TWI704374B - Lens device - Google Patents

Lens device Download PDF

Info

Publication number
TWI704374B
TWI704374B TW108125681A TW108125681A TWI704374B TW I704374 B TWI704374 B TW I704374B TW 108125681 A TW108125681 A TW 108125681A TW 108125681 A TW108125681 A TW 108125681A TW I704374 B TWI704374 B TW I704374B
Authority
TW
Taiwan
Prior art keywords
lens
reflective element
lens device
lenses
driving module
Prior art date
Application number
TW108125681A
Other languages
Chinese (zh)
Other versions
TW202104968A (en
Inventor
張錫齡
施銘偉
Original Assignee
大陸商信泰光學(深圳)有限公司
亞洲光學股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商信泰光學(深圳)有限公司, 亞洲光學股份有限公司 filed Critical 大陸商信泰光學(深圳)有限公司
Priority to TW108125681A priority Critical patent/TWI704374B/en
Priority to CN201910780316.XA priority patent/CN112241061A/en
Priority to US16/572,805 priority patent/US20200096745A1/en
Application granted granted Critical
Publication of TWI704374B publication Critical patent/TWI704374B/en
Publication of TW202104968A publication Critical patent/TW202104968A/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0065Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/009Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras having zoom function

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

A lens device, in sequence from an object side to an imaging side along an optical axis, comprises a module of lens unit actuator, a first reflecting element and a sensor disposed on the imaging plane. The module of lens unit actuator comprises a plurality of lenses, one of the lenses has the largest clear aperture CAB and another one of the lenses has the smallest clear aperture CAS. The first reflecting element is disposed between the module of lens unit actuator and the sensor. The lens device satisfies 0.7 <(Pz/Ivz)< 1.2, wherein Pz is measured along the optical axis from the image side surface of the lens closest to the imaging side to reflecting surface of the first reflecting element, and Ivz is the length of the sensor measured along the optical axis of the plurality of lenses.

Description

鏡頭裝置(五) Lens device (5)

本發明係有關於一種鏡頭裝置,特別是指一種具有二個反射元件的鏡頭模組。 The present invention relates to a lens device, in particular to a lens module with two reflective elements.

如第1圖所示,一習知的潛望式手機鏡頭200,自物端OBJ至像端IMA依序包含一稜鏡P0、複數個鏡片以及一感光元件IP。其中,複數個鏡片之中,至少有一鏡片具有最大有效口徑,於第1圖中,最靠近像端IMA的鏡片L1恰具有最大有效口徑。 As shown in Fig. 1, a conventional periscope cell phone lens 200 includes a lens P0, a plurality of lenses, and a photosensitive element IP in sequence from the object end OBJ to the image end IMA. Among the plurality of lenses, at least one lens has the largest effective aperture. In Figure 1, the lens L1 closest to the image end IMA has the largest effective aperture.

然而,目前潛望式手機鏡頭200的感光元件IP,解析度不斷提升,使得感光元件IP的尺寸不斷增加,甚至大於潛望式手機鏡頭中,鏡片的最大有效口徑,如此一來使得鏡頭模組的厚度尺寸過大,這造成潛望式手機鏡頭無法薄型化的缺點,進而造成手機整體厚度開始增加無法進一步降低。 However, at present, the resolution of the photosensitive element IP of the periscope cell phone lens 200 continues to increase, making the size of the photosensitive element IP continue to increase, even larger than the maximum effective aperture of the lens in the periscope cell phone lens. This makes the lens module The thickness of the cell phone is too large, which causes the disadvantage that the periscope cell phone lens cannot be thinned, and the overall thickness of the cell phone starts to increase and cannot be further reduced.

有鑑於此,本發明的目的在於提供一種鏡頭裝置,可以使用高解析度感光元件的同時,又不會增加鏡頭裝置的厚度,進而達到一種薄型化且高解像的鏡頭裝置。 In view of this, the object of the present invention is to provide a lens device that can use high-resolution photosensitive elements without increasing the thickness of the lens device, thereby achieving a thinner and high-resolution lens device.

本發明之鏡頭裝置,自物端至像端依序包括一透鏡驅動模組、一第一反射元件以及設置於成像面上的感測元件。該透鏡驅動模組包括複數個透鏡,該等透鏡中之一透鏡具有最大有效口徑CAB,該等透鏡中 之另一透鏡具有最小有效口徑CAS。其中,該第一反射元件位於該透鏡驅動模組與該感測元件之間,該鏡頭裝置滿足以下條件:0.7<(Pz/Ivz)<1.2,其中,Pz為自最靠近像端鏡片之像側面,沿著光軸至該第一反射元件之反射面的距離,Ivz為感測元件平行於該等複數透鏡之光軸方向的長度。 The lens device of the present invention includes a lens driving module, a first reflecting element, and a sensing element arranged on the imaging surface in sequence from the object end to the image end. The lens driving module includes a plurality of lenses, one of the lenses has the largest effective aperture CAB, among the lenses The other lens has the smallest effective aperture CAS. Wherein, the first reflective element is located between the lens driving module and the sensing element, and the lens device satisfies the following conditions: 0.7<(Pz/Ivz)<1.2, where Pz is the image from the lens closest to the image end The side surface is the distance along the optical axis to the reflecting surface of the first reflecting element, and Ivz is the length of the sensing element parallel to the optical axis direction of the plural lenses.

在另一實施例中,該鏡頭裝置更包括一第二反射元件,設置於物端與透鏡驅動模組之間。 In another embodiment, the lens device further includes a second reflective element disposed between the object end and the lens driving module.

在另一實施例中,該鏡頭裝置更進一步滿足以下條件:CAS/2<Py<CAB,其中,Py為自該第一反射元件光軸上的反射點至該感測元件之垂直距離。 In another embodiment, the lens device further satisfies the following condition: CAS/2<Py<CAB, where Py is the vertical distance from the reflection point on the optical axis of the first reflection element to the sensing element.

在另一實施例中,該第一反射元件係一稜鏡或一反射鏡。 In another embodiment, the first reflecting element is a mirror or a mirror.

在另一實施例中,該第二反射元件係一稜鏡或一反射鏡。 In another embodiment, the second reflecting element is a mirror or a mirror.

在另一實施例中,該透鏡驅動模組係用以驅動該等複數透鏡垂直於光軸方向的Y方向移動,其中,所述Y方向係垂直所述感測元件的接收面平面的方向,一Z方向係與該等複數透鏡之光軸平行的方向,一X方向係與所述Y方向及所述Z方向相互垂直,且所述X方向、所述Y方向及所述Z方向相互垂直。 In another embodiment, the lens driving module is used to drive the plurality of lenses to move in the Y direction perpendicular to the optical axis direction, wherein the Y direction is a direction perpendicular to the plane of the receiving surface of the sensing element, A Z direction is a direction parallel to the optical axis of the plural lenses, an X direction is perpendicular to the Y direction and the Z direction, and the X direction, the Y direction and the Z direction are perpendicular to each other .

在另一實施例中,該鏡頭裝置更包括一第二反射元件驅動模組,驅動該第二反射元件以該X方向或該Y方向為軸進行轉動。 In another embodiment, the lens device further includes a second reflective element driving module, which drives the second reflective element to rotate around the X direction or the Y direction.

在另一實施例中,該鏡頭裝置更包括一第一反射元件驅動模組,驅動該第一反射元件沿著垂直於感測元件的平面的方向移動。 In another embodiment, the lens device further includes a first reflective element driving module, which drives the first reflective element to move along a direction perpendicular to the plane of the sensing element.

在另一實施例中,該鏡頭裝置更包括一第一反射元件驅動模組,驅動該第一反射元件沿著平行於該等複數透鏡之光軸方向移動。 In another embodiment, the lens device further includes a first reflective element driving module, which drives the first reflective element to move along a direction parallel to the optical axis of the plurality of lenses.

在另一實施例中,所述透鏡驅動模組還包括用於驅動該等複數個透鏡的透鏡驅動器,所述第二反射元件驅動模組還包括用於驅動所述 第二反射元件的稜鏡驅動器。 In another embodiment, the lens driving module further includes a lens driver for driving the plurality of lenses, and the second reflective element driving module further includes a lens driver for driving the The driver of the second reflective element.

在另一實施例中,所述透鏡驅動器係一磁石線圈組,所述磁石及所述線圈相對設置。 In another embodiment, the lens driver is a magnet coil group, and the magnet and the coil are arranged oppositely.

1‧‧‧第二反射元件驅動模組 1‧‧‧Second reflective element drive module

2‧‧‧透鏡驅動模組 2‧‧‧Lens drive module

3‧‧‧感測元件 3‧‧‧Sensing components

4‧‧‧第一反射元件驅動模組 4‧‧‧First reflective element drive module

10‧‧‧第二反射元件 10‧‧‧Second reflective element

20‧‧‧透鏡 20‧‧‧Lens

21‧‧‧出光面 21‧‧‧Glossy surface

31‧‧‧接收面 31‧‧‧Receiving surface

40、41‧‧‧第一反射元件 40、41‧‧‧First reflective element

200‧‧‧潛望式手機鏡頭 200‧‧‧Periscope phone lens

CAB‧‧‧最大有效口徑 CAB‧‧‧Maximum effective caliber

CAS‧‧‧最小有效口徑 CAS‧‧‧Minimum effective caliber

IMA‧‧‧像端 IMA‧‧‧Image end

IP‧‧‧感光元件 IP‧‧‧Photosensitive element

L1、L2、L3、L4、L5‧‧‧鏡片 L1, L2, L3, L4, L5‧‧‧Lens

L11、L21、L31‧‧‧第一透鏡 L11, L21, L31‧‧‧First lens

L12、L22、L32‧‧‧第二透鏡 L12, L22, L32‧‧‧Second lens

L13、L23、L33‧‧‧第三透鏡 L13, L23, L33‧‧‧third lens

L14、L24、L34‧‧‧第四透鏡 L14, L24, L34‧‧‧Fourth lens

L15、L25、L35‧‧‧第五透鏡 L15, L25, L35‧‧‧Fifth lens

OAB‧‧‧光軸 OAB‧‧‧Optical axis

OBJ‧‧‧物端 OBJ‧‧‧Object

P0‧‧‧稜鏡 P0‧‧‧稜鏡

S11、S21、S31‧‧‧第一透鏡物側面 S11, S21, S31‧‧‧Object side of the first lens

S12、S22、S32‧‧‧第一透鏡像側面 S12, S22, S32‧‧‧The side of the first lens image

S13、S23、S33‧‧‧第二透鏡物側面 S13, S23, S33‧‧‧Object side of the second lens

S14、S24、S34‧‧‧第二透鏡像側面 S14, S24, S34‧‧‧Second lens image side

S15、S25、S35‧‧‧第三透鏡物側面 S15, S25, S35‧‧‧Object side of third lens

S16、S26、S36‧‧‧第三透鏡像側面 S16, S26, S36‧‧‧Third lens image side

S17、S27、S37‧‧‧第四透鏡物側面 S17, S27, S37‧‧‧Object side of the fourth lens

S18、S28、S38‧‧‧第四透鏡像側面 S18, S28, S38‧‧‧Fourth lens image side

S19、S29、S39‧‧‧第五透鏡物側面 S19, S29, S39‧‧‧Fifth lens object side

S20、S30、S40‧‧‧第五透鏡像側面 S20, S30, S40‧‧‧Fifth lens image side

第1圖為昔知的潛望式手機鏡頭的結構示意圖。 Figure 1 is a schematic diagram of the structure of a previously known periscope cell phone lens.

第2A圖為本發明的潛望式鏡頭模組的一種結構示意圖。 FIG. 2A is a schematic diagram of a structure of the periscope lens module of the present invention.

第2B圖為本發明的潛望式鏡頭模組的另一種結構示意圖。 FIG. 2B is a schematic diagram of another structure of the periscope lens module of the present invention.

第3A圖係本發明之實施例1的光學結構示意圖。 Figure 3A is a schematic diagram of the optical structure of Example 1 of the present invention.

第3B圖係本發明之實施例2的光學結構示意圖。 FIG. 3B is a schematic diagram of the optical structure of Embodiment 2 of the present invention.

第3C圖係本發明之實施例3的光學結構示意圖。 Figure 3C is a schematic diagram of the optical structure of Embodiment 3 of the present invention.

在本發明的描述中,需要理解的是,術語“中心”、“縱向”、“橫向”、“上”、“下”、“前”、“後”、“左”、“右”、“豎直”、“水準”、“頂”、“底”、“內”、“外”、“順時針”、“逆時針”等指示方位或位置關係為基於附圖所示的方位或位置關係,僅是為了便於描述本發明和簡化描述,而不是指示或暗示所指的裝置或元件必須具有特定的方位、以特定的方位構造和操作,因此不能理解為對本發明的限制。 In the description of the present invention, it should be understood that the terms "center", "longitudinal", "transverse", "upper", "lower", "front", "rear", "left", "right", " "Vertical", "horizontal", "top", "bottom", "inner", "outer", "clockwise", "counterclockwise" and other indicating orientations or position relationships are based on the orientation or position relationships shown in the drawings This is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as a limitation of the present invention.

如第2A圖所示,本發明涉及了一種潛望式鏡頭裝置,包括的第二反射元件驅動模組1、透鏡驅動模組2、第一反射元件驅動模組4和用於感應光線的感測元件3。其中,第二反射元件驅動模組1包括用於將沿Y方向入射的入射光線改變光束路徑的第二反射元件10以及承載第二反射元件10的第二反射元件載體(圖中未繪示),透鏡驅動模組2包括用於透射光線的透鏡20,第一反射元件驅動模組4包括用於將來自透鏡20的光線改變光束 路徑至感測元件3的第一反射元件40,透鏡驅動模組2位於第二反射元件驅動模組1與感測元件3之間,入射光線依序經由第二反射元件驅動模組1、透鏡驅動模組2、第一反射元件驅動模組4以及感測元件3。 As shown in Figure 2A, the present invention relates to a periscope lens device, including a second reflective element drive module 1, a lens drive module 2, a first reflective element drive module 4 and a sensor for sensing light.测Component 3. Wherein, the second reflective element driving module 1 includes a second reflective element 10 for changing the beam path of incident light incident in the Y direction, and a second reflective element carrier (not shown in the figure) that carries the second reflective element 10 , The lens driving module 2 includes a lens 20 for transmitting light, and the first reflective element driving module 4 includes a light beam for changing the light from the lens 20 The path to the first reflective element 40 of the sensing element 3, the lens driving module 2 is located between the second reflective element driving module 1 and the sensing element 3, and incident light sequentially passes through the second reflective element driving module 1 and the lens The driving module 2, the first reflective element driving module 4, and the sensing element 3.

第二反射元件10將入射光線改變光束路徑沿Z方向入射至透鏡驅動模組2,第二反射元件驅動模組1、透鏡驅動模組2以及第一反射元件驅動模組4沿著Z方向依序排列。 The second reflective element 10 changes the beam path of the incident light and enters the lens drive module 2 along the Z direction. The second reflective element drive module 1, the lens drive module 2 and the first reflective element drive module 4 follow along the Z direction. Sequence arrangement.

如第2A圖所示,感測元件3用於接收光線的接收面31與透鏡20用於透射出光線的出光面21相互垂直,即自透鏡20透射出的光線與接收面31相互平行,第一反射元件40位於感測元件3的接收面31的一側。具體地,透鏡20的出光面21呈豎立狀且朝向向右,即出光面21面向第一反射元件驅動模組4以及感測元件3,感測元件3平鋪在底側,感測元件3的接收面31朝向向上,即感測元件3的接收面31朝向第一反射元件40,感測元件3與第一反射元件40相對設置,第一反射元件40位於感測元件3的上方。 As shown in Figure 2A, the receiving surface 31 of the sensor element 3 for receiving light and the light emitting surface 21 of the lens 20 for transmitting light are perpendicular to each other, that is, the light transmitted from the lens 20 and the receiving surface 31 are parallel to each other. A reflective element 40 is located on one side of the receiving surface 31 of the sensing element 3. Specifically, the light-emitting surface 21 of the lens 20 is upright and faces rightward, that is, the light-emitting surface 21 faces the first reflective element driving module 4 and the sensing element 3, and the sensing element 3 is flat on the bottom side, and the sensing element 3 The receiving surface 31 of the sensing element 3 faces upward, that is, the receiving surface 31 of the sensing element 3 faces the first reflective element 40. The sensing element 3 and the first reflective element 40 are disposed oppositely, and the first reflective element 40 is located above the sensing element 3.

其中,第二反射元件10相對於第二反射元件載體固定設置,此時第二反射元件10不再可以轉動,其信賴性更高。透鏡20藉由透鏡驅動器的驅動使其可沿Z軸移動,以實現自動聚焦功能(AF,Auto Focus)。第一反射元件40可以繞X軸和Y軸擺動,即實現多方向擺動,第一反射元件40離感測元件3較近,調整很小的角度即可實現光學影像穩定功能(OIS,Optical Image Stabilization)。 Wherein, the second reflective element 10 is fixedly arranged with respect to the second reflective element carrier. At this time, the second reflective element 10 can no longer rotate, and its reliability is higher. The lens 20 can be moved along the Z axis driven by the lens driver to realize an auto focus function (AF, Auto Focus). The first reflective element 40 can swing around the X-axis and the Y-axis, that is, it can swing in multiple directions. The first reflective element 40 is closer to the sensing element 3, and the optical image stabilization function (OIS, Optical Image Stabilization) can be realized by adjusting a small angle. Stabilization).

其中,Y軸、Z軸以及X軸三個軸相互垂直,Y軸做為Y方向,Z軸做為Z方向,X軸做為X方向,由被攝物的物端入射光線沿Y方向入射至第二反射元件驅動模組1,由第二反射元件驅動模組1的第二反射元件10將入射光線改變光束路徑沿Z方向入射至透鏡驅動模組2,再由透鏡驅動模組2的透鏡20沿Z方向至第一反射元件驅動模組4,藉由第一反射元件驅動模組4 的第一反射元件40改變光束路徑沿Y方向至感測元件3。 Among them, the Y-axis, Z-axis and X-axis are perpendicular to each other, the Y-axis is used as the Y direction, the Z-axis is used as the Z direction, and the X-axis is used as the X direction. The light incident from the object end of the subject is incident along the Y direction. To the second reflective element driving module 1, the second reflective element 10 of the second reflective element driving module 1 changes the beam path of the incident light to the lens driving module 2 along the Z direction, and then the lens driving module 2 The lens 20 reaches the first reflective element drive module 4 along the Z direction, and the first reflective element drives the module 4 The first reflective element 40 changes the beam path along the Y direction to the sensing element 3.

第二反射元件驅動模組1、透鏡驅動模組2以及第一反射元件驅動模組4沿著Z方向依序排列,第一反射元件驅動模組4與感測元件3沿著Y方向排列。 The second reflective element drive module 1, the lens drive module 2 and the first reflective element drive module 4 are arranged in sequence along the Z direction, and the first reflective element drive module 4 and the sensing element 3 are arranged along the Y direction.

具體地,透鏡驅動模組2包括用於驅動透鏡20的透鏡驅動器(圖中未繪示)。透鏡驅動器是直線型音圈馬達,透鏡20安裝在該直線型音圈馬達的載體(圖中未繪示)上,且該直線型音圈馬達具有驅動透鏡20沿Z軸移動的一組磁石線圈組(圖中未繪示),磁石及線圈相對設置,換言之,透鏡驅動器驅動透鏡20沿著Z方向移動。第一反射元件驅動模組4包括用於驅動第一反射元件40的第一反射元件驅動器(圖中未繪示)。 Specifically, the lens driving module 2 includes a lens driver (not shown in the figure) for driving the lens 20. The lens driver is a linear voice coil motor, the lens 20 is mounted on the carrier (not shown in the figure) of the linear voice coil motor, and the linear voice coil motor has a set of magnet coils that drive the lens 20 to move along the Z axis In the group (not shown in the figure), the magnet and the coil are arranged oppositely. In other words, the lens driver drives the lens 20 to move along the Z direction. The first reflective element driving module 4 includes a first reflective element driver (not shown in the figure) for driving the first reflective element 40.

需要說明的是,直線型音圈馬達和擺動型音圈馬達均為現有技術中常用的音圈馬達,這裡不再進行詳細贅述。值得注意的是,亦可用壓電材料替換音圈馬達做為透鏡驅動器或第一反射元件驅動器。 It should be noted that both the linear voice coil motor and the oscillating voice coil motor are commonly used in the prior art, and will not be described in detail here. It is worth noting that piezoelectric materials can also be used to replace the voice coil motor as the lens driver or the first reflective element driver.

第2B圖係第2A圖的另一種變化。如第2B圖所示,感測元件3用於接收光線的接收面31與透鏡20用於透射出光線的出光面21相互垂直,即自透鏡20透射出的光線與接收面31相互平行,第一反射元件40位於感測元件3的接收面31的一側。具體地,透鏡20的出光面21呈豎立狀且朝向向右,即出光面21面向第一反射元件驅動模組4以及感測元件3,感測元件3平鋪在頂側,感測元件3的接收面31朝向向下,即感測元件3的接收面31朝向第一反射元件40,感測元件3與第一反射元件40相對設置,第一反射元件40位於感測元件3的下方。 Figure 2B is another variation of Figure 2A. As shown in Figure 2B, the receiving surface 31 of the sensor element 3 for receiving light and the light emitting surface 21 of the lens 20 for transmitting light are perpendicular to each other, that is, the light transmitted from the lens 20 and the receiving surface 31 are parallel to each other. A reflective element 40 is located on one side of the receiving surface 31 of the sensing element 3. Specifically, the light-emitting surface 21 of the lens 20 is upright and faces rightward, that is, the light-emitting surface 21 faces the first reflective element driving module 4 and the sensing element 3, and the sensing element 3 is flat on the top side, and the sensing element 3 The receiving surface 31 of the sensing element 3 faces downward, that is, the receiving surface 31 of the sensing element 3 faces the first reflective element 40. The sensing element 3 and the first reflective element 40 are disposed oppositely, and the first reflective element 40 is located below the sensing element 3.

下面通過具體實施例進行詳細說明。 A detailed description is given below through specific embodiments.

實施例1 Example 1

第3A圖係本發明實施例1的一種實施態樣。如第3A圖所示, 本發明之鏡頭裝置,自物端OBJ至像端IMA依序包括一第二反射元件10、一透鏡驅動模組2、一第一反射元件41以及設置於成像面上的感測元件3。第二反射元件10係安裝於第二反射元件驅動模組1之內,第一反射元件41係裝設於第一反射元件驅動模組4之內。光線OAB沿著光軸自物端OBJ進入第二反射元件10,經第二反射元件10反射後,沿光軸進入透鏡驅動模組2。之後,光線OAB沿著光軸進入第一反射元件41,並經第一反射元件41反射後,照射於感測元件3上。 Figure 3A is an implementation aspect of Embodiment 1 of the present invention. As shown in Figure 3A, The lens device of the present invention includes a second reflective element 10, a lens driving module 2, a first reflective element 41, and a sensing element 3 arranged on the imaging surface in sequence from the object end OBJ to the image end IMA. The second reflection element 10 is installed in the second reflection element driving module 1, and the first reflection element 41 is installed in the first reflection element driving module 4. The light OAB enters the second reflecting element 10 from the object end OBJ along the optical axis, and after being reflected by the second reflecting element 10, enters the lens driving module 2 along the optical axis. After that, the light OAB enters the first reflective element 41 along the optical axis, is reflected by the first reflective element 41 and irradiates the sensing element 3.

透鏡驅動模組2更包括複數枚鏡片,自物端OBJ至感測元件3依序包括:具有正屈光力的一第一透鏡L11,此第一透鏡L11包括一凸面S11朝向一物側OBJ;具有負屈光力的一第二透鏡L12;具有正屈光力的一第三透鏡L13;具有正屈光力的一第四透鏡L14,此第四透鏡L14包括一凸面S18朝向像側;及具有負屈光力的一第五透鏡L15,此第五透鏡L15包括一凹面S20朝向像側。其中,實施例1的鏡頭裝置滿足以下條件:0.7<(Pz/Ivz)<1.2,其中,Pz為自最靠近像端鏡片之像側面,沿著光軸至該第一反射元件之反射面的距離,Ivz為感測元件平行於該等複數枚鏡片之光軸OAB方向的長度。 The lens driving module 2 further includes a plurality of lenses. From the object end OBJ to the sensing element 3, the lens includes a first lens L11 with positive refractive power. The first lens L11 includes a convex surface S11 facing an object side OBJ; A second lens L12 with negative refractive power; a third lens L13 with positive refractive power; a fourth lens L14 with positive refractive power, the fourth lens L14 includes a convex surface S18 facing the image side; and a fifth lens with negative refractive power The lens L15. The fifth lens L15 includes a concave surface S20 facing the image side. Among them, the lens device of embodiment 1 satisfies the following conditions: 0.7<(Pz/Ivz)<1.2, where Pz is the distance from the image side surface closest to the image end lens along the optical axis to the reflective surface of the first reflective element The distance, Ivz, is the length of the sensing element parallel to the optical axis OAB of the plurality of lenses.

該等透鏡中之第一透鏡L11具有最大有效口徑CAB,該等透鏡中之第三透鏡L13具有最小有效口徑CAS;使得實施例1的鏡頭裝置進一步滿足以下條件:CAS/2<Py<CAB,其中,Py為自該第一反射元件光軸上的反射點至該感測元件之垂直距離。 The first lens L11 of the lenses has the largest effective aperture CAB, and the third lens L13 of the lenses has the smallest effective aperture CAS; so that the lens device of embodiment 1 further satisfies the following condition: CAS/2<Py<CAB, Wherein, Py is the vertical distance from the reflection point on the optical axis of the first reflection element to the sensing element.

表一為第3A圖中鏡頭裝置之各透鏡之相關參數表,表一資料顯示,實施例1之鏡頭裝置之有效焦距等於15.000mm、光圈值(F#)等於2.69、鏡頭總長度等於16.627457mm、視場等於22度。 Table 1 is a table of relevant parameters of each lens of the lens device in Figure 3A. The data in Table 1 shows that the effective focal length of the lens device of Example 1 is equal to 15.000mm, the aperture value (F#) is equal to 2.69, and the total lens length is equal to 16.627457mm, The field of view is equal to 22 degrees.

Figure 108125681-A0101-12-0006-1
Figure 108125681-A0101-12-0006-1
Figure 108125681-A0101-12-0007-2
Figure 108125681-A0101-12-0007-2

表一中各個透鏡之非球面表面凹陷度z由下列公式所得到:z=ch2/{1+[1-(k+1)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12+Fh14+Gh16+Hh18 The concavity z of the aspheric surface of each lens in Table 1 is obtained by the following formula: z=ch 2 /{1+[1-(k+1)c 2 h 2 ] 1/2 }+Ah 4 +Bh 6 + Ch 8 +Dh 10 +Eh 12 +Fh 14 +Gh 16 +Hh 18

其中:c:曲率;h:透鏡表面任一點至光軸之垂直距離; k:圓錐係數;A~H:非球面係數。 Among them: c: curvature; h: the vertical distance from any point on the lens surface to the optical axis; k: Conic coefficient; A~H: Aspheric coefficient.

表二為表一中各個透鏡之非球面表面之相關參數表,其中k為圓錐係數(Conic Constant)、A~H為非球面係數。 Table 2 is a table of related parameters of the aspheric surface of each lens in Table 1, where k is the Conic Constant, and A~H are the aspheric coefficients.

Figure 108125681-A0101-12-0008-3
Figure 108125681-A0101-12-0008-3

根據表一,CAB=5.56mm,CAS=3.053535mm,Pz=6.5mm,Py=3.736051mm,Ivz=5.866mm。因此,Pz/Ivz=1.10808,實施例1的鏡頭裝置確實滿足條件:0.7<(Pz/Ivz)<1.2。此外,因為CAS/2=1.5267675mm,故,實施例1的鏡頭裝置確實滿足條件:CAS/2<Py<CAB。 According to Table 1, CAB=5.56mm, CAS=3.053535mm, Pz=6.5mm, Py=3.736051mm, Ivz=5.866mm. Therefore, Pz/Ivz=1.10808, and the lens device of Embodiment 1 does meet the condition: 0.7<(Pz/Ivz)<1.2. In addition, because CAS/2=1.5267675mm, the lens device of Example 1 does meet the condition: CAS/2<Py<CAB.

實施例2 Example 2

第3B圖係本發明實施例1的另一種實施態樣。如第3B圖所示,本發明之鏡頭裝置,自物端OBJ至像端IMA依序包括一第二反射元件10、一透鏡驅動模組2、一第一反射元件41以及設置於成像面上的感測元件3。第二反射元件10係安裝於第二反射元件驅動模組1之內,第一反射元件41係裝設於第一反射元件驅動模組4之內。光線OAB沿著光軸自物端OBJ進入第二反射元件10,經第二反射元件10反射後,沿光軸進入透鏡驅動模組2。之後,光線OAB沿著光軸進入第一反射元件41,並經第一反射元件41反射後,照射於感測元件3上。 Figure 3B shows another implementation aspect of Embodiment 1 of the present invention. As shown in FIG. 3B, the lens device of the present invention includes a second reflective element 10, a lens driving module 2, a first reflective element 41 and arranged on the imaging surface in sequence from the object end OBJ to the image end IMA的sensing element3. The second reflection element 10 is installed in the second reflection element driving module 1, and the first reflection element 41 is installed in the first reflection element driving module 4. The light OAB enters the second reflecting element 10 from the object end OBJ along the optical axis, and after being reflected by the second reflecting element 10, enters the lens driving module 2 along the optical axis. After that, the light OAB enters the first reflective element 41 along the optical axis, is reflected by the first reflective element 41 and irradiates the sensing element 3.

透鏡驅動模組2更包括複數枚鏡片,自物端OBJ至感測元件3依序包括:具有正屈光力的一第一透鏡L21,此第一透鏡L21包括一凸面S21朝向一物側OBJ;具有負屈光力的一第二透鏡L22;具有正屈光力的一第三透鏡L23;具有正屈光力的一第四透鏡L24,此第四透鏡L24包括一凸面S28朝向像側;及具有負屈光力的一第五透鏡L25,此第五透鏡L25包括一凹面S30朝向像側。其中,實施例2的鏡頭裝置滿足以下條件:0.7<(Pz/Ivz)<1.2,其中,Pz為自最靠近像端鏡片之像側面,沿著光軸至該第一反射元件之反射面的距離,Ivz為感測元件平行於該等複數枚鏡片之光軸OAB方向的長度。 The lens driving module 2 further includes a plurality of lenses. From the object end OBJ to the sensing element 3, the first lens L21 has a positive refractive power. The first lens L21 includes a convex surface S21 facing an object side OBJ; A second lens L22 with negative refractive power; a third lens L23 with positive refractive power; a fourth lens L24 with positive refractive power, the fourth lens L24 includes a convex surface S28 facing the image side; and a fifth lens with negative refractive power The lens L25. The fifth lens L25 includes a concave surface S30 facing the image side. Among them, the lens device of Embodiment 2 satisfies the following conditions: 0.7<(Pz/Ivz)<1.2, where Pz is the distance from the image side surface closest to the image end lens along the optical axis to the reflective surface of the first reflective element The distance, Ivz, is the length of the sensing element parallel to the optical axis OAB of the plurality of lenses.

該等透鏡中之第一透鏡L21具有最大有效口徑CAB,該等透鏡中之第二透鏡L22具有最小有效口徑CAS;使得實施例2的鏡頭裝置進一步滿足以下條件:CAS/2<Py<CAB,其中,Py為自該第一反射元件光軸上的反射點至該感測元件之垂直距離。 The first lens L21 of the lenses has the largest effective aperture CAB, and the second lens L22 of the lenses has the smallest effective aperture CAS; so that the lens device of Embodiment 2 further satisfies the following condition: CAS/2<Py<CAB, Wherein, Py is the vertical distance from the reflection point on the optical axis of the first reflection element to the sensing element.

表三為第3B圖中鏡頭裝置之各透鏡之相關參數表,表三資料顯示,實施例2之鏡頭裝置之有效焦距等於21.900mm、光圈值(F#)等於3.4、鏡頭總長度等於22.66369mm、視場等於20.6度。 Table 3 is a table of relevant parameters of each lens of the lens device in Figure 3B. The data in Table 3 shows that the effective focal length of the lens device of Example 2 is equal to 21.900mm, the aperture value (F#) is equal to 3.4, and the total lens length is equal to 22.66369mm, The field of view is equal to 20.6 degrees.

Figure 108125681-A0305-02-0012-1
Figure 108125681-A0305-02-0012-1

表三中各個透鏡之非球面表面凹陷度z由下列公式所得到:z=ch2/{1+[1-(k+1)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12+Fh14+Gh16+Hh18 The concavity z of the aspheric surface of each lens in Table 3 is obtained by the following formula: z=ch 2 /{1+[1-(k+1)c 2 h 2 ] 1/2 }+Ah 4 +Bh 6 + Ch 8 +Dh 10 +Eh 12 +Fh 14 +Gh 16 +Hh 18

其中: c:曲率;h:透鏡表面任一點至光軸之垂直距離;k:圓錐係數;A~H:非球面係數。 among them: c: curvature; h: the vertical distance from any point on the lens surface to the optical axis; k: conic coefficient; A~H: aspherical coefficient.

表四為表三中各個透鏡之非球面表面之相關參數表,其中k為圓錐係數(Conic Constant)、A~H為非球面係數。 Table 4 is a table of related parameters of the aspheric surface of each lens in Table 3, where k is the Conic Constant and A~H are the aspheric coefficients.

Figure 108125681-A0101-12-0011-5
Figure 108125681-A0101-12-0011-5

根據表三,CAB=6.448mm,CAS=3.709908mm,Pz=9.1mm,Py=4.789974mm,Ivz=7.994294mm。因此,Pz/Ivz=1.138312,實施 例2的鏡頭裝置確實滿足條件:0.7<(Pz/Ivz)<1.2。此外,因為CAS/2=1.854954mm,故,實施例2的鏡頭裝置確實滿足條件:CAS/2<Py<CAB。 According to Table 3, CAB=6.448mm, CAS=3.709908mm, Pz=9.1mm, Py=4.789974mm, Ivz=7.994294mm. Therefore, Pz/Ivz=1.138312, implement The lens device of Example 2 does meet the condition: 0.7<(Pz/Ivz)<1.2. In addition, because CAS/2=1.854954mm, the lens device of Example 2 does satisfy the condition: CAS/2<Py<CAB.

實施例3 Example 3

第3C圖係本發明實施例3的一種實施態樣。如第3C圖所示,本發明之鏡頭裝置,自物端OBJ至像端IMA依序包括一第二反射元件10、一透鏡驅動模組2、一第一反射元件41以及設置於成像面上的感測元件3。第二反射元件10係安裝於第二反射元件驅動模組1之內,第一反射元件41係裝設於第一反射元件驅動模組4之內。光線OAB沿著光軸自物端OBJ進入第二反射元件10,經第二反射元件10反射後,沿光軸進入透鏡驅動模組2。之後,光線OAB沿著光軸進入第一反射元件41,並經第一反射元件41反射後,照射於感測元件3上。 Figure 3C is an implementation aspect of Embodiment 3 of the present invention. As shown in FIG. 3C, the lens device of the present invention includes a second reflective element 10, a lens driving module 2, a first reflective element 41 and arranged on the imaging surface in sequence from the object end OBJ to the image end IMA的sensing element3. The second reflection element 10 is installed in the second reflection element driving module 1, and the first reflection element 41 is installed in the first reflection element driving module 4. The light OAB enters the second reflecting element 10 from the object end OBJ along the optical axis, and after being reflected by the second reflecting element 10, enters the lens driving module 2 along the optical axis. After that, the light OAB enters the first reflective element 41 along the optical axis, is reflected by the first reflective element 41 and irradiates the sensing element 3.

透鏡驅動模組2更包括複數枚鏡片,自物端OBJ至感測元件3依序包括:具有負屈光力的一第一透鏡L31,此第一透鏡L31包括一凸面S31朝向一物側OBJ;具有正屈光力的一第二透鏡L32;具有負屈光力的一第三透鏡L33;具有正屈光力的一第四透鏡L34,此第四透鏡L34包括一凸面S38朝向像側;及具有正屈光力的一第五透鏡L35,此第五透鏡L35包括一凹面S40朝向像側。其中,實施例3的鏡頭裝置滿足以下條件:0.7<(Pz/Ivz)<1.2,其中,Pz為自最靠近像端鏡片之像側面,沿著光軸至該第一反射元件之反射面的距離,Ivz為感測元件平行於該等複數枚鏡片之光軸OAB方向的長度。 The lens driving module 2 further includes a plurality of lenses. From the object end OBJ to the sensing element 3, the first lens L31 has a negative refractive power. The first lens L31 includes a convex surface S31 facing an object side OBJ; A second lens L32 with positive refractive power; a third lens L33 with negative refractive power; a fourth lens L34 with positive refractive power, the fourth lens L34 includes a convex surface S38 facing the image side; and a fifth lens with positive refractive power The lens L35. The fifth lens L35 includes a concave surface S40 facing the image side. Among them, the lens device of embodiment 3 satisfies the following conditions: 0.7<(Pz/Ivz)<1.2, where Pz is the distance from the image side surface closest to the image end lens along the optical axis to the reflective surface of the first reflective element The distance, Ivz, is the length of the sensing element parallel to the optical axis OAB of the plurality of lenses.

該等透鏡中之第四透鏡L34具有最大有效口徑CAB,該等透鏡中之第二透鏡L32具有最小有效口徑CAS;使得實施例3的鏡頭裝置進一步滿足以下條件:CAS/2<Py<CAB,其中,Py為自該第一反射元件光軸上的反射點至該感測元件之垂直距離。 The fourth lens L34 among the lenses has the largest effective aperture CAB, and the second lens L32 among the lenses has the smallest effective aperture CAS; so that the lens device of Embodiment 3 further satisfies the following condition: CAS/2<Py<CAB, Wherein, Py is the vertical distance from the reflection point on the optical axis of the first reflection element to the sensing element.

表五為第3C圖中鏡頭裝置之各透鏡之相關參數表,表五資 料顯示,實施例3之鏡頭裝置之有效焦距等於8.04mm、光圈值(F#)等於1.45、鏡頭總長度等於50.80mm、視場等於70度。 Table 5 is a table of related parameters of each lens of the lens device in Figure 3C. The data shows that the effective focal length of the lens device of Example 3 is equal to 8.04mm, the aperture value (F#) is equal to 1.45, the total length of the lens is equal to 50.80mm, and the field of view is equal to 70 degrees.

Figure 108125681-A0101-12-0013-6
Figure 108125681-A0101-12-0013-6

表五中各個透鏡之非球面表面凹陷度z由下列公式所得到: z=ch2/{1+[1-(k+1)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12+Fh14+Gh16+Hh18 The concavity z of the aspheric surface of each lens in Table 5 is obtained by the following formula: z=ch 2 /{1+[1-(k+1)c 2 h 2 ] 1/2 }+Ah 4 +Bh 6 + Ch 8 +Dh 10 +Eh 12 +Fh 14 +Gh 16 +Hh 18

其中:c:曲率;h:透鏡表面任一點至光軸之垂直距離;k:圓錐係數;A~H:非球面係數。 Among them: c: curvature; h: the vertical distance from any point on the lens surface to the optical axis; k: conic coefficient; A~H: aspherical coefficient.

表六為表五中各個透鏡之非球面表面之相關參數表,其中k為圓錐係數(Conic Constant)、A~H為非球面係數。 Table 6 is a table of related parameters of the aspheric surface of each lens in Table 5, where k is the Conic Constant and A~H are the aspheric coefficients.

Figure 108125681-A0101-12-0014-7
Figure 108125681-A0101-12-0014-7
Figure 108125681-A0101-12-0015-8
Figure 108125681-A0101-12-0015-8

根據表五,CAB=16.92893mm,CAS=7.240997mm,Pz=8.0mm,Py=6.9714116mm,Ivz=10.4mm。因此,Pz/Ivz=0.76923,實施例3的鏡頭裝置確實滿足條件:0.7<(Pz/Ivz)<1.2。此外,因為CAS/2=3.6204985mm,故,實施例3的鏡頭裝置確實滿足條件:CAS/2<Py<CAB。 According to Table 5, CAB=16.92893mm, CAS=7.240997mm, Pz=8.0mm, Py=6.9714116mm, Ivz=10.4mm. Therefore, Pz/Ivz=0.76923, and the lens device of Embodiment 3 does meet the condition: 0.7<(Pz/Ivz)<1.2. In addition, because CAS/2=3.6204985mm, the lens device of Example 3 does meet the condition: CAS/2<Py<CAB.

於本發明中,Y軸、Z軸以及X軸三個軸相互垂直,Y軸係垂直感測元件3用於接收光線的接收面31平面的方向,Z軸係與光軸平行並貫穿透鏡驅動模組2的方向。 In the present invention, the Y-axis, Z-axis and X-axis are perpendicular to each other, the Y-axis is perpendicular to the direction of the plane of the receiving surface 31 of the sensing element 3 for receiving light, and the Z-axis is parallel to the optical axis and drives through the lens. The direction of module 2.

第二反射元件驅動模組1包括用於驅動第二反射元件10的第二反射元件驅動器(圖中未繪示)。第一反射元件驅動模組4亦可用以將第一反射元件40加以固定或穩定不做轉動與移動。 The second reflective element driving module 1 includes a second reflective element driver (not shown in the figure) for driving the second reflective element 10. The first reflective element driving module 4 can also be used to fix or stabilize the first reflective element 40 without rotating or moving.

於本發明中,第二反射元件驅動器可以是一擺動型音圈馬達,第二反射元件10安裝在該擺動型音圈馬達的載體(圖中未繪示)上,且該擺動型音圈馬達具有驅動第二反射元件10沿X軸或沿Y軸轉動的一組磁石線圈組(圖中未繪示),磁石及線圈相對設置,換言之,第二反射元件驅動器驅動第二反射元件10以X軸或Y軸為軸心轉動。 In the present invention, the second reflective element driver may be a swing type voice coil motor, the second reflective element 10 is mounted on a carrier (not shown in the figure) of the swing type voice coil motor, and the swing type voice coil motor There is a magnet coil group (not shown in the figure) that drives the second reflective element 10 to rotate along the X axis or along the Y axis. The magnet and the coil are arranged oppositely. In other words, the second reflective element driver drives the second reflective element 10 to X The axis or Y axis is the axis rotation.

於本發明中,透鏡驅動器是直線型音圈馬達,透鏡20安裝在該直線型音圈馬達的載體(圖中未標示)上,且該直線型音圈馬達具有驅動透鏡20沿Z軸、或者沿Z軸與Y軸、或者沿Z軸與X軸、或者沿Z軸、Y軸及Z軸移動的一組磁石線圈組(圖中未標示),磁石及線圈相對設置。換言之,當第二反射元件驅動器驅動第二反射元件10沿X軸轉動時,透鏡驅動器驅動透鏡20沿著X軸方向且/或Z軸方向移動;當第二反射元件驅動器驅動第二反射元件10沿Y軸轉動時,透鏡驅動器驅動透鏡20沿著Y軸方向且/或Z軸方向移動。除此之外,透鏡驅動器亦可同時驅動透鏡20沿Z軸、Y軸及Z軸移動。 In the present invention, the lens driver is a linear voice coil motor, the lens 20 is mounted on a carrier (not shown in the figure) of the linear voice coil motor, and the linear voice coil motor has the drive lens 20 along the Z axis, or A set of magnet coil sets (not shown in the figure) that move along the Z axis and the Y axis, or along the Z axis and the X axis, or along the Z axis, Y axis and Z axis, and the magnets and coils are arranged oppositely. In other words, when the second reflective element driver drives the second reflective element 10 to rotate along the X axis, the lens driver drives the lens 20 to move along the X-axis direction and/or the Z-axis direction; when the second reflective element driver drives the second reflective element 10 When rotating along the Y axis, the lens driver drives the lens 20 to move along the Y axis direction and/or the Z axis direction. In addition, the lens driver can also drive the lens 20 to move along the Z axis, Y axis, and Z axis at the same time.

於本發明中,當第二反射元件驅動器驅動第二反射元件10沿X軸轉動,且透鏡驅動器驅動透鏡20沿著X軸方向移動,則第一反射元件驅動器(圖中未標示)用以將第一反射元件沿著Y軸或Z軸方向移動,目的係用以調整鏡頭裝置的焦距。於本發明中,當第二反射元件驅動器驅動第二反射元件10沿Y軸轉動,且透鏡驅動器驅動透鏡20沿著Y軸方向移動,則第一反射元件驅動器(圖中未標示)用以將第一反射元件沿著Y軸或Z軸方向移動。於本發明中,當透鏡驅動器可驅動透鏡20沿著Z軸方向移動時,第一反射元件驅動模組4只用以將第一反射元件加以固定或穩定,使其不做任何轉動與移動。 In the present invention, when the second reflective element driver drives the second reflective element 10 to rotate along the X axis, and the lens driver drives the lens 20 to move along the X axis, the first reflective element driver (not shown in the figure) is used to The first reflective element moves along the Y-axis or Z-axis, and the purpose is to adjust the focal length of the lens device. In the present invention, when the second reflective element driver drives the second reflective element 10 to rotate along the Y axis, and the lens driver drives the lens 20 to move along the Y axis, the first reflective element driver (not shown in the figure) is used to The first reflective element moves along the Y-axis or Z-axis direction. In the present invention, when the lens driver can drive the lens 20 to move along the Z-axis direction, the first reflective element drive module 4 is only used to fix or stabilize the first reflective element without any rotation or movement.

需要說明的是,直線型音圈馬達和擺動型音圈馬達均為現有技術中常用的音圈馬達,這裡不再進行詳細贅述。值得注意的是,亦可用壓電材料替換音圈馬達做為稜鏡驅動器、第三透鏡驅動器或第三第一反射元件驅動器。 It should be noted that both the linear voice coil motor and the oscillating voice coil motor are commonly used in the prior art, and will not be described in detail here. It is worth noting that the piezoelectric material can also be used to replace the voice coil motor as the lens driver, the third lens driver, or the third first reflective element driver.

於本發明中,第一反射元件41可以是一反射鏡或一稜鏡。第二反射元件10亦可以是一反射鏡或一稜鏡。 In the present invention, the first reflecting element 41 can be a reflecting mirror or a mirror. The second reflecting element 10 can also be a reflecting mirror or a mirror.

應當理解的是,對本領域技術人員來說,可以根據上述說明加以改進或變換,但這些改進或變換都應屬於本發明所附權利要求的保護範圍之內。 It should be understood that those skilled in the art can make improvements or changes based on the above description, but these improvements or changes should fall within the protection scope of the appended claims of the present invention.

1‧‧‧第二反射元件驅動模組 1‧‧‧Second reflective element drive module

2‧‧‧透鏡驅動模組 2‧‧‧Lens drive module

3‧‧‧感測元件 3‧‧‧Sensing components

4‧‧‧第一反射元件驅動模組 4‧‧‧First reflective element drive module

10‧‧‧第二反射元件 10‧‧‧Second reflective element

20‧‧‧透鏡 20‧‧‧Lens

21‧‧‧出光面 21‧‧‧Glossy surface

31‧‧‧接收面 31‧‧‧Receiving surface

40‧‧‧第一反射元件 40‧‧‧First reflective element

Claims (11)

一種鏡頭裝置,自物端至像端沿著光軸依序包括:一透鏡驅動模組,包括複數個透鏡,該等透鏡中之一透鏡具有最大有效口徑CAB,該等透鏡中之另一透鏡具有最小有效口徑CAS;一第一反射元件;以及設置於成像面上的感測元件;其中,該第一反射元件位於該透鏡驅動模組與該感測元件之間,該鏡頭裝置滿足以下條件:0.7<(Pz/Ivz)<1.2,其中,Pz為自最靠近像端鏡片之像側面,沿著光軸至該第一反射元件之反射面的距離,Ivz為感測元件平行於該等複數透鏡之光軸方向的長度。 A lens device, from the object end to the image end along the optical axis, includes: a lens drive module, including a plurality of lenses, one of the lenses has the largest effective aperture CAB, and the other of the lenses CAS with the smallest effective aperture; a first reflective element; and a sensing element disposed on the imaging surface; wherein, the first reflective element is located between the lens driving module and the sensing element, and the lens device satisfies the following conditions : 0.7<(Pz/Ivz)<1.2, where Pz is the distance from the image side surface of the lens closest to the image end along the optical axis to the reflective surface of the first reflective element, and Ivz is the sensing element parallel to the The length of the optical axis of the plural lens. 如申請專利範圍第1項所述的鏡頭裝置,其更包括一第二反射元件,設置於物端與透鏡驅動模組之間。 As described in the first item of the scope of patent application, the lens device further includes a second reflective element disposed between the object end and the lens driving module. 如申請專利範圍第2項所述的鏡頭裝置,其中該鏡頭裝置更進一步滿足以下條件:CAS/2<Py<CAB,其中,Py為自該第一反射元件光軸上的反射點至該感測元件之垂直距離。 For the lens device described in item 2 of the scope of patent application, the lens device further satisfies the following condition: CAS/2<Py<CAB, where Py is from the reflection point on the optical axis of the first reflective element to the sensor Measure the vertical distance of the component. 如申請專利範圍第3項所述的鏡頭裝置,其中該第一反射元件係一稜鏡或一反射鏡。 The lens device described in item 3 of the scope of patent application, wherein the first reflecting element is a mirror or a mirror. 如申請專利範圍第4項所述的鏡頭裝置,其中該第二反射元件係一稜鏡或一反射鏡。 The lens device described in item 4 of the scope of patent application, wherein the second reflective element is a mirror or a mirror. 如申請專利範圍第2項所述的鏡頭裝置,其中該透鏡驅動模組係用以驅動該等複數透鏡垂直於Y方向移動,其中,所述Y方向係垂直所述感測元件的接收面平面的方向,一Z方向係與該等複數透鏡之光軸平行的方向,一X方向係與所述Y方向及所述Z方向相互垂直,且所述X方向、所 述Y方向及所述Z方向相互垂直。 The lens device described in item 2 of the scope of patent application, wherein the lens driving module is used to drive the plurality of lenses to move perpendicularly to the Y direction, wherein the Y direction is perpendicular to the receiving surface plane of the sensing element A Z direction is a direction parallel to the optical axis of the plural lenses, an X direction is perpendicular to the Y direction and the Z direction, and the X direction, the The Y direction and the Z direction are perpendicular to each other. 如申請專利範圍第6項所述的鏡頭裝置,該鏡頭裝置更包括一第二反射元件驅動模組,驅動該第二反射元件以該X方向或該Y方向為軸進行轉動。 For the lens device described in item 6 of the scope of patent application, the lens device further includes a second reflective element driving module that drives the second reflective element to rotate around the X direction or the Y direction as an axis. 如申請專利範圍第6項所述的鏡頭裝置,該鏡頭裝置更包括一第一反射元件驅動模組,驅動該第一反射元件沿著垂直於感測元件的平面的方向移動。 According to the lens device described in item 6 of the scope of patent application, the lens device further includes a first reflective element driving module that drives the first reflective element to move along a direction perpendicular to the plane of the sensing element. 如申請專利範圍第6項所述的鏡頭裝置,該鏡頭裝置更包括一第一反射元件驅動模組,驅動該第一反射元件沿著平行於該等複數透鏡之光軸方向移動。 According to the lens device described in item 6 of the scope of patent application, the lens device further includes a first reflective element driving module, which drives the first reflective element to move along a direction parallel to the optical axis of the plurality of lenses. 如申請專利範圍第8項或第9項所述的鏡頭裝置,其中所述透鏡驅動模組還包括用於驅動該等複數個透鏡的透鏡驅動器,所述第二反射元件驅動模組還包括用於驅動所述第二反射元件的稜鏡驅動器。 The lens device according to item 8 or item 9 of the scope of patent application, wherein the lens driving module further includes a lens driver for driving the plurality of lenses, and the second reflective element driving module further includes For driving the second reflective element. 如申請專利範圍第10項所述的鏡頭裝置,其中所述透鏡驅動器係一磁石線圈組,所述磁石及所述線圈相對設置。 According to the lens device described in item 10 of the scope of patent application, the lens driver is a magnet coil group, and the magnet and the coil are arranged oppositely.
TW108125681A 2018-09-20 2019-07-19 Lens device TWI704374B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW108125681A TWI704374B (en) 2019-07-19 2019-07-19 Lens device
CN201910780316.XA CN112241061A (en) 2019-07-19 2019-08-22 Lens device
US16/572,805 US20200096745A1 (en) 2018-09-20 2019-09-17 Lens Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108125681A TWI704374B (en) 2019-07-19 2019-07-19 Lens device

Publications (2)

Publication Number Publication Date
TWI704374B true TWI704374B (en) 2020-09-11
TW202104968A TW202104968A (en) 2021-02-01

Family

ID=73643993

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108125681A TWI704374B (en) 2018-09-20 2019-07-19 Lens device

Country Status (2)

Country Link
CN (1) CN112241061A (en)
TW (1) TWI704374B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI792063B (en) * 2020-09-30 2023-02-11 大陸商信泰光學(深圳)有限公司 Lens device
TWI819526B (en) * 2021-09-24 2023-10-21 大立光電股份有限公司 Optical reflecting assembly, optical lens element module and electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI789778B (en) * 2021-06-02 2023-01-11 大陽科技股份有限公司 Camera module and electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM376769U (en) * 2009-08-28 2010-03-21 Altek Corp Prism type lens structure
US20160306161A1 (en) * 2015-04-20 2016-10-20 Fujifilm Corporation Objective lens for endoscopes and endoscope
CN107948470A (en) * 2017-11-22 2018-04-20 德淮半导体有限公司 Camera module and mobile equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5482785B2 (en) * 2009-03-10 2014-05-07 コニカミノルタ株式会社 Imaging optical system, imaging optical device, and digital device
TWI616675B (en) * 2016-07-14 2018-03-01 大立光電股份有限公司 Optical photographing assembly, image capturing apparatus and electronic device
KR20180032058A (en) * 2016-09-21 2018-03-29 삼성전자주식회사 Optical lens assembly and electronic apparatus having the same
CN108957689B (en) * 2018-06-08 2020-12-15 玉晶光电(厦门)有限公司 Optical imaging lens

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM376769U (en) * 2009-08-28 2010-03-21 Altek Corp Prism type lens structure
US20160306161A1 (en) * 2015-04-20 2016-10-20 Fujifilm Corporation Objective lens for endoscopes and endoscope
CN107948470A (en) * 2017-11-22 2018-04-20 德淮半导体有限公司 Camera module and mobile equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI792063B (en) * 2020-09-30 2023-02-11 大陸商信泰光學(深圳)有限公司 Lens device
TWI819526B (en) * 2021-09-24 2023-10-21 大立光電股份有限公司 Optical reflecting assembly, optical lens element module and electronic device

Also Published As

Publication number Publication date
TW202104968A (en) 2021-02-01
CN112241061A (en) 2021-01-19

Similar Documents

Publication Publication Date Title
TWI704374B (en) Lens device
JP2005242015A (en) Zoom lens and imaging apparatus having same
JP2003233008A (en) Imaging apparatus
JP2012173730A (en) Zoom lens, optical device, and manufacturing method for zoom lens
JP4685907B2 (en) Imaging device
JPWO2019097716A1 (en) Magnification optics, optics, and methods of manufacturing variable magnification optics
JP7149795B2 (en) Zoom lens and imaging device
JPH07104218A (en) Variable power optical system
JP4984608B2 (en) Zoom lens and imaging apparatus
JP2007148137A (en) Variable power imaging lens, optical module and personal digital assistant
JPWO2019097718A1 (en) Magnification optics, optics, and methods of manufacturing variable magnification optics
JPWO2002082158A1 (en) Zoom lens and electronic still camera using the same
JP4588416B2 (en) Zoom lens with anti-vibration function
JP4035328B2 (en) Variable magnification optical system and optical apparatus using the same
JP2005084151A (en) Zoom lens device
WO2021227705A1 (en) Periscopic optical zoom module and assembly method therefor, and corresponding adjustable optical assembly
KR101600764B1 (en) Optical system and optical device provided therewith
US6181477B1 (en) Imaging lens
US6169853B1 (en) Zooming optical system
JPH09218346A (en) Optical system
JP4411010B2 (en) Zoom lens and imaging device using the same
JP6066272B2 (en) Photographing lens, optical device, and method for adjusting photographing lens
JP2000089101A (en) Inner focus type optical system
JP2002287033A (en) Optical device
JPWO2019097715A1 (en) Magnification optics, optics, and methods of manufacturing variable magnification optics