TWI702567B - Method for processing projection-based frame that includes at least one projection face packed in 360-degree virtual reality projection layout - Google Patents

Method for processing projection-based frame that includes at least one projection face packed in 360-degree virtual reality projection layout Download PDF

Info

Publication number
TWI702567B
TWI702567B TW107133868A TW107133868A TWI702567B TW I702567 B TWI702567 B TW I702567B TW 107133868 A TW107133868 A TW 107133868A TW 107133868 A TW107133868 A TW 107133868A TW I702567 B TWI702567 B TW I702567B
Authority
TW
Taiwan
Prior art keywords
projection
projection surface
area
layout
filling
Prior art date
Application number
TW107133868A
Other languages
Chinese (zh)
Other versions
TW201921035A (en
Inventor
林建良
王鵬
劉琳
李亞璇
林鴻志
張勝凱
Original Assignee
聯發科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/917,844 external-priority patent/US11057643B2/en
Priority claimed from PCT/CN2018/081723 external-priority patent/WO2018184528A1/en
Application filed by 聯發科技股份有限公司 filed Critical 聯發科技股份有限公司
Publication of TW201921035A publication Critical patent/TW201921035A/en
Application granted granted Critical
Publication of TWI702567B publication Critical patent/TWI702567B/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image
    • G06T3/40Scaling the whole image or part thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence

Abstract

A video processing method includes: obtaining a plurality of projection faces from an omnidirectional content of a sphere, wherein the omnidirectional content of the sphere is mapped onto the projection faces via cubemap projection, and the projection faces comprise a first projection face; obtaining, by a re-sampling circuit, a first re-sampled projection face by re-sampling at least a portion of the first projection face through non-uniform mapping; generating a projection-based frame according to a projection layout of the cubemap projection, wherein the projection-based frame comprises the first re-sampled projection face packed in the projection layout; and encoding the projection-based frame to generate a part of a bitstream.

Description

用於處理包括封裝在360度虛擬現實投影佈局中的至少一 個投影面的基於投影的圖框的方法 Used to process at least one of the encapsulated in 360-degree virtual reality projection layout Projection-based frame method for a projection surface

相關申請的交叉引用:本申請是在2008年12月3日提交的第15/917,844號的美國專利申請的部分延續申請,並要求在2017年9月27日提交的第62/563,787號的美國臨時申請,在2017年11月8日提交的第62/583,078號的美國臨時申請,和在2017年11月9日提交的第62/583,573號的美國臨時申請的優先權,其中第15/917,844號的美國專利申請要求在2017年3月13日提交的第62/470,425號的美國臨時申請的優先權。 Cross-reference of related applications: This application is a partial continuation of the U.S. Patent Application No. 15/917,844 filed on December 3, 2008, and requires the U.S. No. 62/563,787 filed on September 27, 2017 Provisional application, the priority of the U.S. Provisional Application No. 62/583,078 filed on November 8, 2017, and the U.S. Provisional Application No. 62/583,573 filed on November 9, 2017, of which No. 15/917,844 The U.S. Patent Application No. claims priority to the U.S. Provisional Application No. 62/470,425 filed on March 13, 2017.

相關申請的全部內容,包括第15/917,844號的美國專利申請,第62/563,787號的美國臨時申請,第62/583,078號的美國臨時申請,第62/583,573號的美國臨時申請和第62/470,425號的美國臨時申請,在此合併參考上述申請案的申請標的。 The entire contents of related applications, including US Patent Application No. 15/917,844, US Provisional Application No. 62/563,787, US Provisional Application No. 62/583,078, US Provisional Application No. 62/583,573 and 62/ The US provisional application No. 470,425 is hereby incorporated with reference to the subject matter of the above-mentioned application.

本發明涉及處理全向圖像/視訊內容,更具體地,涉及一種用於處理基於投影的圖框的方法,該基於投影的圖框包括至少一個封裝在360度虛擬現實(360-degree virtual reality,360 VR)投影佈局中的投影面。 The present invention relates to processing omnidirectional image/video content, and more specifically, to a method for processing projection-based frame. The projection-based frame includes at least one encapsulated in 360-degree virtual reality (360-degree virtual reality). , 360 VR) projection surface in the projection layout.

具有頭戴式顯示器(head-mounted displays,HMDs)的虛擬現實(VR)與各種應用相關聯。向用戶顯示寬視野內容的能力可用於提供沉浸式視覺體驗。必須在所有方向上捕獲真實世界環境,從而產生對應於球體的全向圖像/視 訊內容。隨著攝像機裝備和HMDs的進步,由於表示這種360度圖像/視訊內容所需的高位元率,VR內容的傳送可能很快成為瓶頸。當全向視訊的分辨率為4K或更高時,資料壓縮/編碼對於降低位元率至關重要。 Virtual reality (VR) with head-mounted displays (HMDs) is associated with various applications. The ability to display wide-view content to users can be used to provide an immersive visual experience. The real-world environment must be captured in all directions to produce an omnidirectional image/view corresponding to the sphere News content. With the advancement of camera equipment and HMDs, the delivery of VR content may soon become a bottleneck due to the high bit rate required to represent such 360-degree image/video content. When the resolution of omnidirectional video is 4K or higher, data compression/encoding is essential to reduce the bit rate.

通常,對應於球體的全向圖像/視訊內容被轉換為圖像序列,每個圖像是基於投影的圖框,其具有由在360度虛擬現實(360 VR)投影佈局中排列的一個或複數個投影面表示的360度圖像/視訊內容,然後基於投影的圖框的序列被編碼成位元流以進行傳輸。基於投影的圖框在佈局邊界和/或面邊界處可能具有圖像內容不連續性。因此在壓縮之後,佈局邊界和/或面邊界周圍的圖像質量可能較差。此外,通過解碼的基於投影的圖框的投影佈局轉換可能引入偽影,從而導致轉換的基於投影的圖框的圖像質量劣化。 Generally, the omnidirectional image/video content corresponding to the sphere is converted into an image sequence, and each image is a projection-based frame with one or more arranged in a 360-degree virtual reality (360 VR) projection layout. The 360-degree image/video content represented by a plurality of projection surfaces is then encoded into a bit stream based on the sequence of the projected frame for transmission. The projection-based frame may have discontinuities in the image content at the layout boundary and/or the surface boundary. Therefore, after compression, the image quality around the layout boundary and/or surface boundary may be poor. In addition, the projection layout conversion of the decoded projection-based frame may introduce artifacts, thereby causing the image quality of the converted projection-based frame to deteriorate.

本發明的目的之一是提供一種用於處理基於投影的圖框的方法,該基於投影的圖框包括封裝在360度虛擬現實(360 VR)投影佈局中的至少一個投影面。 One of the objectives of the present invention is to provide a method for processing a projection-based frame, which includes at least one projection surface encapsulated in a 360-degree virtual reality (360 VR) projection layout.

根據本發明的第一方面,公開了一種示例性視訊處理方法。該示例性視訊處理方法包括:從球體的全向內容獲得複數個投影面,其中球體的全向內容通過立方體投影被映射到投影面上,並且該等投影面包括第一投影面;通過重採樣電路,通過非均勻映射對第一投影面的至少一部分進行重採樣,獲得第一重採樣投影面,其中第一投影面具有第一源區域和第二源區域,第一重採樣投影面具有第一重採樣區域和第二重採樣區域,第一重採樣區域是從第一源區域以第一採樣密度進行重採樣得到的,第二重採樣區域是從第二源區域以第二重採樣密度進行重採樣得到的,第一採樣密度不同於第二採樣密度;根據立方體投影的投影佈局生成基於投影的圖框,其中基於投影的圖框包括封裝在投影佈局中的第一重採樣投影面;以及對基於投影的圖框進行編碼以生成位元流 的一部分。 According to the first aspect of the present invention, an exemplary video processing method is disclosed. The exemplary video processing method includes: obtaining a plurality of projection surfaces from the omnidirectional content of a sphere, wherein the omnidirectional content of the sphere is mapped onto a projection surface by a cube projection, and the projection surfaces include a first projection surface; by resampling The circuit resamples at least a part of the first projection surface through non-uniform mapping to obtain a first resampled projection surface, wherein the first projection surface has a first source area and a second source area, and the first resampled projection surface has a first A re-sampling area and a second re-sampling area. The first re-sampling area is obtained by re-sampling from the first source area at the first sampling density, and the second re-sampling area is obtained from the second source area at the second re-sampling density After re-sampling, the first sampling density is different from the second sampling density; generating a projection-based frame according to the projection layout of the cube projection, where the projection-based frame includes the first re-sampled projection surface encapsulated in the projection layout; And encode the projection-based frame to generate a bit stream a part of.

根據本發明的第二方面,公開了一種示例性視訊處理方法。該示例性視訊處理方法包括:根據立方體投影從球體的全向內容獲得複數個投影面;通過填充電路產生至少一個填充區域;通過封裝在立方體投影的投影佈局中的該等投影面和該至少一個填充區域來生成基於投影的圖框,其中,封裝在投影佈局中的該等投影面包括第一投影面;封裝在投影佈局中的該至少一個填充區域包括第一填充區域;第一填充區域至少與第一投影面連接,並形成投影佈局的一個邊界的至少一部分;以及對基於投影的圖框進行編碼以生成位元流的一部分。 According to the second aspect of the present invention, an exemplary video processing method is disclosed. The exemplary video processing method includes: obtaining a plurality of projection surfaces from the omnidirectional content of the sphere according to the cube projection; generating at least one filled area through a filling circuit; and using the projection surfaces and the at least one projection surface packaged in the projection layout of the cube projection Fill the area to generate a projection-based frame, wherein the projection surfaces encapsulated in the projection layout include a first projection surface; the at least one filled area encapsulated in the projection layout includes a first filled area; the first filled area is at least It is connected with the first projection surface and forms at least a part of a boundary of the projection layout; and the projection-based frame is encoded to generate a part of the bit stream.

根據本發明的第三方面,公開了一種示例性視訊處理方法。該示例性視訊處理方法包括:接收位元流的一部分,以及解碼位元流的一部分以生成解碼的基於投影的圖框,其中基於投影的圖框具有封裝在360度虛擬現實(360 VR)投影佈局中的至少一個投影面和至少一個填充區域。解碼位元流的一部分以生成解碼的基於投影的圖框的步驟包括:通過混合包括在該至少一個填充區域中的第一像素獲得的解碼像素值和包括在該至少一個投影面中的第二像素獲得的解碼像素值,重建包括在該至少一個填充區域中的該第一像素。 According to a third aspect of the present invention, an exemplary video processing method is disclosed. The exemplary video processing method includes: receiving a part of the bit stream, and decoding a part of the bit stream to generate a decoded projection-based frame, wherein the projection-based frame is encapsulated in a 360-degree virtual reality (360 VR) projection At least one projection surface and at least one filling area in the layout. The step of decoding a part of the bit stream to generate a decoded projection-based frame includes: the decoded pixel value obtained by mixing the first pixel included in the at least one filled area and the second pixel value included in the at least one projection surface The decoded pixel value obtained by the pixel reconstructs the first pixel included in the at least one filled area.

在閱讀了在以下詳細描述的各個附圖和附圖中示出的優選實施例之後,對所屬領域中具有通常知識者而言,本發明的這些和其他目的無疑將顯而易見。 These and other objects of the present invention will undoubtedly be apparent to those with ordinary knowledge in the field after reading the various drawings and the preferred embodiments shown in the accompanying drawings described in detail below.

100、1900、2700、3200、3300:360 VR系統 100, 1900, 2700, 3200, 3300: 360 VR system

102、1902、2702:源電子設備 102, 1902, 2702: source electronic equipment

103:傳輸裝置 103: Transmission device

104、3204、3304、3704、3804:目標電子裝置 104, 3204, 3304, 3704, 3804: target electronic device

112:視訊捕獲設備 112: Video capture equipment

114、1914、2714、3726、3826:轉換電路 114, 1914, 2714, 3726, 3826: conversion circuit

115、2716:填充電路 115, 2716: fill circuit

116:視訊編碼器 116: Video Encoder

122、3222、3322、3722、3822:解碼電路 122, 3222, 3322, 3722, 3822: Decoding circuit

124:圖形呈現電路 124: Graphic presentation circuit

126:顯示螢幕 126: display screen

1915、2715:重採樣電路 1915, 2715: Resampling circuit

3224、3324、3724、3824:混合電路 3224, 3324, 3724, 3824: hybrid circuit

3700、3800:360 VR系統 3700, 3800: 360 VR system

202、2002:球體 202, 2002: Sphere

204:八面體 204: Octahedron

206、406:八面體投影佈局 206, 406: Octahedral projection layout

208:赤道 208: Equator

302-308:直角三角形部分 302-308: Right triangle part

310、310'、510、510'、1102:緊湊八面體投影佈局 310, 310', 510, 510', 1102: compact octahedral projection layout

404:旋轉的八面體 404: Rotated Octahedron

502-508:直角三角形部分 502-508: Right triangle part

1002:緊湊立方體投影佈局 1002: Compact cube projection layout

1202、1302、1402:不具有填充的ERP/EAP佈局 1202, 1302, 1402: ERP/EAP layout without filling

1202'、1302'、1402':ERP/EAP佈局 1202', 1302', 1402': ERP/EAP layout

1502、1602、1702、1802:投影佈局 1502, 1602, 1702, 1802: projection layout

2004:立方體 2004: cube

2006:CMP佈局 2006: CMP layout

2102、2104、2302、2304、2402、2404:正方形投影面 2102, 2104, 2302, 2304, 2402, 2404: square projection surface

2312、2316:第一源區域 2312, 2316: first source area

2314、2318:第二源區域 2314, 2318: second source area

2322、2326:第一重採樣區域 2322, 2326: first resampling area

2324、2328:第二重採樣區域 2324, 2328: second resampling area

2802:具有內部邊界填充的3×2立方體佈局 2802: 3×2 cube layout with inner boundary padding

2804:具有內部邊界填充的6×1立方體佈局 2804: 6×1 cube layout with inner boundary padding

2902、3002:具有外部邊界填充和內部邊界填充的3×2立方體佈局 2902, 3002: 3×2 cube layout with outer boundary filling and inner boundary filling

2904、3004:具有外部邊界填充和內部邊界填充的6×1立方體佈局 2904, 3004: 6×1 cube layout with outer boundary filling and inner boundary filling

第1圖是根據本發明的實施例的第一種360度虛擬現實(360 VR)系統的示意圖。 Figure 1 is a schematic diagram of the first 360-degree virtual reality (360 VR) system according to an embodiment of the present invention.

第2圖是從球體到未經旋轉的八面體(octahedron)的投影獲得的基於八面體投影格式中的三角形投影面的示意圖。 Figure 2 is a schematic diagram of a triangular projection surface based on the octahedron projection format obtained from the projection of a sphere to an unrotated octahedron.

第3圖是根據本發明的實施例的第一種緊湊八面體投影佈局(compact octahedron projection layout)的示意圖。 Fig. 3 is a schematic diagram of the first compact octahedron projection layout according to an embodiment of the present invention.

第4圖是從球體到經過旋轉的八面體的投影獲得的基於八面體投影格式中的三角形投影面的示意圖。 Figure 4 is a schematic diagram of a triangular projection surface in the octahedral projection format obtained from the projection of a sphere to a rotated octahedron.

第5圖是根據本發明的實施例的第二種緊湊八面體投影佈局的示意圖。 Figure 5 is a schematic diagram of a second compact octahedral projection layout according to an embodiment of the present invention.

第6圖是根據本發明的實施例的具有填充的第一種緊湊八面體投影佈局的示意圖。 Fig. 6 is a schematic diagram of the first compact octahedral projection layout with filling according to an embodiment of the present invention.

第7圖是根據本發明的實施例的具有填充的第二種緊湊八面體投影佈局的示意圖。 Fig. 7 is a schematic diagram of a second compact octahedral projection layout with filling according to an embodiment of the present invention.

第8圖是由第1圖中所示的填充電路執行的插值的示意圖。 Fig. 8 is a schematic diagram of interpolation performed by the filling circuit shown in Fig. 1.

第9圖是由第1圖中所示的填充電路執行的幾何填充的示意圖。 Figure 9 is a schematic diagram of geometric filling performed by the filling circuit shown in Figure 1.

第10圖是根據本發明的實施例的具有填充的緊湊立方體(cubemap)投影佈局的示意圖。 FIG. 10 is a schematic diagram of a projection layout of a filled compact cube (cubemap) according to an embodiment of the present invention.

第11圖是根據本發明的實施例的具有填充的第三種緊湊八面體投影佈局的示意圖。 Figure 11 is a schematic diagram of a third compact octahedral projection layout with filling according to an embodiment of the present invention.

第12圖是根據本發明的實施例的具有填充的第一種ERP/EAP佈局的示意圖。 Figure 12 is a schematic diagram of the first ERP/EAP layout with filling according to an embodiment of the present invention.

第13圖是根據本發明的實施例的具有填充的第二種ERP/EAP佈局的示意圖。 Figure 13 is a schematic diagram of a second ERP/EAP layout with filling according to an embodiment of the present invention.

第14圖是根據本發明的實施例的具有填充的第三種ERP/EAP佈局的示意圖。 Figure 14 is a schematic diagram of a third ERP/EAP layout with filling according to an embodiment of the present invention.

第15圖是根據本發明的實施例的具有填充的八面體投影佈局的示意圖。 Figure 15 is a schematic diagram of a filled octahedral projection layout according to an embodiment of the present invention.

第16圖是根據本發明的實施例的具有填充的立方體投影佈局的示意圖。 Figure 16 is a schematic diagram of a filled cube projection layout according to an embodiment of the present invention.

第17圖是根據本發明的實施例的具有填充的第四種緊湊八面體投影佈局的示意圖。 Figure 17 is a schematic diagram of a fourth compact octahedral projection layout with filling according to an embodiment of the present invention.

第18圖是根據本發明的實施例的具有填充的緊湊立方體投影佈局的示意圖。 Figure 18 is a schematic diagram of a filled compact cube projection layout according to an embodiment of the present invention.

第19圖是根據本發明的實施例的第二種360 VR系統的示意圖。 Figure 19 is a schematic diagram of a second 360 VR system according to an embodiment of the present invention.

第20圖是根據從球體經過立方體投影(cubemap projection,CMP)獲得的立方體投影佈局中的六個正方形投影面的示意圖。 Figure 20 is a schematic diagram of six square projection surfaces in a cube projection layout obtained from a sphere through cubemap projection (CMP).

第21圖是根據本發明的實施例的通過均勻映射對立方體投影獲得的正方形投影面進行重採樣的示意圖。 FIG. 21 is a schematic diagram of re-sampling a square projection surface obtained by cube projection through uniform mapping according to an embodiment of the present invention.

第22圖是根據本發明的實施例的均勻映射函數曲線的示意圖。 Figure 22 is a schematic diagram of a uniform mapping function curve according to an embodiment of the present invention.

第23圖是根據本發明的實施例的通過非均勻映射對立方體投影獲得的正方形投影面進行重採樣的第一示例的示意圖。 FIG. 23 is a schematic diagram of a first example of re-sampling a square projection surface obtained by cube projection through non-uniform mapping according to an embodiment of the present invention.

第24圖是根據本發明的實施例的通過非均勻映射對立方體投影獲得的正方形投影面進行重採樣的第二示例的示意圖。 FIG. 24 is a schematic diagram of a second example of re-sampling a square projection surface obtained by cube projection through non-uniform mapping according to an embodiment of the present invention.

第25圖是根據本發明的實施例的第一非均勻映射函數曲線的示意圖。 Figure 25 is a schematic diagram of a first non-uniform mapping function curve according to an embodiment of the present invention.

第26圖是根據本發明的實施例的第二非均勻映射函數曲線的示意圖。 Figure 26 is a schematic diagram of a second non-uniform mapping function curve according to an embodiment of the present invention.

第27圖是根據本發明的實施例的第三種360 VR系統的示意圖。 Figure 27 is a schematic diagram of a third 360 VR system according to an embodiment of the present invention.

第28圖是根據本發明的實施例的對立方體投影佈局進行內部邊界填充(edge padding)的示意圖。 FIG. 28 is a schematic diagram of performing edge padding on a cubic projection layout according to an embodiment of the present invention.

第29圖是根據本發明的實施例的對立方體投影佈局進行外部邊界填充(boundary padding)和內部邊界填充的示意圖。 FIG. 29 is a schematic diagram of performing boundary padding and inner boundary padding on a cubic projection layout according to an embodiment of the present invention.

第30圖是根據本發明的實施例的對其他立方體投影佈局進行外部邊界填充和內部邊界填充的示意圖。 FIG. 30 is a schematic diagram of performing outer boundary filling and inner boundary filling on other cubic projection layouts according to an embodiment of the present invention.

第31圖是根據本發明實施例的通過複製另一投影面中的部分區域來產生一個投影面的填充區域的填充設計的示意圖。 FIG. 31 is a schematic diagram of a filling design for generating a filling area of a projection surface by copying a partial area of another projection surface according to an embodiment of the present invention.

第32圖是根據本發明的實施例的第四種360 VR系統的示意圖。 Figure 32 is a schematic diagram of a fourth 360 VR system according to an embodiment of the present invention.

第33圖是根據本發明的實施例的第五種360 VR系統的示意圖。 Figure 33 is a schematic diagram of a fifth 360 VR system according to an embodiment of the present invention.

第34圖是根據本發明的實施例的解碼器側混合操作的示意圖。 Figure 34 is a schematic diagram of a decoder-side mixing operation according to an embodiment of the present invention.

第35圖是根據本發明實施例的更新投影面中的像素的像素值所涉及的像素的權 重值與像素的索引值之間關係的示意圖。 Figure 35 shows the right of pixels involved in updating the pixel values of pixels on the projection surface according to an embodiment of the present invention. A schematic diagram of the relationship between the heavy value and the index value of the pixel.

第36圖是根據本發明實施例的更新投影面中的像素的像素值所涉及的像素的權重值與像素的索引值之間另一種關係的示意圖。 FIG. 36 is a schematic diagram of another relationship between the weight value of the pixel involved in updating the pixel value of the pixel on the projection surface and the index value of the pixel according to an embodiment of the present invention.

第37圖是根據本發明的實施例的第六種360 VR系統的示意圖。 Figure 37 is a schematic diagram of a sixth 360 VR system according to an embodiment of the present invention.

第38圖是根據本發明的實施例的第七種360 VR系統的示意圖。 Figure 38 is a schematic diagram of a seventh 360 VR system according to an embodiment of the present invention.

第39圖是根據本發明的實施例的更新投影面中的像素的像素值和填充區域中的填充像素的像素值,所涉及的像素的權重值與像素的索引值之間關係的示意圖。 Figure 39 is a schematic diagram of the relationship between the pixel value of the pixel in the projection plane and the pixel value of the filled pixel in the filled area, and the relationship between the weight value of the involved pixel and the index value of the pixel according to an embodiment of the present invention.

第40圖是根據本發明的實施例的更新投影面中的像素的像素值和填充區域中的填充像素的像素值,所涉及的像素的權重值與像素的索引值之間另一種關係的示意圖。 Figure 40 is a schematic diagram of another relationship between the pixel value of the pixel in the projection plane and the pixel value of the filled pixel in the filled area, and the weight value of the involved pixel and the index value of the pixel according to an embodiment of the present invention. .

在說明書及後續的申請專利範圍當中使用了某些詞彙來指稱特定的元件。所屬領域中具有習知技術者應可理解,電子裝置製造商可能會用不同的名詞來稱呼同一個元件。本說明書及後續的申請專利範圍並不以名稱的差異來作為區分元件的方式,而是以元件在功能上的差異來作為區分的準則。在通篇說明書及後續的請求項當中所提及的“包括”和“包含”係為開放式的用語,故應解釋成「包括但不限定於......」。以外,「耦接」一詞在此係包含任何直接及間接的電氣連接手段。因此,若文中描述一第一裝置耦接到一第二裝置,則代表該第一裝置可直接電氣連接於該第二裝置,或透過其他裝置或連接手段間接地電氣連接至該第二裝置。 In the specification and subsequent patent applications, certain words are used to refer to specific elements. Those skilled in the art should understand that electronic device manufacturers may use different terms to refer to the same component. The scope of this specification and subsequent patent applications does not use differences in names as a way to distinguish elements, but uses differences in functions of elements as a criterion for distinguishing. The "including" and "including" mentioned in the entire specification and the subsequent request items are open-ended terms and should be interpreted as "including but not limited to...". In addition, the term "coupling" here includes any direct and indirect electrical connection means. Therefore, if it is described that a first device is coupled to a second device, it means that the first device can be directly electrically connected to the second device, or indirectly electrically connected to the second device through other devices or connection means.

第1圖是根據本發明的實施例的第一種360度虛擬現實(360 VR)系統的示意圖。360 VR系統100包括兩個視訊處理裝置(例如,源電子設備102和目標電子設備104)。源電子設備102包括視訊捕獲設備112,轉換電路114和視訊編碼器116。例如,視訊捕獲設備112可以是用於提供對應於球體的全向圖像/視 訊內容(例如,覆蓋整個周圍環境的複數個圖像)S_IN的一組相機。轉換電路114耦接在視訊捕獲設備112和視訊編碼器116之間。轉換電路114根據全向圖像/視訊內容S_IN生成具有360度虛擬現實投影佈局L_VR的基於投影的圖框IMG。例如,基於投影的圖框IMG可以是包括在從轉換電路114生成的基於投影的圖框的序列中的一個圖框。視訊編碼器116是用於編碼/壓縮基於投影的圖框IMG以生成位元流BS的一部分的編碼電路。此外,視訊編碼器116經由傳輸裝置103將位元流BS輸出到目標電子設備104。例如,可以將基於投影的圖框的序列編碼到位元流BS中,並且傳輸裝置103可以是有線/無線通訊鏈路或存儲介質。 Figure 1 is a schematic diagram of the first 360-degree virtual reality (360 VR) system according to an embodiment of the present invention. The 360 VR system 100 includes two video processing devices (for example, a source electronic device 102 and a target electronic device 104). The source electronic device 102 includes a video capture device 112, a conversion circuit 114 and a video encoder 116. For example, the video capture device 112 may be used to provide an omnidirectional image/view corresponding to a sphere. Information content (for example, multiple images covering the entire surrounding environment) S_IN group of cameras. The conversion circuit 114 is coupled between the video capture device 112 and the video encoder 116. The conversion circuit 114 generates a projection-based frame IMG with a 360-degree virtual reality projection layout L_VR according to the omnidirectional image/video content S_IN. For example, the projection-based frame IMG may be one frame included in the sequence of projection-based frames generated from the conversion circuit 114. The video encoder 116 is an encoding circuit for encoding/compressing the projection-based frame IMG to generate a part of the bitstream BS. In addition, the video encoder 116 outputs the bit stream BS to the target electronic device 104 via the transmission device 103. For example, the sequence of projection-based frames can be encoded into the bit stream BS, and the transmission device 103 can be a wired/wireless communication link or a storage medium.

目標電子設備104可以是頭戴式顯示器(HMD)設備。如第1圖所示,目標電子設備104包括解碼電路122,圖形呈現電路124和顯示螢幕126。解碼電路122從傳輸裝置103(例如,有線/無線通訊鏈路或存儲器)接收位元流BS,然後,執行視訊解碼器功能,用於解碼所接收的位元流BS的一部分以生成解碼圖框IMG'。例如,解碼電路122通過對接收的位元流BS進行解碼來生成解碼圖框的序列,其中解碼圖框IMG'是包括在解碼圖框的序列中的一個圖框。在該實施例中,由編碼器側的視訊編碼器116編碼的基於投影的圖框IMG具有360 VR投影格式和投影佈局。因此,在解碼器側的解碼電路122對位元流BS進行解碼之後,解碼圖框IMG'是具有相同的360 VR投影格式和相同投影佈局的解碼的基於投影的圖框。圖形呈現電路124耦接在解碼電路122和顯示螢幕126之間。圖形呈現電路124根據解碼圖框IMG'在顯示螢幕126上呈現並顯示輸出圖像資料。例如,與由解碼圖框IMG'承載的360度圖像/視訊內容的一部分相關聯的視埠區域可以經由圖形呈現電路124顯示在顯示螢幕126上。 The target electronic device 104 may be a head-mounted display (HMD) device. As shown in FIG. 1, the target electronic device 104 includes a decoding circuit 122, a graphics rendering circuit 124, and a display screen 126. The decoding circuit 122 receives the bit stream BS from the transmission device 103 (for example, a wired/wireless communication link or a memory), and then performs a video decoder function for decoding a part of the received bit stream BS to generate a decoded frame IMG'. For example, the decoding circuit 122 generates a sequence of decoded frames by decoding the received bit stream BS, where the decoded frame IMG' is one frame included in the sequence of decoded frames. In this embodiment, the projection-based frame IMG encoded by the video encoder 116 on the encoder side has a 360 VR projection format and a projection layout. Therefore, after the decoding circuit 122 on the decoder side decodes the bit stream BS, the decoded frame IMG' is a decoded projection-based frame with the same 360 VR projection format and the same projection layout. The graphics rendering circuit 124 is coupled between the decoding circuit 122 and the display screen 126. The graphic presentation circuit 124 presents and displays the output image data on the display screen 126 according to the decoded frame IMG′. For example, the viewport area associated with a part of the 360-degree image/video content carried by the decoded frame IMG′ may be displayed on the display screen 126 via the graphics rendering circuit 124.

如上所述,轉換電路114根據360VR投影佈局L_VR和全向圖像/視訊內容S_IN生成基於投影的圖框IMG。如果360 VR投影佈局L_VR是不具有填充的緊湊投影佈局,則投影面的封裝可能導致相鄰投影面之間存在圖像內容不連續 邊界。 As described above, the conversion circuit 114 generates a projection-based frame IMG according to the 360VR projection layout L_VR and the omnidirectional image/video content S_IN. If the 360 VR projection layout L_VR is a compact projection layout without padding, the packaging of the projection surface may cause discontinuities in image content between adjacent projection surfaces boundary.

第2圖是從球體到未經旋轉的八面體投影獲得的基於八面體投影格式中的三角形投影面的示意圖。球體202的全向圖像/視訊內容被映射到未經旋轉的八面體204的八個三角形投影面(標記為“1”,“2”,“3”,“4”,“5”,“6”,“7”,和“8”)。如第2圖所示,三角形投影面“1”-“8”以八面體投影佈局206排列。每個三角形投影面“1”-“8”的形狀是等邊三角形。對於三角形投影面“K”(K=1-8),該面具有三個邊,表示為SK1,SK2和SK3。球體202由頂部半球(例如,北半球)和底部半球(例如,南半球)組成。由於基於未經旋轉的八面體204的八面體投影,三角形投影面“1”,“2”,“3”和“4”都來自頂部半球,三角形投影面“5”,“6”“7”,和“8”都來自底部半球,並且球體202的赤道208沿著三角形投影面“1”-“8”的邊S13,S23,S33,S43,S53,S63,S73和S83被映射,如第2圖中的虛線所示。 Figure 2 is a schematic diagram of a triangular projection surface based on the octahedral projection format obtained from a sphere to an unrotated octahedral projection. The omnidirectional image/video content of the sphere 202 is mapped to the eight triangular projection surfaces of the unrotated octahedron 204 (labeled "1", "2", "3", "4", "5", "6", "7", and "8"). As shown in FIG. 2, the triangular projection surfaces "1"-"8" are arranged in an octahedral projection layout 206. The shape of each triangle projection surface "1"-"8" is an equilateral triangle. For the triangular projection surface "K" (K=1-8), the surface has three sides, denoted as SK1, SK2 and SK3. The sphere 202 is composed of a top hemisphere (for example, the northern hemisphere) and a bottom hemisphere (for example, the southern hemisphere). Due to the octahedral projection based on the unrotated octahedron 204, the triangular projection surfaces "1", "2", "3" and "4" are all from the top hemisphere, and the triangular projection surfaces "5", "6"" 7", and "8" are all from the bottom hemisphere, and the equator 208 of the sphere 202 is mapped along the sides S13, S23, S33, S43, S53, S63, S73 and S83 of the triangular projection plane "1"-"8", As shown by the dotted line in Figure 2.

將要編碼的基於投影的圖框IMG需要是矩形的。如果八面體投影佈局206直接用於創建基於投影的圖框IMG,基於投影的圖框IMG無法具有緊湊的圖框佈局,在基於投影的圖框IMG中需要對許多空置區域進行填充(例如,填充為黑色,灰色或白色的區域)。因此,需要一種緊湊八面體投影佈局,其可以避免出現空置區域(例如,填充為黑色,灰色或白色的區域)。 The projection-based frame IMG to be encoded needs to be rectangular. If the octahedral projection layout 206 is directly used to create a projection-based frame IMG, the projection-based frame IMG cannot have a compact frame layout. In the projection-based frame IMG, many vacant areas need to be filled (for example, Fill the area with black, gray or white). Therefore, there is a need for a compact octahedral projection layout that can avoid vacant areas (for example, areas filled with black, gray, or white).

請結合參考第2圖和第3圖。第3圖是根據本發明的實施例的第一種緊湊八面體投影佈局的示意圖。球體202的赤道208沿著三角形投影面“1”-“8”的邊被映射,如第3圖中的虛線所示。緊湊八面體投影佈局310是通過三角形投影面旋轉和三角形投影面分割來從八面體投影佈局206導出的。如第3圖的中間部分所示,在八面體投影佈局206中的三角形投影面“1”順時針旋轉60°,在八面體投影佈局206中的三角形投影面“3”逆時針旋轉60°,在八面體投影佈局206的三角形投影面“5”逆時針旋轉60°,以及在八面體投影佈局206中的三角形投影面“7”順時 針旋轉60°。因此,三角形投影面“2”的邊S21與三角形投影面“1”的邊S12連接,三角形投影面“2”的邊S22與三角形投影面“3”的邊S31連接。三角形投影面“6”的邊S62與三角形投影面“5”的邊S51連接,三角形投影面“6”的邊S61與三角形投影面“7”的邊S72連接。 Please refer to Figure 2 and Figure 3 together. Figure 3 is a schematic diagram of the first compact octahedral projection layout according to an embodiment of the present invention. The equator 208 of the sphere 202 is mapped along the sides of the triangular projection plane "1"-"8", as shown by the dotted line in FIG. 3. The compact octahedral projection layout 310 is derived from the octahedral projection layout 206 through triangular projection surface rotation and triangular projection surface division. As shown in the middle part of Figure 3, the triangular projection surface "1" in the octahedral projection layout 206 is rotated 60° clockwise, and the triangular projection surface "3" in the octahedral projection layout 206 is rotated 60° counterclockwise. °, the triangular projection surface "5" in the octahedral projection layout 206 is rotated 60° counterclockwise, and the triangular projection surface "7" in the octahedral projection layout 206 is clockwise The needle rotates 60°. Therefore, the side S21 of the triangular projection surface "2" is connected to the side S12 of the triangular projection surface "1", and the side S22 of the triangular projection surface "2" is connected to the side S31 of the triangular projection surface "3". The side S62 of the triangular projection surface "6" is connected to the side S51 of the triangular projection surface "5", and the side S61 of the triangular projection surface "6" is connected to the side S72 of the triangular projection surface "7".

如第3圖的中間部分所示,在三角形投影面“2”的邊S21和三角形投影面“1”的邊S12之間存在圖像內容連續性邊界(即,內容連續地表示在三角形投影面“1”和“2”中),在三角形投影面“2”的邊S22和三角形投影面“3”的邊S31之間存在圖像內容連續性邊界(即,內容連續地表示在三角形投影面“2”和“3”中),在三角形投影面“2”的邊S23和三角形投影面“6”的邊S63之間存在圖像內容連續性邊界(即,內容連續地表示在三角形投影面“2”和“6”中),在三角形投影面“6”的邊S62和三角形投影面“5”的邊S51之間存在圖像內容連續性邊界(即,內容連續地表示在三角形投影面“5”和“6”中),並且在三角形投影面“6”的邊S61和三角形投影面“7”的邊S72之間存在圖像內容連續性邊界(即,內容連續地表示在三角形投影面“6”和“7”中)。 As shown in the middle part of Figure 3, there is an image content continuity boundary between the side S21 of the triangular projection surface "2" and the side S12 of the triangular projection surface "1" (that is, the content is continuously expressed on the triangular projection surface "1" and "2"), there is an image content continuity boundary between the side S22 of the triangular projection surface "2" and the side S31 of the triangular projection surface "3" (that is, the content is continuously expressed on the triangular projection surface "2" and "3"), there is an image content continuity boundary between the side S23 of the triangular projection surface "2" and the side S63 of the triangular projection surface "6" (that is, the content is continuously expressed on the triangular projection surface "2" and "6"), there is an image content continuity boundary between the side S62 of the triangular projection surface "6" and the side S51 of the triangular projection surface "5" (that is, the content is continuously expressed on the triangular projection surface "5" and "6"), and there is an image content continuity boundary between the side S61 of the triangular projection surface "6" and the side S72 of the triangular projection surface "7" (that is, the content continuously represents the "6" and "7" above).

另外,八面體投影佈局206中的三角形投影面“8”被分成兩個直角三角形部分302和304,並且八面體投影佈局206中的三角形投影面“4”被分成兩個直角三角形部分306和308。如第3圖的底部所示,三角形投影面“8”的直角三角形部分304和三角形投影面“4”的直角三角形部分308分別連接到三角形投影面“7”和“3”;三角形投影面“8”的直角三角形部分302和三角形投影面“4”的直角三角形部分306分別重新定位並連接到三角形投影面“5”和“1”。 In addition, the triangular projection surface "8" in the octahedral projection layout 206 is divided into two right-angled triangle parts 302 and 304, and the triangular projection surface "4" in the octahedral projection layout 206 is divided into two right-angled triangle parts 306 And 308. As shown at the bottom of Figure 3, the right-angled triangular portion 304 of the triangular projection surface "8" and the right-angled triangular portion 308 of the triangular projection surface "4" are connected to the triangular projection surfaces "7" and "3", respectively; the triangular projection surface " The right-angled triangle portion 302 of 8" and the right-angled triangle portion 306 of the triangle projection surface "4" are repositioned and connected to the triangle projection surfaces "5" and "1", respectively.

三角形投影面“8”的直角三角形部分302具有三個邊S811,S812和S83_1,其中邊S811是三角形投影面“8”的邊S81,並且邊S83_1是三角形投影面“8”的邊S83的第一部分。三角形投影面“8”的直角三角形部分304具有三個邊S821,S822和S83_2,其中邊S821是三角形投影面“8”的邊S82,而邊S83_2是三 角形投影面“8”的邊S83的第二部分。 The right-angled triangle portion 302 of the triangular projection surface "8" has three sides S811, S812 and S83_1, where the side S811 is the side S81 of the triangular projection surface "8", and the side S83_1 is the side S83 of the triangular projection surface "8". Part. The right-angled triangle portion 304 of the triangular projection surface "8" has three sides S821, S822 and S83_2, where the side S821 is the side S82 of the triangular projection surface "8", and the side S83_2 is three sides. The second part of side S83 of the angular projection surface "8".

三角形投影面“4”的直角三角形部分306具有三個邊S421,S422和S43_1,其中邊S421是三角形投影面“4”的邊S42,並且邊S43_1是三角形投影面“4”的邊S43的第一部分。三角形投影面“4”的直角三角形部分308具有三個邊S411,S412和S43_2,其中邊S411是三角形投影面“4”的邊S41,而邊S43_2是三角形投影面“4”的邊S43的第二部分。 The right-angled triangle portion 306 of the triangular projection surface "4" has three sides S421, S422 and S43_1, where the side S421 is the side S42 of the triangular projection surface "4", and the side S43_1 is the side S43 of the triangular projection surface "4". Part. The right-angled triangle portion 308 of the triangular projection surface "4" has three sides S411, S412 and S43_2, wherein the side S411 is the side S41 of the triangular projection surface "4", and the side S43_2 is the second side of the side S43 of the triangular projection surface "4". Two parts.

根據緊湊八面體投影佈局310,三角形投影面“8”的直角三角形部分304的邊S821與三角形投影面“7”的邊S73連接,三角形投影面“8”的直角三角形部分304的邊S83_2與三角形投影面“4”的直角三角形部分308的邊S43_2連接,三角形投影面“4”的直角三角形部分308的邊S411與三角形投影面“3”的邊S33連接,三角形投影面“8”的直角三角形部分302的邊S811與三角形投影面“5”的邊S53連接,三角形投影面“8”的直角三角形部分302的邊S83_1與三角形投影面“4”的直角三角形部分306的邊S43_1連接,三角形投影面“4”的三角形部分306的邊S421與三角形投影面“1”的邊S13連接。 According to the compact octahedral projection layout 310, the side S821 of the right-angled triangle portion 304 of the triangular projection surface "8" is connected to the side S73 of the triangular projection surface "7", and the side S83_2 of the right-angled triangle portion 304 of the triangular projection surface "8" is connected with The side S43_2 of the right-angled triangular part 308 of the triangular projection surface "4" is connected, the side S411 of the right-angled triangular part 308 of the triangular projection surface "4" is connected with the side S33 of the triangular projection surface "3", and the right angle of the triangular projection surface "8" The side S811 of the triangle portion 302 is connected with the side S53 of the triangle projection surface "5", the side S83_1 of the right triangle portion 302 of the triangle projection surface "8" is connected with the side S43_1 of the right triangle portion 306 of the triangle projection surface "4", the triangle The side S421 of the triangular portion 306 of the projection surface "4" is connected to the side S13 of the triangular projection surface "1".

在三角形投影面“8”的直角三角形部分304的邊S83_2與三角形投影面“4”的直角三角形部分308的邊S43_2之間存在圖像內容連續性邊界。在三角形投影面“8”的直角三角形部分302的邊S83_1與三角形投影面“4”的直角三角形部分306的邊S43_1之間存在圖像內容連續性邊界。也就是說,內容連續地表示在三角形投影面“4”和“8”中。此外,在三角形投影面“8”的直角三角形部分304的邊S821與三角形投影面“7”的邊S73之間存在圖像內容不連續邊界,在三角形投影面“4”的直角三角形部分308的邊S411和三角形投影面“3”的邊S33之間存在圖像內容不連續邊界,在三角形投影面“8”的直角三角形部分302的邊S811和三角形投影面“5”的邊S53之間存在圖像內容不連續邊界,以及在三角形投影面“4”的直角三角形部分306的邊S421和三角形投影面“1”的邊S13之間存在圖像內容不連續 邊界。 There is an image content continuity boundary between the side S83_2 of the right-angled triangle portion 304 of the triangle projection surface "8" and the side S43_2 of the right-angled triangle portion 308 of the triangle projection surface "4". There is an image content continuity boundary between the side S83_1 of the right-angled triangle portion 302 of the triangle projection surface "8" and the side S43_1 of the right-angled triangle portion 306 of the triangle projection surface "4". That is, the content is continuously represented in the triangular projection surfaces "4" and "8". In addition, there is a discontinuous border of image content between the side S821 of the right-angled triangle portion 304 of the triangular projection surface "8" and the side S73 of the triangular projection surface "7". There is a discontinuous boundary of image content between side S411 and side S33 of triangular projection surface "3", and there is a boundary between side S811 of right-angled triangle portion 302 of triangular projection surface "8" and side S53 of triangular projection surface "5" Image content discontinuity boundary and image content discontinuity between side S421 of right-angled triangle portion 306 of triangle projection surface "4" and side S13 of triangle projection surface "1" boundary.

如第3圖的底部所示,由緊湊八面體投影佈局310設置的360 VR投影佈局L_VR是沒有任何虛設區域(例如,黑色區域或白色區域)的矩形。另外,360度圖像/視訊內容的部分在三角形投影面“1”,“2”,“3”,“5”,“6”,“7”中連續表示,沒有圖像內容不連續。然而,一些圖像內容不連續邊界仍然不可避免地存在於緊湊八面體投影佈局310中。因此,如果通過緊湊八面體投影佈局310來設置360VR投影佈局L_VR,則壓縮之後的圖像內容不連續邊界附近的圖像質量可能較差。 As shown at the bottom of FIG. 3, the 360 VR projection layout L_VR set by the compact octahedral projection layout 310 is a rectangle without any dummy regions (for example, black regions or white regions). In addition, the part of the 360-degree image/video content is continuously represented in the triangular projection surface "1", "2", "3", "5", "6", and "7", and there is no discontinuous image content. However, some discontinuous boundaries of image content still inevitably exist in the compact octahedral projection layout 310. Therefore, if the 360VR projection layout L_VR is set through the compact octahedral projection layout 310, the image quality near the discontinuous boundary of the image content after compression may be poor.

當如第2圖所示的三角形投影面“1”-“8”被重新排列並封裝在緊湊八面體投影佈局310中時,一些三角形投影面必須被分割和重新定位,從而導致基於投影的圖框IMG中的赤道208的圖像內容不連續。通常,球體202的頂部和底部區域通常分別代表“天空”和“地面”,並且周圍環境中的移動物體大多位於球體202的赤道208處。如果表示在基於投影的圖框IMG中的赤道208具有圖像內容不連續性,則編碼效率和圖像質量會顯著降低。如果球體202的赤道208沿三角形投影面的中間或除三角形投影面的邊之外的任何位置被映射,則可以提高編碼效率和圖像質量。 When the triangular projection surfaces "1"-"8" shown in Figure 2 are rearranged and packaged in a compact octahedral projection layout 310, some triangular projection surfaces must be divided and repositioned, resulting in projection-based The image content of the equator 208 in the frame IMG is not continuous. Generally, the top and bottom regions of the sphere 202 usually represent the “sky” and the “ground” respectively, and most moving objects in the surrounding environment are located at the equator 208 of the sphere 202. If the equator 208 in the projection-based frame IMG has discontinuity in image content, the coding efficiency and image quality will be significantly reduced. If the equator 208 of the sphere 202 is mapped along the middle of the triangular projection surface or any position other than the side of the triangular projection surface, coding efficiency and image quality can be improved.

第4圖是從球體到經過旋轉的八面體投影獲得的基於八面體投影格式中的三角形投影面的示意圖。球體202的全向圖像/視訊內容被映射到經過旋轉的八面體404的八個三角形投影面(標記為“1”,“2”,“3”,“4”,“5”,“6”,“7”和“8”)。第4圖中所示的經過旋轉的八面體404可以通過向第2圖中所示的八面體204施加90度旋轉來獲得。如第4圖所示,三角形投影面“1”-“8”被封裝在八面體投影佈局406中。每個三角形投影面“1”-“8”的形狀是等邊三角形。對於三角形投影面“K”(K=1-8),該面具有三個邊,表示為SK1,SK2和SK3。球體202由左半球和右半球組成。三角形投影面“1”,“2”,“3”和“4”都來自右半球,三角形 投影面“5”,“6”,“7”和“8”是全部來自左半球。由於旋轉的八面體404上的八面體投影,球體202的赤道208未沿著每個三角形投影面的任何一邊被映射。在該實施例中,球體202的赤道208沿三角形投影面“2”,“4”,“6”和“8”的中間被映射,如第4圖中的虛線所示。如上所述,將要編碼的基於投影的圖框IMG需要是矩形的。因此,基於投影的圖框IMG應該使用緊湊八面體投影佈局。 Figure 4 is a schematic diagram of a triangular projection surface based on the octahedral projection format obtained from a sphere to a rotated octahedral projection. The omnidirectional image/video content of the sphere 202 is mapped to the eight triangular projection surfaces of the rotated octahedron 404 (labeled "1", "2", "3", "4", "5", " 6", "7" and "8"). The rotated octahedron 404 shown in FIG. 4 can be obtained by applying a 90-degree rotation to the octahedron 204 shown in FIG. 2. As shown in FIG. 4, the triangular projection surfaces "1"-"8" are encapsulated in an octahedral projection layout 406. The shape of each triangle projection surface "1"-"8" is an equilateral triangle. For the triangular projection surface "K" (K=1-8), the surface has three sides, denoted as SK1, SK2 and SK3. The sphere 202 is composed of a left hemisphere and a right hemisphere. The triangular projection surfaces "1", "2", "3" and "4" all come from the right hemisphere, the triangle The projection surfaces "5", "6", "7" and "8" are all from the left hemisphere. Due to the octahedral projection on the rotating octahedron 404, the equator 208 of the sphere 202 is not mapped along any side of each triangular projection surface. In this embodiment, the equator 208 of the sphere 202 is mapped along the middle of the triangular projection planes "2", "4", "6" and "8", as shown by the dashed line in Figure 4. As mentioned above, the projection-based frame IMG to be encoded needs to be rectangular. Therefore, the projection-based frame IMG should use a compact octahedral projection layout.

請結合參考第4圖和第5圖。第5圖是根據本發明的實施例的第二種緊湊八面體投影佈局的示意圖。球體202的赤道208沿三角形投影面“2”,“4”,“6”和“8”的中間被映射,如第5圖中的虛線所示。緊湊八面體投影佈局510是通過三角形投影面旋轉和三角形投影面分割來從八面體投影佈局406導出的。如第5圖的中間部分所示,在八面體投影佈局406中的三角形投影面“7”順時針旋轉60°,在八面體投影佈局406中的三角形投影面“5”逆時針旋轉60°,在八面體投影佈局406的三角形投影面“3”逆時針旋轉60°,並且在八面體投影佈局406中的三角形投影面“1”順時針旋轉60°。因此,三角形投影面“7”的邊S72與三角形投影面“6”的邊S61連接,三角形投影面“5”的邊S51與三角形投影面“6”的邊S62連接。“三角形投影面“3”的邊S31與三角形投影面“2”的邊S22連接,三角形投影面“1”的邊S12與三角形投影面“2”的邊S21連接。 Please refer to Figure 4 and Figure 5 together. Figure 5 is a schematic diagram of a second compact octahedral projection layout according to an embodiment of the present invention. The equator 208 of the sphere 202 is mapped along the middle of the triangular projection planes "2", "4", "6" and "8", as shown by the dashed line in Figure 5. The compact octahedral projection layout 510 is derived from the octahedral projection layout 406 through triangular projection surface rotation and triangular projection surface division. As shown in the middle part of Figure 5, the triangular projection surface "7" in the octahedral projection layout 406 is rotated 60° clockwise, and the triangular projection surface "5" in the octahedral projection layout 406 is rotated 60° counterclockwise. °, the triangular projection surface “3” in the octahedral projection layout 406 is rotated 60° counterclockwise, and the triangular projection surface “1” in the octahedral projection layout 406 is rotated 60° clockwise. Therefore, the side S72 of the triangular projection surface "7" is connected to the side S61 of the triangular projection surface "6", and the side S51 of the triangular projection surface "5" is connected to the side S62 of the triangular projection surface "6". The side S31 of the "triangular projection surface "3" is connected to the side S22 of the triangular projection surface "2", and the side S12 of the triangular projection surface "1" is connected to the side S21 of the triangular projection surface "2".

如第5圖的中間部分所示,在三角形投影面“7”的邊S72和三角形投影面“6”的邊S61之間存在圖像內容連續性邊界(即,內容連續地表示在三角形投影面“6”和“7”中),在三角形投影面“5”的邊S51和三角形投影面“6”的邊S62之間存在圖像內容連續性邊界(即,內容連續地表示在三角形投影面“5”和“6”中),在三角形投影面“3”的邊S31和三角形投影面“2”的邊S22之間存在圖像內容連續性邊界(即,內容連續地表示在三角形投影面“2”和“3”中),在三角形投影面“1”的邊S12和三角形投影面“2”的邊S21之間存在圖像內容連續性邊界(即,內容連續地表示在三角形投影面“1”和“2”中),以及在三角形投影面“2”的邊S23和三角 形投影面“6”的邊S63之間存在圖像內容連續性邊界(即,內容連續地表示在三角形投影面“2”和“6”中)。 As shown in the middle part of Figure 5, there is an image content continuity boundary between the side S72 of the triangular projection surface "7" and the side S61 of the triangular projection surface "6" (that is, the content is continuously expressed on the triangular projection surface In "6" and "7"), there is an image content continuity boundary between the side S51 of the triangular projection surface "5" and the side S62 of the triangular projection surface "6" (that is, the content is continuously expressed on the triangular projection surface In "5" and "6"), there is an image content continuity boundary between the side S31 of the triangular projection surface "3" and the side S22 of the triangular projection surface "2" (that is, the content is continuously expressed on the triangular projection surface In "2" and "3"), there is an image content continuity boundary between the side S12 of the triangular projection surface "1" and the side S21 of the triangular projection surface "2" (that is, the content is continuously expressed on the triangular projection surface "1" and "2"), as well as the side S23 and triangle on the triangular projection plane "2" There is an image content continuity boundary between the sides S63 of the triangular projection surface "6" (that is, the content is continuously represented in the triangular projection surfaces "2" and "6").

另外,八面體投影佈局406中的三角形投影面“4”被分成兩個直角三角形部分502和504,以及八面體投影佈局406中的三角形投影面“8”被分成兩個直角三角形部分506和508。如第5圖的右部所示,三角形投影面“4”的直角三角形部分504和三角形投影面“8”的直角三角形部分508分別連接到三角形投影面“1”和“5”;三角形投影面“4”的直角三角形部分502和三角形投影面“8”的直角三角形部分506分別重新定位並連接到三角形投影面“3”和“7”。 In addition, the triangular projection surface "4" in the octahedral projection layout 406 is divided into two right-angled triangle parts 502 and 504, and the triangular projection surface "8" in the octahedral projection layout 406 is divided into two right-angled triangle parts 506 And 508. As shown in the right part of Figure 5, the right-angled triangle portion 504 of the triangular projection surface "4" and the right-angled triangle portion 508 of the triangular projection surface "8" are respectively connected to the triangular projection surfaces "1" and "5"; the triangular projection surface The right-angled triangle portion 502 of "4" and the right-angled triangle portion 506 of the triangle projection surface "8" are repositioned and connected to the triangle projection surfaces "3" and "7", respectively.

三角形投影面“4”的直角三角形部分502具有三個邊S411,S412和S43_1,其中邊S411是三角形投影面“4”的邊S41,並且邊S43_1是三角形投影面“4”的邊S43的第一部分。三角形投影面“4”的直角三角形部分504具有三個邊S421,S422和S43_2,其中邊S421是三角形投影面“4”的邊S42,並且邊S43_2是三角形投影面“4”的邊S43的第二部分。 The right-angled triangle portion 502 of the triangular projection surface "4" has three sides S411, S412 and S43_1, where the side S411 is the side S41 of the triangular projection surface "4", and the side S43_1 is the side S43 of the triangular projection surface "4". Part. The right-angled triangle portion 504 of the triangular projection surface "4" has three sides S421, S422 and S43_2, where the side S421 is the side S42 of the triangular projection surface "4", and the side S43_2 is the second side of the side S43 of the triangular projection surface "4". Two parts.

三角形投影面“8”的直角三角形部分506具有三個邊S821,S822和S83_1,其中邊S821是三角形投影面“8”的邊S82,並且邊S83_1是三角形投影面“8”的邊S83的第一部分。三角形投影面“8”的直角三角形部分508具有三個邊S811,S812和S83_2,其中邊S811是三角形投影面“8”的邊S81,而邊S83_2是三角形投影面“8”的邊S83的第二部分。 The right-angled triangle portion 506 of the triangular projection surface "8" has three sides S821, S822, and S83_1, where the side S821 is the side S82 of the triangular projection surface "8", and the side S83_1 is the side S83 of the triangular projection surface "8". Part. The right-angled triangle portion 508 of the triangular projection surface "8" has three sides S811, S812 and S83_2, where the side S811 is the side S81 of the triangular projection surface "8", and the side S83_2 is the second side of the side S83 of the triangular projection surface "8". Two parts.

根據緊湊八面體投影佈局510,三角形投影面“4”的直角三角形部分504的邊S421與三角形投影面“1”的邊S13連接,三角形投影面“4”的直角三角形部分504的邊S43_2與三角形投影面“8”的直角三角形部分508的邊S83_2連接,三角形投影面“8”的直角三角形部分508的邊S811與三角形投影面“5”的邊S53連接,三角形投影面“4”的直角三角形部分502的邊S411與三角形投影面“3”的邊S33連接,三角形投影面“4”的直角三角形部分502的邊S43_1與三角形投影面“8”的直 角三角形部分506的邊S83_1連接,以及三角形投影面“8”的三角形部分506的邊S821與三角形投影面“7”的邊S73連接。 According to the compact octahedral projection layout 510, the side S421 of the right-angled triangle portion 504 of the triangular projection surface "4" is connected to the side S13 of the triangular projection surface "1", and the side S43_2 of the right-angled triangle portion 504 of the triangular projection surface "4" is connected to The side S83_2 of the right-angled triangular part 508 of the triangular projection surface "8" is connected, the side S811 of the right-angled triangular part 508 of the triangular projection surface "8" is connected with the side S53 of the triangular projection surface "5", and the right angle of the triangular projection surface "4" The side S411 of the triangular part 502 is connected to the side S33 of the triangular projection surface "3", and the side S43_1 of the right-angled triangular part 502 of the triangular projection surface "4" is directly connected to the triangular projection surface "8". The side S83_1 of the corner triangular portion 506 is connected, and the side S821 of the triangular portion 506 of the triangular projection surface "8" is connected to the side S73 of the triangular projection surface "7".

在三角形投影面“4”的直角三角形部分504的邊S43_2與三角形投影面“8”的直角三角形部分508的邊S83_2之間存在圖像內容連續性邊界。在三角形投影面“4”的直角三角形部分502的邊S43_1與三角形投影面“8”的直角三角形部分506的邊S83_1之間存在圖像內容連續性邊界。也就是說,內容連續地表示在三角形投影面“4”和“8”中。此外,在三角形投影面“4”的直角三角形部分504的邊S421與三角形投影面“1”的邊S13之間存在圖像內容不連續邊界,在三角形投影面“8”的直角三角形部分508的邊S811和三角形投影面“5”的邊S53之間存在圖像內容不連續邊界,在三角形投影面“4”的直角三角形部分502的邊S411和三角形投影面“3”的邊S33之間存在圖像內容不連續邊界,在三角形投影面“8”的直角三角形部分506的邊S821和三角形投影面“7”的邊S73之間存在圖像內容不連續邊界。 There is an image content continuity boundary between the side S43_2 of the right-angled triangle portion 504 of the triangle projection surface "4" and the side S83_2 of the right-angled triangle portion 508 of the triangle projection surface "8". There is an image content continuity boundary between the side S43_1 of the right-angled triangle portion 502 of the triangle projection surface "4" and the side S83_1 of the right-angled triangle portion 506 of the triangle projection surface "8". That is, the content is continuously represented in the triangular projection surfaces "4" and "8". In addition, there is a discontinuous boundary of image content between the side S421 of the right-angled triangle portion 504 of the triangular projection surface "4" and the side S13 of the triangular projection surface "1". There is a discontinuous boundary of image content between side S811 and side S53 of triangular projection surface "5", and there is a boundary between side S411 of right-angled triangle portion 502 of triangular projection surface "4" and side S33 of triangular projection surface "3" The image content is a discontinuous boundary, and there is an image content discontinuity boundary between the side S821 of the right-angled triangle portion 506 of the triangular projection surface "8" and the side S73 of the triangular projection surface "7".

在第5圖的右側部分中,由緊湊八面體投影佈局510的形狀佈置的360 VR投影佈局L_VR是不具有任何空置區域(例如,填充為黑色,灰色或白色的區域)的矩形。另外,360度圖像/視訊內容的部分在三角形投影面“1”,“2”,“3”,“5”,“6”,“7”中連續表示,沒有圖像內容不連續。此外,在基於投影的圖像IMG(其使用緊湊八面體投影佈局510)中由三角形投影面“2”,“4”,“6”和“8”表示的赤道208沒有由於三角投影面分割導致的圖像內容不連續性。然而,一些圖像內容不連續邊界仍然不可避免地存在於緊湊八面體投影佈局510中。因此,如果通過緊湊八面體投影佈局510設置360 VR投影佈局L_VR,則壓縮之後圖像內容不連續邊界附近的圖像質量可能較差。 In the right part of FIG. 5, the 360 VR projection layout L_VR arranged in the shape of the compact octahedral projection layout 510 is a rectangle without any vacant areas (for example, areas filled with black, gray, or white). In addition, the part of the 360-degree image/video content is continuously represented in the triangular projection surface "1", "2", "3", "5", "6", and "7", and there is no discontinuous image content. In addition, in the projection-based image IMG (which uses the compact octahedral projection layout 510), the equator 208 represented by the triangular projection surfaces "2", "4", "6" and "8" is not divided by the triangular projection surface. The resulting discontinuity of image content. However, some discontinuous boundaries of image content still inevitably exist in the compact octahedral projection layout 510. Therefore, if the 360 VR projection layout L_VR is set through the compact octahedral projection layout 510, the image quality near the discontinuous boundary of the image content after compression may be poor.

為解決上述圖像質量劣化問題,本發明提出了一種具有填充的創新360 VR投影佈局設計,其能夠在壓縮之後改善投影面邊界處的圖像質量。例如,360 VR投影佈局L_VR可以通過具有填充的緊湊立方體佈局或具有填充的緊湊 八面體佈局來設置。具體地,轉換電路114從視訊捕獲設備112接收球體202的全向圖像/視訊內容,並從球體202的全向圖像/視訊內容中獲得複數個投影面,其中球體202的全向圖像/視訊內容通過選定的360VR投影(例如,立方體投影或八面體投影)映射到投影面上。如第1圖所示,轉換電路114具有填充電路115,其被佈置為產生至少一個填充區域。轉換電路114通過在360 VR投影佈局L_VR(例如,具有填充的緊湊立方體佈局或具有填充的緊湊八面體佈局)中封裝複數個投影面和至少一個填充區域來創建基於投影的圖框IMG。 To solve the above-mentioned image quality degradation problem, the present invention proposes an innovative 360 VR projection layout design with filling, which can improve the image quality at the boundary of the projection surface after compression. For example, the 360 VR projection layout L_VR can be configured with a compact cube layout with filling or a compact layout with filling Octahedron layout to set. Specifically, the conversion circuit 114 receives the omnidirectional image/video content of the sphere 202 from the video capture device 112, and obtains a plurality of projection surfaces from the omnidirectional image/video content of the sphere 202, wherein the omnidirectional image of the sphere 202 is /Video content is mapped onto the projection surface through a selected 360VR projection (for example, cube projection or octahedral projection). As shown in Figure 1, the conversion circuit 114 has a filling circuit 115 which is arranged to produce at least one filling area. The conversion circuit 114 creates a projection-based frame IMG by encapsulating a plurality of projection surfaces and at least one filled area in a 360 VR projection layout L_VR (for example, a compact cube layout with filling or a compact octahedron layout with filling).

例如,封裝在360 VR投影佈局L_VR中的投影面包括第一投影面和第二投影面,其中如果第一投影面的第一邊與第二投影面的第一邊連接,并在第一投影面的第一邊與第二投影面的第一邊之間存在圖像內容不連續邊界。在360 VR投影佈局L_VR中封裝的至少一個填充區域包括第一填充區域,其中第一填充區域與第一投影面的第一邊和第二投影面的第一邊連接,用於將360 VR投影佈局L_VR中的第一投影面的第一邊和第二投影面的第一邊隔離開。有意插入第一填充區域以提供壓縮過程的更多信息。這樣一來,可以提高壓縮後的第一投影面的第一邊和第二投影面的第一邊的圖像質量。 For example, the projection surface packaged in the 360 VR projection layout L_VR includes a first projection surface and a second projection surface. If the first side of the first projection surface is connected to the first side of the second projection surface, There is a discontinuous border of image content between the first side of the surface and the first side of the second projection surface. The at least one filled area encapsulated in the 360 VR projection layout L_VR includes a first filled area, where the first filled area is connected to the first side of the first projection surface and the first side of the second projection surface for 360 VR projection The first side of the first projection surface in the layout L_VR is separated from the first side of the second projection surface. The first padding area is intentionally inserted to provide more information about the compression process. In this way, the compressed image quality of the first side of the first projection surface and the first side of the second projection surface can be improved.

第6圖是根據本發明的實施例的具有填充的第一種緊湊八面體投影佈局的示意圖。轉換電路114採用的360 VR投影佈局L_VR可以通過第6圖所示的緊湊八面體投影佈局310'來設置。緊湊八面體投影佈局310'可以從第3圖中所示的緊湊八面體投影佈局310導出。關於第3圖中所示的緊湊八面體投影佈局310,在三角形投影面“8”的直角三角形部分304的邊S821與三角形投影面“7”的邊S73之間存在圖像內容不連續邊界,在三角形投影面“4”的直角三角形部分308的邊S411和三角形投影面“3”的邊S33之間存在圖像內容不連續邊界,在三角形投影面“8”的直角三角形部分302的邊S811和三角形投影面“5”的邊S53之間存在圖像內容不連續邊界,在三角形投影面“4”的直角三角形部分306的邊S421和三角形投影 面“1”的邊S13之間存在圖像內容不連續邊界。如第6圖所示,插入第一填充區域PR_1,以與三角形投影面“4”的直角三角形部分306的邊S421(其也是投影面“4”的邊S42)和投影面“1”的邊S13連接;插入第二填充區域PR_2,以與三角形投影面“4”的直角三角形部分308的邊S411(其也是投影面“4”的邊S41)和投影面“3”的邊S33連接;插入第三填充區域PR_3,以與三角形投影面“8”的直角三角形部分302的邊S811(其也是投影面“8”的邊S81)和投影面“5”的邊S53連接;以及插入第四填充區域PR_4,以與三角形投影“8”的直角三角形部分304的邊S821(其也是投影面“8”的邊S82)和投影面“7”的邊S73連接。假設每個填充區域的寬度是D,並且第3圖中所示的緊湊八面體投影佈局310具有寬度W和高度H,第6圖所示的緊湊八面體投影佈局310'具有寬度W+2D和高度H。例如,每個填充區域的寬度D可以是16個像素。 Fig. 6 is a schematic diagram of the first compact octahedral projection layout with filling according to an embodiment of the present invention. The 360 VR projection layout L_VR adopted by the conversion circuit 114 can be set by the compact octahedral projection layout 310 ′ shown in FIG. 6. The compact octahedral projection layout 310' can be derived from the compact octahedral projection layout 310 shown in FIG. Regarding the compact octahedral projection layout 310 shown in Figure 3, there is an image content discontinuous boundary between the side S821 of the right-angled triangle portion 304 of the triangular projection surface "8" and the side S73 of the triangular projection surface "7" , There is a discontinuous boundary of image content between the side S411 of the right-angled triangle portion 308 of the triangular projection surface "4" and the side S33 of the triangular projection surface "3", and the side of the right-angled triangle portion 302 of the triangular projection surface "8" There is a discontinuous boundary of image content between S811 and the side S53 of the triangular projection surface "5", and the side S421 of the right-angled triangle part 306 of the triangular projection surface "4" and the triangle projection There is a discontinuous border of image content between the sides S13 of the surface "1". As shown in Fig. 6, insert the first filling area PR_1 so as to be aligned with the side S421 of the right-angled triangle portion 306 of the triangular projection surface "4" (which is also the side S42 of the projection surface "4") and the side of the projection surface "1" S13 connection; insert the second filling area PR_2 to connect with the side S411 of the right-angled triangle portion 308 of the triangular projection surface "4" (which is also the side S41 of the projection surface "4") and the side S33 of the projection surface "3"; insert The third filling area PR_3 is connected to the side S811 (which is also the side S81 of the projection surface “8”) of the right-angled triangle portion 302 of the triangular projection surface “8” and the side S53 of the projection surface “5”; and the fourth filling is inserted The area PR_4 is connected to the side S821 of the right-angled triangle portion 304 of the triangular projection "8" (which is also the side S82 of the projection surface "8") and the side S73 of the projection surface "7". Assume that the width of each filled area is D, and the compact octahedral projection layout 310 shown in Figure 3 has a width W and a height H, and the compact octahedral projection layout 310' shown in Figure 6 has a width W+ 2D and height H. For example, the width D of each filled area may be 16 pixels.

第7圖是根據本發明的實施例的具有填充的第二種緊湊八面體投影佈局的示意圖。轉換電路114採用的360 VR投影佈局L_VR可以通過第7圖所示的緊湊八面體投影佈局510'來設置。緊湊八面體投影佈局510'可以從第5圖中所示的緊湊八面體投影佈局510導出。關於第5圖中所示的緊湊八面體投影佈局510,在三角形投影面“8”的直角三角形部分506的邊S821與三角形投影面“7”的邊S73之間存在圖像內容不連續邊界,在三角形投影面“4”的直角三角形部分502的邊S411和三角形投影面“3”的邊S33之間存在圖像內容不連續邊界,在三角形投影面“8”的直角三角形部分508的邊S811和三角形投影面“5”的邊S53之間存在圖像內容不連續邊界,在三角形投影面“4”的直角三角形部分504的邊S421和三角形投影面“1”的邊S13之間存在圖像內容不連續邊界。如第7圖所示,插入第一填充區域PR_1,以與三角形投影面“4”的直角三角形部分504的邊S421(其也是投影面“4”的邊S42)和投影面“1”的邊S13連接;插入第二填充區域PR_2,以與三角形投影面“4”的直角三角形部分502的邊S411(其也是投影面“4”的邊S41)和投影面“3” 的邊S33連接;插入第三填充區域PR_3,以與三角形投影面“8”的直角三角形部分508的邊S811(也是投影面“8”的邊S81)和投影面“5”的邊S53連接;以及插入第四填充區域PR_4,以與三角形投影面“8”的直角三角形部分506的邊S821(其也是投影面“8”的邊S82)和投影面“7”的邊S73連接。假設每個填充區域的高度是D,並且第5圖中所示的緊湊八面體投影佈局510具有寬度W和高度H,則第7圖所示的緊湊八面體投影佈局510'具有寬度W和高度H+2D。例如,每個填充區域的高度D可以是16個像素。 Fig. 7 is a schematic diagram of a second compact octahedral projection layout with filling according to an embodiment of the present invention. The 360 VR projection layout L_VR adopted by the conversion circuit 114 can be set by the compact octahedral projection layout 510 ′ shown in FIG. 7. The compact octahedral projection layout 510' can be derived from the compact octahedral projection layout 510 shown in FIG. Regarding the compact octahedral projection layout 510 shown in Figure 5, there is an image content discontinuous boundary between the side S821 of the right-angled triangle portion 506 of the triangular projection surface "8" and the side S73 of the triangular projection surface "7" , There is a discontinuous boundary of image content between the side S411 of the right-angled triangle portion 502 of the triangular projection surface "4" and the side S33 of the triangular projection surface "3", and the side of the right-angled triangle portion 508 of the triangular projection surface "8" There is a discontinuous boundary of image content between S811 and side S53 of the triangular projection surface "5", and there is a graph between the side S421 of the right-angled triangle portion 504 of the triangular projection surface "4" and the side S13 of the triangular projection surface "1". Like content discontinuous boundaries. As shown in Fig. 7, the first filling area PR_1 is inserted to match the side S421 of the right-angled triangle portion 504 of the triangular projection surface "4" (which is also the side S42 of the projection surface "4") and the side of the projection surface "1". S13 connection; insert the second filling area PR_2 to be connected to the side S411 of the right-angled triangle portion 502 of the triangular projection surface "4" (which is also the side S41 of the projection surface "4") and the projection surface "3" The third filling area PR_3 is inserted to connect the side S811 (also the side S81 of the projection surface "8") of the right-angled triangle portion 508 of the triangular projection surface "8" and the side S53 of the projection surface "5"; And the fourth filling area PR_4 is inserted to connect with the side S821 of the right-angled triangle portion 506 of the triangular projection surface "8" (which is also the side S82 of the projection surface "8") and the side S73 of the projection surface "7". Assuming that the height of each filled area is D, and the compact octahedral projection layout 510 shown in Figure 5 has a width W and a height H, then the compact octahedral projection layout 510' shown in Figure 7 has a width W And height H+2D. For example, the height D of each filled area may be 16 pixels.

在一個示例性填充實現中,填充電路115通過基於連接到填充區域的相鄰投影面中所包括像素的像素值進行插值運算,來設置填充區域中所包括像素的像素值。關於第6圖中所示的緊湊八面體投影佈局310'和第7圖中所示的緊湊八面體投影佈局510'中的每一個,通過基於在相鄰投影面“1”和“4”中所包括像素的像素值進行插值運算,來獲取第一填充區域PR_1中所包括像素的像素值;通過基於在相鄰投影面“3”和“4”中所包括像素的像素值進行插值運算,來獲取第二填充區域PR_2中所包括像素的像素值;通過基於在相鄰的投影面“8”和“5”中所包括像素的像素值進行插值運算,來獲取第三填充區域PR_3中所包括像素的像素值;通過基於相鄰投影面“7”和“8”中所包括像素的像素值進行插值算,來獲取第四填充區域PR_4中所包括像素的像素值。 In an exemplary filling implementation, the filling circuit 115 sets the pixel values of the pixels included in the filling area by performing an interpolation operation based on the pixel values of the pixels included in the adjacent projection plane connected to the filling area. Regarding each of the compact octahedral projection layout 310' shown in FIG. 6 and the compact octahedral projection layout 510' shown in FIG. 7, it is based on the adjacent projection planes "1" and "4 The pixel values of the pixels included in "" are interpolated to obtain the pixel values of the pixels included in the first filling area PR_1; by interpolation based on the pixel values of the pixels included in the adjacent projection planes "3" and "4" Operation to obtain the pixel values of the pixels included in the second filling area PR_2; and obtaining the third filling area PR_3 by performing interpolation operations based on the pixel values of the pixels included in the adjacent projection surfaces "8" and "5" The pixel value of the pixel included in the fourth filling area PR_4 is obtained by performing interpolation calculation based on the pixel value of the pixel included in the adjacent projection surfaces "7" and "8".

所採用的插值可以是最近相鄰插值(nearest neighbor interpolation),線性插值,雙線性插值或其他合適的插值算法。所採用的插值所使用的採樣點可以從單個方向或不同方向獲得。第8圖是由第1圖中所示的填充電路115執行的插值的示意圖。填充區域PR需要插入在相鄰投影面A1和A2之間,所述投影面A1和A2是從球體的所選360VR投影獲得的,其中如果投影面A1與投影面A2連接,則在相鄰投影面A1和A2之間存在圖像內容不連續邊界。如第8圖的子圖(A)所示,對在垂直方向上從相鄰投影面A1和A2獲得的採樣點(即,像素)P1和P2執 行插值。因此,根據採樣點P1和P2的採樣值,採樣點P1和插值採樣點S之間的距離以及採樣點P2和插值採樣點S之間的距離,來確定插值採樣點(即,插值像素)S。 The interpolation used can be nearest neighbor interpolation, linear interpolation, bilinear interpolation or other suitable interpolation algorithms. The sampling points used in the interpolation used can be obtained from a single direction or different directions. Fig. 8 is a schematic diagram of interpolation performed by the filling circuit 115 shown in Fig. 1. The filling area PR needs to be inserted between the adjacent projection surfaces A1 and A2, which are obtained from the selected 360VR projection of the sphere, where if the projection surface A1 is connected to the projection surface A2, the projection surface There is a discontinuous border of image content between faces A1 and A2. As shown in the sub-picture (A) of Fig. 8, the sampling points (ie, pixels) P1 and P2 obtained from the adjacent projection surfaces A1 and A2 in the vertical direction are performed Line interpolation. Therefore, according to the sampling values of the sampling points P1 and P2, the distance between the sampling point P1 and the interpolation sampling point S, and the distance between the sampling point P2 and the interpolation sampling point S, the interpolation sampling point (ie, the interpolation pixel) S is determined .

如第8圖的子圖(B)所示,對在水平方向上從相鄰投影面A1和A2獲得的採樣點(即像素)Q1和Q2進行插值。因此,根據採樣點Q1和Q2的採樣值,採樣點Q1和插值採樣點S之間的距離,以及採樣點Q2和插值採樣點S之間的距離,來確定插值採樣點(即,插值像素)S。 As shown in the sub-picture (B) of Fig. 8, the sampling points (ie pixels) Q1 and Q2 obtained from the adjacent projection planes A1 and A2 in the horizontal direction are interpolated. Therefore, based on the sampling values of the sampling points Q1 and Q2, the distance between the sampling point Q1 and the interpolation sampling point S, and the distance between the sampling point Q2 and the interpolation sampling point S, the interpolation sampling point (ie, the interpolation pixel) is determined S.

如第8圖的子圖(C)所示,對在垂直方向上從相鄰投影面A1和A2獲得的採樣點(即,像素)P1和P2以及在水平方向上從相鄰投影面A1和A2獲得的採樣點(即,像素)Q1和Q2執行插值。因此,根據採樣點P1,P2,Q1和Q2的採樣值,採樣點P1與插值採樣點S之間的距離,採樣點P2和插值採樣點S之間的距離,採樣點Q1和插值採樣點S之間的距離,以及採樣點Q2和插值採樣點S之間的距離,來確定插值採樣點(即,插值像素)S。 As shown in the sub-figure (C) of Fig. 8, the sampling points (ie, pixels) P1 and P2 obtained from adjacent projection surfaces A1 and A2 in the vertical direction and from adjacent projection surfaces A1 and A2 in the horizontal direction The sampling points (ie, pixels) Q1 and Q2 obtained by A2 perform interpolation. Therefore, according to the sampling values of sampling points P1, P2, Q1 and Q2, the distance between sampling point P1 and interpolation sampling point S, the distance between sampling point P2 and interpolation sampling point S, sampling point Q1 and interpolation sampling point S The distance between, and the distance between the sampling point Q2 and the interpolation sampling point S, determine the interpolation sampling point (ie, the interpolation pixel) S.

在另一示例性填充實現中,填充電路115將第一次幾何填充應用於一個相鄰投影面以確定填充區域中所包括像素的第一像素值,將第二次幾何填充應用於另一個相鄰投影面以確定填充區域中所包括像素的第二像素值,並通過混合從第一次幾何填充導出的第一像素值和從第二次幾何填充導出的第二像素值來設置填充區域中所包括像素的像素值。第9圖是由第1圖中所示的填充電路115執行幾何填充的示意圖。填充區域PR需要插入在相鄰的投影面A1和A2之間,這些投影面A1和A2是通過球體的選定的360 VR投影獲得的,其中如果投影面A1與投影面A2連接,則在相鄰的投影面A1和A2之間存在圖像內容不連續邊界。應用於投影面A1的第一次幾何填充確定一幾何映射區域A1_GP,其中幾何映射區域A1_GP是通過將球體(例如,第2圖/第4圖中所示的球體202)上的區域的內容映射到填充區域PR上而獲得的,其中球體上的區域與獲得投影面A1的區 域相鄰。因此,在投影面A1和從投影面A1延伸的幾何映射區域A1_GP之間存在圖像內容連續性邊界(即,內容連續地表示在投影面A1和幾何映射區域A1_GP中)。 In another exemplary filling implementation, the filling circuit 115 applies the first geometric filling to an adjacent projection surface to determine the first pixel value of the pixels included in the filled area, and applies the second geometric filling to another phase. The adjacent projection plane determines the second pixel value of the pixels included in the filled area, and sets the filled area by mixing the first pixel value derived from the first geometric filling and the second pixel value derived from the second geometric filling The pixel value of the included pixels. FIG. 9 is a schematic diagram of geometric filling performed by the filling circuit 115 shown in FIG. 1. The filling area PR needs to be inserted between the adjacent projection surfaces A1 and A2. These projection surfaces A1 and A2 are obtained through the selected 360 VR projection of the sphere. If the projection surface A1 is connected to the projection surface A2, the projection surface There is a discontinuous boundary between the projection surfaces A1 and A2 of the image content. The first geometric filling applied to the projection surface A1 determines a geometric mapping area A1_GP, where the geometric mapping area A1_GP is mapped to the content of the area on the sphere (for example, the sphere 202 shown in Figure 2 / Figure 4) To the filled area PR, where the area on the sphere is the same as the area where the projection surface A1 is obtained The domains are adjacent. Therefore, there is an image content continuity boundary between the projection surface A1 and the geometric mapping area A1_GP extending from the projection surface A1 (that is, the content is continuously represented in the projection surface A1 and the geometric mapping area A1_GP).

應用於投影面A2的第二次幾何填充確定另一幾何映射區域A2_GP,其中幾何映射區域A2_GP是通過將球體(例如,第2圖/第4圖中所示的球體202)上的區域的內容映射到填充區域PR上而獲得的,其中球體上的區域與獲得投影面A2的區域相鄰。因此,在投影面A2和從投影面A2延伸的幾何映射區域A2_GP之間存在圖像內容連續性邊界(即,內容連續地表示在投影面A2和幾何映射區域A2_GP中)。 The second geometric filling applied to the projection surface A2 determines another geometric mapping area A2_GP, where the geometric mapping area A2_GP is obtained by adding the contents of the area on the sphere (for example, the sphere 202 shown in Fig. 2/4) It is obtained by mapping onto the filled area PR, where the area on the sphere is adjacent to the area where the projection surface A2 is obtained. Therefore, there is an image content continuity boundary between the projection surface A2 and the geometric mapping area A2_GP extending from the projection surface A2 (that is, the content is continuously represented in the projection surface A2 and the geometric mapping area A2_GP).

在獲得與相同填充區域PR相關聯的幾何映射區域A1_GP和A2_GP之後,填充電路115混合幾何映射區域A1_GP和A2_GP以確定填充區域PR中所包括像素的像素值。即,PR=f(A1_GP,A2_GP),其中f( )是混合函數。例如,混合函數f( )可以是平均函數。關於填充區域PR中的每個像素,填充區域PR中的像素的像素值由幾何映射區域A1_GP中的像素的第一像素值和幾何映射區域A2_GP中的像素的第二像素值的平均值來設置。 After obtaining the geometric mapping areas A1_GP and A2_GP associated with the same filling area PR, the filling circuit 115 mixes the geometric mapping areas A1_GP and A2_GP to determine the pixel values of the pixels included in the filling area PR. That is, PR=f(A1_GP, A2_GP), where f() is a mixed function. For example, the mixing function f() may be an average function. Regarding each pixel in the filling area PR, the pixel value of the pixel in the filling area PR is set by the average value of the first pixel value of the pixel in the geometric mapping area A1_GP and the second pixel value of the pixel in the geometric mapping area A2_GP .

在又一示例性填充實現中,填充電路115通過複製在相鄰投影面中所包括像素的像素值來設置填充區域中所包括像素的像素值,所述相鄰投影面是從球體的所選360VR投影獲得的。例如,複製投影面A1的一邊的邊界像素以創建從投影面A1的一邊延伸的填充像素,並且複制投影面A2的一邊的邊界像素以創建從投影面A2的一邊延伸的填充像素。換句話說,填充區域PR的第一部分所包括的填充像素,其中每個填充像素是投影面A1的一個邊界像素的複製品,填充區域PR的第二部分所包括的填充像素,其中每個填充像素是投影面A2的一個邊界像素的複製品。 In yet another exemplary filling implementation, the filling circuit 115 sets the pixel value of the pixel included in the filling area by copying the pixel value of the pixel included in the adjacent projection surface, which is selected from the sphere. Obtained by 360VR projection. For example, the boundary pixels of one side of the projection surface A1 are copied to create filled pixels extending from one side of the projection surface A1, and the boundary pixels of one side of the projection surface A2 are copied to create filled pixels extending from one side of the projection surface A2. In other words, the filling pixels included in the first part of the filling area PR, where each filling pixel is a replica of a boundary pixel of the projection plane A1, and the filling pixels included in the second part of the filling area PR, where each filling pixel is The pixel is a replica of a boundary pixel on the projection surface A2.

如果第一投影面的第一邊與第二投影面的第一邊連接,并在第一投 影面的第一邊和第二投影面的第一邊之間具有圖像內容不連續邊界,借助於在第一投影面和第二投影面之間插入一個填充區域,可以提高壓縮後的第一投影面的第一邊的圖像質量和壓縮後的第二投影面的第一邊的圖像質量。包括在由解碼電路122生成的解碼圖框IMG'中的投影面可以具有更好的圖像質量。如上所述,圖形呈現電路124根據解碼的圖框IMG'在顯示螢幕126上呈現並顯示輸出圖像資料。由於解碼圖框IMG'中的填充區域被另外添加並且可能不會顯示,因此在從解碼電路122生成解碼圖框IMG'之後,圖形呈現電路124可以丟棄/忽略解碼圖框IMG'中的填充區域。 If the first side of the first projection surface is connected to the first side of the second projection surface, and the There is a discontinuous border of image content between the first side of the shadow surface and the first side of the second projection surface. By inserting a filling area between the first projection surface and the second projection surface, the compressed first side can be improved. The image quality of the first side of a projection surface and the image quality of the first side of the second projection surface after compression. The projection surface included in the decoding frame IMG′ generated by the decoding circuit 122 may have better image quality. As described above, the graphic presentation circuit 124 presents and displays the output image data on the display screen 126 according to the decoded frame IMG′. Since the filled area in the decoded frame IMG' is additionally added and may not be displayed, the graphics rendering circuit 124 may discard/ignore the filled area in the decoded frame IMG' after generating the decoded frame IMG' from the decoding circuit 122 .

如第6圖和第7圖所示,填充被添加到緊湊八面體投影佈局中,用於圖像內容不連續邊界處的壓縮的圖像質量改善。然而,這些僅用於說明目的,並不意味著是對本發明的限制。實際上,可以將填充添加到其他360 VR投影佈局中,以提高圖像內容不連續邊界處的壓縮的圖像質量。這些具有填充的替代投影設計都屬於本發明的範圍。 As shown in Figures 6 and 7, padding is added to the compact octahedral projection layout to improve image quality for compression at discontinuous boundaries of image content. However, these are for illustrative purposes only and are not meant to limit the present invention. In fact, padding can be added to other 360 VR projection layouts to improve the compressed image quality at the discontinuous boundaries of the image content. These alternative projection designs with filling belong to the scope of the present invention.

第10圖是根據本發明的實施例的具有填充的緊湊立方體投影佈局的示意圖。通過立方體投影將球體的全向圖像/視訊內容映射到六個正方形投影面上,其中正方形投影面包括標記為“L”的左側投影面,標記為“FR”的正投影面,標記為“R”的右側投影面,標記為“T”的頂部投影面,標記為“BK”的背投影面和標記為“B”的底部投影面。如果在不具有填充的緊湊立方體投影佈局中的左側投影面“L”的底邊與底部投影面“B”的頂邊連接,則在左側投影面“L”和底部投影面“B”之間存在圖像內容不連續邊界。如果在不具有填充的緊湊立方體投影佈局中的正投影面FR的底邊與背投影面BK的頂邊連接,則在正投影面FR和背投影面BK之間存在圖像內容不連續邊界。如果在不具有填充的緊湊立方體投影佈局中的右側投影面R的底邊與頂部投影面T的頂邊連接,則在右側投影面R和頂部投影面T之間存在圖像內容不連續邊界。根據第10圖中所示的緊湊立方體投影佈局 1002,在左側投影面L和底部投影面B之間插入第一填充區域PR_1,在正投影面FR和背投影面BK之間插入第二填充區域PR_2,並在右側投影面R和頂部投影面T之間插入第三填充區域PR_3。可以通過使用上述插值方式,選擇幾何填充方式和複制方式之一來生成每個填充區域PR_1-PR_3。 Figure 10 is a schematic diagram of a filled compact cube projection layout according to an embodiment of the present invention. The omnidirectional image/video content of the sphere is mapped to six square projection surfaces through cube projection. The square projection surface includes the left projection surface marked "L", and the orthographic projection surface marked "FR" is marked " The right projection surface of R", the top projection surface labeled "T", the back projection surface labeled "BK" and the bottom projection surface labeled "B". If the bottom edge of the left projection surface "L" and the top edge of the bottom projection surface "B" in the compact cube projection layout without filling are connected, it is between the left projection surface "L" and the bottom projection surface "B" There are discontinuous boundaries of image content. If the bottom edge of the front projection surface FR and the top edge of the back projection surface BK in the compact cube projection layout without filling are connected, there is an image content discontinuous boundary between the front projection surface FR and the back projection surface BK. If the bottom edge of the right projection surface R and the top edge of the top projection surface T in the compact cube projection layout without filling are connected, there is an image content discontinuous boundary between the right projection surface R and the top projection surface T. According to the compact cube projection layout shown in Figure 10 1002. Insert a first filling area PR_1 between the left projection surface L and the bottom projection surface B, insert a second filling area PR_2 between the front projection surface FR and the back projection surface BK, and insert the right projection surface R and the top projection surface A third filling area PR_3 is inserted between T. It is possible to generate each filled region PR_1-PR_3 by using the above interpolation method, selecting one of the geometric filling method and the copying method.

例如,所提出的填充技術所使用的複制方式可以擴展投影面的邊界像素。因此,插入在第一投影面和第二投影面之間的填充區域的第一部分所包括的填充像素,其中每個填充像素是第一投影面的一個邊界像素的複製品,並且插入在第一投影面和第二投影面之間的填充區域的第二部分所包括的填充像素,其中每個填充像素是第二投影面的一個邊界像素的複製品。 For example, the copy method used by the proposed filling technique can extend the boundary pixels of the projection surface. Therefore, the filling pixels included in the first part of the filling area inserted between the first projection surface and the second projection surface, where each filling pixel is a replica of a boundary pixel of the first projection surface, and is inserted in the first projection surface. The filling pixels included in the second part of the filling area between the projection surface and the second projection surface, wherein each filling pixel is a replica of a boundary pixel of the second projection surface.

再例如,所提出的填充技術所使用的複制方式,可以通過複製包括在第一投影面和第二投影面中,但與第一投影面和第二投影面之間的填充區域并不連接的像素的像素值,來設置包括在填充區域中的像素的像素值。在所提出的填充技術使用的複制方式獲得投影面中的部分區域的複製品的情況下。插入在第一投影面和第二投影面之間的填充區域的第一部分是第一投影面的部分區域的複製品,以及插入在第一投影面和第二投影面之間的填充區域的第二部分是第二投影面的部分區域的複製品,其中該第一投影面的部分區域和該第二投影面的部分區域都不與插入在第一投影面和第二投影面之間的填充區域連接。 For another example, the copy method used by the proposed filling technology can be included in the first projection surface and the second projection surface by copying, but is not connected to the filling area between the first projection surface and the second projection surface. The pixel value of the pixel is used to set the pixel value of the pixel included in the filled area. In the case where the copy method used by the proposed filling technique obtains a copy of a partial area in the projection surface. The first part of the filling area inserted between the first projection surface and the second projection surface is a copy of the partial area of the first projection surface, and the first part of the filling area inserted between the first projection surface and the second projection surface The second part is a copy of the partial area of the second projection surface, wherein the partial area of the first projection surface and the partial area of the second projection surface are not the same as the filling inserted between the first projection surface and the second projection surface. Regional connection.

再例如,所提出的填充技術所使用的複制方式,可以通過複製包括在與第一投影面和第二投影面不同的至少一個投影面中的像素的像素值,來設置插入在第一投影面和第二投影面之間的填充區域中包括的像素的像素值。採用第10圖中所示的緊湊立方體投影佈局1002為例,可以通過複製至少一個投影面(例如,FR,BK,R和/或T,其不是左側投影面L和底部投影面B中的任何一個)中的像素(例如,部分區域的像素),來設置插入在左側投影面L和底部投影面B之間的第一填充區域PR_1。可以通過複製至少一個投影面(例如,L,B, R和/或T,其不是正投影面FR和後投影面BK中的任何一個)中的像素(例如,部分區域的像素),來設置插入在正投影面FR和背投影面BK之間的第二填充區域PR_2,和/或可以通過複製至少一個投影面(例如,L,B,FR和/或BK,其不是右側投影面R和頂部投影面T中的任何一個)中的像素(例如,部分區域的像素),來設置插入在右側投影面R和頂部投影面T之間的第三填充區域PR_3。 For another example, the copy method used in the proposed filling technology can be set to be inserted in the first projection surface by copying the pixel values of pixels included in at least one projection surface different from the first projection surface and the second projection surface. The pixel value of the pixel included in the filled area between and the second projection surface. Taking the compact cube projection layout 1002 shown in Figure 10 as an example, at least one projection surface (for example, FR, BK, R, and/or T) can be copied, which is not any of the left projection surface L and the bottom projection surface B A) of the pixels (for example, pixels of a partial area) to set the first filling area PR_1 inserted between the left projection surface L and the bottom projection surface B. You can copy at least one projection plane (for example, L, B, R and/or T, which are not any one of the front projection surface FR and the back projection surface BK) in the pixels (for example, pixels in a partial area), to be inserted between the front projection surface FR and the back projection surface BK The second filling area PR_2, and/or the pixels in at least one projection surface (for example, L, B, FR and/or BK, which is not any one of the right projection surface R and the top projection surface T) can be copied (for example, , Pixels in a partial area) to set a third filling area PR_3 inserted between the right projection surface R and the top projection surface T.

第11圖是根據本發明的實施例的具有填充的第三種緊湊八面體投影佈局的示意圖。通過八面體投影,球體的全向圖像/視訊內容被映射到八個三角形投影面(標記為參考數字“1”,“2”,“3”,“4”,“5”,“6”,“7”和“8”)。三角形投影面“8”被分成兩個直角三角形部分。如果在不具有填充的緊湊八面體投影佈局中的三角形投影面“8”的一個直角三角形部分的一邊與三角形投影面“1”的一邊連接,則在三角形投影面“8”的一個直角三角形部分和三角形投影面“1”之間存在圖像內容不連續邊界。如果在不具有填充的緊湊八面體投影佈局中的三角形投影面“1”的另一邊與三角形投影面“5”的一邊連接,則在三角形投影面“1”和“5”之間存在圖像內容不連續邊界。如果在不具有填充的緊湊八面體投影佈局中的三角形投影面“5”的另一邊與三角形投影面“2”的一邊連接,則在三角形投影面“5”和“2”之間存在圖像內容不連續邊界。如果在不具有填充的緊湊八面體投影佈局中的三角形投影面“2”的另一邊與三角形投影面“6”的一邊連接,則在三角形投影面“2”和“6”之間存在圖像內容不連續邊界。如果在不具有填充的緊湊八面體投影佈局中的投影面“6”的另一邊與三角形投影面“3”的一邊連接,則在三角形投影面“6”和“3”之間存在圖像內容不連續邊界。如果在不具有填充的緊湊八面體投影佈局中的三角形投影面“3”的另一邊與三角形投影面“7”的一邊連接,則在三角形投影面“3”和“7”之間存在圖像內容不連續邊界。如果在不具有填充的緊湊八面體投影佈局中的投影面“7”的另一邊與三角形投影面“4”的一邊連接,則在三角形投影面“7”和“4”之間存在圖像內容不連續邊界。如果在不具有填充的緊湊八面體投 影佈局中的三角形投影面“8”的另一個直角三角形部分的一邊與三角形投影“4”的另一邊連接,則在三角形投影面“8”的另一個直角三角形部分和三角形投影面“4”之間存在圖像內容不連續邊界。 Figure 11 is a schematic diagram of a third compact octahedral projection layout with filling according to an embodiment of the present invention. Through the octahedral projection, the omnidirectional image/video content of the sphere is mapped to eight triangular projection surfaces (marked with reference numbers "1", "2", "3", "4", "5", "6 ", "7" and "8"). The triangular projection surface "8" is divided into two right-angled triangle parts. If one side of a right-angled triangle part of the triangular projection surface "8" in the compact octahedral projection layout without filling is connected with one side of the triangular projection surface "1", then a right-angled triangle on the triangular projection surface "8" There is a discontinuous boundary between the part and the triangular projection surface "1". If the other side of the triangular projection surface "1" in the compact octahedral projection layout without filling is connected to one side of the triangular projection surface "5", then there is a graph between the triangular projection surfaces "1" and "5". Like content discontinuous boundaries. If the other side of the triangular projection surface "5" in the compact octahedral projection layout without filling is connected to one side of the triangular projection surface "2", there is a graph between the triangular projection surfaces "5" and "2". Like content discontinuous boundaries. If the other side of the triangular projection surface "2" in the compact octahedral projection layout without filling is connected to one side of the triangular projection surface "6", there is a graph between the triangular projection surfaces "2" and "6". Like content discontinuous boundaries. If the other side of the projection surface "6" in the compact octahedral projection layout without filling is connected with one side of the triangular projection surface "3", there is an image between the triangular projection surfaces "6" and "3" The content is not continuous. If the other side of the triangular projection surface "3" in the compact octahedral projection layout without filling is connected to one side of the triangular projection surface "7", there is a graph between the triangular projection surfaces "3" and "7". Like content discontinuous boundaries. If the other side of the projection surface "7" in the compact octahedral projection layout without filling is connected to one side of the triangular projection surface "4", there is an image between the triangular projection surfaces "7" and "4" The content is not continuous. If you cast a compact octahedron without filling One side of the other right-angled triangle part of the triangle projection surface "8" in the shadow layout is connected to the other side of the triangle projection "4", then the other right-angled triangle part of the triangle projection surface "8" and the triangle projection surface "4" There are discontinuous boundaries between image content.

根據第11圖中所示的緊湊八面體投影佈局1102,在三角形投影面“1”和三角形投影面“8”的一個直角三角形部分之間插入第一填充區域PR_1,在三角形投影面“1”和“5”之間插入第二填充區域PR_2,在三角形投影面“5”和“2”之間插入第三填充區域PR_3,在三角形投影面“2”和“6”之間插入第四填充區域PR_4,在三角形投影面“6”和“3”之間插入第五填充區域PR_5,,在三角形投影面“3”和“7”之間插入第六填充區域PR_6,在三角形投影面“7”和“4”之間插入第七填充區域PR_7,在三角形投影面“4”和三角形投影面“8”的另一個直角三角形部分之間插入第八填充區域PR_8。可以通過使用上述插值方式,選擇幾何填充方式和複制方式之一來生成填充區域PR_1-PR_8中的每一個。 According to the compact octahedral projection layout 1102 shown in Figure 11, the first filling area PR_1 is inserted between the triangular projection surface "1" and a right-angled triangle portion of the triangular projection surface "8", and the first filling area PR_1 is inserted on the triangular projection surface "1". Insert the second filling area PR_2 between "and "5", insert the third filling area PR_3 between the triangular projection surfaces "5" and "2", and insert the fourth area between the triangular projection surfaces "2" and "6" The filling area PR_4, the fifth filling area PR_5 is inserted between the triangular projection surfaces "6" and "3", the sixth filling area PR_6 is inserted between the triangular projection surfaces "3" and "7", and the triangular projection surface " The seventh filling area PR_7 is inserted between 7” and “4”, and the eighth filling area PR_8 is inserted between the triangular projection surface “4” and the other right-angled triangular part of the triangular projection surface “8”. Each of the filling areas PR_1-PR_8 can be generated by using the above-mentioned interpolation method, selecting one of the geometric filling method and the copying method.

除了壓縮之後的圖像內容不連續邊界的圖像質量之外,可以通過所提出的填充技術來提高壓縮之後的佈局邊界的圖像質量。例如,當通過等距矩形投影(equirectangular projection,ERP)或等面積投影(equal-area projection,EAP)映射球體的全向圖像/視訊內容時,僅生成單個投影面並將其佈置在ERP/EAP佈局中。如果視埠的視角是180度,并選擇位於ERP/EAP佈局的左側邊界的解碼的部分區域和位於ERP/EAP佈局的右側邊界的解碼的部分區域,組合以形成將要顯示的視埠區域。由於典型ERP/EAP佈局的左側邊界處的塊和右側邊界處的塊是獨立編碼的,由位於ERP/EAP佈局的左側邊界的解碼的部分區域和位於ERP/EAP佈局的右側邊界的解碼的部分區域的組合產生視埠區域,因此視埠區域中可能沿佈局邊界的位置產生偽影。為了解決該問題,本發明進一步提出將填充區域添加到佈局邊界以提供用於壓縮處理的更多信息。 In addition to the image quality of the discontinuous boundary of the compressed image content, the image quality of the compressed layout boundary can be improved by the proposed filling technique. For example, when the omnidirectional image/video content of a sphere is mapped by equirectangular projection (ERP) or equal-area projection (EAP), only a single projection surface is generated and arranged in ERP/ EAP layout. If the viewing angle of the viewport is 180 degrees, select the decoded partial area on the left border of the ERP/EAP layout and the decoded partial area on the right border of the ERP/EAP layout to combine to form the viewport area to be displayed. Since the blocks at the left border and the blocks at the right border of a typical ERP/EAP layout are independently coded, the decoded part of the area located at the left border of the ERP/EAP layout and the decoded part located at the right border of the ERP/EAP layout The combination of regions creates a viewport area, so artifacts may be generated in the viewport area along the layout boundary. In order to solve this problem, the present invention further proposes to add a padding area to the layout boundary to provide more information for compression processing.

第12圖是根據本發明的實施例的具有填充的第一種ERP/EAP佈局的 示意圖。具有頂邊S_T,底邊S_B,左側邊S_L和右側邊S_R的單個投影面A佈置在不具有填充的ERP/EAP佈局1202中。頂邊S_T,底邊S_B,左側邊S_L和右側邊S_R是ERP/EAP佈局1202的四個邊界。另外,ERP/EAP佈局1202中的投影面A具有第一部分區域P_L和第二部分區域P_R,其中第一部分區域P_L包括左側邊S_L處的邊界像素,第二部分區域P_R包括右側邊S_R處的邊界像素。轉換電路114採用的360 VR投影佈局L_VR可以由第12圖中所示的ERP/EAP佈局1202'來設置。ERP/EAP佈局1202'可以從ERP/EAP佈局1202導出。投影面A是通過球體的等距矩形投影/等面積投影獲得的。投影面A,第一填充區域PR_L和第二填充區域PR_R被封裝在ERP/EAP佈局1202'中。如第12圖所示,第一填充區域PR_L與投影面A的左側邊S_L連接,並形成ERP/EAP佈局1202'的左側邊界,第二填充區域PR_R與投影面A的右側邊S_R連接,並形成ERP/EAP佈局1202'的右側邊界。例如,第一填充區域PR_L的寬度可以是8個像素,第二填充區域PR_R的寬度可以是8個像素。由於投影面A的左側邊S_L和右側邊S_R是相對側,所以第一填充區域PR_L不與投影面A的右側邊S_R連接,並且第二填充區域PR_R不與投影面A的左側邊S_L連接。 Figure 12 is the first ERP/EAP layout with padding according to an embodiment of the present invention Schematic. A single projection surface A with a top side S_T, a bottom side S_B, a left side S_L, and a right side S_R is arranged in the ERP/EAP layout 1202 without filling. The top side S_T, bottom side S_B, left side S_L, and right side S_R are the four boundaries of the ERP/EAP layout 1202. In addition, the projection surface A in the ERP/EAP layout 1202 has a first partial area P_L and a second partial area P_R. The first partial area P_L includes the boundary pixels at the left side S_L, and the second partial area P_R includes the border at the right side S_R. Pixels. The 360 VR projection layout L_VR adopted by the conversion circuit 114 can be set by the ERP/EAP layout 1202' shown in Figure 12. The ERP/EAP layout 1202' can be derived from the ERP/EAP layout 1202. The projection plane A is obtained by the equidistant rectangular projection/equal area projection of the sphere. The projection surface A, the first filling area PR_L and the second filling area PR_R are encapsulated in the ERP/EAP layout 1202'. As shown in Figure 12, the first filling area PR_L is connected to the left side S_L of the projection surface A and forms the left boundary of the ERP/EAP layout 1202', and the second filling area PR_R is connected to the right side S_R of the projection surface A, and Form the right boundary of the ERP/EAP layout 1202'. For example, the width of the first filling area PR_L may be 8 pixels, and the width of the second filling area PR_R may be 8 pixels. Since the left side S_L and the right side S_R of the projection surface A are opposite sides, the first filling area PR_L is not connected to the right side S_R of the projection surface A, and the second filling area PR_R is not connected to the left side S_L of the projection surface A.

在該實施例中,第一填充區域PR_L是投影面A的第二部分區域P_R的複製品,並且第二填充區域PR_R是投影面A的第一部分區域P_L的複製品。因此,第一填充區域PR_L的像素包括投影面A的右側邊S_R處的邊界像素,但是不包括投影面A的左側邊S_L處的邊界像素;第二填充區域PR_R的像素包括投影面A的左側邊S_L處的邊界像素,但是不包括投影面A的右側邊S_R處的邊界像素。由於等距矩形投影/等面積投影的固有特性,在封裝在ERP/EAP佈局1202'中的第一填充區域PR_L和投影面A之間存在圖像內容連續性邊界(即,內容連續地表示在投影面A和第一填充區域PR_L中),並且在封裝在ERP/EAP佈局1202'中的投影面A和第二填充區域PR_R之間存在圖像內容連續性邊界(即,內容連續地表 示在投影面A和第二填充區域PR_R中)。 In this embodiment, the first filling area PR_L is a copy of the second partial area P_R of the projection surface A, and the second filling area PR_R is a copy of the first partial area P_L of the projection surface A. Therefore, the pixels in the first filling area PR_L include the boundary pixels at the right side S_R of the projection surface A, but do not include the boundary pixels at the left side S_L of the projection surface A; the pixels in the second filling area PR_R include the left side of the projection surface A The boundary pixels at the side S_L, but the boundary pixels at the right side S_R of the projection plane A are not included. Due to the inherent characteristics of equidistant rectangular projection/equal area projection, there is an image content continuity boundary between the first filled area PR_L encapsulated in the ERP/EAP layout 1202' and the projection surface A (that is, the content is continuously expressed in Projection surface A and the first filling area PR_L), and there is an image content continuity boundary between the projection surface A and the second filling area PR_R encapsulated in the ERP/EAP layout 1202' (that is, the content is continuous on the surface Shown in the projection surface A and the second filling area PR_R).

除了將填充區域添加到通過等距矩形投影/等面積投影獲得的投影面的左側邊和右側邊之外,還可以將填充區域添加到投影面的頂邊和底邊,為壓縮過程提供更多信息。 In addition to adding the filled area to the left and right sides of the projection surface obtained by equidistant rectangular projection/equal area projection, you can also add the filled area to the top and bottom edges of the projection surface to provide more for the compression process information.

第13圖是根據本發明的實施例的具有填充的第二種ERP/EAP佈局的示意圖。具有頂邊S_T,底邊S_B,左側邊S_L和右側邊S_R的單個投影面A佈置在不具有填充的ERP/EAP佈局1302中。頂邊S_T,底邊S_B,左側邊S_L和右側邊S_R是ERP/EAP佈局1302的四個邊界。另外,ERP/EAP佈局1302中的投影面A具有複數個圖像區域(標記為“1”,“2”,“3”,“4”,“5”,“6”,“7”和“8”)。圖像區域“1”-“3”形成一個部分區域,並包括頂邊S_T處的邊界像素。圖像區域“3”-“5”形成一個部分區域,並且包括右側邊S_R處的邊界像素。圖像區域“5”-“7”形成一個部分區域,並包括底邊S_B處的邊界像素。圖像區域“1”,“8”和“7”形成一個部分區域,並且包括左側邊S_L處的邊界像素。 Figure 13 is a schematic diagram of a second ERP/EAP layout with filling according to an embodiment of the present invention. A single projection surface A with a top side S_T, a bottom side S_B, a left side S_L, and a right side S_R is arranged in the ERP/EAP layout 1302 without filling. The top side S_T, bottom side S_B, left side S_L and right side S_R are the four boundaries of the ERP/EAP layout 1302. In addition, the projection surface A in the ERP/EAP layout 1302 has a plurality of image areas (labeled "1", "2", "3", "4", "5", "6", "7" and " 8"). The image area "1"-"3" forms a partial area and includes the boundary pixels at the top edge S_T. The image area "3"-"5" forms a partial area and includes the boundary pixels at the right side S_R. The image area "5"-"7" forms a partial area and includes the boundary pixels at the bottom edge S_B. The image areas "1", "8" and "7" form a partial area and include the boundary pixels at the left side S_L.

轉換電路114採用的360 VR投影佈局L_VR可以由第13圖中所示的ERP/EAP佈局1302'來設置。可以從ERP/EAP佈局1302導出ERP/EAP佈局1302'。通過球體的等距矩形投影/等面積投影獲得投影面A。如第13圖所示,通過複製投影面A的圖像區域“3”-“5”,來生成與投影面A的左側邊S_L連接的第一填充區域;通過複製投影面A的圖像區域“1”,“8”和“7”,來生成與投影面A的右側邊S_R連接的第二填充區域;通過複製投影面A的圖像區域“1”-“3”獲得複製的部分區域,然後翻轉(flipping)該複製的部分區域,來生成與投影面A的頂邊S_T連接的第三填充區域;以及通過複製投影面A的圖像區域“5”-“7”獲得複製的部分區域,然後翻轉該複製的部分區域,來生成與投影面A的底邊S_B連接的第四填充區域。 The 360 VR projection layout L_VR adopted by the conversion circuit 114 can be set by the ERP/EAP layout 1302' shown in FIG. The ERP/EAP layout 1302' can be derived from the ERP/EAP layout 1302. The projection plane A is obtained by the equidistant rectangular projection/equal area projection of the sphere. As shown in Figure 13, by copying the image area "3"-"5" of the projection surface A, the first filling area connected to the left side S_L of the projection surface A is generated; by copying the image area of the projection surface A "1", "8" and "7" to generate the second filling area connected with the right side S_R of the projection surface A; the copied part of the area is obtained by copying the image area "1"-"3" of the projection surface A , And then flip (flipping) the copied partial area to generate a third filling area connected to the top edge S_T of the projection surface A; and obtain the copied part by copying the image area "5"-"7" of the projection surface A Area, and then flip the copied partial area to generate a fourth filled area connected to the bottom edge S_B of the projection surface A.

為了使ERP/EAP佈局1302'的形狀變為矩形,通過複製圖像區域“3” 獲得複制的填充區域,然後翻轉該複制的填充區域,來生成左上角填充區域;通過複製圖像區域“1”獲得複制的填充區域,然後翻轉該複制的填充區域,來生成右上角填充區域;通過複製圖像區域“5”獲得複製的填充區域,然後翻轉該複制的填充區域,來生成左下角填充區域;以及通過複製圖像區域“7”獲得複制的填充區域,然後翻轉該複制的填充區域,來生成右下角填充區域。 In order to make the shape of the ERP/EAP layout 1302' become rectangular, copy the image area "3" Obtain the copied filled area, and then flip the copied filled area to generate the upper left filled area; copy the image area "1" to obtain the copied filled area, and then flip the copied filled area to generate the upper right filled area; Obtain the copied filling area by copying the image area "5", and then flip the copied filling area to generate the lower left corner filling area; and by copying the image area "7" to obtain the copied filling area, and then flip the copied filling area Area to generate the filled area in the lower right corner.

由於等距矩形投影/等面積投影的固有特性,在左上角填充區域和第一填充區域之間存在圖像內容連續性邊界,在左上角填充區域和第三填充區域之間存在圖像內容連續性邊界,在右上角填充區域和第二填充區域之間存在圖像內容連續性邊界,在右上角填充區域和第三填充區域之間存在圖像內容連續性邊界,在左下角填充區域和第一填充區域之間存在圖像內容連續性邊界,在左下角填充區域和第四填充區域之間存在圖像內容連續性邊界,在右下角填充區域和第二填充區域之間存在圖像內容連續性邊界,以及在右下角填充區域和第四填充區域之間存在圖像內容連續性邊界。 Due to the inherent characteristics of equidistant rectangular projection/equal area projection, there is a continuity boundary of image content between the upper left filled area and the first filled area, and there is a continuous image content between the upper left filled area and the third filled area There is an image content continuity boundary between the upper right filled area and the second filled area, and there is an image content continuity border between the upper right filled area and the third filled area, and the lower left filled area and the second An image content continuity boundary exists between a filled area, an image content continuity boundary exists between the lower left filled area and the fourth filled area, and an image content continuity exists between the lower right filled area and the second filled area There is an image content continuity boundary between the filling area in the lower right corner and the fourth filling area.

如第13圖所示,與投影面A的左側邊S_L連接的第一填充區域形成ERP/EAP佈局1302'的左側邊界的一部分,與投影面A的右側邊S_R連接的第二填充區域形成ERP/EAP佈局1302'的右側邊界的一部分,與投影面A的頂邊S_T連接的第三填充區域形成ERP/EAP佈局1302'的頂部邊界的一部分,以及與投影面A的底邊S_B連接的第四填充區域形成ERP/EAP佈局1302'的底部邊界的一部分。由於等距矩形投影/等面積投影的固有特性,在封裝在ERP/EAP佈局1302'中的第一填充區域和投影面A之間存在圖像內容連續性邊界(即,內容連續地表示在第一個填充區域和投影面A中),在封裝在ERP/EAP佈局1302'中的第二填充區域和投影面A之間存在圖像內容連續性邊界(即,內容連續地表示在第二填充區域和投影面A中中),在封裝在ERP/EAP佈局1302'中的第三填充區域和投影面A之間存在圖像內容連續性邊界(即,內容連續地表示在第三填充區域和投影面A中), 並且在封裝在ERP/EAP佈局1302'中的第四填充區域和投影面A之間存在圖像內容連續性邊界(即,內容連續地表示在第四填充區域和投影面A中)。 As shown in Figure 13, the first filling area connected to the left side S_L of the projection surface A forms part of the left boundary of the ERP/EAP layout 1302', and the second filling area connected to the right side S_R of the projection surface A forms the ERP /EAP layout 1302', the third filling area connected to the top edge S_T of the projection surface A forms a part of the top boundary of the ERP/EAP layout 1302', and the second area connected to the bottom edge S_B of the projection surface A The four filled areas form part of the bottom boundary of the ERP/EAP layout 1302'. Due to the inherent characteristics of equidistant rectangular projection/equal area projection, there is an image content continuity boundary between the first filled area encapsulated in the ERP/EAP layout 1302' and the projection surface A (that is, the content is continuously expressed in the first A filled area and projection surface A), there is a border of image content continuity between the second filled area encapsulated in the ERP/EAP layout 1302' and the projection surface A (that is, the content continuously represents the second filling area Area and projection surface A), there is an image content continuity boundary between the third filling area encapsulated in the ERP/EAP layout 1302' and the projection surface A (that is, the content is continuously expressed in the third filling area and Projection surface A), And there is an image content continuity boundary between the fourth filling area encapsulated in the ERP/EAP layout 1302' and the projection surface A (that is, the content is continuously expressed in the fourth filling area and the projection surface A).

第14圖是根據本發明的實施例的具有填充的第三種ERP/EAP佈局的示意圖。具有頂邊S_T,底邊S_B,左側邊S_L和右側邊S_R的單個投影面A佈置在不具有填充的ERP/EAP佈局1402中。頂邊S_T,底邊S_B,左側邊S_L和右側邊S_R是ERP/EAP佈局1402的四個邊界。另外,ERP/EAP佈局1402中的投影面A具有複數個圖像區域(標記為“1”,“2”,“3”,“4”,“5”,“6”,“7”和“8”)。圖像區域“1”-“3”形成一個部分區域,並包括頂邊S_T處的邊界像素。圖像區域“3”-“5”形成一個部分區域,並且包括右側邊S_R處的邊界像素。圖像區域“5”-“7”形成一個部分區域,並包括底邊S_B處的邊界像素。圖像區域“7”-“8”和“1”形成一個部分區域,並且包括左側邊S_L處的邊界像素。 Figure 14 is a schematic diagram of a third ERP/EAP layout with filling according to an embodiment of the present invention. A single projection surface A with a top side S_T, a bottom side S_B, a left side S_L, and a right side S_R is arranged in the ERP/EAP layout 1402 without filling. The top side S_T, the bottom side S_B, the left side S_L and the right side S_R are the four boundaries of the ERP/EAP layout 1402. In addition, the projection surface A in the ERP/EAP layout 1402 has a plurality of image areas (labeled "1", "2", "3", "4", "5", "6", "7" and " 8"). The image area "1"-"3" forms a partial area and includes the boundary pixels at the top edge S_T. The image area "3"-"5" forms a partial area and includes the boundary pixels at the right side S_R. The image area "5"-"7" forms a partial area and includes the boundary pixels at the bottom edge S_B. The image areas "7"-"8" and "1" form a partial area and include the boundary pixels at the left side S_L.

轉換電路114採用的360 VR投影佈局L_VR可以由第14圖中所示的ERP/EAP佈局1402'來設置。ERP/EAP佈局1402'可以從典型的ERP/EAP佈局1402導出。投影面A是通過球的等距矩形投影/等面積投影獲得的。如第14圖所示,通過複製投影面A的圖像區域“3”-“5”,生成與投影面A的左側邊S_L連接的第一填充區域;通過複製投影面A的圖像區域“1”,“8”和“7”,來生成與投影面A的右側邊S_R連接的第二填充區域;通過複製投影面A的圖像區域“1”-“3”獲得複製的部分區域,然後將該複製的部分區域旋轉(rotating)180°,來生成與投影面A的頂邊S_T連接的第三填充區域;以及通過複製投影面A的圖像區域“5”-“7”獲得複製的部分區域,然後將該複製的部分區域旋轉180°,來生成與投影面A的底邊S_B連接的第四填充區域。 The 360 VR projection layout L_VR adopted by the conversion circuit 114 can be set by the ERP/EAP layout 1402' shown in Figure 14. The ERP/EAP layout 1402' can be derived from the typical ERP/EAP layout 1402. The projection surface A is obtained by the equidistant rectangular projection/equal area projection of the sphere. As shown in Figure 14, by copying the image area "3"-"5" of the projection surface A, the first filling area connected to the left side S_L of the projection surface A is generated; by copying the image area of the projection surface A " 1", "8" and "7" to generate the second filling area connected with the right side S_R of the projection surface A; by copying the image area "1"-"3" of the projection surface A to obtain the copied partial area, Then rotate the copied partial area by 180° to generate a third filling area connected to the top edge S_T of the projection surface A; and copy the image area "5"-"7" of the projection surface A to obtain the copy Then, rotate the copied partial area by 180° to generate the fourth filling area connected with the bottom edge S_B of the projection surface A.

為了使ERP/EAP佈局1402'的形狀變為矩形,通過複製圖像區域“1”獲得複制的填充區域,然後將該複制的填充區域旋轉180°,來生成左上角填充區域;通過複製圖像區域“3”獲得複制的填充區域,然後將該複制的填充區域旋轉 180°,來生成右上角填充區域;通過複製圖像區域“7”獲得複製的填充區域,然後將該複制的填充區域旋轉180°,來生成左下角填充區域;以及通過複製圖像區域“5”獲得複制的填充區域,然後將該複制的填充區域旋轉180°,來生成右下角填充區域。 In order to make the shape of the ERP/EAP layout 1402' into a rectangle, the copied filled area is obtained by copying the image area "1", and then the copied filled area is rotated by 180° to generate the upper left filled area; by copying the image Area "3" obtains the copied filled area, and then rotates the copied filled area 180°, to generate the upper right corner filling area; by copying the image area "7" to obtain the copied filling area, and then rotating the copied filling area by 180° to generate the lower left corner filling area; and by copying the image area "5" "Obtain the copied filled area, and then rotate the copied filled area 180° to generate the lower right filled area.

由於等距矩形投影/等面積投影的固有特性,在左上角填充區域和第一填充區域之間存在圖像內容連續性邊界,在左上角填充和第三填充區域之間存在圖像內容連續性邊界區域,在右上角填充區域和第二填充區域之間存在圖像內容連續性邊界,在右上角填充區域和第三填充區域之間存在圖像內容連續性邊界,在左下角填充區域和第一填充區域之間存在圖像內容連續性邊界,在左下角填充區域和第四填充區域之間存在圖像內容連續性邊界,在右下角填充區域和第二填充區域之間存在圖像內容連續性邊界,以及在右下角填充區域和第四填充區域之間存在圖像內容連續性邊界。 Due to the inherent characteristics of equidistant rectangular projection/equal area projection, there is an image content continuity boundary between the upper left corner filling area and the first filling area, and there is image content continuity between the upper left corner filling and the third filling area In the boundary area, there is an image content continuity boundary between the upper right filled area and the second filled area, and an image content continuity boundary exists between the upper right filled area and the third filled area. The lower left filled area and the second An image content continuity boundary exists between a filled area, an image content continuity boundary exists between the lower left filled area and the fourth filled area, and an image content continuity exists between the lower right filled area and the second filled area There is an image content continuity boundary between the filling area in the lower right corner and the fourth filling area.

如第14圖所示,與投影面A的左側邊S_L連接的第一填充區域形成ERP/EAP佈局1402'的左側邊界的一部分,與投影面A的右側邊S_R連接的第二填充區域形成ERP/EAP佈局1402'的右側邊界的一部分,與投影面A的頂邊S_T連接的第三填充區域形成ERP/EAP佈局1402'的頂部邊界的一部分,以及與投影面A的底邊S_B連接的第四填充區域形成ERP/EAP佈局1402'的底部邊界的一部分。由於等距矩形投影/等面積投影的固有特性,在封裝在ERP/EAP佈局1402'中的第一填充區域和投影面A之間存在圖像內容連續性邊界(即,內容連續地表示在第一填充區域和投影面A中),在封裝在ERP/EAP佈局1402'中的第二填充區域和投影面A之間存在圖像內容連續性邊界(即,內容連續地表示在第二填充區域和投影面A中),在封裝在ERP/EAP佈局1402'中的第三填充區域和投影面A之間存在圖像內容連續性邊界(即,內容連續地表示在第三填充區域和投影面A中),並且在封裝在ERP/EAP佈局1402'中的第四填充區域和投影面A之間存在圖像內容連 續性邊界(即,內容連續地表示在第四填充區域和投影面A中)。 As shown in Figure 14, the first filling area connected to the left side S_L of the projection surface A forms part of the left boundary of the ERP/EAP layout 1402', and the second filling area connected to the right side S_R of the projection surface A forms the ERP /EAP layout 1402', the third filling area connected to the top edge S_T of the projection surface A forms a part of the top boundary of the ERP/EAP layout 1402', and the second area connected to the bottom edge S_B of the projection surface A The four filled areas form part of the bottom boundary of the ERP/EAP layout 1402'. Due to the inherent characteristics of equidistant rectangular projection/equal area projection, there is an image content continuity boundary between the first filled area encapsulated in the ERP/EAP layout 1402' and the projection surface A (that is, the content is continuously displayed in the first A filled area and projection surface A), there is an image content continuity boundary between the second filled area encapsulated in the ERP/EAP layout 1402' and the projection surface A (that is, the content is continuously expressed in the second filled area And projection surface A), there is an image content continuity boundary between the third filling area encapsulated in the ERP/EAP layout 1402' and the projection surface A (that is, the content is continuously expressed in the third filling area and the projection surface A), and there is an image content connection between the fourth filled area encapsulated in the ERP/EAP layout 1402' and the projection surface A The continuity boundary (that is, the content is continuously represented in the fourth filling area and the projection surface A).

如第12圖-第14圖所示,填充被添加到ERP/EAP佈局中,用於在佈局邊界處改進壓縮的圖像質量。然而,這些僅用於說明目的,並不意味著是對本發明的限制。在實踐中,可以將填充添加到其他360 VR投影佈局中,以在佈局邊界處提高壓縮的圖像質量。這些具有填充的替代投影設計都屬於本發明的範圍。 As shown in Figures 12-14, padding is added to the ERP/EAP layout to improve the compressed image quality at the layout boundary. However, these are for illustrative purposes only and are not meant to limit the present invention. In practice, padding can be added to other 360 VR projection layouts to improve the compressed image quality at the layout boundary. These alternative projection designs with filling belong to the scope of the present invention.

第15圖是根據本發明的實施例的具有填充的八面體投影佈局的示意圖。第16圖是根據本發明的實施例的具有填充的立方體投影佈局的示意圖。第17圖是根據本發明的實施例的具有填充的第四種緊湊八面體投影佈局的示意圖。第18圖是根據本發明的實施例的具有填充的緊湊立方體投影佈局的示意圖。封裝在投影佈局1502/1602/1702/1802中的填充區域可以通過上述幾何填充方式生成,該方式將幾何填充應用於投影面以確定包括在與投影面連接的填充區域中的像素的像素值;或者可以通過上述複製方式生成,該複製方式通過複製投影面的邊界像素的像素值,或者通過複製包括在投影面中但不與填充區域連接的像素的像素值,或者通過複製不包括在投影面中的像素的像素值,來設置包括在與投影面連接的填充區域中的像素的像素值。 Figure 15 is a schematic diagram of a filled octahedral projection layout according to an embodiment of the present invention. Figure 16 is a schematic diagram of a filled cube projection layout according to an embodiment of the present invention. Figure 17 is a schematic diagram of a fourth compact octahedral projection layout with filling according to an embodiment of the present invention. Figure 18 is a schematic diagram of a filled compact cube projection layout according to an embodiment of the present invention. The filled area encapsulated in the projection layout 1502/1602/1702/1802 can be generated by the above geometric filling method, which applies geometric filling to the projection surface to determine the pixel value of the pixels included in the filled area connected to the projection surface; Or it can be generated by the above copying method, which is by copying the pixel value of the boundary pixel of the projection surface, or by copying the pixel value of the pixel included in the projection surface but not connected to the filled area, or by copying the pixel value not included in the projection surface The pixel value of the pixel in is used to set the pixel value of the pixel included in the filling area connected to the projection surface.

應注意,前述佈局示例僅用於說明目的,並不意味著是對本發明的限制。在本發明的其他實施例中,可以通過將填充區域添加到其他投影格式的佈局,例如金字塔(pyramid)投影佈局,四面體(tetrahedron)投影佈局,基於四邊形石英的投影佈局(tetragon quartz-based projection layout),二十面體(icosahedron)投影佈局,或基於六邊形石英的投影佈局(hexagon quartz-based projection layout),來獲得具有填充的360 VR投影佈局。 It should be noted that the foregoing layout examples are for illustrative purposes only and are not meant to limit the present invention. In other embodiments of the present invention, the filled area may be added to the layout of other projection formats, such as pyramid projection layout, tetrahedron projection layout, and tetragon quartz-based projection layout. layout), icosahedron (icosahedron) projection layout, or hexagonal quartz-based projection layout (hexagon quartz-based projection layout) to obtain a filled 360 VR projection layout.

借助於添加到投影佈局的邊界的填充區域,可以提高壓縮之後的邊界的圖像質量。如上所述,圖形呈現電路124根據解碼的圖框IMG'在顯示螢幕126 上呈現並顯示輸出圖像資料。由於解碼圖框IMG'中的填充區域被另外添加並且可能不會顯示,因此在從解碼電路122生成解碼圖框IMG'之後,圖形呈現電路124可以丟棄/忽略解碼圖框IMG'中的填充區域。 With the aid of the filling area added to the boundary of the projection layout, the image quality of the boundary after compression can be improved. As mentioned above, the graphics rendering circuit 124 displays the screen 126 according to the decoded frame IMG' The output image data is presented and displayed. Since the filled area in the decoded frame IMG' is additionally added and may not be displayed, the graphics rendering circuit 124 may discard/ignore the filled area in the decoded frame IMG' after generating the decoded frame IMG' from the decoding circuit 122 .

第19圖是根據本發明的實施例的第二種360 VR系統的示意圖。360 VR系統100和1900之間的主要區別在於源電子設備1902的轉換電路1914具有重採樣電路1915,其被佈置為執行所提出的編碼器側投影面重採樣功能以調節採樣密度(或採樣率)。例如,編碼器側投影面重採樣功能可以在編碼之前將下採樣(down-sampling)應用於投影面。又例如,編碼器側投影面重採樣功能可以在編碼之前將上採樣(up-sampling)應用於投影面。對於又一示例,編碼器側投影面重採樣功能可以在編碼之前將不具有尺寸改變的重採樣應用於投影面。 Figure 19 is a schematic diagram of a second 360 VR system according to an embodiment of the present invention. The main difference between 360 VR systems 100 and 1900 is that the conversion circuit 1914 of the source electronic device 1902 has a resampling circuit 1915, which is arranged to perform the proposed encoder side projection surface resampling function to adjust the sampling density (or sampling rate). ). For example, the encoder-side projection surface resampling function can apply down-sampling to the projection surface before encoding. For another example, the encoder-side projection surface resampling function can apply up-sampling to the projection surface before encoding. For yet another example, the encoder-side projection surface resampling function can apply resampling without size changes to the projection surface before encoding.

在本發明的一些實施例中,360 VR投影佈局L_VR是立方體投影佈局,其是基於非視埠的投影佈局(non-viewport based projection layout)。因此,轉換電路1914從球體的全向圖像/視訊內容獲得複數個正方形投影面,其中球體的全向圖像/視訊內容經由立方體投影(cubemap projection,CMP)被映射到該複數個正方形投影面上。第20圖是根據從球體的立方體投影獲得的立方體投影佈局的六個正方形投影面的示意圖。球體2002的全向圖像/視訊內容被映射到立方體2004的六個正方形投影面(標記為“L”,“F”,“R”,“BK”,“T”和“B”)上。正方形投影面“L”表示立方體2004的左側面。正方形投影面“F”表示立方體2004的正面。正方形投影面“R”表示立方體2004的右側面。正方形投影面“BK”表示立方體2004的背面。正方形投影面“T”表示立方體2004的頂面。正方形投影面“B”表示立方體2004的底面。如第20圖所示,正方形投影面“L”,“F”,“R”,“BK”,“T”和“B”佈置在對應於展開的立方體的CMP佈局2006中。將要編碼的基於投影的圖框IMG需要是矩形的。如果CMP佈局2006直接用於創建基於投影的圖框IMG,則基於投影的圖框IMG必須填充空置區域(例如,填充為黑色,灰色或白 色的區域)以形成用於編碼的矩形圖框。因此,正方形投影面“L”,“F”,“R”,“BK”,“T”和“B”可以封裝在另一種CMP佈局中,例如1x6立方體佈局,6x1立方體佈局,3x2立方體佈局,或2x3立方體佈局。以這種方式,可以提高編碼效率。 In some embodiments of the present invention, the 360 VR projection layout L_VR is a cube projection layout, which is a non-viewport based projection layout. Therefore, the conversion circuit 1914 obtains a plurality of square projection surfaces from the omnidirectional image/video content of the sphere, and the omnidirectional image/video content of the sphere is mapped to the plurality of square projection surfaces via cubemap projection (CMP). on. Figure 20 is a schematic diagram of six square projection planes based on the cube projection layout obtained from the cube projection of the sphere. The omnidirectional image/video content of the sphere 2002 is mapped onto the six square projection surfaces of the cube 2004 (labeled "L", "F", "R", "BK", "T" and "B"). The square projection surface "L" represents the left side of the cube 2004. The square projection surface “F” represents the front face of the cube 2004. The square projection surface “R” represents the right side of the cube 2004. The square projection surface “BK” represents the back of the cube 2004. The square projection surface "T" represents the top surface of the cube 2004. The square projection surface "B" represents the bottom surface of the cube 2004. As shown in FIG. 20, the square projection surfaces "L", "F", "R", "BK", "T" and "B" are arranged in the CMP layout 2006 corresponding to the expanded cube. The projection-based frame IMG to be encoded needs to be rectangular. If the CMP layout 2006 is directly used to create a projection-based frame IMG, the projection-based frame IMG must fill the vacant area (for example, the fill is black, gray or white). Colored area) to form a rectangular frame for encoding. Therefore, the square projection surfaces "L", "F", "R", "BK", "T" and "B" can be packaged in another CMP layout, such as 1x6 cube layout, 6x1 cube layout, 3x2 cube layout, Or 2x3 cube layout. In this way, coding efficiency can be improved.

正方形投影面“L”,“F”,“R”,“BK”,“T”和“B”中的一個或複數個可以在被封裝到360 VR投影佈局L_VR中之前被重採樣電路1915處理,該360 VR投影佈局L_VR是CMP佈局(例如,1x6立方體佈局,6x1立方體佈局,3x2立方體佈局或2x3立方體佈局)。例如,重採樣電路1915通過所提出的編碼器側投影面重採樣功能,對一個正方形投影面的至少一部分(即,部分或全部)進行重採樣來獲得一個重採樣投影面。轉換電路1914根據所採用的CMP佈局(例如,1x6立方體佈局,6x1立方體佈局,3x2立方體佈局或2x3立方體佈局)生成基於投影的圖框IMG,其中基於投影的圖框IMG具有一個或複數個封裝在所採用的CMP佈局中的重採樣投影面。編碼器側投影面重採樣功能可以是具有非均勻映射的重採樣功能或具有均勻映射的重採樣功能,這取決於實際的設計考慮。均勻映射和非均勻映射的進一步細節描述如下。 One or more of the square projection surfaces "L", "F", "R", "BK", "T" and "B" can be processed by the resampling circuit 1915 before being packaged into the 360 VR projection layout L_VR , The 360 VR projection layout L_VR is a CMP layout (for example, 1x6 cube layout, 6x1 cube layout, 3x2 cube layout or 2x3 cube layout). For example, the re-sampling circuit 1915 uses the proposed encoder-side projection surface re-sampling function to re-sample at least a part (ie, part or all) of a square projection surface to obtain a re-sampled projection surface. The conversion circuit 1914 generates a projection-based frame IMG according to the adopted CMP layout (for example, 1x6 cube layout, 6x1 cube layout, 3x2 cube layout, or 2x3 cube layout), where the projection-based frame IMG has one or more encapsulated in The resampled projection surface in the CMP layout used. The re-sampling function of the encoder side projection surface may be a re-sampling function with non-uniform mapping or a re-sampling function with uniform mapping, which depends on actual design considerations. Further details of uniform mapping and non-uniform mapping are described below.

請結合參考第21圖和第22圖。第21圖是根據本發明的實施例的通過均勻映射對從立方體投影獲得的正方形投影面進行重採樣的示意圖。第22圖是根據本發明的實施例的均勻映射函數曲線的示意圖。將要重採樣的正方形投影面2102可以是第20圖中所示的正方形投影面“L”,“F”,“R”,“BK”,“T”,“B”中的任何一個。在該示例中,正方形投影面2104是從正方形投影面2102在其高度方向和寬度方向上進行下採樣得到的,其中正方形投影面2102具有寬度w和高度h(h=w),以及正方形投影面2104具有寬度W和高度H(W=H<h)。也就是說,通過均勻映射執行從高度h到高度H的下採樣,以及通過均勻映射執行從寬度w到寬度W的下採樣。作為示例而非限制,相同的均勻映射函數應用於寬度方向(即,x軸方向)和高度方向(即,y軸方向)。例如,可以使用以下公式表示 不同方向上的均勻映射函數。 Please refer to Figure 21 and Figure 22 together. FIG. 21 is a schematic diagram of re-sampling a square projection surface obtained from a cube projection through uniform mapping according to an embodiment of the present invention. Figure 22 is a schematic diagram of a uniform mapping function curve according to an embodiment of the present invention. The square projection surface 2102 to be resampled may be any one of the square projection surfaces "L", "F", "R", "BK", "T", and "B" shown in Figure 20. In this example, the square projection surface 2104 is obtained by down-sampling the square projection surface 2102 in its height and width directions, where the square projection surface 2102 has a width w and a height h (h=w), and a square projection surface 2104 has a width W and a height H (W=H<h). That is, down-sampling from height h to height H is performed by uniform mapping, and down-sampling from width w to width W is performed by uniform mapping. As an example and not a limitation, the same uniform mapping function is applied to the width direction (i.e., the x-axis direction) and the height direction (i.e., the y-axis direction). For example, you can use the following formula to express Uniform mapping function in different directions.

Figure 107133868-A0305-02-0034-1
Figure 107133868-A0305-02-0034-1

Figure 107133868-A0305-02-0034-2
Figure 107133868-A0305-02-0034-2

因此,利用位於正方形投影面2104中的y軸坐標Y處的整數像素位置,可以根據公式(1)中表示的均勻映射函數來確定位於正方形投影面2102中的y軸坐標y處的對應採樣點。由於在高度方向上的均勻映射,正方形投影面2102中的兩個垂直相鄰的採樣點以恆定距離D均勻地分佈。類似地,利用位於正方形投影面2104中的x軸坐標X處的整數像素位置,可以根據公式(2)中表示的均勻映射函數來確定位於正方形投影面2102中的x軸坐標x處的對應採樣點。由於在寬度方向上的均勻映射,矩形投影面2102中的兩個水平相鄰的採樣點以恆定距離D'均勻分佈。根據公式(1)和(2),使用在正方形投影面2102中找到的相應採樣位置p'的像素值導出正方形投影面2104中的位置P的像素值。 Therefore, using the integer pixel position at the y-axis coordinate Y in the square projection surface 2104, the corresponding sampling point at the y-axis coordinate y in the square projection surface 2102 can be determined according to the uniform mapping function expressed in formula (1) . Due to the uniform mapping in the height direction, two vertically adjacent sampling points in the square projection surface 2102 are uniformly distributed with a constant distance D. Similarly, by using the integer pixel position at the x-axis coordinate X in the square projection surface 2104, the corresponding sample at the x-axis coordinate x in the square projection surface 2102 can be determined according to the uniform mapping function expressed in formula (2) point. Due to the uniform mapping in the width direction, two horizontally adjacent sampling points in the rectangular projection surface 2102 are uniformly distributed with a constant distance D′. According to formulas (1) and (2), the pixel value of the corresponding sampling position p′ found in the square projection surface 2102 is used to derive the pixel value of the position P in the square projection surface 2104.

正方形投影面2102中的採樣點(即,獲得的像素位置p')可以不在整數位置。如果正方形投影面2102中的採樣點的x軸坐標x和y軸坐標y中的至少一個是非整數位置,則轉換電路1914(具體地,重採樣電路1915)中的插值濾波器(未示出)可以應用於正方形投影面2102中的採樣點周圍的整數像素,以導出採樣點的像素值。 The sampling points in the square projection surface 2102 (that is, the obtained pixel position p′) may not be in integer positions. If at least one of the x-axis coordinate x and the y-axis coordinate y of the sampling point in the square projection surface 2102 is a non-integer position, the interpolation filter (not shown) in the conversion circuit 1914 (specifically, the resampling circuit 1915) It can be applied to the integer pixels around the sampling points in the square projection surface 2102 to derive the pixel values of the sampling points.

為了保留投影面內的特定區域的更多細節,本發明還提出通過非均勻映射對從立方體投影獲得的正方形投影面進行重採樣。第23圖是根據本發明的實施例的通過非均勻映射對從立方體投影獲得的正方形投影面進行重採樣的第一示例的示意圖。將要重採樣的正方形投影面2302可以是第20圖中所示的正方形投影面“L”,“F”,“R”,“BK”,“T”,“B”中的任何一個。在該示例中,正方形投影面2304是從正方形投影面2302在其高度方向(即,y軸方向)和寬度方向 (即,x軸方向)上進行下採樣獲得的,其中,正方形投影面2302具有寬度w和高度h(h=w),以及正方形投影面2304具有寬度W和高度H(W=H<h)。 In order to preserve more details of a specific area in the projection plane, the present invention also proposes to resample the square projection plane obtained from the cube projection through non-uniform mapping. FIG. 23 is a schematic diagram of a first example of re-sampling a square projection surface obtained from a cube projection through non-uniform mapping according to an embodiment of the present invention. The square projection surface 2302 to be resampled may be any one of the square projection surfaces "L", "F", "R", "BK", "T", and "B" shown in Figure 20. In this example, the square projection surface 2304 is from the square projection surface 2302 in its height direction (ie, y-axis direction) and width direction (Ie, the x-axis direction) is obtained by down-sampling, where the square projection surface 2302 has a width w and a height h (h=w), and the square projection surface 2304 has a width W and a height H (W=H<h) .

利用位於正方形投影面2304中的y軸坐標處的整數像素位置,可以根據非均勻映射函數來確定位於正方形投影面2302中的y軸坐標處的對應採樣點。如第23圖所示,兩個垂直相鄰的採樣點之間的間隔不是常數。例如,兩個垂直相鄰的採樣點之間的間隔可以是D1,D2,D3和D4中的一個,其中D4>D3>D2>D1。具體地,採樣點在正方形投影面2302的高度方向上不均勻地分佈。例如,通過對正方形投影面2302的第一源區域2312重採樣,來獲得正方形投影面2304的第一重採樣區域2322中的像素;以及通過對正方形投影面2302的第二源區域2314進行重採樣,來獲得正方形投影面2304的第二重採樣區域2324中的像素。由於在在高度方向上的非均勻映射,從第一源區域2312獲得的採樣點的密度不同於從第二源區域2314獲得的採樣點的密度。換句話說,在正方形投影面2302的高度方向上使用不同的採樣率。第一重採樣區域2322是從在高度方向上以第一採樣率(或第一採樣密度)重採樣第一源區域2312得到的,並且第二重採樣區域2324是從在高度方向上以第二採樣率(或第二採樣密度)重採樣第二源區域2314得到的,其中第二採樣率(或第二採樣密度)不同於第一採樣率(或第一次採樣密度)。 Using the integer pixel position at the y-axis coordinate in the square projection surface 2304, the corresponding sampling point at the y-axis coordinate in the square projection surface 2302 can be determined according to the non-uniform mapping function. As shown in Figure 23, the interval between two vertically adjacent sampling points is not constant. For example, the interval between two vertically adjacent sampling points may be one of D1, D2, D3, and D4, where D4>D3>D2>D1. Specifically, the sampling points are unevenly distributed in the height direction of the square projection surface 2302. For example, by re-sampling the first source area 2312 of the square projection surface 2302 to obtain pixels in the first re-sampling area 2322 of the square projection surface 2304; and by re-sampling the second source area 2314 of the square projection surface 2302 , To obtain the pixels in the second resampling area 2324 of the square projection surface 2304. Due to the non-uniform mapping in the height direction, the density of sampling points obtained from the first source area 2312 is different from the density of sampling points obtained from the second source area 2314. In other words, different sampling rates are used in the height direction of the square projection surface 2302. The first re-sampling area 2322 is obtained from re-sampling the first source area 2312 at the first sampling rate (or first sampling density) in the height direction, and the second re-sampling area 2324 is obtained from the second source area 2312 in the height direction. The sampling rate (or second sampling density) is obtained by re-sampling the second source region 2314, where the second sampling rate (or second sampling density) is different from the first sampling rate (or first sampling density).

類似地,利用位於正方形矩形投影面2304中的x軸坐標處的整數像素位置,可以通過非均勻映射函數來確定位於正方形投影面2302中的x軸坐標處的對應採樣點。如第23圖所示,兩個水平相鄰的採樣點之間的間隔不是常數。例如,兩個水平相鄰的採樣點之間的間隔可以是D1',D2',D3'和D4'中的一個,其中D4'>D3'>D2'>D1'。具體地,採樣點在正方形投影面2302的寬度方向上不均勻地分佈。例如,通過對第一源區域2316進行重採樣,來獲得正方形投影面2304的第一重採樣區域2326中的像素;以及通過對正方形投影面2302的第二源區域 2318進行重採樣,來獲得正方形投影面2304的第二重採樣區域2328中的像素。由於在寬度方向上的非均勻映射,從第一源區域2316獲得的採樣點的密度不同於從第二源區域2318獲得的採樣點的密度。換句話說,在正方形投影面2302的寬度方向上使用不同的採樣率。第一重採樣區域2326是從在寬度方向上以第一採樣率(或第一採樣密度)重採樣第一源區域2316得到的,以及第二重採樣區域2326是從在寬度方向上以第二採樣率(或第二採樣密度)重採樣第二源區域2318得到的,其中第二採樣率(或第二採樣密度)不同於第一採樣率(或者第一次採樣密度)。 Similarly, by using integer pixel positions at the x-axis coordinates on the square rectangular projection surface 2304, the corresponding sampling points at the x-axis coordinates on the square projection surface 2302 can be determined through a non-uniform mapping function. As shown in Figure 23, the interval between two horizontally adjacent sampling points is not constant. For example, the interval between two horizontally adjacent sampling points may be one of D1', D2', D3' and D4', where D4'>D3'>D2'>D1'. Specifically, the sampling points are unevenly distributed in the width direction of the square projection surface 2302. For example, by re-sampling the first source area 2316, the pixels in the first re-sampling area 2326 of the square projection surface 2304 are obtained; and by re-sampling the second source area of the square projection surface 2302 2318 performs resampling to obtain pixels in the second resampling area 2328 of the square projection surface 2304. Due to the non-uniform mapping in the width direction, the density of sampling points obtained from the first source area 2316 is different from the density of sampling points obtained from the second source area 2318. In other words, different sampling rates are used in the width direction of the square projection surface 2302. The first re-sampling area 2326 is obtained from re-sampling the first source area 2316 at the first sampling rate (or first sampling density) in the width direction, and the second re-sampling area 2326 is obtained from the second source area 2316 in the width direction. The sampling rate (or second sampling density) is obtained by re-sampling the second source region 2318, where the second sampling rate (or second sampling density) is different from the first sampling rate (or first sampling density).

正方形投影面2304中位置P的像素值是根據在x軸方向和y軸方向中使用的非均勻映射函數,使用在正方形投影面2302中找到的對應採樣位置p'的像素值導出的。正方形投影面2302中的採樣點(即,獲得的像素位置p')可以不在整數位置。如果正方形投影面2302中的採樣點的x軸坐標x和y軸坐標y中的至少一個是非整數位置,則轉換電路1914(具體地,重採樣電路1915)中的插值濾波器(未示出)可以應用於正方形投影面2302中的採樣點周圍的整數像素,以導出採樣點的像素值。 The pixel value of the position P in the square projection surface 2304 is derived based on the non-uniform mapping function used in the x-axis direction and the y-axis direction using the pixel value of the corresponding sampling position p′ found in the square projection surface 2302. The sampling points in the square projection surface 2302 (ie, the obtained pixel position p′) may not be in integer positions. If at least one of the x-axis coordinate x and the y-axis coordinate y of the sampling point in the square projection surface 2302 is a non-integer position, the interpolation filter (not shown) in the conversion circuit 1914 (specifically, the resampling circuit 1915) It can be applied to the integer pixels around the sampling point in the square projection surface 2302 to derive the pixel value of the sampling point.

在該示例中,應用於正方形投影面2302的非均勻映射包括用於在第一方向(例如,寬度方向和高度方向中的一個)上對正方形投影面2302的至少一部分(即,部分或全部)進行重採樣的第一非均勻映射函數和用於在第二方向(例如,寬度方向和高度方向中的另一個)上對正方形投影面2302的至少一部分(即,部分或全部)進行重採樣的第二非均勻映射函數。在一個示例性設計中,第一非均勻映射函數可以與第二非均勻映射函數相同。也就是說,第一方向和第二方向(例如,寬度方向和高度方向)可以使用相同的非均勻映射曲線。在另一示例性設計中,第一非均勻映射函數可以與第二非均勻映射函數不同。也就是說,第一方向和第二方向(例如,寬度方向和高度方向)可以使用 不同的非均勻映射曲線。 In this example, the non-uniform mapping applied to the square projection surface 2302 includes a method for mapping at least a part (ie, part or all) of the square projection surface 2302 in the first direction (for example, one of the width direction and the height direction). A first non-uniform mapping function for re-sampling and a function for re-sampling at least a part (ie, part or all) of the square projection surface 2302 in the second direction (for example, the other of the width direction and the height direction) The second non-uniform mapping function. In an exemplary design, the first non-uniform mapping function may be the same as the second non-uniform mapping function. That is, the first direction and the second direction (for example, the width direction and the height direction) may use the same non-uniform mapping curve. In another exemplary design, the first non-uniform mapping function may be different from the second non-uniform mapping function. That is, the first direction and the second direction (for example, the width direction and the height direction) can be used Different non-uniform mapping curves.

在第23圖所示的示例中,通過非均勻映射將下採樣應用於原始正方形投影面,來導出重採樣的正方形投影面。然而,這僅用於說明目的,並不意味著是對本發明的限制。或者,可以通過非均勻映射將上採樣應用於原始正方形投影面來導出重採樣的正方形投影面,或者可以通過非均勻映射對原始正方形投影面應用不進行尺寸改變的重採樣來導出重採樣的正方形投影面。第24圖是根據本發明的實施例的通過非均勻映射對從立方體投影獲得的正方形投影面進行重採樣的第二示例的示意圖。將要重採樣的正方形投影面2402可以是第20圖中所示的正方形投影面“L”,“F”,“R”,“BK”,“T”,“B”中的任何一個。在該示例中,採用不改變尺寸的重採樣。因此,正方形投影面2404通過在其高度方向(即,y軸方向)和寬度方向(即,x軸方向)上對正方形投影面2402進行重採樣而得到,其中正方形投影面2402具有寬度w和高度h(h=w),並且正方形投影面2404具有寬度W和高度H(W=H=h)。利用位於正方形矩形投影面2404中的y軸坐標處的整數像素位置,可以在y軸方向上根據非均勻映射函數來確定位於正方形投影面2402中的y軸坐標處的對應採樣點。利用位於正方形矩形投影面2404中的x軸坐標處的整數像素位置,可以在x軸方向上根據非均勻映射函數來確定位於正方形投影面2402中的x軸坐標處的對應採樣點,其中在x軸方向上使用的非均勻映射函數可以與在y軸方向上使用的非均勻映射函數相同或不同。 In the example shown in Figure 23, downsampling is applied to the original square projection surface through non-uniform mapping to derive the resampled square projection surface. However, this is for illustrative purposes only and is not meant to limit the present invention. Alternatively, the resampled square projection surface can be derived by applying upsampling to the original square projection surface through non-uniform mapping, or the resampled square can be derived by applying resample without size change to the original square projection surface through non-uniform mapping Projection surface. FIG. 24 is a schematic diagram of a second example of re-sampling a square projection surface obtained from a cube projection through non-uniform mapping according to an embodiment of the present invention. The square projection surface 2402 to be resampled may be any one of the square projection surfaces "L", "F", "R", "BK", "T", and "B" shown in Figure 20. In this example, resampling without changing the size is used. Therefore, the square projection surface 2404 is obtained by resampling the square projection surface 2402 in its height direction (ie, y-axis direction) and width direction (ie, x-axis direction), where the square projection surface 2402 has a width w and a height. h (h=w), and the square projection surface 2404 has a width W and a height H (W=H=h). Using the integer pixel position at the y-axis coordinate on the square rectangular projection surface 2404, the corresponding sampling point at the y-axis coordinate on the square projection surface 2402 can be determined according to the non-uniform mapping function in the y-axis direction. Using the integer pixel position at the x-axis coordinate in the square rectangular projection surface 2404, the corresponding sampling point at the x-axis coordinate in the square projection surface 2402 can be determined according to the non-uniform mapping function in the x-axis direction, where The non-uniform mapping function used in the axis direction may be the same as or different from the non-uniform mapping function used in the y-axis direction.

實際上,可以使用經過坐標點(0,0)和(1,1)的任何非遞減函數(non-decreasing function)來實現非均勻映射函數。也就是說,非遞減非均勻映射函數(non-decreasing non-uniform mapping function)的曲線從坐標點(0,0)處開始並且在坐標點(1,1)處結束。例如,非均勻映射函數可以是分段線性函數(piecewise-linear function),指數函數(exponential function),二次方程函數 (quadratic equation function)或其他函數。第25圖是根據本發明的實施例的第一非均勻映射函數曲線的示意圖。第26圖是根據本發明的實施例的第二非均勻映射函數曲線的示意圖。第25-26圖中所示的非均勻映射曲線僅用於說明目的,並不意味著是對本發明的限制。 In fact, any non-decreasing function that passes through the coordinate points (0,0) and (1,1) can be used to realize the non-uniform mapping function. That is, the curve of the non-decreasing non-uniform mapping function starts at the coordinate point (0, 0) and ends at the coordinate point (1, 1). For example, the non-uniform mapping function can be piecewise-linear function, exponential function, quadratic function (quadratic equation function) or other functions. Figure 25 is a schematic diagram of a first non-uniform mapping function curve according to an embodiment of the present invention. Figure 26 is a schematic diagram of a second non-uniform mapping function curve according to an embodiment of the present invention. The non-uniform mapping curves shown in Figures 25-26 are for illustrative purposes only, and are not meant to limit the present invention.

考慮通過二次方程函數設置非均勻映射函數的情況。二次方程函數可以定義為f(p)=A * p2+B * p,其中A+B=1,p表示在所選方向(例如,x軸方向或者y軸方向)上的源正方形投影面內的像素位置,並且f(p)表示在所選方向上的重採樣的正方形投影面內的像素位置。根據實驗結果,A可以設置為-0.385,B可以設置為1.385,以使非均勻映射函數具有最佳BD-rate(Bjøntegaard-Delta rate)。 Consider the case where the non-uniform mapping function is set by the quadratic equation function. The quadratic equation function can be defined as f(p)=A * p 2 + B * p, where A+B=1, and p represents the source square projection in the selected direction (for example, the x-axis direction or the y-axis direction) The pixel position in the plane, and f(p) represents the pixel position in the resampled square projection plane in the selected direction. According to the experimental results, A can be set to -0.385 and B can be set to 1.385, so that the non-uniform mapping function has the best BD-rate (Bjøntegaard-Delta rate).

此外,應用於通過立方體投影獲得的不同正方形投影面的非均勻映射函數不一定相同。例如,重採樣電路1915通過非均勻映射對第一正方形投影面(例如,第20圖中所示的正方形投影面“L”,“F”,“R”,“BK”,“T”和“B”中的一個)的至少一部分(即,部分或全部)進行重採樣,來獲得第一重採樣的投影面;通過非均勻映射對第二投影面(例如,第20圖中所示的正方形投影面“L”,“F”,“R”,“BK”,“T”和“B”中的另一個)的至少一部分(即,部分或全部)進行重採樣,來獲得第二重採樣投影面,其中封裝成360 VR投影佈局L_VR(其為CMP佈局)的基於投影的圖框IMG中包含第一重採樣投影面和第二重採樣投影面,並且用於重採樣第一投影面的至少一個非均勻映射函數(例如,寬度方向上的非均勻映射函數和/或高度方向上的非均勻映射函數)與用於重採樣第二投影面的至少一個非均勻映射函數(例如,寬度方向上的非均勻映射函數和/或高度方向上的非均勻映射函數)不同。 In addition, the non-uniform mapping functions applied to different square projection surfaces obtained by cube projection are not necessarily the same. For example, the resampling circuit 1915 performs non-uniform mapping on the first square projection surface (for example, the square projection surfaces "L", "F", "R", "BK", "T" and " B" one) at least a part (ie, part or all) is resampled to obtain the first resampled projection surface; the second projection surface (for example, the square shown in Figure 20) is non-uniformly mapped At least a part (ie, part or all) of the other of the projection surface "L", "F", "R", "BK", "T" and "B") is resampled to obtain the second resample Projection surface, where the projection-based frame IMG packaged into a 360 VR projection layout L_VR (which is a CMP layout) contains a first resampled projection surface and a second resampled projection surface, and is used to resample the first projection surface At least one non-uniform mapping function (for example, a non-uniform mapping function in the width direction and/or a non-uniform mapping function in the height direction) and at least one non-uniform mapping function for resampling the second projection surface (for example, the width direction The non-uniform mapping function and/or the non-uniform mapping function in the height direction) are different.

第27圖是根據本發明的實施例的第三種360 VR系統的示意圖。360 VR系統1900和2700之間的主要區別在於:源電子設備2702的轉換電路2714具有 重採樣電路2715和填充電路2716。類似於第19圖中所示的重採樣電路1915,重採樣電路2715被佈置為執行所提出的編碼器側的投影面重採樣功能,以調節採樣密度(或採樣率)。類似於第1圖中所示的填充電路115,填充電路2716被佈置為產生至少一個填充區域以用於減少偽影。轉換電路2714通過在具有填充的投影佈局中對重採樣的投影面和至少一個填充區域進行封裝,來創建基於投影的圖框IMG。例如,360 VR投影佈局L_VR是具有填充的CMP佈局。 Figure 27 is a schematic diagram of a third 360 VR system according to an embodiment of the present invention. The main difference between 360 VR systems 1900 and 2700 is: the conversion circuit 2714 of the source electronic device 2702 has Resampling circuit 2715 and filling circuit 2716. Similar to the resampling circuit 1915 shown in Fig. 19, the resampling circuit 2715 is arranged to perform the proposed encoder-side projection surface resampling function to adjust the sampling density (or sampling rate). Similar to the filling circuit 115 shown in Figure 1, the filling circuit 2716 is arranged to generate at least one filling area for reducing artifacts. The conversion circuit 2714 creates a projection-based frame IMG by encapsulating the resampled projection surface and at least one filled area in a projection layout with filling. For example, the 360 VR projection layout L_VR is a CMP layout with filling.

關於第19圖中所示的實施例,重採樣的正方形投影面被封裝在不具有填充的CMP佈局中,例如1x6立方體佈局,6x1立方體佈局,3x2立方體佈局或2x3立方體佈局。然而,編碼之後的基於投影的圖框IMG可能由於CMP的佈局邊界和/或CMP佈局的不連續邊界而具有偽影。例如,不具有填充的CMP佈局具有頂部佈局邊界,底部佈局邊界,左側佈局邊界和右側佈局邊界。另外,在不具有填充的CMP佈局中封裝的兩個相鄰的重採樣的正方形投影面之間存在至少一個圖像內容不連續邊界。圍繞佈局邊界,不連續邊界和/或採樣率的轉變,可以插入由像素填充產生的附加保護帶(additional guard band)以減少接縫偽影(seam artifact)。 Regarding the embodiment shown in Figure 19, the resampled square projection surface is encapsulated in a CMP layout without filling, such as a 1x6 cube layout, a 6x1 cube layout, a 3x2 cube layout or a 2x3 cube layout. However, the projection-based frame IMG after encoding may have artifacts due to the layout boundary of the CMP and/or the discontinuous boundary of the CMP layout. For example, a CMP layout without padding has a top layout boundary, a bottom layout boundary, a left layout boundary, and a right layout boundary. In addition, there is at least one discontinuous border of image content between two adjacent resampled square projection surfaces encapsulated in a CMP layout without filling. Around layout boundaries, discontinuous boundaries and/or sampling rate transitions, additional guard bands created by pixel filling can be inserted to reduce seam artifacts.

在第一示例性保護帶設計中,可以僅在不連續邊界處添加像素填充。第28圖是根據本發明的實施例的具有內部邊界填充的立方體投影佈局的示意圖。第2圖的子圖(A)示出了所提出的具有內部邊界填充的3×2立方體佈局2802。重採樣的正方形投影面由“0”,“1”,“2”,“3”,“4”和“5”標記。例如,通過將非均勻映射應用於第20圖所示的正方形投影面“F”來生成重採樣的正方形投影面“0”,通過將非均勻映射應用於第20圖所示的正方形投影面“L”來生成重採樣的正方形投影面“1”,通過將非均勻映射應用於第20圖所示的正方形投影面“R”來生成重採樣的正方形投影面“2”,通過將非均勻映射應用於第20圖所示的正方形投影面“BK”來生成重採樣的正方形投影面“3”,通過將非均勻映射應用於 第20圖所示的正方形投影面“T”來生成重採樣的正方形投影面“4”,通過將非均勻映射應用於第20圖所示的正方形投影面“B”來生成重採樣的正方形投影面“5”。 In the first exemplary guard band design, pixel padding may be added only at the discontinuous boundary. Figure 28 is a schematic diagram of a cube projection layout with inner boundary filling according to an embodiment of the present invention. The sub-figure (A) of Figure 2 shows the proposed 3×2 cube layout 2802 with inner boundary filling. The resampled square projection surface is marked by "0", "1", "2", "3", "4" and "5". For example, by applying non-uniform mapping to the square projection surface "F" shown in Figure 20 to generate the resampled square projection surface "0", by applying non-uniform mapping to the square projection surface "F" shown in Figure 20 L" is used to generate the resampled square projection surface "1", and the non-uniform mapping is applied to the square projection surface "R" shown in Figure 20 to generate the resampled square projection surface "2". Apply to the square projection surface "BK" shown in Figure 20 to generate a resampled square projection surface "3", by applying non-uniform mapping to The square projection surface "T" shown in Figure 20 is used to generate the resampled square projection surface "4", and the non-uniform mapping is applied to the square projection surface "B" shown in Figure 20 to generate the resampled square projection surface Face "5".

在不具有填充的典型的3x2立方體投影佈局中,如果重採樣的正方形投影面“1”的底邊與重採樣的正方形投影面“4”的頂邊連接,則在重採樣的正方形投影面“1”和“4”之間存在圖像內容不連續邊界。在不具有填充的典型的3x2立方體投影佈局中,如果重採樣的正方形投影面“0”的底邊與重採樣的正方形投影面“3”的頂邊連接,則在重採樣的正方形投影面“0”和“3”之間存在圖像內容不連續邊界。在不具有填充的典型的3x2立方體投影佈局中,如果重採樣的正方形投影面“2”的底邊與重採樣的正方形投影面“5”的頂邊連接,則在重採樣的正方形投影面“2”和“5”之間存在圖像內容不連續邊界。根據所提出的具有填充的3×2立方體投影佈局2802,在重採樣的正方形投影面“1”和“4”之間插入填充區域PR_DE1,在重採樣的正方形投影面“0”和“3”之間插入填充區域PR_DE2,在重採樣的正方形投影面“2”和“5”之間插入填充區域PR_DE3。 In a typical 3x2 cube projection layout without padding, if the bottom edge of the resampled square projection surface "1" is connected to the top edge of the resampled square projection surface "4", then the resampled square projection surface " There is a discontinuous border of image content between 1" and "4". In a typical 3x2 cube projection layout without padding, if the bottom edge of the resampled square projection surface "0" is connected to the top edge of the resampled square projection surface "3", then the resampled square projection surface " There is a discontinuous border of image content between 0" and "3". In a typical 3x2 cube projection layout without padding, if the bottom edge of the resampled square projection surface "2" is connected to the top edge of the resampled square projection surface "5", then the resampled square projection surface " There is a discontinuous border of image content between 2" and "5". According to the proposed 3×2 cubic projection layout with filling 2802, the filling area PR_DE1 is inserted between the resampled square projection surfaces "1" and "4", and the resampled square projection surfaces "0" and "3" are inserted. A padding area PR_DE2 is inserted between, and a padding area PR_DE3 is inserted between the resampled square projection surfaces "2" and "5".

第一填充區域PR_DE1包括重採樣的正方形投影面“1”的保護帶和重採樣的正方形投影面“4”的保護帶,因此在投影佈局2802中將重採樣的正方形投影面“1”的底邊和重採樣的正方形投影面“4”的頂邊隔離開來。第二填充區域PR_DE2包括重採樣的正方形投影面“0”的保護帶和重採樣的正方形投影面“3”的保護帶,因此在投影佈局2802中將重採樣的正方形投影面“0”的底邊與重採樣的正方形投影面“3”的頂邊隔離開來。第三填充區域PR_DE3包括重採樣的正方形投影面“2”的保護帶和重採樣的正方形投影面“5”的保護帶,因此在投影佈局2802中將重採樣的正方形投影“2”的底邊與重採樣的正方形投影面“5”的頂邊隔離開來。每個保護帶具有保護帶尺寸SGB。因此,填充區域PR_DE1/PR_DE2/PR_DE3的每個的寬度等於2 * SGB。例如,保護帶尺寸SGB的寬度可以是8個像素。應注意,保護帶尺寸SGB是可調節的。作為一種選擇,保護帶尺寸SGB的寬度可以是4個像 素,16個像素,或者任意數量的像素。 The first filling area PR_DE1 includes the guard band of the resampled square projection surface "1" and the guard band of the resampled square projection surface "4". Therefore, the bottom of the resampled square projection surface "1" is set in the projection layout 2802. The edge is separated from the top edge of the resampled square projection surface "4". The second filling area PR_DE2 includes the guard band of the resampled square projection plane "0" and the guard band of the resampled square projection plane "3". Therefore, the bottom of the resampled square projection plane "0" is set in the projection layout 2802. The edge is separated from the top edge of the resampled square projection surface "3". The third filling area PR_DE3 includes the guard band of the resampled square projection surface "2" and the guard band of the resampled square projection surface "5". Therefore, the bottom side of the resampled square projection "2" in the projection layout 2802 Isolated from the top edge of the resampled square projection surface "5". Each protective tape has a protective tape size S GB . Therefore, the width of each of the filling areas PR_DE1/PR_DE2/PR_DE3 is equal to 2*S GB . For example, the width of the guard band size S GB may be 8 pixels. It should be noted that the protective tape size S GB is adjustable. As an option, the width of the guard band size S GB can be 4 pixels, 16 pixels, or any number of pixels.

第28圖的子圖(B)示出了所提出的具有內部邊界填充的6×1立方體佈局2804。在不具有填充的典型的6x1立方體投影佈局中,如果重採樣的正方形投影面“2”的右邊與重採樣的正方形投影面“4”的左邊連接,則在重採樣的正方形投影面“2”和“4”之間存在圖像內容不連續邊界。根據所提出的具有填充的6×1立方體投影佈局2804,在重採樣的正方形投影面“2”和“4”之間插入填充區域PR_DE。填充區域PR_DE包括重採樣的正方形投影面“2”的保護帶和重採樣的正方形投影面“4”的保護帶,因此在投影佈局2804中,將重採樣的正方形投影面“2”的右邊與重採樣的正方形投影面“4”的左邊隔離開來。每個保護帶具有保護帶尺寸SGB。因此,填充區域PR_DE的寬度等於2 * SGB。例如,保護帶尺寸SGB的寬度可以是8個像素。應注意,保護帶尺寸SGB是可調節的。作為一種選擇,保護帶尺寸SGB的寬度可以是4個像素,16個像素,或者任意數量的像素。 The sub-figure (B) of Figure 28 shows the proposed 6×1 cube layout 2804 with inner boundary filling. In a typical 6x1 cube projection layout without padding, if the right side of the resampled square projection surface "2" is connected to the left side of the resampled square projection surface "4", then the resampled square projection surface "2" There is a discontinuous boundary between image content and "4". According to the proposed 6×1 cubic projection layout with filling 2804, a filling area PR_DE is inserted between the resampled square projection surfaces "2" and "4". The filled area PR_DE includes the guard band of the resampled square projection plane "2" and the guard band of the resampled square projection plane "4". Therefore, in the projection layout 2804, the right side of the resampled square projection plane "2" is The resampled square projection surface "4" is isolated from the left. Each protective tape has a protective tape size S GB . Therefore, the width of the filling area PR_DE is equal to 2 * S GB . For example, the width of the guard band size S GB may be 8 pixels. It should be noted that the protective tape size S GB is adjustable. As an option, the width of the guard band size S GB can be 4 pixels, 16 pixels, or any number of pixels.

在第二示例性保護帶設計中,可以在佈局邊界和不連續邊界處添加填充。第29圖是根據本發明的實施例的具有外部邊界填充和內部邊界填充的立方體投影佈局的示意圖。第29圖子圖(A)示出了所提出的具有外部邊界填充和內部邊界填充的3×2立方體佈局2902。如果重採樣的正方形投影面“0”,“1”,“2”,“3”,“4”和“5”被封裝在不具有填充的典型的3x2立方體投影佈局中,則重採樣的正方形投影面“1”,“0”和“2”的頂邊形成頂部佈局邊界,重採樣的正方形投影面“4”,“3”和“5”的底邊形成底部佈局邊界,重採樣的正方形投影面“1”和“4”的左邊形成左側佈局邊界,並且重採樣的正方形投影面的“2”和“5”的右邊形成右側佈局邊界。可以通過將外部邊界填充添加到所提出的具有內部邊界填充的3x2立方體佈局2802,來導出所提出的具有外部邊界填充和內部邊界填充的3x2立方體佈局2902。因此除了在不連續邊界處的填充區域PR_DE1,PR_DE2,PR_DE3之外,所提出的具有外部邊界填充和內部邊界填充的3x2立方體佈局2902還具 有:與重採樣的正方形投影面“1”,“0”和“2”的頂邊連接的頂部填充區域PR_T,與重採樣的正方形投影面“4”,“3”和“5”的底邊連接的底部填充區域PR_B,與重採樣的正方形投影面“1”和“4”的左邊連接的左側填充區域PR_L,以及與重採樣的正方形投影面“2”和“5”的右邊連接的右側填充區域PR_R。 In the second exemplary guard band design, padding may be added at the layout boundary and the discontinuous boundary. FIG. 29 is a schematic diagram of a cube projection layout with outer boundary filling and inner boundary filling according to an embodiment of the present invention. Figure 29, sub-figure (A) shows the proposed 3×2 cube layout 2902 with outer boundary filling and inner boundary filling. If the resampled square projection surface "0", "1", "2", "3", "4" and "5" are encapsulated in a typical 3x2 cube projection layout without padding, then the resampled square projection The top edges of the faces “1”, “0” and “2” form the top layout boundary, and the bottom edges of the resampled square projection faces “4”, “3” and “5” form the bottom layout boundary, and the resampled square projection The left sides of the planes "1" and "4" form the left layout boundary, and the right sides of the resampled square projection planes "2" and "5" form the right layout boundary. The proposed 3x2 cube layout 2902 with external boundary filling and internal boundary filling can be derived by adding external boundary filling to the proposed 3x2 cube layout 2802 with internal boundary filling. Therefore, in addition to the filled areas PR_DE1, PR_DE2, and PR_DE3 at the discontinuous boundaries, the proposed 3x2 cube layout 2902 with outer boundary filling and inner boundary filling also has There are: the top filling area PR_T connected with the top side of the resampled square projection surfaces "1", "0" and "2", and the bottom of the resampled square projection surfaces "4", "3" and "5" The bottom padding area PR_B connected by edges, the left padding area PR_L connected to the left of the resampled square projection surfaces "1" and "4", and the right side of the resampled square projection surfaces "2" and "5" Fill the area PR_R on the right.

頂部填充區域PR_T包括重採樣的正方形投影面“1”的保護帶,重採樣的正方形投影面“0”的保護帶,以及重採樣的正方形投影面“2”的保護帶。底部填充區域PR_B包括重採樣的正方形投影面“4”的保護帶,重採樣的正方形投影面“3”的保護帶,以及重採樣的正方形投影面“5”的保護帶。左側填充區域PR_L包括重採樣的正方形投影面“1”的保護帶和重採樣的正方形投影面“4”的保護帶。右側填充區域PR_R包括重採樣的正方形投影面“2”的保護帶和重採樣的正方形投影面“5”的保護帶。每個保護帶具有保護帶尺寸SGB。因此,外部邊界填充區域PR_T/PR_B/PR_L/PR_R的每個的寬度等於SGB。例如,保護帶尺寸SGB的寬度可以是8個像素。應注意,保護帶尺寸SGB是可調節的。作為一種選擇,保護帶尺寸SGB的寬度可以是4個像素,16個像素,或者任意數量的像素。 The top filling area PR_T includes the guard band of the resampled square projection plane "1", the guard band of the resampled square projection plane "0", and the guard band of the resampled square projection plane "2". The underfill area PR_B includes the guard band of the resampled square projection plane "4", the guard band of the resampled square projection plane "3", and the guard band of the resampled square projection plane "5". The left filling area PR_L includes the guard band of the resampled square projection plane "1" and the guard band of the resampled square projection plane "4". The filling area PR_R on the right includes the guard band of the resampled square projection surface "2" and the guard band of the resampled square projection surface "5". Each protective tape has a protective tape size S GB . Therefore, the width of each of the outer boundary filling areas PR_T/PR_B/PR_L/PR_R is equal to S GB . For example, the width of the guard band size S GB may be 8 pixels. It should be noted that the protective tape size S GB is adjustable. As an option, the width of the guard band size S GB can be 4 pixels, 16 pixels, or any number of pixels.

第29圖的子圖(B)示出了所提出的具有外部邊界填充和內部邊界填充的6×1立方體佈局2904。如果重採樣的正方形投影面“0”,“1”,“2”,“3”,“4”和“5”被封裝在不具有填充的典型的6x1立方體投影佈局,則重採樣的正方形投影面“1”,“0”,“2”,“4”,“3”和“5”的頂邊形成頂部佈局邊界,重採樣的正方形投影面“1”,“0”,“2”,“4”,“3”和“5”的底邊形成底部佈局邊界,重採樣的正方形投影面“1”的左邊形成左側佈局邊界,並且重採樣的正方形投影面“5”的右邊形成右側佈局邊界。可以通過將外部邊界填充添加到所提出的具有內部邊界填充的6x1立方體佈局2804,來導出所提出的具有外部邊界填充和內部邊界填充的6x1立方體佈局2904。因此,除了不連續邊界處的填充區域PR_DE之外,所提出的具有外部邊界填充和內部邊界填充的6x1立方體佈局還具有:與重採樣的正方形 投影面“1”,“0”,“2”,“4”,“3”和“5”的頂邊連接的頂部填充區域PR_T,與重採樣的正方形投影面“1”,“0”,“2”,“4”,“3”和“5”的底邊連接的底部填充區域PR_B,與重採樣的正方形投影面“1”的左邊連接的左側填充區域PR_L,以及與重採樣的正方形投影面“5”的右邊連接的右側填充區域PR_R。 The subfigure (B) of Figure 29 shows the proposed 6×1 cube layout 2904 with outer boundary filling and inner boundary filling. If the resampled square projection planes "0", "1", "2", "3", "4" and "5" are packed in a typical 6x1 cube projection layout without padding, then the resampled square projection plane The top edges of "1", "0", "2", "4", "3" and "5" form the top layout boundary, and the resampled square projection surface "1", "0", "2", " The bottom edges of 4", "3" and "5" form the bottom layout boundary, the left side of the resampled square projection surface "1" forms the left layout boundary, and the right side of the resampled square projection surface "5" forms the right layout boundary . The proposed 6x1 cube layout 2904 with external boundary filling and internal boundary filling can be derived by adding external boundary filling to the proposed 6x1 cube layout 2804 with internal boundary filling. Therefore, in addition to the filled area PR_DE at the discontinuous boundary, the proposed 6x1 cube layout with outer boundary filling and inner boundary filling also has: The top filling area PR_T connected by the top edges of the projection surfaces "1", "0", "2", "4", "3" and "5", and the resampled square projection surface "1", "0", The bottom padding area PR_B connected with the bottom edges of "2", "4", "3" and "5", the left padding area PR_L connected with the left side of the resampled square projection surface "1", and the resampled square The right filling area PR_R connected to the right of the projection surface "5".

頂部填充區域PR_T包括重採樣的正方形投影面“1”的保護帶,重採樣的正方形投影面“0”的保護帶,重採樣的正方形投影面“2”的保護帶,重採樣的正方形投影面“4”的保護帶,重採樣的正方形投影面“3”的保護帶,以及重採樣的正方形投影面“5”的保護帶。底部填充區域PR_B包括重採樣的正方形投影面“1”的保護帶,重採樣的正方形投影面“0”的保護帶,重採樣的正方形投影面“2”的保護帶,重採樣的正方形投影面“4”的保護帶,重採樣的正方形投影面“3”的保護帶,以及重採樣的正方形投影面“5”的保護帶。左側填充區域PR_L包括重採樣的正方形投影面“1”的保護帶。右側填充區域PR_R包括重採樣的正方形投影面“5”的保護帶。每個保護帶具有保護帶尺寸SGB。因此,外部邊界填充區域PR_T/PR_B/PR_L/PR_R的每個的寬度等於SGB。例如,保護帶尺寸SGB的寬度可以是8個像素。應注意,保護帶尺寸SGB是可調節的。作為一種選擇,保護帶尺寸SGB的寬度可以是4個像素,16個像素,或者任意數量的像素。 The top filling area PR_T includes the guard band of the resampled square projection plane "1", the guard band of the resampled square projection plane "0", the guard band of the resampled square projection plane "2", and the resampled square projection plane The guard band of "4", the guard band of the resampled square projection plane "3", and the guard band of the resampled square projection plane "5". The underfill area PR_B includes the guard band of the resampled square projection plane "1", the guard band of the resampled square projection plane "0", the guard band of the resampled square projection plane "2", and the resampled square projection plane The guard band of "4", the guard band of the resampled square projection plane "3", and the guard band of the resampled square projection plane "5". The left filling area PR_L includes the guard band of the resampled square projection surface "1". The filling area PR_R on the right includes the guard band of the resampled square projection surface "5". Each protective tape has a protective tape size S GB . Therefore, the width of each of the outer boundary filling areas PR_T/PR_B/PR_L/PR_R is equal to S GB . For example, the width of the guard band size S GB may be 8 pixels. It should be noted that the protective tape size S GB is adjustable. As an option, the width of the guard band size S GB can be 4 pixels, 16 pixels, or any number of pixels.

在第三示例性保護帶設計中,可以在佈局邊界,不連續邊界和連續邊界處添加填充。第30圖是根據本發明的實施例的具有外部邊界填充和內部邊界填充的其他立方體投影佈局的示意圖。第30圖的子圖(A)示出了提出的另一個具有外部邊界填充和內部邊界填充的3×2立方體佈局3002。在不具有填充的典型3x2立方體投影佈局中,如果重採樣的正方形投影面“1”的右邊與重採樣的正方形投影面”0“的左邊連接,則在重採樣的正方形投影面“1”和“0”之間存在圖像內容連續性邊界。在不具有填充的典型3x2立方體投影佈局中,如果重採樣的正方形投影面“0”的右邊與重採樣的正方形投影面“2”的左邊連接,則在重採樣的正 方形投影面“0”和“2”之間存在圖像內容連續性邊界。在不具有填充的典型3x2立方體投影佈局中,如果重採樣的正方形投影面“4”的右邊與重採樣的正方形投影面“3”的左邊連接,則在重採樣的正方形投影面“4”和“3”之間存在圖像內容連續性邊界。在不具有填充的典型3x2立方體投影佈局中,如果重採樣的正方形投影面“3”的右邊與重採樣的正方形投影面“5”的左邊連接,則在重採樣的正方形投影面“3”和“5”之間存在圖像內容連續性邊界。可以通過向所提出的具有外部邊界填充和內部邊界填充的3×2立方體佈局2902添加更多填充,來導出所提出的具有外部邊界填充和內部邊界填充的3×2立方體佈局3002。因此,除了在不連續邊界處的填充區域PR_DE1,PR_DE2,PR_DE3和在佈局邊界處的填充區域PR_T,PR_B,PR_L,PR_R之外,所提出的具有外部邊界填充和內部邊界填充的立方體佈局3002還具有:與重採樣的正方形投影面“1”的右邊和重採樣的正方形投影面“0”的左邊連接的填充區域PR_CE1,與重採樣的正方形投影面“0”的右邊和重採樣的正方形投影面“2”的左邊連接的填充區域PR_CE2,與重採樣的正方形投影面“4”的右邊和重採樣的正方形投影面“3”的左邊連接的填充區域PR_CE3,以及與重採樣的正方形投影面“3”的右邊和重採樣的正方形投影面“5”的左邊連接的填充區域PR_CE4。 In the third exemplary guard band design, padding may be added at the layout boundary, discontinuous boundary, and continuous boundary. FIG. 30 is a schematic diagram of another cube projection layout with outer boundary filling and inner boundary filling according to an embodiment of the present invention. The sub-figure (A) of Fig. 30 shows another proposed 3×2 cube layout 3002 with outer boundary filling and inner boundary filling. In a typical 3x2 cube projection layout without padding, if the right side of the resampled square projection surface "1" is connected to the left side of the resampled square projection surface "0", then the resampled square projection surface "1" and There is an image content continuity boundary between "0". In a typical 3x2 cube projection layout without padding, if the right side of the resampled square projection surface "0" is connected to the left side of the resampled square projection surface "2", then the There is an image content continuity boundary between the square projection planes "0" and "2". In a typical 3x2 cube projection layout without padding, if the right side of the resampled square projection surface "4" is connected to the left side of the resampled square projection surface "3", then the resampled square projection surface "4" and There are continuity boundaries of image content between "3". In a typical 3x2 cube projection layout without padding, if the right side of the resampled square projection surface "3" is connected to the left side of the resampled square projection surface "5", then the resampled square projection surface "3" and There are continuity boundaries of image content between "5". The proposed 3×2 cube layout 3002 with outer boundary filling and inner boundary filling can be derived by adding more padding to the proposed 3×2 cube layout 2902 with outer boundary filling and inner boundary filling. Therefore, in addition to the filled areas PR_DE1, PR_DE2, PR_DE3 at the discontinuous boundary and the filled areas PR_T, PR_B, PR_L, PR_R at the layout boundary, the proposed cube layout 3002 with outer boundary filling and inner boundary filling also Have: the filling area PR_CE1 connected to the right side of the resampled square projection surface "1" and the left side of the resampled square projection surface "0", and the right side of the resampled square projection surface "0" and the resampled square projection The filled area PR_CE2 connected to the left of the surface "2", the filled area PR_CE3 connected to the right of the resampled square projection surface "4" and the left of the resampled square projection surface "3", and the resampled square projection surface The filling area PR_CE4 is connected to the right side of "3" and the left side of the resampled square projection surface "5".

填充區域PR_CE1包括重採樣的正方形投影面“1”的保護帶和重採樣的正方形投影面“0”的保護帶,因此在投影佈局3002中將重採樣的正方形投影面“1”的右邊與重採樣的正方形投影面“0”的左邊隔離開來。填充區域PR_CE2包括重採樣的正方形投影面“0”的保護帶和重採樣的正方形投影面“2”的保護帶,因此在投影佈局3002中將重採樣的正方形投影面“0”的右邊與重採樣的正方形投影面“1”的左邊隔離開來。填充區域PR_CE3包括重採樣的正方形投影面“4”的保護帶和重採樣的正方形投影面“3”的保護帶,因此在投影佈局3002中將重採樣的正方形投影面“4”的右邊與重採樣的正方形投影面“3”的左邊隔離開來。填充區域 PR_CE4包括重採樣的正方形投影面“3”的保護帶和重採樣的正方形投影面“5”的保護帶,因此在投影佈局3002中將重採樣的正方形投影面“3”的右邊與重採樣的正方形投影面“5”的左邊隔離開來。每個保護帶具有保護帶尺寸SGB。因此,填充區域PR_CE1/PR_CE2/PR_CE3/PR_CE4的每個的寬度等於2 * SGB。例如,保護帶尺寸SGB的寬度可以是8個像素。應注意,保護帶尺寸SGB是可調節的。作為一種選擇,保護帶尺寸SGB的寬度可以是4個像素,16個像素,或者任意數量的像素。 The filling area PR_CE1 includes the guard band of the resampled square projection surface "1" and the guard band of the resampled square projection surface "0". Therefore, in the projection layout 3002, the right side of the resampled square projection surface "1" The sampled square projection plane "0" is isolated from the left. The filled area PR_CE2 includes the guard band of the resampled square projection surface "0" and the guard band of the resampled square projection surface "2". Therefore, in the projection layout 3002, the right side of the resampled square projection surface "0" The sampled square projection plane "1" is isolated from the left. The filled area PR_CE3 includes the guard band of the resampled square projection surface "4" and the guard band of the resampled square projection surface "3". Therefore, in the projection layout 3002, the right side of the resampled square projection surface "4" The sampled square projection surface "3" is isolated from the left. The filling area PR_CE4 includes the guard band of the resampled square projection surface "3" and the guard band of the resampled square projection surface "5". Therefore, in the projection layout 3002, the right side of the resampled square projection surface "3" The sampled square projection surface "5" is isolated from the left. Each protective tape has a protective tape size S GB . Therefore, the width of each of the padding areas PR_CE1/PR_CE2/PR_CE3/PR_CE4 is equal to 2*S GB . For example, the width of the guard band size S GB may be 8 pixels. It should be noted that the protective tape size S GB is adjustable. As an option, the width of the guard band size S GB can be 4 pixels, 16 pixels, or any number of pixels.

第30圖的子圖(B)示出了所提出的另一個具有外部邊界填充和內部邊界填充的6×1立方體佈局3004。在不具有填充的典型的6x1立方體投影佈局中,如果重採樣的正方形投影面“1”的右邊與重採樣的正方形投影面“0”的左邊連接,則在重採樣的正方形投影面“1”和“0”之間存在圖像內容連續性邊界。在不具有填充的典型的6x1立方體投影佈局中,如果重採樣的正方形投影面“0”的右邊與重採樣的正方形投影面“2”的左邊連接,則在重採樣的正方形投影面“0”和“2”之間存在圖像內容連續性邊界。在不具有填充的典型的6x1立方體投影佈局中,如果重採樣的正方形投影面“4”的右邊與重採樣的正方形投影面“3”的左邊連接,則在重採樣的正方形投影面“4”和“3”之間存在圖像內容連續性邊界。在不具有填充的典型的6x1立方體投影佈局中,如果重採樣的正方形投影面“3”的右邊與重採樣的正方形投影面“5”的左邊連接,則在重採樣的正方形投影面“3”和“5”之間存在圖像內容連續性邊界。 The sub-figure (B) of Fig. 30 shows another proposed 6×1 cube layout 3004 with outer boundary filling and inner boundary filling. In a typical 6x1 cube projection layout without padding, if the right side of the resampled square projection surface "1" is connected to the left side of the resampled square projection surface "0", then the resampled square projection surface "1" There is a continuity boundary between image content and "0". In a typical 6x1 cube projection layout without padding, if the right side of the resampled square projection surface "0" is connected to the left side of the resampled square projection surface "2", then the resampled square projection surface "0" There is a continuity boundary between image content and "2". In a typical 6x1 cube projection layout without padding, if the right side of the resampled square projection surface "4" is connected to the left side of the resampled square projection surface "3", then the resampled square projection surface "4" There is a continuity boundary between image content and "3". In a typical 6x1 cube projection layout without padding, if the right side of the resampled square projection surface "3" is connected to the left side of the resampled square projection surface "5", then the resampled square projection surface "3" There is a continuity boundary between image content and "5".

可以通過向所提出的具有外部邊界填充和內部邊界填充的6×1立方體佈局2904添加更多填充,來導出所提出的具有外部邊界填充和內部邊界填充的6×1立方體佈局3004。因此,除了不連續邊界處的填充區域PR_DE和在佈局邊界處的填充區域PR_T,PR_B,PR_L,PR_R之外,所提出的具有外部邊界填充和內部邊界填充的立方體佈局3004還具有:與重採樣的正方形投影面“1”的右邊 和重採樣的正方形投影面“0”的左邊連接的填充區域PR_CE1,與重採樣的正方形投影面“0”的右邊和重採樣的正方形投影面“2”的左邊連接的填充區域PR_CE2,與重採樣的正方形投影面“4”的右邊和重採樣的正方形投影面“3”的左邊連接的填充區域PR_CE3,以及與重採樣的正方形投影面“3”的右邊和重採樣的正方形投影面“5”的左邊連接的填充區域PR_CE4。 The proposed 6×1 cube layout 3004 with outer boundary filling and inner boundary filling can be derived by adding more padding to the proposed 6×1 cube layout 2904 with outer boundary filling and inner boundary filling. Therefore, in addition to the filled area PR_DE at the discontinuous boundary and the filled areas PR_T, PR_B, PR_L, PR_R at the layout boundary, the proposed cube layout 3004 with outer boundary filling and inner boundary filling also has: and resampling To the right of the square projection surface "1" The filling area PR_CE1 connected to the left of the resampled square projection surface "0", the filling area PR_CE2 connected to the right of the resampled square projection surface "0" and the left of the resampled square projection surface "2", and the resampled square projection surface "2". The filling area PR_CE3 connected to the right side of the sampled square projection surface "4" and the left side of the resampled square projection surface "3", and the right side of the resampled square projection surface "3" and the resampled square projection surface "5" "" to the left of the connected padding area PR_CE4.

填充區域PR_CE1包括重採樣的正方形投影面“1”的保護帶和重採樣的正方形投影面“0”的保護帶,在投影佈局3004中將重採樣的正方形投影面“1”的右邊與重採樣的正方形投影面“0”的左邊隔離開來。填充區域PR_CE2包括重採樣的正方形投影面“0”的保護帶和重採樣的正方形投影面“2”的保護帶,在投影佈局3004中將重採樣的正方形投影面“0”的右邊與重採樣的正方形投影面“2”的左邊隔離開來。填充區域PR_CE3包括重採樣的正方形投影面“4”的保護帶和重採樣的正方形投影面“3”的保護帶,在投影佈局3004中將重採樣的正方形投影面“4”的右邊與重採樣的正方形投影面“3”的左邊隔離開來。填充區域PR_CE4包括重採樣的正方形投影面“3”的保護帶和重採樣的正方形投影面“5”的保護帶,在投影佈局3004中將重採樣的正方形投影面“3”的右邊與重採樣的正方形投影面“5”的左邊隔離開來。每個保護帶具有保護帶尺寸SGB。因此,填充區域PR_CE1/PR_CE2/PR_CE3/PR_CE4的每個的寬度等於2 * SGB。例如,保護帶尺寸SGB的寬度可以是8個像素。應注意,保護帶尺寸SGB可調節的。作為一種選擇,保護帶尺寸SGB的寬度可以是4個像素,16個像素,或者任意數量的像素。 The filled area PR_CE1 includes the guard band of the resampled square projection plane "1" and the guard band of the resampled square projection plane "0". In the projection layout 3004, the right side of the resampled square projection plane "1" is resampled The square projection surface "0" is isolated from the left. The filled area PR_CE2 includes the guard band of the resampled square projection plane "0" and the guard band of the resampled square projection plane "2". In the projection layout 3004, the right side of the resampled square projection plane "0" is resampled The square projection surface "2" is isolated from the left. The filled area PR_CE3 includes the guard band of the resampled square projection surface "4" and the guard band of the resampled square projection surface "3". In the projection layout 3004, the right side of the resampled square projection surface "4" is resampled The square projection surface "3" is isolated from the left. The filling area PR_CE4 includes the guard band of the resampled square projection surface "3" and the guard band of the resampled square projection surface "5". In the projection layout 3004, the right side of the resampled square projection surface "3" is resampled The square projection surface "5" is isolated from the left. Each protective tape has a protective tape size S GB . Therefore, the width of each of the padding areas PR_CE1/PR_CE2/PR_CE3/PR_CE4 is equal to 2*S GB . For example, the width of the guard band size S GB may be 8 pixels. It should be noted that the protective tape size S GB is adjustable. As an option, the width of the guard band size S GB can be 4 pixels, 16 pixels, or any number of pixels.

在第一示例性填充設計中,填充電路2716將幾何填充應用於投影面,以確定與投影面連接的填充區域(例如,PR_DE,PR_DE1-PR_DE3,PR_T,PR_B,PR_L,PR_R,和PR_CE1-PR_CE4之一)中包括的像素的像素值。採用第29圖的子圖(A)中所示的填充區域PR_T為例,其包括左側幾何映射區域,中間幾何映射區域和右側幾何映射區域,其中左側幾何映射區域用作重採樣的 正方形投影面“1”的保護帶,中間幾何映射區域用作重採樣的正方形投影面“0”的保護帶,右側幾何映射區域用作重採樣的正方形投影面“2”的保護帶。球體上的區域(例如,第20圖中所示的球體2002)的內容被映射到填充區域PR_T的左側幾何映射區域,其中該球體上的區域與獲得正方形投影面“L”的區域相鄰,並且重採樣的正方形投影面“1”是通過將非均勻映射應用於正方形投影面“L”來獲得的。球體上的區域(例如,第20圖中所示的球體2002)的內容被映射到填充區域PR_T的中間幾何映射區域,其中該球體上的區域與獲得正方形投影面“F”的區域相鄰,並且重採樣的正方形投影面“0”是通過將非均勻映射應用於正方形投影面“F”來獲得的。球體上的區域(例如,第20圖中所示的球體2002)的內容被映射到填充區域PR_T的右側幾何映射區域,其中該球體上的區域與獲得正方形投影面“R”的區域相鄰,並且重採樣的正方形投影面“2”是通過將非均勻映射應用於正方形投影面“R”來獲得的。因此,在重採樣的正方形投影面“1”和填充區域PR_T的左側幾何映射區域之間存在圖像內容連續性,在重採樣的正方形投影面“0”和填充區域PR_T的中間幾何映射區域之間存在圖像內容連續性,並且在重採樣的正方形投影面“2”和填充區域PR_T的右側幾何映射區域之間存在圖像內容連續性。也就是說,內容連續地表示在重採樣的投影面“1”和填充區域PR_T的左側幾個映射區域中,內容連續地表示在重採樣的正方形投影面“0”和填充區域PR_T的中間幾何映射區域中,內容連續地表示在重採樣的正方形投影面“2”和填充區域PR_T的右側幾何映射區域中。 In the first exemplary filling design, the filling circuit 2716 applies geometric filling to the projection surface to determine the filling area connected to the projection surface (for example, PR_DE, PR_DE1-PR_DE3, PR_T, PR_B, PR_L, PR_R, and PR_CE1-PR_CE4 One) the pixel value of the pixel included in the. Take the filled area PR_T shown in the sub-figure (A) of Figure 29 as an example, which includes the left geometric mapping area, the middle geometric mapping area, and the right geometric mapping area. The left geometric mapping area is used as the resampled area. The guard band of the square projection surface "1", the middle geometric mapping area is used as the guard band of the resampled square projection surface "0", and the right geometric mapping area is used as the guard band of the resampled square projection surface "2". The content of the area on the sphere (for example, the sphere 2002 shown in Figure 20) is mapped to the left geometric mapping area of the filled area PR_T, where the area on the sphere is adjacent to the area where the square projection surface "L" is obtained, And the resampled square projection surface "1" is obtained by applying non-uniform mapping to the square projection surface "L". The content of the area on the sphere (for example, the sphere 2002 shown in Figure 20) is mapped to the middle geometric mapping area of the filled area PR_T, where the area on the sphere is adjacent to the area where the square projection surface "F" is obtained, And the resampled square projection surface "0" is obtained by applying non-uniform mapping to the square projection surface "F". The content of the area on the sphere (for example, the sphere 2002 shown in Figure 20) is mapped to the right geometric mapping area of the filled area PR_T, where the area on the sphere is adjacent to the area where the square projection surface "R" is obtained, And the resampled square projection surface "2" is obtained by applying non-uniform mapping to the square projection surface "R". Therefore, there is image content continuity between the resampled square projection surface "1" and the geometric mapping area on the left side of the filling area PR_T, and there is continuity between the resampled square projection surface "0" and the geometric mapping area in the middle of the filling area PR_T. There is continuity of image content between them, and there is continuity of image content between the resampled square projection surface "2" and the geometric mapping area on the right side of the filling area PR_T. That is to say, the content continuously represents the resampled projection surface "1" and the filled area PR_T in the left few mapping areas, and the content continuously represents the resampled square projection surface "0" and the middle geometry of the filled area PR_T. In the mapping area, the content is continuously represented in the geometric mapping area on the right side of the resampled square projection surface "2" and the filling area PR_T.

在第二示例性填充設計中,填充電路2716通過複製包括在與填充區域連接的投影面中的像素的像素值,來設置填充區域(例如,PR_DE,PR_DE1-PR_DE3,PR_T,PR_B,PR_L,PR_R和PR_CE1-PR_CE4中的一個)中包括的像素的像素值。例如,複製投影面的邊界像素以創建與投影面連接的填充區域的填充像素。採用第29圖的子圖(A)中所示的填充區域PR_T為例, 其包括左側複製區域,中間複制區域和右側複製區域,其中左側複製區域用作重採樣的正方形投影面“1”的保護帶,中間複製區域用作重採樣的正方形投影面的保護帶“0”,右側複製區域作為重採樣的正方形投影面“2”的保護帶。由於左側複製區域與重採樣的正方形投影面“1”的頂邊連接,因此位於重採樣的正方形投影面“1”的頂邊的邊界像素被直接複製以設置填充區域PR_T的左側複製區域的像素的像素值。由於中間複製區域與重採樣的正方形投影面“0”的頂邊連接,所以位於重採樣的正方形投影面“0”的頂邊的邊界像素被直接複製以設置填充區域PR_T的中間複製區域的像素的像素值。由於右側複製區域與重採樣的正方形投影面“2”的頂邊連接,所以位於重採樣的正方形投影面“2”的頂邊的邊界像素被直接複製以設置填充區域PR_T的右側複製區域的像素的像素值。 In the second exemplary filling design, the filling circuit 2716 sets the filling area (for example, PR_DE, PR_DE1-PR_DE3, PR_T, PR_B, PR_L, PR_R) by duplicating the pixel values of pixels included in the projection plane connected to the filling area. And one of PR_CE1-PR_CE4). For example, copy the boundary pixels of the projection surface to create the filled pixels of the filled area connected to the projection surface. Take the filled area PR_T shown in sub-picture (A) of Fig. 29 as an example, It includes a left copy area, a middle copy area and a right copy area. The left copy area is used as the guard band of the resampled square projection surface "1", and the middle copy area is used as the guard band "0" of the resampled square projection surface. , The copy area on the right is used as the guard band of the resampled square projection surface "2". Since the left copy area is connected to the top side of the resampled square projection surface "1", the boundary pixels on the top side of the resampled square projection surface "1" are directly copied to set the pixels in the left copy area of the filled area PR_T The pixel value. Since the middle copy area is connected to the top side of the resampled square projection surface "0", the boundary pixels on the top side of the resampled square projection surface "0" are directly copied to set the pixels of the middle copy area of the filled area PR_T The pixel value. Since the right copy area is connected to the top side of the resampled square projection surface "2", the boundary pixels located on the top side of the resampled square projection surface "2" are directly copied to set the pixels of the right copy area of the filling area PR_T The pixel value.

在第三示例性填充設計中,填充電路2716通過複製包括在不與填充區域連接的第二投影面中的像素的像素值,來設置第一投影面的填充區域(例如,PR_DE,PR_DE1-PR_DE3,PR_T,PR_B,PR_L,PR_R和PR_CE1-PR_CE4之一)中包括的像素的像素值。例如,第一投影面和第二投影面對應於3D空間中的立方體的相鄰面(例如,第20圖中所示的立方體2004的相鄰面)。第31圖是根據本發明實施例的通過複製另一投影面中的部分區域來產生一個投影面的填充區域的填充設計的示意圖。在該示例中,通過將非均勻映射應用於第20圖中所示的正方形投影面“F”來生成重採樣的正方形投影面“0”,通過將非均勻映射應用於第20圖所示的正方形投影面“L”來生成重採樣的正方形投影面“1”,通過將非均勻映射應用於第20圖所示的正方形投影面“R”來生成重採樣的正方形投影面“2”,通過將非均勻映射應用於第20圖所示的正方形投影面“BK”來生成重採樣的正方形投影面“3”,通過將非均勻映射應用於第20圖所示的正方形投影面“T”來生成重採樣的正方形投影面“4”,以及通過將非均勻映射應用於第20圖所示的正方形投影面“B”來生成重採樣的正方形投影面“5”。此外,採用如第29圖的子圖(A) 所示的所提出的具有外部邊界填充和內部邊界填充的3×2立方體佈局2902。 In the third exemplary filling design, the filling circuit 2716 sets the filling area of the first projection surface (for example, PR_DE, PR_DE1-PR_DE3) by copying the pixel values of pixels included in the second projection surface that is not connected to the filling area. , PR_T, PR_B, PR_L, PR_R, and PR_CE1-PR_CE4). For example, the first projection surface and the second projection surface correspond to adjacent surfaces of a cube in 3D space (for example, adjacent surfaces of the cube 2004 shown in FIG. 20). FIG. 31 is a schematic diagram of a filling design for generating a filling area of a projection surface by copying a partial area of another projection surface according to an embodiment of the present invention. In this example, the resampled square projection surface "0" is generated by applying the non-uniform mapping to the square projection surface "F" shown in Figure 20, and the non-uniform mapping is applied to the square projection surface "F" shown in Figure 20. The square projection surface "L" is used to generate the resampled square projection surface "1", and the non-uniform mapping is applied to the square projection surface "R" shown in Figure 20 to generate the resampled square projection surface "2". Apply the non-uniform mapping to the square projection surface "BK" shown in Figure 20 to generate the resampled square projection surface "3", and apply the non-uniform mapping to the square projection surface "T" shown in Figure 20. The resampled square projection surface "4" is generated, and the resampled square projection surface "5" is generated by applying non-uniform mapping to the square projection surface "B" shown in FIG. 20. In addition, use the sub-picture (A) shown in Fig. 29 The proposed 3×2 cube layout 2902 with outer boundary filling and inner boundary filling is shown.

基於圖像內容連續性特徵,插入在重採樣的正方形投影面“1”和“4”之間的填充區域PR_DE1包括重採樣的正方形投影面“5”中的部分區域PK的複製品和在重採樣的正方形投影面“1”中的部分區域PA的複製品;插入在重採樣的正方形投影面“0”和“3”之間的填充區域PR_DE2包括重採樣的正方形投影面“5”的部分區域PM的複製品和重採樣的正方形投影面“1”中的部分區域PD的複製品;插入在重採樣的正方形投影面“2”和“5”之間的填充區域PR_DE3包括重採樣的正方形投影面“5”中的部分區域PP的複製品和重採樣的正方形投影面“1”中的部分區域PE的複製品。 Based on the image content continuity feature, the filling area PR_DE1 inserted between the resampled square projection planes "1" and "4" includes a copy of the partial area PK in the resampled square projection plane "5" and A copy of the partial area PA in the sampled square projection surface "1"; the filling area PR_DE2 inserted between the resampled square projection surface "0" and "3" includes the part of the resampled square projection surface "5" A copy of the area PM and a copy of the partial area PD in the resampled square projection surface "1"; the filling area PR_DE3 inserted between the resampled square projection surfaces "2" and "5" includes the resampled square A copy of the partial area PP in the projection surface "5" and a copy of the partial area PE in the resampled square projection surface "1".

此外,基於圖像內容連續性特徵,與重採樣的正方形投影面“1”,“0”和“2”連接的頂部填充區域PR_T包括重採樣正方形投影面“4”的部分區域PI的複製品,重採樣正方形投影面“4”中的部分區域PL的複製品,以及重採樣的正方形投影面“4”中的部分區域PN的複製品;與重採樣的正方形投影面“4”,“3”和“5”連接的底部填充區域PR_B包括重採樣的正方形投影面“2”中的部分區域PC的複製品,重採樣的正方形投影面“2”中的部分區域PH的複製品,以及重採樣的正方形投影面“2”中的部分區域PG的複製品;與重採樣的正方形投影面“1”和“4”連接的左側填充區域PR_L包括重採樣的正方形投影面“3”中的部分區域PJ的複製品和重採樣的正方形投影面“0”的部分區域PB的複製品;與重採樣的正方形投影面“2”和“5”連接的右側填充區域PR_R包括重採樣的正方形投影面“3”中的部分區域PO的複製品和重採樣的正方形投影面“0”的部分區域PF的複製品。 In addition, based on the image content continuity feature, the top filling area PR_T connected to the resampled square projection surface "1", "0" and "2" includes a replica of the partial area PI of the resampled square projection surface "4" , The reproduction of the partial area PL in the resampled square projection surface "4", and the reproduction of the partial area PN in the resampled square projection surface "4"; and the resampled square projection surface "4", "3 The underfill area PR_B connected with "5" and "5" includes a copy of the partial area PC in the resampled square projection surface "2", a copy of the partial area PH in the resampled square projection surface "2", and A copy of the partial area PG in the sampled square projection surface "2"; the left fill area PR_L connected with the resampled square projection surfaces "1" and "4" includes the resampled square projection surface "3" A copy of the area PJ and a copy of the partial area PB of the resampled square projection surface "0"; the right filling area PR_R connected with the resampled square projection surfaces "2" and "5" includes the resampled square projection surface The replica of the partial area PO in "3" and the replica of the partial area PF of the resampled square projection plane "0".

此外,執行角落填充,即在重採樣的投影面“1”,“2”,“4”和“5”的某些角落周圍設置角落填充區域。具體地,角落填充區域中的每個填充像素的像素值是利用相鄰填充區域的邊界像素執行插值導出的。以角落填充區域3102為例,通過對複制的部分區域PB的邊界像素Cy和複制的部分區域PC的邊界像素Cx 執行插值來設置填充像素C的像素值,其中填充像素C和邊界像素Cy具有相同的y軸坐標,填充像素C和邊界像素Cx具有相同的x軸坐標。填充像素C和邊界像素Cx之間的水平距離由i表示。填充像素C和邊界像素Cy之間的垂直距離由j表示。可以使用以下公式來表示插值。 In addition, corner filling is performed, that is, corner filling areas are set around some corners of the resampled projection surfaces "1", "2", "4" and "5". Specifically, the pixel value of each filling pixel in the corner filling area is derived by performing interpolation using the boundary pixels of the adjacent filling area. Taking the corner filling area 3102 as an example, the pixel value of the filling pixel C is set by performing interpolation on the boundary pixel C y of the copied partial area PB and the boundary pixel C x of the copied partial area PC, where the filling pixel C and the boundary pixel C y has the same y-axis coordinate, and the filling pixel C and the boundary pixel C x have the same x-axis coordinate. The horizontal distance between the filling pixel C and the boundary pixel C x is represented by i. The vertical distance between the filling pixel C and the boundary pixel Cy is represented by j. The following formula can be used to express interpolation.

Figure 107133868-A0305-02-0050-3
Figure 107133868-A0305-02-0050-3

關於第27圖中所示的實施例,轉換電路2714具有重採樣電路2715和填充電路2716,根據360 VR投影佈局L_VR,該佈局由所提出的具有填充的CMP佈局設置,使得從重採樣電路2715產生的重採樣的正方形投影面和從填充電路2716產生的填充區域被封裝在基於投影的圖框IMG中。然而,這僅用於說明目的,並不意味著是對本發明的限制。例如,所提出的具有填充的CMP佈局可以由第1圖中所示的轉換電路114使用。因此,第28-31圖中所示的填充區域可以由填充電路115產生,並且第28-31圖中所示的投影面“0”,“1”,“2”,“3”,“4”,“5”可以是第20圖中所示的正方形投影面“L”,“F”,“R”,“BK”,“T”,“B”。根據360 VR投影佈局L_VR,該佈局由所提出的具有填充的CMP佈局設置,直接通過立方體投影而不需重採樣獲得的正方形投影面“L”,“F”,“R”,“BK”,“T”,“B”,以及從填充電路114產生的填充區域被封裝在基於投影的圖框IMG中。 Regarding the embodiment shown in Figure 27, the conversion circuit 2714 has a re-sampling circuit 2715 and a filling circuit 2716, according to the 360 VR projection layout L_VR, which is set by the proposed CMP layout with filling, so that the re-sampling circuit 2715 generates The resampled square projection surface and the filled area generated from the filling circuit 2716 are encapsulated in the projection-based frame IMG. However, this is for illustrative purposes only and is not meant to limit the present invention. For example, the proposed CMP layout with filling can be used by the conversion circuit 114 shown in Figure 1. Therefore, the filled area shown in Figures 28-31 can be generated by the filling circuit 115, and the projection planes shown in Figures 28-31 are "0", "1", "2", "3", "4". ", "5" can be the square projection planes "L", "F", "R", "BK", "T", "B" shown in Figure 20. According to the 360 VR projection layout L_VR, the layout is set by the proposed CMP layout with filling, and the square projection surface "L", "F", "R", "BK", and "BK" are obtained directly through cube projection without resampling. "T", "B", and the filled area generated from the filling circuit 114 are encapsulated in a projection-based frame IMG.

可以根據從如上所述的第一示例性保護帶設計,第二示例性保護帶設計和第三示例性保護帶設計中選擇的一個保護帶設計來設置保護帶。另外,保護帶尺寸SGB的寬度可以是4個像素,8個像素,16個像素,或者任意數量的像素。並且可以在位元流BS中發送保護帶信息,以進一步用於解碼器側的重建/呈現。根據所提出的語法信令方法,可以採用以下語法表。 The protective belt may be set according to one protective belt design selected from the first exemplary protective belt design, the second exemplary protective belt design, and the third exemplary protective belt design as described above. In addition, the width of the guard band size S GB may be 4 pixels, 8 pixels, 16 pixels, or any number of pixels. And the guardband information can be sent in the bit stream BS for further reconstruction/presentation on the decoder side. According to the proposed syntax signaling method, the following syntax table can be used.

Figure 107133868-A0305-02-0050-60
Figure 107133868-A0305-02-0050-60
Figure 107133868-A0305-02-0051-5
Figure 107133868-A0305-02-0051-5

應注意,以上示例性語法表中的描述符指定每個語法元素的解析過程。例如,描述符u(n)描述使用n位的無符號整數(unsigned integer)。 It should be noted that the descriptors in the above exemplary syntax table specify the parsing process of each syntax element. For example, the descriptor u(n) describes an unsigned integer using n bits.

語法元素guard_band_width以亮度樣本為單位指定每個投影面的頂部/左側/右側/底部尺寸上的保護帶的寬度。當解碼圖像具有4:2:0或4:2:2色度格式時,guard_band_width應為偶數。 The syntax element guard_band_width specifies the width of the guard band on the top/left/right/bottom dimensions of each projection surface in units of brightness samples. When the decoded image has 4:2:0 or 4:2:2 chroma format, guard_band_width should be an even number.

語法元素guard_band_type指定保護帶上的像素填充方法。當未指定圍繞投影面的保護帶時,可以將語法元素guard_band_type設置為0(即,guard_band_type==0)。當從複制投影面的邊界像素來導出保護帶中的像素時,語法元素guard_band_type可以設置為1(即,guard_band_type==1)。當從複製3D空間中的相鄰面來導出保護帶中的像素時,可以將語法元素guard_band_type設置為2(即,guard_band_type==2)。當通過將幾何填充應用於投影面來導出投影面的保護帶中的像素時,語法元素guard_band_type可以設置為3(即,guard_band_type==3)。 The syntax element guard_band_type specifies the pixel filling method on the guard band. When the guard band surrounding the projection surface is not specified, the syntax element guard_band_type can be set to 0 (ie, guard_band_type==0). When deriving the pixels in the guard band from the boundary pixels of the copied projection surface, the syntax element guard_band_type can be set to 1 (ie, guard_band_type==1). When the pixels in the guard band are derived from copying adjacent faces in the 3D space, the syntax element guard_band_type can be set to 2 (ie, guard_band_type == 2). When the pixels in the guard band of the projection surface are derived by applying geometric filling to the projection surface, the syntax element guard_band_type can be set to 3 (ie, guard_band_type==3).

如上所述,目標電子設備104的解碼電路122從傳輸裝置103(例如,有線/無線通訊鏈路或存儲介質)接收位元流BS,並執行解碼器功能,以解碼接收到的位元流BS的一部分,來生成解碼圖框IMG',該解碼圖框IMG'是具有由源電子設備102/2702的轉換電路114/2714採用的相同360 VR投影佈局L_VR的基於投影的圖框。在通過具有填充的投影佈局(例如,具有外部邊界填充的投影佈局,具有內部邊界填充的投影佈局,或具有外部邊界填充和內部邊界填充的投影佈局)來設置360 VR投影佈局L_VR的情況下,解碼的圖框IMG'具有位於投影 佈局的佈局邊界和/或面邊界的填充區域。在一個實施例中,解碼電路122可以裁剪填充區域,使得僅重建非填充區域(例如,從360 VR投影獲得的投影面中表示的全向圖像/視訊內容,或者從360 VR投影並進行重採樣后的投影中導出的重採樣投影面中表示的全向圖像/視訊內容)。在替代設計中,可以修改解碼電路122以基於填充區域中的填充像素和非填充區域中的像素執行混合。例如,可以通過將投影面中的像素的原始像素值與填充區域中的對應填充像素的像素值進行混合來更新投影面中的像素的像素值。又例如,可以通過將填充區域中的填充像素的原始像素值與投影面中的對應像素的像素值進行混合來更新填充區域中的填充像素的像素值。 As described above, the decoding circuit 122 of the target electronic device 104 receives the bit stream BS from the transmission device 103 (for example, a wired/wireless communication link or a storage medium), and performs a decoder function to decode the received bit stream BS A part of to generate a decoded frame IMG', which is a projection-based frame with the same 360 VR projection layout L_VR adopted by the conversion circuit 114/2714 of the source electronic device 102/2702. In the case of setting the 360 VR projection layout L_VR through a projection layout with filling (for example, a projection layout with outer boundary filling, a projection layout with inner boundary filling, or a projection layout with outer boundary filling and inner boundary filling), The decoded frame IMG' has the projection The layout boundary and/or the fill area of the surface boundary of the layout. In one embodiment, the decoding circuit 122 may crop the filled area so that only the non-filled area (for example, the omnidirectional image/video content represented in the projection surface obtained from 360 VR projection) is reconstructed, or it is projected from 360 VR and reproduced. The omnidirectional image/video content represented in the resampled projection surface derived from the sampled projection). In an alternative design, the decoding circuit 122 may be modified to perform mixing based on filled pixels in the filled area and pixels in the non-filled area. For example, the pixel value of the pixel in the projection surface can be updated by mixing the original pixel value of the pixel in the projection surface with the pixel value of the corresponding filled pixel in the filling area. For another example, the pixel value of the filled pixel in the filled area can be updated by mixing the original pixel value of the filled pixel in the filled area with the pixel value of the corresponding pixel in the projection surface.

第32圖是根據本發明的實施例的第四種360 VR系統的示意圖。360 VR系統2700和3200之間的主要區別在於目標電子設備3204的解碼電路3222具有混合電路3224,其被配置為在編碼之後執行混合。第33圖是根據本發明的實施例的第五種360 VR系統的示意圖。360 VR系統100和3300之間的主要區別在於目標電子設備3304的解碼電路3322具有混合電路3324,其被配置為在編碼之後執行混合。 Figure 32 is a schematic diagram of a fourth 360 VR system according to an embodiment of the present invention. The main difference between the 360 VR systems 2700 and 3200 is that the decoding circuit 3222 of the target electronic device 3204 has a mixing circuit 3224, which is configured to perform mixing after encoding. Figure 33 is a schematic diagram of a fifth 360 VR system according to an embodiment of the present invention. The main difference between the 360 VR systems 100 and 3300 is that the decoding circuit 3322 of the target electronic device 3304 has a mixing circuit 3324 configured to perform mixing after encoding.

解碼電路3222/3322被佈置為解碼位元流BS的一部分以生成解碼圖框(即,解碼的基於投影的圖框)IMG',其具有封裝在360 VR投影佈局L_VR(例如,具有外部邊界填充的投影佈局,具有內部邊界填充的投影佈局,或具有外部邊界填充和內部邊界填充的投影佈局)中的至少一個投影面和至少一個填充的填充區域。在生成解碼圖框IMG'的解碼處理期間,解碼電路3222/3322通過使用混合電路3224/3324,將包括在投影面中的為第一像素獲得的解碼像素值和包括在填充區域中的為第二像素獲得的解碼像素值進行混合,以重建投影面中的第一像素。例如,通過使用上述第三示例性填充設計,由編碼器側(即,源電子設備2702/102)的填充電路2716/115生成填充區域。這樣封裝在基於投影的圖 框IMG中的填充區域中的第二像素的像素值,是由包括在投影面中的部分區域的像素複制產生的。再例如,通過使用上述第一示例性填充設計,由編碼器側(即源電子設備2702/102)的填充電路2716/115生成填充區域。這樣封裝在基於投影的圖框IMG中的填充區域中的第二像素的像素值,是由包括在投影面中的像素的幾何映射產生的。在本發明的一些實施例中,混合電路3224/3324可以採用基於距離的權重方案。 The decoding circuit 3222/3322 is arranged to decode a part of the bitstream BS to generate a decoded frame (ie, a decoded projection-based frame) IMG', which has a 360 VR projection layout L_VR (for example, with outer boundary padding). In the projection layout, at least one projection surface and at least one filled area in the projection layout with internal boundary filling, or projection layout with external boundary filling and internal boundary filling. During the decoding process for generating the decoded frame IMG', the decoding circuit 3222/3322 uses the mixing circuit 3224/3324 to combine the decoded pixel value obtained for the first pixel included in the projection surface and the decoded pixel value included in the filling area as the first pixel value. The decoded pixel values obtained by the two pixels are mixed to reconstruct the first pixel in the projection surface. For example, by using the third exemplary filling design described above, the filling area is generated by the filling circuit 2716/115 of the encoder side (ie, the source electronic device 2702/102). Encapsulated in projection-based graph The pixel value of the second pixel in the filled area in the frame IMG is generated by copying the pixels of a partial area included in the projection surface. For another example, by using the above-mentioned first exemplary filling design, the filling circuit 2716/115 on the encoder side (ie, the source electronic device 2702/102) generates the filling area. In this way, the pixel value of the second pixel encapsulated in the filled area in the projection-based frame IMG is generated by the geometric mapping of the pixels included in the projection surface. In some embodiments of the present invention, the hybrid circuit 3224/3324 may adopt a distance-based weighting scheme.

關於混合電路3224,可以用於更新從重採樣處理獲得的投影面中的像素的像素值。關於混合電路3324,可以用於更新未經歷重採樣處理的投影面中的像素的像素值。混合電路3224和3324可以採用相同的基於距離的權重方案。在以下基於距離的權重方案的描述中,術語“投影面”可以表示從重採樣處理獲得的投影面或未經過重採樣處理的投影面。 Regarding the mixing circuit 3224, it can be used to update the pixel value of the pixel in the projection surface obtained from the resampling process. Regarding the mixing circuit 3324, it can be used to update the pixel value of the pixel in the projection surface that has not undergone the resampling process. Hybrid circuits 3224 and 3324 can use the same distance-based weighting scheme. In the following description of the distance-based weighting scheme, the term "projection surface" may refer to a projection surface obtained from the resampling process or a projection surface that has not undergone the resampling process.

第34圖是根據本發明的實施例的解碼器側混合操作的示意圖。假設填充電路2716/115採用第31圖中所示的示例性填充設計。因此,根據上述第三示例性填充設計,通過複製另一投影面中的部分區域來獲得一個投影面的填充區域。基於圖像內容連續性特徵,在第34圖中的投影面“4”的左側添加的填充區域,是通過複製正方形投影面“0”中的部分區域PB來設置的。然而,正方形投影面“0”中的部分區域PB的編碼結果和添加到投影面“4”的左側的填充區域的編碼結果不一定相同。因此,在解碼器側(例如,目標電子設備3204/3304),從正方形投影面“0”中的部分區域PB的解碼獲得的解碼像素可以與從添加到投影面“4”的左側的填充區域的解碼獲得的解碼像素混合。如果由於填充而投影面具有不同的寬度和/或高度,則需要根據不同寬度和/或高度的比率對填充區域進行重採樣(例如,插值填充像素)以進行混合。 Figure 34 is a schematic diagram of a decoder-side mixing operation according to an embodiment of the present invention. Assume that the fill circuit 2716/115 uses the exemplary fill design shown in Figure 31. Therefore, according to the third exemplary filling design described above, a filling area of one projection surface is obtained by copying a partial area of another projection surface. Based on the characteristics of the continuity of image content, the padding area added to the left of the projection surface "4" in Figure 34 is set by copying the partial area PB in the square projection surface "0". However, the encoding result of the partial area PB in the square projection surface "0" and the encoding result of the filling area added to the left side of the projection surface "4" are not necessarily the same. Therefore, on the decoder side (for example, the target electronic device 3204/3304), the decoded pixels obtained from the decoding of the partial area PB in the square projection surface "0" can be compared with the padding area added to the left side of the projection surface "4". The decoded pixels obtained by the decoding are mixed. If the projection surface has different widths and/or heights due to filling, the filled area needs to be resampled (for example, interpolated filling pixels) according to the ratio of the different widths and/or heights for mixing.

投影面中的目标像素(即,具有将被更新的像素值的源像素)的重建像素值是更新的像素值,可以通過使用以下公式計算。 The reconstructed pixel value of the target pixel (ie, the source pixel having the pixel value to be updated) in the projection surface is the updated pixel value, which can be calculated by using the following formula.

Figure 107133868-A0305-02-0054-6
Figure 107133868-A0305-02-0054-6

在上面的公式(4)中,SREC表示投影面中的目標像素(例如,正方形投影面“0”中的像素A)的重建像素值(更新的像素值),S表示為目標像素獲得的解碼像素值(原始像素值),T表示為填充區域中的對應填充像素(例如,添加到正方形投影面“4”的左側的填充區域中的填充像素A')獲得的解碼像素值。M表示填充區域的填充寬度,N表示目標像素與投影面的一邊之間的距離。在第34圖中,像素A和正方形投影面“0”的頂邊之間的距離由d表示(N=d),並且填充像素A'和正方形投影面“4”的左邊之間的距離由d'表示。根據上述第三示例性填充設計,由於通過複製另一投影面中的部分區域來獲得一個投影面的填充區域,因此在填充區域中,填充像素A'位於整數位置(即,(x,y),其中x和y是整數位置),並且d的值等於d'的值。 In the above formula (4), S REC represents the reconstructed pixel value (updated pixel value) of the target pixel in the projection surface (for example, pixel A in the square projection surface "0"), and S represents the value obtained for the target pixel The decoded pixel value (original pixel value), T is expressed as the decoded pixel value obtained by the corresponding filling pixel in the filling area (for example, the filling pixel A′ added to the filling area on the left side of the square projection surface "4"). M represents the filling width of the filled area, and N represents the distance between the target pixel and one side of the projection surface. In Figure 34, the distance between pixel A and the top edge of the square projection surface "0" is represented by d (N=d), and the distance between the filling pixel A'and the left side of the square projection surface "4" is represented by d'means. According to the third exemplary filling design described above, since the filling area of one projection surface is obtained by copying a part of the area in another projection surface, the filling pixel A'is located at an integer position in the filling area (ie, (x, y) , Where x and y are integer positions), and the value of d is equal to the value of d'.

然而,如果根據前述第一示例性填充設計,通過將幾何填充應用於投影面來獲得投影面的填充區域,則填充像素A'可以位於非整數位置(即,(x,y),在填充區域中x不是整數位置,和/或y不是整數位置),並且d的值可以與d'的值不同。具體地,由於幾何映射,填充像素A'的2D坐標是從像素A的2D坐標轉換得到的。也就是說,位於正方形投影面“0”中的整數位置(即,(X,Y),其中X和Y是整數位置)的像素A可以被映射到填充區域中的位於非整數位置(即,(x,y),其中x不是整數位置,和/或y不是整數位置)的填充像素A'。由於位於非整數位置的填充像素A'的像素值在填充區域中不可直接獲得,因此混合電路3224/3324可以通過使用插值濾波器來處理位於填充區域中的整數位置處的填充像素,來確定位於填充區域中的非整數位置的填充像素A'的像素值。在確定位於非整數位置的填充像素A'的像素值之後,使用上述公式(4)來計算正方形投影面“0”中的像素A的更新的像素值。 However, if according to the aforementioned first exemplary filling design, the filling area of the projection surface is obtained by applying geometric filling to the projection surface, the filling pixel A'may be located at a non-integer position (ie, (x, y), in the filling area Where x is not an integer position, and/or y is not an integer position), and the value of d can be different from the value of d'. Specifically, due to geometric mapping, the 2D coordinates of the filled pixel A′ are converted from the 2D coordinates of the pixel A. That is to say, the pixel A located at an integer position (ie, (X, Y), where X and Y are integer positions) in the square projection surface "0" can be mapped to a non-integer position in the filled area (ie, (x, y), where x is not an integer position, and/or y is not an integer position) filling pixel A'. Since the pixel value of the filled pixel A'located at a non-integer position cannot be directly obtained in the filled area, the mixing circuit 3224/3324 can process the filled pixel located at the integer position in the filled area by using an interpolation filter to determine that it is located The pixel value of the filled pixel A'at a non-integer position in the filled area. After determining the pixel value of the filled pixel A′ located at a non-integer position, the above formula (4) is used to calculate the updated pixel value of the pixel A in the square projection surface “0”.

在上面的公式(4)中,N表示目標像素與投影面的一邊之間的距離。在第一示例性設計中,N由正整數值設置。例如,N=i+1,其中i是從投影面的一邊計數的索引(距離),並且0

Figure 107133868-A0305-02-0055-58
i<M。第35圖是根據本發明實施例的更新投影面中的像素的像素值所涉及的像素的權重值與像素的索引值之間關係的示意圖。假設M=4且N=i+1。上述公式(4)可以改寫如下。 In the above formula (4), N represents the distance between the target pixel and one side of the projection surface. In the first exemplary design, N is set by a positive integer value. For example, N=i+1, where i is the index (distance) counted from one side of the projection surface, and 0
Figure 107133868-A0305-02-0055-58
i<M. FIG. 35 is a schematic diagram of the relationship between the weight value of the pixel and the index value of the pixel involved in updating the pixel value of the pixel on the projection surface according to an embodiment of the present invention. Suppose M=4 and N=i+1. The above formula (4) can be rewritten as follows.

Figure 107133868-A0305-02-0055-7
Figure 107133868-A0305-02-0055-7

在上面的公式(5)中,Ai表示為投影面中的具有索引i的目標像素獲得的解碼像素值,Ai,updated表示投影面中的目標像素的重建像素值(更新的像素值),A'i表示為填充區域中的對應填充像素獲得的解碼像素值。如第35圖所示,目標像素A3(即,i=3的Ai)的權重等於8(即,4+3+1),並且對應的填充像素A'3(即,i=3的A'i)的權重等於0(即4-3-1);目標像素A2(即,i=2的Ai)的權重等於7(即4+2+1),並且對應的填充像素A'2(即,i=2的A'i)的權重等於1(即4-2-1);目標像素A1(即,i=1的Ai)的權重等於6(即4+1+1),並且對應的填充像素A'1(即,i=1的A'i)的權重等於2(即4-1-1);以及目標像素A0(即,i=0的Ai)的權重等於5(即4+0+1),並且填充像素A'0(即,i=0的A'i)的權重等於3(即4-0-1)。 In the above formula (5), A i represents the decoded pixel value of a target pixel having the index i of the projection plane obtained, A i, updated value represents a reconstructed pixel (the pixel value updating) of the target pixel in the projection plane , A'i represents the decoded pixel value obtained by the corresponding filling pixel in the filling area. As shown in FIG. 35, the target pixel right A 3 (i.e., i = A 3 i) of weight equal to 8 (i.e., 4 + 3 + 1), and the corresponding padding pixels A '3 (i.e., i = 3 of a 'i) of weight is equal to 0 (i.e., 4-3-1); a 2 target pixel (i.e., i = a i 2) of the weight is equal to 7 (i.e., 2 + 4 + 1), corresponding to the pixels a and the filling '2 (i.e., i = 2 is a' i) weight weight equal to 1 (i.e., 4-2-1); target pixel a 1 (i.e., i = a i 1) of a weight equal to 6 (i.e., 1 + 4 + 1), and the corresponding padding pixels a '1 (i.e., i = a 1 a' i) of weight is equal to 2 (i.e., 4-1-1); and a target pixel a 0 (i.e., i = a 0 to i) 5 is equal to the weight (i.e., 0 + 4 + 1), and the filling A'0 of the pixel (i.e., i = a 0 of the 'i) of weight is equal to 3 (i.e., 4-0-1).

如第35圖所示,由於相鄰權重值“5”和“3”之間的差等於2,權重并不是隨索引(距離)以恆定的步長(constant step size)從8減小到0。為了解決這個問題,本發明提出目標像素與投影面的一邊之間的距離的另一個設定。在第二示例性設計中,N由正的非整數值設置。例如,N=i+0.5,其中i是從投影面的一邊計數的索引(距離),並且0

Figure 107133868-A0305-02-0055-59
i<M。第36圖是根據本發明實施例的更新投影面中的像素的像素值所涉及的像素的權重值與像素的索引值之間的另一關係的示意圖。假設M=4且N=i+0.5。上述公式(4)可以改寫如下。 As shown in Figure 35, since the difference between the adjacent weight values "5" and "3" is equal to 2, the weight does not decrease from 8 to 0 with the index (distance) in a constant step size (constant step size) . To solve this problem, the present invention proposes another setting of the distance between the target pixel and one side of the projection surface. In the second exemplary design, N is set by a positive non-integer value. For example, N=i+0.5, where i is the index (distance) counted from one side of the projection surface, and 0
Figure 107133868-A0305-02-0055-59
i<M. FIG. 36 is a schematic diagram of another relationship between the weight value of the pixel and the index value of the pixel involved in updating the pixel value of the pixel in the projection plane according to an embodiment of the present invention. Suppose M=4 and N=i+0.5. The above formula (4) can be rewritten as follows.

Figure 107133868-A0305-02-0056-8
Figure 107133868-A0305-02-0056-8

在上面的公式(6)中,Ai表示為投影面中的具有索引i的目標像素獲得的解碼像素值,Ai,updated表示投影面中的目標像素的重建像素值(更新的像素值),A'i表示為填充區域中的對應填充像素獲得的解碼像素值。如第36圖所示,目標像素A3(即,i=3的Ai)的權重等於7.5(即,4+3+0.5),並且對應的填充像素A'3(即,,i=3的A'i)的權重等於0.5(即4-3-0.5);目標像素A2(即,i=2的Ai)的權重等於6.5(即4+2+0.5),並且對應的填充像素A'2(即,i=2的A'i)的權重等於1.5(即4-2-0.5);目標像素A1(即,i=1的Ai)的權重等於5.5(即4+1+0.5),並且對應的填充像素A'1(即,i=1的A'i)的權重等於2.5(即4-1-0.5);以及目標像素A0(即,i=0的Ai)的權重等於4.5(即4+0+0.5),並且填充像素A'0(即,i=0的A'i)的權重等於3.5(即4-0-0.5)。權重以恆定的步長,從7.5減小到0.5。 In the above formula (6), A i represents the decoded pixel value of a target pixel having the index i of the projection plane obtained, A i, updated value represents a reconstructed pixel (the pixel value updating) of the target pixel in the projection plane , A'i represents the decoded pixel value obtained by the corresponding filling pixel in the filling area. As shown in FIG. 36, the right of the target pixel A 3 (i.e., i = A i 3) of weight equal to 7.5 (i.e., 0.5 + 4 + 3), and the corresponding padding pixels A '3 (i.e. ,, i = 3 the a 'i) of weight is equal to 0.5 (i.e., 4-3-0.5); the target pixel a 2 (i.e., i = a i 2) of the weight is equal to 6.5 (i.e., 0.5 + 2 + 4), and the corresponding pixel is filled a '2 (i.e., i = a 2 a' i) of weight equal to 1.5 weight (i.e., 4-2-0.5); target pixel a 1 (i.e., i = a i 1) of a weight equal to 5.5 (i.e., 1 + 4 +0.5), and the corresponding padding pixels a '1 (i.e., i = a 1' of weight i) of weight equal to 2.5 (i.e., 4-1-0.5); and a target pixel a 0 (i.e., i = a i 0 of ) of weight equal to 4.5 (i.e., 0.5 + 0 + 4), and filling the pixel a '0 (i.e., i = a 0 of the' i) of weight is equal to 3.5 (i.e., 4-0-0.5). The weight is reduced from 7.5 to 0.5 in constant steps.

對於某些應用,可以在目標電子設備中實現轉換電路,以將具有第一360VR投影格式的投影佈局的解碼圖框轉換為具有與第一360 VR投影格式不同的第二360VR投影格式的投影佈局的轉換圖框。例如,從解碼電路生成的解碼圖框可以是基於投影的圖框,其具有封裝在具有填充的立方體投影佈局中的投影面和填充區域;並且由轉換電路生成並由後續圖形呈現電路使用的轉換圖框(converted frame)可以是基於投影的圖框,其具有封裝在不具有填充的典型的等距矩形投影佈局中的投影面。位於轉換圖框中的整數位置(即,(x,y),其中x和y是整數位置)的像素可以被映射到位於解碼圖框中非整數位置的像素(即,(x',y'),其中x'不是整數位置和/或y'不是整數位置)。也就是說,當執行投影佈局轉換時,轉換電路可能將位於轉換圖框中的整數位置處的像素的像素值映射為位於解碼圖框中的非整數位置處的像素的像素值。由於位於非整數 位置的像素的像素值在解碼圖框中不可直接獲得,因此轉換電路可通過使用插值濾波器處理位於解碼圖框中的整數位置的像素,來確定位於解碼圖框中的非整數位置的像素的像素值。在具有非整數位置的像素位於解碼圖框中的投影佈局的佈局邊界處或不連續邊界附近的情況下,插值濾波器使用的像素可能包括從投影面中選擇的至少一個像素和從對應的填充區域中選擇的至少一個像素。之後通過混合(例如,基於距離的權重)來更新投影面中的像素的像素值。然而,如果相應填充區域中的填充像素的像素值不通過混合(例如,基於距離的權重)來更新。由於使用投影面中像素的更新像素值和對應填充區域中的填充像素的原始(未更新)像素值執行插值,結果有可能引入偽影。為解決該問題,本發明提出了另一種混合方案,即對投影面中的像素和填充區域中的填充像素都通過混合來更新像素值。 For some applications, a conversion circuit can be implemented in the target electronic device to convert the decoded frame of the projection layout with the first 360VR projection format into a projection layout with a second 360VR projection format different from the first 360VR projection format The conversion frame. For example, the decoded frame generated from the decoding circuit may be a projection-based frame, which has a projection surface and a filled area encapsulated in a cubic projection layout with filling; and a conversion generated by the conversion circuit and used by the subsequent graphics rendering circuit A converted frame may be a projection-based frame with a projection surface encapsulated in a typical equidistant rectangular projection layout without filling. Pixels located at integer positions in the conversion frame (i.e., (x, y), where x and y are integer positions) can be mapped to pixels located at non-integer positions in the decoding frame (i.e., (x',y' ), where x'is not an integer position and/or y'is not an integer position). That is, when performing projection layout conversion, the conversion circuit may map the pixel values of pixels located at integer positions in the conversion frame to the pixel values of pixels located at non-integer positions in the decoding frame. Because it is in a non-integer The pixel value of the pixel at the position cannot be directly obtained in the decoded frame, so the conversion circuit can determine the pixel at the non-integer position of the decoded frame by using an interpolation filter to process the pixel at the integer position in the decoded frame. Pixel values. In the case where a pixel with a non-integer position is located at or near the layout boundary of the projection layout in the decoded frame, the pixel used by the interpolation filter may include at least one pixel selected from the projection surface and the corresponding padding At least one pixel selected in the area. Then, the pixel values of the pixels in the projection surface are updated by blending (for example, weight based on distance). However, if the pixel value of the filled pixel in the corresponding filled area is not updated by blending (for example, distance-based weight). Since the interpolation is performed using the updated pixel value of the pixel in the projection surface and the original (unupdated) pixel value of the filled pixel in the corresponding filled area, artifacts may be introduced as a result. To solve this problem, the present invention proposes another hybrid solution, that is, the pixels in the projection surface and the filled pixels in the filled area are mixed to update the pixel value.

第37圖是根據本發明的實施例的第六種360 VR系統的示意圖。360 VR系統3200和3700之間的主要區別在於:目標電子設備3704的解碼電路3722中的混合電路3724被佈置為對投影面中的像素和填充區域中的填充像素都通過混合來更新像素值,以及目標電子設備3704還包括轉換電路3726,其被設置為將具有一個360 VR投影佈局的解碼圖框(即,解碼的基於投影的圖框)IMG'轉換為具有不同的360 VR投影佈局的轉換圖框(即,轉換後的基於投影的圖框)IMG"。在本發明的一個實施例中,360 VR投影佈局L_VR可以是具有填充的CMP佈局,並且轉換的360 VR投影佈局可以是不具有填充的ERP佈局。然而,這僅用於說明目的,並不意味著是對本發明的限制。 Figure 37 is a schematic diagram of a sixth 360 VR system according to an embodiment of the present invention. The main difference between the 360 VR system 3200 and 3700 is that the mixing circuit 3724 in the decoding circuit 3722 of the target electronic device 3704 is arranged to update the pixel values of the pixels in the projection surface and the filling pixels in the filling area by mixing. And the target electronic device 3704 also includes a conversion circuit 3726, which is configured to convert a decoded frame with a 360 VR projection layout (ie, a decoded projection-based frame) IMG' into a conversion with a different 360 VR projection layout Frame (ie, converted projection-based frame) IMG". In one embodiment of the present invention, the 360 VR projection layout L_VR may be a CMP layout with filling, and the converted 360 VR projection layout may be without Filled ERP layout. However, this is for illustrative purposes only and is not meant to be a limitation of the present invention.

第38圖是根據本發明的實施例的第七種360 VR系統的示意圖。360 VR系統3300和3800之間的主要區別在於:目標電子設備3804的解碼電路3822中的混合電路3824被佈置為對投影面中的像素和填充區域中的填充像素都通過混合來更新像素值,以及目標電子設備3804還包括轉換電路3826,轉換電路3826 被佈置成將具有一個360 VR投影佈局的解碼圖框IMG'轉換為具有不同的360 VR投影佈局的轉換圖框IMG"。在本發明的一個實施例中,360 VR投影佈局L_VR可以是CMP佈局,並且轉換後的360 VR投影佈局可以是ERP佈局。然而,這僅用於說明目的,並不意味著是對本發明的限制。 Figure 38 is a schematic diagram of a seventh 360 VR system according to an embodiment of the present invention. The main difference between the 360 VR system 3300 and 3800 is: the mixing circuit 3824 in the decoding circuit 3822 of the target electronic device 3804 is arranged to update the pixel value by mixing the pixels in the projection surface and the filled pixels in the filling area. And the target electronic device 3804 also includes a conversion circuit 3826, and a conversion circuit 3826 It is arranged to convert a decoded frame IMG' with a 360 VR projection layout into a converted frame IMG with a different 360 VR projection layout. In one embodiment of the present invention, the 360 VR projection layout L_VR may be a CMP layout , And the converted 360 VR projection layout can be an ERP layout. However, this is only for illustrative purposes and is not meant to limit the present invention.

關於第37圖和第37圖中所示的實施例,基於投影的圖框IMG和解碼圖框IMG'使用的360 VR投影佈局L_VR可以是一個360 VR投影格式的投影佈局,其不同於與轉換圖框IMG"相關聯的另一個360 VR投影格式。例如,解碼圖框IMG'和轉換圖框IMG"使用的不同投影佈局可以從一組投影佈局中選擇,包括ERP佈局,複數個基於立方體的投影佈局(例如,CMP佈局,金字塔投影佈局,截斷的正方形金字塔投影佈局和基於視埠的立方投影佈局),複數個基於三角形的投影佈局(例如,八面體投影佈局,二十面體投影佈局,四面體投影佈局,基於四邊形石英的投影佈局,以及基於六邊形石英的投影佈局),分段球體投影(segmented sphere projection,SSP)佈局,赤道圓柱投影佈局,旋轉球體投影佈局等。 Regarding the embodiment shown in Figure 37 and Figure 37, the 360 VR projection layout L_VR used by the projection-based frame IMG and the decoded frame IMG' can be a projection layout in a 360 VR projection format, which is different from the conversion Another 360 VR projection format associated with the frame IMG. For example, the different projection layouts used by the decoded frame IMG' and the converted frame IMG can be selected from a set of projection layouts, including ERP layouts, and multiple cube-based Projection layouts (for example, CMP layout, pyramid projection layout, truncated square pyramid projection layout, and viewport-based cubic projection layout), multiple triangle-based projection layouts (for example, octahedral projection layout, icosahedral projection layout , Tetrahedral projection layout, projection layout based on quadrilateral quartz, and projection layout based on hexagonal quartz), segmented sphere projection (SSP) layout, equatorial cylindrical projection layout, rotating sphere projection layout, etc.

在本發明的一些實施例中,混合電路3724/3824可以採用基於距離的權重方案。關於混合電路3724,它可以用於更新從重採樣處理獲得的投影面中的像素的像素值,並且還可以用於更新填充區域中的填充像素的像素值。關於混合電路3824,它可以用於更新未經歷重採樣處理的投影面中的像素的像素值,並且還可以用於更新填充區域中的填充像素的像素值。混合電路3724和3824可以採用相同的基於距離的權重方案。在以下基於距離的權重方案的描述中,術語“投影面”可以表示從重採樣處理獲得的投影面或未經過重採樣處理的投影面。 In some embodiments of the present invention, the hybrid circuit 3724/3824 may adopt a distance-based weighting scheme. Regarding the mixing circuit 3724, it can be used to update the pixel value of the pixel in the projection surface obtained from the resampling process, and can also be used to update the pixel value of the filling pixel in the filling area. Regarding the mixing circuit 3824, it can be used to update the pixel value of the pixel in the projection surface that has not undergone the resampling process, and can also be used to update the pixel value of the filled pixel in the filled area. Hybrid circuits 3724 and 3824 can use the same distance-based weighting scheme. In the following description of the distance-based weighting scheme, the term "projection surface" may refer to a projection surface obtained from the resampling process or a projection surface that has not undergone the resampling process.

請再次參考第34圖。假設填充電路2716/115採用第31圖中所示的示例性填充設計。因此,根據上述第三示例性填充設計,通過複製另一投影面中的 部分區域來獲得一個投影面的填充區域。基於圖像內容連續性特徵,添加到投影面“4”的左邊的填充區域由正方形投影面“0”中的部分區域PB的複製品來設置。然而,正方形投影面“0”中的部分區域PB的編碼結果和添加到投影面“4”的左邊的填充區域的編碼結果不一定相同。因此,在解碼器側(例如,目標電子設備3704/3804),從正方形投影面“0”中的部分區域PB的解碼獲得的解碼像素可以與從添加到投影面“4”的左邊的填充區域的解碼獲得的解碼像素進行混合。在本實施例中,混合電路3724/3824用於通過混合正方形投影面“0”的部分區域PB中的像素的原始像素值和添加到投影面“4”的左邊的填充區域中的填充像素的原始像素值,來更新正方形投影面“0”中的部分區域PB中的像素的像素值;以及混合電路3724/3824還用於通過混合添加到投影面“4”的左邊的填充區域中的填充像素的原始像素值與正方形投影面“0”的部分區域PB中的像素的原始像素值,來更新添加到投影面“4”的左邊的填充區域中的填充像素的像素值。如果由於填充而投影面具有不同的寬度和/或高度,則需要根據不同寬度和/或高度的比率對填充區域進行重採樣(例如,填充像素的插值)以進行混合。 Please refer to Figure 34 again. Assume that the fill circuit 2716/115 uses the exemplary fill design shown in Figure 31. Therefore, according to the third exemplary filling design described above, by duplicating another projection surface Part of the area to obtain a fill area of the projection surface. Based on the image content continuity feature, the filled area added to the left of the projection surface "4" is set by a copy of the partial area PB in the square projection surface "0". However, the encoding result of the partial area PB in the square projection surface "0" and the encoding result of the filling area added to the left of the projection surface "4" are not necessarily the same. Therefore, on the decoder side (for example, the target electronic device 3704/3804), the decoded pixels obtained from the decoding of the partial area PB in the square projection surface "0" can be compared with the padding area added to the left of the projection surface "4". The decoded pixels obtained by the decoding are mixed. In this embodiment, the mixing circuit 3724/3824 is used to mix the original pixel values of the pixels in the partial area PB of the square projection surface "0" with the filling pixels added to the filling area on the left of the projection surface "4". The original pixel value is used to update the pixel value of the pixel in the partial area PB in the square projection surface "0"; and the mixing circuit 3724/3824 is also used to add the filling in the filling area on the left of the projection surface "4" by mixing The original pixel value of the pixel and the original pixel value of the pixel in the partial area PB of the square projection surface “0” are used to update the pixel value of the filled pixel added to the filling area on the left of the projection surface “4”. If the projection surface has different widths and/or heights due to filling, the filled area needs to be resampled (for example, interpolation of filling pixels) according to the ratio of different widths and/or heights for mixing.

在投影面和填充區域的任何一個中的目標像素(即,具有將要更新的像素值的源像素)的重建像素值,可以通過使用以下公式來計算更新的像素值。 The reconstructed pixel value of the target pixel (ie, the source pixel having the pixel value to be updated) in any one of the projection surface and the filled area, the updated pixel value can be calculated by using the following formula.

Figure 107133868-A0305-02-0059-9
Figure 107133868-A0305-02-0059-9

在上面的公式(7)中,S'REC表示目標像素(例如,第34圖中所示的正方形投影面“0”中的像素A,或添加到第34圖中所示的正方形投影面“4”的左邊的填充區域中的填充像素A')的重建像素值(更新的像素值),S'表示為目標像素獲得的解碼像素值(原始像素值),T表示為將與目標像素混合的對應像素(例如,添加到第34圖中所示的正方形投影面“4”的左邊的填充區域中的填充像素 A',或者如第34圖所示的正方形投影面“0”中的像素A)獲得的解碼像素值;M表示填充區域的填充寬度,N'表示目標像素與投影面的一邊之間的距離。在目標像素是第34圖所示的正方形投影面“0”中的像素A的情況下,N'由表示像素A和正方形投影面“0”的頂邊之間的距離的值來設定。在目標像素是被添加到第34圖所示的正方形投影面“4”的左邊的填充區域中的填充像素A'的另一種情況下,N'由表示填充像素A'和正方形投影面“4”的左邊之間的距離的值來設定。 In the above formula (7), S'REC represents the target pixel (for example, pixel A in the square projection surface "0" shown in Figure 34, or added to the square projection surface "0" shown in Figure 34 The reconstructed pixel value (updated pixel value) of the filled pixel A'in the filled area on the left of 4”, S'represents the decoded pixel value (original pixel value) obtained by the target pixel, and T represents the mixed with the target pixel Corresponding pixels (for example, the filled pixel A'added to the filling area on the left of the square projection surface "4" shown in Figure 34, or the pixel in the square projection surface "0" shown in Figure 34 A) The decoded pixel value obtained; M represents the filling width of the filled area, and N'represents the distance between the target pixel and one side of the projection surface. In the case where the target pixel is the pixel A on the square projection surface "0" shown in FIG. 34, N'is set by a value representing the distance between the pixel A and the top edge of the square projection surface "0". In another case where the target pixel is the filling pixel A'added to the filling area on the left of the square projection surface "4" shown in Fig. 34, N'is represented by the filling pixel A'and the square projection surface "4""To set the value of the distance between the left side.

在第34圖中,像素A和正方形投影面“0”的頂邊之間的距離由d表示,並且填充像素A'和正方形投影面“4”的左邊之間的距離由d'表示。根據上述第三示例性填充設計,由於通過複製另一投影面中的部分區域來獲得一個投影面的填充區域,因此填充區域中的填充像素A'位於整數位置(即,(x,y),其中x和y是整數位置),並且d的值等於d'的值。 In Figure 34, the distance between the pixel A and the top edge of the square projection surface "0" is represented by d, and the distance between the filling pixel A'and the left side of the square projection surface "4" is represented by d'. According to the third exemplary filling design described above, since the filling area of one projection surface is obtained by copying a part of the area in another projection surface, the filling pixel A'in the filling area is located at an integer position (ie, (x, y), Where x and y are integer positions), and the value of d is equal to the value of d'.

然而,根據前述第一示例性填充設計,如果通過將幾何填充應用於投影面來獲得投影面的填充區域,若目標像素(具有將要更新的像素值)位於整數位置(即,(x,y),其中x和y是整數位置),則非目標像素(其將與目標像素混合的對應像素)可能位於非整數位置(即,(x',y'),其中x'不是整數位置,和/或y'不是整數位置)。在目標像素是正方形投影面“0”中的像素A的情況下,非目標像素是填充像素A',其可能位於填充區域中的非整數位置,因此d可能與d'的值不同。具體地,由於幾何映射,填充像素A'的2D坐標是從像素A的2D坐標轉換的。也就是說,位於正方形投影面“0”中的整數位置(即,(x,y),其中x和y是整數位置)的像素A可能被映射到填充區域中的位於非整數位置(即,(x',y'),其中x'不是整數位置,和/或y'不是整數位置)的填充像素A'。由於位於非整數位置的填充像素A'的像素值在填充區域中不可直接獲得,因此混合電路3724/3824可以通過使用插值濾波器處理位於填充區域中的整數位置處的填充像素,來確定位於填充區域中的非整數位置的填充像素A'的像素值。在確定位於非 整數位置的填充像素A'的像素值之後,使用上述公式(7)來計算像素A的更新的像素值。 However, according to the aforementioned first exemplary filling design, if the filling area of the projection surface is obtained by applying geometric filling to the projection surface, if the target pixel (with the pixel value to be updated) is located at an integer position (ie, (x, y) , Where x and y are integer positions), then the non-target pixel (the corresponding pixel that will be mixed with the target pixel) may be located at a non-integer position (ie, (x',y'), where x'is not an integer position, and/ Or y'is not an integer position). In the case where the target pixel is the pixel A in the square projection plane "0", the non-target pixel is the filled pixel A', which may be located at a non-integer position in the filled area, so the value of d may be different from d'. Specifically, due to geometric mapping, the 2D coordinates of the filled pixel A′ are converted from the 2D coordinates of the pixel A. That is to say, the pixel A located at an integer position in the square projection surface "0" (ie, (x, y), where x and y are integer positions) may be mapped to a non-integer position in the filling area (ie, (x', y'), where x'is not an integer position, and/or y'is not an integer position) padding pixel A'. Since the pixel value of the filled pixel A'located at a non-integer position is not directly available in the filled area, the mixing circuit 3724/3824 can determine that the filled pixel located at the integer position in the filled area by using an interpolation filter to process the filled pixel The pixel value of the filled pixel A'at a non-integer position in the area. In the non- After filling the pixel value of the pixel A′ at the integer position, the above formula (7) is used to calculate the updated pixel value of the pixel A.

在目標像素是添加到正方形投影面“4”的左邊的填充區域中的填充像素A'的另一種情況下,非目標像素可能是位於正方形投影面“0”中的非整數位置(即,(x',y'),其中x'不是整數位置,和/或y'不是整數位置)的像素A,因此d的值可能與d'的值不同。具體地,由於幾何映射,像素A的2D坐標是從填充像素A'的2D坐標轉換的。也就是說,填充區域中位於整數位置(即,(x,y),其中x和y是整數位置)的填充像素A'可能被映射到位於正方形投影面“0”中的非整數位置(即,(x',y'),其中x'不是整數位置,和/或y'不是整數位置)的像素A。由於位於非整數位置的像素A的像素值在正方形投影面“0”中不可直接獲得,因此混合電路3724/3824可通過使用插值濾波器處理位於正方形投影面“0”中的整數位置的像素,來確定位於正方形投影面“0”中的非整數位置的像素A的像素值。在確定位於非整數位置的像素A的像素值之後,使用上述公式(7)來計算填充像素A'的更新的像素值。 In another case where the target pixel is the filled pixel A'added to the filling area on the left of the square projection surface "4", the non-target pixel may be a non-integer position located in the square projection surface "0" (ie, ( x', y'), where x'is not an integer position, and/or y'is not an integer position) pixel A, so the value of d may be different from the value of d'. Specifically, due to the geometric mapping, the 2D coordinates of the pixel A are converted from the 2D coordinates of the filled pixel A′. That is to say, the filled pixel A'located at an integer position (ie, (x, y), where x and y are integer positions) in the filled area may be mapped to a non-integer position located in the square projection plane "0" (ie , (X', y'), where x'is not an integer position, and/or y'is not an integer position) pixel A. Since the pixel value of the pixel A located in a non-integer position is not directly available in the square projection surface "0", the mixing circuit 3724/3824 can process the pixel located in the integer position in the square projection surface "0" by using an interpolation filter, To determine the pixel value of the pixel A located at a non-integer position in the square projection plane "0". After determining the pixel value of the pixel A located at the non-integer position, the above formula (7) is used to calculate the updated pixel value of the filled pixel A′.

在上面的公式(7)中,N'表示目標像素與投影面的一邊之間的距離,其中目標像素可以是投影面中的像素或填充區域中的填充像素。在第一示例性設計中,N'由非整數值設置。例如,N'=i+0.5,其中i是從投影面的一邊計數的索引(距離)。在本實施例中,當目標像素是位於投影面外部的填充區域中的填充像素時,i被設置為負整數值;並且當目標像素是包括在投影面中的像素時,i被設置為非負整數值。第39圖是根據本發明的實施例的更新投影面中的像素的像素值和填充區域中的填充像素的像素值所涉及的像素的權重值與像素的索引值之間關係的示意圖。假設M=4且N=i+0.5。上述公式(7)可以改寫如下。 In the above formula (7), N′ represents the distance between the target pixel and one side of the projection surface, where the target pixel may be a pixel in the projection surface or a filled pixel in a filled area. In the first exemplary design, N'is set by a non-integer value. For example, N'=i+0.5, where i is the index (distance) counted from one side of the projection surface. In this embodiment, when the target pixel is a filled pixel located in a filled area outside the projection surface, i is set to a negative integer value; and when the target pixel is a pixel included in the projection surface, i is set to non-negative Integer value. FIG. 39 is a schematic diagram of the relationship between the weight value of the pixel and the index value of the pixel involved in updating the pixel value of the pixel in the projection plane and the pixel value of the filled pixel in the filled area according to an embodiment of the present invention. Suppose M=4 and N=i+0.5. The above formula (7) can be rewritten as follows.

Figure 107133868-A0305-02-0061-10
Figure 107133868-A0305-02-0061-10

在上面的公式(8)中,Ai表示為具有索引i的目標像素獲得的解碼像素值,Ai,updated表示目標像素的重建像素值(更新的像素值),並且A'i表示為對應的非目標像素獲得的解碼像素值。如第39圖所示,投影面中的目標像素A3(即,i=3的Ai)的權重等於7.5(即,4+3+0.5),並且填充區域中的對應的非目標像素A'3(即,i=3的A'i)的權重等於0.5(即,4-3-0.5);投影面中目標像素A2(即,i=2的Ai)的權重等於6.5(即4+2+0.5),並且填充區域中對應的非目標像素A'2(即,i=2的A'i)的權重等於1.5(即4-2-0.5);投影面中目標像素A1(即,i=1的Ai)的權重等於5.5(即4+1+0.5),並且填充區域中對應的非目標像素A'1(即,i=1的A'i)的權重等於2.5(即4-1-0.5);以及投影面中的目標像素A0(即,i=0的Ai)的權重等於4.5(即,4+0+0.5),並且填充區域中的對應的非目標像素A'0(即,i=0的A'i)的權重等於3.5(即,4-0-0.5)。 In the above formula (8), A i represents the decoded pixel value obtained by the target pixel with index i, A i,updated represents the reconstructed pixel value (updated pixel value) of the target pixel, and A'i represents the corresponding The decoded pixel value obtained by the non-target pixel. As shown in FIG. 39, the target pixel right projection plane A 3 (i.e., i = A i 3) of weight equal to 7.5 (i.e., 0.5 + 4 + 3), and to fill the area corresponding to the non-target pixel A '3 (i.e., i = a 3 of the' i) of weight is equal to 0.5 (i.e., 4-3-0.5); projection target pixel a 2 (i.e., i = a i 2) of the weight is equal to 6.5 (i.e. 0.5 + 4 + 2), and the non-filling region corresponding target pixel a '2 (i.e., i = a 2' of weight i) of weight equal to 1.5 (i.e., 4-2-0.5); projection target pixel a 1 (i.e., i = a i 1) of weight equal to 5.5 (i.e., 4 + 1 + 0.5), and the filling region corresponding to the non-target pixel a '1 (i.e., i = a 1 a' i) weight of weight equal to 2.5 (i.e., 4-1-0.5); and a projection plane of the target pixel a 0 (i.e., i = a i 0) of a weight equal to 4.5 (i.e., 0.5 + 4 + 0), and the corresponding unfilled region target pixel a '0 (i.e., i = 0 is a' i) of weight equal to 3.5 weight (i.e., 4-0-0.5).

此外,如第39圖所示,填充區域中的目標像素A-1(即,i=-1的Ai)的權重等於3.5(即,4-1+0.5),並且投影面中的對應的非目標像素A'-1(即,具有i=-1的A'i)的權重等於4.5(即,4+1-0.5);填充區域中的目標像素A-2(即,i=-2的Ai)的權重等於2.5(即,4-2+0.5),並且投影面中的對應的非目標像素A'-2(即,i=-2的A'i)的權重等於5.5(即4+2-0.5);填充區域中的目標像素A-3(即,i=-3的Ai)的權重等於1.5(即,4-3+0.5),並且投影面中的對應的非目標像素A'-3(即,i=-3的A'i)的權重等於6.5(即4+3-0.5);以及填充區域中的目標像素A-4(即,i=-4的Ai)的權重等於0.5(即,4-4+0.5),並且投影面中的對應的非目標像素A'-4(即,i=-4的A'i)的權重等於7.5(即4+4-0.5)。 Furthermore, as shown in FIG. 39, the right of the target pixel filling region A -1 (i.e., i = A -1 i) of weight equal to 3.5 (i.e., 4-1 + 0.5), and the projection plane corresponding to non-target pixels a '-1 (i.e., with i = a -1 of the' i) of weight is equal to 4.5 (i.e., 4 + 1-0.5); filling region of a target pixel a -2 (i.e., i = -2 the a I) a weight equal to 2.5 (i.e., 4-2 + 0.5), and non-target pixel a corresponding to the projection plane '2 (i.e., i = -2 to a' I) of the weight is equal to 5.5 (i.e. 4 + 2-0.5); filling region of a target pixel a -3 (i.e., i = -3 to a i) of weight is equal to 1.5 (i.e., 4-3 + 0.5), and the projection plane corresponding to the non-target pixel a '-3 (i.e., i = -3 is a' i) of weight equal to 6.5 weight (i.e. 4 + 3-0.5); and a target pixel a in the filling region 4 (i.e., i = a i -4 of ) of weight equal to 0.5 (i.e., 4-4 + 0.5), and the projection plane corresponding to the non-target pixel a '-4 (i.e., i = -4 a' of weight i) a weight equal to 7.5 (i.e. 4 + 4 -0.5).

在第二示例性設計中,N'由整數值來設置。例如,N'=i+1,其中i是從投影面的一邊計數的索引(距離)。在該實施例中,當目標像素是填充區域中的填充像素時,i被設置為負整數值,以及當目標像素是投影面中的像素時,i被設置為非負整數值。第40圖是根據本發明的實施例的更新投影面中的像素的 像素值和填充區域中的填充像素的像素值所涉及的像素的權重值與像素的索引值之間另一種關係的示意圖。假設M=4且N'=i+1。上述公式(7)可以改寫如下。 In the second exemplary design, N'is set by an integer value. For example, N'=i+1, where i is the index (distance) counted from one side of the projection surface. In this embodiment, when the target pixel is a filled pixel in the filled area, i is set to a negative integer value, and when the target pixel is a pixel in the projection plane, i is set to a non-negative integer value. Figure 40 is an example of updating the pixels in the projection plane according to an embodiment of the present invention. A schematic diagram of another relationship between the weight value of the pixel involved in the pixel value and the pixel value of the filled pixel in the filled area and the index value of the pixel. Assume that M=4 and N'=i+1. The above formula (7) can be rewritten as follows.

Figure 107133868-A0305-02-0063-11
Figure 107133868-A0305-02-0063-11

在上面的公式(9)中,Ai表示為具有索引i的目標像素獲得的解碼像素值,Ai,updated表示目標像素的重建像素值(更新的像素值),並且A'i表示為對應的非目標像素獲得的解碼像素值。如第40圖所示,投影面中的目標像素A3(即,i=3的Ai)的權重等於8(即,4+3+1),並且填充區域中的對應的非目標像素A'3(即,i=3的A'i)的權重等於0(即,4-3-1);投影面中的目標像素A2(即,i=2的Ai)的權重等於7(即4+2+1),並且填充區域中的對應的非目標像素A'2(即,i=2的A'i)的權重等於1(即4-2-1);投影面中的目標像素A1(即,i=1的Ai)的權重等於6(即4+1+1),並且填充區域中的對應的非目標像素A'1(即,i=1的A'i)的權重等於2(即4-1-1);以及投影面中的目標像素A0(即,i=0的Ai)的權重等於5(即,4+0+1),並且填充區域中的對應的非目標像素A'0(即,i=0的A'i)的權重等於3(即,4-0-1)。 In the above formula (9), A i represents the decoded pixel value obtained by the target pixel with index i, A i,updated represents the reconstructed pixel value (updated pixel value) of the target pixel, and A'i represents the corresponding The decoded pixel value obtained by the non-target pixel. As shown in FIG. 40, the target pixel right projection plane A 3 (i.e., i = A i 3) is equal to 8 weight (i.e., 1 + 3 + 4), and filling the region corresponding to the non-target pixel A ' 3 (i.e., A'i with i=3) has a weight equal to 0 (i.e., 4-3-1); the target pixel A 2 in the projection plane (i.e., A i with i=2) has a weight equal to 7( i.e. 4 + 2 + 1), and to fill the area corresponding to the non-target pixel a '2 (i.e., i = a 2 a' i) of weight is equal to 1 (i.e., 4-2-1); target projection plane pixel a 1 (i.e., i = a i 1) of the weight is equal to 6 (i.e. 4 + 1 + 1), and to fill the area corresponding to the non-target pixel a '1 (i.e., i = 1 is a' i) the weights are equal to 2 (i.e., 4-1-1); and a projection plane of the target pixel a 0 (i.e., i = a i 0) of a weight equal to 5 (i.e., 0 + 4 + 1), and fills the area the non-target pixel a corresponding to the weight '0 (i.e., i = a 0 of the' i) a weight equal to 3 (i.e., 4-0-1).

此外,如第40圖所示,填充區域中的目標像素A-1(即,i=-1的Ai)的權重等於4(即,4-1+1),並且投影面中的對應的非目標像素A'-1(即,i=-1的A'i)的權重等於4(即4+1-1);填充區域中的目標像素A-2(即,具有i=-2的Ai)的權重等於3(即,4-2+1),並且投影面中的對應的非目標像素A'-2(即,具有i=-2的A'i)的權重等於5(即,4+2-1);填充區域中的目標像素A-3(即,i=-3的Ai)的權重等於2(即,4-3+1),並且投影面中的對應的非目標像素A'-3(即,i=-3的A'i)的權重等於6(即4+3-1);以及填充區域中的目標像素A-4(即,i=-4的Ai)的權重等於1(即,4-4+1),並且投影面中的對應的非目標像素A'-4 (即,i=-4的A'i)的權重等於7(即4+4-1)。 Furthermore, as shown in FIG. 40, the right of the target pixel filling region A -1 (i.e., i = A -1 i) of weight equal to 4 (i.e., 4-1 + 1), and the projection plane corresponding to a non-target pixel right '-1 (i.e., i = a -1 of the' i) a weight equal to 4 (i.e. 4 + 1-1); filling region of the target pixel a -2 (i.e., having the i = -2 a i) of weight is equal to 3 (i.e., 4-2 + 1), and the corresponding non-target pixel a projection plane '2 (i.e., with i = -2 a' of weight i) a weight equal to 5 (i.e. , 4 + 2-1); the right of the target pixel a -3 filled region (i.e., i = a i -3) of weight equal to 2 (i.e., 4-3 + 1), and the corresponding non-projection plane target pixel a '-3 (i.e., i = -3 is a' i) of weight equal to the weight 6 (i.e. 4 + 3-1); and a target pixel a in the filling region 4 (i.e., i = -4 in a i) the weight is equal to 1 (i.e., 4-4 + 1), and the projection plane corresponding to the non-target pixel a '-4 (i.e., i = -4 in a' i) of weight is equal to 7 (i.e. 4+ 4-1).

所屬技術領域中具有通常知識者將容易地觀察到,可以在保留本發明的教導的同時對裝置和方法進行多種修改和更改。因此,上述公開內容應被解釋為僅受所附權利要求的範圍和界限的限制。 Those with ordinary knowledge in the technical field will easily observe that various modifications and changes can be made to the device and method while retaining the teaching of the present invention. Therefore, the above disclosure should be construed as being limited only by the scope and boundaries of the appended claims.

103:傳輸裝置 103: Transmission device

112:視訊捕獲設備 112: Video capture equipment

116:視訊編碼器 116: Video Encoder

124:圖形呈現電路 124: Graphic presentation circuit

126:顯示螢幕 126: display screen

2702:源電子設備 2702: Source Electronic Equipment

2714:轉換電路 2714: Conversion circuit

2715:重採樣電路 2715: Resampling circuit

2716:填充電路 2716: Fill the circuit

3200:360VR系統 3200: 360VR system

3204:目標電子裝置 3204: target electronic device

3222:解碼電路 3222: Decoding circuit

3224:混合電路 3224: hybrid circuit

Claims (20)

一種視訊處理方法,包括:從球體的全向內容獲得複數個投影面,其中通過立方體投影將該球體的全向內容映射到該等投影面上,並且該等投影面包括第一投影面;通過重採樣電路,通過非均勻映射對該第一投影面的至少一部分進行重採樣,以獲得第一重採樣投影面,其中該第一投影面具有第一源區域和第二源區域,該第一重採樣投影面具有第一重採樣區域和第二重採樣區域,該第一重採樣區域是從該第一源區域以第一採樣密度進行重採樣得到的,該第二重採樣區域是從該第二源區域以第二採樣密度進行重採樣得到的,其中該第一採樣密度不同於該第二採樣密度;根據該立方體投影的投影佈局生成基於投影的圖框,其中該基於投影的圖框包括封裝在該投影佈局中的該第一重採樣投影面;以及編碼該基於投影的圖框以生成位元流的一部分。 A video processing method includes: obtaining a plurality of projection surfaces from the omnidirectional content of a sphere, wherein the omnidirectional content of the sphere is mapped to the projection surfaces by cube projection, and the projection surfaces include a first projection surface; The re-sampling circuit re-samples at least a part of the first projection surface through non-uniform mapping to obtain a first re-sampled projection surface, wherein the first projection surface has a first source area and a second source area, the first The resampled projection surface has a first resampled area and a second resampled area. The first resampled area is obtained by re-sampling from the first source area with a first sampling density, and the second resampled area is obtained from the The second source area is re-sampled at a second sampling density, where the first sampling density is different from the second sampling density; a projection-based frame is generated according to the projection layout of the cube projection, wherein the projection-based frame It includes the first resampled projection surface encapsulated in the projection layout; and encoding the projection-based frame to generate a part of the bit stream. 如申請專利範圍第1項所述之視訊處理方法,其中,該第一投影面和該第一重採樣投影面具有相同的形狀類型。 According to the video processing method described in claim 1, wherein the first projection surface and the first resampled projection surface have the same shape type. 如申請專利範圍第1項所述之視訊處理方法,其中,該等投影面還包括第二投影面,該視訊處理方法還包括:通過非均勻映射對該第二投影面的至少一部分進行重採樣,以獲得第二重採樣投影面,其中,該基於投影的圖框還包括封裝在該投影佈局中的該第二重採樣投影面;以及用於重採樣該第一投影面的至少一部分的至少一個非均勻映射函數不同於用於重採樣該第二投影面的至少一部分的至少一個非均勻映射函數。 For the video processing method described in claim 1, wherein the projection surfaces further include a second projection surface, and the video processing method further includes: resampling at least a part of the second projection surface through non-uniform mapping , To obtain a second resampled projection surface, wherein the projection-based frame further includes the second resampled projection surface encapsulated in the projection layout; and at least a portion of the first projection surface for resampling at least One non-uniform mapping function is different from at least one non-uniform mapping function used to resample at least a part of the second projection surface. 如申請專利範圍第1項所述之視訊處理方法,其中,該非均勻映射包括用於在第一方向上重採樣該第一投影面的至少一部分的第一非均勻映射 函數,以及用於在不同於該第一方向的第二方向上重採樣該第一投影面的至少一部分的第二非均勻映射函數,並且該第二非均勻映射函數與該第一非均勻映射函數不同。 The video processing method according to claim 1, wherein the non-uniform map includes a first non-uniform map for re-sampling at least a part of the first projection surface in the first direction Function, and a second non-uniform mapping function for re-sampling at least a portion of the first projection surface in a second direction different from the first direction, and the second non-uniform mapping function is the same as the first non-uniform mapping The function is different. 如申請專利範圍第1項所述之視訊處理方法,其中,該非均勻映射包括用於重採樣該第一投影面的至少一部分的非均勻映射函數,並且該非均勻映射函數由以下表示:f(p)=A*p2+B*p,其中A+B=1,p表示在所選方向上的該第一投影面內的像素位置,f(p)表示在該所選方向上的該第一重採樣投影面內的像素位置。 According to the video processing method described in claim 1, wherein the non-uniform mapping includes a non-uniform mapping function for resampling at least a part of the first projection surface, and the non-uniform mapping function is represented by: f(p )=A*p 2 +B*p, where A+B=1, p represents the pixel position in the first projection plane in the selected direction, and f(p) represents the first projection in the selected direction A resample the pixel position in the projection plane. 如申請專利範圍第5項所述之視訊處理方法,其中A=-0.385且B=1.385。 The video processing method described in item 5 of the scope of patent application, where A=-0.385 and B=1.385. 一種視訊處理方法,包括:根據立方圖投影從球體的全向內容中獲得複數個投影面;通過填充電路生成至少一個填充區域;通過封裝在該立方體投影的投影佈局中的該等投影面和該至少一個填充區域來生成基於投影的圖框,其中,封裝在該投影佈局中的該等投影面包括第一投影面;封裝在該投影佈局中的該至少一個填充區域包括第一填充區域;該第一填充區域至少與該第一投影面連接,並且該第一填充區域形成該投影佈局的一個邊界的至少一部分;以及編碼該基於投影的圖框以生成位元流的一部分。 A video processing method includes: obtaining a plurality of projection surfaces from the omnidirectional content of a sphere according to a cube map projection; generating at least one filled area through a filling circuit; and using the projection surfaces and the projection surface packaged in the projection layout of the cube projection At least one filled area to generate a projection-based frame, wherein the projection surfaces encapsulated in the projection layout include a first projection surface; the at least one filled area encapsulated in the projection layout includes the first filled area; the The first filling area is at least connected with the first projection surface, and the first filling area forms at least a part of a boundary of the projection layout; and encoding the projection-based frame to generate a part of the bit stream. 如申請專利範圍第7項所述之視訊處理方法,其中,封裝在該投影佈局中的該至少一個填充區域還包括第二填充區域,第三填充區域和第四填充區域,以及該第一填充區域,該第二填充區域,該第三填充區域和該第四填充區域分別形成該投影佈局的四個邊界。 The video processing method according to item 7 of the scope of patent application, wherein the at least one filled area encapsulated in the projection layout further includes a second filled area, a third filled area, and a fourth filled area, and the first filled area The area, the second filling area, the third filling area and the fourth filling area respectively form the four boundaries of the projection layout. 如申請專利範圍第7項所述之視訊處理方法,其中,該等投影面還包 括第二投影面;如果該第一投影面的一邊與該第二投影面的一邊連接,則在該第一投影面的該一邊與該第二投影面的該一邊之間存在圖像內容不連續邊界;該至少一個填充區域還包括第二填充區域;該第二填充區域與該第一投影面的該一邊和該第二投影面的該一邊連接,用於在該投影佈局中將該第一投影面的該一邊與該第二投影面的該一邊隔離開來。 Such as the video processing method described in item 7 of the scope of patent application, wherein the projection surfaces also include Include a second projection surface; if one side of the first projection surface is connected to one side of the second projection surface, there is an image content difference between the side of the first projection surface and the side of the second projection surface. Continuous boundary; the at least one filled area further includes a second filled area; the second filled area is connected to the one side of the first projection surface and the one side of the second projection surface, and is used to connect the first projection surface in the projection layout The one side of a projection surface is separated from the side of the second projection surface. 如申請專利範圍第7項所述之視訊處理方法,其中,該等投影面還包括第二投影面;如果該第一投影面的一邊與該第二投影面的一邊連接,則在該第一投影面的該一邊與該第二投影面的該一邊之間存在圖像內容連續性邊界;該至少一個填充區域還包括第二填充區域;該第二填充區域與該第一投影面的該一邊和該第二投影面的該一邊連接,用於在該投影佈局中將該第一投影面的該一邊與該第二投影面的該一邊隔離開來。 For example, in the video processing method described in item 7 of the scope of patent application, the projection surfaces also include a second projection surface; if one side of the first projection surface is connected to one side of the second projection surface, There is an image content continuity boundary between the one side of the projection surface and the side of the second projection surface; the at least one filled area further includes a second filled area; the second filled area and the one side of the first projection surface It is connected to the one side of the second projection surface for separating the one side of the first projection surface from the one side of the second projection surface in the projection layout. 如申請專利範圍第7項所述之視訊處理方法,其中,生成該至少一個填充區域的步驟包括:將幾何填充應用於該第一投影面,以確定包括在該第一填充區域中的像素的像素值。 According to the video processing method described in claim 7, wherein the step of generating the at least one filled area includes: applying geometric filling to the first projection surface to determine the pixels included in the first filled area Pixel values. 如申請專利範圍第7項所述之視訊處理方法,其中,生成該至少一個填充區域的步驟包括:通過複製包括在該第一投影面中的特定像素的像素值,來設置包括在該第一填充區域中的像素的像素值。 According to the video processing method described in claim 7, wherein the step of generating the at least one filled area includes: setting the pixel value of a specific pixel included in the first projection plane by copying the pixel value of the specific pixel included in the first projection surface. The pixel value of the pixel in the filled area. 如申請專利範圍第7項所述之視訊處理方法,其中,封裝在該投影佈局中的該等投影面還包括不與該第一填充區域連接的第二投影面,並且生成該至少一個填充區域的步驟包括:通過複製包括在該第二投影面中的特定像素的像素值,來設置包括在該第一填充區域中的像素的像素值。 According to the video processing method described in claim 7, wherein the projection surfaces encapsulated in the projection layout further include a second projection surface that is not connected to the first filling area, and the at least one filling area is generated The steps include: setting the pixel value of the pixel included in the first filling area by copying the pixel value of the specific pixel included in the second projection surface. 如申請專利範圍第7項所述之視訊處理方法,其中,該第一填充區域的填充寬度是4個像素。 According to the video processing method described in claim 7, wherein the filling width of the first filling area is 4 pixels. 一種視訊處理方法,包括:接收位元流的一部分;以及解碼該位元流的一部分以生成解碼的基於投影的圖框,其具有封裝在360度虛擬現實投影的投影佈局中至少一個投影面和至少一個填充區域,該步驟包括:通過混合包括在該至少一個填充區域中的第一像素獲得的解碼像素值和包括在該至少一個投影面中的第二像素獲得的解碼像素值,重建包括在該至少一個填充區域中的該第一像素。 A video processing method includes: receiving a part of a bit stream; and decoding a part of the bit stream to generate a decoded projection-based frame, which has at least one projection surface and at least one projection surface encapsulated in a projection layout of 360-degree virtual reality projection At least one filled area, the step including: by mixing the decoded pixel value obtained by the first pixel included in the at least one filled area and the decoded pixel value obtained by the second pixel included in the at least one projection surface, reconstructing The first pixel in the at least one filled area. 如申請專利範圍第15項所述之視訊處理方法,其中,該第一像素包括在該至少一個填充區域的第一填充區域中,該第二像素包括在該至少一個投影面的第一投影面中;該位元流的一部分是通過編碼基於投影的圖框產生的,其中該基於投影的圖框包括封裝在該360度虛擬現實投影的該投影佈局中的該至少一個投影面和該至少一個填充區域;通過複製包括在該第一投影面中的像素的像素值,生成封裝在該基於投影的圖框中的該第一填充區域中包括的像素的像素值。 The video processing method according to claim 15, wherein the first pixel is included in the first filling area of the at least one filling area, and the second pixel is included in the first projection surface of the at least one projection surface In; a part of the bit stream is generated by encoding a projection-based frame, wherein the projection-based frame includes the at least one projection surface and the at least one encapsulated in the projection layout of the 360-degree virtual reality projection Filled area; by copying the pixel values of pixels included in the first projection surface, the pixel values of pixels included in the first filled area encapsulated in the projection-based frame are generated. 如申請專利範圍第15項所述之視訊處理方法,其中,該第一像素包括在該至少一個填充區域的第一填充區域中,該第二像素包括在該至少一個投影面的第一投影面中;該位元流的一部分是通過編碼基於投影的圖框產生的,其中該基於投影的圖框包括封裝在該360度虛擬現實投影的該投影佈局中的該至少一個投影面和該至少一個填充區域;通過將幾何填充應用於該第一投影面,生成封裝在該基於投影的圖框中的該第一填充區域中包括的像素的像素值。 The video processing method according to claim 15, wherein the first pixel is included in the first filling area of the at least one filling area, and the second pixel is included in the first projection surface of the at least one projection surface In; a part of the bit stream is generated by encoding a projection-based frame, wherein the projection-based frame includes the at least one projection surface and the at least one encapsulated in the projection layout of the 360-degree virtual reality projection Filled area; by applying geometric filling to the first projection surface, the pixel values of the pixels included in the first filled area encapsulated in the projection-based frame are generated. 如申請專利範圍第15項所述之視訊處理方法,其中,通過使用以下 公式計算該第一像素的更新的像素值:
Figure 107133868-A0305-02-0070-12
其中S'REC表示該第一像素的更新的像素值,S'表示為該第一像素獲得的解碼像素值,T'表示為該第二像素獲得的解碼像素值,M表示第一填充區域的填充寬度,以及N表示該第一像素和與該第一填充區域連接的投影面的一邊之間的距離。
The video processing method according to the 15th patent application, wherein the updated pixel value of the first pixel is calculated by using the following formula:
Figure 107133868-A0305-02-0070-12
Where S'REC represents the updated pixel value of the first pixel, S'represents the decoded pixel value obtained by the first pixel, T'represents the decoded pixel value obtained by the second pixel, and M represents the value of the first filled area The filling width, and N represents the distance between the first pixel and one side of the projection plane connected to the first filling area.
如申請專利範圍第18項所述之視訊處理方法,其中,N=i+0.5,i是從與該第一填充區域連接的該投影面的一邊計數的第一像素的索引,並且i是不小於-M的負整數。 The video processing method described in item 18 of the scope of patent application, wherein N=i+0.5, i is the index of the first pixel counted from the side of the projection surface connected to the first filling area, and i is not Negative integer less than -M. 如申請專利範圍第15項所述之視訊處理方法,其中,該投影佈局是具有填充的立方體投影佈局。 According to the video processing method described in the scope of patent application, the projection layout is a cubic projection layout with filling.
TW107133868A 2017-09-27 2018-09-26 Method for processing projection-based frame that includes at least one projection face packed in 360-degree virtual reality projection layout TWI702567B (en)

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
US201762563787P 2017-09-27 2017-09-27
US62/563,787 2017-09-27
US201762583078P 2017-11-08 2017-11-08
US62/583,078 2017-11-08
US201762583573P 2017-11-09 2017-11-09
US62/583,573 2017-11-09
US15/917,844 US11057643B2 (en) 2017-03-13 2018-03-12 Method and apparatus for generating and encoding projection-based frame that includes at least one padding region and at least one projection face packed in 360-degree virtual reality projection layout
US15/917,844 2018-03-12
WOPCT/CN2018/081723 2018-04-03
PCT/CN2018/081723 WO2018184528A1 (en) 2017-04-05 2018-04-03 Method and apparatus for processing projection-based frame with at least one projection face generated using non-uniform mapping
??PCT/CN2018/081723 2018-04-03
WOPCT/CN2018/107351 2018-09-25
PCT/CN2018/107351 WO2019062714A1 (en) 2017-09-27 2018-09-25 Method for processing projection-based frame that includes at least one projection face packed in 360-degree virtual reality projection layout
??PCT/CN2018/107351 2018-09-25

Publications (2)

Publication Number Publication Date
TW201921035A TW201921035A (en) 2019-06-01
TWI702567B true TWI702567B (en) 2020-08-21

Family

ID=65900591

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107133868A TWI702567B (en) 2017-09-27 2018-09-26 Method for processing projection-based frame that includes at least one projection face packed in 360-degree virtual reality projection layout

Country Status (4)

Country Link
CN (2) CN109906468B (en)
DE (1) DE112018002436T5 (en)
TW (1) TWI702567B (en)
WO (1) WO2019062714A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11659206B2 (en) 2019-07-02 2023-05-23 Mediatek Inc. Video encoding method with syntax element signaling of guard band configuration of projection-based frame and associated video decoding method and apparatus
US11190801B2 (en) 2019-07-02 2021-11-30 Mediatek Inc. Video encoding method with syntax element signaling of mapping function employed by cube-based projection and associated video decoding method
US11190768B2 (en) 2019-07-02 2021-11-30 Mediatek Inc. Video encoding method with syntax element signaling of packing of projection faces derived from cube-based projection and associated video decoding method and apparatus
CN110416240A (en) * 2019-08-09 2019-11-05 北京思比科微电子技术股份有限公司 A kind of image sensor package structure
US11095912B2 (en) 2019-10-28 2021-08-17 Mediatek Inc. Video decoding method for decoding part of bitstream to generate projection-based frame with constrained guard band size, constrained projection face size, and/or constrained picture size
US20210203995A1 (en) * 2019-12-30 2021-07-01 Mediatek Inc. Video decoding method for decoding bitstream to generate projection-based frame with guard band type specified by syntax element signaling

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6654019B2 (en) * 1998-05-13 2003-11-25 Imove, Inc. Panoramic movie which utilizes a series of captured panoramic images to display movement as observed by a viewer looking in a selected direction
US20040046888A1 (en) * 2002-07-26 2004-03-11 Gwo-Jen Jan Method for presenting fisheye-camera images
US7292722B2 (en) * 2002-12-03 2007-11-06 Ntt Docomo, Inc. Representation and coding of panoramic and omnidirectional images
CN106056531A (en) * 2016-05-13 2016-10-26 杭州当虹科技有限公司 Displaying method for unfolding 360-degree panorama video spherical surface to plane
US20170084073A1 (en) * 2015-09-22 2017-03-23 Facebook, Inc. Systems and methods for content streaming
WO2017158236A2 (en) * 2016-03-15 2017-09-21 Nokia Technologies Oy A method, an apparatus and a computer program product for coding a 360-degree panoramic images and video

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000067227A (en) * 1998-08-25 2000-03-03 Canon Inc Image display device method and recording medium
KR100732958B1 (en) * 2004-08-13 2007-06-27 경희대학교 산학협력단 Method and apparatus for encoding and decoding icosahedron panorama image
US10225546B2 (en) * 2016-02-26 2019-03-05 Qualcomm Incorporated Independent multi-resolution coding
CN105898254B (en) * 2016-05-17 2018-10-23 北京金字塔虚拟现实科技有限公司 It saves the VR panoramic videos layout method of bandwidth, device and shows method, system
CN105915907B (en) * 2016-06-07 2019-07-26 北京圣威特科技有限公司 Compression method, the apparatus and system of panorama sketch
CN106162139B (en) * 2016-08-04 2018-03-30 微鲸科技有限公司 Coding method, video output device, coding/decoding method and video play device
CN106846245B (en) * 2017-01-17 2019-08-02 北京大学深圳研究生院 Panoramic video mapping method based on main view point

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6654019B2 (en) * 1998-05-13 2003-11-25 Imove, Inc. Panoramic movie which utilizes a series of captured panoramic images to display movement as observed by a viewer looking in a selected direction
US20040046888A1 (en) * 2002-07-26 2004-03-11 Gwo-Jen Jan Method for presenting fisheye-camera images
US7292722B2 (en) * 2002-12-03 2007-11-06 Ntt Docomo, Inc. Representation and coding of panoramic and omnidirectional images
US20170084073A1 (en) * 2015-09-22 2017-03-23 Facebook, Inc. Systems and methods for content streaming
WO2017158236A2 (en) * 2016-03-15 2017-09-21 Nokia Technologies Oy A method, an apparatus and a computer program product for coding a 360-degree panoramic images and video
CN106056531A (en) * 2016-05-13 2016-10-26 杭州当虹科技有限公司 Displaying method for unfolding 360-degree panorama video spherical surface to plane

Also Published As

Publication number Publication date
CN116912129A (en) 2023-10-20
CN109906468B (en) 2023-08-22
DE112018002436T5 (en) 2020-02-20
TW201921035A (en) 2019-06-01
WO2019062714A1 (en) 2019-04-04
CN109906468A (en) 2019-06-18

Similar Documents

Publication Publication Date Title
TWI702567B (en) Method for processing projection-based frame that includes at least one projection face packed in 360-degree virtual reality projection layout
TWI673995B (en) Method and apparatus for generating and encoding projection-based frame that includes at least one padding region and at least one projection face packed in 360-degree virtual reality projection layout
US11004173B2 (en) Method for processing projection-based frame that includes at least one projection face packed in 360-degree virtual reality projection layout
CN107454468B (en) Method, apparatus and stream for formatting immersive video
US10356386B2 (en) Method and apparatus for processing projection-based frame with at least one projection face generated using non-uniform mapping
TWI666912B (en) Method and apparatus for generating and encoding projection-based frame with 360-degree content represented in projection faces packed in segmented sphere projection layout
TWI690728B (en) Method for processing projection-based frame that includes projection faces packed in cube-based projection layout with padding
TWI681662B (en) Method and apparatus for reducing artifacts in projection-based frame
CN112868237A (en) Method for processing a projection-based frame comprising at least one projection surface and at least one fill area encapsulated in a 360-degree virtual reality projection layout
US11948268B2 (en) Immersive video bitstream processing
US20190325553A1 (en) Method and apparatus for decoding projection-based frame with 360-degree content represented by triangular projection faces packed in octahedron projection layout
US11405630B2 (en) Video decoding method for decoding part of bitstream to generate projection-based frame with constrained picture size and associated electronic device
CN109845270B (en) Video processing method and device
Zakharchenko et al. Joint Video Exploration Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11