TWI706141B - Power failure detection system - Google Patents

Power failure detection system Download PDF

Info

Publication number
TWI706141B
TWI706141B TW107117726A TW107117726A TWI706141B TW I706141 B TWI706141 B TW I706141B TW 107117726 A TW107117726 A TW 107117726A TW 107117726 A TW107117726 A TW 107117726A TW I706141 B TWI706141 B TW I706141B
Authority
TW
Taiwan
Prior art keywords
power
meter
meters
mentioned
electric
Prior art date
Application number
TW107117726A
Other languages
Chinese (zh)
Other versions
TW201928366A (en
Inventor
福田洋三
樋口晃二
安田周平
片多大
井上雄大
Original Assignee
日商三菱電機股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商三菱電機股份有限公司 filed Critical 日商三菱電機股份有限公司
Publication of TW201928366A publication Critical patent/TW201928366A/en
Application granted granted Critical
Publication of TWI706141B publication Critical patent/TWI706141B/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/126Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wireless data transmission

Abstract

A power failure detection system of the present invention includes a plurality of electricity meters being installed at respective power consumers and forming a first communication network through wireless connection, and a plurality of battery-driven gas meters being installed at the respective power consumers and forming a second communication network through wireless connection. The gas meters are associated with the respective electricity meters in a one-to-one manner, regularly transmit a wireless signal to a corresponding electricity meter, and determine a power failure condition of the power consumers each installed with the corresponding electricity meter based on a response condition of the corresponding electricity meter to the wireless signal.

Description

停電測出系統 Power failure detection system

本發明係關於測出由配電線供給電力的電力用戶停電的系統。 The present invention relates to a system for detecting power outages of power users supplied by power distribution lines.

近年來,智慧型電網(smart grid)或AMI(Advanced Metering Infrastructure(先進電表基礎建設))系統包括停電測出功能。這些系統中的停電測出方法一般電表在停電測出後以配置的無線裝置固定時間動作,以無線通知停電發生。但是,此方法中,必須裝載停電後用以固定時間動作的電池或電容器至智慧型電表內的無線裝置,具有智慧型電表成本變高的問題。 In recent years, the smart grid or AMI (Advanced Metering Infrastructure) system includes a power failure detection function. The power outage detection methods in these systems generally operate at a fixed time after the power outage is detected by the configured wireless device to wirelessly notify the occurrence of the outage. However, in this method, a battery or capacitor that operates for a fixed time after a power failure must be loaded into the wireless device in the smart meter, which has a problem that the cost of the smart meter becomes higher.

[先行技術文件] [Advanced Technical Document] [專利文件] [Patent Document]

[專利文件1]日本專利第2013-146115號公開公報 [Patent Document 1] Japanese Patent Publication No. 2013-146115

專利文件1中,揭示使用讀表資料無法取得資訊的停電測出系統。根據專利文件1的停電測出系統,不必裝載用以停電後也動作的電池或電容器至智慧型電表的無線裝置 內。但是,讀表間隔一般15分鐘、30分鐘或1小時等的話,因為很長,有停電測出需要時間的問題。又,複數的智慧型電表的讀表資料以Multi-hop(多點跳躍)通訊收集時,因為不能中繼由於停電動作停止的智慧型電表並收集來自應收集讀表資料的其他智慧型電表的讀表資料,有不能掌握設置上述其他智慧型電表的電力用戶是否發生停電的問題。 Patent Document 1 discloses a power failure detection system that cannot obtain information using meter reading data. According to the power failure detection system of Patent Document 1, there is no need to install a battery or capacitor that operates even after a power failure to a wireless device of a smart meter Inside. However, if the meter reading interval is generally 15 minutes, 30 minutes, or 1 hour, etc., because it is very long, there is a problem that it takes time to detect a power outage. In addition, when the meter reading data of plural smart meters is collected by Multi-hop communication, it is impossible to relay the smart meter that stopped due to power failure and collect the data from other smart meters that should collect the meter reading data. Reading the meter data, there is a problem that it is impossible to grasp whether the power users who set up the other smart meters have power outages.

本發明有鑑於上述問題,以正確且高速進行各電力用戶的停電測出為目的。 In view of the above-mentioned problems, the present invention aims to accurately and quickly detect power outages of each power user.

本發明的停電測出系統,係測出複數的電力用戶停電的停電測出系統,包括設置在各電力用戶並以無線連接構成第1通訊網路的複數的電表、設置在各電力用戶並以無線連接構成第2通訊網路的電池驅動的複數的電池驅動表、存在於第1通訊網路上層的第1上層網路以及存在於第2通訊網路上層的第2上層網路,各電池驅動表,與各電表一對一對應,對於對應的電表即對應電表定期傳送無線信號,根據對於無線信號的對應電表的應答狀況,判斷設置對應電表的電力用戶的停電狀況,各電池驅動表判斷設置對應電表的電力用戶有停電時,其主旨資訊的停電測出通知,從第2通訊網路經由第2上層網路傳達至第1上層網路。 The power outage detection system of the present invention is a power outage detection system that detects power outages of a plurality of power users, and includes a plurality of electric meters installed in each power user and wirelessly connected to form the first communication network, and installed in each power user and connected wirelessly. Connect the battery-driven plural battery-driven meters that constitute the second communication network, the first upper-layer network existing on the upper layer of the first communication network, and the second upper-layer network existing on the upper layer of the second communication network. Each battery-driven meter, and Each meter has a one-to-one correspondence. For the corresponding meter, that is, the corresponding meter periodically transmits wireless signals. According to the response status of the corresponding meter to the wireless signal, determine the power outage status of the power user who sets the corresponding meter. Each battery-driven meter determines the setting of the corresponding meter. When a power user has a power outage, the main information of the power outage detection notice is transmitted from the second communication network to the first upper network via the second upper network.

本發明的停電測出系統,因為經由電表與電池驅動表的無線信號收發進行停電測出,根據無線信號的傳送周期可以高速進行停電測出。又,本發明的停電測出系統,因為根 據與各電表一對一對應的各電池驅動表對各電力用戶進行停電測出,可以執行正確的停電測出。 The power failure detection system of the present invention detects a power failure through wireless signal transmission and reception between the electric meter and the battery-driven meter, and can perform high-speed power failure detection based on the transmission period of the wireless signal. In addition, the power failure detection system of the present invention, because the root According to the battery-driven meters corresponding to each electric meter one-to-one, the power outage detection for each power user can be performed accurately.

N:停電測出次數臨界值 N: The critical value of the number of power outages measured

T:信標周期 T: beacon period

1、2、3:電力用戶 1, 2, 3: Power users

11a、11b、11c、11d、11e:配電線 11a, 11b, 11c, 11d, 11e: distribution lines

21:高壓線 21: High voltage line

31:變壓器 31: Transformer

100:集線器 100: Hub

101、102、103:電表 101, 102, 103: electric meter

101A、102A、103A:電表 101A, 102A, 103A: electric meter

104:電力網路 104: Power Network

200:集線器 200: Hub

201、202、203:瓦斯表 201, 202, 203: Gas meter

204:瓦斯網路 204: Gas Network

301、302、303:HEMS機器 301, 302, 303: HEMS machines

304:HEMS網路 304: HEMS network

401:設定器 401: Setter

1010:無線裝置 1010: wireless device

1010A:無線裝置 1010A: wireless device

1011:本體 1011: body

1012:表用通訊部 1012: Communication Department

1013:表用控制部 1013: Watch control unit

1014:表用記憶部 1014: table memory

1015:健康檢查用控制部 1015: Control unit for health check

1016:電容器 1016: capacitor

1101:通訊協定堆疊 1101: Protocol stack

1201:通訊協定堆疊 1201: Protocol stack

2010:無線裝置 2010: wireless device

2011:本體 2011: Ontology

2012:表用通訊部 2012: Communication Department

2013:表用控制部 2013: Watch control department

2014:表用記憶部 2014: Watch memory department

2015:健康檢查用通訊部 2015: Communication Department for Health Check

2016:健康檢查用控制部 2016: Health Check Control Department

2017:健康檢查用記憶部 2017: Memory Department for Health Checkup

[第1圖]係第一實施形態的停電測出系統的全體構成圖;[第2圖]係顯示第一實施形態的停電測出系統的構成要素間的連接關係圖;[第3圖]係顯示電表與瓦斯表的構成圖;[第4圖]係顯示停電發生時第一實施形態的停電測出系統的構成要素間的連接關係圖;[第5圖]係顯示停電測出處理的順序圖;[第6圖]係配對設定的概念圖;[第7圖]係顯示配對的設定內容圖;[第8圖]係顯示電表與瓦斯表中裝載的通訊協定堆疊(protocol stack)圖;[第9圖]係第二實施形態的停電測出系統的全體構成圖;[第10圖]係顯示第二實施形態的停電測出系統的構成要素間的連接關係圖;[第11圖]係顯示停電發生時第二實施形態的停電測出系統的構成要素間的連接關係圖;[第12圖]係顯示停電發生時瓦斯表的順序圖;[第13圖]係顯示停電沒發生時瓦斯表的順序圖;[第14圖]係配對設定的概念圖;[第15圖]係顯示配對的設定內容圖; [第16圖]係第三實施形態的停電測出系統的全體構成圖;[第17圖]係顯示第三實施形態的電表構成圖;以及[第18圖]係顯示停電測出處理的順序圖。 [Figure 1] is a diagram showing the overall configuration of the power failure detection system of the first embodiment; [Figure 2] is a diagram showing the connection relationship among the components of the power failure detection system of the first embodiment; [Figure 3] It is a diagram showing the composition of an electricity meter and a gas meter; [Figure 4] is a diagram showing the connection relationship among the components of the power failure detection system of the first embodiment when a power failure occurs; [Figure 5] is a diagram showing the power failure detection processing Sequence diagram; [Picture 6] is a conceptual diagram of pairing settings; [Picture 7] is a diagram showing the contents of pairing settings; [Picture 8] is a diagram showing the protocol stack loaded in the electricity meter and the gas meter [Figure 9] is a diagram showing the overall configuration of the power failure detection system of the second embodiment; [Figure 10] is a diagram showing the connection relationship between the components of the power failure detection system of the second embodiment; [Figure 11 ] Is a diagram showing the connection relationship among the components of the power failure detection system of the second embodiment when a power failure occurs; [Figure 12] is a sequence diagram showing the gas meter when a power failure occurs; [Figure 13] is a diagram showing that a power failure did not occur Sequence diagram of the hour gas meter; [Figure 14] is a conceptual diagram of pairing setting; [Figure 15] is a diagram showing the content of pairing settings; [Figure 16] is a diagram showing the overall configuration of the power failure detection system of the third embodiment; [Figure 17] is a diagram showing the configuration of an electricity meter in the third embodiment; and [Figure 18] is a diagram showing the procedure of power failure detection processing Figure.

<A.第一實施形態> <A. First Embodiment>

<A-1.構成> <A-1. Composition>

第1圖係第一實施形態的停電測出系統的全體構成圖。第一實施形態的停電測出系統,係以電力用戶1、2、3為對象的停電測出系統。傳送高壓線21的電力,以變壓器31降壓,之後,經由配電線11a、11b、11c、11d、11e供給至電力用戶1、2、3。在此電力用戶的數量為3個,但不過是一個例子。 Figure 1 is a diagram of the overall configuration of the power failure detection system of the first embodiment. The power outage detection system of the first embodiment is a power outage detection system for power users 1, 2, and 3. The electric power of the high-voltage line 21 is transmitted, and the voltage is reduced by the transformer 31, and thereafter, it is supplied to the electric power users 1, 2, and 3 via the power distribution lines 11a, 11b, 11c, 11d, and 11e. The number of power users here is three, but it is just an example.

第一實施形態的停電測出系統,包括電表101、102、103、瓦斯表201、202、203、集線器100、200、電力網路104以及瓦斯網路204。第2圖係顯示這些構成要素間的連接關係。 The power failure detection system of the first embodiment includes electric meters 101, 102, 103, gas meters 201, 202, 203, hubs 100, 200, power network 104, and gas network 204. Figure 2 shows the connection between these components.

電表101、102、103,分別設置在電力用戶1、2、3。電表101、102、103係備置無線通訊功能的智慧型電表。如第2圖所示,電表101、102、103,以線型拓撲結構互相無線連接。即,電表102、103間與電表101、102間可無線通訊,但電表101、103間不可無線通訊。電表101與集線器100無線連接。以此方式,電表101、102、103,以無線連接構成第1通訊網路。電表101、102、103,根據分別供給至電力用戶1、2、3的電力驅動。因此,電力用戶1、2、3發生停電時,上述電力用戶1、2、3中設置的電表101、102、103停止動作。 The electric meters 101, 102, and 103 are respectively installed at power users 1, 2, and 3. The electric meters 101, 102, 103 are smart meters equipped with wireless communication functions. As shown in Figure 2, the electric meters 101, 102, and 103 are wirelessly connected to each other in a linear topology. That is, the electric meters 102 and 103 can communicate wirelessly with the electric meters 101 and 102, but the electric meters 101 and 103 cannot communicate wirelessly. The electric meter 101 is wirelessly connected to the hub 100. In this way, the electric meters 101, 102, and 103 are wirelessly connected to form a first communication network. The electric meters 101, 102, and 103 are driven by electric power supplied to the electric power users 1, 2, and 3, respectively. Therefore, when a power outage occurs in the power users 1, 2, and 3, the power meters 101, 102, and 103 installed in the power users 1, 2, and 3 stop operating.

集線器100,根據與電表101的無線通訊以多點跳躍通訊收集電表101、102、103的讀表資料。即,電表101的讀表資料從電表101直接傳送至集線器100。電表102的讀表資料從電表102經由電表101傳送至集線器100。電表103的讀表資料從電表103依序經由電表102、101傳送至集線器100。 The hub 100 collects meter reading data of the electric meters 101, 102, and 103 through multi-point hop communication based on the wireless communication with the electric meter 101. That is, the meter reading data of the electric meter 101 is directly transmitted from the electric meter 101 to the hub 100. The meter reading data of the power meter 102 is transmitted from the power meter 102 to the hub 100 via the power meter 101. The meter reading data of the electric meter 103 is transmitted from the electric meter 103 to the hub 100 via the electric meters 102 and 101 in sequence.

集線器100,與電力網路104無線連接。一般,此連接中使用光線路或行動電話線路,但不限定於這些。電力網路104,係連接讀表伺服器或資料庫等的電表的上層系統之電表的上層網路。 The hub 100 is wirelessly connected to the power network 104. Generally, optical lines or mobile phone lines are used for this connection, but it is not limited to these. The electric power network 104 is an upper network of electric meters connected to an upper system of electric meters such as a meter reading server or a database.

瓦斯表201、202、203,分別設置在電力用戶1、2、3。瓦斯表201、202、203,係配備無線通訊功能的智慧型電表。瓦斯表201、202、203,係以線型拓撲結構互相無線連接。即,瓦斯表202、203間與瓦斯表201、202間可無線通訊,但瓦斯表201、203間不可無線通訊。瓦斯表201與集線器200無線連接。以此方式,瓦斯表201、202、203,以無線連接構成第2通訊網路。瓦斯表201、202、203,與電表101、102、103不同,係電池驅動的表。因此,電力用戶1、2、3即使發生停電,上述電力用戶1、2、3中設置的瓦斯表201、202、203也可以動作。 The gas meters 201, 202, and 203 are set at the power users 1, 2, and 3, respectively. Gas meters 201, 202, and 203 are smart meters equipped with wireless communication functions. The gas meters 201, 202, and 203 are wirelessly connected to each other in a linear topology. That is, the gas meters 202 and 203 and the gas meters 201 and 202 can communicate wirelessly, but the gas meters 201 and 203 cannot communicate wirelessly. The gas meter 201 is connected to the hub 200 wirelessly. In this way, the gas meters 201, 202, and 203 are connected wirelessly to form a second communication network. The gas meters 201, 202, and 203 are battery-driven meters different from the electric meters 101, 102, and 103. Therefore, even if a power outage occurs in the power users 1, 2, and 3, the gas meters 201, 202, and 203 installed in the power users 1, 2, and 3 can operate.

集線器200,根據與瓦斯表201的無線通訊,以多點跳躍通訊收集瓦斯表201、202、203的讀表資料。即,瓦斯表201的讀表資料從瓦斯表201直接傳送至集線器200。瓦斯表202的讀表資料從瓦斯表202經由瓦斯表201傳送至集線器200。瓦斯表203的讀表資料從瓦斯表203依序經由瓦斯表202、201傳送至集線器200。 The hub 200 collects meter reading data of the gas meters 201, 202, and 203 through multi-point hop communication based on the wireless communication with the gas meter 201. That is, the meter reading data of the gas meter 201 is directly transmitted from the gas meter 201 to the hub 200. The meter reading data of the gas meter 202 is transmitted from the gas meter 202 to the hub 200 via the gas meter 201. The meter reading data of the gas meter 203 is transmitted from the gas meter 203 to the hub 200 via the gas meters 202 and 201 in sequence.

集線器200,與瓦斯網路204無線連接。一般,此連接使用光線路或行動電話線路,但不限定於這些。瓦斯網路204,係連接讀表伺服器或資料庫等的瓦斯表的上層系統之瓦斯表的上層網路。 The hub 200 is wirelessly connected to the gas network 204. Generally, this connection uses optical lines or mobile phone lines, but it is not limited to these. The gas network 204 is an upper network of the gas meter connected to the upper system of the gas meter such as a meter reading server or a database.

又,第一實施形態的停電測出系統中,瓦斯表,係停電時也可動作的電池驅動的表的一例,使用其他電池驅動的表也可以。 Furthermore, in the power failure detection system of the first embodiment, the gas meter is an example of a battery-driven watch that can operate even during a power failure, and other battery-driven watches may be used.

第3圖係顯示設置在電力用戶1的電表101與瓦斯表201的構成。電表101,包括無線裝置1010與本體1011。本體1011,進行電力用戶1中的電力讀表。無線裝置1010,與集線器100及瓦斯表201進行無線通訊,包括表用通訊部1012、表用控制部1013、表用記憶部1014以及健康檢查用控制部1015。 FIG. 3 shows the configuration of the electricity meter 101 and the gas meter 201 installed in the power user 1. The electric meter 101 includes a wireless device 1010 and a main body 1011. The main body 1011 performs power meter reading in the power user 1. The wireless device 1010 performs wireless communication with the hub 100 and the gas meter 201, and includes a meter communication unit 1012, a meter control unit 1013, a meter memory unit 1014, and a health check control unit 1015.

表用控制部1013,進行用以無線傳送本體1011的讀表資料至集線器100的各種控制。表用通訊部1012,無線傳送本體1011的讀表資料至集線器100。表用記憶部1014,記憶用以無線傳送本體1011的讀表資料至集線器100所必需的各種資料。健康檢查用控制部1015,從瓦斯表201接收健康檢查要求(Health Check Request),傳送健康檢查應答(Health Check Response)至瓦斯表201。 The meter control unit 1013 performs various controls for wirelessly transmitting the meter reading data of the main body 1011 to the hub 100. The meter communication unit 1012 wirelessly transmits the meter reading data of the main body 1011 to the hub 100. The meter storage unit 1014 stores various data necessary for wirelessly transmitting the meter reading data of the main body 1011 to the hub 100. The health check control unit 1015 receives a health check request (Health Check Request) from the gas meter 201, and transmits a health check response (Health Check Response) to the gas meter 201.

瓦斯表201,包括無線裝置2010以及本體2011。本體2011,進行電力用戶1中的瓦斯讀表。無線裝置2010,進行與集線器200以及電表101的無線通訊,包括表用通訊部2012、表用控制部2013、表用記憶部2014、健康檢查用通訊部2015、健康檢查用控制部2016以及健康檢查用記憶部2017。 The gas meter 201 includes a wireless device 2010 and a body 2011. Ontology 2011, read the gas meter in the power user 1. The wireless device 2010 performs wireless communication with the hub 200 and the electric meter 101, including the meter communication unit 2012, the meter control unit 2013, the meter memory unit 2014, the health check communication unit 2015, the health check control unit 2016, and the health check Use memory department 2017.

表用控制部2013,進行用以無線傳送本體2011的讀表資料至集線器200的各種控制。表用通訊部1012,無線傳送本體2011的讀表資料至集線器200。表用記憶部2014,記憶用以無線傳送本體2011的讀表資料至集線器200所必需的各種資料。 The meter control unit 2013 performs various controls for wirelessly transmitting the meter reading data of the main body 2011 to the hub 200. The meter communication unit 1012 wirelessly transmits the meter reading data of the main body 2011 to the hub 200. The meter memory unit 2014 stores various data necessary for wirelessly transmitting the meter reading data of the main body 2011 to the hub 200.

健康檢查用控制部2016,進行用以實行電表101的健康檢查的各種控制。健康檢查用通訊部2015,傳送健康檢查要求(Health Check Request)至電表101,從電表101接收健康檢查應答(Health Check Response)。健康檢查用記憶部2017,記憶用以實行健康檢查所必需的各種資料。 The health check control unit 2016 performs various controls for performing the health check of the electric meter 101. The health check communication unit 2015 transmits a health check request (Health Check Request) to the power meter 101, and receives a health check response (Health Check Response) from the power meter 101. The health check-up memory unit 2017 memorizes various data necessary for performing health check-ups.

<A-2.動作> <A-2. Action>

切斷配電線11d時,電力用戶2停電。電力用戶2停電時,非電池驅動的電表102不能動作,但電池驅動的電表202可動作。於是,第一實施形態的停電測出系統,使用各電力用戶1、2、3中設置的瓦斯表201、202、203,測出各電力用戶1、2、3的停電。因此,第一實施形態的停電測出系統中,每一電力用戶的瓦斯表與電表是配對的。 When the power distribution line 11d is cut off, the power user 2 loses power. When the power user 2 fails, the non-battery-driven electric meter 102 cannot operate, but the battery-driven electric meter 202 can operate. Therefore, the power outage detection system of the first embodiment uses the gas meters 201, 202, and 203 installed in the power users 1, 2, and 3 to detect the power outages of the power users 1, 2, and 3. Therefore, in the power outage detection system of the first embodiment, the gas meter and the electricity meter of each power user are paired.

第2圖中,用點線框一起圍繞電表101與瓦斯表201,顯示這些是配對的。關於電表102與瓦斯表202、電表103與瓦斯表203也相同。以此方式,各瓦斯表201、202、203與各電表101、102、103一對一對應。本說明書中,對應瓦斯表201、202、203的電表101、102、103也分別稱作瓦斯表201、202、203的「對應電表」。基本上,每戶實行如此的配對。 In Figure 2, the electric meter 101 and the gas meter 201 are surrounded by a dotted frame, showing that these are paired. The same applies to the electric meter 102 and the gas meter 202, and the electric meter 103 and the gas meter 203. In this way, each gas meter 201, 202, and 203 corresponds to each electric meter 101, 102, and 103 one-to-one. In this specification, the electric meters 101, 102, and 103 corresponding to the gas meters 201, 202, and 203 are also referred to as "corresponding meters" of the gas meters 201, 202, and 203, respectively. Basically, each household implements such matching.

如第4圖所示,電力用戶2停電時,電表102與電表 101之間變成不能通訊。因此,集線器100不能收集電表102與電表103的測出資料。於是,使用電表的讀表資料進行停電測出的習知技術,在此情況下,只能以推測來判斷電力用戶3有無停電。相對於此,第一實施形態的停電測出系統,根據使用瓦斯表的健康檢查功能的以下說明的方法,正確判斷電力用戶3有無停電。 As shown in Figure 4, when power user 2 loses power, meter 102 and meter Communication becomes impossible between 101. Therefore, the hub 100 cannot collect the measured data of the electric meter 102 and the electric meter 103. Therefore, the conventional technology of using the meter reading data of the electric meter to perform power outage detection, in this case, it can only be estimated whether the power user 3 has a power outage. In contrast, the power failure detection system of the first embodiment accurately determines whether the power user 3 has a power failure based on the method described below using the health check function of the gas meter.

第5圖係顯示電力用戶2中停電測出處理順序。電表102與瓦斯表202配對。瓦斯表202,傳送無線信號的健康檢查要求給對應電表的電表102(步驟S101)。電表102,一接收到健康檢查要求,就傳送健康檢查應答給瓦斯表202(步驟S102)。瓦斯表202,從電表102一接收到健康檢查應答,就確認電表102在通電狀態,即電力用戶2沒停電。以此方式,瓦斯表202根據健康檢查要求的應答狀況,判斷設置電表102的電力用戶2的停電狀況。 Figure 5 shows the processing sequence of power outage detection in the power user 2. The electric meter 102 is paired with the gas meter 202. The gas meter 202 transmits a wireless signal health check request to the electric meter 102 corresponding to the electric meter (step S101). When the electric meter 102 receives the health check request, it transmits a health check response to the gas meter 202 (step S102). As soon as the gas meter 202 receives the health check response from the power meter 102, it confirms that the power meter 102 is in the energized state, that is, the power user 2 has not powered off. In this way, the gas meter 202 determines the power outage status of the power user 2 who installed the power meter 102 based on the response status of the health check request.

其次,假設電力用戶2發生停電(步驟S103)。之後,瓦斯表202傳送健康檢查要求給電表102(步驟S104)。瓦斯表202,以信標周期T[s]傳送健康檢查要求給電表102。即,步驟S101到步驟S104的時間間隔是T[s]。因為電力用戶2停電,得到來自電力系統的電力動作的電表102在不能動作狀態。因此,不進行電表102到瓦斯表202的健康檢查應答(步驟S105)。 Next, it is assumed that a power outage occurs in the power user 2 (step S103). After that, the gas meter 202 transmits a health check request to the power meter 102 (step S104). The gas meter 202 transmits the health check request to the electric meter 102 in the beacon period T[s]. That is, the time interval from step S101 to step S104 is T[s]. Because the power user 2 is out of power, the power meter 102 that has been activated by the power from the power system is in an inoperable state. Therefore, the health check response from the electric meter 102 to the gas meter 202 is not performed (step S105).

即使如此,瓦斯表202也以信標周期T[s]傳送健康檢查要求給電表102,但電力用戶2的停電中,沒有從電表102到瓦斯表202的健康檢查應答。瓦斯表202根據步驟S104的健康檢查要求計算第N次(N是2以上的整數)的健康檢查要求傳送至 電表102(步驟S106),假設沒有對此來自電表102的健康檢查應答(步驟S107)。瓦斯表202,由於連續N次沒有來自電表102的健康檢查應答,判斷為電力用戶2停電。在此,N稱作停電測出次數臨界值。以此方式,瓦斯表202根據健康檢查要求的應答狀況判斷設置電表102的電力用戶2的停電狀況。於是,瓦斯表202傳送電力用戶2停電的主旨資訊的停電測出通知給瓦斯表201(步驟S108)。停電測出通知,從瓦斯表201經由集線器200傳送給瓦斯網路204,再從瓦斯網路204傳送給電力網路104。藉此,電力網路104掌握電力用戶2停電。 Even so, the gas meter 202 transmits the health check request to the power meter 102 in the beacon period T[s], but during the power outage of the power user 2, there is no health check response from the power meter 102 to the gas meter 202. The gas meter 202 calculates the health check request for the Nth time (N is an integer greater than 2) according to the health check request in step S104 and transmits it to The power meter 102 (step S106), assuming that there is no response to the health check from the power meter 102 (step S107). The gas meter 202 has no health check response from the electric meter 102 for N consecutive times, so it is determined that the electric power user 2 is out of power. Here, N is called the critical value of the number of power outages detected. In this way, the gas meter 202 determines the power outage status of the power user 2 who installed the power meter 102 based on the response status of the health check request. Then, the gas meter 202 transmits the power outage detection notification of the main information of the power outage of the power user 2 to the gas meter 201 (step S108). The power failure detection notification is sent from the gas meter 201 to the gas network 204 via the hub 200, and then sent from the gas network 204 to the power network 104. Thereby, the power network 104 recognizes that the power user 2 is out of power.

又,瓦斯表202,因為電表102間的通訊是無線通訊,以一定的機率損失封包。結果,即使沒發生停電,瓦斯表202有時也不能從電表102接收到健康檢查應答。但是,瓦斯表202如上述說明,因為健康檢查連續N次不應答之後,才測出停電,可以防止誤測出封包損失為停電。停電測出需要的時間,根據健康檢查應答的傳送周期與停電測出次數臨界值N決定。健康檢查應答的傳送周期,等於健康檢查要求的信標周期T[s]。又,信標周期T[s]與停電測出次數臨界值N,根據各系統的使用用途決定適當的值,例如T=5[s]、N=5時,停電測出需要的時間是T×N=25[s]左右。 In addition, the gas meter 202, because the communication between the electric meters 102 is wireless communication, loses packets with a certain probability. As a result, even if a power failure does not occur, the gas meter 202 sometimes fails to receive a health check response from the electric meter 102. However, the gas meter 202 is as described above, because the power failure is detected only after the health check fails for N consecutive times, which can prevent the packet loss from being detected as a power failure by mistake. The time required for power failure detection is determined by the transmission period of the health check response and the critical value N of the number of power failure detections. The transmission period of the health check response is equal to the beacon period T[s] required by the health check. In addition, the beacon period T[s] and the critical value N of the number of power failure detections are determined according to the use of each system. For example, when T=5[s] and N=5, the time required for power failure detection is T ×N=about 25[s].

根據使用讀表資料進行停電測出的習知技術,停電測出需要的時間由讀表間隔決定,讀表間隔一般15分鐘、30分鐘或1小時等。根據第一實施形態的停電測出系統,相較於如此的習知技術,可以大幅度迅速測出停電。 According to the conventional technology of power failure detection using meter reading data, the time required for power failure detection is determined by the meter reading interval. The meter reading interval is generally 15 minutes, 30 minutes, or 1 hour. According to the power failure detection system of the first embodiment, a power failure can be detected significantly and quickly compared with such conventional technology.

以上,說明電力用戶2中的停電測出處理,但同樣 的停電測出處理也在其他電力用戶1、3進行。即,電力用戶3停電的話,因為瓦斯表203連續N次沒接收到來自電表103的健康檢查應答,測出電表103停電,通知瓦斯表202停電測出通知。電力用戶3的停電資訊,從瓦斯表202經由瓦斯表201、集線器200通知瓦斯網路204,再從瓦斯網路204通知電力網路104。藉此,瓦斯網路204掌握電力用戶3停電。另一方面,電力用戶3沒停電的話,因為瓦斯表203從電表103接收健康檢查應答,不進行停電測出通知。因此,電力網路104,可以掌握每一電力用戶有無停電。 Above, the power outage detection processing in power user 2 has been described, but the same The power outage detection processing is also carried out by other power users 1 and 3. That is, if the power user 3 loses power, because the gas meter 203 has not received the health check response from the power meter 103 for N consecutive times, the power meter 103 is detected to be power off, and the gas meter 202 is notified of the power failure detection notification. The power outage information of the power user 3 is notified to the gas network 204 from the gas meter 202 via the gas meter 201 and the hub 200, and then to the power network 104 from the gas network 204. Thereby, the gas network 204 knows that the power user 3 is out of power. On the other hand, if the power user 3 does not have a power failure, the gas meter 203 receives the health check response from the power meter 103 and does not issue a power failure detection notification. Therefore, the power network 104 can know whether each power user has a power outage.

其次,說明關於電表與瓦斯表的配對。第6圖顯示設定器401根據與瓦斯表201的無線通訊,進行對瓦斯表201配對設定的狀態。如此的設定,例如在電力用戶1設置瓦斯表201之際實行。 Next, explain the pairing of the electric meter and the gas meter. FIG. 6 shows a state in which the setting device 401 performs pairing settings for the gas meter 201 based on the wireless communication with the gas meter 201. Such a setting is performed when the electric power user 1 installs the gas meter 201, for example.

第7圖係顯示配對的設定內容。設定內容,包含與電表101的無線連接頻率、傳送至電表101的健康檢查要求的信標周期、對電表101的停電測出次數臨界值、配對對象的電表101的MAC(Media Access Control(媒體存取控制))位址。這些設定內容記憶在構成瓦斯表201的健康檢查用記憶部2017的非揮發性記憶體內。在此,說明關於電力用戶1中的配對,但電力用戶2、3中的配對也與此相同。 Figure 7 shows the content of pairing settings. The setting content includes the wireless connection frequency with the electric meter 101, the beacon period of the health check request transmitted to the electric meter 101, the threshold value of the number of power outages detected on the electric meter 101, and the MAC (Media Access Control (Media Access Control) of the matched electric meter 101). Take control)) address. These setting contents are memorized in the non-volatile memory of the health check memory unit 2017 constituting the gas meter 201. Here, the pairing in the power user 1 will be described, but the pairing in the power users 2 and 3 is also the same.

第8圖係顯示電表101中裝載的通訊協定堆疊1101以及瓦斯表201中裝載的通訊協定堆疊1201。通訊協定堆疊1101、1201中,成為物理層的RF-PHY(Physical(實體))是共同的規格。成為其上階層的MAC(Media Access Control(媒體存 取控制))層、NET(Network(網路))層、SM(System Management(系統管理))層、APL(Application(應用))層,在通訊協定堆疊1101、1201間不同是一般的,假設前者為MAC-B、NET-B、SM-B、APL-B,後者為MAC-A、NET-A、SM-A、APL-A。但是,因為瓦斯表201與電表101進行無線通訊,通訊協定堆疊1201的MAC層中裝載MAC-A加上與通訊協定堆疊1101共同的MAC-B。 Figure 8 shows the protocol stack 1101 loaded in the electricity meter 101 and the protocol stack 1201 loaded in the gas meter 201. In the protocol stacks 1101 and 1201, RF-PHY (Physical), which becomes the physical layer, is a common specification. Become the upper-level MAC (Media Access Control) Take control)) layer, NET (Network (network)) layer, SM (System Management (system management)) layer, APL (Application (application)) layer, the difference between the protocol stacks 1101 and 1201 is general, assuming The former are MAC-B, NET-B, SM-B, and APL-B, and the latter are MAC-A, NET-A, SM-A, and APL-A. However, because the gas meter 201 is in wireless communication with the electricity meter 101, the MAC layer of the protocol stack 1201 is loaded with MAC-A plus the MAC-B common to the protocol stack 1101.

從電表101到瓦斯表201的健康檢查的連續不應答次數超過停電測出次數臨界值N時,瓦斯表201內的MAC-B通知SM-A,根據瓦斯表201的通訊協議通知集線器200停電。 When the number of consecutive non-responses from the health check from the electric meter 101 to the gas meter 201 exceeds the threshold N of the number of power outages detected, the MAC-B in the gas meter 201 notifies SM-A, and informs the hub 200 of a power outage according to the communication protocol of the gas meter 201.

上述說明中,說明關於使用健康檢查封包的停電測出。但是,健康檢查封包,係從瓦斯表往電表定期傳送的封包的一例。使用其他定期傳送的封包代替健康檢查封包也可以。 In the above description, the power outage detection using the health check packet is described. However, the health check packet is an example of the packet periodically transmitted from the gas meter to the electricity meter. It is also possible to use other regularly transmitted packets instead of health check packets.

<A-3.效果> <A-3. Effect>

第一實施形態的停電測出系統,係測出複數的電力用戶1、2、3停電的停電測出系統。此停電測出系統,包括設置在各電力用戶1、2、3並以無線連接構成第1通訊網路的複數的電表101、102、103、設置在各電力用戶1、2、3並以無線連接構成第2通訊網路的電池驅動的複數的電池驅動表即瓦斯表201、202、203、存在於第1通訊網路的上層的第1上層網路即電力網路104以及存在於第2通訊網路的上層的第2上層網路即瓦斯網路204。於是,各瓦斯表201、202、203,與各電表101、102、103一對一對應,對於對應的電表101、102、103即對應電表定期傳送無線信號,根據對無線信號的對應電表的應答狀 況,判斷設置對應電表的電力用戶1、2、3的停電狀況。於是,各瓦斯表201、202、203一判斷設置對應電表的電力用戶有停電,其主旨資訊的停電測出通知,就從第2通訊網路經由瓦斯網路204傳達至電力網路104。因此,根據第一實施形態的停電測出系統,使用構成電池驅動表的網路,可以正確掌握各電力用戶的停電狀況。 The power failure detection system of the first embodiment is a power failure detection system that detects power failures of multiple power users 1, 2, and 3. This power failure detection system includes a plurality of electric meters 101, 102, 103 installed in each power user 1, 2, 3 and wirelessly connected to form the first communication network, and installed in each power user 1, 2, 3 and connected by wireless A plurality of battery-driven meters that constitute the second communication network, namely gas meters 201, 202, and 203, the first upper network that is present on the upper layer of the first communication network, the power network 104, and the upper layer of the second communication network The second upper layer network is the gas network 204. Therefore, each gas meter 201, 202, 203 has a one-to-one correspondence with each electric meter 101, 102, 103, and periodically transmits wireless signals to the corresponding electric meters 101, 102, 103, that is, the corresponding electric meters, and according to the response of the corresponding electric meters to the wireless signals shape In this case, determine the power outage status of power users 1, 2, and 3 who set up corresponding meters. Therefore, as soon as each gas meter 201, 202, 203 determines that the power user setting the corresponding meter has a power failure, the power failure detection notification of the main information is transmitted from the second communication network through the gas network 204 to the power network 104. Therefore, according to the power failure detection system of the first embodiment, the power failure status of each power user can be accurately grasped by using the network constituting the battery-driven meter.

又,第一實施形態的停電測出系統中,各瓦斯表201、202、203,連續預定的次數,沒有來自對應電表的電表101、102、103對無線信號的應答時,測出設置對應電表的電表101、102、103的電力用戶1、2、3停電。因此,根據第一實施形態的停電測出系統,可以防止誤測出封包損失為停電。 Furthermore, in the power failure detection system of the first embodiment, the gas meters 201, 202, and 203 continue for a predetermined number of times, and when there is no response from the corresponding meter 101, 102, 103 to the wireless signal, the corresponding meter is detected and installed Power users 1, 2, and 3 of the meters 101, 102, and 103 are out of power. Therefore, according to the power failure detection system of the first embodiment, it is possible to prevent the packet loss from being erroneously detected as a power failure.

又,第一實施形態的停電測出系統中,無線信號是健康檢查封包也可以。健康檢查封包的傳送周期,例如5秒,比電表的讀表間隔短。因此,根據第一實施形態的停電測出系統的話,相較於使用電表的讀表值進行停電測出的情況,可以早期測出停電。 Also, in the power failure detection system of the first embodiment, the wireless signal may be a health check packet. The transmission period of the health check packet, for example, 5 seconds, is shorter than the meter reading interval of the electric meter. Therefore, according to the power failure detection system of the first embodiment, the power failure can be detected earlier than when the power failure is detected using the meter reading value of the electric meter.

<B.第二實施形態> <B. Second Embodiment>

<B-1.構成> <B-1. Composition>

第9圖係第二實施形態的停電測出系統的全體構成圖。第二實施形態的停電測出系統,包括第一實施形態的停電測出系統的構成,再加上分別設置於電力用戶1、2、3的HEMS(Home Energy Management System(家庭能源管理系統))機器301、302、303。第10圖顯示第二實施形態的停電測出系統的構成要素間的連接關係。HEMS機器301、302、303,分別與HEMS網 路304連接。 Figure 9 is a diagram of the overall configuration of the power failure detection system of the second embodiment. The power failure detection system of the second embodiment includes the configuration of the power failure detection system of the first embodiment, plus HEMS (Home Energy Management System) installed in power users 1, 2, and 3 respectively Machines 301, 302, 303. Figure 10 shows the connection relationship among the components of the power failure detection system of the second embodiment. HEMS machines 301, 302, and 303 are respectively connected to the HEMS network Road 304 is connected.

第10圖中,以點線框一起圍繞電表101、瓦斯表201以及HEMS機器301,顯示這些配對。更正確說來,瓦斯表201與電表101以及HEMS機器301兩方配對。同樣地,瓦斯表202與電表102以及HEMS機器302兩方配對,瓦斯表203與電表103以及HEMS機器303兩方配對。以此方式,各瓦斯表201、202、203以一對一與各電表101、102、103以及HEMS機器301、302、303對應。本說明書中,對應瓦斯表201、202、203的HEMS機器301、302、303也分別稱作瓦斯表201、202、203的「對應HEMS機器」。基本上,每電力用戶進行如此的配對。又,瓦斯表201、202、203的對應HEMS機器,必須設定為與對應電表相同的電力用戶。 In Figure 10, the electric meter 101, the gas meter 201, and the HEMS device 301 are surrounded by a dotted frame to show these pairs. More precisely, the gas meter 201 is paired with the electric meter 101 and the HEMS machine 301. Similarly, the gas meter 202 is paired with the electric meter 102 and the HEMS machine 302, and the gas meter 203 is paired with the electric meter 103 and the HEMS machine 303. In this way, the gas meters 201, 202, and 203 correspond to the electric meters 101, 102, and 103 and the HEMS devices 301, 302, and 303 one to one. In this specification, the HEMS devices 301, 302, and 303 corresponding to the gas meters 201, 202, and 203 are also referred to as "the corresponding HEMS devices" of the gas meters 201, 202, and 203, respectively. Basically, every power user performs such a pairing. In addition, the corresponding HEMS equipment of the gas meters 201, 202, and 203 must be set to the same power user as the corresponding electric meter.

<B-2.動作> <B-2. Action>

瓦斯表201,在第一實施形態中對於對應電表的電表101進行健康檢查,但第二實施例中對於電表101再加上對應HEMS機器的HEMS機器301也進行健康檢查。於是,瓦斯表201根據電表101與HEMS機器301兩方的健康檢查應答狀況,判斷電力用戶1中的停電發生狀況。瓦斯表202、203也進行與瓦斯表201同樣的動作。藉此,可以得到比第一實施形態可靠度更高的停電資訊。 In the first embodiment, the gas meter 201 performs a health check on the electric meter 101 corresponding to the electric meter, but in the second embodiment, the health check is also performed on the electric meter 101 plus the HEMS device 301 corresponding to the HEMS device. Then, the gas meter 201 determines the power outage occurrence status of the power user 1 based on the health check response status of both the power meter 101 and the HEMS device 301. The gas meters 202 and 203 also perform the same operations as the gas meter 201. With this, it is possible to obtain power outage information with higher reliability than the first embodiment.

第11圖係顯示電力用戶2停電的情況下第二實施形態的停電測出系統的各構成要素間的連接關係。電力用戶2停電的情況下,電表102與電表101之間不能通訊。又,從電表102與HEMS機器302到瓦斯表202,不能進行健康檢查應答。另 一方面,沒發生停電的電力用戶3中,從電表103與HEMS機器303到瓦斯表203,可以進行健康檢查應答。 Fig. 11 shows the connection relationship between the components of the power outage detection system of the second embodiment when the power user 2 has a power outage. When the power user 2 loses power, the power meter 102 and the power meter 101 cannot communicate. Also, from the electric meter 102 and the HEMS device 302 to the gas meter 202, the health check response cannot be performed. another On the one hand, among the power users 3 that have not experienced a power outage, from the electric meter 103 and the HEMS device 303 to the gas meter 203, a health check response can be performed.

第12圖,顯示停電發生時瓦斯表202等的順序。電表102與HEMS機器302,與瓦斯表202配對。瓦斯表202,對電表102傳送無線信號的健康檢查要求(步驟S201)。電表102,一接收到來自瓦斯表202的健康檢查要求,就傳送健康檢查應答給瓦斯表(步驟S202)。 Figure 12 shows the sequence of the gas meter 202 when a power failure occurs. The electric meter 102 is paired with the HEMS machine 302 and the gas meter 202. The gas meter 202 sends a health check request for the wireless signal transmitted by the electric meter 102 (step S201). The electric meter 102, upon receiving the health check request from the gas meter 202, transmits a health check response to the gas meter (step S202).

其次,瓦斯表202,對HEMS機器302傳送無線信號的健康檢查要求(步驟S203)。HEMS機器302,從瓦斯表202一接收到健康檢查要求,就傳送健康檢查應答給瓦斯表202(步驟S204)。 Next, the gas meter 202 requests the HEMS device 302 to transmit a health check of the wireless signal (step S203). Upon receiving the health check request from the gas meter 202, the HEMS device 302 transmits a health check response to the gas meter 202 (step S204).

其次,假設電力用戶2發生停電(步驟S205)。之後,瓦斯表202對電表102傳送健康檢查要求(步驟S206)。瓦斯表202以一定的信標周期T[s]對電表102傳送健康檢查要求。即,步驟S201到步驟S206的時間間隔是T[s]。因為電力用戶2停電,得到來自電力系統的電力動作的電表102在不能動作狀態。因此,不進行電表102到瓦斯表202的健康檢查應答(步驟S207)。 Next, suppose that a power outage occurs in the power user 2 (step S205). After that, the gas meter 202 transmits a health check request to the electric meter 102 (step S206). The gas meter 202 transmits a health check request to the electric meter 102 in a certain beacon period T[s]. That is, the time interval from step S201 to step S206 is T[s]. Because the power user 2 is out of power, the power meter 102 that has been activated by power from the power system is in an inoperable state. Therefore, the health check response from the electric meter 102 to the gas meter 202 is not performed (step S207).

其次,瓦斯表202對HEMS機器302傳送健康檢查要求(步驟S208)。瓦斯表202以一定的信標周期T[s]對HEMS機器302傳送健康檢查要求。即,步驟S203到步驟S208的時間間隔是T[s]。因為電力用戶2停電,得到來自電力系統的電力動作的電表102在不能動作狀態。因此,不進行電表102到瓦斯表202的健康檢查應答(步驟S207)。 Next, the gas meter 202 transmits a health check request to the HEMS machine 302 (step S208). The gas meter 202 transmits a health check request to the HEMS machine 302 in a certain beacon period T[s]. That is, the time interval from step S203 to step S208 is T[s]. Because the power user 2 is out of power, the power meter 102 that has been activated by power from the power system is in an inoperable state. Therefore, the health check response from the electric meter 102 to the gas meter 202 is not performed (step S207).

雖然如此,瓦斯表202也以信標周期T[s]對電表102與HEMS機器302重複傳送健康檢查要求。但是,電力用戶2停電中,沒有從電表102與HEMS機器302對瓦斯表202的健康檢查應答。瓦斯表202,根據步驟S206的健康檢查要求傳送計算第N次(N係停電測出次數臨界值)的健康檢查要求給電表102(步驟S210),假設對於此沒有來自電表102的健康檢查應答(步驟S211)。之後,瓦斯表202,根據步驟S208的健康檢查要求傳送計算第N次(N係停電測出次數臨界值)的健康檢查要求給HEMS機器302(步驟S212),假設對於此沒有來自HEMS機器302的健康檢查應答(步驟S213)。 Even so, the gas meter 202 also repeatedly transmits the health check request to the electric meter 102 and the HEMS machine 302 in the beacon period T[s]. However, during the power outage of the electric power user 2, there was no response to the health check of the gas meter 202 from the electric meter 102 and the HEMS device 302. The gas meter 202 transmits the health check request for calculating the Nth (the threshold value of the number of detected power outages of the N system) to the power meter 102 according to the health check request in step S206 (step S210), assuming that there is no health check response from the power meter 102 ( Step S211). After that, the gas meter 202 transmits and calculates the health check request for the Nth time (the threshold value of the number of detected power outages) to the HEMS machine 302 according to the health check request in step S208 (step S212), assuming that there is no data from the HEMS machine 302 Health check response (step S213).

此時,瓦斯表202,由於連續N次沒有來自電表102與HEMS機器302的健康檢查應答,判斷電力用戶2停電,傳送其主旨資訊的停電測出通知給瓦斯表201(步驟S214)。停電測出通知,從瓦斯表201經由集線器200傳送至瓦斯網路204,從瓦斯網路204傳送至電力網路104。藉此,電力網路104掌握電力用戶2停電。 At this time, since the gas meter 202 has no health check response from the electric meter 102 and the HEMS device 302 for N consecutive times, it is judged that the power user 2 is out of power, and the power outage detection notice of its subject information is transmitted to the gas meter 201 (step S214). The power failure detection notification is sent from the gas meter 201 to the gas network 204 via the hub 200, and sent from the gas network 204 to the power network 104. Thereby, the power network 104 recognizes that the power user 2 is out of power.

第13圖係顯示停電沒發生時瓦斯表202等的順序。從步驟S301到步驟S304,因為與第12圖的步驟S201到步驟S204相同,在此省略說明。步驟S305中,瓦斯表202對電表102傳送健康檢查要求。在此,雖然電力用戶2沒停電,但因為封包損失等的理由,電表102對瓦斯表202不能傳送健康檢查應答(步驟S306)。 Figure 13 shows the sequence of the gas meter 202 when the power failure does not occur. Steps S301 to S304 are the same as steps S201 to S204 in FIG. 12, so the description is omitted here. In step S305, the gas meter 202 transmits a health check request to the electric meter 102. Here, although the power user 2 does not have a power failure, the power meter 102 cannot transmit a health check response to the gas meter 202 due to packet loss or the like (step S306).

其次,瓦斯表202對HEMS機器302傳送健康檢查要求(步驟S307)。HEMS機器302,從瓦斯表202一接收到健康檢 查要求,就對瓦斯表202傳送健康檢查應答(步驟S308)。 Next, the gas meter 202 transmits a health check request to the HEMS machine 302 (step S307). HEMS machine 302, received a health check from gas meter 202 Upon request, a health check response is sent to the gas meter 202 (step S308).

瓦斯表202,以信標周期T[s]對電表102重複傳送健康檢查要求,但電表102由於封包損失等、停電以外的理由不能對瓦斯表202傳送健康檢查應答。瓦斯表202根據步驟S305的健康檢查要求傳送計算第N次(N係停電測出次數臨界值)的健康檢查要求給電表102(步驟S309),假設對此也沒有來自電表102的健康檢查應答(步驟S310)。之後,瓦斯表202對HEMS機器302傳送健康檢查要求(步驟S311)。HEMS機器302,從瓦斯表202一接收到健康檢查要求,就對瓦斯表202傳送健康檢查應答(步驟S312)。 The gas meter 202 repeatedly transmits a health check request to the power meter 102 in a beacon period T[s], but the power meter 102 cannot transmit a health check response to the gas meter 202 due to reasons other than power failure, such as packet loss. The gas meter 202 transmits the health check request for calculating the Nth (the critical value of the number of detected power outages) to the power meter 102 according to the health check request in step S305 (step S309), assuming that there is no health check response from the power meter 102 ( Step S310). After that, the gas meter 202 transmits a health check request to the HEMS device 302 (step S311). The HEMS device 302, upon receiving the health check request from the gas meter 202, transmits a health check response to the gas meter 202 (step S312).

在此,瓦斯表202連續N次沒從電表102接收到健康檢查應答。另一方面,瓦斯表202從HEMS機器302接收健康檢查應答。因此,瓦斯表202,沒判斷在電力用戶2測出停電,就不必傳送停電測出通知給瓦斯表201。第一實施形態中,封包的損失等,由於停電以外的理由,即使不能從電表102接收到健康檢查應答的情況下,N次連續時也進行停電測出。但是,第二實施形態中根據電表102與瓦斯表202兩方,因為只要連續N次不能接收到健康檢查應答的情況下就進行停電測出,可以更正確進行停電測出。 Here, the gas meter 202 has not received a health check response from the electric meter 102 for N consecutive times. On the other hand, the gas meter 202 receives a health check response from the HEMS device 302. Therefore, the gas meter 202 does not determine that the power user 2 has detected a power outage, and there is no need to transmit the power outage detection notice to the gas meter 201. In the first embodiment, even if the health check response cannot be received from the power meter 102 due to reasons other than the power failure due to packet loss or the like, the power failure detection is performed when N consecutive times. However, in the second embodiment, based on both the power meter 102 and the gas meter 202, the power failure detection is performed if the health check response cannot be received N consecutive times, and the power failure detection can be performed more accurately.

其次,說明關於電表以及HEMS機器與瓦斯表的配對。第14圖根據設定器401與瓦斯表201的無線通訊,顯示對瓦斯表201進行配對設定的狀態。如此的設定,例如在電力用戶1設置瓦斯表201之際進行。 Next, explain the pairing of electricity meters and HEMS equipment with gas meters. Figure 14 shows the status of pairing setting of the gas meter 201 based on the wireless communication between the setting device 401 and the gas meter 201. Such a setting is performed when the power user 1 sets the gas meter 201, for example.

第15圖係顯示配對的設定內容。設定內容中,有 電表101用的設定內容與HEMS機器301用的設定內容,分別包含無線連接頻率、健康檢查要求的信標周期、停電測出次數臨界值以及配對對象的MAC位址。這些設定內容記憶在構成瓦斯表201的健康檢查用記憶部2017的非揮發性記憶體內。在此,說明電力用戶1中的配對,但電力用戶2、3中的配對也與此相同。 Figure 15 shows the content of pairing settings. In the setting content, there are The setting content for the power meter 101 and the setting content for the HEMS device 301 respectively include the wireless connection frequency, the beacon period required by the health check, the threshold of the number of power outage detections, and the MAC address of the pairing target. These setting contents are memorized in the non-volatile memory of the health check memory unit 2017 constituting the gas meter 201. Here, the pairing in the power user 1 is explained, but the pairing in the power users 2 and 3 is also the same.

<B-3.效果> <B-3. Effect>

第二實施形態的停電測出系統,包括設置在各電力用戶1、2、3的複數的HEMS機器301、302、303,電池驅動表的各瓦斯表201、202、203,一對一對應設置在與對應電表的電表101、102、103相同電力用戶1、2、3中的HEMS機器301、302、303,對於對應HEMS機器的HEMS機器301、302、303與對應電表的電表101、102、103定期傳送無線信號,根據對於無線信號的對應電表以及對應HEMS機器的應答狀況,測出設置對應電表的電力用戶1、2、3停電。因此,例如即使瓦斯表202因停電以外的理由沒有來自電表102的應答的情況下,有來自HEMS機器302的應答時,也可以辨識電力用戶2沒發生停電。結果,由於停電以外的理由電表102不能回應無線信號時,可以防止誤測出瓦斯表202停電。 The power failure detection system of the second embodiment includes a plurality of HEMS devices 301, 302, and 303 installed in each power user 1, 2, and 3, and each gas meter 201, 202, and 203 of a battery-driven meter is set in one-to-one correspondence. The HEMS devices 301, 302, and 303 in the same power users 1, 2, and 3 as the corresponding power meters 101, 102, 103, for the HEMS devices 301, 302, 303 corresponding to the HEMS devices and the corresponding power meters 101, 102, 103 periodically transmits wireless signals, and according to the response status of the corresponding electric meters to the wireless signals and the corresponding HEMS devices, it is detected that the power users 1, 2, and 3 who set the corresponding electric meters are out of power. Therefore, for example, even if the gas meter 202 does not receive a response from the power meter 102 due to reasons other than a power failure, when there is a response from the HEMS device 302, it can be recognized that the power user 2 does not have a power failure. As a result, when the power meter 102 cannot respond to the wireless signal due to reasons other than the power failure, it is possible to prevent the gas meter 202 from detecting a power failure by mistake.

又,第二實施形態的停電測出系統中,各瓦斯表201、202、203,連續預定的次數沒有來自對應電表的電表101、102、103以及對應HEMS機器的HEMS機器301、302、303兩方對無線信號的應答時,判斷設置對應電表的電表101、102、103的電力用戶有停電。例如即使瓦斯表202由於停電以外的理由 連續複數次沒有來自電表102的應答的情況下,有來自HEMS機器302的應答時,也可以辨識電力用戶2沒發生停電。結果,由於停電以外的理由電表102不能回應無線信號時,可以防止誤測出瓦斯表202停電。 In addition, in the power outage detection system of the second embodiment, the gas meters 201, 202, and 203 are not received from the corresponding meter 101, 102, 103 and the HEMS device 301, 302, 303 corresponding to the HEMS device for a predetermined number of consecutive times. When the party responds to the wireless signal, it is determined that the power user who has installed the power meters 101, 102, and 103 corresponding to the power meters has a power failure. For example, even if the gas meter 202 is due to reasons other than power failure When there is no response from the power meter 102 for a plurality of times, and there is a response from the HEMS device 302, it can be recognized that the power user 2 does not have a power outage. As a result, when the power meter 102 cannot respond to the wireless signal due to reasons other than the power failure, it is possible to prevent the gas meter 202 from detecting a power failure by mistake.

<C.第三實施形態> <C. Third Embodiment>

<C-1.構成> <C-1. Composition>

第16圖係第三實施形態的停電測出系統的全體構成圖。第三實施形態的停電測出系統,在第1圖所示的第一實施形態的停電測出系統中,取代電表101、102、103,包括電表101A、102A、103A。第17圖係顯示電表101A的構成。以第17圖代表顯示電表101A的構成,但電表102A、103A的構成也與此相同。電表101A,包括無線裝置1010A與本體1011。無線裝置1010A,具有第一、二實施形態的電表101的無線裝置1010再加上電容器1016。 Figure 16 is a diagram showing the overall configuration of the power failure detection system of the third embodiment. The power failure detection system of the third embodiment includes the power meters 101A, 102A, and 103A in place of the power meters 101, 102, and 103 in the power failure detection system of the first embodiment shown in Fig. 1. Figure 17 shows the composition of the electric meter 101A. The configuration of the electric meter 101A is shown in Fig. 17, but the configurations of the electric meters 102A and 103A are also the same. The electric meter 101A includes a wireless device 1010A and a main body 1011. The wireless device 1010A includes the wireless device 1010 having the electric meter 101 of the first and second embodiments plus a capacitor 1016.

第三實施形態的電表101A,通常時間以供給至電力用戶1的電力系統的電力動作。但是,電力用戶1發生停電時,電表101A以電容器1016內儲存的電力固定時間動作。假設根據電表101A的電容器1016的動作時間為Tc[s]的話,Tc>T。因此,電力用戶1停電後,電表101A至少一次從瓦斯表201接受健康檢查要求,相對於此可以進行健康檢查應答。 The electric meter 101A of the third embodiment operates on the electric power supplied to the electric power system of the electric power user 1 in a normal time. However, when a power outage occurs in the power user 1, the electric meter 101A operates with the electric power stored in the capacitor 1016 for a fixed time. Assuming that the operating time of the capacitor 1016 according to the electric meter 101A is Tc[s], Tc>T. Therefore, after the power user 1 loses power, the electric meter 101A receives a health check request from the gas meter 201 at least once, and can perform a health check response relative to this.

<C-2.動作> <C-2. Action>

第18圖係顯示電力用戶2中的瓦斯表202與電表102A的順序。第18圖中,代表說明電力用戶2中的順序,但其他的電力用戶1、3中的順序也相同。 Figure 18 shows the sequence of the gas meter 202 and the electricity meter 102A in the power consumer 2. In Figure 18, the order in the power user 2 is represented, but the order in the other power users 1 and 3 is also the same.

瓦斯表202,以信標周期T傳送健康檢查要求給電表102A(步驟S401)。電表102A從瓦斯表202一接收到健康檢查要求,就傳送健康檢查應答給瓦斯表202(步驟S402)。在此,電表102A在健康檢查應答中包含指示電力用戶2中有無停電的資訊。指示電力用戶2中有無停電的資訊,例如可以使用健康檢查應答內的旗標等包含。因為步驟S402的時刻電力用戶2沒發生停電,步驟S402的健康檢查應答中,包含電力用戶2沒發生停電的資訊。瓦斯表202從電表102A一接收到健康檢查應答,就根據其旗標等,辨識電力用戶2沒停電。以此方式,瓦斯表202根據健康檢查要求的應答狀況,判斷設置電表102的電力用戶2的停電狀況。 The gas meter 202 transmits a health check request to the electricity meter 102A in the beacon period T (step S401). When the electric meter 102A receives the health check request from the gas meter 202, it transmits a health check response to the gas meter 202 (step S402). Here, the power meter 102A includes information indicating whether there is a power outage in the power user 2 in the health check response. Information indicating whether there is a power outage in the power user 2, for example, can be included using a flag in the health check response. Because the power user 2 did not have a power outage at the time of step S402, the health check response in step S402 includes information that the power user 2 did not have a power outage. As soon as the gas meter 202 receives the health check response from the electric meter 102A, it recognizes that the power user 2 has no power failure based on its flag and the like. In this way, the gas meter 202 determines the power outage status of the power user 2 who installed the power meter 102 based on the response status of the health check request.

其次,假設電力用戶2發生停電(步驟S403)。之後,從步驟S401以經過信標周期T的定時,瓦斯表202傳送健康檢查要求給電表102A(步驟S404)。電表102A在停電發生後,時間Tc[s]以無線裝置中內建的電容器動作,從瓦斯表202一接收到健康檢查要求,就傳送指示健康檢查應答中包含電力用戶2發生停電的資訊之停電資訊給瓦斯表202(步驟S405)。 Next, it is assumed that a power outage occurs in the power user 2 (step S403). After that, at the timing when the beacon period T has elapsed from step S401, the gas meter 202 transmits a health check request to the electricity meter 102A (step S404). After the power outage occurs, the power meter 102A operates with the built-in capacitor in the wireless device at time Tc[s]. As soon as it receives the health check request from the gas meter 202, it sends a power outage indicating that the health check response includes the information that the power user 2 has a power outage. The information is given to the gas meter 202 (step S405).

瓦斯表202,從電表102A一接收到健康檢查應答,就根據其旗標等,辨識電力用戶2停電。於是,對瓦斯表201,傳送指示電力用戶2停電的資訊之停電測出通知(步驟S406)。此停電測出通知,從瓦斯表201經由集線器200傳送至瓦斯網路204,再從瓦斯網路204傳送至電力網路104。藉此,電力網路104掌握電力用戶2停電。以此方式,瓦斯表202根據健康檢查要求的應答狀況判斷設置電表102的電力用戶2的停電狀況。 When the gas meter 202 receives the health check response from the power meter 102A, it recognizes that the power user 2 is out of power based on its flag and the like. Then, to the gas meter 201, a power outage detection notification indicating information indicating that the power user 2 is out of power is transmitted (step S406). This power failure detection notification is sent from the gas meter 201 to the gas network 204 via the hub 200, and then sent from the gas network 204 to the power network 104. Thereby, the power network 104 recognizes that the power user 2 is out of power. In this way, the gas meter 202 determines the power outage status of the power user 2 who installed the power meter 102 based on the response status of the health check request.

一般,電表的無線通訊使用多點跳躍通訊。為了以多點跳躍通訊傳送停電通知至電力網路104,各電表的無線裝置,必須停電後1分鐘左右動作。因此,各電表的無線裝置必須裝載容量大的電池或電容器。但是,第三實施形態的停電測出系統中,因為使用電池驅動的瓦斯表的無線網路,各電表只要停電後比健康檢查的信標周期T久動作即可。例如,信標周期T是5秒的話,電表停電後5秒到10秒左右以電容器動作即可。因此,電容器的容量可以減少。結果,可以削減電表的成本,確實實行對電力網路104的停電通知。 Generally, the wireless communication of the electric meter uses multi-hop communication. In order to transmit the power failure notification to the power network 104 through multi-hop communication, the wireless device of each meter must operate about 1 minute after the power failure. Therefore, the wireless device of each electric meter must be equipped with a large-capacity battery or capacitor. However, in the power failure detection system of the third embodiment, since the wireless network of the battery-driven gas meter is used, each power meter only needs to operate longer than the beacon period T of the health check after the power failure. For example, if the beacon period T is 5 seconds, the electric meter can operate with a capacitor about 5 to 10 seconds after power failure. Therefore, the capacity of the capacitor can be reduced. As a result, the cost of the electric meter can be reduced, and the power outage notification to the power network 104 can be reliably implemented.

<C-3.效果> <C-3. Effect>

第三實施形態的停電測出系統中,各電表101、102、103內建電容器,設置各電表101、102、103的電力用戶發生停電時,比無線信號的傳送周期更長時間以電容器動作的同時,對於無線信號的應答無線信號中,包含設置各電表101、102、103的電力用戶1、2、3停電的主旨資訊之停電資訊,各瓦斯表201、202、203,在來自對應電表的各電表101、102、103的應答無線信號包含停電資訊的情況下,判斷設置對應電表的電力用戶1、2、3有停電。因此,第三實施形態的停電測出系統中,根據1次無線信號的收發,可以高速且正確進行停電測出。又,各電表101、102、103內建的電容器,因為只要可以儲存比無線信號的傳送周期久動作的電力即可,相較於以多點跳躍通訊傳送停電通知給電力網路104的情況,小容量就可以了。因此,可以削減電表101、102、103的成本。 In the power failure detection system of the third embodiment, each electric meter 101, 102, 103 has a built-in capacitor. When a power user who installs each electric meter 101, 102, 103 has a power failure, the capacitor operates longer than the wireless signal transmission cycle. At the same time, in the response to the wireless signal, the wireless signal includes the power outage information, which is the main information of the power outage of the power users 1, 2, and 3 who set up the power meters 101, 102, and 103. The gas meters 201, 202, and 203 are displayed in the corresponding power meters. When the response wireless signal of each meter 101, 102, 103 includes power outage information, it is determined that the power users 1, 2, and 3 who installed the corresponding meter have a power outage. Therefore, in the power failure detection system of the third embodiment, the power failure can be detected at high speed and accurately based on the transmission and reception of one wireless signal. In addition, the built-in capacitors of each electric meter 101, 102, 103 only need to store the electric power that operates longer than the transmission period of the wireless signal. Compared with the case where the power failure notification is transmitted to the power network 104 by multi-hop communication, it is smaller. Capacity is fine. Therefore, the cost of the electric meters 101, 102, and 103 can be reduced.

又,本發明,在其發明的範圍內,可以自由組合 各實施形態,或是適當變形、省略各實施形態。 In addition, the present invention can be freely combined within the scope of the invention Each embodiment may be appropriately modified or omitted.

1、2、3‧‧‧電力用戶 1, 2, 3‧‧‧Power users

11a、11b、11c、11d、11e‧‧‧配電線 11a, 11b, 11c, 11d, 11e‧‧‧distribution line

21‧‧‧高壓線 21‧‧‧High voltage line

31‧‧‧變壓器 31‧‧‧Transformer

100‧‧‧集線器 100‧‧‧ Hub

101、102、103‧‧‧電表 101, 102, 103‧‧‧ electric meter

104‧‧‧電力網路 104‧‧‧Power Network

200‧‧‧集線器 200‧‧‧ Hub

201、202、203‧‧‧瓦斯表 201, 202, 203‧‧‧Gas meter

204‧‧‧瓦斯網路 204‧‧‧Gas network

Claims (6)

一種停電測出系統,係測出複數的電力用戶停電的停電測出系統,包括:複數的電表,設置在各上述電力用戶,以無線連接構成第1通訊網路;電池驅動的複數的電池驅動表,設置在各上述電力用戶,以無線連接構成第2通訊網路;第1上層網路,存在於上述第1通訊網路的上層;以及第2上層網路,存在於上述第2通訊網路的上層;其中,各上述電池驅動表,與各上述電表一對一對應,對於對應的上述電表即對應電表定期傳送無線信號,根據對於上述無線信號的上述對應電表的應答狀況,判斷設置上述對應電表的上述電力用戶的停電狀況;各上述電池驅動表判斷設置上述對應電表的上述電力用戶有停電時,其主旨資訊的停電測出通知,從上述第2通訊網路經由上述第2上層網路傳達至上述第1上層網路。 A power outage detection system, which is a power outage detection system that detects power outages of a plurality of power users, including: a plurality of electric meters arranged in each of the above-mentioned power users, and wirelessly connected to form a first communication network; a plurality of battery-driven meters driven by batteries , Set up at each of the above-mentioned power users to form a second communication network by wireless connection; the first upper-layer network exists on the upper layer of the first communication network; and the second upper-layer network exists on the upper layer of the second communication network; Wherein, each of the battery-driven meters has a one-to-one correspondence with each of the above-mentioned electric meters, and periodically transmits wireless signals to the corresponding above-mentioned electric meters, that is, the corresponding electric meters. According to the response status of the above-mentioned corresponding electric meters to the above-mentioned wireless signals, the above Power user’s power outage status; when each of the above battery-driven meters judges that the power user who installed the corresponding meter has a power outage, the power outage detection notification of the subject information is transmitted from the second communication network to the second communication network via the second upper layer network. 1 Upper network. 如申請專利範圍第1項所述的停電測出系統,其中,各上述電池驅動表,連續預定的次數,沒有來自上述對應電表對上述無線信號的應答時,判斷設置上述對應電力的上述電力用戶有停電。 The power failure detection system described in the first item of the scope of patent application, wherein each of the battery-driven meters continues for a predetermined number of times, and when there is no response from the corresponding meter to the wireless signal, the power user who sets the corresponding power is determined There is a power outage. 如申請專利範圍第1項所述的停電測出系統,更包括:複數的HEMS機器,設置在各上述電力用戶;其中,各上述電池驅動表,一對一對應設置在與上述對應電表相同的上述電力用戶中的上述HEMS機器,對於對應的 上述HEMS機器即對應HEMS機器與上述對應電表,定期傳送上述無線信號,根據對上述無線信號的上述對應電表以及上述對應HEMS機器的應答狀況,判斷設置上述對應電表的上述電力用戶的停電狀況。 For example, the power failure detection system described in item 1 of the scope of patent application further includes: a plurality of HEMS machines installed in each of the above-mentioned electric power users; wherein, each of the above-mentioned battery-driven meters is arranged in one-to-one correspondence with the same corresponding electric meters as the above For the above-mentioned HEMS equipment among the above-mentioned power users, for the corresponding The HEMS device, that is, the corresponding HEMS device and the corresponding electricity meter, periodically transmits the wireless signal, and the power outage status of the power user who installs the corresponding electricity meter is determined based on the response status of the corresponding electricity meter and the corresponding HEMS device to the wireless signal. 如申請專利範圍第3項所述的停電測出系統,其中,各上述電池驅動表,連續預定的次數沒有來自上述對應電表以及上述對應HEMS機器兩方對上述無線信號的應答時,判斷設置上述對應電表的上述電力用戶有停電。 For example, the power failure detection system described in item 3 of the scope of patent application, wherein each of the battery-driven meters does not respond to the wireless signal from the corresponding electricity meter and the corresponding HEMS device for a predetermined number of consecutive The above-mentioned power user corresponding to the meter has a power outage. 如申請專利範圍第1項所述的停電測出系統,其中,各上述電表,內建電容器,設置各上述電表的上述電力用戶發生停電時,比上述無線信號的傳送周期久以上述電容器動作的同時,對於上述無線信號的應答無線信號,包含設置各上述電表的上述電力用戶停電的主旨資訊之停電資訊;各上述電池驅動表,在來自上述對應電表的上述應答無線信號包含上述停電資訊的情況下,判斷設置上述對應電表的上述電力用戶有停電。 The power failure detection system described in claim 1 of the patent application, wherein each of the above-mentioned meters has a built-in capacitor, and when the above-mentioned power user who installs each of the above-mentioned meters has a power failure, the above-mentioned capacitor operates longer than the transmission period of the above-mentioned wireless signal At the same time, the wireless signal in response to the wireless signal includes power outage information including the main information of the power outage of the power user who set each of the above-mentioned electric meters; each of the battery-driven meters, when the response wireless signal from the corresponding electric meter includes the above-mentioned power outage information Next, it is determined that the power user who installed the corresponding meter has a power outage. 申請專利範圍第1至5項中任一項所述的停電測出系統,其中,上述無線信號是健康檢查封包。 The power failure detection system described in any one of items 1 to 5 in the scope of the patent application, wherein the wireless signal is a health check packet.
TW107117726A 2017-12-27 2018-05-24 Power failure detection system TWI706141B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-251065 2017-12-27
JP2017251065A JP6906441B2 (en) 2017-12-27 2017-12-27 Power outage detection system

Publications (2)

Publication Number Publication Date
TW201928366A TW201928366A (en) 2019-07-16
TWI706141B true TWI706141B (en) 2020-10-01

Family

ID=67303598

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107117726A TWI706141B (en) 2017-12-27 2018-05-24 Power failure detection system

Country Status (2)

Country Link
JP (1) JP6906441B2 (en)
TW (1) TWI706141B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7403689B2 (en) * 2021-02-02 2023-12-22 三菱電機株式会社 wireless communication device
CN113507523A (en) * 2021-07-09 2021-10-15 南方电网科学研究院有限责任公司 Method and device for reporting power failure of metering equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050065742A1 (en) * 2003-09-08 2005-03-24 Smartsynch, Inc. Systems and methods for remote power management using IEEE 802 based wireless communication links
TWM273898U (en) * 2005-03-11 2005-08-21 Sung-Tzuo Jiang System for monitoring water or electricity consumption
US20060184288A1 (en) * 2003-09-08 2006-08-17 Smartsynch, Incorporated Systems and methods for remote power management using 802.11 wireless protocols
US20080075009A1 (en) * 2006-09-15 2008-03-27 Gilles Picard Use of minimal propagation delay path to optimize a mesh network
TWM474968U (en) * 2013-02-07 2014-03-21 Chang-Wei Lee The building instrumentation system device
WO2016020132A1 (en) * 2014-08-08 2016-02-11 Myfox Home automation device having an alternative communication link with a remote computer server

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010109852A (en) * 2000-06-02 2001-12-12 김태훈 Gauge auto management system
EP3236667B1 (en) * 2014-12-19 2020-08-26 Kabushiki Kaisha Toshiba Electronic device and method
JP2017141648A (en) * 2016-02-12 2017-08-17 日本電気株式会社 Water supply system, water supply pump device, and water supply pump control method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050065742A1 (en) * 2003-09-08 2005-03-24 Smartsynch, Inc. Systems and methods for remote power management using IEEE 802 based wireless communication links
US20060184288A1 (en) * 2003-09-08 2006-08-17 Smartsynch, Incorporated Systems and methods for remote power management using 802.11 wireless protocols
TWM273898U (en) * 2005-03-11 2005-08-21 Sung-Tzuo Jiang System for monitoring water or electricity consumption
US20080075009A1 (en) * 2006-09-15 2008-03-27 Gilles Picard Use of minimal propagation delay path to optimize a mesh network
TWM474968U (en) * 2013-02-07 2014-03-21 Chang-Wei Lee The building instrumentation system device
WO2016020132A1 (en) * 2014-08-08 2016-02-11 Myfox Home automation device having an alternative communication link with a remote computer server

Also Published As

Publication number Publication date
JP6906441B2 (en) 2021-07-21
JP2019118196A (en) 2019-07-18
TW201928366A (en) 2019-07-16

Similar Documents

Publication Publication Date Title
US8138934B2 (en) System and method for false alert filtering of event messages within a network
US8370697B2 (en) System and method for power outage and restoration notification in an advanced metering infrastructure network
US20090135836A1 (en) Collector device and system utilizing standardized utility metering protocol
TW200930993A (en) Utility disconnect monitor node with communication interface
CA2705094A1 (en) System and method for false alert filtering of event messages within a network
TWI678676B (en) Communication device, metering system and power outage notification method
MX2010004796A (en) Multiple communications protocol routing in advanced metering infrastructure context.
TWI706141B (en) Power failure detection system
KR101256944B1 (en) System and method for data recovery for automatic meter reading system
ES2902588T3 (en) Battery management system and communication method thereof
US8861565B2 (en) Scalable packets in a frequency hopping spread spectrum (FHSS) system
JP7372972B2 (en) Reconstruction of a personal area network or system after a network or system failure
JP6386084B2 (en) Electronic apparatus and method
CN106385343A (en) Method and device for monitoring client in distributed system, and distributed system
TWI743690B (en) Communication terminal constituting multi-hop network, and multi-hop network
KR100805820B1 (en) Method and apparatus for sensor network node fault management
CN106123476B (en) Intelligent detecting method for refrigerator
US11178524B2 (en) Data collection method using user terminal and data collection system
CN102149116B (en) Backup method and device for coordinator of wireless private area network
US8901915B2 (en) Voltage or contact closure sensor
CN208570841U (en) A kind of battery monitor equipment
WO2020110570A1 (en) Management system, management method, and program
JP2016046808A (en) Communication terminal, communication system, and network change method
KR20230076608A (en) Metering Data Remote Collection System Changing a Data Sending Time to a Server according to the Communication Sensitivity
CN117121263A (en) Management system for power storage device