TWI703229B - Deposition source for sputter deposition, deposition apparatus and method of assembling a deposition source - Google Patents

Deposition source for sputter deposition, deposition apparatus and method of assembling a deposition source Download PDF

Info

Publication number
TWI703229B
TWI703229B TW105120146A TW105120146A TWI703229B TW I703229 B TWI703229 B TW I703229B TW 105120146 A TW105120146 A TW 105120146A TW 105120146 A TW105120146 A TW 105120146A TW I703229 B TWI703229 B TW I703229B
Authority
TW
Taiwan
Prior art keywords
power
deposition source
plate
magnetron
target
Prior art date
Application number
TW105120146A
Other languages
Chinese (zh)
Other versions
TW201708581A (en
Inventor
史帝芬 凱樂
湯瑪斯渥納 李歐伯爾
安科 黑爾米希
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW201708581A publication Critical patent/TW201708581A/en
Application granted granted Critical
Publication of TWI703229B publication Critical patent/TWI703229B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3444Associated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3461Means for shaping the magnetic field, e.g. magnetic shunts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3464Operating strategies
    • H01J37/347Thickness uniformity of coated layers or desired profile of target erosion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

A deposition source (100) for sputter deposition in a vacuum chamber is described.  The deposition source includes a target (110) for providing a material to be deposited during the sputter deposition; an RF power supply (120) for providing RF power to the target (110); a magnetron (130); a power connector assembly (140) connecting the RF power supply (120) with the target (110); a RF power return path assembly (166) for providing a return path from the target to the RF power supply, wherein the power connector assembly (140) and/or the return path assembly (166) has an asymmetric inductive and/or capacitive mass; and a plate (150) arranged a side of the magnetron (130) for compensating the asymmetric inductive and/or capacitive mass.

Description

用於濺射沉積之沉積源、沉積設備、以及裝配沉積源之方法Deposition source, deposition equipment, and method for assembling deposition source for sputtering deposition

本發明係關於用於濺射沉積的沉積源、沉積設備,及裝配沉積源的方法。特別地,本發明係關於用於在真空腔室中射頻(RF)濺射的濺射沉積源,及用於在真空腔室中射頻(RF)濺射的設備。The present invention relates to a deposition source for sputtering deposition, a deposition equipment, and a method of assembling the deposition source. In particular, the present invention relates to a sputtering deposition source for radio frequency (RF) sputtering in a vacuum chamber, and an apparatus for radio frequency (RF) sputtering in a vacuum chamber.

物理氣相沉積(PVD)製程在一些技術領域受到越來越多關注,例如顯示器製造。就某些PVD製程而言,充分的層特性可獲得良好的沉積速率。例如,濺射可用於顯示器製造或其他應用。濺射(例如磁控濺射)係基板塗佈技術,例如玻璃或塑膠基板。濺射利用電漿來濺射靶材而產生塗佈材料流。在此製程中,藉由與高能電漿粒子碰撞,以自靶材表面釋放材料。濺射可由電漿參數控制,例如壓力、功率、氣體和磁場。在真空下,濺射材料從靶材朝一或更多基板或工件行進並黏附於表面。包括金屬、半導體和介電材料的各種材料可濺射成所需規格。磁控濺射據悉可用於各種應用,包括半導體處理、光學塗層、食品包裝、磁性記錄和保護耐磨塗層。The physical vapor deposition (PVD) process has attracted more and more attention in some technical fields, such as display manufacturing. For some PVD processes, sufficient layer characteristics can achieve a good deposition rate. For example, sputtering can be used in display manufacturing or other applications. Sputtering (such as magnetron sputtering) is a substrate coating technology, such as glass or plastic substrates. Sputtering uses plasma to sputter the target to generate a flow of coating material. In this process, the material is released from the surface of the target by colliding with high-energy plasma particles. Sputtering can be controlled by plasma parameters, such as pressure, power, gas, and magnetic field. Under vacuum, the sputtering material travels from the target toward one or more substrates or workpieces and adheres to the surface. Various materials including metals, semiconductors and dielectric materials can be sputtered to the required specifications. Magnetron sputtering is reported to be used in a variety of applications, including semiconductor processing, optical coatings, food packaging, magnetic recording and protective wear-resistant coatings.

磁控濺射裝置包括用於供給氣體能量並觸發及維持電漿的電源、用於控制離子移動的磁性元件,及用於提供塗佈材料的靶材。濺射可使用各種具不同電性、磁性與機械構造的裝置完成。構造包括直流(DC)或交流(AC)電磁場或射頻(RF)能量源,以產生電漿。特別地,利用RF濺射方法可濺射非導電材料。The magnetron sputtering device includes a power source for supplying gas energy and triggering and maintaining plasma, a magnetic element for controlling ion movement, and a target for providing coating material. Sputtering can be done using various devices with different electrical, magnetic and mechanical structures. The configuration includes a direct current (DC) or alternating current (AC) electromagnetic field or radio frequency (RF) energy source to generate plasma. In particular, non-conductive materials can be sputtered using the RF sputtering method.

RF-PVD期用於多種應用,例如濺射非導電材料。濺射塗層功能通常取決於均勻度和塗層厚度。厚度需在預定範圍內。製造塗層時,期進行塗佈的沉積速率落在預定容差範圍內。特別地,製造過程需嚴密控制製程參數,例如電漿均勻度和濺射裝置的沉積速率。然習知沉積源和沉積設備在濺射塗層的均勻度方面仍有不足。The RF-PVD phase is used in many applications, such as sputtering non-conductive materials. Sputter coating function usually depends on uniformity and coating thickness. The thickness must be within the predetermined range. When manufacturing the coating, the deposition rate at which the coating is expected to fall within a predetermined tolerance range. In particular, the manufacturing process requires strict control of process parameters, such as plasma uniformity and deposition rate of the sputtering device. However, the conventional deposition source and deposition equipment are still insufficient in the uniformity of the sputtered coating.

因此,仍需提供改良沉積源和沉積設備。Therefore, there is still a need to provide improved deposition sources and deposition equipment.

鑒於上述,根據申請專利範圍獨立項,提供用於在真空腔室中濺射沉積的沉積源、沉積設備,及裝配沉積源的方法。其他優點、特徵、態樣和細節可從申請專利範圍附屬項、實施方式和圖式清楚得知。In view of the above, according to the independent item of the scope of patent application, a deposition source for sputtering deposition in a vacuum chamber, a deposition equipment, and a method of assembling the deposition source are provided. Other advantages, features, aspects and details can be clearly understood from the appended items, implementation methods and drawings of the patent application.

根據本發明的一態樣,提供用於在真空腔室中濺射沉積的沉積源。沉積源包括靶材,用於提供待於濺射沉積期間沉積的材料;RF電源,用於提供RF功率給靶材;磁控管;功率連接組件,連接RF電源與靶材;RF功率回程路徑組件,用於提供從靶材到RF電源的回程路徑,其中功率連接組件及/或回程路徑組件具有不對稱感應及/或電容質量;及板材,置於磁控管一側,用於補償不對稱感應及/或電容質量。According to an aspect of the present invention, a deposition source for sputtering deposition in a vacuum chamber is provided. The deposition source includes a target material, which is used to provide the material to be deposited during sputtering deposition; an RF power source, which is used to provide RF power to the target material; a magnetron; a power connection component, which connects the RF power source and the target material; an RF power return path Components, used to provide a return path from the target to the RF power supply, wherein the power connection components and/or the return path components have asymmetric induction and/or capacitance quality; and the plate is placed on the side of the magnetron to compensate for Symmetrical induction and/or capacitive quality.

根據本發明的另一態樣,提供沉積設備。沉積設備包括真空腔室和根據所述實施例的沉積源。According to another aspect of the present invention, a deposition apparatus is provided. The deposition apparatus includes a vacuum chamber and the deposition source according to the embodiment.

根據本發明的又一態樣,提供裝配沉積源的方法。方法包括提供沉積源,沉積源包括用於提供待於濺射沉積期間沉積材料的靶材、用於提供RF功率給靶材的RF電源、磁控管、連接RF電源與靶材的功率連接組件,及用於提供從靶材到RF電源的回程路徑的RF功率回程路徑組件,其中功率連接組件及/或回程路徑組件具有不對稱感應及/或電容質量;及將板材配置在磁控管一側,用於補償功率連接組件及/或回程路徑組件的不對稱感應及/或電容質量。According to another aspect of the present invention, a method of assembling a deposition source is provided. The method includes providing a deposition source. The deposition source includes a target for supplying a material to be deposited during sputter deposition, an RF power supply for providing RF power to the target, a magnetron, and a power connection assembly for connecting the RF power supply and the target , And an RF power backhaul path component for providing a backhaul path from the target to the RF power supply, wherein the power connection component and/or the backhaul path component has asymmetric induction and/or capacitance quality; and the plate is arranged on the magnetron one Side, used to compensate the asymmetric induction and/or capacitive quality of the power connection components and/or the return path components.

本發明亦針對進行所述方法的設備,包括進行方法的設備零件。方法可利用硬體部件、經適當軟體程式化的電腦、結合任二或其他方式進行。另外,本發明亦針對所述設備的操作方法。本發明亦包括進行每一設備功能的方法。The present invention is also directed to equipment for performing the method, including equipment parts for performing the method. The method can be carried out using hardware components, a computer programmed with appropriate software, a combination of any two or other methods. In addition, the present invention also aims at the operation method of the device. The present invention also includes methods for performing each device function.

現將詳閱本發明各實施例,實施例的一或更多實例乃繪示於圖式。在下列各圖說明中,相同的元件符號表示相仿的部件。以下只描述個別實施例相異之處。每一實例僅提供做為說明本發明之用,而無限定本發明之意。另外,某一實施例所示或所述的部分特徵結構當可應用或結合其他實施例而產生另一實施例。本發明擬包括這些修改和變化。Each embodiment of the present invention will now be read in detail, and one or more examples of the embodiment are shown in the drawings. In the following descriptions of the figures, the same reference numerals indicate similar parts. Only the differences of individual embodiments are described below. Each example is only provided as an illustration of the present invention, but is not intended to limit the present invention. In addition, part of the characteristic structures shown or described in a certain embodiment may be applied or combined with other embodiments to produce another embodiment. The present invention is intended to include these modifications and changes.

在本發明中,「沉積源」應理解為用於濺射沉積的沉積源,包括具靶材的平面陰極,靶材由待沉積至基板上的材料製成。例如,靶材材料可選自由如Al2 O3 或SiO2 等金屬氧化物和包括選自鋰、鉭、鉬、鈮、鈦、錳、鎳、鈷、銦、鎵、鋅、錫、銀與銅的一或更多元素的靶材材料所組成的群組。特別地,靶材材料選自由鋰、鈷、鎳和錳所組成的群組。In the present invention, "deposition source" should be understood as a deposition source used for sputtering deposition, including a flat cathode with a target, which is made of a material to be deposited on a substrate. For example, the target material can be selected from metal oxides such as Al 2 O 3 or SiO 2 and includes selected from lithium, tantalum, molybdenum, niobium, titanium, manganese, nickel, cobalt, indium, gallium, zinc, tin, silver and A group of target materials consisting of one or more elements of copper. In particular, the target material is selected from the group consisting of lithium, cobalt, nickel, and manganese.

在本發明中,「RF電源」應理解為適於供應交流電的電源,交流電係以射頻振盪。特別地,本文所用「RF功率」一詞係指以1兆赫至300吉赫頻率範圍的振盪率振盪的電流,特別係2兆赫至1吉赫,且特別係頻率13.56兆赫的交流(AC)功率,特別係27.12兆赫,更特別係40.68兆赫或13.56兆赫的其他倍數。在射頻(RF)濺射設備中,施加RF電場,以觸發及維持電漿。例如,可利用RF濺射來濺射非導電材料或濺射高電阻(例如106 歐姆公分)材料。In the present invention, "RF power supply" should be understood as a power supply suitable for supplying alternating current, which oscillates at radio frequency. In particular, the term "RF power" as used herein refers to the current oscillating at an oscillation rate in the frequency range of 1 MHz to 300 GHz, especially 2 MHz to 1 GHz, and especially AC power at a frequency of 13.56 MHz , Especially 27.12 MHz, more specifically 40.68 MHz or other multiples of 13.56 MHz. In radio frequency (RF) sputtering equipment, an RF electric field is applied to trigger and maintain plasma. For example, by RF sputtering of non-conductive materials to sputtering or sputtering a high resistance (e.g. 106 ohm cm) material.

當本發明提及RF功率、RF電源、RF匹配箱和RF電流,有時係指「熱路徑」或「回程路徑」。在此方面,應理解「回程路徑」可比AC網路中的中性導體,「熱路徑」可比驅動AC網路電力的導體。When the present invention refers to RF power, RF power, RF matching box, and RF current, it is sometimes referred to as the "hot path" or the "return path." In this regard, it should be understood that the "backhaul path" is comparable to the neutral conductor in the AC network, and the "thermal path" is comparable to the conductor that drives the power of the AC network.

在本發明中,「感應質量」應理解為包括導電材料的質量,其中流過感應質量的電流變化將於導電材料中誘發電壓。「不對稱感應質量」應理解為流過感應質量的電流變化將於感應質量中誘發不對稱電壓的感應質量。特別地,「不對稱感應/電容質量」應理解為感應質量具有第一部分,且第一部分的感應及/或電容耦合比感應/電容質量的第二部分少。例如,感應及/或電容耦合比感應/電容質量的第二部分少的第一部分可具有較感應/電容質量的第二部分小的感應/電容質量。In the present invention, "induction mass" should be understood to include the mass of conductive materials, where the change of current flowing through the induction mass will induce a voltage in the conductive material. "Asymmetric induction mass" should be understood as the induction mass in which the current change flowing through the induction mass will induce an asymmetric voltage in the induction mass. In particular, "asymmetric inductive/capacitive quality" should be understood as the inductive quality has a first part, and the inductive and/or capacitive coupling of the first part is less than the second part of the inductive/capacitive quality. For example, the first part with less inductive and/or capacitive coupling than the second part of inductive/capacitive mass may have a smaller inductive/capacitive mass than the second part of inductive/capacitive mass.

示例性參照第1圖,根據所述實施例,用於在真空腔室中濺射沉積的沉積源100包括靶材110,用於提供待於濺射沉積期間沉積的材料;RF電源120,用於提供RF功率給靶材110;磁控管130;及功率連接組件140,連接RF電源120與靶材110,其中功率連接組件140具有不對稱感應及/或電容質量。另外,沉積源100包括板材150,置於磁控管130一側,用於補償不對稱感應及/或電容質量。因此,藉由提供根據所述實施例的沉積源,可補償功率連接組件的不對稱感應及/或電容質量誘發放電不對稱,此有利於達成均勻濺射塗層。特別地,藉由提供所述包括板材150的沉積源100,可提供分流器來影響磁控管的磁場強度。故可有益地影響電漿密度,而在靶材上面產生均勻的電漿密度。另外,藉由提供所述包括板材的沉積源,可補償沿功率饋入路徑與功率回程路徑部分的電容耦合不對稱。再者,藉由提供所述包括板材的沉積源,由於補償了沉積系統結構部分的感應與電容不對稱造成不對稱靶材侵蝕及限制靶材使用壽命,故可改善RF製程內的靶材利用率。因此,藉由提供所述包括板材的沉積源,可減少或甚至避免不對稱靶材侵蝕,及增加靶材使用壽命。Exemplarily referring to FIG. 1, according to the embodiment, the deposition source 100 for sputtering deposition in a vacuum chamber includes a target 110 for providing materials to be deposited during sputtering deposition; an RF power supply 120 is used After providing RF power to the target 110; the magnetron 130; and the power connection component 140, the RF power supply 120 and the target 110 are connected, wherein the power connection component 140 has asymmetric induction and/or capacitance quality. In addition, the deposition source 100 includes a plate 150, which is placed on the side of the magnetron 130 to compensate for asymmetric induction and/or capacitance quality. Therefore, by providing the deposition source according to the embodiment, the asymmetry induction of the power connection component and/or the capacitance quality induced discharge asymmetry can be compensated, which is beneficial to achieve uniform sputtering coating. In particular, by providing the deposition source 100 including the plate 150, a shunt can be provided to influence the magnetic field strength of the magnetron. Therefore, the plasma density can be beneficially affected, and a uniform plasma density is generated on the target material. In addition, by providing the deposition source including the plate material, the asymmetry of capacitive coupling along the power feeding path and the power return path can be compensated. Furthermore, by providing the deposition source including the plate material, the asymmetric target erosion caused by the asymmetry of the induction and capacitance of the structural part of the deposition system is compensated and the service life of the target material is limited, thereby improving the utilization of the target material in the RF process rate. Therefore, by providing the deposition source including the plate material, the erosion of the asymmetric target material can be reduced or even avoided, and the service life of the target material can be increased.

如示例性第2圖所示,根據可結合所述其他實施例的實施例,磁控管130可沿縱軸131延伸。從第2圖可知,功率連接組件140的不對稱感應及/或電容質量可相對第一平面132呈不對稱,第一平面垂直平分磁控管130的縱軸131。此外或或者,功率連接組件140的不對稱感應及/或電容質量可相對第二平面呈不對稱,第二平面包括磁控管130的縱軸131,例如位於第2圖紙面的垂直平面。特別地,第二平面可垂直第一平面132。示例性參照第2圖,根據可結合所述其他實施例的實施例,板材150置於第一平面132一側,功率連接組件140的不對稱感應及/或電容質量於該側具有較小感應及/或電容質量。在第2圖所示示例性實施例中,相較於第一平面132的第二側132B,功率連接組件140的不對稱感應及/或電容質量在第一平面132的第一側132A較小。例如,如第2圖所示,第一側132A可為第一平面132的底側,第二側132B可為第一平面132的上側。此外或或者,例如,在功率連接組件140的不對稱感應及/或電容質量相對包括磁控管130的縱軸131的第二平面呈不對稱的情況下,板材150置於第二平面一側,不對稱感應及/或電容質量於該側具有較小感應及/或電容質量。As shown in exemplary FIG. 2, according to embodiments that can be combined with the other embodiments described above, the magnetron 130 may extend along the longitudinal axis 131. It can be seen from FIG. 2 that the asymmetric induction and/or capacitance quality of the power connection component 140 can be asymmetric with respect to the first plane 132, which perpendicularly bisects the longitudinal axis 131 of the magnetron 130. In addition or alternatively, the asymmetric sensing and/or capacitance quality of the power connection component 140 may be asymmetric with respect to the second plane, which includes the longitudinal axis 131 of the magnetron 130, such as a vertical plane on the second drawing plane. In particular, the second plane may be perpendicular to the first plane 132. Exemplarily referring to Figure 2, according to an embodiment that can be combined with the other embodiments, the plate 150 is placed on one side of the first plane 132, and the asymmetric induction and/or capacitance mass of the power connection component 140 has a smaller induction on this side And/or capacitor quality. In the exemplary embodiment shown in FIG. 2, compared to the second side 132B of the first plane 132, the asymmetric induction and/or capacitance mass of the power connection component 140 is smaller on the first side 132A of the first plane 132 . For example, as shown in FIG. 2, the first side 132A may be the bottom side of the first plane 132, and the second side 132B may be the upper side of the first plane 132. Additionally or alternatively, for example, when the asymmetric induction and/or capacitance mass of the power connection assembly 140 is asymmetric with respect to the second plane including the longitudinal axis 131 of the magnetron 130, the plate 150 is placed on one side of the second plane , The asymmetric induction and/or capacitance mass has a smaller induction and/or capacitance mass on this side.

因此,藉由提供所述具板材的沉積源,可補償功率連接組件的不對稱感應及/或電容質量誘發放電不對稱。另外,藉由提供所述具板材的沉積源,可補償在功率連接路徑(例如功率饋入)和功率回程路徑(例如真空腔室主體與往匹配箱/電源的回程路徑)的感應及/或電容質量不對稱和電容耦合不對稱。此有利於達成均勻濺射塗層。特別地,藉由提供所述包括板材的沉積源,可提供分流器來影響磁控管的磁場強度。故可有益地影響電漿密度,而在靶材上面產生均勻的電漿密度。 Therefore, by providing the deposition source with the plate material, the asymmetry induction of the power connection component and/or the capacitance quality induced discharge asymmetry can be compensated. In addition, by providing the deposition source with the plate material, it is possible to compensate for the induction and/or the power connection path (such as power feeding) and the power return path (such as the vacuum chamber body and the return path to the matching box/power supply) Asymmetry of capacitive mass and asymmetry of capacitive coupling. This is beneficial to achieve uniform sputter coating. In particular, by providing the deposition source including the plate material, a shunt can be provided to influence the magnetic field strength of the magnetron. Therefore, the plasma density can be beneficially affected, and a uniform plasma density is generated on the target material.

根據可結合所述其他實施例的實施例,板材150可配置在小於50%的磁控管130的長度上方。例如,板材150可配置在至少10%的磁控管130的長度上方且在小於50%的磁控管130的長度上方。特別地,板材150可配置在至少20%的磁控管130的長度上方,更特別係在至少30%的磁控管130的長度上方且在小於50%的磁控管130的長度上方。較佳地,如示例性第1圖及第2圖所示,板材150可配置在至少35%的磁控管130的長度上方且在小於50%的磁控管130的長度上方。根據可結合所述其他實施例的實施例,如示例性第2圖所示,板材150可置於磁控管130上,使板材得從磁控管一端朝磁控管中間延伸,特別係朝第一平面132。因此,藉由提供所述包括板材的沉積源,可提供分流器來影響磁控管的磁場強度。故可有益地影響電漿密度,而在靶材上面產生均勻的電漿密度。 According to an embodiment that can be combined with the other embodiments, the plate 150 may be arranged above the length of the magnetron 130 which is less than 50%. For example, the plate 150 may be disposed over at least 10% of the length of the magnetron 130 and over less than 50% of the length of the magnetron 130. In particular, the plate 150 may be arranged over at least 20% of the length of the magnetron 130, more particularly over at least 30% of the length of the magnetron 130 and over less than 50% of the length of the magnetron 130. Preferably, as shown in exemplary Figs. 1 and 2, the plate 150 may be disposed above at least 35% of the length of the magnetron 130 and above less than 50% of the length of the magnetron 130. According to an embodiment that can be combined with the other embodiments, as shown in exemplary Figure 2, the plate 150 can be placed on the magnetron 130 so that the plate extends from one end of the magnetron toward the middle of the magnetron, particularly toward First plane 132. Therefore, by providing the deposition source including the plate material, a shunt can be provided to influence the magnetic field strength of the magnetron. Therefore, the plasma density can be beneficially affected, and a uniform plasma density is generated on the target material.

根據可結合所述其他實施例的實施例,板材150可為磁板。故板材150可利用磁力附接至磁控管130。例如,板材150可直接附接至磁控管130。或者,板材150可由連接元件耦接至磁控管,例如安裝板及/或螺桿及/或插銷。如此用於補償不對稱感應及/或電容質量的板材很容易配置到磁控管上或上方。此有利於裝配沉積源。According to embodiments that can be combined with the other embodiments, the plate 150 may be a magnetic plate. Therefore, the plate 150 can be attached to the magnetron 130 by magnetic force. For example, the plate 150 may be directly attached to the magnetron 130. Alternatively, the plate 150 may be coupled to the magnetron by a connecting element, such as a mounting plate and/or screw and/or plug. In this way, the plates used to compensate for the asymmetric induction and/or capacitive mass can be easily placed on or above the magnetron. This facilitates the assembly of the deposition source.

根據可結合所述其他實施例的實施例,板材150包括選自由下列所組成群組的至少一材料:鐵、磁性鋼、鎳-鐵合金(FeNi)、鈷-鐵合金(FeCo)、鋁-鐵合金(FeAl)、鋁-矽-鐵合金(FeAlSi)和次鐵磁物。因此,藉由提供包括所述材料的板材,板材可有效補償不對稱感應及/或電容質量。另外,板材可利用磁力附接至磁控管,此有利於裝配沉積源。According to an embodiment that can be combined with the other embodiments, the plate 150 includes at least one material selected from the group consisting of iron, magnetic steel, nickel-iron alloy (FeNi), cobalt-iron alloy (FeCo), aluminum-iron alloy ( FeAl), aluminum-silicon-iron alloy (FeAlSi) and sub-ferromagnetics. Therefore, by providing a sheet including the material, the sheet can effectively compensate for asymmetric induction and/or capacitance quality. In addition, the plate can be attached to the magnetron by magnetic force, which facilitates the assembly of the deposition source.

根據可結合所述其他實施例的實施例,板材150的厚度可選自下限0.5毫米(mm)(特別係下限1 mm,更特別係下限2 mm)至上限3 mm(特別係上限4 mm,更特別係上限5 mm)的範圍。特別地,板材150的厚度為1 mm。因此,藉由提供具所述厚度的板材,板材可有效補償不對稱感應及/或電容質量。另外,根據可結合所述其他實施例的實施例,板材的厚度可選擇以達成最佳化補償功率連接組件的不對稱感應及/或電容質量。According to embodiments that can be combined with the other embodiments, the thickness of the plate 150 can be selected from a lower limit of 0.5 millimeters (mm) (especially a lower limit of 1 mm, more specifically a lower limit of 2 mm) to an upper limit of 3 mm (especially an upper limit of 4 mm, More specifically, the upper limit is 5 mm). In particular, the thickness of the plate 150 is 1 mm. Therefore, by providing the sheet with the thickness, the sheet can effectively compensate for the asymmetric induction and/or capacitance quality. In addition, according to embodiments that can be combined with the other embodiments, the thickness of the sheet material can be selected to optimize the compensation of the asymmetric induction and/or capacitance quality of the power connection component.

根據可結合所述其他實施例的實施例,板材150可包括至少二板材堆疊,例如包括第一板材和第二板材堆疊。例如,第一板材和第二板材可置於彼此頂部。第一板材的第一厚度可選自下限0.25 mm(特別係下限0.5 mm,更特別係下限1 mm)至上限1.5 mm(特別係上限2 mm,更特別係上限2.5 mm)的範圍。第二板材的第二厚度可選自下限0.25 mm(特別係下限0.5 mm,更特別係下限1 mm)至上限1.5 mm(特別係上限2 mm,更特別係上限2.5 mm)的範圍。根據可結合所述其他實施例的實施例,第一板材和第二板材可具不同長度。例如,置於第一板材上面的第二板材可比第一板材短。因此,藉由採用所述板材堆疊,可補償沿功率饋入路徑與功率回程路徑部分的電容耦合不對稱。特別地,採用板材堆疊,例如具不同厚度及/或長度的板材堆疊,可修改補償效果,特別係最佳化達預定補償效果。According to an embodiment that can be combined with the other embodiments, the sheet 150 may include at least two sheet stacks, for example, including a first sheet and a second sheet stack. For example, the first sheet and the second sheet may be placed on top of each other. The first thickness of the first plate can be selected from the range of a lower limit of 0.25 mm (especially a lower limit of 0.5 mm, more particularly a lower limit of 1 mm) to an upper limit of 1.5 mm (especially an upper limit of 2 mm, more particularly an upper limit of 2.5 mm). The second thickness of the second plate can be selected from the range of a lower limit of 0.25 mm (especially a lower limit of 0.5 mm, more particularly a lower limit of 1 mm) to an upper limit of 1.5 mm (especially an upper limit of 2 mm, more particularly an upper limit of 2.5 mm). According to embodiments that can be combined with the other embodiments, the first plate and the second plate can have different lengths. For example, the second board placed on the first board may be shorter than the first board. Therefore, by using the sheet stack, the asymmetry of capacitive coupling along the power feeding path and the power return path can be compensated. In particular, the use of sheet stacking, such as stacking sheets of different thicknesses and/or lengths, can modify the compensation effect, especially to optimize the predetermined compensation effect.

根據可結合所述其他實施例的實施例,RF電源120可由阻抗匹配網路連接至功率連接組件140,特別係如示例性第2圖所示匹配箱121。如此可確保一致的電源負載。另外,匹配箱有利於將電源內部電阻轉換成操作陰極的負載阻抗。為提供最佳阻抗匹配,匹配箱可包括可調電容器,以進行平衡。因此,所述沉積源實施例可維持一致的最佳電源負載供沉積源省電操作。According to an embodiment that can be combined with the other embodiments described above, the RF power source 120 can be connected to the power connection assembly 140 by an impedance matching network, especially the matching box 121 shown in the exemplary second FIG. This ensures consistent power load. In addition, the matching box is beneficial to convert the internal resistance of the power supply into the load impedance of the operating cathode. To provide the best impedance matching, the matching box may include adjustable capacitors for balancing. Therefore, the deposition source embodiment can maintain a consistent optimal power load for the deposition source to operate in a power-saving manner.

根據可結合所述其他實施例的實施例,功率連接組件140包含第一功率連接器141,可連接至第二功率連接器142。如示例性第2圖所示,第一功率連接器141的感應及/或電容質量可相對第一平面132呈不對稱。此外或或者,第一功率連接器141的感應及/或電容質量可相對所述第二平面呈不對稱。第二功率連接器142的感應及/或電容質量可相對第一平面132呈對稱。如示例性第1圖及第2圖所示,第二功率連接器142連接至靶材110。第一功率連接器141可於第一功率連接器141一端連接至第二功率連接器142,而於第一功率連接器141另一端由如匹配箱121連接至RF電源120。提供包括二或更多分離功率連接器的功率連接組件有利於降低製造成本。另外,有助於裝配沉積源。According to an embodiment that can be combined with the other embodiments, the power connection assembly 140 includes a first power connector 141 that can be connected to the second power connector 142. As shown in exemplary FIG. 2, the inductive and/or capacitive mass of the first power connector 141 may be asymmetric with respect to the first plane 132. Additionally or alternatively, the inductive and/or capacitive quality of the first power connector 141 may be asymmetric with respect to the second plane. The inductive and/or capacitive mass of the second power connector 142 may be symmetric with respect to the first plane 132. As shown in exemplary FIG. 1 and FIG. 2, the second power connector 142 is connected to the target 110. The first power connector 141 can be connected to the second power connector 142 at one end of the first power connector 141, and the other end of the first power connector 141 is connected to the RF power supply 120 by, for example, a matching box 121. Providing a power connection assembly including two or more separate power connectors is beneficial to reduce manufacturing costs. In addition, it helps to assemble the deposition source.

第3圖圖示根據所述實施例的濺射沉積源截面圖。根據所述實施例,濺射沉積源100包括靶材110和磁控管130。磁控管可為如由永久磁鐵提供的磁鐵組件,以於濺射沉積期間約束電漿。根據可結合所述其他實施例的實施例,如示例性第3圖的箭頭指示,磁控管130可配置以在靶材110的表面朝至少一方向移動。故可有益地影響靶材上的跑道(race track),而增加更換靶材前可用的靶材材料量。FIG. 3 illustrates a cross-sectional view of the sputtering deposition source according to the embodiment. According to the embodiment, the sputtering deposition source 100 includes a target 110 and a magnetron 130. The magnetron may be a magnet assembly such as provided by a permanent magnet to confine the plasma during sputter deposition. According to an embodiment that can be combined with the other embodiments, as indicated by the arrow in the exemplary FIG. 3, the magnetron 130 may be configured to move on the surface of the target 110 in at least one direction. Therefore, it can beneficially affect the race track on the target, and increase the amount of target material available before replacing the target.

示例性參照第3圖,根據可結合所述其他實施例的實施例,利用排列及配置以耦接第一功率連接器141與第二功率連接器142的接合橋143,提供用於從RF電源120提供RF功率至靶材110的「熱」RF路徑。根據可結合所述其他實施例的實施例,如示例性第3圖所示,第二功率連接器142可由靶材背板111連接至靶材110。例如,第二功率連接器142可對稱連接至靶材110的靶材背板111,以提供RF功率至靶材110。用於如由匹配箱連接第二功率連接器與電源的第一功率連接器141可由板金提供。根據可結合所述其他實施例的實施例,第一功率連接器141可連接至接合橋143,例如利用螺桿或插銷。Exemplarily referring to FIG. 3, according to an embodiment that can be combined with the other embodiments, the coupling bridge 143 of the first power connector 141 and the second power connector 142 is arranged and configured to provide a slave RF power source 120 provides a "hot" RF path for RF power to target 110. According to embodiments that can be combined with the other embodiments, as shown in exemplary FIG. 3, the second power connector 142 may be connected to the target 110 by the target back plate 111. For example, the second power connector 142 may be symmetrically connected to the target back plate 111 of the target 110 to provide RF power to the target 110. The first power connector 141 used to connect the second power connector and the power source, such as by a matching box, may be provided by sheet metal. According to an embodiment that can be combined with the other embodiments, the first power connector 141 may be connected to the joint bridge 143, for example, using a screw or a plug.

如示例性第3圖所示,根據可結合所述其他實施例的實施例,回程路徑可由RF功率回程路徑組件166提供,RF功率回程路徑組件例如包括一或更多導體棒160。根據另一實施方式,導體棒可連接至回程路徑RF功率收集板金161。根據可結合所述其他實施例的又一實施方式,回程路徑RF功率收集板金161可連接至第一電源板金和第二電源板金,以提供回程路徑讓RF電流通往匹配箱及/或電源。As shown in exemplary FIG. 3, according to embodiments that can be combined with the other embodiments, the backhaul path may be provided by an RF power backhaul path component 166, which includes, for example, one or more conductor bars 160. According to another embodiment, the conductor rod may be connected to the backhaul path RF power collection plate 161. According to another implementation that can be combined with the other embodiments, the backhaul path RF power collecting plate 161 can be connected to the first power supply plate and the second power supply plate to provide a backhaul path for the RF current to flow to the matching box and/or the power supply.

第4圖圖示根據所述實施例,濺射沉積源後側的透視圖。如示例性第4圖所示,匹配箱121可提供以連接至真空腔室的壁部102。匹配箱121可連接至第一功率連接器141。另外,匹配箱121可連接至一或更多電源板金,例如第3圖及第4圖所示第一電源板金和163,以提供RF電流界定回程路徑。根據可結合所述其他實施例的實施例,連接匹配箱121的壁部102可為沉積源100的門,沉積源連接至真空腔室。第4圖顯示門103處於打開位置。如示例性第4圖的箭頭指示,門為關閉。Fig. 4 illustrates a perspective view of the rear side of the sputtering deposition source according to the embodiment. As shown in exemplary Figure 4, a matching box 121 may be provided to connect to the wall 102 of the vacuum chamber. The matching box 121 may be connected to the first power connector 141. In addition, the matching box 121 can be connected to one or more power supply plates, such as the first power supply plates and 163 shown in FIG. 3 and FIG. 4, to provide an RF current to define a return path. According to an embodiment that can be combined with the other embodiments, the wall 102 of the connection matching box 121 may be a door of the deposition source 100, and the deposition source is connected to the vacuum chamber. Figure 4 shows the door 103 in the open position. As indicated by the arrow in the exemplary figure 4, the door is closed.

示例性參照第4圖,根據可結合所述其他實施例的實施例,第一功率連接器141可繞樞軸144樞轉,樞軸平行磁控管的縱軸131,用於打開及關閉第一功率連接器141與第二功率連接器142間的觸點,此如示例性第4圖所示。例如,第一功率連接器141可連接或附接至沉積源100的門103。如第4圖所示,第二功率連接器142可設在靶材110背側。根據可結合所述其他實施例的實施例,如示例性第4圖所示,接合橋143可連接第二功率連接器142。或者,接合橋可為第二功率連接器142或第一功率連接器141的零件。例如,第二功率連接器142或第一功率連接器141可包括接合橋143,特別係一體結構形式。Exemplarily referring to Figure 4, according to an embodiment that can be combined with the other embodiments, the first power connector 141 can pivot about a pivot 144, the pivot is parallel to the longitudinal axis 131 of the magnetron, and is used to open and close the first power connector 141. The contact between a power connector 141 and the second power connector 142 is as shown in exemplary FIG. 4. For example, the first power connector 141 may be connected or attached to the gate 103 of the deposition source 100. As shown in FIG. 4, the second power connector 142 may be provided on the back side of the target 110. According to embodiments that can be combined with the other embodiments, as shown in exemplary FIG. 4, the joint bridge 143 may be connected to the second power connector 142. Alternatively, the joint bridge may be a part of the second power connector 142 or the first power connector 141. For example, the second power connector 142 or the first power connector 141 may include a joint bridge 143, particularly in the form of an integral structure.

第5圖圖示用於在真空腔室201中濺射沉積的設備200。如示例性第5圖所示,真空腔室201可經由凸緣204抽空。此外,其他凸緣可設在真空腔室的其他位置。如示例性第5圖所示,待用靶材110的材料塗覆的基板202可由基板支撐件210支撐。示例性參照第5圖,用於濺射沉積的設備200可包括一或更多濺射沉積源,例如第5圖所示兩個濺射沉積源。例如,濺射沉積源可設在基板202上方,以由上往下濺射靶材110的材料。或者,濺射沉積可由下往上配置。Figure 5 illustrates an apparatus 200 for sputtering deposition in a vacuum chamber 201. As shown in exemplary FIG. 5, the vacuum chamber 201 can be evacuated via the flange 204. In addition, other flanges can be provided in other positions of the vacuum chamber. As shown in exemplary FIG. 5, the substrate 202 to be coated with the material of the target 110 may be supported by the substrate support 210. Exemplarily referring to FIG. 5, the apparatus 200 for sputtering deposition may include one or more sputtering deposition sources, such as two sputtering deposition sources shown in FIG. For example, a sputtering deposition source may be provided above the substrate 202 to sputter the material of the target 110 from top to bottom. Alternatively, sputter deposition can be configured from bottom to top.

根據可結合所述其他實施例的另一實施例,基板202可垂直置於濺射沉積設備。例如,基板可實質垂直定向,即偏離垂直配置±10度。故在此垂直配置下,濺射沉積源可設置或鄰接設備200的側壁。另外,基板202可由軋輥支撐或在載具中,載具由軋輥或另一傳輸及/或支撐系統支撐。According to another embodiment that can be combined with the other embodiments, the substrate 202 can be placed vertically in a sputtering deposition apparatus. For example, the substrate may be oriented substantially vertically, that is, ±10 degrees from the vertical configuration. Therefore, in this vertical configuration, the sputtering deposition source can be arranged or adjacent to the sidewall of the device 200. In addition, the substrate 202 may be supported by rolls or in a carrier, which is supported by rolls or another transport and/or support system.

如示例性第5圖所示,各濺射沉積源100可包括電源,特別係RF電源120。電源可連接至匹配箱121。匹配箱121可利用各種連接器提供RF功率至靶材110,例如第一功率連接器141及/或第二功率連接器142及/或接合橋143。另外,界定RF回程路徑可由導體棒160提供,如示例性第5圖所示,導體棒可連接至回程路徑RF功率收集板金161。濺射沉積源100可進一步包括磁控管130。根據可結合所述其他實施例的實施例,如示例性第5圖的箭頭指示,磁控管130可配置以在靶材110的表面朝至少一方向移動。 As shown in exemplary FIG. 5, each sputtering deposition source 100 may include a power source, particularly an RF power source 120. The power supply can be connected to the matching box 121. The matching box 121 can use various connectors to provide RF power to the target 110, such as the first power connector 141 and/or the second power connector 142 and/or the junction bridge 143. In addition, the defined RF backhaul path may be provided by a conductive rod 160, as shown in exemplary FIG. 5, the conductive rod may be connected to the backhaul path RF power collecting plate 161. The sputtering deposition source 100 may further include a magnetron 130. According to an embodiment that can be combined with the other embodiments, as indicated by the arrow in the exemplary FIG. 5, the magnetron 130 may be configured to move on the surface of the target 110 in at least one direction.

第6圖圖示根據所述實施例,裝配沉積源的方法方塊圖。根據實施例,方法300包括提供(方塊310)沉積源。沉積源包括靶材110,用於提供待於濺射沉積期間沉積的材料;RF電源120,用於提供RF功率給靶材110;磁控管130;及功率連接組件140,連接RF電源120與靶材110,其中功率連接組件140具有不對稱感應及/或電容質量。另外,方法包括將板材150配置(方塊320)在磁控管130一側,用於補償功率連接組件140的不對稱感應及/或電容質量。因此,依所述配置板材,可提供分流器來影響磁控管的磁場強度。故可有益地影響電漿密度,而在靶材上面產生均勻的電漿密度。此有利於達成均勻濺射塗層。 Fig. 6 illustrates a block diagram of a method of assembling a deposition source according to the embodiment. According to an embodiment, the method 300 includes providing (block 310) a deposition source. The deposition source includes a target 110 for supplying materials to be deposited during sputtering deposition; an RF power supply 120 for supplying RF power to the target 110; a magnetron 130; and a power connection assembly 140 for connecting the RF power supply 120 and The target material 110, wherein the power connection component 140 has asymmetric induction and/or capacitance quality. In addition, the method includes arranging the plate 150 (block 320) on the side of the magnetron 130 to compensate for the asymmetric induction and/or capacitance quality of the power connection assembly 140. Therefore, according to the configuration of the plate, a shunt can be provided to influence the magnetic field strength of the magnetron. Therefore, the plasma density can be beneficially affected, and a uniform plasma density is generated on the target material. This is beneficial to achieve uniform sputter coating.

根據可結合所述其他實施例的裝配沉積源的方法實施例,配置(方塊320)板材150可包括將板材 配置在第一平面132一側,不對稱感應及/或電容質量於該側具有較小感應及/或電容質量。如示例性第2圖所示,第一平面132可垂直平分磁控管130的縱軸131。示例性參照第2圖,相較於第一平面132的第二側132B,功率連接組件140的不對稱感應及/或電容質量在第一平面132的第一側132A較小。因此,依所述將板材配置在磁控管一側,可補償功率連接組件的不對稱感應及/或電容質量誘發放電不對稱。此有利於達成均勻濺射塗層。 According to an embodiment of a method for assembling a deposition source that can be combined with the other embodiments, configuring (block 320) the plate 150 may include placing the plate Disposed on one side of the first plane 132, the asymmetrical sensing and/or capacitive mass has a smaller sensing and/or capacitive mass on this side. As shown in exemplary FIG. 2, the first plane 132 can bisect the longitudinal axis 131 of the magnetron 130 perpendicularly. Exemplarily referring to FIG. 2, compared to the second side 132B of the first plane 132, the asymmetric induction and/or capacitance mass of the power connection component 140 is smaller on the first side 132A of the first plane 132. Therefore, arranging the plate on the side of the magnetron as described can compensate for the asymmetry induction of the power connection component and/or the asymmetry of the discharge induced by the capacitance quality. This is beneficial to achieve uniform sputter coating.

根據可結合所述其他實施例的裝配沉積源的方法實施例,配置(方塊320)板材150可包括利用磁力來耦接板材150與磁控管130。例如,板材150可直接附接至磁控管130。或者,板材150可由連接元件耦接至磁控管,例如安裝板及/或螺桿及/或插銷。 According to an embodiment of a method of assembling a deposition source that can be combined with the other embodiments, configuring (block 320) the plate 150 may include coupling the plate 150 and the magnetron 130 by magnetic force. For example, the plate 150 may be directly attached to the magnetron 130. Alternatively, the plate 150 may be coupled to the magnetron by a connecting element, such as a mounting plate and/or screw and/or plug.

根據可結合所述其他實施例的裝配沉積源的方法實施例,配置(方塊320)板材150可包括採用板材且板材包括選自由下列所組成群組的至少一材料:鐵、磁性鋼、鎳-鐵合金(FeNi)、鈷-鐵合金(FeCo)、鋁-鐵合金(FeAl)、鋁-矽-鐵合金(FeAlSi)和次鐵磁物。因此,藉由採用包括所述材料的板材,板材可有效補償不對稱感應及/或電容質量。另外,板材可利用磁力附接至磁控管,此有利於裝配沉積源。 According to an embodiment of the method of assembling a deposition source that can be combined with the other embodiments, configuring (block 320) the plate 150 may include using a plate and the plate includes at least one material selected from the group consisting of iron, magnetic steel, nickel- Ferroalloy (FeNi), cobalt-iron alloy (FeCo), aluminum-iron alloy (FeAl), aluminum-silicon-iron alloy (FeAlSi) and sub-ferromagnetics. Therefore, by using a plate including the material, the plate can effectively compensate for asymmetric induction and/or capacitance quality. In addition, the plate can be attached to the magnetron by magnetic force, which facilitates the assembly of the deposition source.

根據可結合所述其他實施例的裝配沉積源的方法實施例,配置(方塊320)板材150可包括採用板 材且板材厚度選自下限0.5mm(特別係下限1mm,更特別係下限2mm)至上限3mm(特別係上限4mm,更特別係上限5mm)的範圍。因此,藉由採用具所述厚度的板材,板材可有效補償不對稱感應及/或電容質量。另外,根據可結合所述其他實施例的實施例,板材的厚度可選擇以達成最佳化補償功率連接組件的不對稱感應及/或電容質量。 According to an embodiment of a method for assembling a deposition source that can be combined with the other embodiments, configuring (block 320) the plate 150 may include using a plate The thickness of the sheet material is selected from the range of a lower limit of 0.5 mm (especially a lower limit of 1 mm, more particularly a lower limit of 2 mm) to an upper limit of 3 mm (especially an upper limit of 4 mm, more particularly an upper limit of 5 mm). Therefore, by using a plate with the thickness, the plate can effectively compensate for asymmetric induction and/or capacitance quality. In addition, according to embodiments that can be combined with the other embodiments, the thickness of the sheet material can be selected to optimize the compensation of the asymmetric induction and/or capacitance quality of the power connection component.

根據可結合所述其他實施例的裝配沉積源的方法實施例,配置(方塊320)板材150可包括堆疊至少二板材,例如把第二板材堆疊到第一板材上。例如,堆疊至少二板材可包括將第二板材排到第一板材上。第一板材可具所述第一厚度,第二板材可具所述第二厚度。根據可結合所述其他實施例的實施例,第一板材和第二板材可具不同長度。例如,第二板材可比第一板材短。因此,藉由採用所述板材堆疊,可補償沿功率饋入路徑與功率回程路徑部分的電容耦合不對稱。特別地,採用板材堆疊,例如具不同厚度及/或長度的板材堆疊,可修改補償效果,特別係最佳化達預定補償效果。 According to an embodiment of a method for assembling a deposition source that can be combined with the other embodiments, configuring (block 320) the plate 150 may include stacking at least two plates, for example, stacking a second plate on the first plate. For example, stacking at least two sheets may include arranging the second sheet onto the first sheet. The first plate may have the first thickness, and the second plate may have the second thickness. According to embodiments that can be combined with the other embodiments, the first plate and the second plate can have different lengths. For example, the second sheet may be shorter than the first sheet. Therefore, by using the sheet stack, the asymmetry of capacitive coupling along the power feeding path and the power return path can be compensated. In particular, the use of sheet stacking, such as stacking sheets of different thicknesses and/or lengths, can modify the compensation effect, especially to optimize the predetermined compensation effect.

根據可結合所述其他實施例的裝配沉積源的方法實施例,配置(方塊320)板材150可包括將板材配置在小於50%的磁控管130的長度上方。例如,配置(方塊320)板材150可包括將板材配置在至少10%的磁控管130的長度上方,特別係在至少20%的磁控管130的長度上方,更特別係在至少30%的磁控管130的 長度上方,且在小於50%的磁控管130的長度上方。較佳地,配置(方塊320)板材150可包括將板材配置在35%或以上的磁控管130的長度上方且在小於50%的磁控管130的長度上方。根據可結合所述其他實施例的實施例,配置(方塊320)板材150可包括將板材置於磁控管上,使板材從磁控管一端朝磁控管中間延伸,特別係朝第一平面132,如示例性第2圖所示,第一平面垂直平分磁控管130的縱軸131。 According to an embodiment of a method of assembling a deposition source that can be combined with the other embodiments, arranging (block 320) the plate 150 may include arranging the plate 150 above the length of the magnetron 130 that is less than 50%. For example, arranging (block 320) the plate 150 may include arranging the plate at least 10% of the length of the magnetron 130, particularly at least 20% of the length of the magnetron 130, and more particularly at least 30% of the length of the magnetron 130. Magnetron 130 Above the length, and above the length of the magnetron 130 which is less than 50%. Preferably, arranging (block 320) the plate 150 may include arranging the plate above 35% or more of the length of the magnetron 130 and above less than 50% of the length of the magnetron 130. According to an embodiment that can be combined with the other embodiments, configuring (block 320) the plate 150 may include placing the plate on the magnetron so that the plate extends from one end of the magnetron toward the middle of the magnetron, especially toward the first plane. 132. As shown in exemplary Figure 2, the first plane perpendicularly bisects the longitudinal axis 131 of the magnetron 130.

因此,依所述將板材配置在磁控管一側,可補償功率連接組件的不對稱感應及/或電容質量誘發放電不對稱。特別地,依所述配置板材,可提供分流器來影響磁控管的磁場強度。故可有益地影響電漿密度,而在靶材上面產生均勻的電漿密度。此有利於利用濺射提供均勻塗層至基板上,特別係利用所述沉積源。Therefore, arranging the plate on the side of the magnetron as described can compensate for the asymmetry induction of the power connection component and/or the asymmetry of the discharge induced by the capacitance quality. In particular, according to the configuration of the plate, a shunt can be provided to influence the magnetic field strength of the magnetron. Therefore, the plasma density can be beneficially affected, and a uniform plasma density is generated on the target material. This facilitates the use of sputtering to provide a uniform coating on the substrate, especially the use of the deposition source.

100:沉積源 100: deposition source

102:壁部 102: Wall

103:門 103: door

110:靶材 110: target

111:背板 111: Backplane

120:RF電源 120: RF power supply

121:匹配箱 121: matching box

130:磁控管 130: Magnetron

131‧‧‧縱軸132‧‧‧平面132A、132B‧‧‧側140‧‧‧功率連接組件141、142‧‧‧功率連接器143‧‧‧接合橋144‧‧‧樞軸150‧‧‧板材160‧‧‧導體棒161、163‧‧‧板金166‧‧‧回程路徑組件200‧‧‧設備201‧‧‧真空腔室202‧‧‧基板204‧‧‧凸緣210‧‧‧支撐件300‧‧‧方法310、320‧‧‧方塊131‧‧‧Longitudinal axis 132‧‧‧Plane 132A, 132B‧‧‧Side 140‧‧‧Power connection assembly 141,142‧‧‧Power connector 143‧‧‧Joint bridge 144‧‧‧Pivot 150‧‧‧ Plate 160‧‧‧Conductor rod 161, 163‧‧‧Sheet metal 166‧‧‧Return path assembly 200‧‧‧Equipment 201‧‧‧Vacuum chamber 202‧‧‧Substrate 204‧‧‧Flange 210‧‧‧Support 300‧‧‧Method 310, 320‧‧‧Block

為讓本發明的上述概要特徵更明顯易懂,可配合參考實施例說明。附圖係關於本發明實施例並且描述如下: 第1圖圖示根據所述實施例,用於在真空腔室中濺射沉積的沉積源側視圖; 第2圖圖示根據所述實施例,用於在真空腔室中濺射沉積的沉積源側視圖; 第3圖圖示根據所述實施例,用於在真空腔室中濺射沉積的濺射沉積源截面圖; 第4圖圖示根據所述實施例,濺射沉積源後側的透視圖; 第5圖圖示根據所述實施例的濺射沉積設備;及 第6圖圖示根據所述實施例,裝配沉積源的方法方塊圖。In order to make the above-mentioned summary features of the present invention more obvious and understandable, it can be described with reference to the embodiments. The drawings relate to an embodiment of the present invention and are described as follows: Figure 1 illustrates a side view of a deposition source for sputtering deposition in a vacuum chamber according to the embodiment; Figure 2 illustrates according to the embodiment, A side view of a deposition source for sputtering deposition in a vacuum chamber; Fig. 3 illustrates a cross-sectional view of a sputtering deposition source for sputtering deposition in a vacuum chamber according to the embodiment; Fig. 4 illustrates According to the embodiment, a perspective view of the back side of the sputtering deposition source; FIG. 5 illustrates the sputtering deposition apparatus according to the embodiment; and FIG. 6 illustrates a block diagram of the method for assembling the deposition source according to the embodiment Figure.

國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無Domestic hosting information (please note in the order of hosting organization, date and number)

國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無Foreign hosting information (please note in the order of hosting country, institution, date and number) None

(請換頁單獨記載) 無(Please change the page to record separately) None

100‧‧‧沉積源 100‧‧‧Deposition source

110‧‧‧靶材 110‧‧‧Target

120‧‧‧RF電源 120‧‧‧RF power supply

130‧‧‧磁控管 130‧‧‧Magnetron

140‧‧‧功率連接組件 140‧‧‧Power connection assembly

150‧‧‧板材 150‧‧‧Plate

Claims (20)

一種沉積源(100),用於在一真空腔室中濺射沉積,該沉積源包含:一靶材(110),用於提供待於濺射沉積期間沉積的一材料;一RF電源(120),用於提供一RF功率給該靶材(110);一磁控管(130);一功率連接組件(140),連接該RF電源(120)與該靶材(110);一RF功率回程路徑組件(166),用於提供從該靶材到該RF電源的一回程路徑,其中該功率連接組件(140)及/或該回程路徑組件(166)具有一不對稱感應及/或電容質量;及一板材(150),置於該磁控管(130)一側,用於補償該不對稱感應及/或電容質量。 A deposition source (100) for sputtering deposition in a vacuum chamber, the deposition source comprising: a target (110) for providing a material to be deposited during the sputtering deposition; an RF power supply (120) ) For providing an RF power to the target (110); a magnetron (130); a power connection assembly (140) to connect the RF power supply (120) and the target (110); an RF power The backhaul path component (166) is used to provide a backhaul path from the target to the RF power source, wherein the power connection component (140) and/or the backhaul path component (166) has an asymmetric induction and/or capacitance Quality; and a plate (150), placed on one side of the magnetron (130), used to compensate the asymmetric induction and/or capacitance quality. 如請求項1所述之沉積源(100),其中該磁控管(130)沿一縱軸(131)延伸,其中該不對稱感應及/或電容質量係相對一第一平面(132)呈不對稱,該第一平面垂直平分該磁控管(130)的該縱軸(131),及/或其中該不對稱感應及/或電容質量係相對一第二平面呈不對稱,該第二平面包括該磁控管(130)的 該縱軸(131);且其中該板材(150)置於該第一平面(132)及/或該第二平面一側,該不對稱感應及/或電容質量於該側具有一較小感應及/或電容質量。 The deposition source (100) according to claim 1, wherein the magnetron (130) extends along a longitudinal axis (131), wherein the asymmetric induction and/or capacitance mass is relative to a first plane (132) Asymmetry, the first plane vertically bisects the longitudinal axis (131) of the magnetron (130), and/or wherein the asymmetric induction and/or capacitance mass is asymmetric with respect to a second plane, the second plane The plane includes the magnetron (130) The longitudinal axis (131); and where the plate (150) is placed on one side of the first plane (132) and/or the second plane, the asymmetric induction and/or capacitive mass has a smaller induction on this side And/or capacitor quality. 如請求項1或2所述之沉積源(100),其中該板材(150)配置在至少10%且小於50%的該磁控管(130)的長度上方。 The deposition source (100) according to claim 1 or 2, wherein the plate (150) is arranged above at least 10% and less than 50% of the length of the magnetron (130). 如請求項1或2所述之沉積源(100),其中該板材(150)係一磁板,該磁板利用磁力附接至該磁控管(130)。 The deposition source (100) according to claim 1 or 2, wherein the plate (150) is a magnetic plate, and the magnetic plate is attached to the magnetron (130) by magnetic force. 如請求項3所述之沉積源(100),其中該板材(150)係一磁板,該磁板利用磁力附接至該磁控管(130)。 The deposition source (100) according to claim 3, wherein the plate (150) is a magnetic plate, and the magnetic plate is attached to the magnetron (130) by magnetic force. 如請求項1或2所述之沉積源(100),其中該板材(150)包含選自由下列所組成群組的至少一材料:鐵、磁性鋼、鎳-鐵合金(FeNi)、鈷-鐵合金(FeCo)、鋁-鐵合金(FeAl)、鋁-矽-鐵合金(FeAlSi)和次鐵磁物。 The deposition source (100) according to claim 1 or 2, wherein the plate (150) comprises at least one material selected from the group consisting of iron, magnetic steel, nickel-iron alloy (FeNi), cobalt-iron alloy ( FeCo), aluminum-iron alloy (FeAl), aluminum-silicon-iron alloy (FeAlSi) and sub-ferromagnetics. 如請求項3所述之沉積源(100),其中該板材(150)包含選自由下列所組成群組的至少一材料:鐵、磁性鋼、鎳-鐵合金(FeNi)、鈷-鐵合金(FeCo)、鋁-鐵合金(FeAl)、鋁-矽-鐵合金(FeAlSi)和次鐵磁物。 The deposition source (100) according to claim 3, wherein the plate (150) comprises at least one material selected from the group consisting of iron, magnetic steel, nickel-iron alloy (FeNi), cobalt-iron alloy (FeCo) , Aluminum-iron alloy (FeAl), aluminum-silicon-iron alloy (FeAlSi) and sub-ferromagnetics. 如請求項1或2所述之沉積源(100),其中該功率連接組件(140)包含一第一功率連接器(141),可連接至一第二功率連接器(142),其中該第一功率連接器(141)具有相對該第一平面(132)及/或該第二平面呈不對稱的一感應及/或電容質量,其中該第二功率連接器(142)具有相對該第一平面(132)及/或該第二平面呈對稱的一感應及/或電容質量。 The deposition source (100) according to claim 1 or 2, wherein the power connection assembly (140) includes a first power connector (141) that can be connected to a second power connector (142), wherein the first power connector (142) A power connector (141) has an inductive and/or capacitive mass that is asymmetric with respect to the first plane (132) and/or the second plane, wherein the second power connector (142) has a The plane (132) and/or the second plane is a symmetrical sensing and/or capacitive mass. 如請求項3所述之沉積源(100),其中該功率連接組件(140)包含一第一功率連接器(141),可連接至一第二功率連接器(142),其中該第一功率連接器(141)具有相對該第一平面(132)及/或該第二平面呈不對稱的一感應及/或電容質量,其中該第二功率連接器(142)具有相對該第一平面(132)及/或該第二平面呈對稱的一感應及/或電容質量。 The deposition source (100) according to claim 3, wherein the power connection component (140) includes a first power connector (141) that can be connected to a second power connector (142), wherein the first power The connector (141) has an inductive and/or capacitive mass that is asymmetric with respect to the first plane (132) and/or the second plane, wherein the second power connector (142) has a relative to the first plane ( 132) and/or the second plane is a symmetrical sensing and/or capacitive mass. 如請求項8所述之沉積源(100),其中該沉積源包含該真空腔室的一壁部(102)供該第一功率連接器(141)附接,其中該第二功率連接器(142)連接至該靶材(110)。 The deposition source (100) according to claim 8, wherein the deposition source includes a wall (102) of the vacuum chamber for the first power connector (141) to attach, wherein the second power connector ( 142) is connected to the target (110). 如請求項8所述之沉積源(100),其中該第二功率連接器(142)包含一接合橋(143)。 The deposition source (100) according to claim 8, wherein the second power connector (142) includes a bonding bridge (143). 如請求項10所述之沉積源(100),其中該第二功率連接器(142)包含一接合橋(143)。 The deposition source (100) according to claim 10, wherein the second power connector (142) includes a bonding bridge (143). 如請求項8所述之沉積源(100),其中該第二功率連接器(142)由一靶材背板(111)連接至該靶材(110)。 The deposition source (100) according to claim 8, wherein the second power connector (142) is connected to the target (110) by a target backplane (111). 如請求項11所述之沉積源(100),其中該第二功率連接器(142)由一靶材背板(111)連接至該靶材(110)。 The deposition source (100) according to claim 11, wherein the second power connector (142) is connected to the target (110) by a target backplane (111). 如請求項10所述之沉積源(100),其中該壁部(102)係該沉積源(100)的一門,該門連接至該真空腔室。 The deposition source (100) according to claim 10, wherein the wall (102) is a door of the deposition source (100), and the door is connected to the vacuum chamber. 如請求項1或2所述之沉積源(100),其中該RF電源(120)由一匹配箱(121)連接至該功率連接組件(140)。 The deposition source (100) according to claim 1 or 2, wherein the RF power source (120) is connected to the power connection assembly (140) by a matching box (121). 如請求項2所述之沉積源(100),其中該板材(150)配置在至少10%且小於50%的該磁控管(130)的長度上方,其中該板材(150)包含至少二板材的一堆疊,該至少二板材的厚度為0.25mm至2.5mm,其中該功率連接組件(140)包含可連接至一第二功率連接器(142)的一第一功率連接器(141),其中該第一功率連接器(141)可繞一樞軸(144)樞轉,該樞軸(144)平行該磁控管的該縱軸(131),用於打開及關閉該第一功率連接器(141)與該第二功率連接器(142)間的一觸點。 The deposition source (100) according to claim 2, wherein the plate (150) is arranged above at least 10% and less than 50% of the length of the magnetron (130), wherein the plate (150) includes at least two plates The thickness of the at least two plates is 0.25mm to 2.5mm, wherein the power connection assembly (140) includes a first power connector (141) connectable to a second power connector (142), wherein The first power connector (141) can pivot about a pivot (144), the pivot (144) is parallel to the longitudinal axis (131) of the magnetron, and is used to open and close the first power connector (141) A contact with the second power connector (142). 一種濺射設備(200),包含一真空腔室(210)和一如請求項17所述之沉積源(100)。 A sputtering device (200) includes a vacuum chamber (210) and a deposition source (100) as described in claim 17. 一種裝配一沉積源的方法(300),該方法包含以下步驟:提供(310)一沉積源,該沉積源包含一靶材(110),用於提供待於濺射沉積期間沉積的一材料;一RF電源(120),用於提供一RF功率給該靶材(110);一磁控管(130);一功率連接組件(140),連接該RF電源(120)與該靶材(110);及一RF功率回程路徑組件(166),用於提供從該靶材到該RF電源的一回程路徑,其中該功率連接組件(140)及/或該回程路徑組件(166)具有一不對稱感應及/或電容質量;及將一板材(150)配置(320)在該磁控管(130)一側,用於補償該功率連接組件(140)及/或該回程路徑組件(166)的該不對稱感應及/或電容質量。 A method (300) for assembling a deposition source, the method comprising the following steps: providing (310) a deposition source, the deposition source comprising a target (110) for providing a material to be deposited during sputter deposition; An RF power supply (120) for providing an RF power to the target (110); a magnetron (130); a power connection component (140) for connecting the RF power supply (120) and the target (110) ); and an RF power backhaul path component (166) for providing a backhaul path from the target to the RF power source, wherein the power connection component (140) and/or the backhaul path component (166) has a non Symmetrical induction and/or capacitance quality; and arranging (320) a plate (150) on one side of the magnetron (130) for compensating the power connection component (140) and/or the return path component (166) The quality of the asymmetric induction and/or capacitance. 如請求項19所述之方法,其中配置(320)該板材(150)之步驟包含以下步驟:利用磁力耦接該板材(150)與該磁控管(130)。 The method according to claim 19, wherein the step of arranging (320) the plate (150) includes the following steps: coupling the plate (150) and the magnetron (130) magnetically.
TW105120146A 2015-07-06 2016-06-27 Deposition source for sputter deposition, deposition apparatus and method of assembling a deposition source TWI703229B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOPCT/EP2015/065369 2015-07-06
PCT/EP2015/065369 WO2017005291A1 (en) 2015-07-06 2015-07-06 Deposition source for sputter deposition, deposition apparatus and method of assembling the source

Publications (2)

Publication Number Publication Date
TW201708581A TW201708581A (en) 2017-03-01
TWI703229B true TWI703229B (en) 2020-09-01

Family

ID=53758174

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105120146A TWI703229B (en) 2015-07-06 2016-06-27 Deposition source for sputter deposition, deposition apparatus and method of assembling a deposition source

Country Status (2)

Country Link
TW (1) TWI703229B (en)
WO (1) WO2017005291A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101960561A (en) * 2008-03-14 2011-01-26 应用材料股份有限公司 Physical vapor deposition method with a source of isotropic ion velocity distribution at the wafer surface
TW201432079A (en) * 2013-02-07 2014-08-16 Applied Materials Inc PVD RF DC open/closed loop selectable magnetron

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI278526B (en) * 2005-02-25 2007-04-11 Hannstar Display Corp Method of improving magnetic field uniformity of magnetron sputter and the magnetron sputter
US20080110752A1 (en) * 2006-11-09 2008-05-15 Stowell Michael W System and method for high-energy sputtering using return conductors
US8486242B2 (en) * 2010-10-18 2013-07-16 Applied Materials, Inc. Deposition apparatus and methods to reduce deposition asymmetry
CN103849848B (en) * 2012-11-28 2016-08-31 北京北方微电子基地设备工艺研究中心有限责任公司 Physical vapor deposition device
US10283331B2 (en) * 2013-09-17 2019-05-07 Applied Materials, Inc. PVD plasma control using a magnet edge lift mechanism
WO2015067298A1 (en) * 2013-11-05 2015-05-14 Applied Materials, Inc. Radio frequency (rf) - sputter deposition source, deposition apparatus and method of assembling thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101960561A (en) * 2008-03-14 2011-01-26 应用材料股份有限公司 Physical vapor deposition method with a source of isotropic ion velocity distribution at the wafer surface
TW201432079A (en) * 2013-02-07 2014-08-16 Applied Materials Inc PVD RF DC open/closed loop selectable magnetron

Also Published As

Publication number Publication date
WO2017005291A1 (en) 2017-01-12
TW201708581A (en) 2017-03-01

Similar Documents

Publication Publication Date Title
CN103046008B (en) Sputtering method
JP5702143B2 (en) Sputtering thin film forming equipment
CN104024471B (en) Sputter equipment
WO2011111712A1 (en) Sputtering device
CN102453881B (en) PVD (physical vapor deposition) equipment and magnetron sputtering method
JP5807071B2 (en) Substrate processing apparatus, metal film etching method, and magnetoresistive element manufacturing method
JP2013082993A (en) Magnetron sputtering apparatus and method
CN103392389A (en) Near-field-noise-suppressing sheet
Li et al. Facilitating complex thin film deposition by using magnetron sputtering: a review
KR101356918B1 (en) Magnetron sputtering apparatus
JP2014531510A (en) Multifrequency sputtering to enhance the deposition rate and growth kinetics of dielectric materials
WO2016086428A1 (en) Vacuum ion sputtering target device
CN109930123A (en) A kind of magnetic control sputtering device
TW454248B (en) A method and apparatus for enhancing sidewall coverage during sputtering in a chamber having an inductively coupled plasma
US20140346037A1 (en) Sputter device
KR20100051867A (en) Magnet unit, and magnetron sputtering device
TWI703229B (en) Deposition source for sputter deposition, deposition apparatus and method of assembling a deposition source
JP6916699B2 (en) Film formation method and film deposition equipment
JP5447240B2 (en) Magnetron sputtering apparatus and method for producing transparent conductive film
JP2011179061A (en) Sputtering thin film deposition system
CN103290378B (en) Magnetron sputtering plating cathode mechanism
CN204162777U (en) A kind of target material assembly
Kosari Mehr et al. Magnetron sputtering issues concerning growth of magnetic films: a technical approach to background, solutions, and outlook
TW201807233A (en) Magnetron element and magnetron sputtering device enabling a sputtering deposition thin film to satisfy a set uniformity requirement under the full process pressure range
TWI659445B (en) Radio frequency (rf) – sputter deposition source, deposition apparatus and method of assembling thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees