contact between the metal sheet substrate and the flue gas. contact. These coatings prevent or reduce corrosion caused by soot, ash, or condensable vapor that the heat transfer fins 100 and 200 are exposed to during operation in the preheater 10. 2A and 3A, the heat transfer surface 310 is defined by an undulating surface that is angularly offset from the longitudinal axis L. For example, the undulating surface of row F deviates from the vertical axis by an angle θ; and the undulating surface of row G deviates from the longitudinal axis by an angle δ. In one embodiment, the angle θ is equal to the angle δ and extends in the opposite direction from the longitudinal axis L. In one embodiment, the angle θ and the angle δ are between 45 degrees and minus 45 degrees measured relative to the longitudinal axis and/or groove configuration 110 or 210. In one embodiment, the heat transfer surface 310 includes a flat portion. In one embodiment, the undulating surface has undulating peaks 310P spaced apart from each other by a distance 310D in the range of 0.35 to 0.85 inches. In one embodiment, the height H1 is 0.050 to 0.40 inches, where the height H1 does not include the thickness of the heat transfer sheet 100 or 200. In one embodiment, the undulating surface 310 has a ratio of the pitch distance 310D between the undulating peaks 310P of 3.0:1 to 15.0:1 and the height H1 (not including the thickness of the heat transfer sheet). In one embodiment, the heat transfer sheets 100 and 200 have a groove height H2 (excluding the thickness of the heat transfer sheet) and a height H1 (excluding the thickness of the heat transfer sheet) of the groove from 1.0:1.0 to 4.0:1.0 One ratio. In one embodiment, the height H2 is 0.15 to 0.50 inches, which does not include the thickness of the heat transfer sheet. As shown in FIGS. 4A and 4B, two heat transfer sheets 100 are stacked on top of each other to form a part of the heat transfer assembly 1000. The peak 160LP of one of the first petals 160L of the heat transfer sheet 100' engages a part of the heat transfer surface 310 of the heat transfer sheet 100; and the valley 170RV of one of the second petals 170R of the heat transfer sheet 100 engages heat The heat transfer surface 310 of the transfer sheet 100'. Although two heat transfer fins 100 are shown and described, any number of heat transfer fins 100 and/or 200 may be stacked on top of each other to form a heat transfer assembly 1000. The heat transfer fins 100 and 200 and the assembly 1000 are generally described herein as a bisecting air preheater. However, the present invention includes configurations and stacks of various heat transfer fins 100 and 200 for other air preheater configurations (such as but not limited to a three-part or four-part air preheater). As shown in FIG. 2D, another embodiment of the heat transfer sheet is generally designated by the number 400. The heat transfer sheet 400 is similar to the heat transfer sheet 100 of FIG. 2A. Therefore, similar components are designated with similar component symbols, but the first digit "1" is replaced by the number "4". The difference between the heat transfer sheet 400 and the heat transfer sheet 100 is that the heat transfer sheet 400 does not have a groove configuration 110. Therefore, the heat transfer sheet 400 includes a plurality of rows (for example, two rows F and G are illustrated in FIG. 2D) of heat transfer surfaces 410. The rows F and G of the heat transfer surface 410 are parallel to the flow of flue gas and combustion air (as indicated by arrows A and B, respectively) at a first end 400X and a second end of the heat transfer sheet 400 A longitudinal axis L extending between 400Y is aligned. The heat transfer surface 410 has a first height H1 relative to a center plane CP of the heat transfer sheet 100, as shown in FIG. 2D. In one embodiment, the heat transfer surface 410 is defined by an undulating surface that is angularly offset from the longitudinal axis L. The undulating surface 410 is configured similar to the undulating surface 310 described herein. For example, the undulating surface 410 of the row F deviates from the longitudinal axis at an angle θ; and the undulating surface 410 of the row G deviates from the longitudinal axis at an angle δ. In one embodiment, the angle θ and the angle δ are equal and extend in the opposite direction from the longitudinal axis L. In one embodiment, the angle θ and the angle δ are between 45 degrees and minus 45 degrees measured with respect to the vertical axis. As shown in FIG. 2D, the undulating surface 410 of row F and the undulating surface 410 of row G merge with each other along a longitudinal axis M. As shown in FIGS. 2E and 7A, another embodiment of the heat transfer sheet is generally designated by the number 500. The heat transfer sheet 500 is similar to the heat transfer sheet 100 of FIG. 2A. Therefore, similar components are designated with similar component symbols, but the first number "1" is replaced by the number "5". The heat transfer sheet 500 is different from the heat transfer sheet 100 in that the heat transfer sheet 400 does not have an oblique undulating surface similar to the undulating surface 310 illustrated in FIG. 2A and is a separate heat transfer sheet. Therefore, the heat transfer sheet 500 includes a groove configuration 110 similar to the groove configuration 110 described above with reference to FIG. 2A (staggered full groove configuration) and/or the groove configuration 210 described herein with reference to FIG. 3A (e.g. Half groove configuration) a plurality of groove configurations 510 positioned in a side-by-side configuration. Therefore, the groove configurations 510 merge with each other in a direction transverse to (for example, perpendicular to) the longitudinal axis L. The transition regions 540L and 540R are shown longitudinally aligned with each other (ie, in a side-by-side configuration), however, in another embodiment, the transition regions 540L and 540R are longitudinally offset from each other (eg, staggered along the longitudinal axes L1 and L2, respectively ). In one embodiment, the heat transfer sheet 500' of FIG. 7B is configured similarly to the heat transfer sheet 100' of FIG. 5B. In one embodiment, the heat transfer sheet 500" of FIG. 7C is configured similarly to the heat transfer sheet 100" of FIG. 5C. As shown in FIGS. 4C and 4D, a heat transfer assembly 1000' is shown, in which one of the heat transfer fins 400 is positioned between the two of the heat transfer fins 500 and 500' and engages the heat transfer fins 500 and Two of 500'. One or more portions of the groove configuration 510 engage the undulating surface 410 in the row F (FIG. 2D) and/or a portion of the undulating surface 410 in the row G (FIG. 2D) to separate the heat transfer sheets 400 from each other and define Flow path P'. For example, as shown in FIG. 4D: 1) the valley 570RV of the petal 570R engages the part of the undulating surface 410 (for example, the undulating peak 410P); 2) the valley 570LV of the petal 570L engages the part of the undulating surface 410 (for example, the undulating peak 410P); 3) the peak 560LP of the petal 560L engages a portion of the undulating surface 410 (eg, undulating peak 410P); and 4) the undulating peak 560RP of the petal 560R engages a portion of the undulating surface 410 (eg, the undulating peak 410P). The following examples quantify the characteristics of exemplary embodiments of heat transfer fins 100 and 200 that the inventors have surprisingly found to provide the desired and improved heat transfer efficiency compared to prior art heat transfer fins. Example 1 As shown in Figure 2A, the continuous transition regions 140L aligned along the longitudinal axis L1 are spaced apart from each other by a longitudinal distance L6 of 2 to 8 inches; and/or the continuous transition regions 140R aligned along the longitudinal axis L2 They are separated by a longitudinal distance L6 of 2 to 8 inches. Similarly, as shown in FIG. 3A, continuous transition regions 240 aligned along the longitudinal axis L3 are spaced apart from each other by a longitudinal distance L7 of 2 to 8 inches; and/or continuous transition regions aligned along the longitudinal axis L4 The 240 are separated from each other by a longitudinal distance L7 of 2 to 8 inches. Example 2 As shown in FIG. 2C, the transition zone 140L and/or 140R of the heat transfer sheet 100 has a longitudinal distance L5 of 0.25 to 2.5 inches. As shown in FIG. 3B, the transition area 240 of the heat transfer sheet 200 has a longitudinal distance L5 of 0.25 to 2.5 inches. Example 3 is shown in FIG. 2A, the adjacent groove configurations 110 are spaced apart from each other by a distance L8 of 1.25 to 6 inches measured in a direction perpendicular to the longitudinal axis L of the heat transfer sheet 100. As shown in FIG. 3A, the adjacent groove configurations 210 are spaced apart from each other by a distance L8 measured in a direction perpendicular to the longitudinal axis L of the heat transfer sheet 200 from 1.25 to 6 inches. Example 4 is shown in FIG. 2A, the groove configuration 110 defines the longitudinal distance L6 between the continuous transition zone 140L or 140R from 5:1 to 20:1 and the height H2 of the groove configuration 110 (excluding the heat transfer sheet The thickness) is a ratio. The groove configuration 210 defines a ratio of the longitudinal distance L7 between the continuous transition regions 240 of 5:1 to 20:1 and the height H2 of the groove configuration 210 (not including the thickness of the heat transfer sheet). Although the present invention has been disclosed and described with reference to the specific embodiments of the present invention, it should be noted that other changes and modifications can be made, and it is expected that the following patent applications cover such changes and modifications within the true scope of the present invention.

3F/3G-3F/3G‧‧‧線10‧‧‧旋轉再生空氣預熱器/預熱器12‧‧‧轉子總成14‧‧‧外殼16‧‧‧轉子柱18‧‧‧隔板20‧‧‧隔間22‧‧‧煙道氣體進口管24‧‧‧煙道氣體出口管26‧‧‧空氣進口管28‧‧‧空氣出口管30A‧‧‧上部扇形板30B‧‧‧下部扇形板30C‧‧‧圓周板32‧‧‧空氣扇區34‧‧‧氣體扇區36‧‧‧煙道氣體串流/煙道氣體38‧‧‧燃燒空氣串流/燃燒空氣100‧‧‧熱傳片100’‧‧‧熱傳片100’’‧‧‧熱傳片100X‧‧‧第一端100Y‧‧‧第二端110‧‧‧凹槽組態112‧‧‧第一面114‧‧‧第二面140L‧‧‧第一過渡區/過渡區/連續過渡區140L’‧‧‧第一過渡區/過渡區140L’’‧‧‧第一過渡區/過渡區140R‧‧‧第二過渡區/過渡區/連續過渡區140R’‧‧‧第二過渡區/過渡區140R’’‧‧‧第二過渡區/過渡區141L‧‧‧過渡表面141R‧‧‧過渡表面143R‧‧‧弓形部分145L‧‧‧弓形部分145R‧‧‧弓形部分160L‧‧‧第一瓣160L’‧‧‧第一瓣160L’’‧‧‧第一瓣160LP‧‧‧峰160R‧‧‧第一瓣160R’‧‧‧第一瓣160R’’‧‧‧第一瓣160RP‧‧‧峰170L‧‧‧第二瓣170L’‧‧‧第二瓣170L’’‧‧‧第二瓣170LV‧‧‧谷170R‧‧‧第二瓣170R’‧‧‧第二瓣170R’’‧‧‧第二瓣170RV‧‧‧谷200‧‧‧熱傳片200’‧‧‧熱傳片200’’‧‧‧熱傳片200Y‧‧‧第二端210‧‧‧凹槽組態212‧‧‧第一面214‧‧‧第二面240‧‧‧過渡區/連續過渡區240’‧‧‧過渡區240’’‧‧‧過渡區241‧‧‧過渡表面241’‧‧‧過渡點241T‧‧‧筆直區段/經延伸筆直區段243‧‧‧弓形部分243’‧‧‧平坦或筆直部分/筆直區段245‧‧‧弓形部分245’‧‧‧平坦或筆直部分/筆直區段260‧‧‧第一瓣/瓣260’‧‧‧第一瓣260’’‧‧‧第一瓣260P‧‧‧峰270‧‧‧第二瓣/瓣270’‧‧‧第二瓣270’’‧‧‧第二瓣270V‧‧‧谷310‧‧‧熱傳表面/起伏表面310D‧‧‧距離310P‧‧‧起伏峰400‧‧‧熱傳片400X‧‧‧第一端400Y‧‧‧第二端410‧‧‧熱傳表面/起伏表面410P‧‧‧起伏峰500‧‧‧熱傳片500’‧‧‧熱傳片500’’‧‧‧熱傳片510‧‧‧凹槽組態540L‧‧‧過渡區540R‧‧‧過渡區560RP‧‧‧起伏峰570L‧‧‧瓣570LV‧‧‧谷570R‧‧‧瓣570RV‧‧‧谷1000‧‧‧熱傳總成/經加熱熱傳總成/總成1000’‧‧‧熱傳總成A‧‧‧軸/箭頭B‧‧‧箭頭F‧‧‧列G‧‧‧列R‧‧‧箭頭θ‧‧‧角度δ‧‧‧角度P‧‧‧流動通路P’‧‧‧流動路徑CP‧‧‧中心平面L‧‧‧縱軸/軸L1‧‧‧第一縱軸/縱軸/軸L2‧‧‧第二縱軸/縱軸/軸L3‧‧‧縱軸/軸L4‧‧‧縱軸L5‧‧‧長度/預定長度/縱向距離L6‧‧‧長度/縱向距離L7‧‧‧縱向距離L8‧‧‧距離L100‧‧‧縱向邊界線/邊界線L200‧‧‧縱向邊界線/邊界線D100‧‧‧寬度D101‧‧‧寬度D101’‧‧‧寬度D101’’‧‧‧寬度H1‧‧‧第一高度/高度H2‧‧‧第二高度/高度H3‧‧‧第三高度3F/3G-3F/3G‧‧‧line 10‧‧‧rotating regeneration air preheater/preheater 12‧‧‧rotor assembly 14‧‧‧housing 16‧‧‧rotor column 18‧‧‧partition 20 ‧‧‧Compartment 22‧‧‧flue gas inlet pipe 24‧‧‧flue gas outlet pipe 26‧‧‧air inlet pipe 28‧‧‧air outlet pipe 30A‧‧‧upper sector plate 30B‧‧‧lower sector Plate 30C‧‧‧Circumferential plate 32‧‧‧Air sector 34‧‧‧Gas sector 36‧‧‧flue gas stream/flue gas 38‧‧‧combustion air stream/combustion air 100‧‧‧heat Transfer piece 100'‧‧‧Heat transfer piece 100``‧‧‧Heat transfer piece 100X‧‧‧First end 100Y‧‧‧Second end 110‧‧‧Groove configuration 112‧‧‧First side 114‧ ‧‧Second side 140L‧‧‧First transition zone/Transition zone/Continuous transition zone 140L'‧‧‧First transition zone/Transition zone 140L''‧‧‧First transition zone/Transition zone 140R‧‧‧第Second transition zone / transition zone / continuous transition zone 140R'‧‧‧ second transition zone / transition zone 140R''‧‧‧ second transition zone / transition zone 141L‧‧‧ transition surface 141R‧‧‧ transition surface 143R‧‧ ‧Bow-shaped part 145L‧‧‧Bow-shaped part 145R‧‧‧Bow-shaped part 160L‧‧‧First part 160L'‧‧First part 160L''‧‧‧First part 160LP‧‧‧Peak 160R‧‧‧First part 160R'‧‧‧First 160R''‧‧‧First 160RP‧‧‧Peak 170L‧‧‧Second 170L'‧‧Second 170L''‧‧‧Second 170LV‧‧ ‧Valley 170R‧‧‧Second segment 170R'‧‧‧Second segment 170R``‧‧‧Second segment 170RV‧‧‧ Valley 200‧‧‧Heat transfer sheet 200'‧‧‧Heat transfer sheet 200''‧ ‧‧Heat transfer sheet 200Y‧‧‧Second end 210‧‧‧Groove configuration 212‧‧‧First side 214‧‧‧Second side 240‧‧‧Transition zone/continuous transition zone 240'‧‧‧Transition Zone 240''‧‧‧Transition zone 241‧‧‧Transition surface 241'‧‧‧Transition point 241T‧‧‧Straight section/Extended straight section 243‧‧‧Bow-shaped part 243'‧‧‧Flat or straight part /Straight section 245‧‧‧Bow section 245'‧‧‧Flat or straight section/Straight section 260‧‧‧The first petal/the first petal 260'‧‧ The first petal 260``‧‧‧The first petal 260P ‧‧‧Peak 270‧‧‧Second lobe/lobe 270'‧‧‧Second lobe 270``‧‧‧Second lobe 270V‧‧‧Valley 310‧‧‧Heat transfer surface / undulating surface 310D‧‧‧Distance 310P‧‧‧Ramp peak 400‧‧‧Heat transfer sheet 400X‧‧‧First end 400Y‧‧‧Second end 410‧‧‧Heat transfer surface/Rave surface 410P‧‧‧Ramp peak 500‧‧‧Heat transfer sheet 500'‧‧‧Heat Transfer Film 5 00``‧‧‧Heat transfer film 510‧‧‧Groove configuration 540L‧‧‧Transition zone 540R‧‧‧Transition zone 560RP‧‧‧Rolling peak 570L‧‧‧Petal 570LV‧‧‧Valley 570R‧‧‧Val 570RV‧‧‧Valley 1000‧‧‧Heat transfer assembly/heated heat transfer assembly/Assembly 1000'‧‧‧Heat transfer assembly A‧‧‧Shaft/arrow B‧‧‧arrow F‧‧‧column G ‧‧‧Row R‧‧‧Arrow θ‧‧‧Angle δ‧‧‧Angle P‧‧‧Flow Path P'‧‧‧Flow Path CP‧‧‧Center Plane L‧‧‧Vertical Axis/Axis L1‧‧‧ First vertical axis/longitudinal axis/axis L2‧‧‧second vertical axis/longitudinal axis/axis L3‧‧‧longitudinal axis/axis L4‧‧‧longitudinal axis L5‧‧‧length/predetermined length/longitudinal distance L6‧‧ ‧Length/Longitudinal distance L7‧‧‧Longitudinal distance L8‧‧‧Distance L100‧‧‧Longitudinal boundary line/boundary line L200‧‧‧Longitudinal boundary line/boundary line D100‧‧‧Width D101‧‧‧Width D101'‧‧ ‧Width D101``‧‧‧Width H1‧‧‧First height/height H2‧‧‧Second height/height H3‧‧‧Third height

圖1係一旋轉再生預熱器之一示意性透視圖; 圖2A係根據本發明之一實施例之一熱傳片之一透視圖; 圖2B係圖2A之熱傳片之一部分之一放大圖; 圖2C係圖2A之熱傳片之一細節C部分之一放大圖; 圖2D係根據本發明之熱傳片之另一實施例之一透視圖; 圖2E係本發明之熱傳隔片之另一實施例之一透視圖; 圖2F係圖2A之熱傳片之一部分的圖解說明其另一實施例之一放大圖; 圖3A係根據本發明之另一實施例之一熱傳片之一透視圖; 圖3B係圖3A之熱傳片之一細節B部分之一放大圖; 圖3C係跨越線3C/3D-3C/3D截取的圖3B之熱傳片之一部分之一剖面之示意圖; 圖3D係跨越3C/3D-3C/3D截取的圖3B之熱傳片之一部分之另一實施例之一剖面之示意圖; 圖3E係圖3A之熱傳片之另一實施例之一細節B部分之一放大圖; 圖3F係跨越線3F/3G-3F/3G截取的圖3B之熱傳片之一部分之一剖面之示意圖; 圖3G係跨越線3F/3G-3F/3G截取的圖3B之熱傳片之一部分之另一實施例之一剖面之示意圖; 圖4A係圖2A之彼此上下堆疊之熱傳片中之兩者之一照片; 圖4B係圖4A之熱傳總成之部分之一側視圖; 圖4C係圖2D及圖2E之熱傳片之一堆疊之一端視圖; 圖4D係圖2D及圖2E之熱傳片之一堆疊之一側視剖面圖; 圖5A係圖2A之熱傳片之一示意性俯視圖; 圖5B係圖2A之熱傳片之另一實施例之一示意性俯視圖; 圖5C係圖2A之熱傳片之另一實施例之一示意性俯視圖; 圖6A係圖3A之熱傳片之一示意性俯視圖; 圖6B係圖3A之熱傳片之另一實施例之一示意性俯視圖; 圖6C係圖3A之熱傳片之另一實施例之一示意性俯視圖; 圖7A係圖2E之熱傳片之一示意性俯視圖; 圖7B係圖2E之熱傳片之另一實施例之一示意性俯視圖;且 圖7C係圖2E之熱傳片之另一實施例之一示意性俯視圖。Fig. 1 is a schematic perspective view of a rotary regenerative preheater; Fig. 2A is a perspective view of a heat transfer sheet according to an embodiment of the present invention; Fig. 2B is an enlarged view of a part of the heat transfer sheet of Fig. 2A Figures; Figure 2C is an enlarged view of part C of a detail of the heat transfer sheet of Figure 2A; Figure 2D is a perspective view of another embodiment of the heat transfer sheet according to the present invention; Figure 2E is the heat transfer spacer of the present invention A perspective view of another embodiment of the sheet; Fig. 2F is an enlarged view of a part of the heat transfer sheet of Fig. 2A illustrating another embodiment; Fig. 3A is a heat transfer according to another embodiment of the present invention A perspective view of a sheet; Fig. 3B is an enlarged view of part B of a detail of the heat transfer sheet of Fig. 3A; Fig. 3C is a cross section of a part of the heat transfer sheet of Fig. 3B taken across the line 3C/3D-3C/3D Fig. 3D is a cross-sectional view of another embodiment of a part of the heat transfer sheet of Fig. 3B taken across 3C/3D-3C/3D; Fig. 3E is a schematic view of another embodiment of the heat transfer sheet of Fig. 3A A detail of an enlarged view of part B; Figure 3F is a schematic diagram of a section of a part of the heat transfer sheet of Figure 3B taken across the line 3F/3G-3F/3G; Figure 3G is a cross-sectional view of a part of the heat transfer sheet taken across the line 3F/3G-3F/3G A schematic cross-sectional view of another embodiment of a part of the heat transfer sheet in FIG. 3B; FIG. 4A is a photo of one of the two heat transfer sheets stacked on top of each other in FIG. 2A; FIG. 4B is the heat transfer assembly in FIG. 4A Fig. 4C is an end view of a stack of heat transfer fins of Figs. 2D and 2E; Fig. 4D is a side sectional view of a stack of heat transfer fins of Figs. 2D and 2E; 5A is a schematic top view of one of the heat transfer fins of FIG. 2A; FIG. 5B is a schematic top view of another embodiment of the heat transfer fins of FIG. 2A; FIG. 5C is one of another embodiment of the heat transfer fins of FIG. 2A Schematic plan view; Fig. 6A is a schematic plan view of one of the heat transfer fins of Fig. 3A; Fig. 6B is a schematic plan view of another embodiment of the heat transfer fins of Fig. 3A; Fig. 6C is another schematic plan view of the heat transfer fins of Fig. 3A A schematic top view of one embodiment; FIG. 7A is a schematic top view of the heat transfer sheet of FIG. 2E; FIG. 7B is a schematic top view of another embodiment of the heat transfer sheet of FIG. 2E; and FIG. 7C is FIG. 2E A schematic top view of another embodiment of the heat transfer sheet.

100‧‧‧熱傳片 100‧‧‧Heat Transfer Film

100X‧‧‧第一端 100X‧‧‧First end

100Y‧‧‧第二端 100Y‧‧‧Second end

110‧‧‧凹槽組態 110‧‧‧Groove configuration

112‧‧‧第一面 112‧‧‧The first side

114‧‧‧第二面 114‧‧‧Second Side

140L‧‧‧過渡區/第一過渡區/連續過渡區 140L‧‧‧Transition zone/First transition zone/Continuous transition zone

140R‧‧‧過渡區/第二過渡區/連續過渡區 140R‧‧‧Transition zone/Second transition zone/Continuous transition zone

160L‧‧‧第一瓣 160L‧‧‧First petal

160R‧‧‧第一瓣 160R‧‧‧First petal

170L‧‧‧第二瓣 170L‧‧‧Second petal

170R‧‧‧第二瓣 170R‧‧‧Second petal

310‧‧‧熱傳表面/起伏表面 310‧‧‧Heat transfer surface / undulating surface

310P‧‧‧起伏峰 310P‧‧‧Heave Peak

A‧‧‧軸/箭頭 A‧‧‧Axis/Arrow

B‧‧‧箭頭 B‧‧‧Arrow

F‧‧‧列 F‧‧‧Column

G‧‧‧列 G‧‧‧ column

θ‧‧‧角度 θ‧‧‧angle

δ‧‧‧角度 δ‧‧‧angle

CP‧‧‧中心平面 CP‧‧‧Center Plan

L‧‧‧縱軸/軸 L‧‧‧Vertical axis/axis

L1‧‧‧縱軸/第一縱軸/軸 L1‧‧‧Vertical axis/first longitudinal axis/axis

L2‧‧‧縱軸/第二縱軸/軸 L2‧‧‧Vertical axis/second longitudinal axis/axis

L6‧‧‧長度/縱向距離 L6‧‧‧Length/Longitudinal distance

L8‧‧‧距離 L8‧‧‧Distance

Claims (14)

一種用於一旋轉再生熱交換器(10)之熱傳片(100),該熱傳片(100)包括:複數列(F,G)熱傳表面(310),該複數列(F,G)中之每一者與平行於預期流動方向(A,B)在該熱傳片之一第一端(100X)與一第二端(100Y)之間延伸之一縱軸(L)對準,該等熱傳表面(310)相對於該熱傳片(100)之一中心平面(CP)具有一第一高度(H1);及至少一個凹槽組態(110,210),其用於使該等熱傳片(100)彼此隔開,該至少一個凹槽組態(110,210)定位於該複數列(F,G)熱傳表面(310)中之毗鄰列熱傳表面之間,該凹槽組態(110,210)包括:至少一個第一瓣(160L,160R,260),其沿一第一方向延伸遠離該中心平面(CP);至少一個第二瓣(170R,170L,270),其沿與該第一方向相反之一第二方向延伸遠離該中心平面(CP);且該至少一個第一瓣(160L,160R,260)及該至少一個第二瓣(170R,170L,270)中之任一者或兩者相對於該中心平面(CP)具有一第二高度(H2),該第二高度大於該第一高度,其中該至少一個第一瓣(160L,160R,260)及該至少一個第二瓣(170R,170L,270)於一縱向交錯圖案中彼此連接且處於一共同流動通道中,使得該至少一個第一瓣(160L,160R,260)縱向毗鄰該至少一個第二瓣(170R,170L,270)。 A heat transfer fin (100) for a rotary regenerative heat exchanger (10). The heat transfer fin (100) includes a plurality of rows (F, G) and heat transfer surfaces (310), the plurality of rows (F, G) ) Are aligned with a longitudinal axis (L) that extends parallel to the expected flow direction (A, B) between a first end (100X) and a second end (100Y) of the heat transfer sheet , The heat transfer surfaces (310) have a first height (H1) relative to a center plane (CP) of the heat transfer sheet (100); and at least one groove configuration (110, 210), which is used to make the The heat transfer sheets (100) are separated from each other, the at least one groove configuration (110, 210) is positioned between the heat transfer surfaces of the plurality of rows (F, G) of the heat transfer surfaces (310), the groove The configuration (110, 210) includes: at least one first lobe (160L, 160R, 260) extending away from the central plane (CP) in a first direction; at least one second lobe (170R, 170L, 270) A second direction opposite to the first direction extends away from the center plane (CP); and one of the at least one first lobe (160L, 160R, 260) and the at least one second lobe (170R, 170L, 270) Either or both have a second height (H2) relative to the central plane (CP), the second height is greater than the first height, wherein the at least one first petal (160L, 160R, 260) and the at least A second petal (170R, 170L, 270) is connected to each other in a longitudinally staggered pattern and is in a common flow channel such that the at least one first petal (160L, 160R, 260) is longitudinally adjacent to the at least one second petal ( 170R, 170L, 270). 如請求項1之熱傳片,其中該等熱傳表面包括成角度地偏離該縱軸之起伏表面。 The heat transfer sheet of claim 1, wherein the heat transfer surfaces include undulating surfaces angularly deviated from the longitudinal axis. 如請求項1之熱傳片,其進一步包括由縱向連接該至少一個第一瓣與該至少一個第二瓣之一過渡區界定之一流動轉向組態。 Such as the heat transfer sheet of claim 1, which further includes a flow diversion configuration defined by a transition region that longitudinally connects the at least one first lobe and the at least one second lobe. 如請求項3之熱傳片,其中該過渡區包括一弓形形狀。 Such as the heat transfer sheet of claim 3, wherein the transition area includes an arcuate shape. 如請求項3之熱傳片,其中該過渡區包括一扁平區段。 Such as the heat transfer sheet of claim 3, wherein the transition zone includes a flat section. 如請求項3之熱傳片,其中該過渡區包括平行於該中心平面之一扁平區段。 Such as the heat transfer sheet of claim 3, wherein the transition area includes a flat section parallel to the central plane. 如請求項3之熱傳片,其中該過渡區包括一流動停滯減緩路徑。 Such as the heat transfer sheet of claim 3, wherein the transition zone includes a flow stagnation mitigation path. 如請求項1之熱傳片,其中該至少一個第一瓣及該至少一個第二瓣沿著平行於該縱軸之一軸彼此同軸。 The heat transfer sheet of claim 1, wherein the at least one first lobe and the at least one second lobe are coaxial with each other along an axis parallel to the longitudinal axis. 如請求項1之熱傳片,其中該至少一個第一瓣及該至少一個第二瓣在橫向於該縱軸之一方向上彼此毗鄰。 The heat transfer sheet of claim 1, wherein the at least one first lobe and the at least one second lobe are adjacent to each other in a direction transverse to the longitudinal axis. 如請求項1之熱傳片,其中該至少一個第一瓣及該至少一個第二瓣中之至少一者彼此成角度地偏離。 The heat transfer sheet of claim 1, wherein at least one of the at least one first lobe and the at least one second lobe is angularly offset from each other. 一種用於一旋轉再生熱交換器(10)之熱傳總成(1000),該熱傳總成包括:至少兩個熱傳片(100),其彼此上下堆疊;該至少兩個熱傳片(100)中之每一者包括:複數列(F,G)熱傳表面(310),該複數列(F,G)中之每一者與平行於穿過該熱傳總成(1000)之預期流動方向(A,B)在該熱傳總成(1000)之一第一端與一第二端之間延伸之一縱軸(L)對準,該等熱傳表面(310)相對於該熱傳片(100)之一中心平面(CP)具有一第一高度(H1);至少一個凹槽組態(110,210),其用於使該等熱傳片(100)彼此隔開,該至少一個凹槽組態(110,210)定位於該複數列(F,G)熱傳表面中之毗鄰列熱傳表面之間,該凹槽組態(110,210)包括:至少一個第一瓣(160L,160R,260),其沿一第一方向延伸遠離該中心平面(CP);至少一個第二瓣(170R,170L,270),其沿與該第一方向相反之一第二方向延伸遠離該中心平面(CP);該至少一個第一瓣(160L,160R,260)及該至少一個第二瓣(170R,170L,270)中之任一者或兩者相對於該中心平面(CP)具有一第二高度(H2),該第二高度(H2)大於該第一高度(H1);且該至少兩個熱傳片(100)中之一第一者之該至少一個第一瓣(160L,160R,260)嚙合該至少兩個熱傳片(100)中之一第二者之該熱傳表面(310)、且該至少兩個熱傳片(100)中之該第二者之該至少一個第二瓣(170R,170L,270)嚙合該至少兩個熱傳片(100)中之該第一者之該 熱傳表面(310),以在該至少兩個熱傳片(100)之間界定一流動路徑,該流動路徑在該第一端(100X)與該第二端(100Y)之間延伸;及其特徵在於該至少一個第一瓣(160L,160R,260)及該至少一個第二瓣(170R,170L,270)於一縱向交錯圖案中彼此連接且處於一共同流動通道中,使得該至少一個第一瓣(160L,160R,260)縱向毗鄰該至少一個第二瓣(170R,170L,270)。 A heat transfer assembly (1000) for a rotary regenerative heat exchanger (10), the heat transfer assembly comprising: at least two heat transfer fins (100) stacked on top of each other; the at least two heat transfer fins Each of (100) includes: a plurality of rows (F, G) heat transfer surface (310), each of the plurality of rows (F, G) is parallel to passing through the heat transfer assembly (1000) The expected flow direction (A, B) is aligned with a longitudinal axis (L) extending between a first end and a second end of the heat transfer assembly (1000), and the heat transfer surfaces (310) are opposite A central plane (CP) of the heat transfer sheet (100) has a first height (H1); at least one groove configuration (110, 210) is used to separate the heat transfer sheets (100) from each other, The at least one groove configuration (110, 210) is positioned between adjacent rows of heat transfer surfaces in the plurality of rows (F, G) of heat transfer surfaces, and the groove configuration (110, 210) includes: at least one first lobe (160L) ,160R,260), which extends away from the central plane (CP) in a first direction; at least one second petal (170R, 170L, 270), which extends away from the first direction in a second direction opposite to the first direction Central plane (CP); the at least one first petal (160L, 160R, 260) and the at least one second petal (170R, 170L, 270) either or both have relative to the central plane (CP) A second height (H2), the second height (H2) is greater than the first height (H1); and the at least one first lobe (160L) of the first one of the at least two heat transfer fins (100) ,160R,260) engage the heat transfer surface (310) of the second one of the at least two heat transfer sheets (100), and the second one of the at least two heat transfer sheets (100) At least one second flap (170R, 170L, 270) engages the first of the at least two heat transfer plates (100) A heat transfer surface (310) to define a flow path between the at least two heat transfer fins (100), the flow path extending between the first end (100X) and the second end (100Y); and It is characterized in that the at least one first petal (160L, 160R, 260) and the at least one second petal (170R, 170L, 270) are connected to each other in a longitudinal staggered pattern and are in a common flow channel, so that the at least one The first petal (160L, 160R, 260) is longitudinally adjacent to the at least one second petal (170R, 170L, 270). 如請求項11之熱傳總成,其進一步包括由縱向連接該至少一個第一瓣與該至少一個第二瓣之一過渡區界定之一流動轉向組態。 For example, the heat transfer assembly of claim 11, which further includes a flow turning configuration defined by a transition region that longitudinally connects the at least one first lobe and the at least one second lobe. 一種熱交換器片堆疊,該堆疊包括:至少一個第一熱傳片(100),其包括:一第一起伏表面,其沿著該第一熱傳片(100)延伸且相對於穿過該堆疊之一流動方向以一第一角度定向,及一第二起伏表面,其沿著該第一熱傳片(100)延伸且相對於穿過該堆疊之該流動方向以一第二角度定向,該第一角度與該第二角度係不同的;及至少一個第二熱傳片(100),其界定複數個凹槽組態(110,210),該複數個凹槽組態沿著平行於預期流動方向(A,B)在該至少一個第二熱傳片(100)之一第一端(100X)與一第二端(100Y)之間延伸之一縱軸(L)延伸,以用於使該至少一個第一熱傳片(100)與該至少一個第二熱傳片(100)中之一毗鄰者隔開,該至少一個凹槽組態(110,210)包括:至少一個第一瓣(160L,160R,260),其沿一第一方向延伸遠離該至 少一個第二熱傳片之一中心平面(CP);至少一個第二瓣(170R,170L,270),其沿與該第一方向相反之一第二方向延伸遠離該中心平面(CP);該至少一個第一瓣(160L,160R,260)嚙合該第一起伏表面及該第二起伏表面中之至少一者之一部分;該至少一個第二瓣(170R,170L,270)嚙合該第一起伏表面及該第二起伏表面中之至少一者之一部分,以在該至少一個第一熱傳片(100)與該至少一個第二熱傳片之(100)間界定一流動路徑;及其特徵在於該至少一個第一瓣(160L,160R,260)及該至少一個第二瓣(170R,170L,270)於一縱向交錯圖案中彼此連接且處於一共同流動通道中,使得該至少一個第一瓣(160L,160R,260)縱向毗鄰該至少一個第二瓣(170R,170L,270)。 A stack of heat exchanger fins, the stack comprising: at least one first heat transfer fin (100), including: a first undulating surface extending along the first heat transfer fin (100) and opposite to passing through the A flow direction of the stack is oriented at a first angle, and a second undulating surface extending along the first heat transfer sheet (100) and oriented at a second angle with respect to the flow direction through the stack, The first angle is different from the second angle; and at least one second heat transfer sheet (100), which defines a plurality of groove configurations (110, 210), the plurality of groove configurations are parallel to the expected flow The direction (A, B) extends between a first end (100X) and a second end (100Y) of the at least one second heat transfer sheet (100), and a longitudinal axis (L) extends for making The at least one first heat transfer sheet (100) is separated from an adjacent one of the at least one second heat transfer sheet (100), and the at least one groove configuration (110, 210) includes: at least one first petal (160L) ,160R,260), which extends along a first direction away from the One less second heat transfer sheet has a central plane (CP); at least one second petal (170R, 170L, 270) extends away from the central plane (CP) in a second direction opposite to the first direction; The at least one first petal (160L, 160R, 260) engages a portion of at least one of the first undulating surface and the second undulating surface; the at least one second petal (170R, 170L, 270) engages the first A portion of at least one of the undulating surface and the second undulating surface to define a flow path between the at least one first heat transfer sheet (100) and the at least one second heat transfer sheet (100); and It is characterized in that the at least one first petal (160L, 160R, 260) and the at least one second petal (170R, 170L, 270) are connected to each other in a longitudinal staggered pattern and are in a common flow channel, so that the at least one first petal One petal (160L, 160R, 260) is longitudinally adjacent to the at least one second petal (170R, 170L, 270). 一種用於一熱傳片(100)堆疊之隔片,該隔片包括:複數個凹槽組態(110,210),其沿著平行於預期流動方向(A,B)在該隔片之一第一端與一第二端之間延伸之一縱軸(L)延伸,以使毗鄰熱傳片(100)彼此隔開,該等凹槽組態(110,210)包括:至少一個第一瓣(160L,160R,260),其沿一第一方向延伸遠離該至少一個第二熱傳片(100)之一中心平面(CP);至少一個第二瓣(170R,170L,270),其沿與該第一方向相反之一第二方向延伸遠離該中心平面(CP);且其特徵在於該至少一個第一瓣(160L,160R,260)及該至少一個第二瓣(170R,170L,270)於一縱向交錯圖案中彼此連接且處於一共同流動 通道中,使得該至少一個第一瓣(160L,160R,260)縱向毗鄰該至少一個第二瓣(170R,170L,270)。A spacer for stacking a heat transfer sheet (100), the spacer includes: a plurality of groove configurations (110, 210), which are parallel to the expected flow direction (A, B) on one of the spacers A longitudinal axis (L) extends between one end and a second end to separate the adjacent heat transfer plates (100) from each other. The groove configurations (110, 210) include: at least one first lobe (160L) ,160R,260), which extends along a first direction away from a central plane (CP) of the at least one second heat transfer sheet (100); at least one second petal (170R, 170L, 270), which extends along with the A second direction opposite to the first direction extends away from the central plane (CP); and is characterized in that the at least one first lobe (160L, 160R, 260) and the at least one second lobe (170R, 170L, 270) are Connected to each other in a longitudinal staggered pattern and in a common flow In the channel, the at least one first lobe (160L, 160R, 260) is longitudinally adjacent to the at least one second lobe (170R, 170L, 270).
TW105132794A 2016-10-11 2016-10-11 An alternating notch configuration for spacing heat transfer sheets TWI707121B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105132794A TWI707121B (en) 2016-10-11 2016-10-11 An alternating notch configuration for spacing heat transfer sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105132794A TWI707121B (en) 2016-10-11 2016-10-11 An alternating notch configuration for spacing heat transfer sheets

Publications (2)

Publication Number Publication Date
TW201814233A TW201814233A (en) 2018-04-16
TWI707121B true TWI707121B (en) 2020-10-11

Family

ID=62639331

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105132794A TWI707121B (en) 2016-10-11 2016-10-11 An alternating notch configuration for spacing heat transfer sheets

Country Status (1)

Country Link
TW (1) TWI707121B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1429149A (en) * 1920-10-18 1922-09-12 Engineering Dev Company Heat interchanger
CN1330763A (en) * 1998-12-16 2002-01-09 阿尔斯托姆电力公司 Heat transfer element assembly
CN1370266A (en) * 1999-08-18 2002-09-18 阿尔斯托姆电力公司 Heat tranfer element assembly
TWI548856B (en) * 2009-05-08 2016-09-11 傲華公司 Heat transfer sheet for rotary regenerative heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1429149A (en) * 1920-10-18 1922-09-12 Engineering Dev Company Heat interchanger
CN1330763A (en) * 1998-12-16 2002-01-09 阿尔斯托姆电力公司 Heat transfer element assembly
CN1370266A (en) * 1999-08-18 2002-09-18 阿尔斯托姆电力公司 Heat tranfer element assembly
TWI548856B (en) * 2009-05-08 2016-09-11 傲華公司 Heat transfer sheet for rotary regenerative heat exchanger

Also Published As

Publication number Publication date
TW201814233A (en) 2018-04-16

Similar Documents

Publication Publication Date Title
EP3359901B1 (en) An alternating notch configuration for spacing heat transfer sheets
TWI502160B (en) Heating element undulation patterns
US20100218927A1 (en) Heat exchange surface
US6179276B1 (en) Heat and mass transfer element assembly
US20050230094A1 (en) Tube structure of multitubular heat exchanger
US10809013B2 (en) Heat exchange element profile with enhanced cleanability features
TWI707121B (en) An alternating notch configuration for spacing heat transfer sheets
US11236949B2 (en) Heat transfer sheet assembly with an intermediate spacing feature
JPH03168595A (en) Heat-transmitting element assembly
RU2659677C1 (en) Plate heat exchanger and the plate heat exchanger manufacturing method