TWI704817B - Radio resource management (rrm) measurement for new radio (nr) network - Google Patents

Radio resource management (rrm) measurement for new radio (nr) network Download PDF

Info

Publication number
TWI704817B
TWI704817B TW107120872A TW107120872A TWI704817B TW I704817 B TWI704817 B TW I704817B TW 107120872 A TW107120872 A TW 107120872A TW 107120872 A TW107120872 A TW 107120872A TW I704817 B TWI704817 B TW I704817B
Authority
TW
Taiwan
Prior art keywords
measurement
csi
block
configuration
rrm
Prior art date
Application number
TW107120872A
Other languages
Chinese (zh)
Other versions
TW201906437A (en
Inventor
林烜立
余倉緯
莊喬堯
Original Assignee
聯發科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯發科技股份有限公司 filed Critical 聯發科技股份有限公司
Priority claimed from US16/009,515 external-priority patent/US10911997B2/en
Publication of TW201906437A publication Critical patent/TW201906437A/en
Application granted granted Critical
Publication of TWI704817B publication Critical patent/TWI704817B/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Apparatus and methods are provided for RRM measurement in the NR network. In one novel aspect, the RRM measurement is configured with one measurement gap for SS block and CSI-RS. In one embodiment, an extended MGL (eMGL) is configured such that the SS block and CSI-RS is measurement within one measurement gap. In another embodiment, the shorter MGL (sMGL) that is shorter than the standard MGL is configured. In another novel aspect, the CSI-RS is allocated adjacent to the SS blocks such that one measurement gap is configured for both the SS block and CSI-RS measurement. In another novel aspect, the CSI-RS measurement is conditionally configured. In yet another novel aspect, the UE decodes the time index of the SS block conditionally.

Description

用於新無線電(NR)網路的無線電資源管理(RRM)測量Radio Resource Management (RRM) measurement for New Radio (NR) network

本發明總體涉及無線通訊,更具體地,涉及用於新無線電(new radio,NR)網路的有功率效率的(power-efficient)無線電資源管理(radio resource management,RRM)的方法和裝置。 The present invention generally relates to wireless communication, and more specifically, to a power-efficient (radio resource management, RRM) method and apparatus for a new radio (NR) network.

移動網路通信持續快速增長。移動資料使用量將繼續飆升。新的資料應用和服務將需要更高的速度和更高的效率。大資料頻寬應用繼續吸引更多消費者。新技術被開發以滿足增長,例如載波聚合(carrier aggregation,CA),使運營商,供應商,內容提供者和其他移動使用者能滿足日益增長的資料頻寬需求。5G無線網路實施NR技術可以提高網路容量。 Mobile network communications continue to grow rapidly. Mobile data usage will continue to soar. New data applications and services will require higher speed and higher efficiency. Big data bandwidth applications continue to attract more consumers. New technologies have been developed to meet the growth, such as carrier aggregation (CA), which enables operators, suppliers, content providers and other mobile users to meet the increasing demand for data bandwidth. The implementation of NR technology in 5G wireless networks can increase network capacity.

在LTE網路中,測量間隙用於頻率間測量(inter-frequency measurement)。在NR中,當所有測量資源與測量間隙重疊時,測量間隙用於頻率間測量,具有間隙的頻率內測量(intra-frequency measurement)和無間隙的頻率內測量。對於NR中的RRM測量,UE可以被配置為測量同步信 號(synchronization signal,SS)塊和/或通道狀態資訊參考信號(channel state information reference signal,CSI-RS)。SS塊的事務被限制在5ms時間視窗內,而CSI-RS的傳輸可以更靈活地移動。這增加了SS塊和CSI-RS的RRM測量的複雜性。 In the LTE network, the measurement gap is used for inter-frequency measurement. In NR, when all measurement resources overlap with the measurement gap, the measurement gap is used for inter-frequency measurement, intra-frequency measurement with gaps and intra-frequency measurement without gaps. For RRM measurement in NR, the UE can be configured to measure synchronization information Number (synchronization signal, SS) block and/or channel state information reference signal (CSI-RS). The transaction of the SS block is limited within a 5ms time window, and the transmission of CSI-RS can be moved more flexibly. This increases the complexity of RRM measurement of SS blocks and CSI-RS.

需要一種改進和增強以便更有效地配置和執行NR網路的RRM測量。 An improvement and enhancement is needed to configure and perform RRM measurements for NR networks more effectively.

提供一種用於NR網路中RRM測量的方法和裝置。在一個新穎方面,RRM測量被配置具有一個測量間隙,以用於SS塊和CSI-RS。在一個例子中,擴展MGL(eMGL)被配置使得SS塊和CSI-RS在一個測量間隙中被測量。在另一個例子中,比標準MGL短的短MGL(sMGL)被配置。在又一個例子中,為不同的CSI-RS資源配置單個共同測量持續時間和單個共同時間偏移。在一個實施例中,在UE執行初始同步時RRM測量配置配置SS塊測量和CSI-RS測量,並且其中測量間隙被配置具有大於標準MGL的擴展測量間隙長度(eMGL),使得SS塊和CSI-RS在eMGL內都被測量。在另一實施例中,在UE執行初始同步之後RRM測量配置僅配置CSI-RS測量,並且其中測量間隙被配置具有小於標準MGL的短測量間隙長度(sMGL)。在又一個實施例中,RRM配置和測量間隙配置由專用信令配置。 A method and device for RRM measurement in NR network are provided. In a novel aspect, RRM measurement is configured with one measurement gap for SS block and CSI-RS. In one example, the extended MGL (eMGL) is configured so that the SS block and the CSI-RS are measured in one measurement gap. In another example, a short MGL (sMGL) that is shorter than the standard MGL is configured. In yet another example, a single common measurement duration and a single common time offset are configured for different CSI-RS resources. In one embodiment, the RRM measurement configuration configures SS block measurement and CSI-RS measurement when the UE performs initial synchronization, and wherein the measurement gap is configured to have an extended measurement gap length (eMGL) greater than the standard MGL, so that the SS block and CSI-RS RS is measured in eMGL. In another embodiment, the RRM measurement configuration only configures CSI-RS measurement after the UE performs initial synchronization, and wherein the measurement gap is configured to have a short measurement gap length (sMGL) smaller than the standard MGL. In yet another embodiment, the RRM configuration and measurement gap configuration are configured by dedicated signaling.

在另一個新穎方面,CSI-RS被分配鄰近SS塊,使得為SS塊和CSI-RS測量配置一個測量間隙。在一個實施例 中,CSI-RS被分配在位於SS塊之前的物理下行鏈路共用通道(physical downlink shared channel,PDSCH)符號中。在另一實施例中,CSI-RS被分配在位於SS塊之後的物理下行鏈路共用通道(PDSCH)符號。在又一個實施例中,SS塊是跨複數個模擬波束的SS突發塊,並且其中CSI-RS被分配在位於SS塊之後的物理下行鏈路共用通道(PDSCH)符號中。在一個實施例中,相同的模擬波束成形應用於SS突發塊和CSI-RS突發塊。 In another novel aspect, CSI-RS is allocated adjacent SS blocks, so that a measurement gap is configured for SS block and CSI-RS measurement. In one embodiment CSI-RS is allocated in the physical downlink shared channel (PDSCH) symbol located before the SS block. In another embodiment, the CSI-RS is allocated in a physical downlink shared channel (PDSCH) symbol located after the SS block. In yet another embodiment, the SS block is an SS burst block spanning a plurality of analog beams, and wherein the CSI-RS is allocated in a physical downlink shared channel (PDSCH) symbol located after the SS block. In one embodiment, the same analog beamforming is applied to the SS burst block and the CSI-RS burst block.

在另一個新穎方面,有條件地配置CSI-RS測量。在一個實施例中,UE接收RRM測量配置,該RRM測量配置包括用於CSI-RS測量的有條件的測量配置。用於CSI-RS的有條件的測量配置是基於如下觸發條件之一,該觸發條件包括:對服務小區的波束管理的測量結果,同步信號(SS)塊測量結果,以及無觸發條件。 In another novel aspect, CSI-RS measurements are conditionally configured. In one embodiment, the UE receives RRM measurement configuration, which includes conditional measurement configuration for CSI-RS measurement. The conditional measurement configuration for CSI-RS is based on one of the following trigger conditions, the trigger conditions including: measurement results of beam management of the serving cell, synchronization signal (SS) block measurement results, and no trigger conditions.

在又一個新穎方面,UE有條件地解碼SS塊的時間索引。UE根據所接收的RRM測量配置在CONNECTED狀態中執行RRM測量,其中在一個或複數個時間索引觸發條件被檢測到時UE僅對配置的SS塊的時間索引進行解碼。在一個實施例中,UE對服務小區和一個或複數個鄰居小區的SS塊執行RRM測量以獲得SS塊測量。在一個實施例中,時間索引觸發條件包括:通道狀況(condition),隨機接入通道(random-access channel,RACH)優化被啟用,並且NBRCSI-RS被配置並且足以用於RACH優化。在一個實施例中,RRM測量配置包括基於複數個觸發條件之一的用於CSI-RS測 量的有條件的測量配置,該複數個觸發條件包括:來自服務小區的波束管理的測量結果,SS塊的測量結果,以及無觸發條件。 In yet another novel aspect, the UE conditionally decodes the time index of the SS block. The UE performs RRM measurement in the CONNECTED state according to the received RRM measurement configuration, where the UE only decodes the time index of the configured SS block when one or more time index trigger conditions are detected. In one embodiment, the UE performs RRM measurements on the SS blocks of the serving cell and one or more neighbor cells to obtain SS block measurements. In one embodiment, the time index trigger condition includes: channel condition (condition), random-access channel (random-access channel, RACH) optimization is enabled, and NBRCSI-RS is configured and sufficient for RACH optimization. In one embodiment, the RRM measurement configuration includes a CSI-RS measurement configuration based on one of a plurality of trigger conditions. A number of conditional measurement configurations, the plurality of trigger conditions include: the measurement result of the beam management from the serving cell, the measurement result of the SS block, and no trigger condition.

在下面的詳細描述中描述了其他實施例和優點。該發明內容並非旨在限定本發明。本發明由請求項限定。 Other embodiments and advantages are described in the detailed description below. This summary is not intended to limit the invention. The present invention is defined by the claims.

100:無線網路 100: wireless network

102,103,104:基礎單元 102, 103, 104: basic unit

101,105,106,107,108 109:UE 101, 105, 106, 107, 108 109: UE

111:上行鏈路 111: Uplink

112:下行鏈路 112: Downlink

113,114,115 117,118,119:回程線路連接 113, 114, 115 117, 118, 119: backhaul line connection

102:基站 102: base station

126:天線 126: Antenna

191:RRM測量配置 191: RRM measurement configuration

192:RRM測量 192: RRM measurement

193:RRM測量間隙 193: RRM measurement gap

194:RRM測量報告 194: RRM measurement report

132:處理器 132: Processor

131:記憶體 131: Memory

136:程式 136: Program

134:收發器 134: Transceiver

123:收發器 123: Transceiver

122:處理器 122: processor

121:記憶體 121: memory

124:程式 124: Program

181:RRM測量 181: RRM measurement

211,221,231:MGL 211, 221, 231: MGL

212,222,232:MGRP 212, 222, 232: MGRP

223,233:x 223, 233: x

225,235,227,237:SS 225, 235, 227, 237: SS

226,228,236,238:CSI-RS 226, 228, 236, 238: CSI-RS

210,220,230:示意圖 210, 220, 230: schematic diagram

301,302,311,321,312,322:步驟 301, 302, 311, 321, 312, 322: steps

500,501,502,503,504,505:步驟 500, 501, 502, 503, 504, 505: steps

610,620,630:示意圖 610, 620, 630: schematic diagram

611,612,613,614:模擬波束 611, 612, 613, 614: analog beam

621,622,623,624:模擬波束 621, 622, 623, 624: analog beam

631,632,633,634:模擬波束 631, 632, 633, 634: analog beam

615-618,625-628,635-638:SS塊 615-618, 625-628, 635-638: SS block

651,652,653,654:模擬波束 651, 652, 653, 654: analog beam

655,656,657,658:SS塊 655, 656, 657, 658: SS block

661,662,663,664:模擬波束 661, 662, 663, 664: analog beam

665,666,667,668:SS塊 665, 666, 667, 668: SS block

710:SS突發 710: SS burst

720:CSI-RS突發 720: CSI-RS burst

801,802,803:步驟 801, 802, 803: steps

901,902,903:步驟 901, 902, 903: steps

1001,1002,1003:步驟 1001, 1002, 1003: steps

1101,1102,1103:步驟 1101, 1102, 1103: steps

附圖示出了本發明的實施例,在附圖中,相同的數字表示相同的部件。 The drawings show embodiments of the present invention. In the drawings, the same numbers indicate the same components.

第1圖示出基於本發明實施例的NR無線網路110的系統圖,其中NR無線網路100具有用於RRM測量的SS塊和/或CSI-RS測量;第2圖示出基於本發明實施例的在NR網路中用於UE的測量間隙配置的示例性示意圖,使得在一個間隙中執行SS塊和CSI-RS測量;第3圖示出基於本發明實施例的UE使用不同RRM測量配置執行初始同步和精細同步的示例性示意圖;第4A圖示出基於本發明實施例的具有示例的配置值的CSI-RS配置的示例表;第4B圖示出基於本發明實施例的當重利用用於波束管理的CSI-RS配置時具有示例配置值的CSI-RS配置的示例表;第5圖示出基於本發明實施例的在NR網路中UE在連接CONNECTED模式中具有RRM測量的切換過程的示例性示意圖; 第6A圖是基於本發明實施例的CSI-RS佈置在SS突發的5毫秒中且與SS塊鄰近的示例性示意圖,以用於15/30/120kHz場景;第6B圖是基於本發明實施例的CSI-RS佈置在SS突發的5毫秒中且與SS塊鄰近的示例性示意圖,以用於240kHz場景;第7圖是基於本發明實施例的在SS突發視窗之後放置CSI-RS的示例性示意圖;第8圖是基於本發明實施例的具有用於SS塊和SCI-RS的一個測量間隙的RRM測量配置的示例性流程圖;第9圖是基於本發明實施例的分配CSI-RS與SS塊鄰近以用於RRM測量的示例性流程圖;第10圖是基於本發明實施例的有條件的配置CSI-RS以用於RRM測量的示例性流程圖;第11圖是基於本發明實施例的UE有條件的解碼SS塊的時間索引的示例性流程圖。 Figure 1 shows a system diagram of an NR wireless network 110 based on an embodiment of the present invention, where the NR wireless network 100 has SS blocks and/or CSI-RS measurements for RRM measurement; Figure 2 shows a system diagram based on the present invention An exemplary schematic diagram of the measurement gap configuration for the UE in the NR network of the embodiment, so that SS block and CSI-RS measurements are performed in one gap; Figure 3 shows the UE using different RRM measurements based on the embodiment of the present invention An exemplary schematic diagram of configuring the implementation of initial synchronization and fine synchronization; Figure 4A shows an exemplary table of CSI-RS configuration with exemplary configuration values based on an embodiment of the present invention; Figure 4B shows an exemplary table based on an embodiment of the present invention. An example table of CSI-RS configuration with example configuration values when using CSI-RS configuration for beam management; Fig. 5 shows an example of a UE having RRM measurement in connected CONNECTED mode in an NR network based on an embodiment of the present invention An exemplary schematic diagram of the handover process; Figure 6A is an exemplary schematic diagram of CSI-RS arranged in 5 milliseconds of the SS burst and adjacent to the SS block based on an embodiment of the present invention for 15/30/120kHz scenarios; Figure 6B is based on the implementation of the present invention The CSI-RS of the example is arranged in 5 milliseconds of the SS burst and is adjacent to the SS block, for 240kHz scenario; Figure 7 is based on the embodiment of the present invention placing CSI-RS after the SS burst window Figure 8 is an exemplary flow chart of an RRM measurement configuration with a measurement gap for SS blocks and SCI-RS based on an embodiment of the present invention; Figure 9 is an exemplary flow chart of CSI allocation based on an embodiment of the present invention -RS and SS blocks are adjacent to an exemplary flow chart for RRM measurement; Figure 10 is an exemplary flow chart of conditionally configuring CSI-RS for RRM measurement based on an embodiment of the present invention; Figure 11 is based on An exemplary flowchart of the UE conditionally decoding the time index of the SS block in the embodiment of the present invention.

現在將詳細參考本發明的一些實施例,本發明一些實施例在附圖中示出。 Reference will now be made in detail to some embodiments of the present invention, which are shown in the accompanying drawings.

第1圖示出了根據本發明實施例的NR無線網路100的系統圖,該無線網路100具有被配置用於RRM測量的SS塊和/或CSI-RS測量。無線通訊系統100包括一個或複數個無線網路,每個無線通訊網路具有固定的基礎設施單元,例如接收無線通訊設備或基礎(base)單元102、103和104,形成分 佈在地理區域上的無線網路。基礎單元還可以稱為接入點,接入終端,基站,Node-B,eNode-B,gNB,或者本領域中使用的其他術語。基礎單元102,103和104中的每一個服務於地理區域。基礎單元在NR網路中執行波束成形。回程線路(Backhaul)連接113,114和115連接非共同定位(non-co-located)的接收基礎單元,例如102,103和104。這些回程線路連接可以是理想的或非理想的。 Figure 1 shows a system diagram of an NR wireless network 100 according to an embodiment of the present invention. The wireless network 100 has SS blocks configured for RRM measurement and/or CSI-RS measurement. The wireless communication system 100 includes one or more wireless networks, and each wireless communication network has a fixed infrastructure unit, such as receiving wireless communication equipment or base units 102, 103, and 104, which form points. A wireless network deployed in a geographical area. The basic unit may also be called an access point, an access terminal, a base station, Node-B, eNode-B, gNB, or other terms used in the art. Each of the base units 102, 103, and 104 serves a geographic area. The base unit performs beamforming in the NR network. Backhaul connections 113, 114, and 115 connect non-co-located receiving base units, such as 102, 103, and 104. These backhaul line connections can be ideal or non-ideal.

無線網路100中的無線通訊設備101經由上行鏈路111和下行鏈路112被基站102服務。其他UE 105,106,107和108由不同的基站服務。UE 105和106由基站102服務。UE 107由基站104服務。UE 108由基站103服務。在一個新穎方面,RRM測量由NR網路100配置,使得SS塊和CSI-RS在一個測量間隙內被測量。測量間隙長度(measurement gap length,MGL)可以被配置具有標準MGL(6ms),或擴展的長度eMGL,或短長度sMGL。UE執行的初始同步被配置具有一個標準的MGL,或一個eMGL,或一個sMGL,該初始同步中SS塊和CSI-RS都被測量。在一個測量間隙中SS塊和CSI-RS都能被測量,使得UE不需要重新調諧其RF兩次。UE執行的僅包括SS塊的初始同步可以被配置具有標準MGL,或eMGL,或sMGL。配置哪種類型的MGL取決於SMTC(SS block based RRM measurement timing configuration,基於SS塊的RRM測量時間配置)視窗持續時間的長度。UE執行的精細同步可以被配置有標準MGL,或eMGL,或sMGL,該精細同步中僅測量CSI-RS。配置哪種類型的MGL取決於CSI-RS的長度。在 另一實施例中,CRI-RS被分配與SS塊鄰近。在又一個實施例中,單個共同測量持續時間和單個共同時間偏移可以配置給不同CSI-RS資源,形成CSI-RS突發的信令。 The wireless communication device 101 in the wireless network 100 is served by the base station 102 via the uplink 111 and the downlink 112. The other UEs 105, 106, 107, and 108 are served by different base stations. UEs 105 and 106 are served by base station 102. UE 107 is served by base station 104. UE 108 is served by base station 103. In a novel aspect, the RRM measurement is configured by the NR network 100 so that the SS block and CSI-RS are measured in a measurement gap. The measurement gap length (MGL) can be configured with standard MGL (6ms), or extended length eMGL, or short length sMGL. The initial synchronization performed by the UE is configured to have a standard MGL, or an eMGL, or an sMGL, and both the SS block and the CSI-RS are measured in the initial synchronization. Both SS block and CSI-RS can be measured in one measurement gap, so that the UE does not need to retune its RF twice. The initial synchronization performed by the UE including only the SS block may be configured with standard MGL, or eMGL, or sMGL. Which type of MGL is configured depends on the length of the window duration of the SMTC (SS block based RRM measurement timing configuration, SS block based RRM measurement timing configuration). The fine synchronization performed by the UE may be configured with standard MGL, or eMGL, or sMGL, in which only CSI-RS is measured. Which type of MGL is configured depends on the length of the CSI-RS. in In another embodiment, the CRI-RS is allocated adjacent to the SS block. In another embodiment, a single common measurement duration and a single common time offset may be configured for different CSI-RS resources to form CSI-RS burst signaling.

第1圖進一步示出基於本發明的無線設備/UE101和基站102的簡化框圖。 Figure 1 further shows a simplified block diagram of the wireless device/UE 101 and the base station 102 based on the present invention.

基站102具有天線126,該天線126發送和接收無線電信號。與天線耦接的RF收發器模組123從天線126接收RF信號,將它們轉換為基帶信號並將它們發送到處理器122。RF收發器123還轉換從處理器122接收的基帶信號,將它們轉換成RF信號,並發送到天線126。處理器122處理接收的基帶信號並調用不同的功能模組來執行基站102中的功能(feature)。記憶體121存儲程式指令和資料124以控制基站102的操作。基站102還包括一組控制模組,例如RRM測量電路181,該RRM測量電路181配置RRM測量並與UE通信以實施RRM測量功能。 The base station 102 has an antenna 126 that transmits and receives radio signals. The RF transceiver module 123 coupled to the antenna receives RF signals from the antenna 126, converts them into baseband signals, and sends them to the processor 122. The RF transceiver 123 also converts baseband signals received from the processor 122, converts them into RF signals, and sends them to the antenna 126. The processor 122 processes the received baseband signal and invokes different functional modules to execute the features in the base station 102. The memory 121 stores program instructions and data 124 to control the operation of the base station 102. The base station 102 also includes a set of control modules, such as an RRM measurement circuit 181, which configures RRM measurement and communicates with the UE to implement the RRM measurement function.

UE 101具有天線135,該天線135發送和接收無線電信號。與天線耦接的RF收發器模組134從天線135接收RF信號,將它們轉換為基帶信號並將它們發送到處理器132。RF收發器134還轉換從處理器132接收的基帶信號,將它們轉換成RF信號,並發送到天線135。處理器132處理接收的基帶信號並調用不同的功能模組來執行基站101中的功能(feature)。記憶體131存儲程式指令和資料136以控制移動台101的操作。 The UE 101 has an antenna 135, which transmits and receives radio signals. The RF transceiver module 134 coupled to the antenna receives RF signals from the antenna 135, converts them into baseband signals, and sends them to the processor 132. The RF transceiver 134 also converts the baseband signals received from the processor 132, converts them into RF signals, and sends them to the antenna 135. The processor 132 processes the received baseband signal and invokes different functional modules to execute the features in the base station 101. The memory 131 stores program instructions and data 136 to control the operation of the mobile station 101.

UE 101還包括執行功能任務的一組控制模組。這 些功能可以在軟體,固件和硬體中實現。RRM測量配置電路191配置RRM測量配置,其中RRM測量配置包括用於通道狀態資訊參考信號(CSI-RS)測量的有條件的測量配置。RRM測量電路192根據RRM測量配置和測量間隙配置執行RRM測量,並且根據接收的RRM測量配置在UE的CONNECTED狀態下執行RRM測量。RRM測量間隙電路193獲得測量間隙配置,使得在一個配置的測量間隙內執行所有配置的RRM測量。RRM測量報告電路194將測量報告發送到NR網路,其中NR網路根據測量報告確定目標小區(cell),以用於切換。 UE 101 also includes a set of control modules that perform functional tasks. This These functions can be implemented in software, firmware and hardware. The RRM measurement configuration circuit 191 configures an RRM measurement configuration, where the RRM measurement configuration includes a conditional measurement configuration for channel state information reference signal (CSI-RS) measurement. The RRM measurement circuit 192 performs RRM measurement according to the RRM measurement configuration and the measurement gap configuration, and performs RRM measurement in the CONNECTED state of the UE according to the received RRM measurement configuration. The RRM measurement gap circuit 193 obtains the measurement gap configuration so that all configured RRM measurements are performed within one configured measurement gap. The RRM measurement report circuit 194 sends the measurement report to the NR network, where the NR network determines a target cell based on the measurement report for handover.

在一個新穎方面,配置測量間隙使得在一個測量間隙中執行SS塊和CSI-RS測量。在一個實施例中,MGL被配置為適應SS塊和CSI-RS測量。 In a novel aspect, the measurement gap is configured so that SS block and CSI-RS measurements are performed in one measurement gap. In one embodiment, the MGL is configured to accommodate SS block and CSI-RS measurement.

第2圖示出在根據本發明實施例的用於NR網路中的UE的測量間隙配置的示例性圖,使得在一個測量間隙中執行SS塊和CSI-RS測量。在LTE中,測量間隙用於頻率間測量(inter-frequency measurement)。測量間隙由MGL和測量間隙重複週期(measurement gap repetition period,MGRP)指定。示意圖210示出了使用MGL 211和MGRP 212的測量間隙配置。MGL和MGRP具有標準配置值或默認的配置值。在一個例子中,標準的MGL值是6ms,並且標準的MGRP值是40ms。 Figure 2 shows an exemplary diagram of a measurement gap configuration for a UE in an NR network according to an embodiment of the present invention, so that SS block and CSI-RS measurements are performed in one measurement gap. In LTE, the measurement gap is used for inter-frequency measurement. The measurement gap is specified by the MGL and the measurement gap repetition period (MGRP). Diagram 210 shows a measurement gap configuration using MGL 211 and MGRP 212. MGL and MGRP have standard configuration values or default configuration values. In one example, the standard MGL value is 6ms, and the standard MGRP value is 40ms.

在NR網路中,在MGL期間,UE執行RRM測量。較長的MGL減少調度機會和降低系統性能,並且阻止了HARQ傳輸。在NR網路中,對於RRM測量,UE能被配置測量SS塊和/或CSI-RS兩者。SS塊的傳輸被確定在SMTC視窗持續 時間中,而CSI-RS的傳輸能具有更好靈活性。這種組合使用於NR網路的測量間隙的設計複雜化。在一個實施例中,擴展的MGL(eMGL)被配置為適應SS塊突發和CSI-RS突發。示意圖220示出eMGL的配置。配置220具有eMGL 221和MGRP222。作為例子,MGRP222是標準的MGRP值40ms。eMGL比標準的MGL長x毫秒(ms),如223所示出。eMGL具有標準MGL與x的和的值。在一個實施例中,eMGL是6ms+x。SS塊突發225和CSI-RS突發226不適合標準MGL,但是能在一個eMGL 221中被測量。這同樣適用於SS突發227和CSI-RS突發228。使用配置的eMGL,UE能在一個測量間隙中執行SS塊和CSI-RS RRM測量。使用短的MGL配置,改進了系統性能。 In the NR network, during the MGL, the UE performs RRM measurement. A longer MGL reduces scheduling opportunities and reduces system performance, and prevents HARQ transmission. In the NR network, for RRM measurement, the UE can be configured to measure both SS blocks and/or CSI-RS. The transmission of the SS block is determined to continue in the SMTC window In time, the transmission of CSI-RS can have better flexibility. This combination is used to complicate the design of the measurement gap of the NR network. In one embodiment, the extended MGL (eMGL) is configured to accommodate SS block bursts and CSI-RS bursts. Diagram 220 shows the configuration of eMGL. Configuration 220 has eMGL 221 and MGRP222. As an example, MGRP222 is the standard MGRP value of 40ms. eMGL is x milliseconds (ms) longer than standard MGL, as shown in 223. eMGL has the value of the sum of standard MGL and x. In one embodiment, eMGL is 6ms+x. The SS block burst 225 and the CSI-RS burst 226 are not suitable for the standard MGL, but can be measured in an eMGL 221. The same applies to SS burst 227 and CSI-RS burst 228. Using the configured eMGL, the UE can perform SS block and CSI-RS RRM measurements in one measurement gap. Using a short MGL configuration improves system performance.

在另一個例子中,當僅CSI-RS需要被測量時,短的MGL(sMGL)被配置。如配置示意圖230中所示出的,MGL 231是sMGL。sMGL比標準MGL短xms,如233所示。在一個實施例中,MGL 231是(6-x)毫秒的值。MGRP 232仍然保持標準的MGRP值。正如所示出的,在測量間隙期間僅CSI-RS突發236被測量,而SS突發235落在測量間隙之外並且未被測量。這同樣適用於SS突發237,在測量間隙使用sMGL測量了CSI-RS突發238,而SS突發237落在測量間隙之外並且沒有被測量。 In another example, when only CSI-RS needs to be measured, the short MGL (sMGL) is configured. As shown in the configuration diagram 230, MGL 231 is sMGL. sMGL is xms shorter than standard MGL, as shown in 233. In one embodiment, MGL 231 is a value of (6-x) milliseconds. MGRP 232 still maintains the standard MGRP value. As shown, only the CSI-RS burst 236 is measured during the measurement gap, while the SS burst 235 falls outside the measurement gap and is not measured. The same applies to the SS burst 237, the CSI-RS burst 238 was measured using sMGL in the measurement gap, and the SS burst 237 fell outside the measurement gap and was not measured.

在NR網路中,RRM測量配置過程配置RRM測量間隙以及其他RRM測量參數,該其他RRM測量參數包括SS塊配置和CSI-RS配置。RRM測量間隙配置包括MGL,MGRP和測量間隙的時間偏移(offset)。這些RRM測量相關配置能被 網路發信到UE。根據一個或者複數個條件,可以更新/改變該配置。 In the NR network, the RRM measurement configuration process configures the RRM measurement gap and other RRM measurement parameters, and the other RRM measurement parameters include SS block configuration and CSI-RS configuration. The RRM measurement gap configuration includes MGL, MGRP, and the time offset of the measurement gap. These RRM measurement related configurations can be The network sends a letter to the UE. The configuration can be updated/changed according to one or more conditions.

第3圖示出根據本發明的實施例的UE使用不同RRM測量配置執行初始同步和精細同步的示例性圖。在一個實施例中,處於CONNECTED模式的UE基於同步階段使用標準MGL或eMGL或sMGL執行RRM測量。在步驟301,UE在CONNECTED模式中啟動RRM測量過程。在步驟302,UE確定是否執行初始同步。如果步驟302確定是,則在步驟311執行初始同步,根據其他小區的SS塊執行初始同步。在步驟321,UE測量SS塊和CSI-RS。在一個實施例中,針對步驟321UE被配置具有eMGL。在另一實施例中,UE被配置具有標準MGL。如果步驟302確定它不是初始同步,則在步驟312UE執行沒有SS塊的精細同步。在步驟322,UE僅測量CSI-RS。在一個實施例中,UE被配置具有sMGL。 Fig. 3 shows an exemplary diagram of a UE using different RRM measurement configurations to perform initial synchronization and fine synchronization according to an embodiment of the present invention. In one embodiment, the UE in the CONNECTED mode uses standard MGL or eMGL or sMGL to perform RRM measurement based on the synchronization phase. In step 301, the UE starts the RRM measurement process in the CONNECTED mode. In step 302, the UE determines whether to perform initial synchronization. If the determination in step 302 is yes, then perform initial synchronization in step 311, and perform initial synchronization according to the SS blocks of other cells. In step 321, the UE measures the SS block and CSI-RS. In one embodiment, the UE is configured with eMGL for step 321. In another embodiment, the UE is configured with a standard MGL. If step 302 determines that it is not the initial synchronization, then in step 312 the UE performs fine synchronization without SS blocks. In step 322, the UE only measures CSI-RS. In one embodiment, the UE is configured with sMGL.

框331還示出了NR網路中的RRM測量的示例性配置。該配置可以包括RRM測量間隙配置和RRM測量配置。RRM測量間隙配置可以包括配置參數,該配置參數包括MGL,MGRP和測量間隙的時間偏移。RRM測量配置可以包括SMTC配置和CSI-RS配置。SMTC配置可以包括一個或複數個元素,該一個或複數個元素包括SMTC視窗週期,SMTC視窗持續時間,SMTC視窗的時間偏移,以及NR-SSS和PBCH解調參考信號(demodulation reference signal,DMRS)上的功率偏移。如果NR-SSS和PBCH DMRS的兩個參考信號上的功率偏移不為零,則UE需要該資訊,使得功率估計不被影響(biased)。 CSI-RS配置包括一個或複數個元素,該一個或複數個元素包括小區標識(ID),擾碼ID,CSI-RS週期和時間偏移,CSI-RS的測量頻寬,頻率位置/CSI-RS序列的起始點,CSI-RSI的數位組態(numerology)和CSI-RS的准共址(quasi-co-location,QCL)。在一個實施例中,RRM配置參數由專用信令配置。 Block 331 also shows an exemplary configuration of RRM measurement in the NR network. The configuration may include RRM measurement gap configuration and RRM measurement configuration. The RRM measurement gap configuration may include configuration parameters including MGL, MGRP, and the time offset of the measurement gap. The RRM measurement configuration may include SMTC configuration and CSI-RS configuration. The SMTC configuration can include one or more elements, the one or more elements including SMTC window period, SMTC window duration, SMTC window time offset, and NR-SSS and PBCH demodulation reference signal (DMRS) Offset on the power. If the power offset on the two reference signals of NR-SSS and PBCH DMRS is not zero, the UE needs this information so that the power estimation is not biased. The CSI-RS configuration includes one or more elements. The one or more elements include cell identification (ID), scrambling code ID, CSI-RS period and time offset, CSI-RS measurement bandwidth, frequency position/CSI- The starting point of the RS sequence, the numerology of CSI-RSI and the quasi-co-location (QCL) of CSI-RS. In one embodiment, RRM configuration parameters are configured by dedicated signaling.

第4A圖示出了根據本發明實施例的具有示例性配置值的CSI-RS配置的示例性表格。在一個實施例中,CSI-RS測量配置是DMTC(discovery reference signal measurement timing configuration,發現參考信號測量時間配置)類型的CSI-RS突發。正如所示出的,配置參數包括頻寬,數位組態(numerology),測量持續時間,週期,時間偏移,資源ID和小區ID。在一個實施例中,針對不同CSI-RS ID的單個測量持續時間和單個測量時間偏移可以被發信。 FIG. 4A shows an exemplary table of CSI-RS configuration with exemplary configuration values according to an embodiment of the present invention. In one embodiment, the CSI-RS measurement configuration is a DMTC (discovery reference signal measurement timing configuration) type of CSI-RS burst. As shown, the configuration parameters include bandwidth, numerology, measurement duration, period, time offset, resource ID and cell ID. In one embodiment, a single measurement duration and a single measurement time offset for different CSI-RS IDs can be signaled.

第4B圖示出了根據本發明的實施例的當重新使用用於波束管理的CSI-RS的配置時具有示例性配置值的CSI-RS配置的示例性表格。在一個實施例中,正如所示的,如果相應的小區ID指示服務小區,則CSI-RS測量配置可以重用用於波束管理的CSI-RS。配置參數包括頻寬,數位組態(numerology),週期,資源ID,小區ID和對時間基準的時間偏移。在一個實施例中,時間參考是SS塊。 FIG. 4B shows an exemplary table of CSI-RS configurations with exemplary configuration values when the configuration of CSI-RS for beam management is reused according to an embodiment of the present invention. In one embodiment, as shown, if the corresponding cell ID indicates the serving cell, the CSI-RS measurement configuration can reuse the CSI-RS for beam management. Configuration parameters include bandwidth, digital configuration (numerology), period, resource ID, cell ID and time offset to the time reference. In one embodiment, the time reference is an SS block.

在一個新穎方面,NR網路中處於CONNECTED模式的UE為切換過程執行具有SS塊和CSI-RS測量的RRM測量。在一個實施例中,UE根據一個或複數個預定義的觸發事件有條件地配置CSI-RS測量。在另一實施例中,UE根據一 個或複數個預定義的觸發條件有條件地解碼SS塊的時間索引。 In a novel aspect, the UE in CONNECTED mode in the NR network performs RRM measurement with SS block and CSI-RS measurement for the handover process. In an embodiment, the UE conditionally configures CSI-RS measurement according to one or more predefined trigger events. In another embodiment, the UE is based on a One or more predefined trigger conditions conditionally decode the time index of the SS block.

第5圖示出了根據本發明實施例的在NR網路中在CONNECTED模式中具有RRM測量的UE切換過程的示例性圖。在步驟500,UE在CONNECTED模式執行切換過程。在步驟501,UE獲得RRM測量配置。在一個實施例中,UE從網路獲得測量配置,該測量配置包括SS塊的測量配置,報告配置和包括候選的鄰居gNB的白名單和頻率優先級清單的其他參數。SS塊配置包括觸發時間,測量間隙配置以及是否測量參考信號接收質量RSRQ的指示符中的一個或複數個元素。報告配置包括切換標準,是否是週期性或事件驅動的指示符,以及NR測量報告事件中的一個或複數個元素。 Figure 5 shows an exemplary diagram of a UE handover process with RRM measurement in CONNECTED mode in an NR network according to an embodiment of the present invention. In step 500, the UE performs a handover procedure in the CONNECTED mode. In step 501, the UE obtains the RRM measurement configuration. In one embodiment, the UE obtains the measurement configuration from the network, the measurement configuration includes the measurement configuration of the SS block, the report configuration, and other parameters including the whitelist and frequency priority list of candidate neighbor gNBs. The SS block configuration includes one or more of the trigger time, the measurement gap configuration, and an indicator of whether to measure the reference signal reception quality RSRQ. The report configuration includes switching criteria, whether it is a periodic or event-driven indicator, and one or more elements in the NR measurement report event.

UE可能需要測量許多CSI-RS。在一個新穎方面,可以有條件地配置CSI-RS測量。在一個實施例中,通過監視波束,根據通道狀況CSI-RS測量配置能被觸發並且能與波束相關聯,例如SS塊。CRI-RS測量配置也可以由SS塊的參考信號接收功率RSRP觸發,包括服務小區和/或鄰居小區。CRI-RS測量配置也可以由用於波束管理的CSI-RS觸發,該波束管理不對鄰居的CSI-RS執行。用於服務小區的RRM的CSI-RS可以是突發式的,CSI-RS被限制在給定的時間間隔內。在又一個實施例中,無條件地配置CSI-RS測量,其與觸發條件下的配置相同,不需要觸發條件。 The UE may need to measure many CSI-RS. In a novel aspect, CSI-RS measurements can be configured conditionally. In one embodiment, by monitoring the beam, the CSI-RS measurement configuration can be triggered according to the channel condition and can be associated with the beam, such as an SS block. The CRI-RS measurement configuration can also be triggered by the reference signal received power RSRP of the SS block, including the serving cell and/or neighboring cell. The CRI-RS measurement configuration can also be triggered by CSI-RS for beam management, which is not performed on neighbors' CSI-RS. The CSI-RS used for the RRM of the serving cell may be bursty, and the CSI-RS is limited within a given time interval. In another embodiment, the CSI-RS measurement is configured unconditionally, which is the same as the configuration under the trigger condition, and the trigger condition is not required.

在步驟502,UE執行RRM測量。在一個實施例中,UE對服務小區和一個或者複數個鄰居小區的SS塊執行測量, 以獲得SS塊的RSRP和/或RSRQ。在另一個實施例中,根據一個或者複數個預定的條件,UE有條件的解碼SS塊的時間索引。有條件的觸發解碼時間索引增加了UE的計算量,以及減少功率損耗。當檢測到高信噪比(signal noise ratio,SNR),不解碼時間索引。當RACH優化不理想時,不解碼時間索引。在另一個例子中,當鄰居NBR CSI-RS被配置並且其通道品質足以用於RACH優化時,解碼時間索引。在又一實施例中,如果對CSI-RS的測量配置被配置,UE對CSI-RS執行測量並且獲得CSI-RS RSRP和/或CSI-RS RSRQ。 In step 502, the UE performs RRM measurement. In one embodiment, the UE performs measurement on the SS blocks of the serving cell and one or more neighbor cells, To obtain the RSRP and/or RSRQ of the SS block. In another embodiment, the UE conditionally decodes the time index of the SS block according to one or more predetermined conditions. Conditionally triggering the decoding time index increases the UE's calculation amount and reduces power consumption. When a high signal noise ratio (SNR) is detected, the time index is not decoded. When the RACH optimization is not ideal, the time index is not decoded. In another example, when the neighboring NBR CSI-RS is configured and its channel quality is sufficient for RACH optimization, the time index is decoded. In yet another embodiment, if the measurement configuration for CSI-RS is configured, the UE performs measurement on CSI-RS and obtains CSI-RS RSRP and/or CSI-RS RSRQ.

在步驟503,UE向服務小區發送測量報告。在一個實施例中,當報告條件被滿足並且測量事件被觸發時,發送相應的測量報告。測量報告至少包括:小區ID和測量結果。測量結果能是RSRP,RSRQ或者RSSI中的一個或者複數個。測量報告也能包括SS塊的時間索引。 In step 503, the UE sends a measurement report to the serving cell. In one embodiment, when the report condition is met and the measurement event is triggered, a corresponding measurement report is sent. The measurement report includes at least: cell ID and measurement results. The measurement result can be one or more of RSRP, RSRQ or RSSI. The measurement report can also include the time index of the SS block.

在步驟504,UE接收切換命令。服務小區根據測量報告決定目標小區和通過回程線路(backhaul)準備候選的目標小區。切換命令至少包括目標小區ID。在一個實施例中,具有波束對應性的無競爭(contention-free)的RACH優化被實施以節省RACH資源。代替在每一個波束上分配專用RACH,波束對應性的RACH優化被實施。在切換命令中配置專用RACH參數並將專用RACH參數與DL SS塊或者CSI-RS相關聯。 In step 504, the UE receives a handover command. The serving cell determines the target cell based on the measurement report and prepares candidate target cells through a backhaul. The handover command includes at least the target cell ID. In one embodiment, contention-free RACH optimization with beam correspondence is implemented to save RACH resources. Instead of assigning a dedicated RACH on each beam, RACH optimization of beam correspondence is implemented. Configure the dedicated RACH parameter in the handover command and associate the dedicated RACH parameter with the DL SS block or CSI-RS.

在步驟505,UE連接到目標小區。如果切換過程是成功的,則UE向目的gNB發送切換完成消息。 In step 505, the UE connects to the target cell. If the handover process is successful, the UE sends a handover complete message to the destination gNB.

在另一個新穎方面,CSI-RS的佈置盡可能的鄰近SS塊,使得單個測量間隙配置足夠用於CSI-RS和SS塊測量。在一個例子中,CSI-RS被佈置在SS突發的5毫秒內並且與SS塊鄰近。在另一個實施例中,CSI-RS被佈置在SS突發之後。SS塊包括主SS(PSS)塊和輔助SS(SSS)塊。SS塊的通道結構可以具有彼此相鄰的PSS塊和SSS塊。在另一個通道結構中,PSS塊與SSS塊鄰近,其他的通道塊位於兩者之間。在一個可能的通道結構中,物理廣播通道(physical broadcast channel,PBCH),PSS塊和SSS位於連續的符號中並且形成SS/PBCH塊。在一個配置中,PBCH塊,SSS塊,PSS塊,和PBCH塊以昇序佔用連續的符號。在另一個配置中,PSS塊,PBCH塊,SSS塊,和PBCH塊以昇序佔用連續的符號。可能有其他可能的通道結構。所屬領域具有通常知識者可以理解的是使CSI-RS佈置盡可能地與SS塊鄰近的通常原理使得單個測量間隙配置對於CSI-RS和SS塊測量是足夠的,並且該通常原理適用於不同的通道結構。在一個實施例中,CSI-RS被放置在與SS塊鄰近的PDSCH符號中。在每一個SS塊之後至少存在一個符號PDSCH,該符號PDSCH能被用於傳輸CSI-RS。通過放置CSI-RS到與SS塊鄰近的PDSCH符號中,CSI-RS能與SS塊共用相同的模擬波束成形。CSI_RS另外具有其自己的數位波束成形。根據PDSCH可用性,CSI-RS可以放置在SS塊之前或之後。不需要為SS塊和CSI-RS分別配置兩個不同的MGL。UE可以在一個MGL內接收特定小區的SS塊和CSI_RS。RF調諧時間被節省。在一個實施例中,當CSI-RS與SS塊鄰近 放置時,MGL可以保持為標準MGL6毫秒。以下附圖是用於放置CSI-RS的示例性場景。這些例子不是窮舉的。將CSI-RS塊放置與SS塊鄰近的其他可能性也是有效的。 In another novel aspect, the CSI-RS is arranged as close to the SS block as possible, so that a single measurement gap configuration is sufficient for CSI-RS and SS block measurement. In one example, the CSI-RS is arranged within 5 milliseconds of the SS burst and adjacent to the SS block. In another embodiment, the CSI-RS is arranged after the SS burst. The SS block includes a main SS (PSS) block and a secondary SS (SSS) block. The channel structure of the SS block may have a PSS block and an SSS block adjacent to each other. In another channel structure, the PSS block is adjacent to the SSS block, and the other channel blocks are located between the two. In a possible channel structure, the physical broadcast channel (PBCH), PSS block and SSS are located in consecutive symbols and form an SS/PBCH block. In one configuration, the PBCH block, SSS block, PSS block, and PBCH block occupy consecutive symbols in ascending order. In another configuration, the PSS block, PBCH block, SSS block, and PBCH block occupy consecutive symbols in ascending order. There may be other possible channel structures. Those with ordinary knowledge in the field can understand that the general principle of making the CSI-RS arrangement as close as possible to the SS block makes a single measurement gap configuration sufficient for CSI-RS and SS block measurement, and the general principle is applicable to different Channel structure. In one embodiment, the CSI-RS is placed in the PDSCH symbol adjacent to the SS block. There is at least one symbol PDSCH after each SS block, and the symbol PDSCH can be used to transmit CSI-RS. By placing the CSI-RS in the PDSCH symbols adjacent to the SS block, the CSI-RS can share the same analog beamforming with the SS block. CSI_RS additionally has its own digital beamforming. According to PDSCH availability, CSI-RS can be placed before or after the SS block. There is no need to configure two different MGLs for the SS block and the CSI-RS respectively. The UE can receive the SS block and CSI_RS of a specific cell in one MGL. RF tuning time is saved. In one embodiment, when the CSI-RS is adjacent to the SS block When placed, the MGL can remain as the standard MGL for 6 milliseconds. The following figure is an exemplary scenario for placing CSI-RS. These examples are not exhaustive. Other possibilities of placing the CSI-RS block adjacent to the SS block are also effective.

第6A圖是基於本發明實施例的CSI-RS佈置在SS突發的5毫秒內以及CSI-RS佈置與SS塊鄰近的示例性示意圖,以用於15/30/120kHz場景。示意圖610示出CSI-RS的第一示例性分配。CSI-RS被分配在NR-PDSCH中。正如所示出的,NR-PDSCH緊挨著PBCH並且與SS塊615鄰近,並且對於SS塊617是相同的配置。進一步,具有CSI-RS的NR-PDSCH塊和SS塊位於相同的模擬波束中,即模擬波束611和模擬波束613。相似的,模擬波束612和模擬波束614包含NR-PDSCH,該NR-PDSCH位於PSS和PBCH之後以與SS鄰近。包含CSI-RS的NR-PDSCH和SS塊位於相同的模擬波束中,即相應模擬波束616和618。在另一個例子示意圖620中,CSI-RS塊被分配在NR-PDSCH。正如所示出的,NR-PDSCH緊挨著PBCH並且與SS塊625鄰近,並且相同的配置用於SS塊627。進一步,具有CSI-RS的NR-PDSCH塊和SS塊位於相同的模擬波束中,即模擬波束621和模擬波束623。相似的,模擬波束622和模擬波束624包含NR-PDSCH,該NR-PDSCH緊挨著PBCH以與SS相鄰。包含CSI-RS的NR-PDSCH和SS塊位於相同的模擬波束中,即相應的模擬波束622和624。在又一個例子示意圖630中,CSI-RS被分配在NR-PDSCH中。正如所示出的,NR-PDSCH緊挨著PBCH並且與SS塊636鄰近,並且相同的配置用於SS塊638。進一步,具有CSI-RS的NR-PDSCH塊和 SS塊位於相同的模擬波束中,即模擬波束632和模擬波束634。相似的,模擬波束631和模擬波束633包含NR-PDSCH,該NR-PDSCH位於PSS和PBCH之後以與SS鄰近。包含CSI-RS的NR-PDSCH和SS塊位於相同的模擬波束中,即相應模擬波束631和633。SS塊,也示出為SS/PBCH塊,615-618,625-628,和635-638是示例性的結構,所以通道結構是示例性的。可以理解的是SS塊或者SS/PBCH塊的其他配置也適用。 Fig. 6A is an exemplary schematic diagram of the CSI-RS arrangement within 5 milliseconds of the SS burst and the CSI-RS arrangement adjacent to the SS block based on an embodiment of the present invention, for 15/30/120 kHz scenarios. Diagram 610 shows a first exemplary allocation of CSI-RS. CSI-RS is allocated in NR-PDSCH. As shown, the NR-PDSCH is next to the PBCH and adjacent to the SS block 615, and is the same configuration for the SS block 617. Further, the NR-PDSCH block with CSI-RS and the SS block are located in the same analog beam, that is, the analog beam 611 and the analog beam 613. Similarly, the analog beam 612 and the analog beam 614 include the NR-PDSCH, which is located behind the PSS and PBCH to be adjacent to the SS. The NR-PDSCH and SS blocks containing CSI-RS are located in the same analog beam, that is, the corresponding analog beams 616 and 618. In another example diagram 620, CSI-RS blocks are allocated in NR-PDSCH. As shown, the NR-PDSCH is next to the PBCH and adjacent to the SS block 625, and the same configuration is used for the SS block 627. Further, the NR-PDSCH block with CSI-RS and the SS block are located in the same analog beam, that is, the analog beam 621 and the analog beam 623. Similarly, the analog beam 622 and the analog beam 624 include an NR-PDSCH, which is next to the PBCH to be adjacent to the SS. The NR-PDSCH and SS blocks containing CSI-RS are located in the same analog beam, that is, the corresponding analog beams 622 and 624. In yet another example diagram 630, CSI-RS is allocated in NR-PDSCH. As shown, the NR-PDSCH is next to the PBCH and adjacent to the SS block 636, and the same configuration is used for the SS block 638. Further, the NR-PDSCH block with CSI-RS and The SS blocks are located in the same analog beam, namely, analog beam 632 and analog beam 634. Similarly, the analog beam 631 and the analog beam 633 include an NR-PDSCH, which is located behind the PSS and PBCH to be adjacent to the SS. The NR-PDSCH and SS blocks containing CSI-RS are located in the same analog beam, that is, the corresponding analog beams 631 and 633. The SS block, also shown as SS/PBCH block, 615-618, 625-628, and 635-638 are exemplary structures, so the channel structure is exemplary. It can be understood that other configurations of the SS block or SS/PBCH block are also applicable.

第6B圖是基於本發明實施例的CSI-RS佈置在SS突發的5毫秒內以及CSI-RS佈置與SS塊鄰近的示例性示意圖,以用於240kHz場景。在示意圖650的一個例子中,CSI-RS被分配在NR-PDSCH中。正如所示出的,NR-PDSCH緊挨著PBCH並且與SS塊655鄰近,並且相同的配置用於SS塊656、657和658。進一步,具有CSI-RS的NR-PDSCH塊和SS塊位於相同的模擬波束中,即相應模擬波束651,652,653,和654。在另一個例子示意圖660中,CSI-RS塊被分配在NR-PDSCH。正如所示出的,NR-PDSCH緊挨著PBCH並且與SS塊665鄰近,並且相同的配置用於SS塊667。進一步,具有CSI-RS的NR-PDSCH塊和SS塊位於相同的模擬波束中,即模擬波束661和模擬波束663。相似的,模擬波束662和模擬波束664包含NR-PDSCH,該NR-PDSCH位於PSS和PBCH之後以鄰近SS。包含CSI-RS的NR-PDSCH和SS塊位於相同的模擬波束中,即相應模擬波束662和664。SS塊,也示出為SS/PBCH塊,655-658和665-668是示例性的結構,所以通道結構是示例性的。可以理解的是SS塊或者SS/PBCH塊的其他配置也適用。 Fig. 6B is an exemplary schematic diagram of CSI-RS arrangement within 5 milliseconds of the SS burst and the CSI-RS arrangement adjacent to the SS block based on an embodiment of the present invention, for a 240 kHz scenario. In an example of diagram 650, CSI-RS is allocated in NR-PDSCH. As shown, the NR-PDSCH is next to the PBCH and adjacent to the SS block 655, and the same configuration is used for the SS blocks 656, 657, and 658. Further, the NR-PDSCH block with CSI-RS and the SS block are located in the same analog beam, that is, the corresponding analog beams 651, 652, 653, and 654. In another example diagram 660, CSI-RS blocks are allocated in NR-PDSCH. As shown, the NR-PDSCH is next to the PBCH and adjacent to the SS block 665, and the same configuration is used for the SS block 667. Further, the NR-PDSCH block with CSI-RS and the SS block are located in the same analog beam, that is, the analog beam 661 and the analog beam 663. Similarly, the analog beam 662 and the analog beam 664 include an NR-PDSCH, which is located behind the PSS and PBCH and adjacent to the SS. The NR-PDSCH and SS blocks containing CSI-RS are located in the same analog beam, that is, the corresponding analog beams 662 and 664. The SS block is also shown as the SS/PBCH block. 655-658 and 665-668 are exemplary structures, so the channel structure is exemplary. It can be understood that other configurations of the SS block or SS/PBCH block are also applicable.

在另一個例子中,CSI-RS被分配在SS塊突發視窗之後且具有與SS塊相同的類比波束成形順序。在一個例子中,CSI-RS恰好在SS突發視窗之後。不需要為SS塊和CSI-RS分別配置兩個不同的MGL。UE可以在一個MGL內接收特定小區的SS塊和CSI-RS。它節省了RF調諧時間。發送的CSI-RS的數量和頻寬可以被擴展以提高測量精度。 In another example, the CSI-RS is allocated after the SS block burst window and has the same analog beamforming order as the SS block. In one example, the CSI-RS is just after the SS burst window. There is no need to configure two different MGLs for the SS block and the CSI-RS respectively. The UE can receive the SS block and CSI-RS of a specific cell in one MGL. It saves RF tuning time. The number and bandwidth of the transmitted CSI-RS can be expanded to improve measurement accuracy.

第7圖示出了根據本發明實施例的在SS突發視窗之後放置CSI-RS的示例性圖。SS突發710包括複數個SS塊,該複數個SS塊包括SS 711,SS 712和SS 715。CSI-RS突發720放置在緊接SS突發710之後。CSI-RS突發720具有CSI-RS 721,CSI-RS 722和CSI-RS 725。類似地,SS突發750包括複數個SS塊,該複數個SS塊包括SS 751,SS 752和SS 755。CSI-RS突發760放置在緊接SS突發750之後。CSI-RS突發760具有CSI-RS 761,CSI-RS 762和CSI-RS 765。在一個實施例中,CSI-RS突發具有與SS塊相同的類比波束成形順序。例如,SS 711具有與CSI-RS 721相同的波束成形。SS 712和715分別具有與CSI-RS 722和725相同的波束成形。類似地,SS 751具有與CSI-RS 761相同的波束形成。SS 752和755分別具有與CSI-RS 762和765相同的波束形成。 FIG. 7 shows an exemplary diagram of placing CSI-RS after the SS burst window according to an embodiment of the present invention. The SS burst 710 includes a plurality of SS blocks, and the plurality of SS blocks includes SS 711, SS 712, and SS 715. The CSI-RS burst 720 is placed immediately after the SS burst 710. The CSI-RS burst 720 has CSI-RS 721, CSI-RS 722 and CSI-RS 725. Similarly, the SS burst 750 includes a plurality of SS blocks including SS 751, SS 752, and SS 755. The CSI-RS burst 760 is placed immediately after the SS burst 750. The CSI-RS burst 760 has CSI-RS 761, CSI-RS 762 and CSI-RS 765. In one embodiment, the CSI-RS burst has the same analog beamforming order as the SS block. For example, SS 711 has the same beamforming as CSI-RS 721. SS 712 and 715 have the same beamforming as CSI-RS 722 and 725, respectively. Similarly, SS 751 has the same beamforming as CSI-RS 761. SS 752 and 755 have the same beamforming as CSI-RS 762 and 765, respectively.

第8圖示出了根據本發明實施例的具有用於SS塊和CSI-RS的一個測量間隙的RRM測量配置的示例性流程圖。在步驟801,UE在NR網路中獲得RRM測量配置,其中RRM測量需要UE執行SS測量和CSI-RS測量中的至少一個測量。在步驟802,UE獲得測量間隙配置,使得在一個配置的測量間 隙內執行所有配置的RRM測量。在步驟803,UE根據RRM測量配置和測量間隙配置執行RRM測量。 Figure 8 shows an exemplary flow chart of an RRM measurement configuration with one measurement gap for SS blocks and CSI-RS according to an embodiment of the present invention. In step 801, the UE obtains the RRM measurement configuration in the NR network, where the RRM measurement requires the UE to perform at least one of SS measurement and CSI-RS measurement. In step 802, the UE obtains the measurement gap configuration so that in a configured measurement interval Perform all configured RRM measurements in the slot. In step 803, the UE performs RRM measurement according to the RRM measurement configuration and the measurement gap configuration.

第9圖示出了根據本發明的實施例的分配與SS塊鄰近的CSI-RS以用於RRM測量的示例性流程圖。在步驟901,UE在NR網路中獲得RRM測量配置,其中,RRM測量在SS塊和CSI-RS上被執行。在步驟902,UE獲得RRM測量間隙配置,其中SS塊和CSI-RS測量在一個測量間隙內被執行。在步驟903,UE執行RRM測量,其中CSI-RS與SS塊鄰近。 Figure 9 shows an exemplary flow chart of allocating CSI-RS adjacent to an SS block for RRM measurement according to an embodiment of the present invention. In step 901, the UE obtains the RRM measurement configuration in the NR network, where the RRM measurement is performed on the SS block and the CSI-RS. In step 902, the UE obtains an RRM measurement gap configuration, where SS block and CSI-RS measurement are performed in one measurement gap. In step 903, the UE performs RRM measurement where the CSI-RS is adjacent to the SS block.

第10圖示出了根據本發明實施例的有條件地配置CSI-RS以用於RRM測量的示例性流程圖。在步驟1001,UE在NR網路中接收RRM測量配置,其中RRM測量配置包括用於CSI-RS測量的有條件的測量配置。在步驟1002,UE根據所接收的RRM測量配置,在處於CONNECTED狀態下UE執行RRM測量。在步驟1003,UE將測量報告發送到NR網路,其中NR網路根據測量報告確定用於切換的目標小區。 Figure 10 shows an exemplary flow chart of conditionally configuring CSI-RS for RRM measurement according to an embodiment of the present invention. In step 1001, the UE receives an RRM measurement configuration in the NR network, where the RRM measurement configuration includes a conditional measurement configuration for CSI-RS measurement. In step 1002, the UE performs RRM measurement in the CONNECTED state according to the received RRM measurement configuration. In step 1003, the UE sends a measurement report to the NR network, where the NR network determines a target cell for handover based on the measurement report.

第11圖示出了根據本發明實施例的UE有條件地解碼SS塊的時間索引的示例性流程圖。在步驟1101,UE在NR網路中接收RRM測量配置,其中RRM測量配置配置SS測量和CSI-RS測量中的至少一個測量。在步驟1102,根據所接收的RRM測量配置在CONNECTED狀態下UE執行RRM測量,其中當一個或複數個時間索引觸發條件被檢測到時UE僅對配置的SS塊的時間索引進行解碼。在步驟1103,UE將測量報告發送到NR網路,其中NR網路根據測量報告確定用於切換的目標小區。 Fig. 11 shows an exemplary flowchart of a UE conditionally decoding the time index of an SS block according to an embodiment of the present invention. In step 1101, the UE receives an RRM measurement configuration in the NR network, where the RRM measurement configuration configures at least one of SS measurement and CSI-RS measurement. In step 1102, the UE performs RRM measurement in the CONNECTED state according to the received RRM measurement configuration, where the UE only decodes the configured time index of the SS block when one or more time index trigger conditions are detected. In step 1103, the UE sends the measurement report to the NR network, where the NR network determines the target cell for handover based on the measurement report.

儘管已經結合用於指導目的的某些特定實施例描述了本發明,但是本發明不限於此。因此,在不脫離申請專利範圍中闡述的本發明的範圍的情況下,可以實踐所描述的實施例的各種特徵的各種修改,改編和組合。 Although the present invention has been described in connection with certain specific embodiments for instructional purposes, the present invention is not limited thereto. Therefore, various modifications, adaptations and combinations of various features of the described embodiments can be practiced without departing from the scope of the present invention set forth in the scope of the patent application.

801-803‧‧‧步驟 801-803‧‧‧Step

Claims (8)

一種無線電資源管理測量方法,包括:使用者設備(UE)在新無線電(NR)網路接收無線電資源管理(RRM)測量配置;其中所述RRM測量配置包括用於通道狀態資訊參考信號(CSI-RS)測量的有條件的測量配置;所述UE根據接收的RRM測量配置在連接(CONNECTED)狀態中執行RRM測量;以及向所述NR網路發送測量報告;其中,用於CSI-RS測量的有條件的測量配置是基於複數個觸發條件,所述複數個觸發條件包括:服務小區的波束管理的測量結果和同步信號(SS)塊的測量結果。 A radio resource management measurement method includes: a user equipment (UE) receives a radio resource management (RRM) measurement configuration on a new radio (NR) network; wherein the RRM measurement configuration includes a channel state information reference signal (CSI- RS) conditional measurement configuration for measurement; the UE performs RRM measurement in the CONNECTED state according to the received RRM measurement configuration; and sends a measurement report to the NR network; among them, the one used for CSI-RS measurement The conditional measurement configuration is based on a plurality of trigger conditions, and the plurality of trigger conditions include: the measurement result of the beam management of the serving cell and the measurement result of the synchronization signal (SS) block. 如申請專利範圍第1項所述的方法,其中,所述RRM測量配置進一步包括:用於同步信號(SS)塊的測量配置,報告配置,候選鄰居gNB的白名單和頻率優先級清單中的一個或者複數個配置。 The method according to item 1 of the scope of patent application, wherein the RRM measurement configuration further includes: measurement configuration for synchronization signal (SS) block, report configuration, white list of candidate neighbor gNB and frequency priority list One or more configurations. 如申請專利範圍第2項所述的方法,其中,所述用於SS塊的測量配置包括觸發測量配置的時間,測量間隙配置,和是否測量參考信號接收品質(RSRQ)配置中的至少一個。 The method according to claim 2, wherein the measurement configuration for the SS block includes at least one of the time to trigger the measurement configuration, the measurement gap configuration, and whether to measure the reference signal reception quality (RSRQ) configuration. 如申請專利範圍第1項所述的方法,其中,所述測量報告包括小區標識和測量結果。 The method according to item 1 of the scope of patent application, wherein the measurement report includes a cell identifier and a measurement result. 一種無線電資源管理測量方法,其包括:使用者設備(UE)在新無線電(NR)網路接收無線電資源 管理(RRM)測量配置;其中,所述RRM測量配置配置同步信號(SS)測量和通道狀態資訊參考信號(CSI-RS)測量中的至少一個測量;所述UE根據接收的所述RRM測量配置在連接(CONNECTED)狀態中執行RRM測量;其中,複數個時間索引觸發條件中至少一個被檢測到時,所述UE解碼所配置的SS塊的時間索引;該複數個時間索引觸發條件包括隨機接入通道(RACH)優化被啟用,和鄰居(NBR)的CSI-RS被配置並且它的通道品質足以用於RACH優化;以及向所述NR網路發送測量報告。 A radio resource management measurement method, which includes: user equipment (UE) receiving radio resources on a new radio (NR) network Management (RRM) measurement configuration; wherein the RRM measurement configuration configures at least one of synchronization signal (SS) measurement and channel state information reference signal (CSI-RS) measurement; the UE is configured according to the received RRM measurement configuration Perform RRM measurement in the CONNECTED state; wherein, when at least one of a plurality of time index trigger conditions is detected, the UE decodes the time index of the configured SS block; the plurality of time index trigger conditions include random connection Incoming channel (RACH) optimization is enabled, and neighbor (NBR) CSI-RS is configured and its channel quality is sufficient for RACH optimization; and a measurement report is sent to the NR network. 如申請專利範圍第5項所述的方法,其中,所述UE根據接收的所述RRM測量配置在連接狀態中執行RRM測量包括:所述UE對服務小區和一個或者複數個鄰居小區的SS塊執行RRM測量,以獲得SS塊測量。 The method according to claim 5, wherein the UE performing RRM measurement in the connected state according to the received RRM measurement configuration includes: the UE performs the SS block of the serving cell and one or more neighboring cells Perform RRM measurement to obtain SS block measurement. 如申請專利範圍第5項所述的方法,其中,當在所述RRM測量配置中CSI-RS被配置時,所述UE執行CSI-RS測量。 The method according to claim 5, wherein, when the CSI-RS is configured in the RRM measurement configuration, the UE performs CSI-RS measurement. 一種使用者設備,包括:收發器,在新無線電網路中接收來自一個或者複數個基站的射頻(RF)信號,向一個或者複數個基站發送RF信號;接收無線電資源管理(RRM)測量配置;其中所述RRM測量配置包括用於通道狀態資訊參考信號(CSI-RS)測量的有條件的測量配置;RRM測量電路,根據接收的RRM測量配置在使用者設備的 連接狀態中執行RRM測量;RRM測量報告電路,向所述新無線電網路發送測量報告;其中,用於CSI-RS測量的有條件的測量配置是基於複數個觸發條件,所述複數個觸發條件包括:服務小區的波束管理的測量結果和同步信號(SS)塊的測量結果。A user equipment includes: a transceiver, which receives radio frequency (RF) signals from one or more base stations in a new radio network, and transmits RF signals to one or more base stations; receives radio resource management (RRM) measurement configuration; The RRM measurement configuration includes a conditional measurement configuration for channel state information reference signal (CSI-RS) measurement; the RRM measurement circuit is configured in the user equipment according to the received RRM measurement The RRM measurement is performed in the connected state; the RRM measurement report circuit sends a measurement report to the new radio network; wherein the conditional measurement configuration for CSI-RS measurement is based on a plurality of trigger conditions, and the plurality of trigger conditions Including: the measurement result of the beam management of the serving cell and the measurement result of the synchronization signal (SS) block.
TW107120872A 2017-06-16 2018-06-15 Radio resource management (rrm) measurement for new radio (nr) network TWI704817B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762520627P 2017-06-16 2017-06-16
US62/520,627 2017-06-16
US16/009,515 US10911997B2 (en) 2017-06-16 2018-06-15 Radio resource management (RRM) measurement for new radio (NR) network
US16/009,515 2018-06-15

Publications (2)

Publication Number Publication Date
TW201906437A TW201906437A (en) 2019-02-01
TWI704817B true TWI704817B (en) 2020-09-11

Family

ID=64660867

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107120872A TWI704817B (en) 2017-06-16 2018-06-15 Radio resource management (rrm) measurement for new radio (nr) network

Country Status (3)

Country Link
CN (1) CN109997343B (en)
TW (1) TWI704817B (en)
WO (1) WO2018228593A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11553406B2 (en) * 2019-10-07 2023-01-10 Qualcomm Incorporated Evaluation period in NR-U networks
CN113271634B (en) * 2020-02-14 2022-07-12 展讯半导体(南京)有限公司 Radio resource management measurement method, device and storage medium
WO2021203380A1 (en) * 2020-04-09 2021-10-14 Oppo广东移动通信有限公司 Control method for radio resource management measurement, terminal device, and network device
WO2024108413A1 (en) * 2022-11-23 2024-05-30 Qualcomm Incorporated Channel state information measurement configuration for a candidate cell in layer 1 and layer 2 mobility

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160242052A1 (en) * 2013-09-30 2016-08-18 Telefonaktiebolaget L M Ericsson (Publ) Configuration of mobility management measurement method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3085145A4 (en) * 2013-12-20 2017-07-26 Intel Corporation User equipment handover error reporting
CN106717069A (en) * 2014-09-25 2017-05-24 株式会社Ntt都科摩 User terminal, wireless base station, and wireless communication method
US10341888B2 (en) * 2014-10-07 2019-07-02 Lg Electronics Inc. Method and device for selectively performing DRS measurement or CRS measurement
US20160302230A1 (en) * 2015-04-10 2016-10-13 Samsung Electronics Co., Ltd Methods and apparatus for rrm measurement on unlicensed spectrum
WO2017022870A1 (en) * 2015-08-03 2017-02-09 Samsung Electronics Co., Ltd. Method and apparatus for initial access in wireless communication system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160242052A1 (en) * 2013-09-30 2016-08-18 Telefonaktiebolaget L M Ericsson (Publ) Configuration of mobility management measurement method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Cohere Technologies, "SS Block Composition, SS Burst Set Composition and SS Time Index Indication", 3GPP TSG-RAN Meeting #88bis,R1-1705459,Spokane, USA, 3rd-7th April 2017 *
MediaTek Inc., "Discussion on Properties of CSI-RS for RRM Measurement", 3GPP TSG RAN WG1 Meeting#89, R1-1707820, Hangzhou, China 15th - 19th May 2017 *

Also Published As

Publication number Publication date
TW201906437A (en) 2019-02-01
CN109997343B (en) 2021-10-01
WO2018228593A1 (en) 2018-12-20
CN109997343A (en) 2019-07-09

Similar Documents

Publication Publication Date Title
TWI700958B (en) Radio resource managmenet (rrm) measurement for new radio (nr) network
CN108810922B (en) Communication method, terminal and base station
US10798601B2 (en) User equipment and a radio network node, and methods therein
CN109151922B (en) Measurement method, measurement configuration method and related equipment
TWI738012B (en) Method for radio link monitoring
KR102130953B1 (en) System and method for timing alignment of lte cells and inter-operator co-existence on unlicensed spectrum
CN111149391B (en) Cell selection based on user capabilities
TWI704817B (en) Radio resource management (rrm) measurement for new radio (nr) network
KR101838842B1 (en) An access node, a communication device, respective method performed thereby for carrier hopping
TWI693840B (en) Method of received signal strength indication measurement and user equipment thereof
TWI674020B (en) Wide bandwidth operation, rf bandwidth adaptation and radio resource management measurement/reporting methods and apparatus
KR20130009733A (en) Methods and nodes for scheduling radio resources in a wireless communication system employing enhanced timeslot assignement(efta)
CN113473549B (en) Measurement gap configuration method and device
CN110771231B (en) Method for transmitting data, terminal device and network device
EP3864787A1 (en) Network access node and client device for handling data transmissions during measurement gaps
US20200059959A1 (en) Random access for nr
US11470516B2 (en) Multi transmit/receive point make before break handover
US20230164757A1 (en) Communication method and apparatus
TW201935942A (en) Information sending method and terminal
US11601831B2 (en) Switching reference signals for beam or link failure detection
CN114208262B (en) Carrier wave measuring method and device
CN112753264B (en) Method and device for transmitting data
JP2023106101A (en) Terminal device, base station device, control method, and program for suppressing influence of interference on communication in adjacent frequency bands
CN115551083A (en) Method for receiving downlink control information, method for sending information and related device